Indian Point Energy Center

Water Mass Balance and Dose Calculation from Groundwater and Storm Water

An Assessment of 2005 Effluent Impact

GZA GeoEnvironmental, Inc IPEC Chemistry and Rad Protection DAQ, inc

March 3, 2006

The basic methodology for this dose calculation is based on an overall mass balance driven by precipitation. The hydrology portion of this calculation was performed by IPEC's consultant, Matthew Barvenik, of GZA GeoEnvironmental, Inc. IPEC concurs with this methodology. This "watershed analysis" partitions the precipitation falling on the watershed catchment area (i.e., that portion of the Facility area where the surface topography is sloped towards the river) into water that infiltrates the ground to become groundwater (GW), water that flows off the surface as storm water (SW) and that water which directly moves back into the atmosphere via evapotranspiration and other processes. See Figure 1, "IPEC Groundwater and Storm Drain Conceptual Drawing". This method of analysis is based on well established hydrologic principles and the parameter selection we've employed is heavily biased towards larger flows and higher H³ concentrations. As such, we believe that this analysis is significantly conservative, resulting in estimates of H³ moving to the river (both directly and via the Discharge Canal) that will likely be proven to be substantially higher than actually exist with the acquisition of additional data.

Over the entire watershed catchment area of 3.2 million ft^2 , the GW and SW has been segmented relative to the areas of the Facility through which it flows (primarily established based on H^3 concentrations in the various Facility areas. See Figure 2, "Indian Point Site Overview" depicting groundwater areas and storm water zones.

Overall, the partitioning was established as follows for infiltration areas contributing to GW flow (does not include paved or building areas):

GROUNDWATER AREAS:

- AREA 1. The northwestern most area where GW appears to move directly to the river, but passes to the north of the Unit 2 Turbine Building Road (area of 0.25 million ft²). This GW is unlikely to contain appreciable H³ concentrations based on the data available to date and the lack of likely H³ sources;
- AREA 2. The area where the GW appears to move through Unit 2 facilities (area of 0.57 million ft²);
- AREA 3. The area where the GW appears to move through Unit 1/3 facilities (area of 1.7 million ft²);
- AREA 4. The southwestern most area where GW appears to move directly to the river, but passes to the south of the Unit 3 Turbine Building Road (area of 0.67 million ft²). This GW is unlikely to contain appreciable H³ concentrations based on the data available to date and the lack of likely H³ sources.

SW flow from paved areas and building roof areas has also been partitioned into various zones within the above Facility GW areas as follows:

STORM WATER AREAS:

- **ZONE A.** The eastern most parking lots which likely drain along flow paths where the SW is unlikely to contain H³, and storm drain exfiltration into the GW flow zone is also unlikely to pick up H³ (area of 0.35 million ft²);
- **ZONE B.** Within the Unit 2 Facility, the eastern and western zones where SW appears to discharge to the river, but does not pass through the Unit 2 Transformer Yard (area of 0.21 million ft²);
- **ZONE C.** Within the Unit 2 Facility, the middle zone where SW flows to the Discharge Canal, and does pass through the Unit 2 Transformer Yard (area of 0.15 million ft²);
- ZONE D. Within the Unit 1 Facility where SW flows to the Discharge Canal (area of 0.13 million ft²); and
- ZONE E. Within the Unit 3 Facility where SW flows to the Discharge Canal (area of 0.75 million ft²).

A portion of the SW has been assumed to leak out of storm drains and thus increases the GW flow to the river as follows:

- ZONE A. Storm drain exfiltration =0% set to 0% because exfiltration from pipes in this zone are unlikely to contribute flow to GW which contains H³ and the SW itself is unlikely to contain H³;
- ZONE B. Storm drain exfiltration =0% set to 0% because exfiltration from pipes in this zone are
- unlikely to contribute flow to GW which contains H^3 and the SW itself is unlikely to contain H^3 ;
- ZONE C. Storm drain exfiltration =25% set to a relatively high value to result in higher than anticipated GW flow through the Unit 2 Transformer Yard which contains the highest H³ GW values, so as to be conservative;
- ZONE D. Storm drain exfiltration =50%; set very high given current knowledge of these drains; and
- ZONE E. Storm drain exfiltration =10%; set to a nominal value given current lack of specific data and limited impact on overall H³ flux due to low H³ concentrations.

 H^3 concentrations have been established using 2005 data, and Strontium-90 has been included for groundwater flow Area 2.

- **GW flow AREA 1.** [H³] = 0 pCi/L given lack of likely H³ source areas and flow path which appears not to flow through areas exhibiting H³ concentrations in the GW;
- GW flow AREA 2. [H³] = 200,000 pCi/L which represents an upper bound average of the concentrations found in the Unit 2 Transformer Yard (it is expected that the pending Phase I and II data will prove this assumed value for H³ in the GW moving to the river through the Unit 2 area to be substantially higher than actually exists);
- GW flow AREA 3. [H³] = 620 pCi/L which represents an upper average of the concentrations found in the Unit 1 and 3 Facility areas;
- GW flow AREA 4. [H³] = 0 pCi/L given lack of likely H³ source areas and flow path which appears not to flow through areas exhibiting H³ concentrations in the GW;
- SW flow ZONE A. [H³] = 0 pCi/L given that exfiltration from pipes in this zone are unlikely to contribute flow to GW which contains H³ and the SW itself is unlikely to contain H³;
- SW flow ZONE B. [H³] = 651 pCi/L given measured storm drain concentrations;
- SW flow ZONE C. $[H^3] = 2,900 \text{ pCi/L given measured storm drain concentrations;}$
- SW flow ZONE D. $[H^3] = 1,560 \text{ pCi/L given measured storm drain concentrations; and}$
- SW flow ZONE E. $[H^3] = 1,560$ pCi/L given measured storm drain concentrations.

The infiltration rate in non-paved/building areas was established at 0.46 feet/year based on the USGS report: Water Use, Groundwater Recharge and Availability, and Quality in the Greenwich Area, Fairfield County, CT and Westchester County, NY, 2000 - 2002. The precipitation rate for the area was set at 3.74 feet/year based on onsite meteorological data.

Based on the above analysis, it is estimated that approximately 1.36 Ci/year of H³ migrates directly to the river via the GW flow path. It is also estimated that less than 0.02 Ci/year flows directly to the river via SW. It is further estimated that approximately 0.16 Ci/year flows to the river with SW via the Discharge Canal.

It is noted that the H^3 concentrations adopted herein are expected to represent values which are significantly greater than those which actually exist given the conservatism exercised during parameter selection. An example of the conservatism employed in these calculations includes:

- H³ concentrations selected for the various GW and SW flows are likely to be higher values than actually exist. It is believed that these values will be proven to be significantly too high with the acquisition of additional Phase I and II data. This is particularly true for the 200,000 pCi/L adopted for the Unit 2 Transformer Area;
- The areas contributing GW flow through various IPEC Facilities was biased toward placing more flow through the Unit 2 Transformer Yard where the highest H³ concentrations were used;
- All GW flow has been assumed to discharge directly to the river. Some of this GW flow must infiltrate the Discharge Canal thus reducing the apportionment to the river;
- All storm drain pipe leakage has been assumed to be exfiltration which will increase GW flow values. However, current data in the Unit 2 Transformer Yard indicates that significant GW infiltrates the storm drain during rainfall events, thus flowing to the Discharge Canal via SW rather than directly to the river as GW. In addition, it is noted that SW H³ concentrations were typically obtained during non-storm events and thus represent the high end of H³ values associated with low flow conditions. However, these high H³ concentrations, were then applied to the much higher storm flows where much lower H³ values should exist;
- All precipitation falling on paved/building areas was assumed to result in SW flow. Some of this water actually evaporates directly to atmosphere from pavement and buildings; and
- The very large value of GW flow extracted from the GW system via the Unit 1 curtain and footing drains has not been subtracted from the GW flows adopted in the analysis.

Results:

The results of the calculations are shown in Table 1, and they show that the annual dose from the groundwater and storm water pathways due to tritium is 0.0000154 millirem per year to the whole body (less than 0.1 percent of the 3 millirem per year liquid pathway limit). If Sr-90 is included in the calculation, the dose to the critical organ (bone) is 0.000840 millirem per year, which is less than 0.1 percent of the 10 millirem per year critical organ limit. The total tritium activity calculated to be released via this pathway is 1.53 Curies, which is less than 0.1 percent of the liquid tritium releases via other pathways.

There are six tables attached:

- A summary table of curies and dose,
- Three tables of curies and doses from storm water pathways, and
- Two tables of curies and doses from groundwater pathways

Figure 1 shows a representation of the conceptual water balance.

Figure 2 shows a map of the IPEC site, broken down into Areas and Zones referenced in the calculation. Figure 3 shows precipitation data for the Indian Point site.

Figure 1

Page 4

©2006 - GZA GeoEnvironmental, Inc.

Table 1

Total IPEC Summary for Ground Water releases in 2005 (H-3 and Sr-90)

Sum of two monitoring well calculations, IP2 and IP3, Areas 2 and 3

De	oses, in mr	em	· · · · ·						- +
SOTORES 3	BONES	E E VER S	TOTIBODY	THYROID	KIDNEY	EUNG		LUCI/H-3	uGilSr:90
H-3 🕅	0.00É+00>	1.52E-05	1:52E-05	1 52E-05	1.52E-05	1.52E-05	1.52E-05	27 PT1.36E+06	tar¥n/a
Sr-90	8.40E-04	0.00E+00	2:06E-04	0:00E+00	0.00E+00	0.00E+00	2.42E-05	n/a 👘	-3.35E+01
totals 💦 8	8.40E-04	1/50E-05	2.21E-04	1.50E-05	1.50E-05	1.50E-05	3.92E-05	1.36E+06	3.35E+01

Storm Drain Water from Zone B, East/West Unit 2, near MH-2, going to river directly

Doses, in mrem

S			
SOTOPE	TOT BODY ETHYROID	KIDNEY I UNG CHUR	A CONTRACTOR OF CONTRACTOR
and the second	A CONTRACTOR OF A CONTRACTOR STOLEN AND A CONTRACTOR OF A CONTRACT		Section of the sectio
H-3 E0:00E+00% 1:63E2074	163F-07	163E-07 1 163E-07 1 163E-07	1 46F+04
		THORE ON THOSE OF THE TOPE OF	A MARS - U. S. Marshall - And

Storm Drain Water from Zones C and D/E (Central U2 & U1/U3) to Discharge Canal

SISOTOPE BONES CLIVER TOTBODY THYROID KIDNEY ILUNG GILLING	調査
	.512
H-3 0100E+00 2282E+08 2282E+08 2282E+08 2282E+08 2282E+08 2282E+08 2282E+08 2282E+08	5
	- ·
TotalsDoses, in mrem	

H-3 only	0:00E+00 1:54E-05 1:54E-05 1:54E-05 1:54E-05 1:54E-05	1.53E+06 3 40E+01
		UCIH-31 UCI ST-90X
H-3 and Sr-90	8.40E-04 1.54E-05 2:21E-04 1.54E-05 1.54E-05 1.54E-05 3.96E-05	

Page 6

Table 2

IPEC Liquid Effluent ODCM Calc

Storm Drain Zone B (MH-2 East & West Unit 2) to the Hudson River directly, 2005

Release Rate 6.15E+07 ml/c	lay or	1.62E+04	gpd	or	11.28	gpm
Duration of Release, in days	365 🛞	Waste	vol rel	eased =	5.93E+06	gal
Dilution flow 1.11E+05	gpm	Diltution	n vol rel	eased =	5.83E+10	gal
Dil Factor 1 02E-04	(dilutio)	nata nar 102	CHALOP	5.042 tra	n Dr. John Ha	(maint)

	Activity	10CFR20	PRE	POST	POST	MICRO-
ISOTOPE	Released	EC*10	DILUTION	DILUTION	DILUTION	CURIES
	uCi/ml	conc limit	CONC/MPC	uCi/ml	CONCMPC	RELEASED
H-3	6.51E-07	1.00E-02	6.51E-05	6.62E-11	6.62E-09	1.46E+04
MN-54	a a construction of the second se	3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FE-55		1.00E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-58		2.00E-04	0.00E+00	0:00E+00	0.00E+00	0.00E+00
CO-60	i statu	3.00E-05	0.00E+00	0:00E+00	0.00E+00	0.00E+00
NI-63	0./	1.00E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SR-90		5.00E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SB-125	na series de la series. El series de la series	3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-134		9.00E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-137		1.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-57		6.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TOTAL	6.51E-07	n/a	6.51E-05	6.62E-11	6.62E-09	1.46E+04

NUREG 0133 "Applicable Factor" for Near Field Dilution =

•	Adult Total Body mrem								
ISOTOPE	BONE	LIVER	TOT BODY	THYROID	KIDNEY	LUNG 🗤 🛇	GI-LU		
H-3	0.00E+00	1.63E-07	1.63E-07	1.63E-07	1.63E-07	1.63E-07	1.63E-07		
MN-54	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
FE-55	0.00E+00	0.00E+00	0.00E+00	0:00E+00	0.00E+00	0.00E+00	0.00E+00		
CO-58	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CO-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
NI-63	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
SR-90	0.00E+00	0.00E+00	0:00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
SB-125	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CS-134	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CS-137	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
CO-57	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
TOTAL	0.00E+00	1.63E-07	1.63E-07	1.63E-07	1.63E-07	1.63E-07	1.63E-07		

Table 3

IPEC Liquid Effluent ODCM Calc

Central Unit 2 Storm Drain Releases of Tritium to the Hudson River via the Discharge Canal in 2005 (Zone C)

Release Rate 3:23E+07 ml/day or	8.54E+03 gpd or 5.93	gpm
Duration of Release, in days	Waste vol released = 3.12E+06	gal
Dilution flow 1.39E+06 gpm	Diltution vol released = 7.31E+11	gal
Dil Factor 4.27E-06	(dilution from actual 2005 data)	•

same and a state of the second particular boot when	WALL CONTACT AND IN MANUAL AND			Provent DOOT States		
	ACTIVITY	100FR20	アストで認定	r : POSI	POSICE	MICRO-
SOTOPE	Released	EC*10	DILUTION	DILUTION	DILUTION	CURIES
	uCi/ml	🗠 conc limit 🔄	CONC/MPC		CONCMPC	RELEASED
H-3 *	2.90E-06	1.00E-02	2.90E-04	1.24E-11	1.24E-09	3.42E+04
MN-54		3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FE-55		1.00E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-58		2.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-60		3.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NI-63		1.00E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SR-90		5.00E-06	0.00E+00`	0.00E+00	0.00E+00	0.00E+00
SB-125	FREE CO	3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-134	的复数的现在分词	9.00E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-137		1.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-57		6.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TOTAL	2.90E-06	r∕ @@n/a: *∰	2.90E-04	1:24E-11 ⊰	1:24E-09	3.42E+04

* No gamma identified in storm drains, and 2.9E-6 was avg effluent H-3 in 2005 from MH-4a.

NUREG 0133 "Applicable Factor" for Near Field Dilution =

5.00E+00

Adult Total Body mrem								
ISOTOPE	BONE	S LIVER	TOT BODY	WTHYROID	KIDNEY	LUNG	· GJ-LLU	
H-3	0.00E+00	6.11E-09	6.11E-09	6.11E-09	6.11E-09	6.11E-09	6.11E-09	
MN-54	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
FE-55	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0:00E+00	
CO-58	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
CO-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
NI-63	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
SR-90	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
SB-125	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
CS-134	0.00E+00	0.00E+00	0.00E+00	0:00E+00	0.00E+00	0.00E+00	0.00E+00	
CS-137	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
CO-57	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
TOTAL	0.00E+00	6.11E-09	6:11E-09	6:11E-09	6.11E-09	6.11E-09	6.11E-09	

Table 4

IPEC Liquid Effluent ODCM Calc

Storm Drain Releases of Tritium to the Hudson River via the Discharge Canal in 2005 from Units 1 and 3 (Zones D and E)

Release Rate 217E+08 ml/day or	5.72E+04 gpd or	39.75	gpm
Duration of Release, In days	Waste vol released =	2.09E+07	gal
Dilution flow gpm	Diltution vol released =	7.31E+11	gal
Dil Factor 2.86E-05	(dilution from actual 2005	data)	

	Activity	10CFR20	PRE	POST	POST	MICRO-
ISOTOPE	Released	EC:10	DILUTION	DILUTION	DILUTION	CURIES
	≥uCi/ml	conc limit 🖉	CONC/MPC		CONCMPC	RELEASED
H-3. *	1.56E-06	1.00E-02	1.56E-04	4.46E-11	4.46E-09	1.23E+05
MN-54		3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FE-55	Maria Carros de	1.00E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-58	化物理学的现在分	2.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-60		3.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NI-63		1.00E-03	0:00E+00	0.00E+00	0.00E+00	0.00E+00
SR-90		5.00E-06	0:00E+00	0.00E+00	0.00E+00	0.00E+00
SB-125		3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-134		9.00E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-137	会議議会会会会	1.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-57		6.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TOTAL	1.56E-06	n/a	2 1.56E-04	4.46E-11	4.46E-09	1.23E+05

* No gamma identified in storm drains, and 1 56E-6 was average of effected Storm Drains in 2005

NUREG 0133 "Applicable Factor" for Near Field Dilution =

5.00E+00

. :			Adult Total Bo	dy mrem			
STORE S	BONE	ZELIVER	TOT BODY	ETHYROID	KIDNEY	EUNG State	Ser CHUE
H-3	0.00E+00	2.20E-08	2.20E-08	2.20E-08	2.20E-08	2.20E-08	2.20E-08
MN-54	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FE-55	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-58	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NI-63	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SR-90	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SB-125	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-134	0.00E+00	0.00E+00	0.00E+00	0:00E+00	0.00E+00	0.00E+00	0.00E+00
CS-137	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-57	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TOTAL	000E+00	2 20E-08	220E-08	2 20E-08	2 20E-08	2 20E-08	2 20E-08

Table 5

IPEC Liquid Effluent ODCM Calc

IP3 Tritium Released to Hudson River via Bedrock Pathway in 2005 (from the area near IP3 waterfront, as determined by samples from Monitoring Wells - Area 3)

Release Rate 753E+07	ml/day or	1.99E+04	gpd	or	13.81	gpm	
Duration of Release, in days	365	Waste	vol relea	ased =	7.26E+06	gal	•
Dilution flow	gpm	Diltution	voj releg	ised =	5.83E+10	gal	
Dil Factor 1.24E-04	(dilution	data per IP-C	CHM-05-	042 from	Dr. John Ha	mawi)	

				et a		
San Angel San	Activity	= 10CFR20	PRE	POST	POST -	MICRO-
ISOTOPE	Released	EC*10	DILUTION	DILUTION	E DILUTION	CURIES
法法律法律法	uCi/ml	⊳ ∞nc limit	CONC/MPC:	uCi/ml 🐳	CONC/MPC	RELEASED
H-3	6:20E-07	1.00E-02	6.20E-05	7.71E-11	7.71E-09	1.70E+04
MN-54		3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FE-55		1.00E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-58		2.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CO-60	8. W. S. Starth	3.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NI-63		1.00E-03	0.00E+00	0.00E+00	0.00E+00.	0.00E+00
SR-90	治疗 在1995年1月	5.00E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00
SB-125	業務の合置に対	3.00E-04	0.00E+00	0.00E+00	,0.00E+00	0.00E+00
CS-134		9.00E-06	0:00E+00	0.00E+00	0.00E+00	0.00E+00
CS-137		1.00E-05	0.00E+00	0.00E+00	0.00E+00	0:00E+00
CO-57		6.00E-04	0,00E+00	0.00E+00	0.00E+00	0.00E+00
TOTAL	6:20E-07	n/a	6.20E-05	7.71E-11	7.71E-09	1.70E+04

NUREG 0133 "Applicable Factor" for Near Field Dilution =

1.00E+00

Adult Total Body mrem										
INISOTORE	BONE	LIVER	TOT BODY	THYROID	KIDNEY	LUNG	GHU .			
H-3	0.00E+00	1.91E-07	1.91E-07	1.91E-07	1:91E-07	1 91E-07	1.91E-07			
MN-54	0.00E+00	0.00E+00	0.00E+00	0.00E+00	,0.00E+00	0.00E+00	0.00E+00			
FE-55	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
CO-58	0.00E+00	0:00E+00	0:00E+00	0.00E+00	0.00E+00	0:00E+00	0.00E+00			
CO-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
NI-63	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
SR-90	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
SB-125	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
CS-134	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
CS-137	0.00E+00	0.00E+00	0:00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
CO-57	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0,00E+00	0.00E+00			
TOTA	0 00F+00	1.91E-07	1 91F-07	1 91F-07	191E-07	1 91 - 17	1 91 F-07			

Table 6

IPEC Liquid Effluent ODCM Calc

IP2 Tritium Released to Hudson River via Bedrock Pathway, 2005 (from the area near IP2 transformer yard, as determined by samples from Monitoring Wells - Area 2)

Release Rate 1.84E+07 ml	l/day or	4.85E+03	gpđ	or	3.37	gpm	
Duration of Release, in days	365	Waste	voi rele	ased =	1.77E±06	gal	
Dilution flow	gpm	Diltution	vol rele	eased =	5,83E+10	gal	
Dil Factor 3:03E-05	dilution	data ner IP-0	HM-05	042 from	Dr. John Ha	mawil	

		-				
	Activity	= 10CFR20	- PRE	POST	POST	MICRO-
ISOTOPE	Released	EC*10.	DILUTION	DILUTION	DILUTION	CURIES
A BASSIES	W- [°] uCi/ml	🖓 conc limit 🖉	CONC/MPC	uCi/ml 🔬	CONCIMPC	RELEASED
H-3	200E-04	1.00E-02	2.00E-02	6.07E-09	6.07E-07	1.34E+06
MN-54		3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FE-55	a proper a que contre conservant de Conservant Conservant de Conservant de Conservant de Conservant de Conserva	1.00E-03	0:00E+00	0.00E+00	0.00E+00	0.00E+00
CO-58	1000 - 10 125 No.	2.00E-04	0:00E+00	0.00E+00	0.00E+00	0.00E+00
CO-60		3.00E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NI-63		1.00E-03	0)00E+00	0.00E+00	0.00E+00	0.00E+00
SR-90 [,]	5.00E-09	5.00E-06	1.00E-03	1.52E-13	3.03E-08	3.35E+01
SB-125		3.00E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-134	and a second	9.00E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00
CS-137	and a second	1.00E-05	0.00E+00	0.00E+00	0.00E+00	0:00E+00
C©-57		6.00E-04	0.00E+00	0.00E+00	0:00E+00	0.00E+00
TOTAL	2:00E-04	i≳s≪n/a (≪s	2.10E-02	6.07E-09	6.37E-07	1.34E+06

NUREG 0133 "Applicable Factor" for Near Field Dilution =

1.00E+00

Adult 10tal Body mrem											
SISOTOPE	BONE		TOT BODY	THYROID	KIDNEY	R LUNG	弹的GILLUAS				
H-3	0.00E+00	1.50E-05	1.50E-05	1.50E-05	1 50E-05	1.50E-05	1.50E-05				
MN-54	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
FE-55	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
CO-58	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
CO-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
NI-63	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
SR-90	8.40E-04	0.00E+00	2.06E-04	0.00E+00	0.00E+00	0.00E+00	2.42E-05				
SB-125	0.00E+00	0,00E+00	0:00E+00	0,00E+00	0.00E+00	0.00E+00	0.00E+00				
CS-134	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
CS-137	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
CO-57	0.00E+00	0:00E+00	0.00E+00	0.00E+00	0.00E+00	0:00E+00	0.00E+00				
TOTAL	8 40 E-04	1 50E-05	2.21E-04	1 50E-05	1 50E-05	1 50E-05	3 92E-05				

at an an

Figure 3

