Client: [Duke Power Ca	rolinas, LLC		Calculation	n No.	07Q369	91-CAL-009	
Title: A	Analysis of Buri	ed HDPE Piping Sy	/stem— N	Nuclear Ser	/ice Wa	ter (NSW) Si	upply Line Diesel	
	Generator "2B"	Unit 2						
Project:	Catawba Uni	t #1 and Unit #2 – I	Buried HI	DPE Pipe D	esign a	nd Analysis		
Method:	Computer an	d Manual Calculati	ons					
Acceptance	e Criteria:	N/A						
Remarks:								
Verification	Method 🛛	Design Review Met	hod [Alternate	Calcula	ntion [Qualification Test	
		Other	Ē	No Verifi	cation N	ecessary	_	
Results:			- <u>1</u>		11		u	
Computer Programs	Prog	gram Name	Version/Revision Con		Com	nputer Type	QA Verified	
Used	ADLPIPE		4F10.1		PC		YES	
	Microsoft Wo	rd	2003		PC		N/A	
	Mathcad		2000	2000 PC			N/A	
			REVIS	SIONS				
Revision No		0						
Description		Original Issu	le					
Total Pages	(Cumulative)	94						
By/Date A. Hailu								
Checked/Date Buice 9. Dubouachy			1-11-08					
Approved/Date			1-11-08					
			CALCULATION		CONTRACT NO.			
Stev		COVER SHEET			07Q3691			

U:\07Q3691 - Duke HDPE Analysis\10_Calculations\07Q3691-CAL-009\07Q3691-CAL-009_11-10.doc

Client	Duke Power Care	olinas, L	LC	Ca	alculation No.	07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2					ne Diesel		
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce P. Oubovec	શ્વ Date	11/11/08	

TABLE OF CONTENTS

TABLE OF CON	ITENTS	2
DOCUMENT IN	DEX	4
1.0 PURP	OSE OR OBJECTIVE	6
2.0 SCOP	E AND LIMITATIONS	6
3.0 DEFIN	NITIONS	6
4.0 ASSU	MPTIONS	. 8
4.1 Ass	umptions Not Requiring Verification	8
	umptions To Be Verified	
5.0 ANAL	YSIS METHODOLOGY AND APPROACH	. 8
	kground	
	thodology and Approach	
	PE Calculations Dependent Only on Design Conditions and Pipe Size	
5.2.2 HD	PE Calculations Requiring the Input of Geometry Specific Loads	12
	el Pipe Criteria	
	YSIS INPUTS	
6.1 Des	ign Loads	15
6.2 Pipe	e Properties	15
6.3 Mat	terial Properties	16
6.4 HD	PE to Steel Boundary	19
6.5 HD	PE Elbows	19
6.6 Stre	ess Indices and SIFs	20
6.7 Soil	Springs	22
6.8 Seis	mic Analysis Input	22
6.8.1 Seis	mic Anchor Motion	22
	mic Wave Passage	
6.8.3 Dec	oupling of 12" Steel Pipe	23
6.9 Pipi	ing Layout	23
6.10 Pip	e Criteria – Steel and HDPE	25
6.11 Acc	eptance Criteria – Steel and HDPE	27
	YSIS	
7.1 Comput	er Model	29
	of ADLPIPE Analysis	
7.2.1 Load	Cases Analyzed	30
7.2.2 Summ	ary of HDPE Loads at Critical Locations	31
	tions per the ASME BPVC Code Case N-755	
7.4 Stress S	ummary for Unit 2 Steel Pipe	44
	Summary for Unit 2 HDPE Pipe	
	ion of Buoyancy over Condenser Cooling Water Lines	
	ion of Steel Bridge Pipe over Condenser Cooling Water Lines	
	ion of 12" ø HDPE Pipe over Condenser Cooling Water Lines	
	LTS	
8.1 Function	nality Capability and Break Postulation	52

Client	Duke Power Carolinas, LLC				culation No.	. 07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HI	OPE Pipi	ing System— I	Nuclear Serv	ice Water (NSV	V) Supply Li	ne Diesel	
Tille	Generator "2B" Unit 2							
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce P. Oubouec	Ay Date	11/11/08	

8.2 Final Loads at the Anchor at the Diesel Generator Building due to Soil Effects	
8.3 Final Loads at the Centerline of the 42" ø Supply Line due to Soil Effects	54
8.4 Branch Line Qualification	
9.0 CONCLUSIONS	
Appendix A	
Appendix B	62

Client	Duke Power Car	LC	Ca	Iculation No.	07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce P. Ouboresc	Ay Date	11/11/08

DOCUMENT INDEX

DIN No.	Document Number/Title	Revision, Edition, Date	Reference	Input	Output
1	"Nondestructive Evaluation: Seismic Design Criteria for Polyethylene Pipe Replacement Code Case," EPRI, Palo Alto, CA, 2006, Report Number 1013549	September 2006			
2	"Guidelines for the Seismic Design of Oil and Gas Pipeline Systems," ASCE	1984			
3	"Catawba Updated Final Safety Analysis Report"	Rev. 12, April 2006			
4	"Polyethylene (PE) Pressure Pipe and Fittings, 4in. (100 mm) through 63 in. (1,575 mm) for Water Distribution and Transmission," ANSI/AWWA C906-99, American Water Works Association, 6666 West Quincy Ave., Denver, CO 80235	March 1, 2000			
5	Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-06.				
6	Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-11.				
7	Catawba Nuclear Station Units 1&2, Yard Layout, Buried Systems, Drawing No. CN-1038-12.				
8	HDPE Product Catalog, ISCO Industries	Version 2.1, 2005			
9	Ladish General Catalog No. 55	1971			
10	Navco Piping Catalog	Edition No. 10, June 1, 1974			
11	ASME Boiler and Pressure Vessel Code, Section III, Division I, Subsection ND-3600	1998 Edition with 2000 Addenda			
12	ASME Code Case N-755, High Density Polyethylene (HPDE) Buried Pipe, Section III, Division I, Class 3	March 22, 2007			
13	CNS ISFSI Haul Path Evaluation Calculation, CNM 1140.04-0005 001	Rev. 0, December 21, 2006			
14	Request for Relief Number 06-CN-003 "Use of Polyethylene Material in Nuclear Safety-Related Piping Applications" (TAC Numbers MD 3729 and MD 3730)	March 13, 2008			
15	S&A Calculation 07Q3691-CAL-001 "Calculation of Soil Spring Stiffness for Buried HDPE Pipe"	Rev. 0, 2008			
16	Catawba Nuclear Station Units 1 and 2 Calculation CNC-1206.02-84-001, "Nuclear Service Water Pipe Seismic Analysis (Buried Portion)"	Rev. 16, 9-7-06			

Client	Duke Power Care	olinas, L	LC	Ca	culation No. 07Q3691-CAL-009			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel	
By:	S. Hailu	Date	11/10/08	Chk'd by	Buce S. Oubouce	Ay Date	11/11/08	

DIN No.	Document Number/Title	Revision, Edition, Date	Reference	Input	Output
17	Bonney Forge Stress Intensification Factors: Weldolet, Sockolet, Thredolet, Sweepolet, Latrolet, Insert Weldolet, Bulletin SI-1	1988			
18	S&A Calculation 07Q3691-CAL-002 "Calculation of Equivalent Thermal Strain for Seismic Analysis of Buried HDPE Pipe"	Rev. 0, 2008			
19	Catawba Nuclear Station Specification CNS- 1206.02-01-008	Rev. 1, January 3,1998			
20	018B00Y020GPLOT_Digitized Spectra (4-14)	-			
21	Young, W. C., "Roark's Formulas for Stress and Strain".	McGraw-Hill, Sixth Edition, 1989			
22	Fatigue and Capacity Testing of High-Density Polyethylene Pipe and Pipe Components Fabricated from PE4710 (1015062)	Final Report, December 2007			
23	3691-LSC-002, "HDPE Pipe Interface Loads Applied to Steel Pipe"	March 17, 2008			
24	S&A Calculation 07Q3691-CAL-011, "Definition of Break Selection Criteria and Functional Capability Criteria for the Piping Design Specification"	August 30,2008			
25	S&A Calculation 07Q3691-CAL-013, "Technical Basis for Design Acceptance Criteria"	September, 30, 2008			
26	CNS-1574-00_RN-00-0002, "ASME Design Specification for the Nuclear Service Water System (RN) Diesel Generator Cooling Supply and Return Piping; Modification, Repair, and Replacement"	Preliminary Draft			
27	S&A Document 3691-DI-001, " Design Instructions for Analysis of Polyethylene Pipe"	Rev. 0, 7/2008			
28	Welding Research Council Bulletin 300, "Technical Position on Industry Practice"	December, 1984			
29	ASME Boiler and Pressure Vessel Code, Section III, Division I, Subsection ND-3600	1989 Edition with 1991 Addenda			

Client	Duke Power Carolinas, LLC				culation No.	ion No. 07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Div Generator "2B" Unit 2					ne Diesel			
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce D. Oubouse	Aų Date	11/11/08	

1.0 PURPOSE OR OBJECTIVE

Catawba Nuclear Station has decided to replace the buried nuclear service water piping lines connecting the 42-in Nuclear Service Water System (NSWS) supply and return headers to Unit 1 and Unit 2 Diesel Generator (DG) buildings. The existing 10-in carbon steel piping will be replaced by 12-in high-density polyethylene (HDPE) piping. The purpose of this calculation is to demonstrate the Design Basis ASME BPVC Code and Regulatory compliance for the buried HDPE piping system connecting the 42-in supply header 'B' to the DG building of Unit 2.

2.0 SCOPE AND LIMITATIONS

Results of this calculation are limited to the 12-in buried HDPE piping system supplying cooling water from the 42-in NSWS supply header 'B' to the to the Diesel Generator Building of Unit 2. The piping model goes from the anchor at the wall (column lines 76 & AA) to the 42"ø Supply B header pipe of the NSWS. There is a manhole (MH-3) at Diesel Generator Building Unit 2, and there is also a manhole (MH-7) at the connection to the 42" ø Supply B header pipe of the NSWS. The manholes provide access to the steel to HDPE flanged connections for the purpose of inspection and maintenance of the steel to HDPE connections. The HDPE pipe passes through the wall penetration of the manhole, but is not attached to the structure. The manhole does not transfer any load to the HDPE pipe. The gap between the manhole penetration and the HDPE pipe is sealed to prevent water from entering the manhole through this penetration. The piping qualification includes the following:

- (a) The Steel Pipe from the Unit 2 Diesel Generator Building anchor steel to the High Density Polyethylene (HDPE) pipe Flange.
- (b) HDPE Piping from Steel HDPE Flange near the Unit 2 Diesel Generator Building Anchor to the Steel – HDPE Flange near the 42" NSWS Supply Header 'B'
- (c) The Steel Pipe from the Steel HDPE Flange anchor to the 42" NSWS Supply Header 'B', including qualification of the 12" NSWS Supply Header 'B' branch connection to the NSWS Supply Header pipe.

3.0 **DEFINITIONS**

Nomenclature per Ref. [14], Request for Relief Number 06-CN-003, "Use of Polyethylene Material in Nuclear Safety-Related Piping Applications" (TAC Numbers MD 3729 and MD 3730). This nomenclature may differ somewhat from the nomenclature used in the ASME BPVC Code Case N-755 Ref. [12]. Nomenclature is provided at point of use.

A = Cross sectional area of pipe $[in^2]$ α = Coefficient of thermal expansion $[in/in/{}^{\circ}F]$ B_1 and B_2 = Primary stress indices B' = Burial factor BS = Building settlement loads c = Allowance for erosion or mechanical damage, [in] D = Outside diameter of pipe [in]

DR = Dimensional ratio of pipe; for OD-controlled pipe, DR = D/t

Client	Duke Power Card	LC	Cal	culation No.	o. 07Q3691-CAL-009			
Project	Project Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Pining System Nuclear Service Water (NSW) Supply Line Diesel							
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce S. Ouboresc	શ્વ Date	11/11/08	

DW = Deadweight of pipe and contents [lb]

E' = Modulus of soil reaction [psi]

 E_{pipe} = Elastic modulus of pipe [psi]

 f_0 = Ovality correction factor

F = Impact factor for surface loads.

FS = Factor of safety (FS = 2.0 Level A, 1.8 for Level B, and 1.5 for Levels C and D)

 γ_{soil} = Specific weight of the soil [lb/ft³]

 γ_{water} = Specific weight of the water [lb/ft³]

H = Height of fill (or cover) above top of pipe [ft]

 H_{qw} = height of groundwater above pipe [ft]

 \vec{k} = Longitudinal stress factor

 K_b = Bedding factor, usually 0.1.

 K_0 = Coefficient of soil pressure at rest, 0.5 to 1.0, may conservatively be taken as 1.0

 K_{po} = Spring due to pipe ovaling [lb/in]

L = Deflection lag factor (recommended values: 1.0 for short term and 1.5 for long term loads)

OBE_w = Operating Basis Earthquake due to effects of seismic wave passage

 OBE_S = Operating Basis Earthquake due to effects of soil movement

 OBE_D = Operating Basis Earthquake due to effects of anchor movements

P = Long-term design gage pressure for the pipe at the specified design temperature [psi]

 P_A , P_B , P_C and P_D = Maximum Pressures for Service Levels A through D [psi]

 P_{bs} , P_{cs} , and P_{ds} = Surge Pressures for Service Levels B through D [psi]

 P_E = Vertical soil pressure loads due to weight of soil cover [psi]

 P_{gw} = Groundwater pressure loads [psi]

 $\vec{P_L}$ = Vertical surcharge (transportation) loads [psi]

PS = Loads due to pump startup and shutdown

 R_b = Buoyancy reduction factor

 S_h = Design allowable stress for HDPE piping at temperature [psi]

 S_{γ} = Yield stress [psi]

 SSE_w = Safe Shutdown Earthquake due to effects of seismic wave passage

 SSE_S = Safe Shutdown Earthquake due to effects of soil movement

 SSE_D = Safe Shutdown Earthquake due to effects of anchor movements

 $T_{A,max}$, $T_{B,max}$, $T_{C,max}$ and $T_{D,max}$ = Maximum temperature for Service Levels A through D [°F]

 $T_{A,min}$, $T_{B,min}$, $T_{C,min}$ and $T_{D,min}$ = Minimum temperature for Service Levels A through D [°F]

t = Actual (not nominal) pipe wall thickness [in]

t_{min} = Minimum allowable pipe wall thickness [in]

VOT = Valve Operating Transients

v = Poisson's ratio for piping

 v_r = Poisson ratio for the bedrock

 W_P = Weight of empty pipe, [lb/ft]

 W_w = Groundwater floatation loads [lb]

Z = Section modulus of pipe cross section [in³]

Client	Duke Power Carolinas, LLC			Cal	culation No.	07Q3691-CAL-009		
Project	t Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Dining System Nuclear Service Water (NSW) Supply Line Diesel					ne Diesel		
By:	S. Hailu	Date	11/10/08	Chk'd by	Brace D. Ouboresc	હ્ય Date	11/11/08	

4.0 ASSUMPTIONS

4.1 Assumptions Not Requiring Verification

- [1] Due to the small Seismic Building Displacement of the Unit 2 Diesel Generator Building (0.003"), the seismic response of the buried steel pipe from the Diesel Generator building anchor to the HDPE piping is predominately due the effect of seismic wave passage. The effect of the Diesel Generator Building Amplified Floor Response does not need to be considered in the analysis of the buried pipe, Ref. [25].
- [2] Per discussion with Catawba Systems Engineering, it is concluded that the buried HDPE piping at Catawba is not subjected to any pressure surge loads, Ref. [25]
- [3] Seismic Anchor Movements of 0.003" are much less than 1/16" and, therefore, will have negligible effect on the piping and are not considered in the analysis

4.2 Assumptions To Be Verified

[1] Stress Intensification Factors (SIF's) for mitered elbows less than 90° are enveloped by SIF's of 90° elbows.

5.0 ANALYSIS METHODOLOGY AND APPROACH

5.1 Background

The buried water supply system to and from the Diesel Generator (DG) buildings to the 42-in Nuclear Service Water System (NSWS) currently uses 10-in carbon steel pipes. Catawba Nuclear Station (CNS) has decided to replace the 10-in steel pipes with 12-in high-density polyethylene (HDPE) pipes. There are a total of eight cooling water piping lines—four supply lines and four return lines.

- Two cooling water supply lines to the DG building of Unit 1. One line originates from the 42-in supply header 'A" and the other originates from the 42-in supply header 'B'.
- Two cooling water supply lines to the DG building of Unit 2. One line originates from the 42-in supply header 'A" and the other originates from the 42-in supply header 'B'.
- Two cooling water return lines originating from the DG building of Unit 1. One line returns water to the 42-in return header 'A" and the other returns water to the 42-in return header 'B'.
- Two cooling water return lines originating from the DG building of Unit 2. One line returns water to the 42-in return header 'A" and the other returns water to the 42-in return header 'B'.

The HDPE pipes are connected to the steel pipes by means of a flanged joint. At the DG building wall entrance, a transition is made from 10-in to 12-in using a 10x12 steel reducer with flanges to provide the necessary flanged connection to the HDPE pipe and a means of providing future access for examination of all joints from the inside surface per Ref. [14]. At the 42-in header side, a short 12-in flanged steel pipe is welded to the header. An additional steel flanged joint attached to the 12-in pipe provides the

Client	Duke Power Card	LC	Cal	culation No.	07Q3691-CAL-009		
Project	pject Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce P. Oubovec	હ્ય Date	11/11/08

necessary connection to the HDPE pipe and serves as future access. The HDPE piping system is considered anchored at both ends.

The buried HDPE piping system considered in this calculation is the cooling water supply line from the 42-in supply header 'B' to the Diesel Generator Building of Unit 2. The effects of pressure, deadweight, seismic and temperature loads on the buried HDPE piping are analyzed.

5.2 Methodology and Approach

The piping is qualified to the requirements of the Piping Design Specification Ref. [26]. The Design Specification is based on ASME BPVC Code Case N-755 Ref. [12] and the commitments in Relief Request Number 06-CN-003 Ref. [14]. In addition, further guidance on design and analysis methods is provided in EPRI Report 1013549 Ref. [1] and S & A Design Instruction 3691-DI-001 Ref. [27]. However, the controlling design document is the Piping Design Specification Ref. [26].

The Code of Record for the Design and Analysis of the HDPE Pipe is the 1998 Edition of the ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection ND up to and including the 2000 Addenda. However, ND-3600 of the ASME Boiler and Pressure Vessel Code 1989 Edition shall be used to comply with the limitations imposed by 10 CFR 50.55 a (b) (1) (iii) except as amended by the governing document Relief Request Number 06-CN-003 Ref. [14]. The piping is classified as ASME Class 3 Duke Class C.

The piping system is analyzed using a combination of hand calculations and the ADLPIPE computer program. ADLPIPE analyzes complex piping systems subjected to static and dynamic loads. The basic load cases (deadweight, thermal, seismic OBE, seismic SSE, etc.) and their combinations (such as thermal plus seismic) are included in the ADLPIPE analysis.

Stresses in steel pipes are automatically computed by ADLPIPE according to an ASME Code year of interest. However, ADLPIPE does not calculate the stresses for all piping load cases and combinations in the HDPE pipe because HDPE material, properties, and qualification criteria are not yet included in the ADLPIPE computer code. Therefore, manual calculations are performed for the HPDE piping according to the relief request Ref. [14] which is consistent with the ASME BPVC Code Case N-755 [Ref. 12]. The required manual calculations are presented in sections 5.2.1 and 5.2.2.

5.2.1 HDPE Calculations Dependent Only on Design Conditions and Pipe Size

These calculations do not require ADLPIPE analysis results as input. The HDPE pipe size and the design conditions are the only inputs needed to perform the manual calculations in this section.

Client	Duke Power Card	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009		
Project	ct Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis								
Title Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Dies							ne Diesel		
	Generator "2B" Unit 2								
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce D. Oubovec	હ્યુ Date	11/11/08		

Minimum Required Wall Thickness

Per Section 3131.1 of Ref. [12], the minimum required wall thickness (t_{min}) of straight pipe sections is determined from:

$$t_{\min} = \frac{PD}{2S+P} + c \tag{5.1}$$

where:

P = internal design gage pressure at the specified design temperature, psi

D = outside diameter of pipe, in

S = allowable stress, psi, from Table 3021-1 Ref. [14]

c = allowance for mechanical and erosion damage, [in.]

The actual wall thickness of the HDPE pipe shall not be less than $t_{\mbox{\scriptsize min}}$.

Ring Deflection

Per Section 3210 of Ref. [12], the deflection of the pipe diameter (Ω) due to soil and surcharge loads should be less than the maximum allowable value (Ω_{max}):

$$\Omega = \frac{1}{144} \cdot \frac{K_b \cdot L \cdot P_E + K_b \cdot P_L}{\frac{2E_{\text{pipe}}}{3} \left(\frac{1}{DR - 1}\right)^3 + 0.061F_sE'} \le \Omega_{\text{max}}$$
(5.2)

where:

$$P_{E} = \rho_{saturated} H_{gw} + \rho_{dry} (H - H_{gw})$$

 K_b = bedding factor

L = deflection lag factor, 1.25 to 1.50, or 1.0 if using the soil prism pressure

 P_E = vertical soil pressure due to earth loads, [lb/ft²]

 P_L = vertical soil pressure due to surcharge loads, [lb/ft²]

 E_{pipe} = apparent modulus of elasticity of pipe at 50 years, [psi]

DR = dimensional ratio of pipe (D/t)

D = outside pipe diameter, [in]

 F_s = soil support factor

E' = modulus of soil reaction, [psi]

 $\rho_{\text{saturated}}$ = density of saturated soil, [lb/ft³]

 ρ_{dry} = density of dry soil, [lb/ft³]

H = height of ground cover, [ft]

 H_{gw} = height of groundwater above pipe, [ft]

t = minimum pipe wall thickness, [in]

Client	Duke Power Card	olinas, L	LC	Cal	culation No.	07Q3691-CAL-009			
Project	roject Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis								
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2								
By:	S. Hailu	Date	11/10/08	Chk'd by	Brace D. Dubovec	Aų Date	11/11/08		

Compression of Sidewalls

The circumferential compressive stress (σ_{SW}) in the sidewalls of pipe and miters due to soil and surcharge loads per Section 3220 of Ref. [12] should be less than 1000 psi. This 1000 psi is based on PE-3408 material and assumes a temperature of 70° F. Per Ref. [25] the allowable value at a temperature of 140° F for PE-4710 material is 530 psi. The value used in this analysis is 500 psi which is conservative. This 140° F temperature was selected because it is the maximum discharge line temperature. This lower bound value was conservatively applied to all eight piping analyzes.

$$\sigma_{SW} = \frac{(P_E + P_L) \cdot DR}{2 \times 144} \le 500 \text{ psi}$$
(5.3)

where:

 P_E = vertical soil pressure due to earth loads, [lb/ft²] P_L = vertical soil pressure due to surcharge loads, [lb/ft²] DR = dimensional ratio of pipe (D/t) D = outside pipe diameter, [in] t = minimum pipe wall thickness [in]

Buckling Due to External Pressure

External pressure from groundwater, earth loads, and surcharge loads on the buried HDPE pipe shall not cause the pipe to buckle per Section 3221.1 of Ref. [12]; that is,

$$\frac{\mathbf{P}_{\rm E} + \mathbf{P}_{\rm L} + \mathbf{P}_{\rm gw}}{144} \le 2.8 \cdot \left[\mathbf{R}_{\rm b} \cdot \mathbf{B'} \cdot \mathbf{E'} \frac{\mathbf{E}_{\rm pipe}}{12 \cdot (\mathbf{DR} - 1)^3} \right]^{1/2}$$
(5.4)

where:

$$R_{b} = 1 - 0.33 \frac{H_{gw}}{H}$$
$$B' = \frac{1}{1 + 4e^{-0.065H}}$$

T 7

 $\begin{array}{l} P_E = \text{vertical soil pressure due to earth loads, lb/ft}^2\\ P_L = \text{vertical soil pressure due to surcharge loads, [lb/ft^2]}\\ P_{gw} = \text{pressure due to groundwater, [lb/ft^2]}\\ R_b = \text{buoyancy reduction factor}\\ B' = \text{burial factor}\\ E_{pipe} = \text{modulus of elasticity of pipe, [psi]}\\ E' = \text{modulus of soil reaction, [psi]}\\ DR = \text{dimensional ratio of pipe (D/t)}\\ H = \text{depth of cover, [ft]}\\ H_{gw} = \text{height of groundwater above pipe, [ft]}\\ D = \text{outside pipe diameter, [in]}\\ t = \text{minimum pipe wall thickness [in]} \end{array}$

Client	Duke Power Card	LC	Cal	culation No.	07Q3691-0	CAL-009			
Project	ect Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis								
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2								
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce S. Oubouse	શ્વ Date	11/11/08		

Effects of Negative Internal Pressure

Per Section 3221.2 of Ref. [12], when the pipe is subjected to a negative internal pressure, it should withstand the differential pressure (ΔP) without credit for the surrounding soil, that is:

$$\Delta P \leq \frac{f_o}{2} \frac{2E_{pipe}}{(1-\nu^2)} \left(\frac{1}{DR-1}\right)^3$$
(5.5)

where:

 f_o = ovality correction factor

 E_{pipe} = modulus of elasticity of pipe, [psi]

v = Poisson's ratio (0.35 for short duration loads to 0.45 for long duration loads)

DR = dimensional ratio of pipe (D/t)

D = outside pipe diameter, [in]

t = minimum pipe wall thickness [in]

Floatation

To prevent floatation by groundwater, the buried pipe must have sufficient cover or be anchored to the ground. Per Section 3222 of Ref. [12], the following criterion must be satisfied:

$$W_{W} < W_{P} + \frac{P_{E} \cdot D}{12}$$

$$(5.6)$$

where:

 W_w = weight of water displaced by pipe, [lb/ft] W_P = weight of empty pipe, [lb/ft] P_E = vertical soil pressure due to earth loads, [lb/ft²] D = outside pipe diameter, [in.]

5.2.2 HDPE Calculations Requiring the Input of Geometry Specific Loads

The manual calculations in this section require the ADLPIPE analysis results as input. HDPE pipe stresses are computed using the forces and moments obtained from ADLPIPE analysis. The stress calculations are performed both for straight pipes and mitered elbows.

Longitudinal Stress

Per Section 3223.1 of Ref. [12], the longitudinal stresses due to axial forces and bending moments resulting from applied mechanical loads shall not exceed k^*S :

$$B_{1}\frac{P_{A}*D}{2t} + 2*B_{1}\frac{F_{a}}{A} + B_{2}\frac{M}{Z} \le k \cdot S$$
(5.7)

Client	Duke Power Card	LC	Cal	Iculation No. 07Q3691-CAL-009				
Project	ct Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2							
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce J. Ouboresc	هر Date	11/11/08	

where:

 B_1 and B_2 = primary stress indices defined in Table 3223-1 of Ref. [12]

 P_A = design or service level A, B, C or D pressure, [psi]

D = outside diameter of pipe at the section where the evaluation is conducted, [in.]

t = nominal pipe wall thickness at the section where the evaluation is conducted, [in.]

 F_a = axial force due to the specified design, level A, B, C or D applied mechanical loads, [lb] M = resultant bending moment due to the specified design, level A, B, C or D applied mechanical loads, [in.-lb]

A = cross sectional area of pipe at the section where the force is calculated, $[in^2]$

Z = section modulus of pipe cross section at the section where the moment is calculated, $[in^3]$

k = longitudinal stress factor per Table 3223-2 of Ref. [12]

S = allowable stress, psi, from Table 3021-1 Ref. [14]

Thermal Expansion and Contraction

(a) Fully Constrained Thermal Contraction

The tensile stress, per Section 3311.1 of Ref. [12], resulting from the assumption of fully constrained thermal contraction of the buried pipe when $T_{water} < T_{ground}$, increased by the tensile stress due to axial contraction from Poisson effect, shall not exceed the allowable stress (S):

$$\sigma_{\tau} = \left| E_{\text{pipe}} \cdot \alpha \cdot \Delta T - \upsilon \frac{P \cdot D}{2t} \right| \le S$$
(5.8)

where: E_{pipe} = modulus of elasticity of pipe, [psi]

 α = coefficient of thermal expansion, [in/in/°F]

 $\Delta T = T_{water} - T_{ground} < 0$

v = Poisson's ratio (0.35 for short duration loads to 0.45 for long duration loads) P = internal design gage pressure including pressure spikes due to transients from anticipated water hammer events, [psi]

D = outside pipe diameter, [in.]

t = nominal pipe wall thickness, [in.]

S = allowable stress, psi, from Table 3021-1 Ref. [14]

(b) Fully Constrained Thermal Expansion

The tensile stress resulting from the assumption of fully constrained thermal expansion of the buried pipe when $T_{water} > T_{ground}$, per Section 3311.2 of Ref. [12], shall not exceed the allowable stress (S):

$$E_{pipe} \cdot \alpha \cdot \Delta T \le S \tag{5.9}$$

where:

 E_{pipe} = modulus of elasticity of pipe, [psi[α = coefficient of thermal expansion, [in/in/^oF] Δ T = T_{water} - T_{ground} > 0 S = allowable stress, psi, from Table 3021-1 Ref. [14]

Client	Duke Power Carolinas, LLC				culation No.	07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2							
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce R. Oubovec	શ્ય Date	11/11/08	

(c) Alternative Evaluation for Thermal Expansion or Contraction

When the soil stiffness is accounted for to calculate the pipe expansion and contraction stresses, per Section 3311.3 of Ref. [12], the stresses must satisfy the following condition:

$$\frac{\mathbf{i} \cdot \mathbf{M}_{\mathrm{C}}}{Z} + \frac{F_{\mathrm{aC}}}{A} \le 1100 \mathrm{psi}$$
(5.10)

where:

i = stress intensification factor

 F_{aC} = axial force range due to thermal expansion or contraction and/or the restraint of free end displacement, [lb]

 M_c = resultant moment range due to thermal expansion or contraction and/or the restraint of free end displacement, [in.-lb]

A = cross sectional area of pipe at the section where the force is calculated, $[in^2]$

Z = section modulus of pipe cross section at the section where the moment is calculated, $[in^3]$

Non-repeated Anchor Movements

Per Section 3312 of Ref. [12], the effects of any single non-repeated anchor movement shall meet the requirements of the following equation:

$$\frac{\mathbf{i} \cdot \mathbf{M}_{D}}{Z} + \frac{F_{aD}}{A} \le 2 \cdot \mathbf{S}$$
(5.11)

where:

i = stress intensification factor

 F_{aD} = axial force due to the non-repeated anchor motion, [lb]

 M_D = resultant moment due to the non-repeated anchor motion, [in.-lb]

A = cross sectional area of pipe at the section where the force is calculated, $[in^2]$

Z = section modulus of pipe cross section at the section where the moment is calculated, $[in^3]$

S = allowable stress, psi, from Table 3021-1 Ref. [14]

Seismic Induced Stresses

Per Section 3410 of Ref. [12], the stresses in the buried pipe due to soil strains caused by seismic wave passage, seismic soil movement, and building seismic anchor motion effects, where applicable, must satisfy the following equation:

$$\frac{\mathbf{i} \cdot \mathbf{M}_{\mathrm{E}}}{Z} + \frac{\mathbf{F}_{\mathrm{aE}}}{A} \le 1100 \mathrm{psi}$$
(5.12)

Client	Duke Power Care	LC	Cal	culation No.	ulation No. 07Q3691-CAL-009			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2							
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce R. Duborec	هر Date	11/11/08	

where:

i = stress intensification factor

 F_{aE} = axial force range due to the combined effects of seismic wave passage, seismic soil movement, and building seismic anchor motion effects, [lb]

 M_E = resultant moment range due to the combined effects of seismic wave passage, seismic soil movement, and building seismic anchor motion effects, [in.-lb]

A = cross sectional area of pipe at the section where the force is calculated, $[in^2]$

Z = section modulus of pipe cross section at the section where the moment is calculated, $[in^3]$

Seismic wave passage, seismic soil movement, and building seismic anchor motions are combined by square root sum of the squares. This equation is applicable to both OBE and SSE. Ref. [25] Section 7.0 provides the basis of this applicability.

5.2.3 Steel Pipe Criteria

The steel pipe from the Diesel Generator building anchor to the HDPE pipe flange connection and from the HDPE pipe flange connection to the 42"ø supply header are qualified in the ADLPIPE analysis in accordance with the requirements of Ref. [29]. The stresses for the steel pipe are shown in Section 7.4.

6.0 ANALYSIS INPUTS

6.1 Design Loads

Design temperature and pressure values supplied by Duke Power Carolinas and used as input in this calculation are listed in Table 6.1.

Design Temperature	100 °F
Ambient Temperature	55 °F
Minimum Temperature	32 °F
Maximum Temperature	100 °F
Design Pressure	100 psig
Operating Pressure	75 psig

6.2 **Pipe Properties**

Geometric and other relevant properties for the pipes used in this calculation are shown in Table 6.2. Outside diameter (OD), thickness and weight values for steel pipes were taken from standard piping catalogs, Ref. [10]. For IPS HDPE pipe, values were obtained from ANSI/AWWA Standard C906-99, Ref. [4], thickness values were obtained from Ref. [12], and weight values were taken from manufacturers' literature Ref. [8]. For the same nominal pipe size, the ODs of the HDPE and the steel pipes are equal; therefore, the IPS sizing system is used.

Client	Duke Power Carolinas, LLC				culation No.	07Q3691-0	CAL-009	
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel							
riue	Generator "2B" Unit 2							
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce D. Oubores	مر Date	11/11/08	

	Cr-Mo S	teel Pipe	Carbon Steel Pipe	HDPE Pipe/Elbow
Nominal size	10-in 12-in		12-in	12-in
Material	A6XLN ⁽¹⁾	A6XLN ⁽¹⁾	A-106, Gr. B	PE 4710 ⁽²⁾
Schedule	Standard	Standard	Standard	DR 11/DR 9
Outside Diameter [in]	10.75	12.75	12.75	12.75
Wall Thickness [in]	0.365	0.375	0.375	1.159/1.417
Contents	Water	Water	Water	Water
Wt. of Contents [lb/ft]	34.1	49.0	49.0	37.0/33.5
Wt. of Pipe [lbs/ft]	40.5	49.6	49.6	18.4/22

⁽¹⁾ This is a manufacturer's designation for a Cr-Mo alloy used for piping as SB-675 and SB-690, for forgings as SB-462, and for castings as SB-366.

 $^{\rm (2)}$ The cell classification of PE 4710 material is 445574C

6.3 Material Properties

Properties of A-106 carbon steel and A6XLN (Cr-Mo) are given in Tables 6.3a and 6.3b. The values in Table 6.3a were obtained from the 1989 edition of the ASME B&PVC, Section III [Ref. 29]. The values in Table 6.3b were obtained from the 1998 edition of the ASME B&PVC, Section III, Part D [Ref. 11].

Temperature, T [°F]	32	55	65	100
Coeff. of Thermal Exp., α [in/in/°F]	6.5x10 ⁻⁶	6.5x10 ⁻⁶	6.5x10 ⁻⁶	6.5x10 ⁻⁶
Modulus of Elasticity, E [ksi]	27,900	27,900	27,900	27,900
Allowable Stress, S_c [psi]	15,000	15,000	15,000	15,000
S _h [psi]	15,000	15,000	15,000	15,000
Yield Stress, S _y [psi]	35,000	35,000	35,000	35,000

Client	Duke Power Car	olinas, L	LC	Ca	lculation No.	07Q3691-0	CAL-009	
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Ruriod HDDE Dining System Nuclear Service Water (NSW) Supply Line Diesel							
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce D. Oubouse	by Date	11/11/08	

Temperature, T [°F]	32	55	65	100
Coeff. of Thermal Exp., α [in/in/°F]	8.2x10 ⁻⁶	8.2x10 ⁻⁶	8.2x10 ⁻⁶	8.2x10 ⁻⁶
Modulus of Elasticity, E [ksi]	28,000	28,000	28,000	28,000
Allowable Stress ⁽¹⁾ , S _c [psi]	24,300	24,300	24,300	24,300
S _h [psi]	24,300	24,300	24,300	24,300
Yield Stress ⁽²⁾ , S _y [psi]	45,000	45,000	45,000	45,000

Notes: ⁽¹⁾ A6XLN is a manufacturer's designation for the following Cr-Mo alloys: SB-675, SB-690, and SB-462. The values shown here correspond to the minimum values listed in the 1998 ASME Code.

⁽²⁾ The yield strength shown here corresponds to the minimum of SB-675, SB-690, and SB-462.

The mechanical properties of HDPE vary significantly with load duration. Therefore, different values must be used for different load cases. Tables 6.3c thru 6.3f provide the mechanical properties of HDPE for various load durations.

Mechanical properties obtained for 50-year load duration are given in Table 6.3c. These properties are used for deadweight and thermal analysis.

Temperature, T [ºF]	32	55	65	100
Coeff. of Thermal Exp., α [in/in/°F]	90x10 ⁻⁶	90x10 ⁻⁶	90x10 ⁻⁶	90x10 ⁻⁶
Modulus of Elasticity ⁽¹⁾ , E [ksi]	28	28	28	23
Allowable Stress, S [psi]	800	800	800	620
Poisson's Ratio, v [-]	0.45	0.45	0.45	0.45

Mechanical properties obtained for short-term load duration are shown in Table 6.3d. These are used for OBE, SSE, and equivalent thermal strain analysis.

Client	Duke Power Carolinas, LLC			Cal	culation No.	CAL-009	
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel						
The	Generator "2B" Unit 2						
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce J. Oubovec	Au Date	11/11/08

Temperature, T [°F]	32	55	65	100			
Coeff. of Thermal Exp., α[in/in/°F]	90x10 ⁻⁶	90x10 ⁻⁶	90x10 ⁻⁶	90x10 ⁻⁶			
Modulus of Elasticity ⁽¹⁾ , E [ksi]	110	110	110	100			
Allowable Stress ⁽²⁾ , S [psi]	1200	1200	1200	940			
Poisson's Ratio, v [-]	0.35	0.35	0.35	0.35			
(1) Per Table 3210-3 of Ref. [12] (Load Duration < 10 hr.)							

(2) The allowable stress for short duration listed in Table 3223-3 of Ref. [12] are used

Temperature, T [°F]	32	55	65	100		
Coeff. of Thermal Exp., α [in/in/ ^o F]	90x10 ⁻⁶	90x10 ⁻⁶	90x10 ⁻⁶	90x10 ⁻⁶		
Modulus of Elasticity ⁽¹⁾ , E [ksi]	44	44	44	36		
Allowable Stress ⁽²⁾ , S [psi]	840	840	840	620		
Poisson's Ratio, v [-]	0.35	0.35	0.35	0.35		
(1) Per Table 3210-3 of Ref. [12] (2) The allowables for 10-year duration listed in Table 3131-1 of Ref. [12] are used. This is conservative.						

Temperature, T [°F]	32	55	65	100
Coeff. of Thermal Exp., α[in/in/°F]	90x10 ⁻⁶	90x10 ⁻⁶	90x10 ⁻⁶	90x10 ⁻⁶
Modulus of Elasticity ⁽¹⁾ , E [ksi]	32	110	110	26
Allowable Stress ⁽²⁾ , S [psi]	840	840	840	620
Poisson's Ratio, v [-]	0.35	0.35	0.35	0.35
(1) Per Table 3210-3 of Ref. [12] (2) Per Table 3131-1 of Ref. [12]		·		·

Client	Duke Power Care	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Dining System Nuclear Service Water (NSW) Supply Line Diosel						
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce D. Ouborec	શ્વ્ય Date	11/11/08

6.4 HDPE to Steel Boundary

The HDPE pipe is connected to the steel pipe by means of a flanged connection. The following piping components are used for the joints at the entrance to the DG building wall and at the 42-in header:

- A 10-in by 12-in steel reducer
- 10-in, 150-lb ANSI B16.5 raised face welding neck steel flanges
- 12-in, 150-lb ANSI B16.5 raised face welding neck steel flanges
- A 12-in, short-radius, 90° steel elbow
- Two HDPE flange adapters
- Two special steel backup rings that possess the same bolt pattern as 12-in, 150-lb steel flanges and are used in conjunction with the HDPE adapters

Relevant properties for the above piping components were obtained from manufacturers' catalogs – Ref. [9] for the steel components and Ref. [8] for the HDPE components and steel backup rings. The properties are listed in Table 6.6.

Piping Component	Nominal Size [in]	Thickness [in]	Length [in]	O. D. [in]	Weight [lb]
150-lb, Welding Neck Steel Flange	10	0.365	4	12 ⁽¹⁾	54
	12	0.375	4.5	14.375 ⁽¹⁾	88
Steel Reducer	10x12	NA ⁽²⁾	8	NA ⁽²⁾	34
90° Steel Elbow	12	0.375	12 ⁽³⁾	12.75	80
HDPE Flange Adapter	12	1.55	12	12.75	24
Steel Backup Ring	12	1.25	1.25	19	24

⁽¹⁾ These values represent the diameter of the flange hub at base.

⁽²⁾ OD and thickness for a reducer are variable and are not required as input.

⁽³⁾ This is the center to face length; it is also equal to the radius of the elbow.

6.5 HDPE Elbows

The piping system includes 90° and 45° HDPE mitered elbows. The mitered elbows are size DR 9 (one DR ratio lower than the HDPE pipe that is DR 11) to comply with the requirements of the ASME BPVC Code Case N-755 Paragraph -3132(d) Ref. [12]. These elbows are modeled according to the manufacturer's catalog specifications [Ref. 8]. The 90° mitered elbow has 5 segments as shown in Fig. 6.5a and the 45° mitered elbow has 3 segments as shown in Fig. 6.5b. This piping analysis has 90° and 45° mitered elbows in the model.

Client	Duke Power Care	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buriod HDDE Diping System Nuclear Service Water (NSW) Supply Line Diosel						
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce J. Oubovec	هر Date	11/11/08

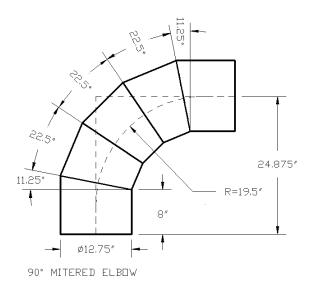


Fig. 6.5a: Geometry of 90° HDPE mitered elbow

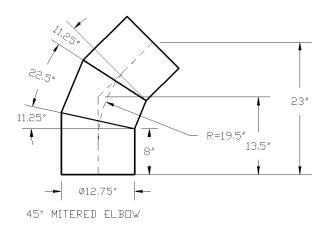


Fig. 6.5b: Geometry of 45° HDPE mitered elbow

6.6 Stress Indices and SIFs

ADLPIPE automatically calculates stress indices and stress intensification factors (SIF) for the steel piping components based on the 1989 Code Ref. [29]. The 10-in and 12-in carbon steel piping has butt welded fittings. The analysis is based on the 1989 Class 3 ASME Code.

Client	Duke Power Card	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Diping System Nuclear Service Water (NSW) Supply Line Diesel						
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce P. Ouboresc	Ay Date	11/11/08

6.6.1 HPDE Pipe

The buried HDPE piping is DR 11 butt welded, straight pipe. The following stress index and SIF values as listed in Tables 3223-1 and 3311.2-1 of Ref. [12], are used:

Stress Indices:	B ₁ = 0.5
	B ₂ = 1.0
Stress Intensification Factor:	i = 1.0

6.6.2 HPDE Mitered Elbows

The 90° mitered elbows are DR 9. SIF and stress index values for these components as obtained from Tables 3223-1 and 3311.2-1 of Ref. [12], are as follows:

Stress Indices:	B ₁ = 0.69
	B ₂ = 1.64
Stress Intensification Factor:	i = 2.0

These values are for 5 segment 90° mitered elbows. Per Ref. [25] Section 6.1, it is assumed these values envelope the 3 segment 45° mitered elbows.

6.6.3 Flexibility Factors for Mitered Elbows

The flexibility factor calculated by ADLPIPE for the 12"ø mitered elbows is $1.79 \approx 1.82$ which is the calculated flexibility factor per Table NB-3673.2 (b)(1), Section 5.6.2.3 of Ref. [22]. The preliminary mean flexibility factor from testing Ref. [22] of the 12"ø elbows is 2.15 for in-plane and 2.44 for out-of-plane Ref. [22]. The lower flexibility factor calculated by ADLPIPE will result in higher moments on the piping system due to less flexibility. The calculated Stress Intensification Factor (SIF) calculated from Table NB-3673.2(b)(1) for 12" ø elbows is 1.04 in-plane and 0.87 out-of-plane. This piping analysis uses a 2.0 SIF for in-plane and out-of-plane for the mitered elbows which is from the ASME BPVC Code Case N-755 Ref. [12].

6.6.4 Weldolet

A Weldolet is used for attaching the 12-in pipe to the 42-in header. The stress intensification factor for the Weldolet is determined from the following equation given in Ref. [17]:

$$i = \frac{0.9}{\left(3.3t/r\right)^{2/3}}$$

where: i = stress intensification factor

t = nominal wall thickness of run pipe [in]

r = mean radius of run pipe [in]

Client	Duke Power Carolinas, LLC Calculation N				culation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HI Generator "2B" Unit 2	•	ing System— I	Nuclear Servi	ce Water (NSV	V) Supply Li	ne Diesel
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce S. Ouboresc	શ્વ્ય Date	11/11/08

For the 42-in diameter pipe, t = 0.500 in. [Ref. 10], and the mean radius, r = (42-0.500)/2 = 20.75 in. The stress intensification factor is therefore:

$$i = \frac{0.9}{\left(3.3 * 0.5 / 20.75\right)^{2/3}} = 4.87$$

6.7 Soil Springs

The buried piping is subject to loads from earthquake, temperature and surrounding soil. To determine the pipe stresses resulting from these loads, the soil spring stiffness is required as input. Soil spring stiffness values obtained from Ref. [15] and shown below will be used as input in the ADLPIPE analysis of the piping system. Soil springs are generally applied at 2 ft intervals around elbows (over 6ft sections on each side of elbows) and at 10 ft intervals elsewhere.

	Lateral	130	3120	15600			
H = 5.0 ft	Vertical	540	12960	64800			
	Axial	425	10200	51000			

Note that soil spring stiffness values for pipe sections of length other than shown in Table 6.7 can be determined by proportion.

6.8 Seismic Analysis Input

6.8.1 Seismic Anchor Motion

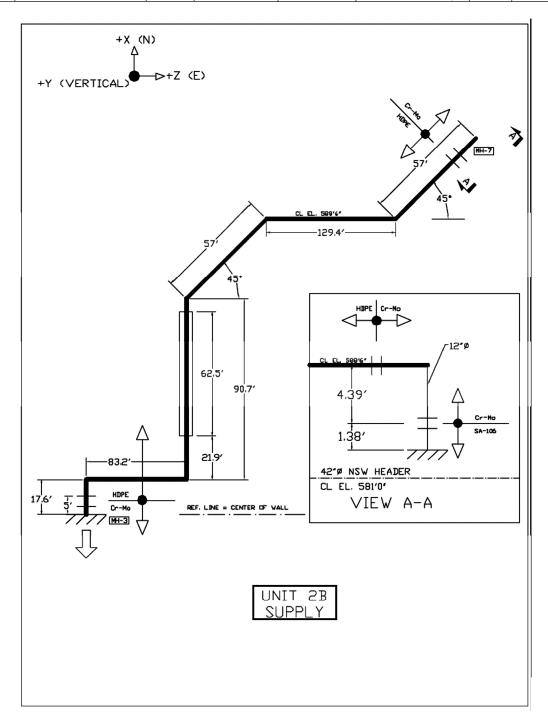
Per Calculation CNC-1206.02-84-0001 [Ref. 16] provided by CNS, the seismic displacement of the DG building is less than 0.003 inches for OBE or SSE analysis. The 42"ø Supply Line is attached at the Auxiliary Building and has the following seismic displacements Lateral = 0.014328" < 1/16 in, Axial = 0.01374" < 1/16 in, and Vertical = 0.0" for OBE or SSE analysis. These displacements are considered insignificant for this analysis and a seismic anchor motion analysis is therefore not conducted

6.8.2 Seismic Wave Passage

Since the piping system is completely buried and isolated from aboveground piping, the methodology of Non-Mandatory Appendix D of the ASME BPVC Code Case N-755 will be used to qualify the piping for seismic wave passage. In Ref. [18], the strains due to seismic wave passage were computed and then

Client	Duke Power Carolinas, LLC				culation No.	07Q3691-0	CAL-009
Project	t Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) S Generator "2B" Unit 2				V) Supply Li	ne Diesel	
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce R. Oubovec	Ay Date	11/11/08

converted to an equivalent thermal strain resulting in a temperature change (ΔT) of 10 °F. This change in temperature will be used as input in the ADLPIPE computer model as a thermal analysis of the piping system to determine the seismic loads.


6.8.3 Decoupling of 12" Steel Pipe

If the ratio of the moment of inertia of the run pipe to branch pipe (decoupled pipe) is equal to or greater than 25, the branch piping may be considered to have no significant effect on the response of the run pipe. Ref. [28]. $I_{12^{"} branch pipe} = 300 \text{ in}^{4}$; $I_{42^{"} run pipe} = 14037 \text{ in}^{4}$; Ratio of run to branch is 46. The analysis of the decoupled piping shall consider the thermal, seismic, and other movements of the run pipe at the intersection point. There are no thermal or seismic response from the seismic wave passage. Therefore, there are no anchor movements at the 12" pipe (branch) to the 42" pipe (run) connection.

6.9 Piping Layout

The layout of the piping system is shown in the following drawings provided by Duke Power Carolinas: CN-1038-06 [Ref. 5], CN-1038-11 [Ref. 6] and CN-1038-12 [Ref. 7]. Dimensions and orientations of piping shown on these drawings were used in generating the ADLPIPE computer model for the piping system. A sketch of the piping layout is shown in Fig. 6.9

Client	Duke Power Car	LC	Cal	culation No.	07Q3691-0	CAL-009	
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel						
The	Generator "2B" Unit 2						
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce J. Oubovec	هر Date	11/11/08

Client	Duke Power Carolinas, LLC				culation No.	07Q3691-0	CAL-009
Project	roject Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear S Generator "2B" Unit 2				ice Water (NSV	V) Supply Li	ne Diesel
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce P. Ouboresc	ભ્ય Date	11/11/08

6.10 Pipe Criteria – Steel and HDPE

The pipe load combinations considered and shown in Table 6.10(a) – Steel

	Table 6.10(a) Buried Stee	el Piping Load Combinations
Service Level	Stress Condition	Load Combination
	Primary	P
Design	Primary	P + DW
	Primary	Pa
	Primary Longitudinal Stress	P _a + DW
A	Secondary	Range of (T _{a min} , T _{a max})
	Non Repeated Anchor Motion	BS
	Primary	P _b
	Primary	P _{bs}
_	Primary Longitudinal Stress	P _b + DW + VOT
B		P _b + DW+PS
	Secondary – Thermal and	(a) Range of $(T_{b min}, T_{b max})$
	Seismic	(a) Range of $(T_{b \text{ min}}, T_{b \text{ max}})$ (b) $ T_{b} \text{ max} + [OBE_{W}^{2} + (OBE_{S} + OBE_{D})^{2}]^{1/2} $ (c) $ T_{b} \text{ min} + [OBE_{W}^{2} + (OBE_{S} + OBE_{D})^{2}]^{1/2} $
		$(c) T_{b}min + [OBE_{W}^{2} + (OBE_{S} + OBE_{D})^{2}]^{1/2} $
С	Primary	Pc
	Primary	P _d
D	Secondary - Seismic	$[SSE_W^2 + (SSE_S + SSE_D)^2]^{1/2}$

Client	Duke Power Carolinas, LLC				culation No.	07Q3691-0	CAL-009
Project	ect Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2					ne Diesel	
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce P. Oubovec	હ્ય Date	11/11/08

The pipe load combinations considered and shown in Table 6.10(b) – HDPE

Ta	ble 6.10(b)- Buried HDPE Piping Load	I Combinations
Service Level	Stress Condition	Load Combination
Design		P
		P + DW
	Drimery, Oide Well Commerced	
	Primary - Side Wall Compression	$P_{E} + P_{L}$
	Primary - Buckling due to External Pressure	P _E +P _L +P _{gw}
	Primary Flotation	Ww
А	Primary Pressure	Pa
	Primary Longitudinal Stress	P _a + DW
	Secondary	Range of $(T_{a \min}, T_{a \max})$
	Non Repeated Anchor Motion	BS
	Primary - Side Wall Compression	P _E + P _L
	Primary - Buckling due to External	P _E +P _L +P _{aw}
	Pressure	
	Primary Flotation	Ww
В	Primary Pressure	Pb
	Primary Pressure + Surge Pressure	$P_b + P_{bs}$
	Primary Longitudinal Stress	$P_{b} + DW$
	Primary Pressure + Longitudinal	P _b + DW + VOT
	Stress + Short Term	P _b + DW +PS
	Secondary Thermal	Range of (T _{b min} , T _{b max})
	Secondary Seismic	$[OBE_W^2 + (OBE_S + OBE_D)^2]^{1/2}$
	Primary Side Wall Compression	P _E + P _L
	Primary Buckling due to External	$P_{E}+P_{L}+P_{aw}$
	Pressure	9
С	Primary Flotation	Ww
	Primary Pressure	P _c
	Primary Pressure + Surge Pressure	$P_{c} + P_{cs}$
	Secondary Thermal	Range of (T _{c min} , T _{c max})
	Primary Side Wall Compression	P _E + P _L
	Primary Buckling due to External	$P_{E}+P_{L}+P_{gw}$
	Pressure	- 5
D	Primary Flotation	Ww
	Primary Pressure	P _d
	Primary Pressure + Surge Pressure	$P_d + P_{ds}$
	Secondary Thermal	Range of (T _{d min} , T _{d max})
	Secondary Seismic	$[SSE_W^2 + (SSE_S + SSE_D)^2]^{1/2}$

Client	Duke Power Carolinas, LLC				culation No.	07Q3691-C	CAL-009
Project	ct Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Se Generator "2B" Unit 2				ice Water (NSV	V) Supply Li	ne Diesel
By:	A. Hailu	Date	11/10/08	Chk'd by	Brice R. Oubovec	Ay Date	11/11/08

6.11 Acceptance Criteria – Steel and HDPE

The criteria used to evaluate the adequacy of the buried steel piping system are summarized in Table 6.11(a).

	Table 6.11(a) - Buried Steel Piping Capacity Criteria							
Service Level	Stress Condition	Capacity Criteria						
Design	Primary	Requirements of ND-3640						
	Primary	ND-3652, Equation (8) with a						
		Stress Limit of 1.5 S _h						
	Primary	Less than 1.0 P						
	Primary Longitudinal Stress	ND-3653.1, Equation (9) with a						
		stress limit of 1.8 S _h						
A	Secondary	ND-3653.2(a), Equation (10) with a						
		stress limit of S _A						
	Non Repeated Anchor Motion	ND-3653.2(b), Equation (10a) with						
		a stress limit of 3.0 S _c						
	Primary	Less than 1.1 P						
	Primary Longitudinal Stress	ND-3653.1, Equation (9) with a						
		stress limit of Lesser of 1.8 S _h or						
		1.5 S _y						
В	Secondary – Thermal and Seismic	ND-3653.2(a), Equation (10) with a						
		stress limit of S _A						
C	Primary	Less than 1.8 P						
	Primary	Less than 2.0 P						
D	Secondary - Seismic	ND-3653.2(a), Equation (10) with a						
		stress limit of S _A						

Client	Duke Power Carolinas, LLC Calculation No				lculation No.	07Q3691-0	AL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2					ne Diesel	
By:	A. Hailu	Date	11/10/08	Chk'd by	Brice J. Oubovec	શ્વ્ય Date	11/11/08

The criteria used to evaluate the adequacy of the buried HDPE piping system are summarized in Table 6.11(b).

	Table 6-11(b) - Buried HDPE Capad	city Criteria
Service Level	Stress Condition	Capacity Criteria
Design		Requirements of N755-3131.1
		Requirements of N755-3223.1 with k=1.0
А	Primary – Side Wall Compression	500 psi (N755-3220)
	Primary – Buckling due to External Pressure	Requirements of N755-3221.1
	Primary – Flotation	W _P +[P _E *(DW/12)]
	Primary	Less than 1.0 * P
	Primary – Longitudinal Stress	Requirements of N755-3223.1 with k=1.0
	Secondary – Thermal	1100 psi (N755-3311.3)
	Non Repeated Anchor Motion	2*S (N755-3312)
В	Primary – Side Wall Compression	500 psi (N755-3220)
	Primary – Buckling due to External Pressure	Requirements of N755-3221.1
	Primary – Flotation	W _P +[P _E *(DW/12)]
	Primary – Pressure	Less than 1.1 * P
	Primary – Pressure + Surge Pressure	1.5 * P
	Primary – Longitudinal Stress	Requirements of N755-3223.1 with k=1.1
	Primary – Pressure + Longitudinal Stress +	Requirements of N755-3223.2 or
	Short Duration	0.4*Material tensile strength at yield
	Secondary – Thermal	1100 psi (N755-3311.3)
	Secondary – Seismic	1100 psi (N755-3410)
С	Primary –Side Wall Compression	500 psi (N755-3220)
	Primary – Buckling due to External Pressure	Requirements of N755-3221.1
	Primary – Flotation	$W_{P}+[P_{E}^{*}(DW/12)]$
	Primary – Pressure	Less than 1.33 * P
	Primary – Pressure + Surge Pressure	2.0 * P
	Secondary – Thermal	1100 psi (N755-3311.3)
D	Primary – Side Wall Compression	500 psi (N755-3220)
	Primary – Buckling due to External Pressure	Requirements of N755-3221.1
	Primary – Flotation	W _P +[P _E *(DW/12)]
	Primary – Pressure	Less than 1.33 * P
	Primary – Pressure + Surge Pressure	2.0 * P
	Secondary – Thermal	1100 psi (N755-3311.3)
	Secondary Seismic	1100 psi (N755-3410)

Client	Duke Power Card	LC	Ca	culation No.	o. 07Q3691-CAL-009				
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis								
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2								
By:	A. Hailu	Date	11/10/08	Chk'd by	Brace D. Oubouec	હ્ય Date	11/11/08		

7.0 ANALYSIS

The analysis of the piping system is done per the Piping Design Specification Ref. [26] using analysis methods consistent with the relief request Ref. [14], and the ASME BPVC Code Case N-755 Ref. [12] as outlined in Section 5.2 of this calculation. The calculations presented in Section 5.2.1 are dependent only on design conditions and pipe size. For the calculations described in Section 5.2.2, the loads acting on the piping system (due to pressure, deadweight, thermal, seismic, etc.) for the various service levels are required. These loads are determined using the ADLPIPE computer program.

7.1 Computer Model

The run starts at the DG building wall of Unit 2 (Node Pt. = 100) and ends at the centerline of the 42-in Supply Header 'B' (Node Pt. = 990). The piping system is considered anchored at each end.

A steel flange is welded to the 10-in pipe coming out of the DG building wall. A 10x12 steel reducer, with flanges on both ends, is attached to the 10-in pipe coming out of the DG building wall. A flanged joint is created (Node Pt. 130) between the steel reducer and the HDPE pipe by fusing an HDPE flange adapter, with a steel backup ring mounted on it, to the end of the HDPE pipe. The steel backup ring and the flange on the reducer have the same bolt pattern.

A 12-in pipe with a flange on one end is welded to the 42-in header. An additional 12-in steel pipe with flanges welded to its ends extends to Node Pt. 880. A flanged joint between the steel pipe and the HDPE pipe is created (Node Pt. 880) by fusing an HDPE flange adapter, with a steel backup ring mounted on it, to the end of the HDPE pipe. The steel backup ring and the flange on the 12-in pipe piece have the same bolt pattern.

Various mitered elbows are used as the HDPE pipe is routed from Node Pt. 130 at EL. 588'-6" to Node Pt. 880 at EL. 588'-6". Details of the piping dimensions and routing are found in Refs. [5], [6], and [7].

The isometric sketch of the piping system is attached in Appendix A. The ADLPIPE computer model was created for this piping system using the inputs listed in Section 6 of this calculation. Soil springs were generally applied at 2 ft intervals around elbows and at 10 ft intervals in the remaining section of the piping. A complete listing of the ADLPIPE model (input file) and analysis results (output file) are attached in Appendix B.

Client	Duke Power Card	LC	Cal	Iculation No. 07Q3691-CAL-009						
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis									
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2									
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce P. Ouboresc	Ay Date	11/11/08			

7.2 Results of ADLPIPE Analysis

7.2.1 Load Cases Analyzed

Steel and HDPE pipe load cases as well as load combinations analyzed using the ADLPIPE piping analysis program are shown in Tables 7.2.1a and 7.2.1b. Thermal cases are required for Level A, B, C, and D because of the time dependence of the Elastic Modulus for HDPE pipe. The following durations were assumed for each service level:

Service Level A: 50 Years Ref. [14] $E_c = 28,000 \text{ psi}$ $E_h = 23,000 \text{ psi}$ Service Level B: 10 Years Ref. [14] $E_c = 32,000 \text{ psi}$ $E_h = 26,000 \text{ psi}$ Service Level C: 1000 Hrs Ref. [14] $E_c = 44,000 \text{ psi}$ $E_h = 36,000 \text{ psi}$ Service Level D: 1000 Hrs Ref. [14] $E_c = 44,000 \text{ psi}$ $E_h = 36,000 \text{ psi}$

Load Type	Load Case
Deadweight + Pressure	10
Level A Thermal at Minimum Temperature, T_{min} = 32° F (Δ T = -23° F)	21
Level A Thermal at Maximum Temperature, T_{max} = 100 o F (ΔT = 45 o F)	22
Level B Thermal at Minimum Temperature, T_{min} = 32° F (Δ T = -23° F)	23
Level B Thermal at Maximum Temperature, T_{max} = 100° F (ΔT = 45° F)	24
Level C/D Thermal at Minimum Temperature, T_{min} = 32° F (Δ T = -23° F)	25
Level C/D Thermal at Maximum Temperature, T_{max} = 100° F (Δ T = 45° F)	26
Thermal at T = 65° F (Δ T = 10° F) ⁽¹⁾	30

 $^{(1)}$ This is a pseudo-seismic case. ΔT is the equivalent temperature rise for computing the seismic loads on the piping system.

Client	Duke Power Card	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis									
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel									
Tille	Generator "2B" Unit 2									
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce J. Oubourse	My Date	11/11/08			

Load Type	Load Case
Level A : Absolute Range of Load Cases 21 and 22	27
Level B : Absolute Range of Load Cases 23 and 24	28
Level C/D : Absolute Range of Load Cases 25 and 26	29
Level D : Absolute Range of Load Case 30 (SSE)	31
Level B : Load Case 31 / 1.875 (OBE) (1)	32
Level B: Absolute Thermal Max (L.C. 24) + OBE Seismic (L.C. 32)	40
Level B: Absolute Thermal Min (L.C. 23) + OBE Seismic (L.C. 32)	41
Level B: Max of Load Case 28, 40 and 41	45

⁽¹⁾ Per page 94 of Ref. [16], OBE = SSE/1.875.

7.2.2 Summary of HDPE Loads at Critical Locations

The loads acting at the critical locations on the HDPE pipe (i.e., where the maximum stresses occur) for Service Levels A, B, C and D are extracted from the results of the ADLPIPE analysis. These loads are summarized in Tables 7.2.2a to 7.2.2d and will be used for computing pipe stresses as described in Section 5 of this calculation.

Service Level A

Load		Straig	nt Pipe		Mitered Elbow			
Case	F [lb]	Node No.	M [ft-lb]	Node No.	F [lb]	Node No.	M [ft-lb]	Node No.
10	0	225	491	225	0	320	71	320

Client	Duke Power Carolinas, LLC				culation No.	07Q3691-0	CAL-009			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis									
Title Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Die										
Thue	Generator "2B" Unit 2									
By:	S. Haile	Date	11/10/08	Chk'd by	Buce D. Ouboresc	هب Date	11/11/08			

Load Case		Straig	ght Pipe			Mitered Elbow			
	F [lb]	Node No.	M [ft-lb]	Node No.	F [lb] ⁽¹⁾	Node No.	M [ft-lb]	Node No.	
27 (Level A)	5259	880	536	880	2464	650	1158	650	
28 (Level B)	5862	880	637	880	2771	650	1336	650	
29 (Level C/D)	7707	880	982	880	3732	650	1923	650	
(1) \(1)				20.00					

⁽¹⁾ Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.

Service Level B

Load Case		Straig	ht Pipe		Mitered Elbow				
	F [lb]	Node No.	M [ft-lb]	Node No.	F [lb] ⁽¹⁾	Node No.	M [ft-lb]	Node No.	
32 (OBE)	2832	880	603	880	1526	650	995	650	
⁽¹⁾ Values st	- nown here we	re obtained fr	om the SPSS	S of forces act	ing on the mi	tered elbow	Lleina these y	values for	

⁽¹⁾ Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.

Service Level D

Load Case		Straig	nt Pipe		Mitered Elbow					
	F [lb]	Node No.	M [ft-lb]	Node No.	F [lb] ⁽¹⁾	Node No.	M [ft-lb]	Node No.		
31 (SSE)	5308	880	1130	880	2862	650	1866	650		
	⁽¹⁾ Values shown here were obtained from the SRSS of forces acting on the mitered elbow. Using these values for axial force is therefore conservative.									

Client					culation No.	tion No. 07Q3691-CAL-009				
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis									
Title		Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2								
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce P. Oubovec	શ્ય Date	11/11/08			

7.3 Calculations per the ASME BPVC Code Case N-755

The HDPE piping system was analyzed per the Design Specification Ref. [26] which is consistent with Relief Request 06-CN-003 Ref. [14], and the ASME BPVC Code Case N-755 Ref. [12], as described in Sections 5.2.1 and 5.2.2, of this calculation. The manual calculations were performed using Mathcad. The design conditions and the maximum loads obtained from ADLPIPE analysis (as listed in Tables 7.2.2a to 7.2.2d) were used to qualify the HDPE piping based on the applicable criteria for the design load cases. The manual calculations are provided below.

Client	Duke Power Care	olinas, L	LC	Cal	Calculation No. 07Q3691-CAL-009						
Project	ct Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis										
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2										
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce D. Oubouec	Ay Date	11/11/08				

Manual Calculations Per ASME BPVC Code Case N-755:

Define Variables: $S := 620 \cdot \frac{lb}{in^2}$ Allowable stress at 100° F $E_{pipe50y} := 23000 \cdot \frac{lb}{in^2}$ Elastic modulus at 100° F for 50 yr load duration $E_{pipe10h} := 100000 \cdot \frac{lb}{in^2}$ Elastic modulus at 100° F for short term load duration $E' := 2000 \cdot \frac{lb}{in^2}$ Modulus for fine grain sand compacted to > 95% $W_p := 18.4 \frac{lb}{ft}$ Weight of empty pipe per foot $\gamma_{\rm W} := 62.4 \frac{\rm lb}{\rm ft^3}$ Specific weight of water $P := 100 \frac{lb}{in^2}$ Design pressure, psig $\gamma_{\text{soil}} := 105 \cdot \frac{\text{lb}}{\text{ft}^3}$ Specific weight of dry soil Deflection lag factor L := 1.5 Bedding factor $K_{bed} := 0.1$ Outside diameter of pipe $D := 12.75 \cdot in$ Minimum wall thickness for DR-11 pipe, Ref. [12] $t = 1.159 \cdot in$ Minimum wall thickness for DR-9 pipe, Ref. [12] $t = 1.417 \cdot in$ Dimensional ratio (DR = 11 for straight pipe and $DR = \frac{D}{t}$ DR = 9 for mitered elbows) c := 0.0in Allowance for mechanical and erosion damage

Client	Duke Power Care	olinas, L	LC	Cal	culation No.	ition No. 07Q3691-CAL-009			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis								
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2								
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce D. Oubovec	هر Date	11/11/08		

Section 3131.1 - Minimum Required Wall Thickness

Calculate the pressure design thickness, t min:

$$t_{\min} := \frac{P \cdot D}{(2 \cdot S + P)} \qquad t_{\min} = 0.95 \text{ in}$$

Determine the minimum required wall thickness, tdesign:

 $t_{design} := t_{min} + c$ $t_{design} = 0.95 in$

Pipe wall thickness (DR 11), t = 1.159 in > 0.95 in.....**O.K.**

Pipe wall thickness (DR 9), t = 1.417 in > 0.95 in.....O.K.

Note that DR-11 governs. Therefore, for subsequent calculations, only DR-11 needs to be considered; that is::

DR := 11

Section 3210 - Ring Deflection

Determine the vertical soil pressure (P_L) due to surcharge loads.

Per Drawing No. CN-1038-06 [Ref. 5], the Transporter Haul Path crosses over the HDPE pipe lines of Unit 2. The Haul Path is at EL. 594'-0" and the pipe centerline is at EL. 588'-6". Hence, the soil depth from surface to top of pipe = 5 ft.

H := 5ft

As shown on page 21 of 79 of Ref. [13], the maximum vertical soil pressure (P_v) due to the combined weight of the transporter and cask at 5 feet below surface, not including impact, is:

$$P_{\rm V} := 15.58 \frac{\rm lb}{\rm in^2}$$

This soil pressure value was obtained based on a cask weight of 310 kip and transporter weight of 170 kip. Per Sheet 25 of EC./VN No. CD500920D (DOC. ID. 32-5053646-01 Rev. 1) dated 2-20-07, the cask weight is 314.6 kip, which is 1.5% greater than the original value used in computing soil pressure. Therefore, in this calculation, the vertical soil pressure value will be increased by 1.5%; that is:

$$P_{V} := 1.015 \cdot P_{V}$$
 $P_{V} = 15.814 \frac{lb}{in^{2}}$

Client	Duke Power Care	olinas, L	LC	Cal	culation No.	07Q3691-CAL-009			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis								
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2								
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce R. Oubovec	ભ્ય Date	11/11/08		

Per Ref. [13], the impact load factor (F) due to the cask dropping from a maximum height of 8.0 inches is:

F := 3.033

The maximum vertical soil pressure due to surcharge loads, including impact, is computed by applying the impact load factor to the combined weight of the transporter and cask. This is conservative since the impact load factor actually applies to the cask weight only. Therefore:

$$P_{L} := F \cdot P_{V} \qquad \qquad P_{L} = 47.96 \frac{lb}{in^{2}}$$

Calculate the vertical soil pressure due to earth loads. Note that there is no water above pipe; hence, dry soil is the only source of pressure.

$$P_E := \gamma_{soil} \cdot H$$

$$P_E = 3.65 \frac{lb}{in^2}$$

Compute the ring deflection Ω by letting Soil Support Factor, $F_s = 0$. Note that as shown in Table 3210-2 of Ref. [12], the value of F_s depends on properties of the trench and native soil, and on pipe diameter and trench width. Using zero for Fs (see equation below) will yield a conservative value for Ω .

$$F_{s} := 0$$

Compute the ring deflection $\ \Omega$.

$$\Omega_{1} := \frac{K_{bed} \cdot L \cdot P_{E}}{\frac{2 \cdot E_{pipe50y}}{3} \cdot \left(\frac{1}{DR - 1}\right) + 0.061 \cdot F_{s} \cdot E'} \qquad \qquad \Omega_{1} = 3.57 \times 10^{-4}$$

$$\Omega_2 := \frac{K_{bed} \cdot P_L}{\frac{2 \cdot E_{pipe10h}}{3} \cdot \left(\frac{1}{DR - 1}\right) + 0.061 \cdot F_s \cdot E'} \qquad \qquad \Omega_2 = 7.19 \times 10^{-4}$$

Note that the equation given in Ref. [12] for computing Ω includes a conversion factor of 144. Since MathCad automatically converts units, this conversion factor is not included in the above equation.

Client					culation No.	07Q3691-0	CAL-009
Project	oject Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce S. Oubovec	શ્વ Date	11/11/08

$$\Omega := \Omega_1 + \Omega_2$$

$$\Omega = 1.08 \times 10^{-3}$$

The maximum allowable ring deflection Ω max) is given in Ref. [12] as percent of the original diameter. Per Table 3210-1 of Ref. [12], for DR = 11:

Section 3220 - Compression of Sidewalls

Calculate the circumferential compressive stress (σ_{sw}) in the sidewalls of pipe and miters.

$$\sigma_{sw} := \frac{(P_E + P_L) \cdot DR}{2} \qquad \qquad \sigma_{sw} = 283.8 \frac{lb}{in^2}$$

Note that the equation given in Ref. [12] for computing σ_{sw} includes a conversion factor of 144. Since MathCad automatically converts units, the conversion factor is omitted here.

Compare σ_{sw} to the allowable stress value of 500 psi:

$$\sigma_{\rm sw} = 283.8 \frac{\rm lb}{\rm in^2} < 500 \ \rm psi \qquad O.K.$$

Client	Duke Power Card	LC	Cal	culation No.	07Q3691-0	CAL-009	
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce S. Ouboresc	Ay Date	11/11/08

Section 3221.1 - Buckling Due to External Pressure

Check that external pressure from ground water (Pgw), earth loads (P_E) and surcharge loads (P_L) does not cause the pipe to buckle.

$$Phydro = (Pgw + P_E + P_L) \le 2.8 \cdot \left[R_b \cdot B \cdot E' \cdot \frac{E_{pipe50y}}{12 \cdot (DR - 1)^3} \right]^{0.5}$$

Note that the equation provided in Ref. [12] for computing the external buckling pressure includes a conversion factor of 144. The conversion factor is not needed here since MathCad automatically converts units.

There is no water above the pipe. Hence:

$$H_{gw} := 0 ft \qquad P_{gw} := 0 \frac{lb}{in^2}$$

$$R_b := 1 - 0.33 \frac{H_{gw}}{H} \qquad R_b = 1$$

Compute the burial factor, B. Note that for computing burial factor, height of soil above pipe (H) needs to be redefined as a quantity H_B with no units.

$$\begin{split} H_{\rm B} &:= 5 \\ B &:= \frac{1}{1 + 4 \cdot \exp(-0.065 \cdot H_{\rm B})} \\ P_{\rm gw} + P_{\rm E} + P_{\rm L} &= 51.6 \frac{1b}{{\rm in}^2} \\ 2.8 \cdot \left[R_{\rm b} \cdot B \cdot E' \cdot \frac{E_{\rm pipe50y}}{12 \cdot ({\rm DR} - 1)^3} \right]^{0.5} &= 87.9 \frac{1b}{{\rm in}^2} \\ (P_{\rm gw} + P_{\rm E} + P_{\rm L}) \text{ is less than } 87.9 \text{ lb/in}^2. \end{split}$$

Client	Duke Power Card	LC	Cal	culation No.	07Q3691-0	CAL-009	
Project	oject Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel	
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce J. Oubovec	&ų Date	11/11/08

Section 3221.2 - Effects of Negative Internal Pressure

$$\Delta P \leq \frac{f_0}{2} \cdot \frac{2 \cdot \text{Epipe10h}}{\left(1 - \nu^2\right)} \cdot \left(\frac{1}{DR - 1}\right)^3$$

 $f_0 := 0.64$

Ovality correction factor per Table 3221.2-1 for 5% ovality

v := 0.35

Use short-term values for elastic modulus and Poisson ratio

fo	$2 \cdot E_{pipe10h}$	$\begin{pmatrix} 1 \end{pmatrix}$	$-)^3 = 72.9 \frac{\text{lb}}{\text{lb}}$
2	$\left(1-v^2\right)$	$\left(\frac{1}{DR} - \right)$	$\left(\frac{1}{1}\right) = 72.9 \frac{1}{\text{in}^2}$

Therefore, ΔP may not exceed 72.9 psi.

Section 3222 - Flotation

For floatation, the minimum height of soil above top of pipe (H = 5ft) should be used to calculate the vertical earth load P_E . The P_E value calculated in the preceding sections is still valid since H = 5ft was used to calculate that value.

$$\begin{split} W_w &< W_p + P_E \cdot D \\ W_w &< W_p + P_E \cdot D \end{split} \qquad The equation given in Ref.[12] includes a conversion factor of 12. Mathcad automatically converts units; therefore, the conversion factor is not needed here. \\ W_w &:= \frac{\pi \cdot D^2}{4} \cdot \gamma_w \\ W_w & \text{is the unit weight of the water displaced by the pipe} \\ W_w &= 55.3 \frac{lb}{ft} \\ W_p + P_E \cdot D &= 576.2 \frac{lb}{ft} \end{split}$$

Client	Duke Power Care	LC	Cal	culation No.	07Q3691-0	CAL-009	
Project	Project Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel	
By:	S. Hailu	Date	11/10/08	Chk'd by	Bure J. Oubovec	هر Date	11/11/08

Calculation of Stresses Per Code Case N-755 [Ref. 12]

Define Variables:

Define vari	lables:		
	$Pa := 100 \cdot \frac{lb}{in^2}$		Design or Service Level A, B, C, or D pressure
	D := 12.75 · in		Outside diameter of pipe and mitered elbow
Properties of	of Straight Pipe		Straight pipe is DR-11
	$D_i := 10.432 \cdot \text{ in}$		Inside Diameter of straight pipe, per Ref. [12]
	t := 1.159 · in		Wall thickness of straight pipe, per Ref. [12]
	$A := \frac{\pi}{4} \cdot \left(D^2 - D_i^2 \right)$	$A = 42.2 \text{in}^2$	Cross sectional area of straight pipe
	$Z := \left(\frac{\pi}{32}\right) \cdot \frac{D^4 - D_i^4}{D}$	Z = 112.3in ³	Section modulus of straight pipe
	i := 1.0		Stress Intensification Factor of straight pipe (per Table 3311.2-1)
	B ₁ := 0.5	$B_2 := 1.0$	Stress Indices of straight pipe (per Table 3223-1)
Properties of	of Mitered Elbow		Elbow is DR-9
	$D_{ie} := 9.916 \cdot in$		Inside Diameter of elbow, per Ref. [12]
	$t_e := 1.417 \cdot in$		Wall thickness of elbow, per Ref. [12]
	$A_e := \frac{\pi}{4} \cdot \left(D^2 - D_{ie}^2 \right)$	$A_e = 50.5 \text{in}^2$	Cross sectional area of elbow
	$Z_e := \left(\frac{\pi}{32}\right) \cdot \frac{D^4 - D_{ie}^4}{D}$	$Z_{e} = 129.0$ in ³	Section modulus of elbow
	i _e := 2.0		Stress Intensification Factor of elbow (per Table 3311.2-1)
	B _{1e} := 0.69	B _{2e} := 1.64	Stress Indices of elbow (per Table 3223-1)

Client	Duke Power Carolinas, LLC				culation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel
By:	S. Hailu	Date	11/10/08	Chk'd by	Brice D. Oubouse	Au Date	11/11/08

The Design/Operating Temperature is 100 degrees F. The design pressure for the inlet line is 100 psig. The Level A, B, C, and D operating pressure for the inlet line is 75 psig. The maximum deadweight and presure loads (Load Case 10) are obtained from the ADLPIPE analysis and listed in Section 7.3 of this calculation. Qualification of the HDPE pipe is based on Design Level factors and Allowable stress using the Design temperature and pressure. Design pressue envelopes Service Levels A, B, C, and D pressures.

3223.1 - Longitudinal Stress Design

 $S := 620 \cdot \frac{lb}{in^2}$ (per Table 3131-1)

k := 1.0

$$\mathbf{k} \cdot \mathbf{S} = 620 \frac{\mathbf{lb}}{\mathbf{in}^2}$$

Straight Piping Section:

 $B_1 \cdot \frac{P_a \cdot D}{2 \cdot t} + 2 \cdot B_1 \cdot \frac{F_a}{A} + B_2 \cdot \frac{M}{Z} \le k \cdot S$ $F_a := 0 \cdot lb$

 $M := 491 \cdot lb \cdot ft$

 $B_1 \cdot \frac{Pa \cdot D}{2 \cdot t} + 2 \cdot B_1 \cdot \frac{F_a}{A} + B_2 \cdot \frac{M}{Z} = 327.5 \frac{lb}{m^2}$

Mitered Elbow:

$$B_{1e} \cdot \frac{P_a \cdot D}{2 \cdot t_e} + 2 \cdot B_{1e} \cdot \frac{F_{ae}}{A_e} + B_{2e} \cdot \frac{M_e}{Z_e} \le k \cdot S$$
$$F_{ae} \coloneqq 0 \cdot lb$$

 $M_e := 71 \cdot lb \cdot ft$

$$B_{1e} \cdot \frac{Pa \cdot D}{2 \cdot t_e} + 2 \cdot B_{1e} \cdot \frac{F_{ae}}{A_e} + B_{2e} \cdot \frac{M_e}{Z_e} = 321.3 \frac{lb}{in^2}$$

Allowable stress at 100 degrees F

Longitudinal Stress Factor for Design (per Table 3223-2)

Straight pipe is DR-11

Axial force due to deadweight on the straight pipe

Resultant bending moment due to deadweight on the straight pipe

which is less than 620
$$\frac{lb}{in^2}$$
OK

Elbow is DR-9

Axial force due to deadweight on the mitered elbow

Resultant bending moment due to deadweight on the mitered elbow

which is less than 620
$$\frac{lb}{in^2}$$
.....OK

Client	Duke Power Care	Cal	Calculation No. 07Q3691-CAL-009				
Project	t Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buriad HDPE Dining System Nuclear Service Water (NSW) Supply Line Diasol						ne Diesel
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce J. Oubovec	هم Date	11/11/08

3311 - Design for Thermal Expansion and Contraction

Soil springs were applied to account for the soil stiffness. Therefore, the alternative method of 3311.3 is used: The maximum thermal range force and moment were used to check the stresses in the HDPE pipe. The thermal range of Service Level C/D envelopes Service Level A and B.

Straight Piping Section:

Straight pipe is DR-11 $i \cdot \frac{M_c}{Z} + \frac{F_{ac}}{A} \le 1100 \cdot \frac{lb}{m^2}$ $F_{ac} := 7707 \cdot lb$ Axial force range due to thermal expansion and/or contraction on the straight pipe (Level C/D) Resultant moment range due to thermal expansion $M_c := 982 \cdot ft \cdot lb$ and/or contraction on the straight pipe (Level C/D) $i \cdot \frac{M_c}{Z} + \frac{F_{ac}}{A} = 287.6 \frac{lb}{in^2}$ which is less than 1100 $\frac{lb}{in^2}$ OK Mitered Elbow: Elbow is DR-9 $i_e \cdot \frac{M_{ce}}{Z_e} + \frac{F_{ace}}{A_e} \le 1100 \cdot \frac{lb}{in^2}$ Axial force range due to thermal expansion and/or $F_{ace} := 3732 \cdot lb$ contraction on the mitered elbow (Level C/D) Resultant moment range due to thermal expansion $M_{ce} := 1923 \cdot ft \cdot lb$ and/or contraction on the mitered elbow (Level C/D)

$i_e \cdot \frac{M_{ce}}{Z_e} + \frac{F_{ace}}{A_e} = 431.6 \frac{lb}{in^2}$ which is less than 1100 $\frac{lb}{in^2}$OK

3312 - Nonrepeated Anchor Movements

There are no nonrepeated (thermal) anchor movements .

Client					culation No.	07Q3691-0	AL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Ruried HDRE Riging System Nuclear Service Water (NSW) Supply Line Dissel						ne Diesel
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce P. Ouboresc	Ay Date	11/11/08

3410 - Seismic Induced Stresses

This is applicable for both SSE and OBE loads. These stresses are based on evaluation of the SSE (Level D) conditions which also qualifies the piping for OBE (Level B) conditions as OBE loads are lower and OBE and SSE limits are the same

Straight Piping Section:

Straight pipe is DR-11

 $i \cdot \frac{M_E}{Z} + \frac{F_{aE}}{A} \le 1100 \cdot \frac{lb}{in^2}$ $F_{aE} := 5308 \cdot lb$

 $M_E := 603 \cdot ft \cdot lb$

Axial force range due to seismic loads on the straight pipe

Resultant moment range due to seismic loads on the straight pipe

$i \cdot \frac{M_E}{M_E} + \frac{F_{aE}}{M_E} = 190.2 \frac{lb}{M_E}$	which is less than $1100 \frac{\text{lb}}{\text{m}}$ OK
Z A ² in	in ²

Mitered Elbow:

Mitered elbow is DR-9

 $i_e \cdot \frac{M_{Ee}}{Z_e} + \frac{F_{aEe}}{A_e} \leq 1100 \cdot \frac{lb}{in^2}$

 $F_{aEe} := 2862 \cdot lb$

 $M_{Ee} := 1866 \cdot ft \cdot lb$

Axial force range due to seismic loads on the mitered elbow

Resultant moment range due to seismic loads on the mitered elbow

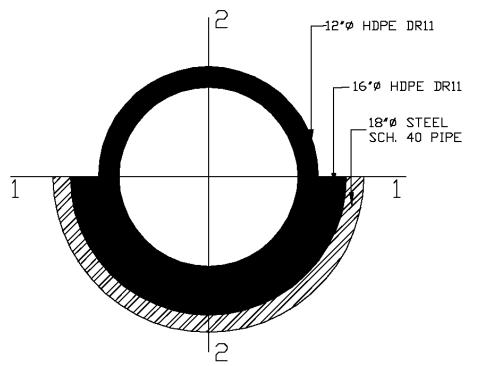
 $i_e \cdot \frac{M_{Ee}}{Z_e} + \frac{F_{aEe}}{A_e} = 403.8 \frac{lb}{in^2}$ which is less than 1100 $\frac{lb}{in^2}$OK

Client				Cal	culation No.	07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Ruried HDPE Pining System Nuclear Service Water (NSW) Supply Line Diese					ne Diesel		
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce P. Ouboresc	Ay Date	11/11/08	

7.4 Stress Summary for Unit 2 Steel Pipe

Acceptance Criteria	Calculated Stress [psi]	Allowable Stress [psi]	<u>Calculated</u> Allowable	Node Point
Equation 8 (Design)	2104	22500	0.09	985
Equation 9 (Level A)	1579	27000	0.06	985
Equation 9 (Level B)	1579	27000	0.06	985
Equation 10 (Level A)	8047	22500	0.36	985
Equation 10 (Level B)	9224	22500	0.41	985
Equation 10 (Level C/D)	7887	22500	0.35	985

7.5 Flange Summary for Unit 2 HDPE Pipe


The EPRI flange capacity tests, Ref. [22], demonstrated that if the pipe stresses at the fusion joint joining the HDPE flange adapter to the piping were less than the maximum code capacities, the flanges were adequate. For this system, all pipe stresses at the fusion joint, joining the HDPE flange adapter to the piping are less than the maximum permitted code capacities.

7.6 Evaluation of Buoyancy over Condenser Cooling Water Lines

This piping system goes over the 10-ft diameter Condenser Cooling Water (CCW) lines in the region with plant coordinates 49+50X to 50+00X and 54+00Y to 55+00Y. The HDPE cooling water pipe line is at EL. 588'-6" and the CCW lines are at EL. 579'-2". In the event a CCW line breaks and completely floods the region, the buoyancy force acting on the HDPE cooling water line needs to be checked if it would result in pipe floatation.

The HDPE pipe in this location rests on a composite bed made up of a 16-in HDPE pipe and an 18-in steel pipe as shown in Fig. 7.6 below. The 18-in pipe is attached to concrete piers at its ends.

Client	Duke Power Car	olinas, L	LC	Cal	Calculation No. 07Q3691-CAL-009			
Project	oject Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Pining System Nuclear Service Water (NSW) Supply Line Diesel							
By:	S. Haile	Date	11/10/08	Chk'd by	Brace J. Oubovec	هر Date	11/11/08	

Fig. 7.6: Support provided for HPDE pipe system in the region where it lies over the CCW lines

The buoyancy force (F_b) per unit length acting on the pipe is:

$$F_b = \gamma_{water} A_b$$

where:

 γ_{water} = specific weight of water [lb/ft³]; γ_{water} = 62.4 lb/ft³

 A_b = cross-sectional area of related to the displaced volume [ft²]

The area A_b can be conservatively estimated from:

$$A_{b} = \frac{\pi}{4} \left(\frac{D_{18}^{2} + D_{12}^{2}}{2} \right)$$

where:

D₁₈ and D₁₂ are the ODs for 18-in steel pipe and 12-in HDPE pipe, respectively.

Noting that $D_{18} = 18/12 = 1.5$ ft and $D_{12} = 12.75/12 = 1.0625$ ft, and substituting yields:

$$F_b = 62.4 * \frac{\pi}{4} \left(\frac{1.5^2 + 1.0625^2}{2} \right) = 82.8 \text{ lb/ft}$$

The forces resisting buoyancy force are:

Client	Duke Power Carolinas, LLC			Cal	culation No.	o. 07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2							
By:	S. Hailu	Date	11/10/08	Chk'd by	Brace D. Ouboresc	હ્ય Date	11/11/08	

- weight of 18-in steel pipe = 104.7 lb/ft; use only $\frac{1}{2}$ of this weight \rightarrow 52.3 lb/ft
- weight of 16-in HDPE pipe = 29.0 lb/ft; use only $\frac{1}{2}$ of this weight \rightarrow 14.5 lb/ft
- weight of 12-in HDPE pipe = 18.4 lb/ft
- weight of soil above pipe = γ_{soil} *H* D₁₂ = 105 lb/ft³ * 5ft * 1.0625ft = 557.8 lb/ft

Note that in computing the soil weight above pipe, for conservatism, D_{12} was used instead of D_{18} and the height of soil above pipe (H) was taken as 5 ft.

Force resisting buoyancy = 52.3 + 14.5 + 18.4 + 557.8 = 643.0 lb/ft > F_b = 82.8 lb/ft

The 18-in pipe is attached to concrete piers on both ends. The concrete piers are $3'x2'x14'-10'' = 89 \text{ ft}^3$. Concrete weighs about 144 lb/ft³. Hence, the weight of the concrete piers is $89\text{ft}^3x144\text{lb/ft}^3 = 12.8 \text{ kips}$. This is an additional force that is resisting the buoyancy force.

It is concluded that in the event the CCW lines break and flood the region, the HDPE piping will be OK against floatation.

7.7 Evaluation of Steel Bridge Pipe over Condenser Cooling Water Lines

This evaluation is for the steel pipe bridge over the 10'-0" ø Condenser Cooling Water lines should they rupture and erode the soil supporting the 12" ø Nuclear Service Water (NSW) lines to the Diesel Generator Building. This is a faulted condition on the piping system.

Three concrete piers split the 58 foot span into two 29 foot spans simply supported. The bridge is composed of half of a 18" ø sch. 40 carbon steel pipe (104.7 lb/ft / 2 = 52.4 lb/ft) as shown in Figure 7.6. The bridge is essentially a steel structure that supports the half section of a 16" ø DR11 HDPE pipe (29 lb/ft / 2 = 14.5 lb/ft) that acts as protection for the pressure retaining 12" ø DR 11 HDPE pipe with water (54.4 lb/ft)

The weight per foot supported by the bridge is:

Half of a 18" \emptyset Sch. 40 steel pipe = 0.5*(104.7 lb/ft)	= 52.35 lb/ft
Half of a 16" \emptyset DR 11 HDPE pipe = 0.5*(29 lb/ft)	= 14.5 lb/ft
12" \emptyset DR 11 HDPE pipe with water = 54.4 lb/ft	= 54.4 lb/ft
Total wt.	= 121.25 lb/ft

Check the half section of 18" steel pipe acting as a bridge for deadweight bending stress over a 29 foot span. Conservatively assume simply supported connections for the bridge.

$$M_{bending} = \frac{wl^2}{8}$$

w = 121.25 lb/ft / 12 = 10.104 lb/in
l = 29 ft x 12in/ft = 348 in

Client	Duke Power Carolinas, LLC				alculation No. 07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce R. Oubovec	શ્ય Date	11/11/08

$$M_{\text{bending}} = \frac{10.104 * 348^2}{8}$$

 $M_{bending} = 152,954 lb/in$

$$\sigma_{\text{bending}} = \frac{M}{Z}$$

Calculate the Section Properties of the Half 18" Section:

18 in. Sch. 40 pipe t_m = 0.562 in

From, [Ref. 21], "Roark's Formulas for Stress and Strain", 6th Edition Page 69, Section 22

Dia. = 18 inches $t_m = 0.562$ inches

R = 9 inches R_i = 8.438 inches

See Section in Figure 7.6

$$A = \frac{\pi}{2} * \left(R^2 - R_i^2\right)$$
$$A = \frac{\pi}{2} * \left(9^2 - 8.438^2\right)$$
$$A = 15.394 \ in^2$$

 $I_{2-2} = \frac{\pi}{8} \left(R^4 - R_i^4 \right)$

 $I_{2-2} = \frac{\pi}{8} (6561 - 5069.418)$ Where the 2-2 axis is the vertical axis about the centroid of the section.

$$I_{2-2} = \frac{\pi}{8} (1491.582)$$
$$I_{2-2} = 585.743 in^{4}$$

$$Z_{2-2} = 585.743 \text{ in}^4 / 9^\circ = 65.08 \text{ in}^3$$

Calculate the Centroid for Calculating the Section Modulus in the 1-1 Direction

Client	Duke Power Care	LC	Ca	culation No. 07Q3691-CAL-009			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Diping System Nuclear Service Water (NSW) Supply Line Diesel						
By:	A. Hailu	Date	11/10/08	Chk'd by	Brace S. Oubovec	Au Date	11/11/08

$$y_{1b} = \frac{4}{3\pi} \left[\frac{R^3 - Ri^3}{R^2 - Ri^2} \right]$$
$$y_{1b} = \frac{4}{3\pi} * \left[\frac{9^3 - 8.438^3}{9^2 - 8.438^2} \right]$$
$$y_{1b} = \frac{4}{3\pi} * \left[\frac{128.216}{9.80} \right]$$
$$y_{1b} = 5.553 \text{ in}$$

Calculate I_{1-1} about the Centroid about the horizontal axis:

$$I_{1-1} = \frac{\pi}{8} \left(R^4 - Ri^4 \right) - \frac{8}{9\pi} \left[\frac{\left(R^3 - Ri^3 \right)^2}{R^2 - Ri^2} \right]$$

$$I_{1-1} = \frac{\pi}{8} \left(9^4 - 8.438^4 \right) - \frac{8}{9\pi} \left[\frac{\left(9^3 - 8.438^3 \right)^2}{9^2 - 8.438^2} \right]$$

$$I_{1-1} = \frac{\pi}{8} \left(1,491.582 \right) - \frac{8}{9\pi} \left[\frac{16,439.270}{9.80} \right]$$

$$I_{1-1} = \frac{\pi}{8} \left(1,491.582 \right) - \frac{8}{9\pi} \left[1,677.450 \right]$$

$$I_{1-1} = 585.743 - 474.621$$

$$I_{1-1} = 111.122 \text{ in}^4$$

$$z_{1-1} = \frac{I_{x1-x1}}{y_{16}} = \frac{111.122}{5.553} = 20.01 \text{ in}^3$$

Deadweight Stress in the Pipe Bridge:

$$\sigma_{\text{bending}} = \frac{152,954}{20.01}$$

 $\sigma_{bending}$ = 7,644psi $\,$ < 0.60 * F_y = 0.60 * 36 ksi = 21.6 ksi OK

0.60 * F_{y} is the normal AISC Allowable Stress for a Steel Pipe Support

Client	Duke Power Care	olinas, L	LC	Cal	alculation No. 07Q3691-CAL-009			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2							
By:	A. Hailu	Date	11/10/08	Chk'd by	Brace D. Oubovec	Ay Date	11/11/08	

Earthquake Stress in the Pipe Bridge

The peak seismic acceleration near the DG building is 0.324g vertical and 0.486g horizontal Ref. [19] & Ref. [20].

$$\begin{split} &\delta_{seis-horizontal} = 0.486\text{g} * 152,954 \text{ Ib-in} / 65.083 \text{ in}^3 = 1,142 \text{ psi} \\ &\delta_{seis-vertical} = 0.324\text{g} * 152,954 \text{ Ib-in} / 20.01 \text{ in}^3 = 2,477 \text{ psi} \\ &\delta_{seis-vertical} = [(1,142)^2 + (2,477)^2]^{\frac{1}{2}} = 2,728 \text{ psi} \\ &\sigma_{faulted} = \text{Deadweight} + \text{Seismic}_{faulted} < 0.90 * \text{F}_{y} \\ &\sigma_{faulted} = 7,644 + 2,728 = 10,372 \text{ psi} < 0.90 * 36 \text{ ksi} = 32.4 \text{ ksi OK} \end{split}$$

0.90 * F_v is an appropriate Faulted Allowable Stress for a Steel Structure

Therefore the 18" ø steel pipe will support the 12" ø HDPE pipe in the event of a rupture of the CCW pipe and a subsequent SSE event.

7.8 Evaluation of 12" ø HDPE Pipe over Condenser Cooling Water Lines

As discussed in Section 7.7, the 12" ø HDPE piping is supported by the steel pipe bridge in the unlikely event that the Condenser Cooling Water lines wash out the soil surrounding the HDPE piping crossing this piping. Section 7.7 resulted in the conclusion that the bridge analyzed as a steel structure is acceptable. This portion of the calculation analyzes the pressure retaining 12" ø HDPE for this faulted event. The 12" ø HDPE will deflect with the pipe bridge. Therefore, the deflection of the bridge will be calculated. Using this displacement, an equivalent load will be calculated for the 12" ø HDPE. This load will be combined appropriately with other loads (pressure) and the resulting stresses will be compared to the allowable stress.

Deflection of Pipe Bridge for Dead Weight

For a simply supported beam deflection is as follows:

 $\Delta_{max} = 5 \omega l^4 / 384 El = 5^* 10.104 lb/in * 348^4 in^2 / (384 * 29 x 10^6 lb/in^2 * 111.112 in^4) = 0.888 in.$

Deflection of Pipe Bridge for Earthquake Load

For a simply supported beam deflection is as follows:

 $\Delta_{\text{max-vertical-earthquake}} = 0.324 \text{g} * 0.888 \text{ in.} = 0.288 \text{ in.}$

 $\Delta_{\text{max-horizontal-earthquake}} = 0.486g * 5* 10.104 \text{ lb/in} * 348^4 \text{ in}^2 / (384 * 29 \text{ x} 10^6 \text{ lb/in}^2 * 585.743 \text{ in}^4) = 0.0552 \text{ in}.$

 $\Delta_{\text{max-total-earthquake}} = (0.288^2 \text{ in}^2 + 0.0552^2 \text{ in}^2)^{0.50} = 0.293 \text{ in}$

Client	Duke Power Care	olinas, L	LC	Cal	Calculation No. 07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce J. Oubouec	Ay Date	11/11/08

Calculation of Bending Stress in the HDPE Piping Due to Deflection

In the case of the 12" HDPE pressure retaining piping, the stress is at its highest when the system is stiffest since the stress in this case is displacement dependent. Therefore, the piping will be conservatively assumed to have a fixed connection on either side of the span.

HDPE Properties:

 $I = 1/64 \pi (D^4 - D_I^4) = 1/64 \pi (12.75^{**} - 10.45^{**}) = 711.8 \text{ in}^4$ $Z = I * 2 / D = 711.8 \text{ in}^4 * 2 / 12.75 \text{ in.} = 111.7 \text{ in}^3$

For a Fixed – Fixed Beam Dead Weight @ Ambient Temperature:

 $\Delta = \omega l^{4} / 384 E l \rightarrow \omega = 384 E l \Delta / l^{4} = 384 * 110,000 \text{ lb/in}^{2} * 711.8 \text{ in}^{4} * 0.888" / 348^{4} \text{ in}^{4} = 1.82045 \text{ lb/in}$ (Equivalent Load on Pipe)

E = 110,000 psi for the HDPE Pipe @ Ambient Temperature (conservative for calculating stress, Δ = 0.888" is the deflection at the center of the bridge due to Dead Weight I = 348 in (29 foot span of the bridge)

 $M_{Max} = \omega l^2 / 24 = 1.82045$ lb/in * (348"²) / 24 = 9,186 in-lb

 $\delta_{bending-Deadweight}$ = 9,186 in-lb / 111.7 in³ = 82.24 psi

 $\delta_{bending-Earthquake}$ = 82.24 psi * 0.293" / 0.888" = 27.13 psi

The earthquake does not act concurrently with the wash out from the CCW pipes. These stresses are small enough that they do not control design when combined appropriately with pressure stress. They are acceptable by inspection.

Client	Duke Power Carolinas, LLC			Cal	culation No.	07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2					ne Diesel		
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce P. Ouboresc	Ay Date	11/11/08	

8.0 RESULTS

The HDPE piping system was found to be adequate. Table 8.a summarizes these results.

F	Table Result Summary fo		•	
Acceptance Criteria	Calculated Value	Allowable Value	<u>Calculated</u> Allowable	Node Pt.
Minimum Required Wall Thickness	0.95"	1.159"	0.82	N/A
Ring Deflection	0.00108"	0.05"	0.02	N/A
Compression of Side Walls	284 psi	500 psi	0.57	N/A
Buckling Due to External Pressure	51.6 psi	87.9 psi	0.59	N/A
Effects of Negative Internal Pressure	> - 72.9 psi	0 psi	***0.0	N/A
Flotation	55.3 lb/ft	576 lb/ft	0.10	N/A
Deadweight + Pressure Stress – Straight Pipe	327.5 psi	620 psi	0.53	225
Deadweight + Pressure Stress – Mitered Elbow	321.3 psi	620 psi	0.52	320
Thermal Stress – Straight Pipe	287.6psi	1100 psi	0.26	880
Thermal Stress – Mitered Elbow	431.6 psi	1100 psi	0.39	650
Seismic SSE Stress – Straight Pipe	190.2 psi	1100 psi	0.17	880
Seismic SSE Stress – Mitered Elbow	403.8 psi	1100 psi	0.37	650

*** The HDPE pipe is not under a vacuum per the Design Specification Ref. [26]

Client	Duke Power Carolinas, LLC				alculation No.			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel	
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce J. Oubovec	هم Date	11/11/08	

The steel piping system was found to be adequate. Table 8.b summarizes these results

Table 8.b Result Summary for 10" and 12" Steel Pipe									
Acceptance Criteria	Calculated Stress [psi]	Allowable Stress [psi]	<u>Calculated</u> Allowable	Node Point					
Deadweight and Pressure (Design)	2104	22500	0.09	985					
Deadweight and Pressure (Level A)	1579	27000	0.06	985					
Thermal (Level A)	8047	22500	0.36	985					
Deadweight and Pressure (Level B)	1579	27000	0.06	985					
Thermal and Seismic (Level B)	9224	22500	0.41	985					
Seismic (Level C/D)	7887	22500	0.35	985					

8.1 Functionality Capability and Break Postulation

This piping analysis meets functional capability as defined in Ref. [24]. The maximum Level D Pressure and Temperature do not exceed design Pressure and Temperature. All piping stress limits given in ASME BPVC Code Case N-755 are met for all applied Level D loads and the capacities used in this review are based on the Design Temperature.

This piping is classified as moderate energy as defined in Ref. [24]. Moderate energy piping is piping that has a temperature of less than 200 ° F and a pressure of 275 psig or less. Per Ref [26], for this piping, the maximum temperature is 100° F and the operating pressure is 75 psig. Leak cracks are to be postulated at points based on the following equation:

$$\frac{PD}{4t} + 0.75i \left[\frac{M_A}{Z} + \frac{F_{aA}}{A} \right] + i \left[\frac{M_C}{Z} + \frac{F_{aC}}{A} \right] + i \left[\frac{M_E}{Z} + \frac{F_{aE}}{A} \right] \le 0.4(1.1S + 1100 + 1100) psi = 0.4(1.1S + 2200) psi$$

where:

P = Operating pressure D = Outside pipe diameter t = Nominal pipe wall thickness

Client	Duke Power Care	olinas, L	LC	Cal	Iculation No. 07Q3691-CAL-009			
Project	t Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2							
By:	S. Hailu	Date	11/10/08	Chk'd by	Brie J. Ouborec	હ્યુ Date	11/11/08	

i = Stress intensification factor

A = Cross sectional area of pipe

Z = Section modulus of pipe

 F_{aA} = Axial force due to deadweight loads

 F_{aC} = Axial force range due to thermal loads

 F_{aE} = Axial force range due to seismic loads

 M_A = Moment due to deadweight loads

M_C = Moment range due to thermal loads

M_E = Moment range due to seismic loads

The deadweight, thermal, and seismic loads at the critical locations will be taken from Tables 7.2.2a to 7.2.2d for straight pipe and mitered elbows and checked to the postulated break equation. The maximum stresses for deadweight, seismic and thermal cases may occur at different locations. The equation uses the maximum stresses even when they are found in separate locations. This is conservative.

S = 620 psi → 0.4(1.1S + 2200) = 0.4 (1.1*620 + 2200) = 1153 psi

For straight pipe:

D = 12.75 in	t = 1.159 in	A = 42.2 in ²	Z = 112.3 in ³	
P = 75 psi	i = 1.0	0.75i = 1.0	(Note: 0.75i ca	nnot be less than 1.0)
$M_{A} = 491$ ft-lb =	= 5892 in-lb	M _c = 982 ft-lb =	= 11784 in-lb	M _E = 1130 ft-lb = 13560 in-lb
F _{aA} = 0		F _{aC} = 7707 lb		F _{aE} = 5308 lb

Substituting these values into the equation yields:

$$\frac{75 * 12.75}{4 * 1.159} + 1.0 \left[\frac{5892}{112.3} + \frac{0}{42.2} \right] + 1.0 \left[\frac{11784}{112.3} + \frac{7707}{42.2} \right] + 1.0 \left[\frac{13560}{112.3} + \frac{5308}{42.2} \right] = 793 psi < 1153 psi$$

Therefore, there are no postulated moderate energy leak cracks on the straight HDPE piping.

For mitered elbows:

Substituting these values into the equation yields:

$$\frac{75 * 12.75}{4 * 1.417} + 1.5 \left[\frac{852}{129} + \frac{0}{50.5}\right] + 2.0 \left[\frac{23076}{129} + \frac{3732}{50.5}\right] + 2.0 \left[\frac{22392}{129} + \frac{2862}{50.5}\right] = 1145 psi < 1153 psi$$

Therefore, there are no postulated moderate energy leak cracks on the mitered HDPE piping.

Client	Duke Power Card	LC	Cal	culation No.	07Q3691-0	CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Title Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Dies							
The	Generator "2B" Unit 2							
By:	S. Hailes	Date	11/10/08	Chk'd by	Bruce P. Oubovec	هب Date	11/11/08	

8.2 Final Loads at the Anchor at the Diesel Generator Building due to Soil Effects

The maximum loads acting from the HDPE pipe for Service Levels A, B, C and D acting on the anchor at the face of the Diesel Generator Building are extracted from the results of the ADLPIPE analysis. These loads are summarized in Tables 8.2a and 8.2b and compared to the maximum loads that the HDPE pipe can contribute to anchor load at the face of the Diesel Generator Building.

Table 8.2a	Table 8.2a: HDPE Loads from ADLPIPE for Anchor at Diesel Generator Building										
Load Case	Node	Fx (lbs)	Fy (lbs)	Fz (lbs)	Mx (ft-lb)	My (ft-lb)	Mz (ft-lb)				
	Point										
10 (DW)	100	0	521	0	5	0	1253				
27 (Th)	100	6003	0	2	0	22	0				
28 (Th)	100	6643	0	5	0	36	0				
29 (Th)	100	8485	0	17	0	101	0				
31 (SSE)	100	4723	0	54	0	243	0				
32 (OBE)	100	2519	0	29	0	130	0				

Table 8.2b: HDPE Loads combined for maximum forces and moments to be compared to
allowable interface loads applied to the steel pipe per Ref. [23]

Load Case	Node Point	Axial Force	(lbs)	Shear Force	Shear Force (Ibs)		Resultant Moment (in-lbs)	
		Combined from ADLPIPE	Maximum	Combined from ADLPIPE	Maximum	Combined from ADLPIPE	Maximum	
10 (DW)	130	0	4200	103	4200	580	100000	
27 (Th)	130	6003 (1)	4200	2	4200	168	100000	
28 (Th)	130	6643 (1)	4600	5	4600	240	100000	
29 (Th)	130	8485 (1)	5500	17	5500	528	100000	
31 (SSE)	130	4723 (1)	4600	54	4600	744	100000	
32 (OBE)	130	2519	4600	29	4600	396	100000	

(1) The thermal axial forces exceed the maximum for the HDPE pipe. These forces are acceptable due to the very small shear force and moment at the same node point. Therefore, the loads shown above will be used as input for the anchor design at the Diesel Generator Building.

8.3 Final Loads at the Centerline of the 42" ø Supply Line due to Soil Effects

Table 8.3a	Table 8.3a: HDPE Loads from ADLPIPE at the Centerline of the 42" ø Supply Line										
Load Case	Node	Fx (lbs)	Fy (lbs)	Fz (lbs)	Mx (ft-lb)	My (ft-lb)	Mz (ft-lb)				
	Point										
10 (DW)	990	2409	20	19	0	116	122				
27 (Th)	990	3718	302	3718	27284	0	27284				
28 (Th)	990	4145	352	4145	30377	0	30377				
29 (Th)	990	5449	519	5449	39777	0	39777				
31 (SSE)	990	3753	504	3753	26931	0	26931				
32 (OBE)	990	2002	269	2002	14362	0	14362				

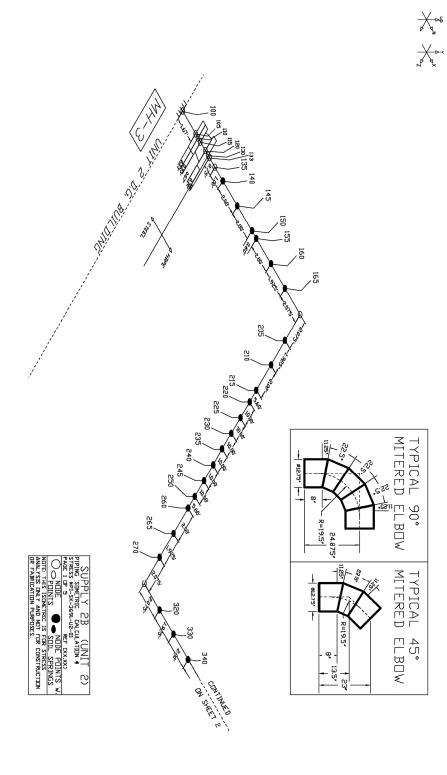
Client	Duke Power Carolinas, LLC			Cal	culation No.	07Q3691-CAL-009		
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Ruried HDPE Dining System Nuclear Service Water (NSW) Supply Line Diosel					ne Diesel		
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce P. Ouboresc	Ay Date	11/11/08	

8.4 Branch Line Qualification

The branch line meets the 1989 ASME BPVC Code allowable stresses. Table 8.4a below shows the results of the ADLPIPE analysis for the branch line (Nodes 880 to 985).

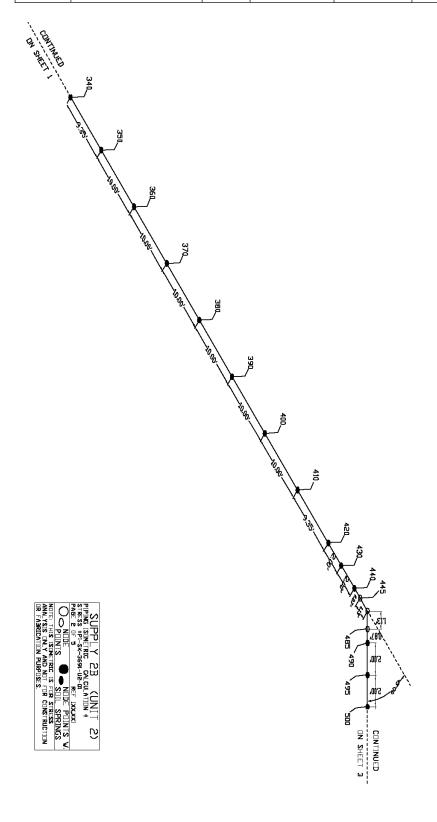
F	Table 8.4a Result Summary for 12" Steel Branch Line										
Acceptance Criteria	Calculated Stress [psi]	Allowable Stress [psi]	<u>Calculated</u> Allowable	Node Point							
Deadweight and Pressure (Design)	2104	22500	0.09	985							
Deadweight and Pressure (Level A)	1579	27000	0.06	985							
Thermal (Level A)	8047	22500	0.36	985							
Deadweight and Pressure (Level B)	1579	27000	0.06	985							
Thermal and Seismic (Level B)	9224	22500	0.41	985							
Seismic (Level C/D)	7887	22500	0.35	985							

9.0 CONCLUSIONS

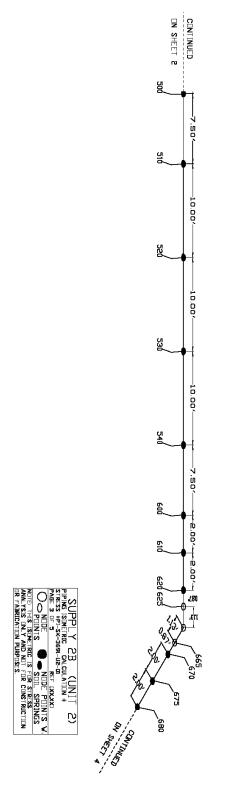

The existing 10-in carbon steel buried nuclear service water piping lines connecting the 42-in Nuclear Service Water System (NSWS) supply headers to Unit 2 Diesel Generator (DG) building piping at the Catawba Nuclear Station will be replaced by 12-in high-density polyethylene (HDPE) piping system. This calculation determined that the buried HDPE piping system connecting the 42-in supply header 'B' to the DG building of Unit 2 meets all applicable acceptance criteria as defined in the piping design specification Ref. [26] which is consistent with the relief request Ref. [14], and the ASME BPVC Code Case N-755 [Ref. 12] as summarized in Table 8-1.

Client	Duke Power Care	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2					ne Diesel	
By:	S. Hailu	Date	11/10/08	Chk'd by	Brace D. Dubouec	Ay Date	11/11/08

Appendix A


ADLPIPE Model Isometrics

Client	Duke Power Car	olinas, L	LC	Ca	lculation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce D. Oubovec	by Date	11/11/08



Client	Duke Power Care	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009	
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Dies							
The	Generator "2B" Unit 2							
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce P. Oubovec	Au Date	11/11/08	

 $\xrightarrow{}_{N}^{N} \xrightarrow{}_{X}^{N} \xrightarrow{}_{X}^{N}$

Client	Duke Power Care	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel						ne Diesel
By:	S. Hailu	Date	11/10/08	Chk'd by	Brace D. Oubourse	Ay Date	11/11/08

Client	Duke Power Carolinas, LLC				alculation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supr					N) Supply Li	ne Diesel
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce P. Oubovec	by Date	11/11/08

Convine

N

ON SHEET 5

Client	Duke Power Ca	arolinas. L	LC	Cal	culation No. 07	Q3691-CAL-009	
Project	Catawba Unit # 1 a	nd #2 – B	uried HDPE P				
Title	Analysis of Buried Generator "2B" Uni	HDPE Pipi	ing System—	Nuclear Serv	ice Water (NSW) S	upply Line Diesel	
Зу:	S. Haile	Date	11/10/08	Chk'd by	Brice J. Oubouschy	Date 11/11/08	
ALCE STOLES IN THE STATE AND ALL STATES AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	EL 581.0'			Lag			

Client	Duke Power Care	Duke Power Carolinas, LLC				Calculation No. 07Q3691-CAL-009				
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis									
Title	Analysis of Buried HI	OPE Pipi	ing System— I	Nuclear Serv	ice Water (NSV	V) Supply Li	ne Diesel			
The	Generator "2B" Unit 2	2								
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce R. Ouboresc	هم Date	11/11/08			

Appendix B

ADLPIPE Input and Output files

Client	Duke Power Card	olinas, L	LC	Cal	Calculation No. 07Q3691-CAL-009			
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis							
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel						ne Diesel	
Theo	Generator "2B" Unit 2							
By:	S. Hailes	Date	11/10/08	Chk'd by	Buce J. Ouborec	هب Date	11/11/08	

INPUT FILE:

GE, COOLING WATER SUPPLY LINE FROM 42-IN HEADER 'B' TO D/G BLDG OF UNIT 2 UN,0,0,0, NOTE, MODEL=supply2B.adi NO, THERE ARE TWO SUPPLY LINES RUNNING TO THE D/G BUILDING OF UNIT 2 NO, THIS IS THE LINE THAT ORIGINATES FROM THE 42-IN SUPPLY HEADER 'B' NO,GLOBAL COORDINATE SYSTEM: +X = NORTH, +Z = EAST, Y = VERTICAL NO.** NO, PIPING: 10" AND 12", SCH. 40, Cr-Mo AND CARBON STEEL PIPES, NO, 12", DR-11, IPS HDPE PIPE, NO,CONTENTS: WATER FILLED, NO INSULATION, NO. NO, DESIGN CONDITIONS: T(AMBIENT) = 55 F, T(DESIGN) = 100 F, P(DESIGN) = 100 PSIG NO. NO,CODE: ASME, YEAR 1989, NO.*** NO, PIPING SYSTEM IS CONSIDERED ANCHORED AT BOTH ENDS AN,,100, RE,,100,1,1,1,1,1,1, AN,,990, RE,,990,1,1,1,1,1,1, NO,************* NO, THE FOLLOWING SOIL SPRING STIFFNESS VALUES IN [LB/IN] ARE USED. NO NO. LENGTH OF PIPE BETWEEN SPRINGS NO, SOIL HEIGHT DIRECTION NO, ABOVE PIPE OF SPRING 2FT SECTION 10FT SECTION NO, NO, H = 5 FT LATERAL 3120 15600 NO, 12960 VERTICAL 64800 NO, AXIAL 10200 51000 NO, NO, STIFFNESS VALUES FOR OTHER LENGTHS ARE OBTAINED BY PROPORTION NO RE,,1140,1,1,1,1,1,1,1 RE,,2140,1,1,1,1,1,1,1, RE,,3140,1,1,1,1,1,1,1, RE,,1145,1,1,1,1,1,1,1, RE,,2145,1,1,1,1,1,1,1, RE,,3145,1,1,1,1,1,1,1, RE,,1150,1,1,1,1,1,1,1, RE,,2150,1,1,1,1,1,1, RE,,3150,1,1,1,1,1,1,1, RE,,1155,1,1,1,1,1,1,1, RE,,2155,1,1,1,1,1,1,1, RE,,3155,1,1,1,1,1,1,1, RE,,1160,1,1,1,1,1,1,1, RE,,2160,1,1,1,1,1,1,1, RE,,3160,1,1,1,1,1,1,1, RE,,2165,1,1,1,1,1,1,1, RE,,3165,1,1,1,1,1,1,1, RE,,1205,1,1,1,1,1,1,1, RE,,2205,1,1,1,1,1,1,1, RE,,3205,1,1,1,1,1,1,1, RE,,1210,1,1,1,1,1,1,1,

Client	Duke Power Care	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009	
Project	Catawba Unit # 1 and	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel	
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce J. Ouboresc	Ay Date	11/11/08	

RE,,2210,1,1,1,1,1,1,1,	
RE,,3210,1,1,1,1,1,1,	
RE,,1215,1,1,1,1,1,1,1,	
RE,,2215,1,1,1,1,1,1,1,	
RE,,3215,1,1,1,1,1,1,	
RE,,1220,1,1,1,1,1,1,1,	
RE,,2220,1,1,1,1,1,1,1,	
RE,,3220,1,1,1,1,1,1,	
RE,,1225,1,1,1,1,1,1,1,	
RE,,2225,1,1,1,1,1,1,1,	
RE,,3225,1,1,1,1,1,1,1,	
RE,,1230,1,1,1,1,1,1,	
RE,,2230,1,1,1,1,1,1,1,	
RE,,3230,1,1,1,1,1,1,1,	
RE,,1235,1,1,1,1,1,1,1,	
RE,,2235,1,1,1,1,1,1,1,	
RE,,3235,1,1,1,1,1,1,1,	
RE,,1240,1,1,1,1,1,1,1,	
RE,,2240,1,1,1,1,1,1,1,	
RE,,3240,1,1,1,1,1,1,1,	
RE,,1245,1,1,1,1,1,1,1,	
RE,,2245,1,1,1,1,1,1,1,	
RE,,3245,1,1,1,1,1,1,1,	
RE,,1250,1,1,1,1,1,1,1,	
RE,,2250,1,1,1,1,1,1,1,	
RE,,3250,1,1,1,1,1,1,1,	
RE,,1260,1,1,1,1,1,1,1,	
RE,,2260,1,1,1,1,1,1,1,	
RE,,3260,1,1,1,1,1,1,1,	
RE,,1265,1,1,1,1,1,1,1,	
RE,,2265,1,1,1,1,1,1,1,	
RE,,3265,1,1,1,1,1,1,1,	
RE,,1270,1,1,1,1,1,1,1,	
RE,,2270,1,1,1,1,1,1,1,	
RE,,3270,1,1,1,1,1,1,1,	
RE,,1320,1,1,1,1,1,1,1,	
RE,,2320,1,1,1,1,1,1,1,	
RE,,3320,1,1,1,1,1,1,1,	
RE,,1330,1,1,1,1,1,1,	
RE,,2330,1,1,1,1,1,1,1,	
RE,,3330,1,1,1,1,1,1,1,	
RE,,1340,1,1,1,1,1,1,1,	
RE,,2340,1,1,1,1,1,1,1,	
RE,,3340,1,1,1,1,1,1,1,	
RE,,1350,1,1,1,1,1,1,1,	
RE,,2350,1,1,1,1,1,1,	
RE,,3350,1,1,1,1,1,1,1,	
RE,,1360,1,1,1,1,1,1,1,	
RE,,2360,1,1,1,1,1,1,	
RE,,3360,1,1,1,1,1,1,1,	
RE,,1370,1,1,1,1,1,1,1,	
RE,,2370,1,1,1,1,1,1,1,	
RE,,3370,1,1,1,1,1,1,1,	
RE,,1380,1,1,1,1,1,1,1,	
RE,,2380,1,1,1,1,1,1,1,	
RE,,3380,1,1,1,1,1,1,1,	
RE,,1390,1,1,1,1,1,1, RE,,2390,1,1,1,1,1,1,1,	
RE,,3390,1,1,1,1,1,1,1, RE,,3390,1,1,1,1,1,1,1,	
RE,,1400,1,1,1,1,1,1,1,	
RE,,2400,1,1,1,1,1,1,1,1,	
RE,,3400,1,1,1,1,1,1,1,1,	
·····································	

Client	Duke Power Care	olinas, L	LC	Cal	culation No.	07Q3691-0	CAL-009	
Project	Catawba Unit # 1 and	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						ne Diesel	
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce J. Ouboresc	Ay Date	11/11/08	

RE,,1410,1,1,1,1,1,1,	
RE,,2410,1,1,1,1,1,1,1,	
RE,,3410,1,1,1,1,1,1,	
RE,,1420,1,1,1,1,1,1,1,	
RE,,2420,1,1,1,1,1,1,	
RE,,3420,1,1,1,1,1,1,1,	
RL, 3420, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
RE,,1430,1,1,1,1,1,1,	
RE,,2430,1,1,1,1,1,1,1,	
RL, 2430, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
RE,,3430,1,1,1,1,1,1,	
RE,,1440,1,1,1,1,1,1,1,	
RE,,2440,1,1,1,1,1,1,	
RE,,3440,1,1,1,1,1,1,1,	
RE,,1490,1,1,1,1,1,1,	
RE,,2490,1,1,1,1,1,1,	
RE,,3490,1,1,1,1,1,1,1,	
RE,,1495,1,1,1,1,1,1,	
RE,,2495,1,1,1,1,1,1,1	
RE,,3495,1,1,1,1,1,1,	
RE,,1500,1,1,1,1,1,1,	
RE,,2500,1,1,1,1,1,1,	
RE,,3500,1,1,1,1,1,1,1,	
RE,,1510,1,1,1,1,1,1,	
RE,,2510,1,1,1,1,1,1,1,	
RE,,3510,1,1,1,1,1,1,	
RE,,1520,1,1,1,1,1,1,	
RE,,2520,1,1,1,1,1,1,1,	
RE,,3520,1,1,1,1,1,1,	
RE,,1530,1,1,1,1,1,1,1,	
RE,,2530,1,1,1,1,1,1,	
RE,,3530,1,1,1,1,1,1,1,	
RE,,1540,1,1,1,1,1,1,1,	
RE, 1340, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
RE,,2540,1,1,1,1,1,1,	
RE,,3540,1,1,1,1,1,1,	
RE,,1600,1,1,1,1,1,1,1	
RE,,2600,1,1,1,1,1,1,1	
RE,,3600,1,1,1,1,1,1,1,	
RE,,1610,1,1,1,1,1,1,	
RE,,2610,1,1,1,1,1,1,1,	
RE,,3610,1,1,1,1,1,1,1	
RE,,1620,1,1,1,1,1,1,1	
RE,,2620,1,1,1,1,1,1,1,	
RE,,3620,1,1,1,1,1,1,	
RE,,1670,1,1,1,1,1,1,1	
RE,,2670,1,1,1,1,1,1,	
RE,,3670,1,1,1,1,1,1,	
RE,,1675,1,1,1,1,1,1,1,	
RE,,2675,1,1,1,1,1,1,	
RE,,3675,1,1,1,1,1,1,1,	
RL, 3073, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
RE,,1680,1,1,1,1,1,1,1	
RE,,2680,1,1,1,1,1,1,1	
RE,,3680,1,1,1,1,1,1,1,	
RE,,1685,1,1,1,1,1,1,1	
RE,,2685,1,1,1,1,1,1,1,	
RE,,3685,1,1,1,1,1,1,1,	
RE,,1690,1,1,1,1,1,1,	
RE,,2690,1,1,1,1,1,1,1,	
RE,,3690,1,1,1,1,1,1,	
RE,,1695,1,1,1,1,1,1,1	
RE,,2695,1,1,1,1,1,1,1,	
RE,,3695,1,1,1,1,1,1,1	
RE,,1700,1,1,1,1,1,1,1,	
RE,,2700,1,1,1,1,1,1,1,	
$1 \leq \leq . \cup \cup . 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, $	

Client	Duke Power Care	olinas, L	LC	Cal	Calculation No. 07Q3691-CAL-009				
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis								
Title	Analysis of Buried HDPE Piping System Nuclear Service Water (NSW) Supply Line Diesel					ne Diesel			
By:	A. Hailu	Date	11/10/08	Chk'd by	Brace D. Oubourse	ມ∕y Date	11/11/08		

RE,,3700,1,1,1,1,1,1,	
RE,,1705,1,1,1,1,1,1,	
RE,,2705,1,1,1,1,1,1,1	
RE,,3705,1,1,1,1,1,1,	
RE,,1710,1,1,1,1,1,1,	
RE,,2710,1,1,1,1,1,1,	
RE,,3710,1,1,1,1,1,1,	
RE,,1715,1,1,1,1,1,1,	
RE,,2715,1,1,1,1,1,1,	
RE,,3715,1,1,1,1,1,1,	
RE,,1720,1,1,1,1,1,1,	
RE,,2720,1,1,1,1,1,1,	
RE,,3720,1,1,1,1,1,1,	
RE,,1725,1,1,1,1,1,1,	
RE,,2725,1,1,1,1,1,1,1	
RE,,3725,1,1,1,1,1,1,1	
RE,,3723,1,1,1,1,1,1,	
RE,,1730,1,1,1,1,1,1,	
RE,,2730,1,1,1,1,1,1,	
RE,,3730,1,1,1,1,1,1,	
RE,,1735,1,1,1,1,1,1,	
RE,,2735,1,1,1,1,1,1,	
RE,,3735,1,1,1,1,1,1,1	
RE,,1740,1,1,1,1,1,1,	
RE,,2740,1,1,1,1,1,1,	
RE,,3740,1,1,1,1,1,1,	
RE,,1745,1,1,1,1,1,1,	
RE,,2745,1,1,1,1,1,1,	
RE,,3745,1,1,1,1,1,1,1,	
RE,,1750,1,1,1,1,1,1,1	
RE,,2750,1,1,1,1,1,1,1	
$RL_{1,27}$ 30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
RE,,3750,1,1,1,1,1,1,1,	
RE,,1800,1,1,1,1,1,1,	
RE,,2800,1,1,1,1,1,1,	
RE,,3800,1,1,1,1,1,1,	
RE,,1805,1,1,1,1,1,1,	
RE,,2805,1,1,1,1,1,1,	
RE,,3805,1,1,1,1,1,1,1	
RE,,1810,1,1,1,1,1,1,1	
RE,,2810,1,1,1,1,1,1,	
RE,,3810,1,1,1,1,1,1,	
RE,,1815,1,1,1,1,1,1,	
RE,,2815,1,1,1,1,1,1,	
RE,,3815,1,1,1,1,1,1,	
RE,,1820,1,1,1,1,1,1,1,	
RE,,2820,1,1,1,1,1,1,1	
RE,,3820,1,1,1,1,1,1,1,	
$RL_{1,3020,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$	
RE,,1825,1,1,1,1,1,1,	
RE,,2825,1,1,1,1,1,1,	
RE,,3825,1,1,1,1,1,1,	
RE,,1830,1,1,1,1,1,1,	
RE,,2830,1,1,1,1,1,1,	
RE,,3830,1,1,1,1,1,1,1	
RE,,1840,1,1,1,1,1,1,1,	
RE,,2840,1,1,1,1,1,1,1,	
RE,,3840,1,1,1,1,1,1,	
RE,,1850,1,1,1,1,1,1,	
RE,,2850,1,1,1,1,1,1,1,	
RE,,3850,1,1,1,1,1,1,	
RE,,1860,1,1,1,1,1,1,	
RE,,2860,1,1,1,1,1,1,1,	
RE,,3860,1,1,1,1,1,1,1,	
SE,,0,	
,,,,	

	Duke Power Car				culation No.	07Q369	
Project	Catawba Unit # 1 an						
Title	Analysis of Buried H Generator "2B" Unit		ing System—	Nuclear Servi	ce Water (NS	W) Suppl	ly Line Diesel
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce D. Oubore	chy Da	ate 11/11/08
NO, THE F NO, WITH NO, SURF NO, PIPE NO, A 10X NO, THE 1 NO, THE 1 NO, 10-IN NO, 01 NO, W NO, W NO, W NO, W NO, W NO, C NO, E NO, AL NO, 100, 10 NO,	PIPING SYSTEM STARTS / I A 10-IN Cr-Mo STEEL PIP FACE OF THE WALL (NODI CENTERLINE IS AT ELEV/ (12 STEEL REDUCER, WIT 10-IN PIPE TO A 12-IN HDF , SCH. 40 Cr-Mo STEEL PIF JTSIDE DIAMETER = 10.75 ALL THICKNESS = 0.365 IN T(PIPE) = 40.5LB/FT = 3.38 T(WATER) = 34.1 LB/FT = 2 T(PIPE+WATER) = 3.38 + 2 PERTIES OF PIPE MATERI = 28E+06 PSI .PHA = 8.1E-06 IN/IN/F -5,10.75,0.365,28.0,8.1,0.01	AT THE SL E THAT IS E PT. 100). ATION 588 TH FLANGE PE PROPE FIN LB/IN .84 LB/IN .84 LB/IN .84 = 6.22 AL (SB-690 	IRFACE OF THE CONSIDERED A '-6" ES WELDED ON TRTIES:, LB/IN D/SB-675) AT 70 SB-675) AT 70	NCHORED AT T ITS ENDS, CON F:	ΉE NECTS,		
NO, ATTA NO, AND NO, FOR NO, TO NO, FLA NO, C. 1 NO, C. 1 NO, WE NO, WE NO, WE NO, WE NO, WE NO, WE NO, WE NO, WE NO, TO, NO, RI NO, RI NO, RI NO, RI NO, RI NO, RI NO, RI NO, FO NO, FO NO, FO	05,1.67,,, ACH A 150-LB WELDING NE TO THE 10" SIDE OF REDI 10-IN WN FLANGE (PER L TAL LENGTH = 4.0 IN = 0.3 ANGE THICKNESS = 1.188 D. OF FLANGE = 16 IN AMETER AT HUB BASE= 12 ALL THICKNESS (MIN) = 0.3 EIGHT OF FLANGE = 54 LB (FLANGE+WATER) = 13.50 DIAMETER AT HUB BASE =WNFL,END=FLG 10,0.33,,,12.0,0.365,16.3, =WNFL,BEG=FLG 15,0.33,,,12.0,0.365,16.3, =WNFL,BEG=FLG 15,0.33,,,12.0,0.365,16.3, =DUCER LENGTH = 8 IN = EDUCER WEIGHT = 34 LB SHT OF WATER: OR 10" PIPE = 34.1 LB/FT = OR 10X12 REDUCER = (2.8 REDUCER+WATER) = 4.25 12" PIPE: OD = 12.75 IN AM	ECK (WN) I JCER ADISH CA ⁻ 33 FT IN 2.0 IN 365 IN > UNIT V + 2.84 = 1 AS O.D. FC > UNIT V CER. 0.67 FT > UNIT V = 2.84 LB/II 34+4.08/2 + 3.46 = 7 ID WALL T	FLANGE TO ENE FALOG): NT = 13.50 LB/IN 6.3 LB/IN 0R MODELING MODELING VT = 4.25 LB/IN N = 3.46 LB/IN T LB/IN HICKNESS = 0.3				

Client	Duke Power Care	,				23691-0	CAL-009
Project	Catawba Unit # 1 and						
Title	Analysis of Buried HI Generator "2B" Unit 2		ing System—	Nuclear Serv	ice Water (NSW) S	upply Li	ne Diesel
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce S. Oubovecky	Date	11/11/08
RD,115,12 NO, NO,ATTAG NO,FOR 1 NO,FOR 1 NO, USE 1 NO,WT NO,USE 1 NO,WT NO,USE 1 NO,WT NO,USE 1 NO,WT NO,USE 1 NO,WT NO,WT NO,WT NO,WT NO,WT NO,WT NO,WT NO,WT NO,WT NO,WT NO,WT NO,WT NO,E = NO,ALL NO,ALL NO,WT NO,ALL NO,WT NO,ALL NO,WT	20,0.67,,,12.75,0.375,7.7, CH A WELDING NECK (WN 2-IN,150-LB WN FLANGE (FAL LENGTH = 4.5 IN = 0.3 NGE THICKNESS = 1.25 II 0. OF FLANGE = 19 IN METER AT HUB BASE = 14 LL THICKNESS (MIN) = 0.3 IGHT OF FLANGE = 88 LB - (FLANGE+WATER) = 19.56 DIAMETER AT HUB BASE / WNFL,END=FLG 0,0.38,,,14.375,0.375,23.6, CHANGE TO 12" HI DR 11 HDPE PIPE PROPE TSIDE DIAMETER, ID = 0D - (PIPE) = 18.41 LB/FT = 1.5 (WATER) = 37.04 LB/FT = (WATER) = 37.04 LB/FT = (WATER+PIPE) = 1.53 + 3. PROEPRTIES AT 70F ANIE 28 KSI PHA = 90.0E-6 IN/IN/F	I) FLANGE (PER LAD 8 FT N 	E TO THE 12-IN S ISH CATALOG):, ISH	SIDE OF REDUC			
NO 21.130.133	3,12.75,1.159,0.028,90.0,.0 ²	1.4.62.					
NO							
- ,	LL A FLANGE ADAPTER V						
NO NO,FOR 1 NO, TC NO, FL NO, WI NO,FOR 1 NO, TH NO, TH	2-IN, DR 11, IPS HDPE FL DTAL LENGTH = 12.0 IN = 7 ANGE THICKNESS = 1.55 EIGHT OF ADAPTER = 24 2-IN STEEL BACKUP RING IICKNESS = 1.25 IN, WE	ANGE AD, I.0 FT IN LB G (PER IS) IGHT = 24	APTER (PER ISC CO CATALOG): - LB	CO CATALOG):,			
NO,FOR F NO, LE	EL ADAPTER AND RING AS LANGE, USE:, NGTH = 1.55+1.25 = 2.8" ALL THICKNESS = 1.16 IN			FLANGE COMB	INATION		
NO, O. NO, WI NO, WI	D. OF FLANGE = 15.5 IN EIGHT = WT(RING+ADAPT = 24.0 + 24.0 - 18.4*(9/12 T(FLANGE+WATER)= (34.2) = 34.2 LE	3				
NO,FOR F NO, LE NO, W	PIPE, USE:, NGTH = 12.0 - 3.0 = 9 IN T(PIPE+WATER) = 4.62 LB	/IN	*****				
NO	WNFL,BEG=FLG						

Client	Duke Pow	er Carolinas	LLC	Cal	culation No. 070	Q3691-CAL-0	09
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis						
Title	Analysis of Bu Generator "2B		Piping System—	Nuclear Servi	ce Water (NSW) S	upply Line Die	esel
By:	S. Haile	Z Date	e 11/10/08	Chk'd by	Bruce R. Oubovechy	Date 11/1	1/08
RU,133,13 NO NO,******* NO,PIPE C NO NO,SINCE NO,SINCE NO,STIFFI NO, NO, DIR NO, DIR NO, OF NO, NO, I NO, I	DRIENTATION: PA PIPE AXIS IS AT I DF PIPE = 5 FT. TH NESS VALUES OB	ARALLEL TO X- ELEVATION 58 HEREFORE, US	AXIS 18'-6", HEIGHT OF S SE THE FOLLOWIN 1 = 5 FT. N] 				
NO,WITHI NO, NO,LOCA ^T NO RU,135,14 SE,,0, RU,140,11 SE,0, RU,140,21 2SP,140,2 SE,0, RU,140,21 2SP,140,2 SE,0, RU,140,14 SE,0, RU,140,14 SE,0, RU,145,11	N THE 'INFLUENC TION OF 1ST SPRI 0,1.0, 40,1.0,, 140,10200,,, 40,,1.0, 140,12960,,, 40,,1.0, 140,3120,,, 5,2.0, 45,1.0,,,	E LENGTH'(TO	/ALS AROUND MIT TAL = 12 FT). 1 END OF FLANGE				
SE,,0, RU,145,21 2SP,145,2 SE,,0, RU,145,31 2SP,145,33 SE,,0, RU,145,15 SE,,0, RU,150,11 2SP,150,1 SE,,0, RU,150,21 2SP,150,2 SE,,0, RU,150,31 2SP,150,3 SE,,0, NO,*******	145,12960,,, 45,,,1.0, 145,3120,,, 50,2.0, 50,1.0,,, 150,10200,,, 50,,1.0,, 150,12960,,, 50,,1.0, 150,3120,,,						
NO	INING LENGTH PII	S FOLLOWS: 3	*2FT + 1*0.6FT				

Client	Duke Power Care				culation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 and						
Title	Analysis of Buried HI Generator "2B" Unit 2		ing System—	Nuclear Servi	ce Water (NS)	W) Supply Li	ne Diesel
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce D. Oubove	and Date	11/11/08
NO, NEXT NO, ARE / NO, ARE / NO, ****** RU, 150, 1 SE, 0, RU, 155, 1 2SP, 155, 2 SE, 0, RU, 155, 2 SE, 0, RU, 155, 3 SE, 0, RU, 155, 3 SE, 0, RU, 155, 1 SE, 0, RU, 155, 1 SE, 0, RU, 160, 1 SE, 0, RU, 160, 2 SE, 160, 2 SE, 0, RU, 160, 3 SE, 0, RU, 160, 3 SE, 0, NO, NEXT NO, NEXT NO, APPEL NO, NEXT NO, APPE NO, NEXT NO, APPEN	155,1.0,,, 1155,3060,,,, 155,,1.0,, 155,,1.0, 3155,936,,, Y SOIL SPRINGS AROUNE 60,2.0, 160,1.0,,, 1160,10200,,, 160,,1.0,, 3160,3120,,, 5TH OF 90-DEGREE ELBOV 2FT SECTION (23.1 IN = 1 RUN GOES UP TO BEGIN COX. = 2FT, FOR SIMPLICIT AND USE STIFENESS VAL	V 24.9 IN 925FT FF NING OF U ES OBT/	SOIL SPRING STI CTION LENGTH) ************************************	ELBOW STARTS ODE POINT) RUN LENGTH IS	- IN S		
NO RU,160,1 SE,,0, RU,165,1 SP,165,1 SP,165,2 SP,165,2 SP,165,2 SE,,0, RU,165,3 SE,0, IO,****** IO,****** IO,****** IO,****** IO,FOR IO,FOR IO,FOR IO, IO, IO, IO, IO, IO, IO, IO, IO, IO,	65,1.925, 165,1.0,,, 1165,10200,,, 1165,10200,,, 165,,1.0,, 165,,1.0, 3165,3120, 15 A 5-SEGMENT MITEREL 12-IN, DR-9, MITERED ELB DUTSIDE DIAMETER, OD = MIN. WALL THICKNESS, t = NSIDE DIAMETER, ID = OE RADIUS, R = 19.5 IN LENGTH, FC = 24.9 IN = 2.0 WT(PIPE) = 21.97 LB/FT = 1 SHT OF WATER FOR ID = 9	DPE ELBO DELBOW. OW (PER 12.75 IN 1.417 IN 0 - 2t = 9.9 75 FT .83 LB/IN	**************************************				

Client	Duke Power Car	olinas. L	LC	Cal	culation No.	07Q3691-0	CAL-009
Project	Catawba Unit # 1 an						• •
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2						
By:	S. Hailu	Date	11/10/08	Chk'd by	Bruce S. Ouboresc	هم Date	11/11/08
NO,NEXT NO,******* RU,210,21 SE,,0, RU,215,12 2SP,215,12 SE,,0, RU,215,22 2SP,215,32 SE,,0, NO,****** NO,CHAN NO,AVAIL NO,AVAIL NO,AVAIL NO,AVAIL NO,AVAIL NO,AVAIL NO,AVAIL NO,AVAIL NO,AVAIL NO,AVAIL SE,,0, RU,220,12 SE,0, RU,220,12 SE,0, RU,220,22 SE,0, RU,220,22 SE,0, RU,220,22 SE,0, RU,220,22 SE,0, RU,220,22 SE,0, RU,220,22 SE,0, RU,220,22 SE,0, RU,220,22 SE,0, RU,225,12 SE,0, RU,225,12 SE,0, RU,225,12 SE,0, RU,225,12 SE,0, RU,225,12 SE,0, RU,225,22 SE,0, RU,225,22 SE,0, RU,225,22 SE,0, RU,225,22 SE,0, RU,225,22 SE,0, RU,225,23 SE,0, RU,225,23 SE,0, RU,225,23 SE,0, RU,223,22 SE,0, SE,0, RU,223,22 SE,0, SE,0, RU,223,22 SE,0,	SECTION IS 2 FT LONG SECTION IS 2 FT LONG 15,.,2.0, 215,1.0,, 1215,3120, 215,1.10, 2215,12960, 215,.,1.0, 3215,10200, IGE SPACING OF SOIL SP ABLE LENGTH TO APPLY DE THIS LENGTH AS FOLL PIPNG SECTION IS 5.6 FT ADJUSTED (PROPORTION 20,.,5.6, 220,1.0,, 1220,36288, 220,.1.0,, 2220,28560, SPRING SPACING = 10 FT 25,.,10.0, 225,1.0,, 1225,15600, 225,1.0,, 1225,51000, 30,.,10,, 230,1.0,	RINGS FR SPRINGS OWS: 71.2 T LONG. S AL TO SE	COM 2 FT TO 10 F EVERY 10 FT = 2FT = 6*10FT + 2' COIL SPRING STI CTION LENGTH)	T 71.2 FT *5.6FT FFNESS VALUE		μκ _ζ Date	

Client	Duke Power Card	olinas. L	LC	Cal	culation No. 070	23691-0	AL-009
Project	Catawba Unit # 1 and						
Title	Analysis of Buried HI Generator "2B" Unit 2		ing System—	Nuclear Servi	ce Water (NSW) Si	upply Li	ne Diesel
By:	S. Hailu	Date	11/10/08	Chk'd by	Brace R. Oubourchy	Date	11/11/08
SE,,0, RU,265,32 2SP,265,3 SE,,0, NO,******* NO,LENG NO,NEXT NO,NEXT NO,NEXT NO,NEXT NO,RUN A NO,RUN A NO, RU,270,12 2SP,270,12 2SP,270,22 2SP,270,32 SE,,0, RU,270,32 2SP,270,33 SE,,0,	265, 1.0, 265, 12960, 265, 12960, 265, 10200, TH OF 90-DEGREE ELBOV 2FT SECTION (23.1 IN = 1 RUN GOES UP TO BEGIN OX. = 2FT, FOR SIMPLICIT ND USE STIFFNESS VALU 70, ., 1.925, 270, 1.0,, 270, 1.0,, 270, 12960,	V 24.9 IN : .925FT FF NING OF 'Y, APPLY	> 2FT. HENCE, F ROM CURRENT N ELBOW. SINCE ' SOIL SPRINGS	NODE POINT) RUN LENGTH IS AT END OF THIS	3		
NO,THIS I NO,ARE A NO,	90 DEGREE IPS HD S A 12", DR-9, 5-SEGMEN S LISTED EARLIER.	T MITER E	ELBOW. PROPE		w		
NO,******* NO RU,270,28 CM,280,285 B,285,290 CM,290,295 CM,290,295 CM,295,300 CM,300,310 RU,310,32 NO	35,12.75,1.417,,19.5,11.25,4 5,2.0,.69,1.64, 90,12.75,1.417,,19.5,22.5,4. 92,12.75,1.417,,19.5,22.5,4. 5,2.0,.69,1.64, 90,12.75,1.417,,19.5,22.5,4. 90,12.75,1.417,,19.5,22.5,4. 10,12.75,1.417,,19.5,,4.62, 9,2.0,.69,1.64,	4.62, 62, 62, 62, 62,	*****	-1.320			
NO, PIPE I NO, NO, LENG NO, NO, APPLY NO, AND E NO, SINCE NO, FOR S NO, AND L	S PARALLEL TO X-AXIS; Z TH OF NEXT SECTION = 9 Y SPRINGS AT 2FT INTER EVERY 10FT IN REMAINING 90-DEG ELBOW LENGTH SIMPLICITY, APPLY FISRT JSE STIFFNESS VALUES (IS LATE 0.7 FT VALS ARC 3 SECTIO = 24.9" = SET OF S DBTAINED	CUND ELBOWS (DN (LENGTH= 90. 2.075 FT (APPR SOIL SPRINGS A D FOR A 2ET SE(7'-12'= 78.7 FT) OX.= 2FT), T END OF ELBO			

Client	Duke Power Ca					Q3691-0	CAL-009
Project	Catawba Unit # 1 ar						
Title	Analysis of Buried H Generator "2B" Unit		ing System—	Nuclear Serv	ice Water (NSW) S	Supply Li	ne Diesel
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce D. Oubovecky	Date	11/11/08
2SP,320, SE,,0, RU,320,2 2SP,320,2 SE,,0, RU,320,3 2SP,320,3 SE,,0, NO,NEXT NO,NEXT NO,STIFF NO,****** RU,320,3 SE,,0, RU,330,2 2SP,330,2 SE,,0, RU,330,3 2SP,330,3 SE,,0, RU,330,3 2SP,330,3 SE,,0, RU,330,3 SE,,0, RU,330,3 SE,,0, RU,330,3 SE,,0, RU,340,1 2SP,340,1 SE,,0, RU,340,2	320,1.0,,, 1320,10200,,, 320,,1.0,, 2320,12960,,, 320,,1.0, 3320,3120,,, T SECTION IS 1.925FT LOI FNESS VALUE OF A 2FT S 30,1.925,,, 330,1.0,,, 1330,10200,,, 330,,1.0,, 330,,1.0,, 330,,1.0,, 330,,1.0,, 330,,1.0,, 330,,1.0,, 330,,1.0,, 340,1.0,,, 1340,10200,,, 340,1.0,,, 2340,12960,,,	NG (=APPF ECTION	OX. 2 FT). USE	SOIL SPRING			
2SP,340,3 SE,,0, NO,CHAN NO,AVAII NO,AVAII NO,AVAII NO,****** NO, NO,NEXT NO,ARE / NO,XEXT NO,ARE / NO,XEXT RU,340,3 SE,,0, RU,350,1	340,,1.0, 3340,3120,,, NGE SPACING OF SOIL SI LABLE LENGTH TO APPL DE THIS LENGTH AS FOLL FPIPNG SECTION IS 9.35 ADJUSTED (PROPORTION 50,9.35,,, 350,1.0,,, 1350,47685,,,	PRINGS FF Y SPRINGS .OWS: 78.7 FT LONG.	ROM 2 FT TO 10 S EVERY 10 FT = FT = 6*10FT + 2* **********************************	78.7 FT 9.35FT TIFFNESS VALU	IES		

Client	Duke Power Care	olinas, L	LC	Cal	culation No. 070	Q3691-CAL-009				
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis									
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2									
By:	A. Haile	Date	11/10/08	Chk'd by	Brice R. Oubovecky	Date 11/11/08				
2SP,410,2 SE,,0, RU,410,34 2SP,410,3 SE,,0, NO,******* NO,NEXT NO,ARE 4 NO,****** RU,410,42 SE,,0, RU,420,14 2SP,420,1 SE,,0, RU,420,24 2SP,420,2 SE,,0, RU,420,34 2SP,420,3 SE,,0, NO,******* NO,CHAN NO,******* NO RU,420,43 SE,,0, RU,430,14 2SP,430,1 SE,,0, RU,430,14 2SP,430,1 SE,,0, RU,430,14 2SP,430,1 SE,,0, RU,430,14 2SP,430,3 SE,,0, RU,430,44 2SP,440,1 SE,,0, RU,430,34 SE,,0, RU,430,44 SE,,0, RU,440,24 2SP,440,1 SE,,0, RU,440,24 2SP,440,1 SE,,0, RU,440,24 2SP,440,3 SE,,0, RU,440,24 2SP,440,3 SE,,0, RU,440,24 2SP,440,3 SE,,0, RU,440,24 2SP,440,3 SE,,0, RU,440,24 2SP,440,3 SE,,0, RU,440,24 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,,0, RU,440,44 SE,	2410,64800,,, 410,,1.0, 410,,1.0, 410,15600,,, PIPNG SECTION IS 9.35F NDJUSTED (PROPORTION 20,9.35,,, 420,1.0,, 420,47685,,, 420,1.0,, 420,1.0,, 420,1.0, 420,14586,,, GE SPACING OF SOIL SPI 30,2.,,, 430,1.0,, 430,1.0,, 430,1.200,,, 430,1.200,,, 430,1.200,,, 430,1.200,,, 440,1.200,,, 440,1.0,, 44	T LONG. AL TO SE AL TO SE RINGS TO RINGS TO ELBOW (= 2.0'-1.1 DPE ELBO DPE ELBO DPE ELBO DELBOW. 0W (PER 12.75 IN 1.417 IN	SOIL SPRING ST CTION LENGTH)	ERED ELBOW = 1.13 FT	ΞS	Date 11/11/08				

	Duke Power C					ຊ3691-0	CAL-009		
Project				Piping Design and Analysis					
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2								
By:	A. Hailu	Date	11/10/08	Chk'd by	Bruce J. Oubovecky	Date	11/11/08		
NO, R NO, LI NO, WEIGH NO, WEIGH NO, WEIGH NO, WT(PI NO NO, SIF AN NO, SIF AN NO, ELBON NO, ELBON NO, ELBON NO, ELBON NO, AL, 450, 460 B, 450, 460 CM, 470, 48 B, 450, 460 RU, 480, 48 NO, PIPE A NO, ENG RU, 480, 48 NO, CAND E NO, AND E NO, A	ADIUS, R = 19.5 IN ENGTH, FC = 13.5 IN = VT(PIPE) = 21.97 LB/FT HT OF WATER FOR ID VT(WATER)= 33.46 LB/F IPE+WATER) = 1.83 + 2 ND STRESS INDICES F SIF = 2.0 B1 = 0.69 W STARTS AT NODE P W STARTS AT NODE P S0,12.75,1.417,,19.5,11. 0,2.0,69,1.64, 80,12.75,1.417,,19.5,22. 0,2.0,69,1.64, 80,12.75,1.417,,19.5,4.6 0,2.0,69,1.64, 35,0.8,0.8, AXIS OF NEXT SECTIO TH OF PIPE = 57 FT Y SOIL SPRINGS EVER EVERY 10FT IN THE RE TION OF 1ST SPRING S 90,0.615,,0.615, 490,0.707,,0.707,,1,, 1490,12960, 490,0.707,,0.707,,1,, 490,0.12960, 490,0.707,,0.707,,1,, 495,0.707,,0.707,,1,, 495,0.707,,0.707,,1,, 495,10200,,,	= 1.13 FT T = 1.83 LB/IN D = 9.916 IN: /FT = 2.79 LB/I 2.79 = 4.62 LB, FOR MITERED B2 = 1.6 PT. 445 AND E 1.25,4.62, 2.5,4.62, .62, DN MAKES 45 RY 2FT AROU EMAINING SE	N /IN 9 ELBOW: 4 MDS AT NODE F ************************************	PT. 485 V) WITH Z-AXIS T ON EACH ENI = 57'-12')= 45 F ⁻	D)	Date			

Client Project	Duke Power Carolinas, LLC Calculation No. 07Q3691-CAL-009 t Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis								
Title	Analysis of Buried H Generator "2B" Unit	IDPE Pip				upply Li	ne Diesel		
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce J. Oubouchy	Date	11/11/08		
RU,500,33 2SP,500,3 3E,0, NO,CHAN NO,CHAN NO,AVAIL NO,AVA	<i>A. Muilu</i> 500,0.707,0.707,.1,, 3500,3120,,, IGE SPACING OF SOIL S ABLE LENGTH TO APPL THIS LENGTH AS: 45F PIPING SECTION IS 7.5 ADJUSTED (PROPORTIO 10,5.30,,5.30, 510,0.707,,0.707,,1,, 1510,38250,,, 510,1.0,, 2510,48600,,, 510,0.707,0.707,,1,, 3510,11700,,, SPRING SPACING = 10F 20,7.07,,7.07, 520,0.707,0.707,,1,, 1520,51000,,, 520,,1.0,, 2520,64800,,,	PRINGS FF Y SPRINGS T = 7.5FT + T LONG. NAL TO SE	ROM 2 FT TO 10 S EVERY 10FT = 3*10FT + 7.5FT ************************************	FT 45 FT FIFFNESS VALU)	<u> </u>	Date	11/11/08		
2SP,520,3 SE,,0, RU,520,5 SE,,0, RU,530,11 2SP,530,2 SE,,0, RU,530,2 SE,,0, RU,530,5 SE,,0, RU,530,5 SE,,0, RU,540,1 2SP,540,1 SE,,0, RU,540,1 SE,,0, RU,540,2 SE,0, RU,540,3 SE,0, RU,540,3 SE,0, RU,540,3 SE,0, RU,540,3 SE,0, RU,540,3 SE,0, RU,540,3 SE,0, RU,540,3 SE,0, RU,540,3 SE,0, SE,0, RU,540,3 SE,0, SE,0, SE,0, RU,540,3 SE,0, SE,0, SE,0, RU,540,3 SE,0, SE,0, SE,0, RU,540,3 SE,0, SE,0, SE,0, RU,540,3 SE,0, SE,0, SE,0, RU,540,3 SE,0, SE,0, SE,0, RU,540,3 SE,0, SE,0, SE,0, RU,540,3 SE,0, SE,0, RU,540,3 SE,0, SE,0, SE,0, RU,540,3 SE,0, SE,0, SE,0, RU,540,3 SE,0,SE,0,	520,0.707,,-0.707,,1,, 3520,15600,,,, 30,7.07,,7.07, 530,0.707,,0.707,,1,, 1530,51000,,,, 530,,1.0,, 2530,64800,,, 530,0.707,,-0.707,,1,, 3530,15600,,, 40,7.07,,7.07, 540,0.707,,0.707,,1,, 1540,51000,,, 540,0.707,,-0.707,,1,, 3540,15600,,,		*****						

Client										
Project										
Fitle	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2									
Зу:	A. Hailu	Date	11/10/08	Chk'd by	Bruce R. Oubovecky	Date	11/11/08			
NO,******* NO RU,540,60 SE,,0, RU,600,16 SE,,0, RU,600,26 SE,,0, RU,600,36 SE,,0, NO,****** NO,CHAN NO,****** NO,CHAN NO,****** NO,CHAN NO,****** NO,CHAN NO,****** NO,CHAN NO,****** NO,CHAN SE,,0, RU,610,16 SE,,0, RU,610,26 SE,,0, RU,610,36 SE,,0, RU,610,36 SE,,0, RU,610,36 SE,,0, RU,610,36 SE,,0, RU,610,26 SE,,0, RU,610,26 SE,,0, RU,610,26 SE,,0, RU,610,26 SE,,0, RU,620,16 SE,,0, RU,620,26 SE,,0, RU,620,26 SE,,0, RU,620,36 SE,	200,5.30,,5.30, 500,0.707,,0.707,,1,, 1600,38250,,, 500,0.10,, 2600,48600,,, 500,0.707,,-0.707,,1,, 500,0.707,,-0.707,,1,, 10,1.414,,1.414, 510,0.707,,0.707,,1,, 1610,10200,,, 510,,1.0,, 2610,12960,,, 510,0.707,,-0.707,,1,, 3610,3120,,, 20,1.414,,1.414, 520,0.707,,0.707,,1,, 1620,10200,,,	PRINGS TC	**************************************			Date	11/11/08			
NO, LENG NO, THER NO, ******* NO RU, 620, 62 NO NO, ******* NO, ******* NO, ELBO NO, ELBO NO, RU, 625, 63	IS A 3-SEGMENT MITERE IER. W STARTS AT NODE PT. 30,0.8,,0.8,	DELBOW (S XT RUN = 2 IDPE ELBC ED ELBOW. 625 AND E	SEE ELBOW DIN .0'-1.13' = 0.87 F 	IENSIONS):FC= Τ **** ΓIES ARE AS LIS						
B,630,640	40,12.75,1.417,,19.5,11.25 0,2.0,.69,1.64, 50,12.75,1.417,,19.5,22.5,									

Project Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis Title Generator '2E' Unit 2 By: Image: Control of Design (System – Nuclear Service Water (NSW) Supply Line Diesel Control of Design (System) Date 11/10/08 Chk'd by Sum 9.0 Supply Line Diesel Control of Design (System) By: Image: Control of Design (System) Date 11/10/08 Chk'd by Sum 9.0 Supply (System) Date 11/11/08 RU/10.03700, 1.0. Sp: 0.0	Client	Duke Power Car	olinas. L	LC	Cal	culation No.	07Q3691	-CAL-009			
Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "28" Unit 2 By: Image: Constraint of Con											
L L L L L L L L L L L L L L L L L L L	Title										
28P,710,3710,51000, 58E,0, RU,710,715,.100, 58E,0, RU,715,715,100, 28P,715,715,5100, 58E,0, RU,715,775,100, 28P,715,715,5100, 58E,0, RU,715,720,100, 58E,0, 782,70,720,100, 58E,0, 782,720,720,64800, 58E,0, RU,720,720,100, 58E,0, RU,720,720,100, 58E,0, RU,720,725,100, 58E,0, RU,725,725,710, 58P,720,3720,5100, 58E,0, RU,725,725,710, 58P,720,3720,5100, 58E,0, RU,725,725,710, 28P,720,3720,5100, 58E,0, RU,725,725,710, 28P,720,3720,5100, 58E,0, RU,725,725,725,10, 28P,720,3720,5100, 58E,0, RU,725,725,725,10, 28P,720,3720,5100, 58E,0, RU,725,725,725,10, 28P,720,3720,5100, 58E,0, RU,725,725,720,10, 28P,720,720,1500, 58E,0, RU,725,725,720,10, 28P,720,720,1500, 58E,0, RU,725,725,720,10, 28P,720,720,1500, 58E,0, RU,725,725,720,10, 28P,720,720,1500, 58E,0, RU,735,730,10, 28P,720,730,100, 28P,730,730,5100, 58E,0, RU,735,735,10, 28P,735,735,5100, 58E,0, RU,735,735,10, 28P,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,735,735,5100, 58E,0, RU,753,735,5100, S8E,0, RU,753,735,5100, S8E,0,	By:	A. Hailu	Date	11/10/08	Chk'd by	Brice J. Oulove	ay Date	e 11/11/08			
2SP,735,1735,15600, SE,,0, RU,735,2735,,1.0,, 2SP,735,2735,64800, SE,,0, RU,735,3735,,1.0, 2SP,735,3735,51000, SE,,0, NO,***********************************	RU,710,37 2SP,710,3 SE,,0, RU,710,71 SE,,0, RU,715,17 2SP,715,17 2SP,715,27 2SP,715,27 2SP,715,27 2SP,715,37 2SP,715,37 2SP,715,37 2SP,720,17 2SP,720,17 2SP,720,17 2SP,720,17 2SP,720,27 2SP,720,27 2SP,720,27 2SP,720,27 2SP,720,27 2SP,720,27 2SP,720,27 2SP,720,27 2SP,720,27 2SP,725,17 2SP,725,17 2SP,725,17 2SP,725,27 2SP,725,27 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,725,37 2SP,730,37 3SE,,0, RU,730,77 2SP,730,37 3SE,,0, RU,730,77 3SE,,0,	<pre>'10,,,1.0, 710,,51000, 5,,,10.0, '15,1.0,,, 715,15600, '15,,1.0,, 715,51000, '20,,1.0,, 720,15600, '20,,1.0,, 720,64800, '20,,1.0,, 720,51000, '25,,1.0,, 725,15600, '25,,1.0,, 725,51000, '25,,1.0,, 725,51000, '25,,1.0,, 730,15600, '30,,1.0,, 730,15600, '30,,1.0, 730,51000, '55,,,10.0,</pre>	Date	11/10/08	Chk'd by	Buce R. Outowa	<u>م</u> هدي Date				
2SP,735,2735,64800, SE,,0, RU,735,3735,,,1.0, 2SP,735,3735,51000, SE,,0, NO,***********************************	2SP,735,1 SE,,0,	735,15600,									
SE,,0, NO,***********************************	2SP,735,2 SE,,0, RU,735,37	735,64800, 35,,,1.0,									
NO,NEXT SECTION IS 8.7 FT LONG. SOIL SPRING STIFFNESS VALUES ARE	SE,,0, NO,********	*****	. SOII SF	RING STIFFNF	SS VALUES ARE						

Client	Duk	e Power Car	olinas, L	LC	Cal	culation No.	07Q3691-	CAL-009		
Project	Catawba	a Unit # 1 and	d #2 – B	uried HDPE F	Piping Design	and Analysis				
Title	Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2									
By:	A. 7	Failu	Date	11/10/08	Chk'd by	Bruce D. Oubover	Ay Date	11/11/08		
NO RU,735,74 SE,,0, RU,740,11 2SP,740,7 SE,,0, RU,740,2 SE,,0, RU,740,3 2SP,740,2 SE,,0, RU,740,3 SE,,0, RU,740,74 SE,,0, RU,745,21 2SP,745,2 SE,,0, RU,745,21 2SP,745,2 SE,,0, RU,745,21 2SP,745,2 SE,,0, RU,745,3 SE,,0, RU,745,3 SE,,0, RU,745,2 SE,,0, RU,750,2 SE,,0, RU,	40,,,8.7, 740,1.0,,, 740,13572, 740,13572, 740,1.0, 2740,56376, 740,,1.0, 3740,44370, 45,,2.0, 745,1.0,,, 1745,3120, 745,1.0,, 2745,10200, 50,,2.0, 750,1.0,,, 750,1.0,,, 2750,12960,	RINGS AT 2 FT I		*****	CILK G DY	Dure I. Valoue	يھر Date			
NO, NEXT NO, LENG NO, THER NO, THER NO, THER NO, THIS NO, THIS NO, ELBO NO, ELBO NO, ELBO NO, ELBO NO, ELBO NO, ELBO NO, ELBO NO, THIS NO, ELBO NO, THIS NO, ELBO CM, 760, 77 (CM, 770, 78) CM, 770, 78) CM, 780, 7	RUN GOES TH OF 45-E EFORE, LE 55,.,0.87, *** 45 E IS A 3-SEGI IER. W STARTS 60,.,1.13, 70,12.75,1.4 0,2.0,.69,1.6 80,12.75,1.4 0,2.0,.69,1.6	DEG. MITERED NGTH OF NEX DEGREE IPS HE MENT MITEREE AT NODE PT. 7 417,,19.5,11.25,4 4, 117,,19.5,22.5,4 4, 117,,19.5,,4.62,	NING OF ELBOW (S T RUN = 2 DPE ELBO DELBOW. 755 AND E 4.62,	45-DEGREE MI SEE ELBOW DIN .0'-1.13' = 0.87 F	IENSIONS):FC= Τ **** ΓIES ARE AS LIS					

Client	Duke Power Ca					Q3691-0	CAL-009
Project	Catawba Unit # 1 ar						Dia di
Title	Analysis of Buried H Generator "2B" Unit			Nuclear Servi	. ,		ne Diesei
By:	A. Haile	Date	11/10/08	Chk'd by	Brace J. Ouborechy	Date	11/11/08
SE,,0, RU,815,23 SP,815,2 SP,815,2 SE,,0, RU,815,33 SSP,815,3 SSP,815,3 SSP,815,3 SSP,815,3 SSE,,0, NO,SOIL SE,,0, RU,820,32 SE,,0, RU,820,32 SE,,0, RU,825,13 SE,,0, RU,825,23 SE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,825,33 SSE,,0, RU,830,11 SSE,0, RU,830,11	1815,34680,,, 815,,1.0,, 2815,44064,,, 815,0.707,,-0.707,,1,, 3815,10608,,, SPRING SPACING IS 10 F 20,7.07,,7.07, 820,0.707,,0.707,,1,, 1820,51000,,, 820,0.707,,-0.707,,1,, 820,0.707,,-0.707,,1,, 25,7.07,,7.07, 825,0.707,,0.707,,1,, 1825,51000,,, 825,1.0,, 2825,64800,,, 825,0.707,,-0.707,,1,, 3825,15600,,, 30,7.07,,7.07, 830,0.707,,0.707,,1,,	T OVER T	HE NEXT 30 FT	SECTION			
SE,,0, RU,830,24 2SP,830,2 SE,,0, RU,830,34 2SP,830,3 SE,,0, NO,*******	1830,51000,,, 830,,1.0,, 2830,64800,,, 830,0.707,,-0.707,,1,, 3830,15600,,, STH OF NEXT SECTION =			FNESS VALUES	i		
NO,ARE / NO,******* RU,830,8 SE,,0, RU,840,11 2SP,840,2 SE,,0, RU,840,2 2SP,840,2 SE,0, RU,840,3 2SP,840,3 2SP,840,3 SE,0,	ADJUSTED (PROPORTIO 40,4.81,,4.81, 840,0.707,,0.707,,1,, 1840,34680,,,	NAL TO SE	CTION LENGTH)			

Client	Duke Power Car					7Q3691-0	CAL-009		
Project	 Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Dies 								
Title	Analysis of Buried H Generator "2B" Unit		ing System—	Nuclear Servi		Supply Li	ne Diesel		
By:	S. Haile	Date	11/10/08	Chk'd by	Brace D. Oubovecky	Date	11/11/08		
NO RU,840,84 SE,,0, RU,850,18 2SP,850,7 SE,,0, RU,850,24 2SP,850,2 SE,,0, RU,850,38 2SP,850,3 SE,,0, RU,850,86 SE,,0, RU,860,18 2SP,860,7 SE,,0, RU,860,38 SE,,0, NO,NEXT NO NO,LENG NO, 2.00 NO,******* NO RU,860,87 NO NO,******	2850,12960,,, 350,0.707,,-0.707,,1,, 3850,3120,,, 50,1.414,,1.414, 360,0.707,,0.707,,1,, 1860,10200,,, 360,,1.0,, 2860,12960,,, 360,0.707,,-0.707,,1,, 3860,3120,,, 2FT SECTION CONTAINS TH OF PIPE UP TO THE B FT - 1.0 FT = 1.0 FT		NGED END OF H)APTER:					
NO, BEGII NO, ******* NO RU, 870, 8 NO, 7 NO, 7 NO, 7 NO, 7 NO, 12-IN, NO, 12	PERTIES OF ADAPTER AN NNING OF THIS MODEL) 75,0.530,,0.530, WNFL,END=FLG 50,0.177,,0.177,15.5,1.159, CHANGE TO STEL SCH. 40 Cr-Mo STEEL PII JTSIDE DIAMETER = 12.75 ALL THICKNESS = 0.375 IN F(PIPE)= 49.6 LB/FT = 4.13 F(WATER) = 49.0 LB/FT = 4 F(PIPE+WATER) = (49.6+4' 0,12.75,0.375,28.0,8.1,0.01 ALL A 90-DEGREE ELBOW 12-IN SHORT RADIUS 90-E	14.5, EL PIPE PE PROPE 5 IN J LB/IN .08 LB/IN 9.0)/12 = 8 ,8.22, ' WITH A F	.22 LB/IN .22 LB/IN LANGE WELDEI	D TO ONE END					

Client	Duke Power Card	olinas, L	LC	Calc	culation No. 070	23691-0	CAL-009
Project	Catawba Unit # 1 and	d #2 – B	uried HDPE Pi		and Analysis		
Title	Analysis of Buried HI Generator "2B" Unit 2	•	ing System— I	Nuclear Servio	ce Water (NSW) S	upply Li	ne Diesel
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce J. Ouborecky	Date	11/11/08
By: NO, W' NO,PROP NO,EARLI NO,PROP NO,EARLI NO,******* NO,90-DE* NO,****** NO, NOTE,IV= IV,880,90 RU,900,91 EL,910,92 RU,920,92 NO, NO,****** NO,PIPE I NO, NO,PIPE I NO, NO,WELD NO,A FLA NO, RU,925,93 NOTE,IV= 1V,930,95 NOTE,IV= 1V,930,95 NO, NO,******* NO, PI,940,950 NO, NO,******* NO, PI,940,950 NO, NO,******* NO, PI,940,950 NO, NO,******* NO, PI,940,950 NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,****** NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,****** NO, NO,******* NO, NO,******* NO, NO,******* NO, NO,****** NO, NO,******* NO,	<i>A. Hailu</i> T(ELBOW+WATER)= 129.0 ERTIES OF 12-IN, 150-LB V ER G. ELBOW WILL BE CONN WNFL,BEG=FLG 0,0.269,,0.269,14.375,0.375 0,0.71,,0.71, 0,,12.0,,10.75, 5,,-1.01,, S ORIENTED PARALLEL T ONE END OF A 3 FT LON NGE IS WELDED TO OTHE	Date Date LB/FT = - WELDING ECTED T 5,23.6, O THE Y- G, 12-IN F ER END C S, 12-IN F ER END C S, 12-IN F ER END C S, 12-IN F ER END C S, 12-IN F ER END C	11/10/08 10.75 LB/IN NECK FLANGE / O A VERTICAL 12 AXIS PIPE TO END OF 12 FTHE PIPE. (SA-106) EEL PIPE AND AT N = 1.0 FT	Chk'd by ARE AS LISTED, 2-IN PIPE	Bur I. Outowecky		I
RU,950,98 NO.							
NO,****** NO,A WEL NO,APPL NO,*******	DOLET IS USED BETWEE Y SIF=4.87 FOR WELDOLE	N THE 12 T AT JUN	-IN PIPE AND 42- CTION POINT (CI	-IN HEADER ENTER OF 42" P	IPE)		
NO, WT NO,******	= 42 IN WA (PIPE) = 221.6LB/FT (PIPE+WATER)= 66.1LB/IN	WT(WA	NESS = 0.500 IN TER) = 571.7LB/F	T			
NO, SE,,0, RU,985,99 CH,985,99 JB,985,99 NO,	0,42.,0.500,,,,66.1,						
EN,,0 NO,******* NO, EXECUTE	**************************************	F RUN ****	*****	*			
NO,*******	ING CASE NO. 10	EIGHT AN	IALYSIS *********	*****			

Client		r Carolinas, L			Iculation No.	07Q36	91-CAL-009
Project	Catawba Unit #						
ītle	Analysis of Bur Generator "2B"		ing System—	Nuclear Serv	ice Water (NS	W) Supp	ly Line Diesel
By:	S. Hailu	 Date 	11/10/08	Chk'd by	Bruce S. Oubour	ichy Di	ate 11/11/08
IO, FOR IO, DESIG IO, DESIG IO, S IO, S IO, S IO, E IO, HDPE IO, S IO, S	0,100,75,23100,2220 00,,0.3,,,28.0, 33,3.0,100,75,800,80 33,2500,,0.45,,,0.028 00,3.0,100,75,23100, 00,45000,,0.3,,,28.0, 50,35000,,0.3,,,27.9, IGHT,,,,-1,, 5 5 5 5 5 5 5 5 5 5 5 5 5	CLASS 3 ANALYS 0 PSI, PEAK PRE N STEEL PROPE Sh = 15000 PS POISSON RAT IN PROPERTIES Sh = 800 PSI POISSON RAT EEL PROPERTIE Sh = 22200 PS POISSON RAT 0, 0, 222200, 15000,	ESSURE = 75 PS ERTIES: 51 FIO = 0.3 : 10 = 0.45 S: 51 FIO = 0.3	I EVEL A ********			
O, L,,,3.0,1 O,3,0,21 A,,4500 L,130,13 A,130,1 L,880,90 A,880,90 L,940,95 H,100,11 H,130,13 H,880,90 H,100,11 H,130,13 H,880,90 H,100,11 H,130,13 H,880,90 H,100,11 H,130,13 H,880,90 H,100,11 H,000,90 H,100,11 H,000,10 H,000,000	1,100,75,23100,22000 10,0.3,,,28.0, 33,3.0,100,75,800,80 33,2500,,0.45,,,0.028 10,3.0,100,75,23100, 100,45000,,0.3,,,28.0, 50,35000,,0.3,,27.9, 10,175,0.365,28.0, 33,12.75,1.159,0.028 10,12.75,0.375,28.0, 85,12.75,0.375,27.9,6 10,00,00,00,00,00,00,00,00 10,00,00,00,00,00,00,00 10,00,00,00,00,00,00 10,00,00,00,00,00,00 10,00,00,00,00,00,00 10,00,00,00,00,00 10,00,00,00,00,00 10,00,00,00,00,00 10,00,00,00,00 10,00,00,00,00 10,00,00,00,00 10,00,00,00 10,00,00,00 10,00,00,00 10,00,00,00 10,00 10,00	D, , 22200, 15000, 3.1,-23.,6.22, ,90.,-23.,4.62, 3.1,-23.,8.22, 5.07,-23,8.22, NALYSIS AT MA 5 F Mo STEEL PROF	X TEMP = 100 F, PERTIES ARE SA	LEVEL A ******	*****		

Client	Duke Power C					33091-(CAL-009		
Project	t Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Lin								
Fitle	Generator "2B" Ur								
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce J. Oubouecky	Date	11/11/08		
L,130,13 IA,130,1 L,880,90 IA,880,9 L,940,92 IA,940,9 H,100,11 H,880,90 H,100,11 H,880,90 H,950,90 H,950,90 H,0, N,,, XECUTE O,****** O,LOAD O,DELT O,CARE	00,,0.3,,,28.0, 33,3.0,100,75,800,620, 33,2500,,0.45,,,,0.023, 00,3.0,100,75,23100,220 00,45000,,0.3,,,28.0, 50,35000,,0.3,,,27.9, 05,10.75,0.365,28.0,8.1,4 33,12.75,1.159,0.023,90. 00,12.75,0.375,28.0,8.1,4 85,12.75,0.375,27.9,6.07 E THERMAL ANAL NG CASE NO. 23 A T=32 F - 55 F = -23F 30N STEEL AND Cr-Mo E 10 YEAR DURATION P	00, 15.,6.22, ,45.,4.62, 15.,8.22, ,45,8.22, .YSIS AT MIN STEEL PROF							
NO, E CL,,,3.0,1 CO,3,0,23 MA,,4500 CL,130,13 MA,130,1 CL,880,90 MA,880,90 CL,940,95 MA,940,9 CL,940,95 MA,940,9 CL,950,90 CH,950,90 H,,0, EN,,,	c=0.032E+6 PSI 989,1, 3,100,75,23100,22000, 33,3.0,100,75,840,840, 33,2500,,0.45,,,0.032, 00,3.0,100,75,23100,220 00,45000,,0.3,,,28.0, 50,3.0,100,75,15000,150 50,35000,,0.3,,,27.9, 05,10.75,0.365,28.0,8.1, 33,12.75,1.159,0.032,90, 00,12.75,0.375,28.0,8.1, 85,12.75,0.375,27.9,6.07	00, 23,6.22, -23,4.62, 23,8.22,	IU=U.45						
NO,LOAD NO,DELT NO,CARE NO,HDPE NO, S NO, E CL,,3.0,1 CO,3,0,24 MA,,4500 CL,130,13 MA,130,1 CL,880,90 MA,880,90 CL,940,95 CL,9	******** THERMAL ANAL DING CASE NO. 24 A T = 100 F - 55 F = 45 F A T = 100 F - 55 F = 45 F BON STEEL AND CrMo BON STEEL AND CrMo E BON STEEL AND CrMo St C=840 PSI St y=2500 PSI P c=0.026E+6 PSI 989,1 y,100,75,23100,22200, 30,.0,.03,,28.0, 03,3.0,100,75,840,620, 33,2500,.0.45,,0.026, 00,3.0,100,75,15000,150 50,35000,.0.3,,27.9, 05,10.75,0.365,28.0,8.1,4 33,12.75,1.159,0.026,90, 00,12.75,0.375,27.9,6.07 85,12.75,0.375,27.9,6.07	- STEEL PRO ROPERTIES I=620 PSI OISSON=0.44 00, 00, 15,6.22, 45,4.62, 15,8.22,	PERTIES ARE S						

Client	Duke Power Ca				culation No.	07Q369	91-CAL-009
Project	Catawba Unit # 1 a						
ïtle	Analysis of Buried I Generator "2B" Uni		ing System—	Nuclear Serv	ice Water (NS)	W) Suppl	y Line Diesel
By:	S. Haile	Date	11/10/08	Chk'd by	Bruce D. Oubove	chy Da	ate 11/11/08
IO, ******* IO, LOAD IO, DELT/ IO, IO, CARB IO, HDPE IO, Sc IO, EC IO, Sc IO, EC IO, Sc IO, EC IO, Sc IO, EC IO, Sc IA, 4500 IA, 430, 13 IA, 130, 13 IO, EC IO, Sc IO, EC IO, Sc IO, EC IO, Sc IO, EC IO, Sc IO, Sc IA, 940, 95 IA, 9	******* THERMAL ANALY ING CASE 25 A T = 32 F - 55 F = -23 F ON STEEL AND CrMo. 1000 HOUR DURATION 2=840 PSI Sh= /=2500 PSI PC 2=0.044E+6 PSI 2=0.044E+6 PSI 2=0.044E+6 PSI 2=0.044E+6 PSI 2=0.044E+6 PSI 2=0.044E+6 PSI 2=0.044E+6 PSI 2=0.044E+6 PSI 2=0.044E+6 PSI 2=0.044E+6 PSI 2=0.045000,0.3,,28.0, 0,3.0,100,75,23100,22200 0,45000,0.3,,27.9, 0,3.0,100,75,15000,1500 20,35000,0.3,,27.9, 0,10.75,0.375,28.0,8.1,-2 20,12.75,0.375,27.9,6.07,-2 25,12.75,0.375,27.9,6.07,-2 25,12.75,0.375,27.9,6.07,-2 25,12.75,0.375,27.9,6.07,-2 25,12.75,0.375,27.9,6.07,-2 25,12.75,0.375,27.9,6.07,-2 25,12.75,0.375,27.9,6.07,-2 25,12.75,0.375,23100,22000, 0,0.3,,28.0, 3,3.0,100,75,840,620, 3,3.2,500,0,0.45,,0.036, 0,3.0,100,75,23100,22000, 0,0,3.0,100,75,2300,0,10,10,10,10,10,10,10,10,10,10,10,10	SIS AT MIN STEEL PRC PROPERTI 840 PSI ISSON=0.4 0, 0, 3,6.22, 23,4.62, 3,8.22, 23,8.22, 23,8.22, SIS AT MAX STEEL PRC PROPERTII 620 PSI ISSON=0.4 0, 0, 0, 5,6.22, 5,8.22, 15,8.22,	TEMP = 32 F, LE OPERTIES ARE S ES 5 (TEMP = 100 F, OPERTIES ARE S 5 5	EVEL C/D ******	**************************************	<u>-</u> βιμ Dε	ate 11/11/08
NO,Delta ⁻ NO,CARB NO,	T = 10 F ON STEEL AND CrMo.	STEEL PRO	PERTIES ARE S	SAME AS DW CA	SE		
IO,*** FO IO, So IO, Sy IO, Eo	y = 2500 PSI PC c = 0.110E+06 PSI	ERM (< 10 F = 1200 PSI ISSON RAT		ES:,			
	,100,75,23100,22200, 0,,0.3,,,28.0,						

Client	Duk	e Power Card	olinas. L	LC	Cal	culation No.	07Q36	91-C	AL-009
Project									
Title		s of Buried HI tor "2B" Unit 2		ing System—	Nuclear Servi	ce Water (NS)	N) Supp	ly Lir	ne Diesel
By:	Å. 1	Haile	Date	11/10/08	Chk'd by	Bruce J. Oubover	by D	ate	11/11/08
MA, 130, 13 CL,880,900 MA,880,900 CL,940,955 CH,100,100 CH,130,13 CH,880,900 CH,950,98 TH,,0, EN,0, NO, EXECUTE NO,METH NO,LOADI CL,,30,19 NE,7,21,2 OU,4,,27, EN,,, EXECUTE NO,******* NO,METH NO,LOADI CL,,30,19 NE,7,23,2 OU,4,,28, EN,0, EXECUTE NO,******* NO,METH NO,LOADI CL,,30,19 NE,7,23,2 OU,4,,28, EN,0, EXECUTE NO,******* NO,METH NO,LOADI CL,,30,19 NE,7,25,2 OU,4,,29, EN,0, EXECUTE NO,******* NO,METH NO,LOADI CL,,30,19 NO,CADI CL,,30,19 ND,CADI CL,,30,19	33,2500,,0.3 0,3.0,100,7 00,45000,,0 0,3.0,100,7 50,35000,,0 95,10.75,0.3 33,12.75,1. 00,12.75,0.3 95,12.75,0.3 0D OF LO ING CASE 989,3, 12,,27, 0D OF LO ING CASE 989,3, 14,,28, 0D OF CO	75,23100,22200, 0.3,,,28.0, 75,15000,15000, 0.3,,,27.9, 365,28.0,8.1,10.,1 159,0.110,90.,10 375,28.0,8.1,10.,3 375,27.9,6.07,10 * COMBINE LOA AD COMBINE LOA	.,4.62, 8.22, 8.22, D CASES DN = ABS D CASES DN = ABS D CASES 2 DN = ABS D CASES 2 DN = ABS	21 AND 22, LEVE OLUTE VALUE O 23 AND 24, LEVE OLUTE VALUE O 25 AND 26, LEVE OLUTE VALUE O 26 AND 26, LEVE OLUTE VALUE O 27 AND 26, LEVE OLUTE VALUE O 28 AND 26, LEVE OLUTE VALUE O 29 AND 26, LEVE 0 AND 26, LEVE	F RANGE EL B *********** F RANGE L C/D ********** F RANGE SE 30 (SEISMIC	******			
CL,,,3.0,19 NE,3,,30,3 OU,4,,31, EN,,0, EXECUTE NO,*******	989,3, 90,,,,31, ******** DIV	/IDE ABSOLUTE		DF LOAD CASE 3 C LOAD RANGES		****			
NO,METH NO,LOADI CL,,,3.0,19 NE,8,,31,0 OU,4,,32, EN,,0, EXECUTE NO,******* NO,METH	OD OF CO ING CASE 989,3, 0.5333,,,,32	omputing = Fag No. 32 , ombine therm ombination = A	CTORING IAL AND C DD ABSO	DBE LOADS: LEV LUTE VALUES C	CASE 31 EL B *********** F EACH LOAD		21)		
	CASE NO. 989,3,			ADS OBTAINED A					

Client		ke Power Car	,			culation No.	07Q36	691-C	AL-009			
Project				uried HDPE Pi								
Title		Analysis of Buried HDPE Piping System— Nuclear Service Water (NSW) Supply Line Diesel Generator "2B" Unit 2										
By:		Hailu	Date	11/10/08	Chk'd by	Brice J. Oubore	chy C	Date	11/11/08			
NO,LOAE CL,,,3.0,1 NE,9,,27, OU,1,,45 EN,,0, EXECUT NO,****** CL,,,3.0,1 EQUATIC EQUAT	, SEARCH F D CASE NO J089,3, 40,41,45 , E 1989,1, DN,8,.10 DN,9,.10 DN,10,27 E 1989,2, DN,8,.10 DN,9,.10 DN,9,.10 DN,9,.10 DN,9,.10 DN,9,.10 DN,10,45 E	GENERATE STI * GENERATE \$	RESS REF	DM LOAD CASES PORT: LEVEL A EEPORT: LEVEL E	****	****						

Client	Duke Power Care	olinas, L	LC	Cal	culation No.	. 07Q3691-CAL-009				
Project	Catawba Unit # 1 and #2 – Buried HDPE Piping Design and Analysis									
Title	Analysis of Buried HI Generator "2B" Unit 2	•	ing System— I	Nuclear Serv	ice Water (NSV	V) Supply Li	ne Diesel			
By:	S. Hailu	Date	11/10/08	Chk'd by	Brace J. Oubouse	Au Date	11/11/08			

OUTPUT FILE:

Output file on CD-Rom