KERR-M^cGEE CORPORATION

FINAL STATUS SURVEY REPORT FOR CONCRETE RUBBLE IN SUB-AREA 'F'

for

Cimarron Corporation's Former Nuclear Fuel Fabrication Facility Crescent, Oklahoma

March, 1998

License Number: SNM-928 Docket No. 70-0925

CIMARRON CORPORATION CRESCENT, OKLAHOMA

CIMARRON CORPORATION

P.O. BOX 25861 . OKLAHOMA CITY, OKLAHOMA 73125

S. JESS LARSEN VICE PRESIDENT

March 10, 1998

Mr. Kenneth L. Kalman, Project Manager Facilities Decommissioning Section Low Level Waste & Decommissioning Projects Branch Division of Waste Management Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001

Ref: Docket No. 70-925; License No. SNM-928 Final Status Survey Report for Concrete Rubble in Sub-Area "F"

Dear Mr. Kalman:

Cimarron Corporation has recently completed Final Status Survey work on the Concrete Rubble located in Sub-Area "F". This Final Status Survey work was performed in order to demonstrate that the Concrete Rubble can be unconditionally released under the BTP Option #1 criteria (i.e., 30 pCi/g total uranium, excluding background) for soils and debris.

The purpose of this letter is to provide the above referenced report to the NRC staff for review and approval. Please find enclosed three (3) copies of this report for your review and approval. Two (2) copies of this report are for you and your staff and one (1) copy is for Mr. David Fauver. In addition, one (1) copy of this report has also been submitted to both the NRC Docket and to Mr. Louis Carson at NRC Region IV.

Please feel free to contact me if there are any questions or concerns.

Sincerely,

Jess Larsen Vice-President

Enclosures

FINAL STATUS SURVEY REPORT FOR CONCRETE RUBBLE IN SUB-AREA F

for Cimarron Corporation's Former Nuclear Fuel Fabrication Facility Crescent, Oklahoma

License Number: SNM-928 Docket No: 70-0925

Prepared for:

Cimarron Corporation Oklahoma City, Oklahoma

March, 1998

ζ

TABLE OF CONTENTS

-

1.0 INTRODUCTION
2.0 BACKGROUND22.1 Phase I Area32.2 Phase II Area32.3 Phase III Area4
3.0 SITE DESCRIPTION
4.0 FACILITY DESCRIPTION
5.0 HISTORY OF SITE OPERATIONS
6.0 CONCRETE RUBBLE DECOMMISSIONING ACTIVITIES
6.2.1 Natural Background Radioactivity of Concrete
6.2.3 Soils
6.3 Characterization Data106.4 Environmental Monitoring Data10
7.0 FINAL STATUS SURVEY PROCEDURE
7.1 Survey Procedure 11
7.2 Exposure Rate Measurements13
7.3 Environmental Exposure Rate Measurements
7.4 Surface Water Sampling13
7.5 Soil/Sediment Sampling13
7.6 Relationship Between Surface Activity and Concentration14
7.7 Guideline Values15
7.7.1 Concentration Guidelines for Concrete
7.7.2 Exposure Rate Guidelines (External Dose) 15
7.7.3 Volumetric Activity of Soils and Sediments
7.8 Equipment Selection
7.8.1 Equipment and Instrumentation
7.8.1.1 Micro-R Survey Meter17
7.8.1.2 Soil Counter (Gamma Spectroscopy)17

FINAL STATUS SURVEY REPORT PHASE II SUB-AREA F CONCRETE RUBBLE

7.9 Procedures/Plans	
7.9.1 Organization	
7.9.2 Training	19
7.9.3 Radiation Protection Program	19
7.9.4 Cimarron Quality Assurance Program (QAP)	
8.0 SURVEY FINDINGS	
8.1 Thermoluminescent Dosimeter (TLD) Exposure Rate Data	
8.2 Soil/Sediment Samples	
8.3 Surface Water Samples	23
8.4 Micro-R Measurements	
8.5 Gross Alpha and Gross Beta-Gamma Surface Activity Data	
8.5.1 Gross Beta-Gamma Data	
8.5.2 Gross Alpha Data	
8.6 Calculations	
8.6.1 Calculation of Average Concrete Thickness	
8.6.2 Volumetric Concentration Conversion Factor	
8.6.3 Volumetric Concentration Calculations	
8.6.4 Source Term Calculation	
8.6.5 Pathway Analysis	

95MOST-RF3 95SITE 95MOST-RF1 98FCONC-0 98 TLD 98FCRSS 98FCRER 98FCRA 98FCRB 98FCRC

- Appendix II Data Tables Table 1 Exposure Rate-Surface and 1m (Random Sample) Table 2 Exposure Rate-Surface and 1m (All Sampled Grids)
 Table 3 Gross Beta-Gamma (Random Sample)
 Table 4 Gross Beta-Gamma (All Sampled Grids)
 Table 5 Gross Alpha (Random Sample)
 - Table 6 Gross Alpha (All Sampled Grids)
- Appendix III Average Concrete Thickness Calculations

Drawings

Appendix IV RESRAD Output

REFERENCES

- 1. Chase Environmental Group, Inc. "Radiological Characterization Report for Cimarron Corporation's Former Nuclear Fuel Fabrication Facility, Crescent, Oklahoma", October 1994.
- 2. USNRC, Comments dated July 11, 1996 on the Decommissioning Plan for Cimarron Corporation.
- 3. USNRC, "Guidelines for Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of License for By-Product, Source, or Special Nuclear Material", August 1987.
- 4. USNRC, "Branch Technical Position on Disposal or On-site Storage of Residual Thorium and Uranium from Past Operations", FR. Vol. 46, No. 205, Page 52061, October 23, 1981.
- 5. Cimarron Corporation Nuclear Materials License, SNM-928 Docket No. 070-00925, issued for possession only March 31, 1982; Amendment No. 10, issued November 4, 1994.
- 6. Cimarron Corporation Nuclear Materials License, SNM-1174, Docket No. 070-1193, terminated February 5, 1993.
- 7. Cimarron Corporation Letter to USNRC, August 20, 1990.
- 8. USNRC Letter from Mr. Richard E. Cunningham, Director, Division of Industrial and Medical Nuclear Safety to Dr. John Stauter, Director of Environmental Services, Cimarron Corporation, dated February 5, 1993.
- 9. Chase Environmental Group, Inc. "Decommissioning Plan for Cimarron Corporation's Former Nuclear Fuel Fabrication Facility, Crescent, Oklahoma", April 1995.
- Chase Environmental Group, Inc. "Final Status Survey Plan for Unaffected Areas for Cimarron Corporation's Former Nuclear Fuel Fabrication Facility, Crescent, Oklahoma", October 1994.
- 11. USNRC Letter from Mr. Michael F. Weber, Chief Low-Level Waste and Decommissioning Project Branch, Division of Waste Management, to Mr. Jess Larsen, Vice President Kerr-McGee Corporation, dated May 1, 1995.
- 12. Cimarron Corporation, "Final Status Survey Report, Phase I Areas at the Cimarron Facility, License No. SNM-928", July 1995.

- 13. USNRC Letter from Mr. R. A. Nelson, Acting Chief Low-Level Waste and Decommissioning Project Branch, Division of Waste Management, to Mr. Jess Larsen, Vice President, Cimarron Corporation, dated April 23, 1996.
- 14. Chase Environmental Group, Inc., "Final Status Survey Plan for Phase II Areas for Cimarron Corporation's Former Nuclear Fuel Fabrication Facility", Crescent, Oklahoma, July 1995.
- 15. USNRC Letter from Mr. Kenneth L. Kalman, Project Manager, Low-Level Waste and Decommissioning Projects Branch, to Mr. Jess Larsen, Vice President, Cimarron Corporation, Dated March 14, 1997.
- 16. US NRC Letter from Mr. George M. McCann, Chief, Materials Licensing Section to Dr. John Stauter, Vice President, Kerr-McGee Corporation, dated December 30, 1992.
- 17. Chase Environmental Group, Inc. "Final Status Survey Plan for Phase III Area for Cimarron Corporation's Former Nuclear Fuel Fabrication Facility", Crescent, Oklahoma, June 1997.
- 18. USNRC, "Background as a Residual Radioactivity Criterion for Decommissioning", NUREG-1501, Draft Report, August, 1994.
- 19. Eichholz, G. G., et al., <u>Radiation Exposure from Building Materials</u>, in "Natural Radiation Environment III", US DOE CONF-780422, 1980.
- 20. Ingersoll, J. G., "A Survey of Radionuclide Contents and Radon Emanation Rates in Building Materials Used in the United States", University of California Lawrence Berkeley Laboratory Report LBL-11771, 1981.
- 21. E.W. Abelquist, "Confirmatory Survey for the South Uranium Yard Remediation, Kerr-McGee Corporation, Cimarron Facility, Crescent, Oklahoma,", Oak Ridge Institute for Science and Education, November 1995.
- 22. J.D. Berger, "Manual for Conducting Radiological Surveys in Support of License Termination"; Draft Report for Comment, Oak Ridge Associated Universities, NUREG/CR-5849, June 1992.
- 23. American National Standards Institute, "Radiation Protection Instrumentation Test and Calibration", ANSI N323-1978.
- 24. USNRC letter from Mr. Ross A. Scarano, Director Division of Nuclear Materials Safety to Mr. S. Jess Larsen, Vice President, Cimarron Corporation, dated July 31, 1997.

- 25. USNRC Letter from Mr. Michael F. Weber, Chief, Low-Level Waste and Decommissioning Project Branch, Division of Waste Management to Mr. Jess Larsen, Vice President, Kerr-McGee Corporation, dated May 31, 1995.
- 26. USNRC, "Scenarios for Assessing Potential; Doses Associated with Residual Activity", Policy Guidance PG 8-08.
- 27. USNRC, "Environmental Assessment Associated with the BTP Option #2 Onsite Disposal Cell at Cimarron", 1994.

FINAL STATUS SURVEY REPORT FOR DECOMMISSIONING CIMARRON FACILITY CONCRETE RUBBLE IN SUB-AREA "F"

1.0 Introduction

This Final Status Survey Report is submitted by Cimarron Corporation to the Nuclear Regulatory Commission (NRC) to release for unrestricted access concrete rubble located in and near the drainage areas and the discharge area of Reservoir #2, which is located in Sub-Area "F" of the Cimarron site. Sub-Area "F" is one of the five Sub-Areas within Phase II. Sub-Area "F" is shown on Drawing No. 95MOST-RF3 (Appendix I), and includes affected and unaffected areas that have been surveyed as part of the ongoing site decommissioning process. This report provides the information and justification for leaving the concrete located in Sub-Area "F" inplace. The concrete was placed as rip-rap to correct erosion problems associated with the Sub-Area "F" drainage ways. A drawing showing the surface topography for the site is provided in Appendix I (95SITE).

This report documents the survey and sampling data obtained for the concrete and establishes the basis for unconditional release of the concrete rubble. Section 2.3 of the Cimarron Decommissioning Plan¹ provides the proposed criteria for leaving the concrete in-place. In addition, there have been several NRC comments and Cimarron responses to comments regarding concrete in drainage areas. In this report, Cimarron has incorporated NRC recommendations (see NRC Comment #18 of the "NRC Comments dated July 11, 1996 on the Decommissioning Plan for Cimarron Corporation"²) to consider volumetric concentration averaging as a method for unconditional release of the concrete.

The concrete rubble met all of the applicable surface contamination criteria for unconditional release when it was relocated to Sub-Area "F" drainage ways for erosion control. The concrete rubble was placed into Sub-Area "F" since decommissioning activities commenced in 1976, and was subject to various release criteria in effect which depended on the time of release. The concrete rubble originated in on-site buildings and structures undergoing decommissioning and was surveyed for alpha contamination, and in some cases for beta-gamma contamination, before it was used for erosion control in drainage areas north of Reservoir #2 and northeast of Burial Ground #1 in Sub-Area "F". However, the surface contamination release criteria in effect during the early phases of facility decommissioning were not as restrictive as those currently in place and ranged as high as 25,000 (maximum) dpm/100 cm² gross alpha (per Annex A to License SNM-928, Section 3.4, Revision dated August 30, 1976). In addition, practices which were approved by the NRC and in effect during the early phase of facility decommissioning did not entail surveys for beta-gamma activity prior to release when the contaminant was known or believed to be pure enriched uranium. Consequently, surveys performed more recently have identified levels of gross beta-gamma activity and gross alpha activity which exceeds the 1987 NRC unconditional release criteria contained in "Guidelines of Decontamination of Facilities and Equipment Prior to Release for Unrestricted Use or Termination of Licenses for Byproduct, Source, or Special Nuclear Materials"³. The concrete rubble in Sub-Area "F" is representative of concrete from all areas of the buildings and structures at the facility and also contains concrete from all facility areas.

The proposed release criteria for the concrete is equivalent to the 1981 BTP⁴ Option #1 criteria for soils, which is 30 pCi/g for enriched uranium. This criteria is appropriate for concrete rubble and debris due to the similarities in dose pathways. Concrete rubble is, in many respects, less likely to contribute dose to members of the public due to limited accessibility and a decreased probability of mechanical or physical dispersion. This report also demonstrates that the estimated doses due to the pathways of concern for the concrete rubble are significantly less than the 1981 BTP Option #1 limit concentrations for enriched uranium, and are insignificant in comparison to exposures resulting from natural background.

Cimarron Corporation intends to leave the concrete in place by demonstrating that the risks from the concrete remaining in place are insignificant. In addition, the safety hazards and costs associated with removal of the concrete from the drainage areas are significant. This is due to the location of the concrete in drainage areas, the random manner in which it was placed into the drainage area, and the physical hazards from rebar protrusions and unstable, irregular surfaces which could result in falling or tripping. Finally, the concrete continues to serve the intended useful purpose of preventing unnecessary erosion in the drainage and spillway areas.

This report includes a discussion of the final status survey performed to more precisely define the extent and magnitude of residual contamination present in the concrete located within Sub-Area "F". The final status survey was conducted in order to demonstrate that the guideline values for the Cimarron site have been met. The results of the Sub-Area "F" concrete rubble Final Status Survey are presented in this Report, and indicate that the estimated activity of total uranium contained in the concrete rubble is 4.6 millicuries. The maximum projected dose rate to the hypothetical resident from residual activity contained in the concrete rubble was calculated to be approximately one millirem per year based upon the RESRAD computer code.

2.0 Background

Cimarron Corporation, a subsidiary of Kerr-McGee Corporation, operated two plants near Crescent, Oklahoma, for the manufacture of enriched uranium and mixed oxide reactor fuels. The 840-acre Cimarron site was originally licensed under two separate SNM Licenses. License SNM-928⁵ was issued in 1965 for the Uranium Plant (U-Plant) and License SNM-1174⁶ was issued in 1970 for the Mixed Oxide Fuel Fabrication (MOFF) Facility. Both facilities operated through 1975, at which time they were shut down and decommissioning work was initiated.

Decommissioning efforts at the MOFF Facility were completed in 1990 and Cimarron Corporation applied to the NRC on August 20, 1990⁷, to terminate License SNM-1174. After confirmatory surveys, the NRC terminated the MOFF Facility License, SNM-1174, on February 5, 1993⁸.

Decommissioning efforts involving characterization, decontamination and decommissioning for the 840-acres, licensed under SNM-928, were initiated in 1976 and are still ongoing. The final objective of the decommissioning effort is to release the entire 840-acre site for unrestricted use.

Based upon historic knowledge of site operations and the characterization work completed to date, Cimarron Corporation completed and submitted in October 1994 the Cimarron Radiological Characterization Report.⁹ As discussed in this report, the site has been divided into affected areas. The affected and unaffected areas are shown on Drawing No. 95MOST-RF3, included in Appendix I. For the Final Status Survey Plan, the entire 840-acre site has been divided into three major areas which contain both affected and unaffected areas. Each of these three major areas are also shown on Drawing No. 95MOST-RF3 and are designated by Roman Numerals I, II, and III (herein referenced as Phases I, II, and III). These three major areas are then further subdivided into smaller Sub-Areas (i.e. A, B, C, D, etc.).

2.1 Phase I Area

As presented in the Cimarron Decommissioning Plan,¹ the Final Status Survey Plan (Phases I, II and III) was discussed in general terms, with the understanding that each of the three phases would be submitted to the NRC under separate cover for approval. The Final Status Survey Plan for the first of these three phases (Phase I¹⁰) was approved by the NRC via letter dated May 1, 1995.¹¹ The Final Status Survey Report¹² for Phase I was submitted to the NRC and confirmatory sampling for the Phase I areas has been completed by the Oak Ridge Institute for Science and Education (ORISE). Cimarron Corporation received license Amendment #13 from the NRC to release this area from SNM-928; the amendment was forwarded by letter dated April 23, 1996¹³. This amendment reduced the licensed facility acreage from 840 to 152 acres.

2.2 Phase II Area

The area designated as Phase II on Drawing No. 95MOST-RF3 (Appendix I) contains both affected and some contiguous unaffected areas, and represents approximately 122 of the remaining licensed 152 acres. The Final Status Survey Plan for Phase II was submitted to the NRC in July 1995¹⁴ and approved by the NRC on March 14, 1997¹⁵. Phase II includes Sub-Areas F, G, H, I and J. Included within Phase II are Burial Area #1 which was released in December 1992 by the NRC¹⁶, backfilled with clean soil, and seeded. Also included in Phase II are the East and West Sanitary Lagoons, the MOFF Plant Building exterior and yard area, the Emergency Building, the Warehouse Building (Building #4) and surrounding yard, and numerous drainage areas. Cimarron has substantially completed the remediation of each Sub-Area and final status surveys are currently underway. In general, Sub-Area "F" is located north of Reservoir #2 and includes the roadway from the northern end of Reservoir #3 to the northern end of Reservoir #2. The concrete rubble within Sub-Area "F" is located on the berm area and in the drainage area to the north of Reservoir #2 and also alongside a drainage to the northeast of Burial Area #1. The concrete rubble addressed in this report includes an area of approximately 0.3 acres of the entire 17 acre area within Sub-Area "F". The final status survey for the remaining acreage has been completed and is being assembled for submission under a separate report.

2.3 Phase III Area

The Phase III area survey is the last phase for completing the final status survey for the entire Cimarron site, and represents approximately 30 acres. This area is designated as Phase III on Drawing No. 95MOST-RF3. The Final Status Survey Plan for release of this area from the site license, has been submitted to the NRC¹⁷ for approval. The Phase III area includes the Uranium Processing buildings and yard area, Burial Areas #2 and #3, the New Sanitary Lagoon, the New On-site Disposal Cell (Burial Area #4), and the Five Former Waste Water Ponds. These five former waste water ponds consist of Uranium Waste Ponds #1 and #2, the Plutonium Waste Pond, the Uranium Emergency Pond.

3.0 Site Description

The Cimarron Facility is located in Logan County, State of Oklahoma, on the south side of the Cimarron River approximately 0.5 miles north of the intersection of Oklahoma State Highways #33 and #74. Figure 3.1 shows the site location. The 840-acre site (the licensed portion was recently reduced to 152 acres) is located in an area of low, rolling hills and incised drainages. Local elevations range from about 940 feet along the river to 1,010 feet Mean Sea Level at the plant. The county is primarily rural with an economy primarily based upon agriculture and ranching. The entire site is owned by Cimarron Corporation, a wholly owned subsidiary of Kerr-McGee Corporation.

In general, Sub-Area "F" is located north of Reservoir #2 and includes the roadway from the northern end of Reservoir #3 to the northern end of Reservoir #2. The concrete rubble within Sub-Area "F" is located on the berm area and in the drainage area to the north of Reservoir #2 and also alongside the drainage to the northeast of Burial Area #1.

4.0 Facility Description

License SNM-928 was originally issued in 1965 to Kerr-McGee Nuclear Corporation for the manufacture of enriched uranium reactor fuels. The Uranium Plant (U-Plant) was constructed to be a complete nuclear fuel service facility. Initial equipment provided for the production of UO_2 , UF_4 , uranium metal and the recovery of scrap materials from facility operations. In 1968 the plant was expanded by increasing the UO_2 and Pellet facilities through the installation of another complete production line for the fabrication of fuel pellets. In 1969 fabrication facilities were added for the production of the fuel

FINAL STATUS SURVEY REPORT PHASE II SUB-AREA "F" CONCRETE RUBBLE elements. Equipment initially installed for the recovery of enriched scrap material was not used after work performed under a scrap recovery contract was completed in 1970. All equipment utilized in fuel production activities has been either decontaminated and removed from the site for salvage or packaged and transported offsite for disposal at a commercial LLRW facility.

5.0 History of Site Operations

The Cimarron Facility was originally licensed under two separate licenses. License SNM-928 was issued for the U-Plant Facility and License SNM-1174 was issued for the MOFF Facility. Both facilities terminated production operations in 1975. Decontamination and decommissioning of the MOFF Facility was completed by 1990, and the license was terminated by the NRC in 1993. The U-Plant Facility decommissioning is in progress and nearing completion. A complete history of site operations can be found in both the Characterization Report⁹ and the Decommissioning Plan¹.

6.0 Concrete Rubble Decommissioning Activities

The purpose of this section is to discuss the status of the on-going site decommissioning activities related to the concrete rubble located in Sub-Area "F" and to present the radiological criteria and guideline values utilized throughout the remediation and final status survey.

6.1 Identification of Contaminants

Based upon the knowledge of past site operations, the results of numerous characterization efforts to date, and other independent characterization efforts by regulatory agencies and their respective subcontractors, the possible radiological contaminants within this Sub-Area have been determined to consist of U-234, U-235 and U-238. The uranium is comprised of enriched forms, with an average enrichment above the naturally occurring level. The average U-235 enrichment at Cimarron has been previously established as approximately 2.7 weight percent.

Thorium, although not considered a contaminant of concern for the concrete rubble, has been included in the soil and sediment analysis for comparison with background levels found in other areas of the facility. Thorium was not used or processed at the facility.

6.2 Site Background Levels

6.2.1 Natural Background Radioactivity of Concrete

Concrete contains naturally occurring elements from the earth which emit radiation. NUREG-1501, "Background as a Residual Radioactivity Criterion for Decommissioning"¹⁸, gives the typical radionuclide content for concrete used in the United States. Table 2.3 of NUREG-1501 gives the range of U-238 as 19-89 Bq/kg (0.5-2.4 pCi/g), as reported by Eichholz¹⁹. Assuming radiological equilibrium between the Uranium-238 and it's radioactive daughter products through Ra-226, as suggested in NUREG-1501, the total uranium concentration (i.e., U-234 + U-235 + U-238) would range from 38-178 Bq/kg (1.0 to 4.8 pCi/g). In addition to uranium, Table 2.3 of NUREG-1501 states that concrete contains Th-232 (15 to 118 Bq/kg or 0.4 to 3.2 pCi/g) and K-40 (262 to 1147 Bq/kg or 7.1 to 31 pCi/g).

Ingersoll²⁰ collected ordinary concrete samples from around the country. These data are presented in Table 2.7 of NUREG-1501 and show a range for U-238 of 8 to 38 Bq/kg (0.2 to 1.0 pCi/g). Assuming radiological equilibrium between the U-238 and it's radioactive daughter products through Ra-226, the total uranium concentration (i.e., U-234 + U-235 + U-238) would range from 16-76 Bq/kg (0.4 to 2.1 pCi/g). Ingersoll also measured similar variations in concentrations of Th-232 and K-40.

A representative sample of "background" concrete was collected from the unaffected floor area under the former facility manager's office. This sample is representative of "background" concrete due to the fact that it: 1) Was poured at about the same time as the concrete rubble in Sub-Area "F"; 2) Was located in an office area of the facility that was never contaminated; and, 3) Had been covered with linoleum tile prior to use of the facility for uranium processing. This background sample was analyzed by an outside independent laboratory and was reported as containing 1.1 ± 0.4 pCi/g U-234, <0.2 pCi/g U-235, and 0.4 ± 0.2 pCi/g U-238. The sample was also analyzed using the on-site soil counter which produced a total uranium concentration of 5.7 ± 1.3 pCi/g. Conversion of the onsite counter results to natural uranium, using the conversion factor of 0.67/1.5 as described in Section 6.2.3, results in a total uranium concentration to background soils and is within the range of activities listed in NUREG-1501 (after consideration of measurement uncertainty).

Concrete, such as that in the Sub-Area "F" drainage areas, contains naturally occurring radioactivity such as Uranium, Thorium and Potassium-40 which affect instrument measurements and laboratory analysis. The natural background concentrations from activity due to total uranium in concrete are therefore subtracted from counting results to obtain the contribution of activity which resulted from facility operations. The total uranium background for concrete which will be used in this report is 1.5 pCi/g, based upon the sample collected at the facility and the literature which has been cited.

6.2.2 Establishment of a Background Value for Gross Alpha and Gross Beta-Gamma Surface Activity in Concrete

The average background for gross beta-gamma surface activity in concrete was determined using data gathered during the survey of the concrete rubble as well as data from the representative sample of "background" concrete as described in Section 6.2.1.

In order for data to qualify as representative of background, data from each selected 5m x 5m grid area had to have gross beta-gamma levels (average) of less than two times background (for concrete). Grid areas were initially selected by utilizing the data from areas with gross alpha survey results of less than 100 dpm/100cm² (maximum). In addition, the reported exposure rate at both the surface and at a distance of one meter for the grid area could not exceed 10 μ R/h and could not be greater than 1 μ R/h above the "one meter" measurement location at any point within the grid area. Data utilized in the determination of gross alpha and gross beta-gamma surface activity background are summarized in Table 6.1.

Location	Ave. Alpha Dpm/100cm ²	Max. Alpha dpm/100cm ²	Ave. Beta dpm/100cm ²	Max. Beta dpm/100cm ²	Surface µR/h**	lm μR/h**
Grid #6	10	40	1045	1650	7	8
Grid #7	10	40	278	1584	7	6
Grid #8	10	40	924	1397	7	7
Grid #9	10	80	557	935	6	6
Grid #21	50	80	1199	3212	6	6
Grid #33	5	20	889	1386	7	7
Grid #103	10	40	860	1353	7	7
Representative "background"	60*	60*	649*	649*	5*	5*
Average	21	50	800	1520	6.5	6.5

Table 6.1Gross Alpha and Gross Beta Surface Activity Background Data

*Core sample-measurements taken at the surface of the area to be cored prior to sampling. As this area is within a building over a concrete slab, the ambient background exposure rate was lower.

**Exposure rate measurements include background contribution. All other measurements are net (instrument background subtracted).

Based upon Table 6.1, the average background for gross alpha surface activity was established as 21 dpm/100 cm². The gross alpha background activity is presented for reference purposes only. The data and evaluations presented in this report did not utilize the gross alpha background for subtraction as the value was insignificant to the overall conclusions made in the report. Thus, the data tables and drawings reflect the gross alpha activity, including background.

The average background for gross beta surface activity was established at 800 dpm/100 cm^2 . The gross beta background was subtracted from the surface activity data prior to calculation of the volumetric activity concentration of total uranium.

6.2.3 Soils

Natural background levels for uranium in soil have been established through numerous measurements by Cimarron personnel utilizing the on-site soil counter and through

independent laboratory analysis. Analytical results from Cimarron Corporation's environmental sampling program are reported to the NRC annually in Environmental Reports. These reports provide sample analysis results for soil samples collected from numerous off-site locations which are representative of background in surrounding soils.

Cimarron personnel collected and analyzed 30 surface soil samples from the perimeter of the Cimarron site during the first quarter of 1995 to further validate background levels. Total uranium ranged from 2.3 pCi/g to 6.6 pCi/g, with the average being 4.0 ± 2.6 (2σ) pCi/g. These values were obtained as a result of using the Cimarron on-site soil counter. The on-site soil counter is calibrated to assume an enrichment of 2.7 weight percent as this is the average enrichment found throughout the site. When a correction factor (0.67/1.5) is applied to these results to convert the values from an assumed 2.7 weight percent enrichment to a natural enrichment, the converted results ranged from 1.0 pCi/g to 2.9 pCi/g with an average of 1.8 ± 1.0 (2σ) pCi/g total uranium. Based upon these results, the average value of 4 pCi/g total uranium for background was used when the soil sample analytical results were compared to guideline values.

6.2.4 Exposure Rates

Background exposure rates have been established at the Cimarron site by taking micro-R readings and pressurized ion chamber (PIC) readings at off-site sample locations in addition to Cimarron site areas which are unaffected by past operations. Site background exposure rates of approximately 7-10 μ R/h have been observed in background areas by Cimarron personnel utilizing a Ludlum Micro-R survey meter, and have been used in past reports to the NRC. Site background exposure rates of approximately 7-10 μ R/h have also been determined by ORISE personnel utilizing similar instrumentation. In addition, site background exposure rates were measured by ORAU (now ORISE) personnel utilizing a PIC²¹, and were determined to be 9 to 10 μ R/h. Thus, depending upon instrumentation utilized, the background exposure rate at the Cimarron site ranges from 7 to 10 μ R/h.

Cimarron personnel performed exposure rates measurements at background locations in Sub-Area "F" in 1995 using a Micro-R meter. Confirmatory measurements were obtained at the same locations in 1997 using a Reuter-Stokes PIC. These data are tabulated below in Table 6.1. The average background as measured using the Micro-R meter was $7.6 \pm 1.3 (2\sigma) \mu$ R/h, and is about 15 percent less than the average for the PIC measurements of $9.0 \pm 1.1 (2\sigma) \mu$ R/h. These differences are not significant and indicate good agreement between the Micro-R measurements and the PIC measurements. Cimarron will continue the use of 7-10 μ R/h as representative of background exposure rates for Micro-R measurements in accordance with past reports.

TABLE 6.2							
Sample ID No.	e ID No. Grid Location Micro-R Reading PIC Reading						
		(μ R/h)	(μ R/h)				
UAF-BKG-1	819W-81N	9	9.8				
UAF-BKG-7	1600E-120N	7	7.6				
UAF-BKG-11	840W-700S	8	9.5				
UAF-BKG-13	840W-288S	9	9.8				
UAF-BKG-16	808W-282S	8	9.7				
UAF-BKG-19	640W-700S	9	10.5				
UAF-BKG-23	1610E-300S	5	7.8				
UAF-BKG-25	1610E-69N	6	7.6				
UAF-BKG-27	1610E-469N	7	7.8				
UAF-BKG-28	1610E-634N	8	9.6				
	AVERAGE	$7.6 \pm 2.7 (2\sigma)$	$9.0 \pm 2.3 (2\sigma)$				

6.3 Characterization Data

As noted earlier, the Cimarron site has been subdivided into survey units. These units are naturally distinguishable or have a common history of use, characterization and decommissioning activities. Throughout most of the decommissioning process at the Cimarron site, a unit was characterized, remediated (if required), and resurveyed. The description of the decommissioning activities and the final status survey data were then submitted to the NRC for review and approval. After review of the submittal, the NRC either released the unit and/or contracted with ORISE (previously ORAU) to perform a confirmatory survey. Based upon the ORISE confirmatory survey (if requested by the NRC), the NRC either would release the unit or require additional remediation. The concrete rubble within Sub-Area "F" is one such unit. Cimarron personnel have completed the characterization and final status survey of the concrete rubble.

6.4 Environmental Monitoring Data

The concrete rubble in Sub-Area "F" is near one location where environmental surface water monitoring has been performed in accordance with the Cimarron Environmental Sampling Program. All analyses for samples collected from this location are performed by an independent off-site laboratory.

The surface water monitoring at this location (location #1205) consists of an annual sample from Reservoir #2, which is upstream from the concrete rubble. The location of surface water sampling location #1205 is shown in Drawing No. 95MOST-RF1 (Appendix I). Since 1986, Gross α concentrations at this location have been reported as less than 10 pCi/l, and gross β concentrations have been less than 20 pCi/l. Total U has

been reported as less than 0.005 mg/l over the same period. The laboratory reported 0.5 pCi/l U-234, <0.1 pCi/l U-235, and 0.2 pCi/l U-238 for surface water location #1205 in 1997. Based upon the historical environmental data, Reservoir #2 has not been affected by facility operations or decommissioning activities.

The final status survey for the concrete rubble also included the collection and analysis of additional water samples from the stream originating from Reservoir #2. These results are discussed in Section 8.3 of this Report.

7.0 Final Status Survey Procedure

The purpose of this section is to describe the methodology utilized for the collection of the Final Status Survey data. The final status survey data will be used to demonstrate that the applicable radiological parameters (i.e., guideline values) have been met and that the concrete rubble in Sub-Area "F" can be released from License SNM-928. Due to the nature and location of the material and the physical limitations involved with the performance of surveys, Cimarron Corporation developed innovative calculational techniques to demonstrate compliance with the release criteria.

7.1 Survey Procedure

A 5m x 5m grid system was established for the concrete rubble. The grid system was established such that each grid area could be easily relocated in the future for additional survey work and/or confirmatory surveys. The concrete grid system can be described as consisting of three areas, consisting of: 1) the main body of concrete in the drainage area north of the reservoir (Grid #'s 20 through 122); 2) the concrete along the west bank of the spillway area (Grid #'s 1 through 19); and, 3) the concrete west of the main drainage area, northeast of Burial Ground #1 (Grid #'s 123 through 134). Grid locations are shown on Drawing No. 98FCONC-0.

The concrete was then further subdivided into those grids containing $\geq 85\%$ concrete surface area and grid areas containing significantly less concrete. A computer generated random sampling plan representing 32 of the grids containing significant areas of concrete was developed. The random sample plan also contained those accessible areas known or suspected to have the highest gross beta-gamma surface contamination. The random sample plan thus should represent a worst case average for the concrete. The random sample represents 24% (32 of the 134) 5m x 5m grid areas containing concrete rubble. However, since the random sample was selected from grid areas containing >85% concrete, the random sample should generate data which represents even a higher percentage of the surface area for the concrete rubble as a whole. The grid areas representing the random sample are also shown in Drawing No. 98FCONC-0 (Appendix I).

Each randomly selected 5m x 5m grid area was then 100% scanned, to the extent practicable, for gross beta-gamma activity to identify any elevated areas of activity. Any location within each grid that exceeded $5,000 \text{ dpm}/100\text{cm}^2$ was documented on survey forms. The $5,000 \text{ dpm}/100\text{cm}^2$ cut-off value was chosen because it represents the unconditional release surface activity criteria (average) for uranium. Supplemental gross beta-gamma measurements were also collected for each of the 5m x 5m grid areas containing concrete along the west bank of the spillway, as well as at other locations, as shown in Drawing 98CONC-0 (Appendix I).

Gross alpha scans to identify elevated locations were not performed due to the fact that the concrete had been previously surveyed and released (all gross alpha was assumed to be due to uranium). Additionally, gross alpha scanning over rough surfaces has not proven to be an effective method due to the effects of geometry (source to detector distance) and attenuation (shields the alpha particles before they are able to reach the detector). The survey data for areas containing elevated measurements of gross betagamma activity versus the gross alpha measurement results provides evidence of this (See Tables 3 through 6 in Appendix II). It was therefore determined that the most effective method for locating the elevated areas was through the use of gross betagamma scans.

A 1m x 1m grid was established surrounding any location within a selected 5m x 5m grid area which exceeded 5,000 dpm/100cm² beta-gamma (i.e., hot-spot areas). \checkmark Surveys or scans were then performed in each 1m x 1m grid area as described below.

- The average gross beta-gamma dpm/100cm² was measured.
- The maximum gross beta-gamma dpm/100cm² was measured.
- The average gross alpha $dpm/100cm^2$ was measured.
- The maximum gross alpha dpm/100cm² was measured.
- A μ R/hour reading at the surface and at one meter above the surface directly above the location with the highest beta-gamma activity was measured.

In addition, a "representative" 1m x 1m survey area was selected from each of the selected 5m x 5m grid areas. The purpose for the representative area was to establish survey data that represented the surface areas within each 5m x 5m grid that did not contain any locations with elevated surface activity (i.e., above the 5,000 dpm/100cm² "hot-spot" criteria). The methodology utilized in locating these representative areas was to locate them in areas that were representative of the remainder of the concrete surfaces within the 5m x 5m grid area, preferably at the center of the grid area, but not in an area previously determined to have elevated readings above 5,000 dpm/100cm² beta-gamma. Measurements were performed in each of the representative grid areas as $^{\nu}$ described above for the "hot-spot" areas exceeding 5,000 dpm/100 cm².

In addition to the 32 random survey measurements, Cimarron personnel performed final status surveys on 34 grid areas to supplement the random sample data and to provide assurance that the random sample survey data were representative. The

supplemental surveys were performed in exactly the same manner as the random sample surveys.

Surface activity measurements for gross beta-gamma were obtained using a Ludlum Model 2221 with a Model 43-68 gas proportional probe, or equivalent (e.g., Ludlum Model 43-89). Gross alpha surface scans were obtained using an Eberline Model PRM-6 with an Eberline Model AS-15 probe. Micro-R measurements were obtained utilizing a Ludlum Model 19. The top surface and any other accessible concrete surfaces were surveyed. This intent of the survey was to be as representative of the concrete rubble as a whole, through the use of statistically based sampling techniques and the application of reasonable calculational assumptions.

Removable contamination measurements were not obtained due to the fact that the concrete has been in the drainage area for over 10 years. It was determined that any potentially removable contamination remaining would have been removed by environmental interactions. Monitoring of soils and sediments downstream of the concrete provided confirmation that removable contamination has not contributed to natural concentrations of uranium in downstream soils and sediment.

7.2 Exposure Rate Measurements

Exposure rate measurements were obtained at the surface of the concrete and at one meter above the concrete surface utilizing a sodium iodide based micro-R meter, or equivalent. These measurements support the position that the concrete rubble does not pose any significant external dose hazard and that exposures are similar to background.

7.3 Environmental Exposure Rate Measurements

Three environmental thermoluminescent dosimeters (TLDs) were placed near and above the concrete rubble to support the results of previous exposure rate measurements and to demonstrate that there are not any seasonal or long-term upward trends in exposure rates. Data from these TLDs are compared to site background area TLD measurements.

7.4 Surface Water Sampling

Two surface water samples were collected from areas where surface water is normally available. These surface water samples were collected up-gradient and down-gradient from the concrete rubble area. The water samples were analyzed for isotopic uranium and thorium at an independent off-site analytical laboratory.

7.5 Soil/Sediment Sampling

Thirteen soil/sediment samples were collected from the concrete rubble area to demonstrate that the concrete is not contributing to levels of uranium and thorium

present in the sediment. One soil/sediment sample was collected up-gradient of the concrete, two samples immediately down-gradient in locations likely to collect sediments, and ten samples from soils and sediments beneath or within the concrete <u>rubble</u>. All samples were analyzed for total uranium and thorium activity utilizing the Cimarron soil counter. One sample collected down-gradient from the concrete rubble was also sent to an independent off-site laboratory for analysis.

7.6 Relationship Between Surface Activity and Concentration

A special study was conducted to determine the depth profile of the contamination in the concrete and for the purpose of establishing a relationship between gross betagamma surface activity (measured in $dpm/100cm^2$) and uranium concentrations (measured in pCi/g). A brief outline of this study is provided below:

- 1. Concrete rubble slabs with the following approximate gross beta-gamma surface activity were selected:
 - Background (<1,000 dpm/100cm² average beta-gamma)
 - $\approx 5,000 \text{ dpm}/100 \text{ cm}^2$ average beta-gamma
 - $\approx 20,000 \text{ dpm}/100 \text{ cm}^2$ average beta-gamma
- 2. The following measurements were then performed on each piece of concrete rubble selected for the study:
 - Exposure rates at the surface and at 1 meter above the surface utilizing micro-R meter;
 - Gross alpha dpm/100cm² one measurement for each probe sized area located inside the area to be scabbled;
 - Gross beta-gamma dpm/100cm² one measurement for each probe sized area located inside the area to be scabbled;
 - Hot-spot all of the measurements described in #2 performed at the hot-spot.
- 3. The thickness of the concrete slab was measured.
- 4. The elevated area on the concrete rubble was scabbled to remove a layer of residual contamination.
- 5. Concrete scabble dust was collected and mixed thoroughly. A sample was obtained and analyzed using the on-site Soil Counter and/or an independent off-site laboratory.
- 6. All measurements were recorded, including the estimated thickness of the scabbled area.

- 7. Steps #2 through #6 were repeated until measurements of the scabbled area indicated that gross beta-gamma activity was reduced to less than twice background.
- 7.7 Guideline Values

The radiological guideline values discussed in this section are utilized for comparison to the final survey data to verify that the concrete rubble in Sub-Area "F" can be released from License SNM-928.

7.7.1 Concentration Guidelines for Concrete

Draft NUREG/CR-5849²², Section 2.2, states that "Volume concentration guideline values, which apply to soil, induced activity, and debris, are expressed in terms of activity per unit mass [typically picocuries per gram (pCi/g).]". Cimarron Corporation has established the release guideline values for concrete in Sub-Area "F" in accordance with the Branch Technical Position²⁴ (BTP) Option #1. The BTP Option #1 criteria is 30 pCi/g total uranium (enriched), above background.

Due to the physical obstacles and potential safety hazards associated with monitoring the concrete rubble, it was necessary to develop new calculational methods for determining volumetric concentrations. The overall objective of the survey effort was to demonstrate that the release guideline values were complied with. Due to the nature of the random sampling performed, the methods of draft NUREG/CR-5849 for "hot-spot" averaging were not directly utilized. Rather, justification that the overall average concentration meets the release criteria (i.e., BTP Option #1 guideline value) is provided herein. This was determined to be appropriate based upon the characteristics of the concrete rubble and the low probability that a portion of the concrete rubble would be extracted and used in a manner that could contribute significantly to inadvertent exposure.

7.7.2 Exposure Rate Guidelines (External Dose)

The exposure rate (external dose) guideline value was established as 10 micro-Roentgens (μ R) per hour (average) above background at one meter above the surface in accordance with the BTP⁴ Option #1 criteria. As stated in the BTP, this is compatible with proposed EPA cleanup standards for inactive uranium processing sites.

Exposure rates may be averaged over a 100 m^2 grid area as described in draft NUREG/CR-5849²². Draft NUREG/CR-5849 also states that the maximum

exposure rate at any discrete location within a 100 square meter area cannot exceed 20 μ R/h above background. Cimarron Corporation utilizes 7 to 10 μ R/h as the average background exposure rate.

7.7.3 Volumetric Activity of Soils and Sediments

The guideline value for residual concentrations of total uranium which may remain in soils or sediments is specified as BTP Option #1 material for Sub-Area F. For enriched uranium, as specified in Table 2 of the BTP¹⁶, the Option #1 limit is 30 pCi/g total uranium above background. The amount of soil and sediment sampling performed during this final status survey was confined to selected locations which were utilized to demonstrate that the concrete had not resulted in significant impact to site soils and/or sediments (i.e., the residual contamination is fixed).

7.8 Equipment Selection

Special Work Permits (SWPs) and Work Plans (WPs) were written and approved for the field work required during the conduct of this final status survey. The SWPs and/or WPs for this project specified the type of instrumentation to be utilized in performing the site surveys. The instrumentation utilized by site personnel is discussed below.

7.8.1 Equipment and Instrumentation

The instrumentation utilized to generate the characterization and final status survey data is calibrated and maintained in accordance with the Radiation Protection Program procedures. These procedures utilize the guidance contained in ANSI N323-1978, "Radiation Protection Instrumentation Test and Calibration"²³. Specific requirements for instrumentation include traceability to NIST standards, field checks for operability, background radioactivity checks, operation of instruments within established environmental bounds (i.e. temperature and pressure), training of individuals, scheduled performance checks, calibration with isotopes with energies similar to those to be measured, quality assurance tests, data review, and recordkeeping.

Portable survey instruments utilized during the survey (micro-R survey meters, α/β survey meters, scalers/ratemeters, etc.), are calibrated on a quarterly basis. All instrumentation is calibrated with NIST traceable standards. Where applicable, activities of sources utilized for calibration are also corrected for decay. In addition to the quarterly calibration requirements, source checks are performed on a daily basis for all instruments being utilized for characterization and final status surveys. A calibrated electronic pulse generator is utilized for instrument scale linearity checks. All calibration and source check records are

completed, reviewed, signed off and retained in accordance with Cimarron Quality Assurance Program requirements.

An SWP was written and approved prior to commencement of field work covered under this Final Status Survey Plan. The SWP specified the type of instrumentation to be utilized in performing the site surveys. The instrumentation utilized by site personnel is discussed below.

7.8.1.1 Micro-R Survey Meter

The Micro-R meter utilizes a 1" x 1" NaI/Tl crystal gamma detector and measures exposure rates between 0 and 5,000 μ R/h. Background readings are obtained daily at a defined location prior to placing each instrument into service. This instrument was utilized, in general, for determination of exposure rates at both systematic and random locations, and at locations of elevated radiation as identified by gross beta-gamma scans.

Quarterly comparisons and/or confirmatory measurements are obtained routinely to provide information concerning any measurement bias. These comparisons or confirmatory measurements are made using a pressurized ion chamber.

7.8.1.2 Soil Counter (Gamma Spectroscopy)

The Cimarron Soil Counter consists of a 4" x 4" x 16" sodium iodide crystal housed in a shielded chamber which is computer linked to a multi-channel analyzer (MCA). The soil counter is programmed to determine the total uranium concentration present in the soil sample by calculating the U-234 concentration present from the U-235 concentration which is measured in the soil. These two isotopic values are then summed with the measured U-238 value to determine the concentration of total U. Calibration of this counting system is performed annually and is traceable to NIST standards through contractor laboratory evaluations of the on-site standards.

ORISE has been used by the NRC for verification of a majority of the decommissioning work completed to date at the Cimarron site. ORISE has conducted an evaluation of the Cimarron Soil Counting system's ability to accurately measure total uranium concentrations in soil samples. This was done by comparing ORISE sample analysis results obtained by alpha pulse height analysis and gamma spectroscopy with the results obtained from the use of the Cimarron Soil Counter. ORISE and Cimarron analysis results compared favorably at levels above background as demonstrated by the most recent confirmatory analysis performed for the On-Site Disposal Cell, Pit #3 (NRC cover letter dated July 31, 1997)²⁴. NRC inspection Report #70-925/97-02, which accompanied this letter, states that "no significant bias or statistical errors between

the license's soil results and the NRC's results were identified". Additionally, the confirmatory analysis performed on select soil samples collected during ORISE's site visit to investigate the South U-Yard²¹, and DAP-3 stockpile²⁵ verified previously that Cimarron's on-site counter results are statistically identical to ORISE's results.

Established quality assurance measures for the soil counter include Cesium-137 centroid checks, Chi-square tests, background determinations, and the counting of soil standards. All of these quality assurance controls are recorded on control charts and are trended on a continuing basis.

Standards used for calibration and quality assurance checks for the soil counter have been analyzed by outside laboratories and are NIST traceable through these analyses. Comparisons have been made between the standards as counted using the soil counter and two off-site independent laboratories. The assigned values for the standards are the average of the results obtained from the off-site independent laboratories, when the standards were analyzed by more than one laboratory. The standards used at Cimarron range in concentration from 4.5 pCi/g total uranium to 292 pCi/g total uranium.

Cimarron personnel determine uranium and thorium activities based upon the evaluation of net counts from the soil counter. Activities are calculated through the use of efficiency and correction factors obtained using appropriate standards. Soil concentrations are calculated by dividing the net activity by the soil mass. Soil masses are determined on a laboratory scale which is checked on a daily basis (when in use) utilizing NIST traceable standards. Corrections for soil moisture content are also made as necessary.

7.9 Procedures/Plans

As discussed in Section 7.8, SWPs and WPs were written and approved for the field work required for this final status survey. These SWPs and WP's are an integral part of this site's radiation protection and quality assurance programs. Project organization and responsibilities, which are a part of the site's quality assurance program, are discussed in this section.

7.9.1 Organization

The final status survey of concrete rubble in Sub-Area "F" was performed by a survey team consisting of qualified personnel from the Cimarron site. The final status survey team operated under the general direction of a Decommissioning Supervisor who served as the Project manager and reported directly to the Site Manager of the Cimarron Facility.

The selection of field measurement equipment and sample collection techniques was performed under the direction of the RSO/Health Physics Supervisor who also reports to the Cimarron Site Manager. Actual field measurements and sample collection were performed under the direction of the Decommissioning Supervisor. The Decommissioning Supervisor was responsible for developing the SWP and WP for this sub-Area with input from the RSO/Health Physics Supervisor and the Cimarron Site Manager. The SWP and WP were reviewed and approved by the Cimarron Site Manager and the RSO/Health Physics Supervisor.

7.9.2 Training

Cimarron Corporation provides continuing training to Cimarron personnel and any other personnel (i.e., contractors, visitors, etc.) who are allowed access to the site. All members of the final status survey team attended an in-house training session on the SWP and WP for the work performed under the final status survey plan. All survey procedures and quality assurance requirements were reviewed during this training session.

7.9.3 Radiation Protection Program

Cimarron Corporation maintains a radiation protection program which meets and/or exceeds all of the applicable regulatory requirements associated with activities conducted under Special Nuclear Materials License SNM-928. The Cimarron Radiation Protection Program currently in place for all decommissioning activities is administered through the use of the following documents:

- Cimarron Quality Assurance Plan and Procedures
- Cimarron Radiation Protection Procedures
- Cimarron Site Health and Safety Plan
- Cimarron Emergency Plan

It is the policy of Cimarron Corporation to perform all work in strict compliance with applicable regulatory and internal requirements. The goal of the Cimarron decommissioning effort is to conduct all operations at a level of excellence which exceeds regulatory requirements. Cimarron staff will continue to exercise appropriate radiation protection precautions throughout the remaining decommissioning work and final survey process.

Independent Kerr-McGee Corporate audits for regulatory and internal requirements are conducted on a periodic basis and include the review of the Cimarron Radiation Protection Program and associated programs. Assessments of program effectiveness also are performed periodically by the Cimarron

RSO/Health Physics Supervisor. Additionally, the Cimarron Radiation Protection Program is inspected for compliance with applicable rules and regulations by NRC Region IV and NRC Headquarters staff.

7.9.4 Cimarron Quality Assurance Program (QAP)

The Cimarron Corporation QAP is an integral part of the Cimarron Radiation Protection Program. A principal component of the QAP is the confirmation of the quality of project work performed during decommissioning by assuring that all tasks are performed in a quality manner by qualified personnel. The Program ensures that samples are collected, controlled, and analyzed in accordance with applicable quality controls to provide adequate confidence that the resulting data accuracy and validity are verifiable. Such quality controls allow for the independent verification of analysis results by a third party review.

The Cimarron QAP is implemented and maintained in accordance with written policies, procedures, and instructions. This Program is administered under the direction of the Quality Assurance Manager. Periodic audits and reviews are conducted to ensure that all aspects of the Program are addressed.

Written procedures, designated as SWPs and WP's, are prepared, reviewed and approved for activities involved in carrying out the decommissioning process. The Sub-Area "F" concrete rubble survey SWP and WP were written in accordance with the Cimarron QAP. These documents designated the type of surveys to be performed, samples to be collected, frequency of sample collection, number of samples to be split with an off-site independent laboratory, and the type of field instrumentation required for the tasks required.

The facility performs its own radiological soil analysis in accordance with written procedures and QA/QC protocols. Field data are gathered and maintained in logs for all samples in accordance with the Cimarron QAP. Necessary data are transferred to the on-site laboratory sample log when the sample is brought to the on-site laboratory for analysis. The sample logs provide a record of sample collection and transport (chain of custody) and are incorporated into the facility quality assurance records.

In addition, off-site independent radiological analysis of split samples (samples are first counted on-site and then sent to an off-site independent laboratory) is an integral part of the Cimarron QAP. Samples sent to an off-site independent laboratory for analysis are accompanied by a chain of custody form in accordance with the Cimarron QAP. These forms provide documentation for all aspects of sample control and are maintained by the Quality Assurance Manager as permanent records.

Sample and survey data are reviewed by the Health Physics Department for accuracy and consistency and are compared to the guideline values. Reviews are performed on a regular basis. When identified, corrections to recognized deficiencies are performed.

Planned and periodic audits of Cimarron's Quality Assurance Program are performed by individuals who do not have direct responsibilities for the areas being audited. Audit results are documented for review by management.

8.0 Survey Findings

Final Status Survey data was generated for the concrete rubble located in Sub-Area "F" in order to demonstrate that this concrete rubble could be unconditionally released. The survey findings, including the methodology employed to evaluate the data, are described in this section.

8.1 Thermoluminescent Dosimeter (TLD) Exposure Rate Data

Thermoluminescent dosimeters were placed at three locations (#AM015, #AM016, and #AM017) near or above the concrete rubble. TLD data for 1996 and 1997 are provided in Tables 8.1 and 8.2, along with data for TLD location #AM014, which is located approximately one half mile south of the facility near the junction of Highways #33 and #74. Location #AM014 represents background. All TLDs were placed at a height of approximately one meter above the ground or concrete surface, and were oriented to face the area to be monitored. Drawing No. 98_TLD depicts these TLD locations.

TLD#	Description	1Q96 μR/h	2Q96 μR/h	3Q96 μR/h	4Q96 μR/h	96 Ave. μR/h
AM014	Junction of Highways 33 & 74 (Background)	7.6	8.3	5.6	7.0	7.1
AM015	Res. #2, SE of Rubble	8.2	7.0	5.7	6.5	6.9
AM016	Res. #2, Middle of Rubble	9.3	10.2	5.3	6.7	7.9
AM017	Res. #2, Below Rubble	8.5	7.6	5.0	5.7	6.7

Table 8.1TLD Exposure Rate Measurements-1996

TLD#	Description	1Q97 μR/h	2Q97 μR/h	3Q97 μR/h	97 Ave.* μR/h
AM014	Junction of Highways 33 & 74 (Background)	9.2	6.9	8.8	8.3
AM015	Res. #2, SE of Rubble	6.3	5.9	5.7	6.0
AM016	Res. #2, Middle of Rubble	6.7	6.0	6.4	6.4
AM017	Res. #2, Below Rubble	4.6	4.6	6.1	5.1

Table 8.2TLD Exposure Rate Measurements-1997

*Only the first three quarters of 1997 data were available at the time this report was published.

During 1996, the exposure rate near the concrete averaged 7.2 μ R/h at the three indicator locations (#AM015, #AM016, and #AM017), and averaged 7.1 μ R/h at the background location (#AM014). The exposure rates during the first three quarters of 1997 were similar, averaging 5.8 μ R/h at the three indicator locations, and 8.3 μ R/h at the background location. Data for the fourth quarter of 1997 have not yet been received from the contractor and are therefore not available.

The TLD exposure data does not indicate any elevated exposures occurring as a result of the elevated concrete surface contamination. This would be expected considering the low activity levels present in the concrete, and the attenuating characteristics of the concrete for any low energy gammas present due to the low residual uranium. In addition, the concrete provides shielding for naturally occurring gamma emitters within surface soils, and thus exposure rates are expected to be lower over concrete than in other locations. This observation is supported by the survey data presented in this report.

The TLD data also supports the measurements obtained with micro-R meters. The TLD data indicates that the guideline value of 10 micro-R above background is met at each TLD location during 1996 and 1997 to date.

8.2 Soil/Sediment Samples

In accordance with the Work Plan, one soil/sediment surface sample (6" depth) was collected from area upgradient of the main body of concrete rubble, ten surface samples from areas within and beneath the concrete, and two surface samples from areas downgradient of the concrete. The sampling locations and sample results are summarized in Table 8.3. The locations where each soil/sediment sample was collected are shown in Drawing No. 98FCRSS (Appendix I). Sample results do not indicate any samples above the BTP Option #1 guideline concentration of 30 pCi/g, above background. Concentrations of total uranium ranged from 2.9 to 8.6 pCi/g, while total thorium ranged from 0.2 to 1.0 pCi/g. The concentrations in these soil and sediment samples are similar to those found in unaffected areas, and do not indicate that there is any significant contribution occurring as a result of the concrete in the immediate vicinity.

Sample Number	Grid Location	Total U [*] (pCi/g)	Total Th [*] (pCi/g)
FA-535 (upgradient)	1451E-820N	4.2	1.2
FA-536	1419E-839N	2.9	0.9
FA-537	1419E-845N	5.9	0.8
FA-538	1420E-848N	8.6	0.2
FA-539	1412E-855N	7.0	0.8
FA-540	1404E-860N	4.2	0.7
FA-541	1341E-865N	4.6	0.7
FA-543 (downgradient)	1358E-870N	3.9	0.3
FA-544	1387E-870N	4.5	0.7
FA-545	1412E-870N	5.3	1.0
FA-546 (downgradient)	1365E-873N	4.3	0.7
FA-547	1378E-875N	4.4	0.6
FA-548	1370E-878N	3.6	0.6

Table 8.3
Soil/Sediment Samples Collected Around Concrete

*Reported measurements include the contribution from natural background.

8.3 Surface Water Samples

Surface water samples were collected upstream and downstream of the concrete on September 30, 1997. Sample results are summarized below in Table 8.4.

The upstream and downstream surface water samples show low levels of naturally occurring concentrations of uranium and thorium. There was no significant difference between the upstream and downstream sample. In addition, the sample data do not indicate any significant differences from the historical data reported for environmental monitoring location #1205 (See Section 6.4). This indicates that the concrete is not contributing to the concentrations of these naturally occurring contaminants.

Location	Th-228	Th-232	U-234	U-235	U-238
Upstream (FA-WAT-315)	0.4±0.3	< 0.4	0.5±0.3	< 0.1	< 0.3
Downstream (FA-WAT-316)	0.4±0.4	< 0.5	0.8±0.4	< 0.2	0.3±0.2

Table 8.4 Laboratory Data for Surface Water Samples (Results in pCi/l)

8.4 Micro-R Measurements

A tabular summary of all micro-R meter surveys for the random grid samples and for the all sampled grids is provided in Tables 1 and 2 of Appendix II. Drawing No. 98FCRER (Appendix I) also presents the average exposure rate measurements for each 5m x 5m grid area for which measurements were collected. For the random sample, the average exposure rate over any 25 m² grid area ranged from 6 μ R/h to 10 μ R/h at one meter from the surface. The overall average exposure rate for the random sample was 7 μ R/h at one meter from the surface. At one meter above the surface, the maximum exposure rate was 10 µR/h, including background. This maximum was measured at the location that had the highest exposure rate at the surface, which was 25 μ R/h, including background (grid # 52). Assuming a background of 7 μ R/h, the net annual exposure rate at this surface location would be 18 μ R/h. This location was evaluated to determine any significance with respect to exposure of the general public. Under normal circumstances, it is unlikely that any additional exposure would occur to members of the public as this piece of concrete is within a drainage area, and is on land owned by Cimarron Corporation. The possible exposure scenarios evaluated included hunting the land or an intruder inadvertently remaining in the area for a period of time. Assuming ten hours per year exposure, the hypothetical individual could receive an annual dose of 180 µrem to the portion of the skin of the whole body or to any organs situated directly in contact with the concrete with high residual activity. A more likely scenario is from a person standing in the area for a period of several hours per year. The net annual dose rate above background from this hypothetical activity would be approximately 9 μ rem/y to the whole body, based upon the net measured exposure rate at a height of one meter. Both of the above dose scenarios are unlikely, in that the concrete rubble is not in an area where it would be desirable to spend any amount of time. In comparison to the exposure that an individual receives from natural background radiation (≈ 300 millirem/y), the calculated hypothetical doses of 180 μ rem/y and 9 μ rem/y are insignificant.

The data summary for exposure rate measurements of all sample grids (i.e., random sample plus supplemental grid area data) is also included in Table 2 of Appendix II. This data is similar to the random grid sample data described above, and also indicates that there are no significant exposure risks from leaving the concrete in place.

The data summarized in Tables 1 and 2 of Appendix II, and presented in Drawing No. 98FCRER, include the exposure due to natural background radiation, which has been previously determined to range from 7-10 μ R/h at the Cimarron site. Therefore, the estimated dose at one meter is essentially equal to that which would be received due to natural background.

8.5 Gross Alpha and Gross Beta-Gamma Surface Activity Data

Gross beta-gamma scans were performed over the entire surface of selected random grids containing concrete rubble to determine the nature and extent of the activity. In addition, the random sample data were supplemented with additional measurements to ensure that the random sample was representative. Gross alpha and gross beta-gamma surface activity data are summarized in Tables 3 through 6 in Appendix II. Drawings No. 98FCRA and 98FCRB (Appendix I) also present the average gross alpha and gross beta-gamma surface activity data for each 5m x 5m grid area. The data tables present the measured activity for each representative area and hot spots within the sampled 5m x 5m grids. Where applicable, background subtraction was performed on the gross beta-gamma hot spot data to obtain the expected increase that is due to residual activity. The average and maximum activity (dpm per 100 cm²) is calculated for each of the 5m x 5m grids. The average volumetric concentration over the 5m x 5m grid area was then calculated using the relationship between gross beta-gamma surface activity and volumetric concentration that is presented in Section 8.6.2.

The volumetric concentration calculation assumes that the average gross beta-gamma surface activity is representative of the grid area as a whole, and that there is equal probability of measurement of the residual activity on the most elevated side of the concrete as there is for measurement on the least elevated side. This assumption is reasonable based upon the random manner in which the concrete was placed, and the random manner in which the sampling of the grid areas was performed. In order to account for the probability for residual activity to exist on both the top and bottom sides of each concrete slab, the average thickness for the concrete was found to be one foot, the volumetric concentration was calculated over a thickness of six inches.

8.5.1 Gross Beta-Gamma Data

Overall, the random grid sample data contained more elevated locations per grid and was found to be more limiting in that the data indicated higher overall concentrations than the data which included both the random sample and the supplemental survey data. The maximum gross beta-gamma surface activity (concrete background subtracted, and averaged over $1m^2$) was found within grid #43 (hot spot #1). This hot spot location measured 26,075 dpm/100 cm². The highest average gross beta-gamma surface activity over any 5m x 5m grid was found in grid #51, which averaged 4,867 dpm/100 cm², with background subtracted. Using the conversion to volumetric concentration, this equates to 7.4 pCi/g average total uranium concentration over the 25m² area. This concentration is well below the BTP Option,#1 guideline value.

The overall average volumetric concentration calculated for the random sample was 2.9 pCi/g. For all sampled grids (i.e., random sample and supplemental \checkmark samples), the average volumetric concentration was found to be <u>1.8 pCi/g</u>. Although above typical background levels for concrete, these concentrations are similar to those found in nature and are well below the BTP Option #1 criteria. Therefore, the health and safety significance of leaving the concrete in place is similar to the health and safety considerations for natural soils. The potential uses of the concrete are limited by its portability and by the difficulty that would be experienced through attempts to remove it from the drainage areas. Therefore, it is anticipated that the any exposures to the concrete would be from casual contact or from its gradual disintegration over time due to environmental forces.

8.5.2 Gross Alpha Data

The gross alpha survey data are presented in Tables 5 and 6 in Appendix II and are also summarized in Drawing No. 98FCRA (Appendix I). Data are summarized for the random sample as well as for all sampled grids. Data generally indicate that the concrete rubble would meet the current gross alpha guideline criteria of 5,000 dpm/100 cm² (average) and 15,000 dpm/100 cm² (maximum) for unconditional release. As previously discussed in Section 1.0, the concrete was placed into Sub-Area "F" after gross alpha surveys were performed. The criteria in effect at the time the concrete was placed into Sub-Area "F" varied from the criteria currently in effect (as discussed above) up to 25,000 dpm/100 cm², which was allowable under the NRC criteria which was in effect at the time.

Review of the data indicate that two of the sampled grids contained hot spots exceeding 5,000 (average) or 15,000 (maximum) dpm/100 cm². Grid #52 contained a hot spot with 9,000 dpm/100 cm² (average) and 16,000 dpm/100 cm² (maximum). In addition, Grid #56 contained a hot spot with 15,600 dpm/100 cm² (maximum).

The criteria proposed for release of the concrete is based upon volumetric concentration. The concrete rubble does not have any smearable contamination and the activity would have to be removed through mechanical or physical forces. While it is probable that environmental forces will eventually act to remove the radioactivity,

normal environmental dispersion will result in insignificant quantities available for ingestion or inhalation.

8.6 Calculations

This section describes calculations and evaluations that were required in order to evaluate the concrete rubble and perform comparisons with the proposed release criteria. The calculations included determinations of the average thickness of the concrete, which was used to determine the appropriate volume of concrete for averaging the residual activity. The calculations performed to determine the relationship between gross beta-gamma surface activity and volumetric concentration of total uranium are also described in this section. Finally, source term was estimated based upon the random sample data. The source term allows for evaluation of the acceptability of the proposed action, which is to leave the concrete in place. The source term can be utilized for input into computer models or for use in comparing the residual activity with that present in the natural environment. A RESRAD computer model \checkmark was run to calculate hypothetical dose to individuals over a period of 1000 years.

8.6.1 Calculation of Average Concrete Thickness

The volume estimate for the concrete was previously presented in the Decommissioning Plan. The data was evaluated and a weighted average thickness for the concrete was calculated. The weighted average thickness accounts for the presence of different volumes of concrete rubble that also have different thickness. The weighted average is calculated as follows:

 $\overline{\mathcal{L}} =$ Weighted Average = $\sum [(\text{thickness}) \times (\text{volume})] / \sum [\text{volume}];$

The above formula can be explained as follows. For each area of the facility, the concrete thickness in the area is multiplied by the volume of the concrete that came from the area. These individual volume/thickness calculations are summed and divided by the overall volume of the concrete (i.e., all concrete that was placed into Sub-Area "F") to obtain the weighted average.

Using the above calculation, the weighted average thickness of the concrete in Sub-Area "F" was estimated to <u>be 1 foot</u>. The data tables showing the dimensions of the concrete present in Sub-Area "F" are presented in Appendix III.

8.6.2 Volumetric Concentration Conversion Factor

A special study was performed as described in Section 7.6 to determine a relationship between gross beta-gamma surface activity on the concrete (measured in $dpm/100cm^2$) and the volumetric concentration (measured in pCi/g) of total uranium. The solution to this problem is confounded due to the natural presence of beta and gamma emitters in concrete, including uranium. In addition, the low energy of the beta emitters

associated with enriched uranium and the variability in depth of the contaminated layer hinder the determination of a single conversion factor for this purpose. However, the data presented for the two slabs studied indicate a reasonable agreement between the data.

For this study, <u>two slabs were selected</u>. Slab #1 had an initial average gross betagamma surface activity of 4496 dpm/100cm² (concrete background subtracted), while slab #2 had an initial average gross beta-gamma surface activity of 17,697 dpm/100cm² (concrete background subtracted). Measurements were performed on each slab as described in Section 7.6, followed by scabbling of another layer (average depth approximately 1/8 inch), resurvey, and additional scabbling until the majority of the contamination was removed. The scabble dust and particles were collected and analyzed for total uranium content using either the onsite soil counter or using an offsite independent laboratory. Survey and laboratory data for the two slabs is presented in Table 8.5.

The special study data revealed that the maximum depth of the contamination was approximately 3/8 inch. The contamination was found to be highest, as expected, at the layer closest to the surface, and decreased substantially as additional layers of concrete were scabbled and removed.

The concentration of total uranium was assumed to be at background (i.e., 1.5 pCi/g) for all remaining concrete when the gross beta-gamma measurements indicated that the composition residual activity had been essentially removed. Complete removal of the residual activity was achieved after two scabbling operations on Slab #1, and after three scabbling operations on Slab #2. It was determined that each scabbling operation removed approximately 1/8 inch from the surface. The volumetric concentration conversion factor was determined using the average thickness of six inches as follows:

<u>Slab #1</u>

concrete Slob

Volumetric average conversion factor $(dpm/100 \text{ cm}^2 \text{ gross beta-gamma per pCi/g total U}) =$

Note: 6" contains \$ ×6 = 48 Loyns of thickness &"

	Gross Alpha	Gross Alpha	Gross Beta	Gross Beta	Slab	Slab	Hot	Spot	Total U
	$dpm/100cm^2$	dpm/100cm ²	$dpm/100cm^2$	Dpm/100cm ²	Surface	1m	Surface	. 1m	Conc.
ļ	(ave)	(max)	(ave)	(max)	μR/h	μR/h	μR/h	μR/h	(pCi/g)
Slab #1									
Initial									
Measurement	1251	4800	17,697	44,540	9	7	11	7	814.7
After 1 st									
Scabbling	157	480	_ 2411	8330	6	6	6	6	102.7
After 2 nd					·				
Scabbling	24	160	0	1310	6	6	6	6	
Slab #2									
Initial							·		
Measurement	329	1280	4496	24,390	6	6	9	8	313
After 1 st									
Scabbling	115	480	935	13,370	5	6	8	6	74.9
After 2 nd									
Scabbling	116	400	0	4,950	6	6	6	6	17.7
After 3 rd									
Scabbling	<350	<350	0	230	9	9	9	9	

Notes: 1) Concrete gross beta-gamma background (800 dpm/100cm²) subtracted from beta-gamma measurements.

2) No background subtraction performed for all other measurements.

3) Measurements less than 0 after background subtraction were recorded as 0.

4) Total U concentration assumed as 1.5 pCi/g when all residual gross beta-gamma activity was determined to be removed by scabbling.

Slab #2

Volumetric average conversion factor (dpm/100 cm² gross beta-gamma per pCi/g total U) = $(4496 \text{ dpm}/100 \text{ cm}^2) \div \{[313 \text{ pCi/g} + 74.9 \text{ pCi/g} + 17.7 \text{ pCi/g} + (1.5 \text{ pCi/g} \text{ x 45})] \div 48\} =$

456.2 dpm/100 cm² gross beta-gamma per pCi/g total U.

In the above calculations, each scabbled layer is assigned a thickness of 1/8 inch, which corresponds to the measured concentration of the concrete. It follows that there are 48, 1/8 inch layers in a six inch slab of concrete. Each background layer is assumed to have a total uranium concentration of 1.5 pCi/g, as discussed in Section 6.2.1. The numerator in the above equations is the measured gross beta-gamma surface activity on the top layer. \checkmark This data is readily available and was obtained during the surveys of the concrete rubble. The two slabs studied in this special project indicate that the conversion factor is in the range of 456 to 861 dpm/100 cm² gross beta-gamma per pCi/g total U. The two samples resulted in calculated conversion factors that were within a factor of two, which is good agreement considering the numerous areas of uncertainty.

The average of the two measurements, which is $661 \text{ dpm}/100 \text{ cm}^2$ gross beta-gamma per pCi/g total U, was utilized to estimate the average volumetric concentration of residual activity present in the concrete. For comparison, the volumetric conversion factor was also calculated for an assumed concrete thickness of three inches. This conversion factor was also used to calculate average total uranium concentrations. The data tables for gross beta-gamma surface activity in Appendix II (Tables 3 and 4) also present the average volumetric concentrations for each 5m x 5m grid area.

8.6.3 Volumetric Concentration Calculations

Calculation of the estimated volumetric concentration (in pCi/g total U) was performed by multiplying the conversion factor described in Section 8.6.2 times the measured gross beta-gamma surface contamination measurement (with background subtracted). These calculations, which are summarized in Appendix II (Tables³ § and⁴⁶), resulted in average total uranium concentrations (after background subtraction) ranging from 0.8 pCi/g to 7.4 pCi/g. The negative results indicate that the 5m x 5m grid average was less than 1.5 pCi/g. Subtraction of the 800 dpm/100cm² concrete background thus resulted in a value that was less than average. Assuming a normal distribution of a background distribution, one half of the samples collected would be expected to be less than background.

The maximum 5m x 5m grid average total uranium concentration was 7.4 pCi/g (grid #51). This concentration is less than 25% of the guideline value of 30 pCi/g. The average total uranium concentration for the random sample was 2.9 pCi/g, which is less than 10% of the guideline value for enriched uranium (30 pCi/g). For the random

sample and the supplemental grid areas (66 grid areas), the total uranium average concentration was 1.8 pCi/g, which is equal to 6 percent of the guideline value.

8.6.4 Source Term Calculation

The average volumetric concentration for the random sample was calculated to be 2.9 pCi/g. Since the volume of concrete is known, an estimate of the total activity of uranium present in the concrete can be calculated as follows:

Total activity = $(2.9 \text{ pCi/g-concrete}) \times (1.8 \text{ g-concrete/cc}) \times 31,985 \text{ ft}^3$ concrete x 28,320cc/ft³

= 4.7 E+09 pCi = <u>4.7 E-03 Ci Total Uranium.</u>

8.6.5 Pathway Analysis

The RESRAD computer code was used to evaluate the potential dose due to leaving the concrete in place. The RESRAD code considers direct radiation, inhalation of resuspended radioactivity, ingestion of groundwater and foodstuffs grown in contaminated soils, or in soils irrigated with contaminated surface or ground water, and all other credible pathways. The RESRAD model generally will predict a more conservative dose (i.e., a higher dose) than that which could potentially be received, as it generally utilizes conservative assumptions and includes scenarios for use of the land area that are generally not consistent with the expected uses for concrete rubble.

The input parameters for RESRAD include those defined in NRC's Policy and Guidance Directive (PG) 8-08, "Scenarios for Assessing Potential Doses Associated with Residual Activity"²⁶. The uranium isotopic ratios were chosen to be the same as those used by the NRC for the "Environmental Assessment Associated with the BTP Option #2 Onsite Disposal Cell at Cimarron"²⁷, which were U-234 (79%), U-235 (1.7%), and U-238 (20%). The selected density for the concrete was 1.8 g/cc. The calculated area of the contaminated zone is 2970 m² [31,985 ft³ x (0.3048m/ft)³ ÷ 0.3048m], while the calculated thickness is 0.3048m. ($1 \int e^{e} e^{\frac{1}{2}}$)

The RESRAD calculated maximum dose rate will occur at 900 years and result in a maximum hypothetical annual dose to the resident of approximately 1 millirem per year. A printout of the parameters used and results of the RESRAD calculation are provided in Appendix IV.

9.0 Summary

A Final Status Survey was performed on the concrete in Sub-Area "F". The survey incorporated NRC guidance and suggestions for volumetric concentration averaging. This Report presents the results of the Final Status Survey. The survey data were evaluated and doses from leaving the concrete in place were calculated. The evaluations presented in this report indicate that the concrete should be left in place for the following reasons:

- RESRAD dose evaluation indicates that the projected maximum dose would occur after 900 years, and that this dose would be approximately 1 millirem per year.
- Random sample data indicate that the average total uranium concentration for the concrete rubble is 2.9 pCi/g. The overall average total uranium concentration in the concrete is less than 10 percent of the BTP Option #1 guideline value (30 pCi/g). The average total uranium concentration, based upon all sample data, was calculated to be 1.8 pCi/g.
- The maximum concentration averaged over any 5m x 5m grid area was found to be 7.4 pCi/g., which is less than 25% of the BTP Option #1 guideline value.
- The overall average exposure rate at one meter from the surface was 7 μ R/h, which is equivalent to natural background. The maximum exposure rate at one meter from the surface was 10 μ R/h, which is within the range of natural background.
 - The calculated total uranium source term is 4.7 millicuries within the total volume of concrete rubble estimated at 31,985 ft³.
 - No elevated measurements observed for exposure rate as measured by thermoluminescent dosimeters placed in the field adjacent to the concrete rubble.
 - Surface water samples collected upstream and downstream did not indicate any contribution of radioactivity from the concrete rubble. Soil/sediment samples collected upstream, within, and downstream of the concrete rubble reflect radioactivity levels which are characteristic of samples collected in unaffected areas of the facility.
 - The concrete continues to serve the useful purpose of on-site erosion control.

The calculations presented in this report utilized conservative assumptions. Therefore, it is unlikely that even the low dose which was calculated could be received by any member of the public. Based upon the evaluations in this report, Cimarron Corporation requests authorization from the NRC for unconditional release of the concrete.

^{...\}subareaf\concrete\98fcrss

^{...\}subareaf\concrete\98fcrer

^{...\}subareaf\concrete\98fcra

...\subareaf\concrete\98fcrb

...\subareaf\concrete\98fcrc

TABLE 1

Ň

.

OF

· ·

APPENDIX II

 TABLE 1 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA

 Exposure Rate Summary (Random Sample).

 PAGE 1

Q	<u>GRID #</u>	REPRESENTATIN	E AREA (Micro <u>1 METER</u>	-R/Hr) <u>% CONCRETE</u>	TOTAL # OF HOT SPOTS	#	HOT SPOT DA SURFACE	TA <u>1 METER</u>	5m x 5m GF <u>AVE@1m</u>	RID MAX@1m
	30	7	6	100	7	1 2 3 4 5 6 7	10 6 7 11 8 8 7	7 5 6 7 6 8	7	7
	36	6	6	100	2	1 2	6 8	5 6	6	6
	37	5	6	100	11 , ,	1 2 3 4 5 6 7 8 9 10 11	6 6 8 7 8 7 7 8 8 8	6 5 6 7 6 7 6 7 7 6	6	7
	42	8	7	100 .	7	1 2 3 4 5 6 7	8 9 7 7 7 8	7 7 6 7 7 7	8	7
•	43	6	· 6 ·	. 100	6	1 2 3 4 5 6	8 7 7 7 7	7 7 6 7 7 7	6	7
	44	6	6	100	7	1 2 3 4 5 6 7	6 7 13 8 6 6	6 6 7 7 6 6	6	. 7
	50	6	6	100	2	1 2	7 8	6 7	6	7
	51	6	6	. 100	11	1 2 3 4 5 6 7 8 9 10 11	7 6 7 7 7 7 8 7 7 6	6 6 7 6 7 6 7 6 6	6	7
	52		6	100	10	1 2 3 4 5 6 7 8 9 10	9 7 7 7 7 25 12 10 10	8 6 7 7 7 10 8 9 9	7	10

TABLE 1 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA Exposure Rate Summary (Random Sample) PAGE 2

<u>GRID #</u>	REPRESENTATIV SURFACE	'E AREA (Micro- <u>1_METER</u>	-R/Hr) <u>% CONCRETE</u>	TOTAL # OF HOT SPOTS	£	HOT SPOT DA	ATA <u>1 METER</u>	5m x 5m G <u>AVE@1m</u>	RID <u>MAX@1m</u>
53	6	6	100	13	1 2 3 4 5 6 7 8 9 10 11 12 13	7 9 7 6 7 6 8 7 8 8 7 8 7	6 7 6 7 7 6 7 6 7 6 7 6 7	6	7
56	6	6	100	9	1 2 3 4 5 6 7 8 9	7 9 10 9 8 7 8 6 7	6 7 8 7 6 7 6 7 6 7	6	8
57	7	6	100	12	1 2 3 4 5 6 7 8 9 10 11 12	7 7 8 9 7 9 8 9 11 11 8 8	6 7 6 7 8 7 8 8 8 7 7 7	7	8
58	7	7	100	9	1 2 3 4 5 6 7 8 9	10 7 8 7 7 7 8 7 7	8 7 6 6 7 7 6 6	7	8
59	7	6	100	2	1 2	7 8	6 7	7	7
66	6	6	100	2	1 2	9 7	8 7	6	8
67	8	8	100	7	1 2 3 4 5 6 7	8 9 7 7 9 8	7 7 6 6 7 7	8	7
68	6	7	100	4	1 2 3 4	8 6 7 6	7 6 6	6	7
71	8	7	100	1	1	8	. 7	8	7
74	6	6	100	7	1 2 3 4 5 6 7	6 7 7 7 8 7	6 5 6 7 7 6	6	7

. .

TABLE 1 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA Exposure Rate Summary (Random Sample) PAGE 3

GRID #	REPRESENTATI SURFACE	VE AREA (Micro 1 METER	»-R/Hr) % CONCRETE	TOTAL # OF HOT SPOTS	#	HOT SPOT DA SURFACE	TA 1 METER	5m x 5m G AVE@1m	RID MAX@1m
		1004140	MODING		<u>n</u>	<u>ogninos</u>	<u></u>	<u>1115000110</u>	INFO SPECIFIC
75	7	6	100	5 .	<u> </u>	6	5	7	7
					2	8	7		
					3	6	6		
					4	7	7		
					5	7	6		
81	5	6	85	9	1	6	6	6	7
	•	•		•	2	7.	6		•
					3	8	7		
					4	7.	7		
					5	7	6		
					6	8	7		
					7	7	7		
					8	7	6		
					9	0	D		
82	6	6	100	12	1	7	7	6	7
					2	7	7		
				•	3	7	6		
					4	7	7		
					5	/	6		
					5	8	6		
					. /	7	. 7		
					ğ	6	6		
					10	7	6		
		-			11	7	6		
					12	7	7		
83	. 7	e	100	11	1	8	6	. 7	8
85	'	. 0	100		2	8	7		Ū
		•			3	8	7		
					4	7	7		
					5	7	6		
					6	7	6		
					7	8	6		
					8	10	8		
	· .				9	8	5		
					11	7	7		
91	7	6	100	12	1	8	6	7	7
					2	57	6		
					3	10	7		
					5	10	7		
					6	8	7		•
					7	8	7		
					8	8	7		1
					9	8	6		•
					10	9	7		
					11	6 7	б. б		
					12	,	0		
93	7	6	100	9	1	7	6	7	7
					2	1	6		
					3	6	6		
					5	. 6	6		
					6	8	7		
					7	6	6		
					8	7	6		
					9	8	7		
94	7	6	100	1	1	8	6	7	. 6
103	7	7	100	0				7	.7
				•					
									,

.

.

TABLE 1 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA Exposure Rate Summary (Random Sample) PAGE 4

GRID #	REPRESENTATIV SURFACE	E AREA (Micro- <u>1 METER</u>	R/Hr) <u>% CONCRETE</u>	TOTAL # OF HOT SPOTS	<u>#</u>	HOT SPOT DA SURFACE	TA <u>1 METER</u>	5m x 5m G <u>AVE@1m</u>	RID MAX@1m
105	6	6 · · ·	97	14	1 2 3 4 5 5 7 8 9 10 11 12 13 14	9 7 7 11 7 10 8 9 7 8 10 7 9	7 6 6 7 6 7 8 6 7 8 6 8 8 8	6	8
110	6	6	100	8	1 2 3 4 5 6 7 8	7 7 7 7 7 6 8	6 7 6 7 6 7 6 7	6	7
111	6	5	96	10	1 2 3 4 5 6 7 8 9 10	7 9 8 7 7 10 7 8 7	5 5 8 6 7 6 7 6 7 7	6	8
133	7	6	100	14	1 2 3 4 5 6 7 8 9 10 11 12 13 14	8 9 6 7 8 8 8 7 7 8 8 8 8 8 8 8	7 6 6 7 6 8 6 6 7 7 7 7 7	7	8
134	б	6	96	17	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7	7 7 6 9 9 8 10 8 9 8 6 9 9 7 7 7 12 7	7 6 8 7 6 8 7 8 7 6 8 7 6 8 6 8 6 8 6	7	8

Representative Are	as @ 1m		·	Hot Spots @	tm'			
<u>1 m2 Minimum</u> uR/h: 5	Maximum 8	<u>Overall Ave.</u> 6	<u>Total #</u> 251	<u>Ave. #/grid</u> 8	<u>1 m2 Minimum</u> 5	<u>1 m2 Maximum</u> 10	<u>1 m2 Ave.</u> 7	

 5m x 5m Grids @ 1m
 Area (m^2)
 Ave. Minimum
 Ave. Maximum

 794
 6
 8
 <u>Overall Ave.</u> 7 <u># of Grids</u> 32 uR/h

NOTES: 1. 5m x 5m grids.

TABLE 2

OF

APPENDIXII

.

 TABLE 2 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA

 Exposure Rate Summary (All Sampled Grids)

 PAGE 1

REPRESE <u>GRID #</u>	INTATIVE AREA (I SURFACE	Micro-R/Hr) <u>1 METER</u>	% CONCRETE	TOTAL # OF HOT SPOTS	HC #	T SPOT DATA SURFACE	1 METER	5m x 5m G <u>AVE@1m</u>	RID MAX@1m
1	6	6	25	0				6	6
2	6	7	60	0				6 ·	7
3	6	6 ·	65	0				6	6
4	7	6	65	0				7	6
5	6	7	60	0				6	7
6	7	8	75	` 0 .				`7	8
7	7	6	55	0				7	6
8	. 7	7	60	0	-			7	7
9	6	6 .	60	0				6	6
10 ·	6	6	60	0		4		6	6
11	7	7	50	0			,	7	7
12	7	6	50	1	1	7	6	7	6
13	7.	6	70	4	1	6	7	7	6
			: · · ·		3	9	7		
	_				4	0	7	7	7
14	-	. .	70		1	9 7	7	7	7
15	-	-	100	1 	1	7	1	7	7
10	-	. /	60	U		٥	7	7	7
17	7	. 6	60	1	1	o ,	1	, a	, 9
18	8	8	100	U		e	e	7	6
19	<i>'</i>	. 0	80	1	i	0			· e
20	0	Ö	70 (80	0				e	. 6
21	7.	0	40	4	1	e	<u>в</u>	7	
22	. (. O	. 100	2	1	8	7	, 7	7
23	7	. 0	100		2	7	7	,	•
24	7	. 7	. 88	2	1	8	7 7	7	7
- 25	6	(5)	95	` 1	-	7	6	6	6
26	7	. 7	60	1	1	9	8	7	8
27	, 8	7	75	0	·	•		8	7
28	10	(8)	. 88	0				10	8
29	. 7	6	. 60	5	1	8	7	7	7
		- ,		-	2 3	8 6	7 [°] 6	·	
	``				4 5	10 8	7 7		
30	7	6	100	7	1	10	7	. 7	7
	·				23	6 7	5 6		
					4 5	11 8	6 7		
				·. ·	6 7	8 7	6 6		·

TABLE 2 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA
Exposure Rate Summary (All Sampled Grids)
PAGE 2

<u>GRID #</u>	SURFACE	Micro-R/Hr) <u>1_METER</u>	% CONCRETE	TOTAL # OF HOT SPOTS	нс #	T SPOT DATA SURFACE	<u>1 METER</u>	5m x 5m GR <u>AVE@1m</u>	D MAX@1m	
31	6	5	85	1	1	6	6	6	6	
32	6	7	40	2	1 2	7 6	7 6	6	7	
33	7	7	25	0				7	7	
34	6	6	20	2	1 2	7 8	6 7	6	7	
35	6	6	93	3	1 2 3	8 8 6	6 6 6	6	6	
36	6	6	100	2	1 2	6 · 8	5 6	6	6	
37	5	6	100	11	1 2 3 4 5 6 7 8	6 6 8 7 8 7	6 5 6 7 6 7 6 7	6	7	
					9 10 11	7 8 8	7 7 6		· _	
42	8	7	100	7	1 2 3 4 5 6 7	8 6 9 7 7 7 8	7 7 6 7 7 7	8	7	
43	6	6	100	6	1 2 3 4 5 6	8 7 7 7 7	7 7 6 7 7 7	6	7	
44	6	6	100	7	1 2 3 4 5 6 7	6 7 7 13 8 6 6	6 6 7 7 6 6	6	7	
50	6	6	100	2	1 2	7 8	6 7	6	7	
51	6	6	100	11	1 2 3 4 5 6 7	7 6 7 7 7	6 6 7 6	6	7	
			· · · · ·		8 9 10 11	8 7 7 6	7 6 6 6		,	
52	7 .	6	100	10	1 2 3 4 5 6 7 8	9 7 7 7 7 7 25 12	8 6 7 6 7 7 10 8	7	10	

TABLE 2 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA Exposure Rate Summary (All Sampled Grids) PAGE 3

REPRESEN <u>GRID #</u>	TATIVE AREA (I SURFACE	Micro-R/Hr) <u>1 METER</u>	% CONCRETE	TOTAL # OF HOT SPOTS	<u>#</u>	HOT SPOT DATA SURFACE	1 METER	5m x 5m G <u>AVE@1m</u>	RID <u>MAX@1m</u>
53	6	6	100	13	1 2 3 4 5 6 7 8 9 10 11 12 13	7 9 7 6 7 6 8 7 8 8 8 8 6 7	6 7 6 7 7 6 7 6 7 6 7 6 7 6 7	6	7
56	6	6	100	9	1 2 3 4 5 6 7 8 9	7 9 10 9 8 7 8 6 7	6 7 7 7 6 7 6 7	6	8
57	7	6	100	12	1 2 3 4 5 6 7 8 9 10 11 12	7 7 9 7 9 8 9 11 11 8 8	6 7 6 7 8 7 8 8 8 8 7 7	7	8
58	7		100	9	1 2 3 4 5 6 7 8 9	10 7 8 7 7 8 7 7	8 7 6 7 7 6 6	7	8
59	7	6	100	2	1 2	7 8	6 7	7	7
66	6	6	100	2	1 2	9 7	8 7	· 6	8
67	8	8	100	. 7	1 2 3 4 5 6 7	8 6 7 7 9 8	7 7 6 6 7 7	8	7
68	6	7	100	4	1 2 3 4	8 6 7 6	7 6 6 6	6	7
71	8	7	100	1	1	8	7	8	7

· · · .

.

· ·

TABLE 2 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA Exposure Rate Summary (All Sampled Grids) PAGE 4

REPRESE <u>GRID #</u>	NTATIVE AREA (N <u>SURFACE</u>	Micro-R/Hr) <u>1 METER</u>	% CONCRETE	TOTAL # OF HOT SPOTS	#	HOT SPOT DATA SURFACE	1 METER	5m x 5m Gf <u>AVE@1m</u>	RID <u>MAX@1m</u>
74	6	6	100	7	1 2 3 4 5 6 7	6 6 7 7 7 8 7	6 5 6 7 7 6	6	. 7 .
75	7	6	100	5	1 2 3 4 5	6 8 6 7 7	5 7 6 7 6	7	7
81	5	6	85	9	1 2 3 4 5 6 7	6 7 8 7 7 8 7	6 7 7 6 7 7	6	7
		•			8 9	7 · 6	6 6		
. 82	6	· 6	. 100	12	1 2 3 4 5 6 7 8 9 10 11 12	7 7 7 7 8 7 7 6 7 7 7 7	7 6 6 6 6 7 6 6 6 7	6	7
83	7	6	100	11	1 2 3 4 5 6 7 8 9 10 11	8 8 7 7 7 8 10 8 7 7	6 7 7 6 6 6 8 6 7 7	7	8
91	7	6	100.	12	1 2 3 4 5 6 7 8 9 10 11 12	8 6 7 10 10 8 8 8 8 8 9 6 7	6 6 7 7 7 7 6 7 6 6	7	7
93	7	6	100	9	1 2 3 4 5 6 7 8 9	7 7 6 8 6 7 8	6 6 6 6 7 6 7 6 7	7	7

.

TABLE 2 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA	
Exposure Rate Summary (All Sampled Grids)	
PAGE 5	

-92 3									
REPRESEN <u>GRID #</u>	TATIVE AREA (M <u>SURFACE</u>	/licro-R/Hr) <u>1 METER</u>	% CONCRETE	TOTAL # OF HOT SPOTS	۲ #	HOT SPOT DATA SURFACE	<u>1 METER</u>	5m x 5m G <u>AVE@1m</u>	RID MAX@1m
94	7	6	100	1	1	8	6	7	6
103	7	7	100	0				7	7
105	6	6	97	14	1 2 3 4 5 5 7 8 9 10 11 12 13	9 7 7 11 7 10 8 9 7 8 10 7	7 6 6 7 6 7 7 8 6 7 8 6	6	8
110	6	6	100	8	1 2 3 4	7 7 8 7	6 6 7 . 6	6	7
· ·					5 6 7 8	7 7 6 8	7 6 6 7		· .
111	6	5	96	10	1 2 3 4 5 6 7 8 9 10	7 6 9 8 7 7 10 7 8 7	5 5 6 7 6 7 6 7 7	6	8
133	7	6	100	14	1 2 3 4 5 6 7 8 9 10 11 12 13 14	8 9 6 7 8 8 8 7 7 8 8 8 8 8 8 8 8	7 6 6 7 6 8 6 7 7 7 7 7 7	7	8

÷

• .

...

TABLE 2 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA Exposure Rate Summary (All Sampled Grids) PAGE 6

REPRES	ENTATIVE AREA (I	Micro-R/Hr)		TOTAL # OF		HOT SPOT DAT	A	5m x 5m GF	RID
<u>GRID #</u>	SURFACE	<u>1 METER</u>	<u>% CONCRETE</u>	HOT SPOTS	<u>#</u>	SURFACE	1 METER	AVE@1m	MAX@1m
134	6	6 .	96	17	1	7	7	7	8.
					2	7	6		
					3	6	6		
					4	9	8		
					5	9	7		
					6	8	6		
					7	10	8		
				•	8	8	7		
					9	9	8		
					10	8	7		
					11	6	6		
					12	9	6		
					13	9	8		
					14	7	6		
					15	7	6		
	+				16	12	8		
				<i>,</i> .	17	7	6	•	
	Representative A	1 m				Hat Spata @	1 m		
	1 m2 Minimum	Maximum	Overall Ave		Total #	Ave #larid	1 m2 Minimum	1 m2 Movimum	1 - 2 4.40
uR/ł	1 [.] 5	8	<u>Gverall Ave.</u>		280	Ave, #gnu			<u>i iliz Ave.</u>
urvi		3	U		200	4	3	10	0
							· .		

/

.

	5m x 5m Grids @	0)1m		./		
<u># of Grid</u> 66	<u>Area (m^2)</u> 1,355	<u>Ave. Minimum</u> 6	<u>Ave, Maximum</u> 10	<u>Overall Ave.</u> 6	uR/h	

NOTES: 1. 5m x 5m grids.

TABLE 3

OF

APPENDIX II

TABLE 3 • SUB-AREA "F" CONCRETE RUBBLE GROSS BETA-GAMMA RESULTS SUMMARY (Random Sample) Page 1

(net reading) - HOT SPOT DATA (background at

REP. ARE	A NET READING (d)	pm/100cm2)		TOTAL # OF	, HO	SPOT DATA (net	reading)	Инот врот	DATA (backgrou	nd subtracted)	5m x 5m	GRID (dpn	1/100cm2)	AVE. CO	NC (pCi/g)
<u>GRID #</u>	AVE	MAX	<u>% CONCRETE</u>	HOT SPOTS	Ħ		MAX	ŧ	AVE	MAA	AVE	MAA	MI.AVG.	2	<u>v</u>
30	954 X	979	100	7	1	23,757	57,002	1	22,957	56,202	2,504	56,202	2,504	7.2	3.8
	1.		• ·		2	5,000	8,500	2	4,200	7,700 \		7			
	のかカン	mart			3	6,092	22,600	3	5,292	21,800	~				
	1 m	V	. and the		4	12,129	25,700	4	11,329	24,900					
		20			5	7,188	16,900	5	0,300	10,100					
	•	m T.			5	5,085	19,500	6	4,200	17,700					
		ne		-	1	0,107	18,500	,	5,567	11,700				•	
36	636	1,243	100	2	1	4,677	5,599	1	3,877	4,799	501	29,010	501	1.4	0.8
					2	13,225	29,810	2	12,425	29,010					
37	535	979	100	11	1	9,573	35,783	1	8,773	34,983	3,411	34,983	3,411	9.8	5.2
					2	9,451	24,893	2	8,651	24,093					
					3	9,488	18,942	3	8,688	18,142					
					4	11,189	20,400	4	10,389	19,600					
•					5	6,740	9,702	5	5,940	8,902					
					6	6,164	7,502	6	5,364	6,702					
					7	10,387	16,962	7	9,587	16,162					
					8	5,793	10,934	8	4,993	10,134					
					9	8,514	13,266	9	7,714	12,466	•				
					10	10,486	18,300	10	9,686	17,500					
						10,001		••	-,						
42	1,261	1,837	100	· 7	1	4,940	12,200	1	4,140	11,400	1,818	22,700	1,818	5.2	2.8
					2	5,310	8,300	2	4,510	7,500					
					3	6,711	22,700	3	5,911	21,900					
					4	6,940	11,800	4	6,140	11,000					
					5	5,550	9,400	5	4,750	8,600					
					6	5,440	8,500	6	4,640	7,700					
					7	7,864	23,500	7	7,064	22,700					
43	1 810	4,796	100	6	1	26,875	46,000	1	26,075	45,200	3,822	45,200	3,822	10.9	5.8
10	.,				2	18,888	40,700	2.	18,088	39,900					
					3	7,000	17,600	3	6,200	16,800					
				•	4	10,400	21,800	4	9,600	21,000					
					5	9,381	23,100	5	8,581	22,300					
					6	8,607	21,700	6	7,807	20,900					
44	929	1,616	100	7	·1	8,288	15,000	1	7,488	14,200	2,199	33,100	2,199	6.3	3.3
• •					2	12,962	33,900	2	12,162	33,100					
					3	10,625	20,200	3	9,825	19,400					
					4	9,370	20,000	4	8,570	19,200					
			÷ .		5	5,180	7,000	5	4,380	6,200					
			· ·		6	5,843	8,000	6	5,043	7,200		•			
· · · · · · ·					7	5,986	8,300	7	5,186	7,500					
50	788	891	100	2	1	6.022	13.800	1	5,222	13,000	424	17,200	424	1.2	0.6
	100	001		-	2	6,458	18,000	2	5,658	17,200					
·		4 004	400			22.000	54 100	1	21 200	53 300	4 867	53 300	4.867	13.9	7.4
51	1,646	1,991	100		1	£2,000 0.000	25 400	1' 2	8 200	24 600	.,	00,000	.,,		
	•		·		2	3,000	25,400	4	6 500	14 200					
					3	11 250	18 250	Δ	10 450	17.450					
					4 5	10 800	30 000	5	10.000	29.200					
					6	8 600	13,000	6	7.800	12,200					
					7	9 600	16 000	7	8.800	15.200					
					В	16.800	27.000	8	16.000	26,200					
					9	7.750	10.000	9	6,950	9,200					
					10	5.940	8,000	10	5,140	7,200					
					11	9,600	35,000	11	8,800	34,200				•	
	-														

I -

· .

SUB-AREA "F" CONCRETE RUBBLE GROSS BETA-GAMMA RESULTS SUMMARY (Random Sample) Page 2

F	REP. AREA NE	T READING (d	pm/100cm2)		TOTAL # OF	HOT S	POT DATA (net r	eading)	HOT SPOT	DATA (background	i subtracted)	5m x 5m	GRID (dpn	n/100cm2)	AVE. CO	NC (pCi/g)
G	RID #	AVE	MAX	% CONCRETE	HOT SPOTS	#	AVE	MAX	<u>#</u>	AVE	MAX	AVE	MAX	WT. AVG.	<u>3"</u>	<u>6"</u>
	50	755	847	100	10	1	5 883	12 600	1	5 083	11 800	3 543	85 200	3 543	10.1	54
	JZ	155	047	100	10	2	11 192	15,000	2	10 392	14,200	0,040	00,200	0,040	10.1	
,						3	4 844	9 000	3	4.044	8,200					
						4	5.610	9.000	4	4.810	8,200					
			5 T			5	5,498	13.000	5	4,698	12,200					
						6	10,875	86,000	6	10,075	85,200					
						7	19,028	66,000	7	18,228	65,200					
						8	5,869	10,000	8	5,069	9,200					
						9	19,929	39,100	9	19,129	38,300					
			•			10	8,518	23,900	10	7,718	23,100					
	53	1,256	1,496	100	13	1 .	5,391	15,000	1	4,591	14,200	3,282	29,200	3,282	9.4	5.0
						2	7,220	26,400	2	6,420	25,600					
						3	5,431	18,000	3	4,631	17,200					
			•			4	4,775	10,000	4	3,975	9,200					
						5	5,273	15,000	5	4,473	14,200					
						6	6,136	15,000	6	5,336	14,200					
						7	5,267	11,000	7	. 4,467	10,200					
						8	6,650	16,000	8	5,850	15,200				•	
						9	9,882	21,000	9	9,082	20,200					
						10	6,167	13,000	10	5,367	12,200					
						11	11,914	30,000	11.	11,114	29,200					
					•	12	5,062	15,000	12	4,202	14,200					
						13	7,800	17,000	15	7,000	10,200					
	56	1,201	1,947	100	9	1	4,314	12,400	1	3,514	11,600	3,304	63,800	3,304	9.4	5.0
						2	21,200	33,700	2	20,400	32,900					
						3	19,500	23,000	3	18,700	22,200			+		
						4	7,500	19,000	4	6,700	18,200					
						5	10,000	25,000	5	9,200	24,200					
						6	4,484	12,000	6	3,684	11,200					
						7	4,992	10,000	7	4,192	9,200					
						8	4,057	5,500	8	3,257	4,700					
						9	7,345	64,600	9	6,545	03,000					
	57	1,047	2,332	100	12	1	4,882	23,000	1	4,082	22,200	3,252	50,200	3,252	9.3	4.9
						2	4,264	10,000	2	3,464	9,200					
						3	5,923	25,000	3	5,123	24,200					
						4	10,235	51,000	4	9,435	50,200					
						5	6,880	15,000	5	6,080	14,200					
						6	5,353	17,000	6	4,553	16,200					
						1	6,004	15,000	/	5,204	14,200					
						8	12,182	26,000	8	11,382	25,200					
						9	9,538	35,000	9	0,730	34,200					
						10	10,368	26,000	10	9,000	25,200					
						11	6,750	20,000	12	4 508	14 200					
						12	3,300	13,000	12	4,500	14,200					
	58	999	1,353	100	9	1	5,783	22,000	1	4,983	21,200	1,511	24,200	1,511	4.3	2.3
						2	5,500	18,000	2	4,700	17,200					
						3	3,429	7,000	3	2,029	5,200 6 200					
						4	4,065	15,000	4 5	3,200	14 200					
						5	4 900	21 000	5	4 100	20 200					
						7	5 348	25,000	7	4 548	24 200					
						, 8	4,788	20.000	8	3,988	19.200					
						9	4.385	8.000	9	3,585	7.200					
						-	.,000	0,000	•	-,						

.

SUB-AREA "F" CONCRETE RUBBLE GROSS BETA-GAMMA RESULTS SUMMARY (Random Sample) Page 3

REP. AREA <u>GRID #</u>	NET READING (0 <u>AVE</u>	1pm/100cm2) <u>MAX</u>	% CONCRETE	TOTAL # OF HOT SPOTS	нот s #	SPOT DATA (net i <u>AVE</u>	eading) <u>MAX</u>	HOT SPOT #	DATA (backgroun <u>AVE</u>	d subtracted) MAX	5m x 5m <u>AVE</u>	GRID (dpn <u>MAX</u>	n/100cm2) WT. AVG.	AVE. CO <u>3*</u>	NC (pCi/g) <u>6"</u>
59	1,093	1,518	100	2	1 2	3,569 4,760	10,000 10,000	1 2	2,769 3,960	9,200 9,200	539	9,200	539	1.5	0.8
66	1,276	1,881	100	2	1	4,819 3.472	28,000	1	4,019 2,672	27,200 9,200	706	27,200	706	2.0	1.1
					2		10,000	-	2,012	0,200					
67	458	671	100	7	1	5,030	18,000	1	4,230 2.467	17,200 6 200	772	23,200	772	2.2	1.2
					2	7 500	24,000	3	6 700	23 200					
					4	2,889	10,000	4	2 089	9 200					
					5	4 4 5 5	8,000	5	3 655	7 200					
					6	4,400	16,000	6	4,113	15,200					
					7	3,000	10,000	· 7	2,200	9,200					
68	585	803	100	4	1	4,100	10,000	1	3,300	9,200	327	9,200	327	0.9	0.5
					2	3,933	10,000	2	3,133	9,200					
					3	4,848	9,000	3	4,048	8,200					
					4	3,000	7,000	4	2,200	6,200					
71	524	858	100	1	1	4,176	10,000	1	3,376	9,200	(130)	9,200	(130)	-0.4	-0.2
74	1 4 4 5	3 366	100	7	1	2 158	9 000	1	1.358	8,200	1.298	10,200	1.298	3.7	2.0
14	1,445	3,500	100	•	2	3 900	10 000	2	3,100	9,200					
	-				3	3,750	8,000	3	2,950	7,200					
					4	4.333	10.000	4	3,533	9,200					
					5	3.666	5.000	5	2,866	4,200					
					6	4,700	11,000	6	3,900	10,200					
					7	3,923	10,000	7	3,123	9,200					
75	704	1 001	100	5	1	3 500	6 000	1	2,700	5,200	667	22.200	667	1.9	1.0
	104	1,001		-	2	4.710	23.000	2	3,910	22,200					
					3	4,437	10,000	3	3,637	9,200					
					4	4,765	10,000	4	3,965	9,200					
					5	5,174	22,000	5	4,374	21,200					
81	557	803	. 85	9	1	4,000	7,000	1	3,200	6,200	1,945	24,200	1,654	5.6	3.0
					2	10,074	19,000	2	9,274	18,200					
					3	5,864	25,000	3	5,064	24,200					
					4	5,067	15,000	4	4,267	14,200					
					5	4,063	12,000	5	3,263	11,200					
,					6	6,925	22,000	6	6,125	21,200					
					7	6,467	16,000	7	5,667	15,200					
					8	5,056	18,000	8	4,256	17,200					
					9	4,000	15,000	9	3,200	14,200					
82	1,058	1,771	100	12	1	4,300	11,000	1	3,500	10,200	2,496	24,200	2,496	7.1	3.8
					2	4,636	17,000	2	3,836	16,200					•.
					, 3	8,370	25,000	3	7,570	24,200					
					4	11,000	20,000	4	10,200	19,200					
					5	3,900	11,000	5	3,100	10,200					
					6	4,782	15,000	6	3,982	14,200					
					7	5,640	17,000	7	4,840	16,200					
					8	4,951	15,000	8	4,151	14,200					
					9	4,888	10,000	9	4,088	9,200					
					. 10	5,608	22,000	10	4,808	21,200					
					10	5,000	10,000	10	4,200	10 200					
					12	5,575	∠0,000	12	4,//5	19,200					

.

SUB-AREA "F" CONCRETE RUBBLE GROSS BETA-GAMMA RESULTS SUMMARY (Random Sample) Page 4

REP. ARE	A NET READING (dpm/100cm2)		TOTAL # OF	нот	SPOT DATA (net	reading)	HOT SPOT	DATA (backgroun	d subtracted)	5m x 5m	GRID (dpr	n/100cm2)	AVE. C	ONC (pCi/g)
<u>GRID #</u>	AVE	MAX	<u>% CONCRETE</u>	HOT SPOTS	<u>#</u>	AVE	MAX	<u>#</u>	AVE	MAX	AVE	MAX	<u>W1. AVG.</u>	<u>3</u> .	<u>6-</u>	
83	563	660	100	11	1	3,538	10,000	1	2,738	9,200	1,422	22,200	1,422	4.1	2.2	
					2	4,000	15,000	2	3,200	14,200	:					
					3	4,806	23,000	3	4,006	22,200						
					4	4,600	12,000	4	3,800	11,200						
					5	3,222	6,000	5	2,422	5,200						
					6	4,667	15,000	6	3,867	14,200						
					7	4,500	17,000	7	3,700	16,200						
-		· .			8	4,813	15,000	8	4,013	14,200						
					9	4,842	15,000	9	4,042	14,200						
					10	4,273	7,000	10	3,473	6,200						
					11	4,400	10,000	11	3,600	9,200						
91	1.010	2,387	100 .	12	1	5,000	17,000	· 1	4,200	16,200	2,381	50,200	2,381	6.8	3.6	
					2	3,769	19,000	2	2,969	18,200						
		•			3	4,800	15,000	3	4,000	14,200						
				•	4	4,809	26,000	4	4,009	25,200						
		-			5	7,868	51,000	5	7,068	50,200						
					6	4,955	12,000	6	4,155	11,200						
					7	8,326	26,000	7	7,526	25,200						
					8	6,786	27,000	8	5,986	26,200						
					9	4,583	11,000	9	3,783	10,200						
					10	5,258	16,000	10	4,458	15,200						
					11	4,333	13,000	11	5,555	24 200						
					12	5,900	25,000	12	3,100	24,200						
93	2,446	3,146	100	9	1	7,462	15,000	1	6,662	14,200	2,821	19,200	2,821	8.1	4.3	
					2	6,682	17,000	2	5,882	16,200						
					3	7,240	18,000	3	6,440	17,200						
					4	4,793	10,000	4	3,993	9,200					•	
					5	3,500	8,000	5	2,700	10,200						
					7	0,333	20,000	7	7,555	12 200						
					8	5,550	20,000	. 8	4 750	19 200						
					9	4,182	8,000	9	3,382	7,200						
										F0 000	(00)		(00)			
94	546	803	100	1	1	4,500	57,000	. 1	3,700	56,200	(96)	56,200	(90)	-0.5	-0.1	
103	860	1,353	100	0							60	1,353	60	0.2	0.1	
105	1 120	. 2 200	07	14	1	5 000	13 000	1	4,200	12,200	2.617	54,200	2,538	7.5	4.0	
105	. 1,129	2,200	51		2	3.077	10,000	2	2.277	9,200	-,	,				
					3	4,182	7,000	3	3,382	6,200						
					4	4,250	8,000	4	3,450	7,200						
					5	5,000	15,000	5	4,200	14,200						
					5	3,143	6,000	5	2,343	5,200						
					7	8,921	55,000	7	8,121	54,200						
	•				8	7,929	25,000	8	7,129	24,200			,			
					9	5,815	25,000	9	5,015	24,200						
					10	3,917	7,000	10	3,117	6,200						
*					11	4,361	15,000	11	3,561	14,200			•			
					12	5,083	13,000	12	4,283	12,200						
			•		13	5,000	17,000	13	4,200	14 200						
					14	5,600	10,000	14	4,000	14,200						
110	1,927	2,827	100	8	1	3,666	7,000	1	2,866	6,200	1,958	16,200	1,958	5.6	3.0	
					2	4,600	17,000	2	3,800	16,200						
			•		3	5,032	12,000	3	4,232	11,200						
					4	4,000	7,000	4	3,200	6,200						
					5	4,875	13,000	5	4,0/5	5 200						
					7	4,200	11 000	7	4 277	10 200						
					/ 8	4 750	17 000	, В	3,950	16 200						
					•	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17,000		0,000							

SUB-AREA "F" CONCRETE RUBBLE GROSS BETA-GAMMA RESULTS SUMMARY (Random Sample) Page 5

REP. AREA	NET READING ((dpm/100cm2)		TOTAL # OF	нот	SPOT DATA (net r	eading)	HOT SPOT D	ATA (backgro	und subtracted)	5m x 5m	GRID (dpn	n/100cm2)	AVE. CO	NC (pCi/g)
<u>GRID #</u>	AVE	MAX	% CONCRETE	HOT SPOTS	<u>#</u>	AVE	MAX	#	AVE	MAX	<u>AVE</u>	MAX	<u>WT. AVG.</u>	<u>3"</u>	<u>6"</u>
444	709	069	96	10	1	4 700	10.000	1	3 900	9 200	1 4 2 5	16 200	1 368	4.1	22
111	706	900	. 50	10	1 2	4,700	8,000	1 2	3,500	7 200	1,423	10,200	1,500	4.1	4.4
					2	3,007	8,000	2	2,007	7,200					
			•		3	3,200	15,000	3	2,400	14 200					
					. 4	4,307	15,000	4	3,557	14,200					
					5	4,500	15,000	5	3,700	F 200					
					.0	3,333	17,000	0	2,000	16 200					
					1	6,000	0,000	1	5,200	B 200					
					0 0 ·	4,941	9,000	0	4,141	42,200					
-					5	4,004	7,000	5	3 120	6 200					
					10	3,929	7,000	10	5,125	0,200				•	
133	867	1092	100	14	1	4 846	11 000	[.] 1	4 046	10.200	2.001	15,200		5.7	3.0
100		1002	,	••	2	4 333	6,000	2	3 533	5 200	_,				
					2	3 214	5,000	3	2 4 1 4	4 200					
					4	4 125	8,000	4	3 325	7 200					
					5	4,125	8,000	5	3 325	7 200					
					5	5 750	12,000	5	4 950	11 200					
					7	5,750	8,000	7	4,550	7 200					
					,	4,429	11,000	,	3,029	10,200					
					0	4,070	6,000	0	4,075	F 200					
					9	3,333	6,000	9	2,533	5,200					
					. 10	2,625	15,000	10	1,825	14,200					
					11	4,000	7,000	11	3,200	6,200					
					12	5,350	10,000	12	4,550	9,200					
					13	5,080	10,000	13	4,280	9,200					
					14	4,400	16,000	14	3,600	15,200					
134	1056	1705	96	17	1	4,200	6,000	1	3,400	5,200	3,063	24,200		8.8	4.7
					2	4,190	11,000	2	3,390	10,200					
					3	6,217	25,000	3	5,417	24,200					
					4	5,852	11,000	4	5,052	10,200					
					5	5,889	15,000	5	5,089	14,200					
					6	5,167	14,000	6	4,367	13,200					
					7	5,409	24,000	• 7	4,609	23,200					
					8	5,296	12,000	8	4,496	11,200					
			-		9	3,600	5,000	9	2,800	4,200					
					10	4,300	10,000	10	3,500	9,200					
					11	4,565	11,000	11	3,765	10,200					
	•				12	7,138	23,000	12	6,338	22,200					
					13	5,409	13,000	13	4,609	12,200					
	·				14	4.857	11,000	14	4,057	10,200					
					15	4,437	6.000	15	3,637	5,200					
					16	4,300	6,000	16	3,500	5,200					
<i>1</i>					17	4,500	8,000	17	3,700	7,200					
DATA CURRANDY														,	
DATA SUMMARY															
	Representative	Areas (backgroun	d subtracted)			Hot Spots (back	ground subtracte	ed)						Maximu	Im pCi/g
	1 m2 Minimum	<u>Maximum</u>	Overall Ave.		Total #	Ave. #/grid	<u>1 m2 Ave. Min.</u>	<u>1 m2 Ave, Max.</u>	<u>1 m2 Ave.</u>					3"	<u>6"</u>
dpm/100cm2:	(800)	1,646	270		251	8	0	26,075	5,555	dpm/100cm2				13.9	7.4
pCi/g U (6" ave.):	-1.2	2.5	0.4				0.0	39.6	8.4	pCi/g Total U (6" ave)				
	5 011	(haalaan													
# of Cride	Super A tag (2)	(Dackground Subtr	acted)	Overall Ave											
<u># 01 GR05</u>	704	(120)	Ave. Maximum	1 075	dom/100cm2										
32	794	(130)	4,001	(20)	nCi/a Totol 11	C" ouo)									
		-0.2	(<u>``</u>	2.9	PCI/g Total U (o ave)									
NOTES	1 Random sar	mple consisted of '	30.5m x 5m arids												
	2. Random sar	nple taken from ar	reas containing at le	ast 85% concre	ete.										
	3 Gross hotal	background in con	crete = 800 dom/10	form? (net)											

.

Gross beta background in concrete = 800 dpm/100cm2 (net).
 Results reported in units of dpm/100cm2 unless otherwise indicated.

TABLE 4

OF

APPENDIX II

TABLE 4 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA GROSS BETA RESULTS SUMMARY (All Sampled Grids) PAGE 1

.

REP. AR <u>GRID #</u>	REA NET READING (o <u>AVE</u>	1pm/100cm2) <u>MAX</u>	% CONCRETE	TOTAL # OF HOT SPOTS	HOT #	SPOT DATA (net <u>AVE</u>	reading) <u>MAX</u>	HOT SPOT #	DATA (backgrou <u>AVE</u>	nd subtracted) <u>MAX</u>	5m x 5n <u>AVE</u>	n GRID (dpm/100cm2) MAX	AVE. CO <u>3"</u>	NC (pCi/g) <u>6"</u>
1	440	473	25	0							(360)	(327)	-1.0	-0.5
2	1342	1661	60	0							542	861	1.5	0.8
3	270	440	65	0							(530)	(360)	-1.5	-0.8
4	792	3993	65	0							(8)	3,193	-0.0	-0.0
5	524	836	60	0		•					(276)	36	-0.8	-0.4
6	1045	1650	75	0							245	850	0.7	0.4
7	278	1584	55	0							(522)	784	-1.5	-0.8
8	924	1397	60	0							124	597	0.4	0.2
9	557	935	60	0							(243)	135	-0.7	-0.4
10	1911	4967	60	0							1,111	4,167	3.2	1.7
11	1769	2090	50	0							969	1,290	2.8	1.5
12	876	1793	50	1	1	3348	7425	1	2,548	6,625	274	6,625	0.8	0.4
13	2266	3454	70	4	1 2 3	4506 4829 5016	8833 7492 12166	1 2 3	3,706 4,029 4,216	8,033 6,692 11 366	2,049	11,366	5.9	3.1
					4	4917	6611	4	4,117	5,811				
14	1025	2332	70	1	1	2215	7117	1	1,415	6,317	293	6,317	0.8	0.4
15	1118	1760	100	1	1	3038	8635	1	2,238	7,835	395	7,835	1.1	0.6
16	1203	3190	60	0							403	2,390	1.2	0.6
17	1619	3069	60	1	1	2631	9625	1	1,831	8,825	886	8,825	2.5	1.3
18	570	715	100	0							(230)	(85)	-0.7	-0.3
19	1535	3454	80	1	1	1734	7230	1	934	6,430	745	6,430	2.1	1.1
20	508	726	70	0				· .			(292)	(74)	-0.8	-0.4
21	1199	3212	80	0							399	2,412	1.1	0.6
22	694	1023	40	1	1	3625	5907	1	2,825	5,107	187	5,107	0.5	0.3
23	671	1001	<u>1</u> 00	2	1 · 2	1729 4123	5126 16544	1 2	929 3,323	4,326 15,744	51	15,744	0.1	0.1
24	959	1287	88	2	1 2	3863 4730	12837 14608	1 2	3,063 3,930	12,037 13,808	462	13,808	1.3	0.7
25	1786	2970	95	1	1	3412	7920	1	2,612	7,120	1,054	7,120	3.0	1.6
26	1892	3773	60	1	1	3188	6314	1	2,388	5,514	1,178	5,514	3.4	1.8
27	1582	1640	75	0							782	840	2.2	1.2
28	1592	1614	88	0							792	814	2.3	1.2

· .

r,

· .

TABLE 4 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA GROSS BETA RESULTS SUMMARY (All Sampled Grids) PAGE 2

REP. AREA	NET READING (dpm/100cm2)		TOTAL # OF	HOT	SPOT DATA (net	reading)	HOT SPOT	DATA (backgrour	nd subtracted)	5m x 5m	GRID (dpm/100cm2)	AVE. CC	NC (pCi/a)
<u>GRID #</u>	AVE	MAX	% CONCRETE	HOT SPOTS	<u>#</u>	AVE	MAX	<u>#</u>	AVE	MAX	AVE	MAX	<u>3"</u>	<u>6</u> *
29	1195	2156	60	5 `	1	9332	21703	1	8.532	20,903	2,436	26 100	70	37
				-	2	3863	13211	2	3.063	12,411	-,			0.7
					3	5666	15000	3	4,866	14,200				
					4	12909	26900	4	12,109	26,100				
					5	4815	8700	5	4,015	7,900				
30	954	979	100	7	1	23,757	57,002	1	22,957	56,202	2,504	56,202	7.2	3.8
					2	5,000	8,500	2	4,200	7,700				
					3	6,092	22,600	3	5,292	21,800				
					4	12,129	25,700	4	11,329	24,900				
					5	7,188	16,900	5.	6,388	16,100				
					6	5,085	19,500	6	4,285	18,700				
					7	6,187	18,500	7	5,387	17,700				
31	1,230	1,452	85	1	1	9,820	21,100	1	9,020	20,300	834	20,300	2.4	1.3
32	609	1,012	40	2	1	5,903	10,582	1	5,103	9,782	738	9.782	2.1	1.1
					.2	4,600	9,262	2	3,800	8,462				
33	889	1,386	25	0					•		89	586	0.3	0.1
34	766	979	20	2	1	1,200	5,700	1	400	4,900	1.055	9.881	3.0	1.6
					2	5,778	10,681	2	4,978	9,881	•			
35	711	2,079	93	3	1	15,128	34,200	. 1	14,328	33,400	1,913	62,659	5.5	2.9
•					2	8,975	24,739	2	8,175	23,939				
					3	24,585	63,459	. 3	23,785	62,659				
36	636	1,243	100	2	1	4,677	5,599	· 1	3,877	4,799	501	29,010	1.4	0.8
					2	13,225	29,810	. 2	12,425	29,010				
37	535	979	100	11	1	9,573	35,783	1	8,773	34,983	3,411	34,983	9.8	5.2
					2	9,451	24,893	2	8,651	24,093				
					3	9,488	18,942	3	8,688	18,142				
		•			4	11,189	20,400	4	10,389	19,600				
					5	6,740	9,702	5	5,940	8,902				
					6	6,164	7,502	6	5,364	6,702				
					7	10,387	16,962	7	9,587	16,162				
					8	5,793	10,934	8	4,993	10,134				
					9	8,514	13,266	9	7,714	12,466				
					10	10,486	18,300	10	9,686	17,500				
42	1 061	4 007	400	7			40.000		4.440		4 040	22 200		
42	1,201	1,837	100	1	1	4,940	12,200	1	4,140	11,400	1,818	22,700	5.2	2.8
					<u> </u>	5,510	0,300	4	4,310	7,500				
					3	0,711	22,700	3	5,911	21,900				
					4	6,940	11,000	4	0,140	11,000				
			4	÷	5	5,550	9,400	5	4,750	3,000			••	
					7	7,864	23,500	7	7,064	22,700				
43	1.810 -	4 706	100	6	•	26 875	46.000	4	26.075	45 200	2 022	45 200	10.0	50
73	1,010	4,730	100	0	2	18 888	40,000	2	20,075	39 900	3,022	-3,200	10.9	5.0
					2	7 000	17 600	2	6 200	16 800				
					4	10 400	21 800	3	9,200	21 000				
					5	9 381	23 100		8 581	22 300				
					e e	8,501	21 700	5	7 807	20,000				
						0,007	21,700	v	1,007	20,000				

`

TABLE 4 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA GROSS BETA RESULTS SUMMARY (All Sampled Grids) PAGE 3

REP. AREA	A NET READING (dpm/100cm2)		TOTAL # OF	HOT	SPOT DATA (net i	reading)	HOT SPOT	DATA (backgrour	nd subtracted)	5m x 5m	GRID (dpm/100cm2)	AVE.	CONC (p	Ci/a)
GRID #	AVE	MAX	% CONCRETE	HOT SPOTS	#	AVE	MAX	#	AVE	MAX	AVE	MAX	<u>3"</u>	<u>6</u>	£
44	929	1.616	100	7	1	8 288	15 000	1	7 488	14 200	2 199	33 100	63		3
	020	1,010	100	•	2	12 962	33,900	2	12 162	33 100	2,133	33,100	0.5	э.	3
					3	10 625	20,200	ã	9 825	19 400					
					4	9 370	20,000	4	8 570	19 200					
					5	5 180	7 000	5	4 380	6 200					
					6	5 843	8,000	ē	5 043	7 200					
					7	5,986	8 300	7	5 186	7,500					
					•	-,	0,000	•	0,100	1,000					
50	788	891	100	2 ·	1	6,022	13,800	1	5,222	13,000	424	17,200	1.2	0 ./	.6
					2	6,458	18,000	2	5,658	17,200					
51	1,646	1,991	100	11	1	22.000	54,100	1	21,200	53,300	4.867	53.300	13.9	a 7.	4
					2	9.000	25,400	2	8,200	24,600	1,001	00,000	10.0		•
					3	7,300	15.000	3	6,500	14 200					
					4	11.250	18,250	4	10.450	17 450					
				*	5	10.800	30,000	5	10,000	29 200					
					6	8 600	13 000	6	7 800	12 200					
					ž	9,600	16.000	7	8,800	15 200					
					8	16,800	27.000	8	16.000	26,200					
					9	7,750	10.000	9	6.950	9 200					
					10	5 940	8 000	10	5 140	7 200					
					11	9,600	35,000	11	8 800	34 200					
						-1			-,	01,200					
52	755	847	100	10	1	5,883	12,600	1	5,083	11,800	3,543	85,200	10.1	5.4	4
					2	11,192	15,000	2	10,392	14,200					
					3	4,844	9,000	3	4,044	8,200					
					4	5,610	9,000	4	4,810	8,200					
					5	5,498	13,000	5	4,698	12,200					
					6	10,875	86,000	6	10,075	85,200					
					7	19,028	66,000	7	18,228	65,200					
					8	5,869	10,000	8	5,069	9,200					
		*			9	19,929	39,100	9	19,129	38,300					
					10	0,510	23,300	10	7,710	23,100					
53	1,256	1,496	100	13	1	5,391	15,000	1	4,591	14,200	3,282	29,200	9.4	5.0	3
					2	7,220	26,400	2	6,420	25,600					
					3	5,431	. 18,000	3	4,631	17,200					
		•			4	4,775	10,000	4	3,975	9,200					
					5	5,273	15,000	5	4,473	14,200					
		•			6	6,136	15,000	6	5,336	14,200					
					7	5,267	11,000	7	4,467	10,200					
					8	6,650	16,000	8	5,850	15,200					
					9	9,882	21,000	9	9,082	20,200					
					· 10	6,167	13,000	10	5,367	12,200					
· · ·			<u>e</u>		11	11,914	30,000	11	11,114	29,200					
					12	5,062	15,000	12	4,262	14,200		• •			
					13	7,800	17,000	13	7,000	16,200					
56	1,201	1,947	100	9	1	4,314	12.400	1	3.514	11,600	3,304	63,800	94	51	0
		.,		-	2	21,200	33,700	2	20,400	32,900	0,001		5.4	5.0	
					3	19,500	23.000	3	18,700	22,200					
					4	7.500	19.000	4	6.700	18,200					
					5	10.000	25.000	5	9,200	24,200				•	
					6	4,484	12,000	6	3.684	11,200					
					7	4,992	10.000	7	4,192	9,200					
					8	4.057	5.500	8	3.257	4,700					
					9	7.345	64,600	9	6.545	63,800					
					•		01,000	~	0,040	00,000					
,

TABLE 4 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA GROSS BETA RESULTS SUMMARY (All Sampled Grids) PAGE 4

REP. AREA	NET READING (dpm/100cm2)		TOTAL # OF	HOT S	SPOT DATA (net)	reading)	HOT SPOT	DATA (backgroun	d subtracted)	5m x 5m	GRID (dpm/100cm2)	AVE, CO	NC (pCi/g)
GRID #	AVE	MAX	% CONCRETE	HOT SPOTS	#	AVE	MAX	<u>#</u>	AVE	MAX	AVE	MAX	<u>3"</u>	<u>6"</u>
57	1.047	2 332	100	12	1	4 882	23 000	1	4 082	22,200	3.252	50.200	9.3	4.9
51	1,047	2,002	100		2	4 264	10,000	2	3 464	9,200	-,			
					3	5 923	25,000	3	5 123	24 200				
					Ă	10 235	51 000	4	9 435	50 200			•	
					5	6 880	15,000	5	6,080	14 200				
					ě	5 353	17,000	õ	4 553	16 200				
					7	6,004	15,000	7	5 204	14 200				
					6	12 192	76,000	, 8	11 382	25 200				
					0	0.529	20,000	0	8 738	34 200				
					10	9,000	35,000	10	0,750	25 200				
	· · ·				10	6 7 5 9	20,000	10	5,000	10 200				
					12	6,700	20,000	42	3,950	14 200				
					12	5,506	15,000	12	4,506	14,200				
58	999	1,353	100	9	1	5,783	22,000	1	4,983	21,200	1,511	24,200	4.3	2.3
					2	5,500	18,000	2	4,700	17,200				
			1		3	3,429	10,000	3	2,629	9,200				
					4	4,085	7,000	4	3,285 -	6,200				
					5.	3,565	15,000	5	2,765	14,200				
					6	4,900	21,000	6	4,100	20,200				
					7	5,348	25,000	7	4,548	24,200				
					8	4,788	20,000	8	3,988	19,200				
					9	4,385	8,000	9	3,585	7,200				
50	4 000	4 540	400	2	4	3 560	10.000	4	2 760	9 200	530	9 200	15	0.8
59	1,093	1,518	100	2	2	3,309	10,000	2	3,060	9,200	555	3,200	1.5	0.0
					2	4,700	10,000	2	3,300	5,200				
66	1,276	1,881	100	2	1	4,819	28,000	1	4,019	27,200	706	27,200	2.0	1.1
					2	3,472	10,000	2	2,672	9,200				
67	459	671	100	7	1	5.030	18 000	1	4 230	17 200	772	23,200	2.2	1.2
0/	400	0/1	100	'	2	3,000	7 000	2	2 467	6 200		20,200		
					2	7 600	24,000	3	6 700	23 200				
					3	2,000	10,000	4	2,089	9 200				
					4	2,009	8,000	5	2,005	7 200				
					5	4,400	16,000	ě	4 113	15 200				
					7	3,000	10,000	7	2,200	9,200				
						-,								
68	585	803	100	4	1	4,100	10,000	1	3,300	9,200	327	9,200	0.9	0.5
					2	3,933	10,000	2	3,133	9,200				
					3	4,848	9,000	3	4,048	8,200				
					4	3,000	7,000	4	2,200	6,200				
71	524	858	100	1	1	4,176	10,000	1	3,376	9,200	(130)	9,200	-0.4	-0.2
74	1 445	3 366	100	7	1	2 158	9 000	1	1.358	8.200	1,298	10.200	3.7	2.0
/4	1,440	3,500	100	•	2	3,900	10,000	2	3,100	9,200				
					3	3,750	8 000	3	2 950	7.200				
					4	4 333	10,000	4	3 533	9,200				
					5	3 666	5 000	5	2,866	4,200				
					6	4 700	11,000	6	3,900	10,200				
					7	3,923	10.000	7	3,123	9,200				
					•	0,020	,	•	-,	-,				
75	704	1,001	100	5	1	3,500	6,000	1	2,700	5,200	667	22,200	1.9	1.0
					2	4,710	23,000	2	3,910	22,200				
					3	4,437	10,000	3	3,637	9,200				
					4	4,765	10,000	4	3,965	9,200				
					5	5,174	22,000	5	4,374	21,200				

REP. ARE/	A NET READING (dom/100cm2)		TOTAL # OF	нот	SPOT DATA (net i	reading)	HOT SPOT	DATA (backgrour	nd subtracted)	5m x 5m	GRID (dpm/100cm2)	AVE. CO	NC (pCi/g)	
GRID #	AVE	MAX	% CONCRETE	HOT SPOTS	<u>#</u>	AVE	MAX	<u>#</u>	AVE	MAX	AVE	MAX	<u>3"</u>	<u>6"</u>	
81	557	803	85	9	1	4.000	7.000	1	3,200	6.200	1,945	24,200	5.6	3.0	
01	551	000		Ū	2	10 074	19 000	2	9.274	18,200					
					3	5 864	25,000	3	5.064	24,200					
					4	5.067	15,000	4	4 267	14,200					
					5	4 063	12,000	5	3,263	11,200					
					6	6 925	22,000	6	6,125	21,200					
					7.	6 467	16,000	7	5.667	15 200					
					, 8	5,056	18,000	Å	4 256	17 200					
					9	4,000	15,000	9	3,200	14,200					
82	1.058	1 771	100	12	1	4 300	11 000	1 .	3.500	10.200	2,496	24.200	7.1	3.8	
02	1,000	1,771	100		2	4,636	17 000	2	3.836	16,200	_,				
					3	8 370	25,000	3	7.570	24,200					
					4	11 000	20,000	4	10.200	19,200					
					5	3 900	11 000	5	3,100	10,200					
					é	4 782	15,000	ě	3,982	14 200				•	
					7	5 640	17,000	7	4 840	16 200					
					, e	4 951	15,000	,	4 151	14 200					
					0	4,551	10,000	å	4,088	9 200					
					9	4,000	22,000	9 10	4,000	21 200					
					10	5,000	10,000	10	4,000	9 200					
					12	5,000	20,000	12	4,200	19,200					
					12	5,575	20,000	12	4,775	19,200					
83	563	660	100	11	1	3,538	10,000	1	2,738	9,200	1,422	22,200	4.1	2.2	
					2	4,000	15,000	2	3,200	14,200					
					3	4,806	23,000	3	4,006	22,200					
					4	4,600	12,000	4	3,800	11,200					
					5	3,222	6,000	5	2,422	5,200					
					6	4,667	15,000	6	3,867	14,200					
•					7	4,500	17,000	7	3,700	16,200					
					8	4,813	15,000	8	4,013	14,200					
					9	4,842	15,000	9	4,042	14,200					
					10	. 4,273	7,000	10	3,473	6,200					
					11	4,400	10,000	11	3,600	9,200					
91	1,010	2,387	100	.12	1	5,000	17,000	1	4,200	16,200	2,381	50,200	6.8	3.6	
					2	3,769	19,000	2	2,969	18,200					
					3	4,800	15,000	3	4,000	14,200					
					4	4,809	26,000	4	4,009	25,200					
					5	7,868	51,000	5	7,068	50,200	•				
					6	4,955	12,000	6	4,155	11,200					
					7	8,326	26,000	7	7,526	25,200					
					8	6,786	27,000	8	5,986	26;200					
					9	4,583	11,000	9	3,783	10,200					
					10	5,258	16,000	10	4,458	15,200					
					11	4,333	13,000	11	3,533	12,200					
					12	5,900	25,000	12	5,100	24,200					
93	2,446	3,146	100	9	1	7,462	15,000	1	6,662	14,200	2,821	19,200	8.1	4.3	
					2	6,682	17,000	2	5,882	16,200					
					3	7,240	18,000	3	6,440	17,200					
					4	4,793	10,000	4 ·	3,993	9,200					
					5	3,500	8,000	5	2,700	7,200					
					6	8,333	20,000	6	7,533	19,200	-				
					7	3,636	13,000	7	2,836	12,200					
					8	5,550	20,000	8	4,750	19,200					
					9	4,182	8,000	9 ·	3,382	7,200					

.

TABLE 4 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA GROSS BETA RESULTS SUMMARY (All Sampled Grids) PAGE 6

REP AREA	NET READING (10m/100cm2)		TOTAL # OF	HOTS	SPOT DATA (net i	readino)	HOT SPOT	DATA (backgroun	d subtracted)	5m x 5m	GRID (dpm/100cm2)	AVE. CO	NC (pCi/g)
GRID #	AVE	MAX	% CONCRETE	HOT SPOTS	<u>#</u>	AVE	MAX	<u>#</u>	AVE	MAX	<u>AVE</u>	MAX	<u>3"</u>	<u>6*</u>
94	546	803	100	1	1	4,500	57,000	1	3,700	56,200	(96)	56,200	-0.3	-0.1
103	860	1,353	100	0							60	1,353	0.2	0.1
105	4 400	2 200	07	14	1	5 000	13.000	1	4 200	12 200	2 617	54 200	7.5	4.0
105	1,129	2,200	9/	14	2	3,000	10,000	2	2 277	9 200	2,017	0.1200		
					2	4 182	7 000	3	3 382	6 200				
					3	4,102	7,000 8,000	Å	3 450	7 200				
					4	5,000	15,000	5	4 200	14 200				
					. 5	3 1/3	6,000	5	2 343	5 200				
					7	8 021	55,000	7	8 121	54 200				
					8	7 929	25,000	8	7 129	24 200				
					0	5,525	25,000	ő	5.015	24,200				
					10	3,013	20,000	10	3 117	6 200				
					11	3,317	1,000	10	3 561	14 200				
					11	4,301	13,000	12	4 293	12 200				
					12	5,005	13,000	12	4,200	16 200				
					13	5,000	17,000	14	4,200	14 200				
		÷			14	5,600	15,000	14	4,500	14,200				
110	1.927	2,827	100	8	1	3,666	7,000	1	2,866	6,200	1,958	16,200	5.6	3.0
• • •	.,				2	4,600	17,000	2	3,800	16,200				
		•			3.	5,032	12,000	3	4,232	11,200				
	-				4	4,000	7,000	4	3,200	6,200				
					5	4,875	13,000	5	4,075	12,200				
					6	4,200	6,000	6	3,400	5,200				
					7	5,077	11,000	7	4,277 ,	10,200				
					8	4,750	17,000	8	3,950	16,200				
	709	069	06	10	4	4 700	10,000	1	3 900	9 200	1.425	16.200	4.1	2.2
111	706	900	90	10	2	3 667	8,000	2	2,867	7.200		,		
					2	3 200	8,000	3	2,400	7.200				
					4	4 357	15 000	4	3 557	14 200				
					5	4 500	15,000	5	3 700	14 200				
					e e	3 333	6,000	6	2,533	5.200				
					ž	6,000	17 000	7	5,200	16,200				
					Å	4 941	9 000	8	4.141	8.200				
					9	4 864	13 000	9	4,064	12,200				
					10	3,929	7,000	10	3,129	6,200				
									4.040	40.000	2 001	15 200	57	30
133	867	1092	100	14	1	4,846	11,000	1	4,040	5 200	2,001	15,200	0.7	5.0
					2	4,333	6,000	2	3,533	5,200				
					3	3,214	5,000	3	2,414	4,200				
		¢			4	4,125	8,000	4	3,325	7,200				
					5	4,125	8,000	5	3,323	11 200				
					5	5,750	12,000	5	4,930	7 200				
					(4,429	8,000	6	3,029	10 200				
					8	· 4,8/5	11,000	0	4,0/0	6 200				
					9	3,333	6,000	9	1 825	14 200				
					10	2,625	15,000	10	3 200	6 200				
					11	4,000	7,000	10	3,200	9,200				
					12	5,350	10,000	12	4,000	9,200				
					13	5,080	10,000	13	3,600	15 200				
					14	4,400	10,000	14	3,000	10,200				

.

3,600 1

TABLE 4 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA GROSS BETA RESULTS SUMMARY (All Sampled Grids) PAGE 7

REP. AREA NE	i reading (d	pm/100cm2)		IOTAL # OF	HUT	SPUT DATA (net)	reading)	HOLSPOL	DATA (backgrour	nd subtracted)	5m x 5m -	GRID (dpm/100cm2)	AVE. CON	IC (pCi/q)	
<u>GRID #</u>	<u>AVE</u>	MAX	<u>% CONCRETE</u>	HOT SPOTS	#	AVE	MAX	<u>#</u>	AVE	MAX	<u>AVE</u>	MAX	<u>3*</u>	<u>6</u>	
134	1056	1705	96	17	1	4,200	6,000	1	3,400	5,200	3,063	24,200	8.8	4.7	
					2	4,190	11,000	2	3,390	10,200					
					3	6,217	25.000	3	5.417	24,200					
					4	5,852	11,000	4	5,052	10.200					
	•				5	5,889	15.000	5	5,089	14,200					
					6	5,167	14.000	6	4.367	13,200					
					7	5,409	24,000	7	4,609	23,200					
			/		8	5,296	12.000	8	4,496	11,200					
					9	3,600	5,000	9	2,800	4.200					
					10	4,300	10.000	10	3,500	9,200					
					11	4,565	11,000	11 .	3,765	10,200					
					12	7,138	23,000	12	6,338	22,200					
					13	5,409	13,000	13	4,609	12,200					
					14	4,857	11,000	14	4,057	10,200					
					15	4,437	6,000	15	3,637	5,200					
					16	4,300	6,000	16	3,500	5,200	•	• .			· · ·
					17	4,500	8,000	17	3,700	7,200					•

Re	Representative Areas (background subtracted)						ed)			Maxir	num p(Ci/g
1	<u>m2 Minimum</u>	Maximum	Overall Ave.	<u>Total #</u>	<u>Ave. #/grid</u>	<u>1 m2 Minimum</u>	<u>1 m2 Maximum</u>	1 m2_Ave.,		<u>3" Av</u>	<u>e. 6</u>	Ave.
dpm/100cm2:	(800)	1,646	84	280	4	0	26,075	(5,276)	dpm/100cm2	13.9		7.4
pCi/g U (6" ave.):	-1.2	2.5	0.1			0.0	39.6	8.0	pCi/g Total U (6" ave)			

	5m x 5m Grids	(background subtra	acted)		
# of Grids	<u>Area (m^2)</u>	Ave, Minimum	Ave. Maximum	Overall Ave.	
66	1,355	(530)	4,867	1,186	dpm/100cm2
		-0.8	(7.4)	(1.8)	pCi/g Total U (6" ave)

NOTES:

5m x 5m grids.
 Gross beta background in concrete = 800 dpm/100cm2 (net).
 Results reported in units of dpm/100cm2 unless otherwise indicated.

TABLE 5

OF

APPENDIXII

REP. AREA N <u>GRID #</u>	NET READING (0 AVE	ipm/100cm2) <u>MAX</u>	% CONCRETE	TOTAL # OF HOT SPOTS	HOT SI #	POT DATA (gross AVE	reading) MAX	5m x 5 AVE	5m GRID (dpm/1) MAX	00cm2) WT, AVG,
30	200	320	100	. 7	1 2 3 4 5 6 7	160 60 2,280 1,700 400 80 80	320 240 4,800 6,400 2,000 400 320	334	6,400	334
36	15	60	100	2	1	0 100	0 800	18	800	18
37	80	160	100	11	1 2 3 4 5 6 7 8 9 10 11	420 340 240 540 160 60 100 120 220 180 240	800 800 640 800 400 160 240 320 240 560 1,600	150	1,600	150
42	60	160	100	7	1 2 3 4 5 6 7	140 248 240 40 100 10 200	400 640 80 240 40 40	82	640	82
43	10	40	100	6	1 2 3 4 5 6	500 500 300 120 200 160	800 960 640 440 760 640	79	960	79
44	10 ⁻	40	100	7	1 2 3 4 5 6 7	415 480 875 1,200 560 500 160	640 2,000 2,000 4,000 1,600 800 400	. 175	4,000	175
50	5	40	100	2	1 2	260 380	600 1,360	30	1,360	30
51	10	60	100	11 ्	1 2 3 4 5 6 7 8 9 10 11	480 150 40 140 220 180 1,500 320 100 165	1,600 400 160 800 400 480 2,100 880 160 320	145	2,100	145
52	160	320	100	10	1 2 3 4 5 6 7 8 9 10	540 360 220 240 1,100 9,000 880 420 560	1,600 1,040 400 560 4,000 16,000 3,200 480 1,280	641	16,000	641
53	. 10	60	100	13	1 2 3 4 5 6 7 8 9 10 11 12 13	400 1,440 720 340 160 340 740 410 480 600 160	800 4,000 1,280 640 320 400 1,280 1,280 1,200 800 800 800 800 800 600	250	4,000	250

1

	REP. AREA I GRID#	NET READING (d <u>AVE</u>	pm/100cm2) <u>MAX</u>	% CONCRETE	TOTAL # OF HOT SPOTS	HOT SP #	OT DATA (gross <u>AVE</u>	reading) <u>MAX</u>	5m x : <u>AVE</u>	5m GRID (dpm/10 <u>MAX</u>	0cm2) <u>WT. AVG.</u>
	56	80	160 <i>.</i>	100	9	1 2 3 4 5 6 7 8	200 630 840 380 800 4,000 220 100	800 1,040 1,760 640 1,120 15,600 320 160	363	15,600	363
	57	240	720	100	12	9 1 2 3	620 580 220 180	1,280 960 480 480	311	4,000	311
						4 5 7 8 9 10 11 12	160 340 120 480 160 540 220 1,470	240 800 320 880 240 800 400 4,000			
	58	280	480 .	100	9	1 2 3 4 5 6 7 8 9	580 180 380 100 500 140 100 700 180	1,440 240 640 240 720 240 160 880 480	294	1,440	294
	59	70	160	100	2	1 2	200 10	320 40	73	320	73
	66	10	80	100	2	1 2	560 270	800 640	42	800	42 .
	67	40	160	100	7	1 2 3 4 5 8 7	60 520 170 120 380 530 20	160 1,040 320 240 400 1,240 80	101	1,240	101
	68	350	1,360	100	. 4	1 2 3 4	220 140 240 320	560 240 400 880	331	880	331
	71	140	560	100	1	1	1,280	4,000	186	4,000	186
	74	10	40	100	7	1 2 3 4 5 6 7	960 60 280 240 10 60	3,200 240 640 40 40 240 80	72	3,200	72
	75	20	80	100	5	1 2 3 4 5	10 80 60 10 160	40 160 180 40 480	29	• 480	29
·	81	100	240	85	9.	1 2 3 4 5 6 7 8	150 680 640 220 100 20 322 220 720	320 1,600 1,040 480 240 80 640 320 2,200	203	2,200	172

EP. AREA N BRID #	NET READING (I	ipm/100cm2) MAX	% CONCRETE	TOTAL # OF HOT SPOTS	HOT SP #	OT DATA (gross <u>AVE</u>	reading) <u>MAX</u>	5m x 5 <u>AVE</u>	5m GRID (dpm/1 <u>MAX</u>	00cm2) <u>WT. AVG.</u>
82	20	80	100	12	1	300	1 320	158	4 320	159
			100		2	280	640	100	4,020	100
					3	280	480			
					4	160	4 320	÷.,		
					5	200	400			
					e c	805	2 100			
					7	420	1 120			
					8	540	1 200			
					Ğ	10	40			
					10	280	640			
					11	220	480			
					12	200	240			
83	500	1,360	100	11	1	1,120	3,600	511	4,800	511
					2	520	1,200			
					3	440 .	800			
					4	480	1,360			
					5.	140	320			
					. 6	140	240			
					7	280	800			
					8	2,080	4,800			
					9	220	400			
					10	200	560			
					11	160	320			
91	80	160	100	12	1	260	720	201	1,760	201
					2	300	660			
					3	300	400			
					4	140	240			
					5	280	400			
					9	600	1,700			
						520	720			
					8	480	720			
					9	140	240			
					10	220 ·	480			
					11	140	240			
					12	320	720			
93	80	160	100	9	1	1,000	1,440	222	1,680	222
					2	1,320	1,000			
					3	500	100			
					4	520	900			
					5	100	160			
					6	560	1,600			
					7	180	480			
					8 9	500 20	1,600 80			
04	10	40	100	1	4	220	800	18	800	18
	10	40.	100	,	•	220	000	10	40	10
103	10	40	100	U				10	40	10
105	40	80	97	14	1	260	400	213	3,200	207
					2	540	1,440			
					3	140	240			
					4	280	640			
					5	1,200	3,200			
					5	20	80			
					7	180	240			
					8	380	720			
					9	400	720			
					10	160	240			
					11	280	320			
					12	320	640			
					13	160	320			
					14	440.	080			
110	20	80	100	8	1	20	80	97	1,520	97
					2	220	500			
					3	240	400			
					4	40	80			
					5	640	800			•
					6	260	/20			
					8	60	160			
111	10	۸D	. 06	10	4	260	480	191 -	1 600	116
	10		50	10	2	160	560		.,000	
					2	240	480			•
					4	140	320			
					+ 2	690	1 600			
					J	70	160			
					0	10	400			
					1	200	400			
					0	400	240			
					9	100	240			
					10	200	400			

•

•

.

GRID #		Jpm/100cm2)		TOTAL # OF	HOT SF	OT DATA (gross	reading)	5m x :	5m GRID (dpm/	00cm2)
	AVC	MAX	70 CONCRETE	HUTSPOTS	<u>#</u>	AVE	MAX	AVE	MAX	<u>WT. AVG.</u>
133	120	160	100	14	1	160	320	168	1.600	168
					2	220	720		.,	
					3	40	160			
					4	320	560			
	•				5	200	320			
					6	260	480			
					7	50	160			
					8	140	240			
					9	140	320			
					10	400	1.600			
					11	10	40			
					12	455	1,200			
					13	220	400			
					14	260	560		•	
134	20	80	96	17	· 1	40	160	60	400	58
					2	80	160			66
					3	80	160			
					4	10	40			
					5	220	400			
			•		6	100	240			
					7	180	400			
					8	60	160	•		
					9	40	160			
					10	20	80			
					11	40	160			
					12	40	160			
					13	20	80			
					14	60	240			
					15	120	240			
					16	140	320			
					17	60	160			

 Hot Spots (no background subtracted)

 Ave. #/grid
 1m2 Minimum
 1m2 Maximum
 1 m2 Ave.

 4
 0
 9,000
 380

 Image: Maximum subtracted
 Maximum subtracted

 5
 500
 88
 <u>Total #</u> 251 dpm/100cm2: dpm/100cm2

5m x 5m Grids (no background subtracted) Area (m*2) Ave. Minimum Ave. Maximum Qverall Ave. 794 10 641 178 <u># of Grids</u> 66 dpm/100cm2

NOTES:

5m x 5m grids.
 Results reported in units of dpm/100cm2 unless otherwise indicated.

TABLE 6

OF

APPENDIX II

REP. AREA <u>GRID #</u>	NET READING (c <u>AVE</u>	1pm/100cm2) <u>MAX</u>	% CONCRETE	TOTAL # OF HOT SPOTS	HOT: #	SPOT DATA (net re <u>AVE</u>	eading) <u>MAX</u>	5m x 5m GRID <u>AVE</u>	(dpm/100cm2) <u>MAX</u>	WT. AVG.
1	160	240	25	0				160	240	40
2	110	320	60	0				110	320	66
3	140	240	65	0				140	240	91
4	320	480	65	0				320	480	208
5	65	240	60	0				65	240	39
6	10	40	75	0				10	40	8
7	10	40	55	0				10	40	6
8	10	40	60	0				10	40	6
9	10	80	60	0				10	80	6
10	60	200	60	0				60	200	36
11	100	600	50	0				100	600	50
12	100	160	50	1	1	380	1200	122	1,200	61
13	<350	<350	70	4	t	80	160	42	800	29
					2 3	210 200	320 800			
					4	240	800			
14	20	80	70	1	1	20	80	20	80	14
15	20	80	. 100	1	1	40	160	21	160	. 21
16	30	160	60	0				30	160	18
17	20	80	60	1	1	20	80	20	80	12
18	40	160	100	0				40	160	40
19	20	160	80	1	1	50	240	22	240	17
20	40	160	70	0				40	160	28
21	50	80	80	0				50	80	40
22	10	40	40	1	1	10	80	10	80	4
23	20	160	100	2	1 2	40 120	160 480	25	480	25
24	20	180	88	2	1 2	120 180	480 560	32	560	28
25	80	320	95	1	1	258	800	87	800	83
26	140	240	60	1	1	120	240	139	240	83
27	40	160	75	0				40	160	30
28	160	240	88	0				160	240	141
29	40	60	60	5	1 2 3 4 5	2100 200 760 300 140	6400 800 2400 1400 320	260	6,400	156
30	200	320	100	7	. 1 2 3 4 5 6 7	160 60 2,280 1,700 400 80 80	320 240 4,800 6,400 2,000 400 320	334	6,400	334
31	100	240	85	1	1	220	640	106	1,440	90
32	10	40	40	2	1 2	120 80	1,440 1,200	28	1,440	11
33	5	20	25	0				5	20	1
34	80	160	20	2	1	40 140	160 480	84	480	17

REP. AREA N <u>GRID.#</u>	IET READING (d <u>AVE</u>	pm/100cm2) <u>MAX</u>	% CONCRETE	TOTAL # OF HOT SPOTS	HOT S #	POT DATA (net re <u>AVE</u>	eading) <u>MAX</u>	5m x 5m GRID <u>AVE</u>	(dpm/100cm2) <u>MAX</u>	WT. AVG.
35	120	240	93	3	1 2	270 280	800 1,040	181	1,840	168
36	15	60	100	2	3	0	0	18	800	18
					2	100	800			
37	80	160	100	11	1 2	420 340	800 800	150	1,600	150
					3	240	640			
					4	540 160	400			
					6	60	160			
					7	100	240			
					8	120	320			
					10	180	560			
					11	240	1,600			
42	60	160	100	. 7	1	. 140	400	82	640	82
					2	248	640			
					3	240	400			
					4	40	80 240			
					6	10	40			•
					7	200	400			
43	10	40	100	6	1	500	800	79	960	79
-5	10	40			2	500	960			
					3	300	640			
					4	120	440			
					6	160	640			•
	10	40	100	7		416	640	175	4 000	175
44	10	40	100	'	2	480	2.000	175	4,000	115
					3	875	2,000			
					4	1,200	4,000			
					5	500	800			
					7	160	400			
50	5	40	100	2	1	260 380	600 1 360	30	1,360	30
					2	500	1,500		:	
51	10	60	100	11	1	480	1,600	145	2,100	145
					23	40	160			
					-4	140	400			
					5	220	800			
					7	180	480			
					8	1,500	2,100		•	
					9	320	880			
					11	165	320			
52	160	320	100	10	1	540	1,600	641	16,000	641
					2	360	1,040			
					3 4	300 220	1,040			
					5	240	560			
					6	1,100	4,000			
					7	9,000	3 200			
					9	420	480			
		۱	I.		10	560	1,280			
53	10	60	100	13	1	400	800	250	4,000	250
					2	1,440 720	4,000			
					4	340	640			
					5	180	320			
					6	160	320			
					8	740	1,280			
					9	410	1,200			
					10	480	800			
					12	160	320			
					13	160	600			

TABLE 6 - SUB-AREA "F" CONCRETE-ALL FINAL SURVEY DATA GROSS ALPHA RESULTS SUMMARY (All Sampled Grids) PAGE 3

REP. AREA N	NET READING (d <u>AVE</u>	pm/100cm2) <u>MAX</u>	% CONCRETE	TOTAL # OF HOT SPOTS	HOT SI #	POT DATA (net n <u>AVE</u>	eading) <u>MAX</u>	5m x 5m GRID <u>AVE</u>	(dpm/100cm2) <u>MAX</u>	<u>WT, AVG.</u>
56	80	160	100	9	1 2 3 4 5 6 7 8 9	200 630 840 380 4,000 220 100 620	800 1,040 1,760 640 1,120 15,600 320 160 1,280	363	15,600	363
57	· 240	720	100	12	1 2 3 4 5 6 7 8 9 10 11 12	580 220 180 340 120 180 480 160 540 220 1,470	960 480 240 800 320 320 880 240 800 400 4,000	311	4,000	311
58	280	480	100	9	1 2 3 4 5 6 7 8 9	580 180 380 100 500 140 100 700 180	1,440 240 640 240 720 240 160 880 480	294	1,440	294
59	70	160	100	2	1 2	200 10	320 40	73	320	73
66	10	80	100	2	1 2	560 270	800 640	42	800	42
67	40	160	100	7.	1 2 3 4 5 6 7	60 520 170 120 380 530 20	160 1,040 320 240 400 1,240 80	101	1,240	101
68	350	1,360	100	4	1 2 3 4	220 140 240 320	560 240 400 880	331	880	331
71	140	560	100	1	1	1,280	4,000	186	4,000	186
74	10	40	100	7	1 2 3 4 5 6 7	960 60 280 240 10 60 20	3,200 240 640 640 40 240 80		3,200	72
75	20	80	100	5	1 2. 3 4 5	10 80 60 10 160	40 160 180 40 480	29	480	29
81	100	240	85	. 9	1 2 3 4 5 6 7 8 9	150 680 640 220 100 20 322 220 730	320 1,600 1,040 480 240 80 640 320 2,200	203	2,200	172
82	20	80	100 .	12	1 2 3 4 5 6 7 8 9 10 11 12	300 280 280 200 805 420 540 10 280 220 200	1,320 640 480 4,320 2,100 1,120 1,200 40 640 480 240	158	4,320	158

.

REP. AREA N <u>GRID #</u>	IET READING (d <u>AVE</u>	1pm/100cm2) <u>MAX</u>	% CONCRETE	TOTAL # OF HOT SPOTS	HOT S #	POT DATA (net n <u>AVE</u>	eading) <u>MAX</u>	5m x 5m GRID <u>AVE</u>	(dpm/100cm2) <u>MAX</u>	WT. AVG.
83	500	1,360	100	11	1 2 3 4 5 6 7 8 9 10 11	1,120 520 440 140 140 2,080 2,080 220 200 160	3,600 1,200 800 1,360 320 240 800 4,800 4,00 560 320	511	4,800	511
91	80	160	100	12	1 2 3 4 5 6 7 8 9 10 11 12	260 300 140 280 520 480 140 220 140 320	720 880 400 240 1,760 720 720 720 240 480 240 720	201	1.760	201
93	80	160	100	9	1 2 3 4 5 6 7 8 9	1,000 1,320 80 520 100 560 180 500 20	1,440 1,680 160 960 160 1,600 480 1,600 80	222	1,680	222
94	10	4 0	100	1	1	220	800	18	800	18
103	10	40	100	0				- 10	40	10
105	40	80	97	14	1 2 3 4 5 5 7 8 9 10 11 12 13 14	260 540 140 280 1,200 20 180 380 400 160 280 320 160 440	400 1,440 240 640 3,200 240 720 720 720 240 320 640 320 880	213	3,200	207
110	20	80	100	8	1 2 3 4 5 6 7 8	20 220 240 40 640 260 600 60	80 560 400 80 800 720 1,520 160	97	1,520	97
111	10	40	96	10	1 2 3 4 5 6 7 8 9 10	260 160 240 680 70 260 540 160 250	480 560 480 320 1,600 160 400 960 240 400	121	1,600	116
133	120	160	100	14	1 3 4 5 6 7 8 9 10 11 12 13 14	160 220 40 320 260 50 140 140 10 455 220 260	320 720 160 560 320 480 160 240 320 1,600 40 1,200 400 560	168	1,600	168

~

REP. AREA NET	READING (dpm/1	00cm2)		TOTAL # OF	HOT SPOT	DATA (net readi	ng)	5m x 5m GRID (dpn	1/100cm2)	
<u>GRID #</u>	AVE	<u>MAX</u>	% CONCRETE	HOT SPOTS	#	AVE	MAX	AVE	MAA	WILAVG.
134	20	80	96	17	1	40	160	60 .	400	58
					2	80	160			
					3	80	160			
					4	10	40			
					5	220	400			
					6	100	240			
					7,	180	400			
					8	60	160			
					9	40	160			
					10	20	80			
					11	40	160			
					12	40	160			
					13	20	80			
)				14	60	240			
					15	120	240			
					16	140	320			
					17	60	160			
				· · ·	. • . •					
وجرابعان فيبالة أشتر وعمدهم اوتنبعت يعر	بيها المناعلة الكي يجيب مستحققا الأبجي و	and the local division of the local division								

	Representative Areas (no background subtracted)				Hot Spots (no background subtracted)					
dpm/100cm2:	<u>1 m2 Minimum</u> 5	Maximum 500	Overall Ave, 67	<u>Total #</u> 280	<u>Ave. #/grid</u> 4	<u>1 m2 Minimum</u> 0	<u>1 m2 Maximum</u> 9,000	<u>1 m2 Ave.</u> 369	dpm/100cm2	

 5m x 5m Grids (background subtracted)

 Area (m*2)
 Ave, Minimum
 Ave. Maximum
 Overall Ave.

 1,355
 5
 641
 125
 <u># of Grids</u> 66 dpm/100cm2

NOTES:

5m x 5m grids.
 Results reported in units of dpm/100cm2 unless otherwise indicated.

Concrete Rubble	e from the Uranium	Plant, U-Yard	Area, Pu Plant
-----------------	--------------------	---------------	----------------

				incr	Weighted Average
Slab #	Width (ft)	Lenath (ft.)	Thickness ((ft.) Volume (ft^3)	Thickness (ft.)
	••••	201.gui (.u.)		(, •••	
1	8	× 5	× 0.66	~ 26.4	5.447E-04 🔨 o
2	19	4	0.5	38.0	5.940E-04
3	32	5	1	160.0	5.002E-03
4	42	3	0.16	20.2	1.008E-04
5	76	4	0.16	48.6	2.433E-04
6	100	3	0.16	48.0	2.401E-04
7	40	60	0.83	1,992.0	5.169E-02
8	9	6	0.5	27.0	4.221E-04
9	16	4	0.83	53.1	1.378E-03
10	21	6.6	0.83	115.0	2.985E-03
11	5	5	0.83	20.8	5.384E-04
12	40	24	0.83	796.8	2.068E-02
13	12	30	0.5	180.0	2.814E-03
14	60	4.5	1.2	324.0	1.216E-02
15	132	12	0.66	1,045.4	2.157E-02
16	60	12	0.66	475.2	9.805E-03
17	15	15	2	450.0	2.814E-02
18	89	12	0.66	704.9	1.454E-02
19	156	12	0.66	1,235.5	2.549E-02
20	18	12	0.66	142.6	2.942E-03
21	40	6	1.25	300.0	1.172E-02
22	12	12	5	720.0	1.126E-01
23	14	14	3	588.0	5.515E-02
24	46	10	0.5	230.0	3.595E-03
25	67	15	2	2,010.0	1.257E-01
26	11	49.5	0.5	272.3	4.256E-03
27	45	10	0.5	225.0	3.517E-03
28	100	1.5	0.5	75.0	1.172E-03
29	20	20	0.33	132.0	1.362E-03
30	150	0.5	0.5	37.5	5.862E-04

,

Concrete Rubble from Pu Plant Floor and Yard

					Weighted Average
Slab #	Width (ft.)	Length (ft.)	Thickness (ft.)	Volume (ft^3)	Thickness (ft.)
31	30	0.5	0.5	7.5	1.172E-04
32	3	5	0.5	7.5	1.172E-04
33	5	6	0.33	9.9	1.021E-04
34	. 9	3	0.33	8.9	9.193E-05
35	54	0.66	0.66	23.5	4.854E-04
36	50	4	0.17	34.0	1.807E-04
37	24	18	0.66	285.1	5.883E-03
38	27	24	0.66	427.7	8.825E-03
39	23	13	0.66	197.3	4.072E-03
40	24	13	0.66	205.9	4.249E-03
41	10	10	0.66	66.0	1.362E-03
42	3	4	0.5	6.0	9.379E-05
43	3	4	0.5	6.0	9.379E-05
44	3	5	0.5	7.5	1.172E-04
45	2	5	0.5	5.0	7.816E-05
46	15	3	0.5	22.5	3.517E-04
47	3	4	0.5	6.0	9.379E-05
48	14	3	0.5	21.0	3.283E-04
49	3	3	0.5	4.5	7.034E-05
50	11	3	0.5	16.5	2.579E-04
51	12	3	0.5	18.0	2.814E-04
52	8	4	0.5	16.0	2.501E-04
53	Note 1	Note 1	0.5	2,908.0	4.546E-02

					Weighted Average
Slab #	Width (ft.)	Length (ft.)	Thickness (ft.)	Volume (ft^3)	Thickness (ft.)
E A	100	2.2	0.5	007.0	
54	180	3.3	0.5	297.0	4.643E-03
55	30	5	0.5	75.0	1.172E-03
56	76	11	0.5	418.0	6.534E-03
57	21	21	0.5	220.5	3.447E-03
58	26.6	3.3	0.5	43.9	6.861E-04
59	23.1	8	0.5	92.4	1.444E-03
60	6.6	6.6	0.5	21.8	3.405E-04
61	80	40	0.5	1,600.0	2.501E-02
62	40	20	0.5	400.0	6.253E-03
63	180	3.3	0.5	297.0	4.643E-03
64	40	3.3	0.5	66.0	1.032E-03
65	40	23.1	0.5	462.0	7.222E-03
66	36.5	20	0.5	365.0	5.706E-03
67	80	8	0.5	320.0	5.002E-03
68	66.6	3.3	0.5	109.9	1.718E-03
69	36.3	1.5	0.5	27.2	4.256E-04
70	8	9	0.5	36.0	5.628E-04
71	50	20	0.5	500.0	7.816E-03
72	40	3.3	0.5	66.0	1.032E-03
73	80	6.6	0.5	264.0	4.127E-03
74	26.6	20	0.5	266.0	4.158E-03
75	80	40	0.5	1,600.0	2.501E-02
76	20	13.2	0.5	132.0	2.063E-03
77	20	6	0.5	60.0	9.379E-04
78	74	33	0.5	1,221.0	1.909E-02

Concrete Rubble from U Yard and Buildings #2 and #3

Slab #	Width (ft)	Length (ft.)	Thickness (ft.)	Volume (ff^3)	Weighted Average Thickness (ft)	
		2011gui (/u/				
79	20	60	0.83	996.0	2.585E-02	
80	55	21	2	2,310.0	1.444E-01	
81	546	1.5	0.5	409.5	6.401E-03	
82	72	3	2.5	540.0	4.221E-02	
83	20	7	1	140.0	4.377E-03	
84	40	24	1	960.0	3.001E-02	
85	64	3	1	192.0	6.003E-03	
86	24	5	0.33	39.6	4.086E-04	
87	62	2.5	2	310.0	1.938E-02	
88	30	2	1	60.0	1.876E-03	
89	· 4	4	4	64.0	8.004E-03	
90	10	4	0.5	20.0	3.126E-04	
91	45	4	1	180.0	5.628E-03	
					۰ او	

Average	Total	W
Thickness (ft)	Volume (ft^3)	Т
0.75	31.985	

Veighted Ave. Thickness (ft) 1.03 - sum column above

Note 1: Miscellaneous Rubble (Estimate)

Worg = 0.83 × 996 = 2.585-02 31,985

03/12/98 22:36 Page 1 File: A:\CONC.RAD

Table of Contents

Part I: Mixture Sums and Single Radionuclide Guidelines

Dose Conversion Factor (and Related) Parameter Summary Site-Specific Parameter Summary	2 4 8
Contaminated Zone and Total Dose Summary	ă
Total Dose Components	2
Time = 0.000F+00	10
Time = 1.000E+00	11
Time = 3.000E+00	12
Time = 1.000E+01	13
Time = 3.000E+01	14
Time = 1.000E+02	15
Time = 3.000E+02	16
Time = 5.000E+02	17
Time = 9.000E+02	18
Time = 1.000E+03	19
Dose/Source Ratios Summed Over All Pathways	20
Single Radionuclide Soil Guidelines	20
Dose Per Nuclide Summed Over All Pathways	21
Soil Concentration Per Nuclide	22

Dose Conversion Factor (and Related) Parameter Summary File: DOSFAC30.BIN

Menu	Parameter	Current Value	Default	Parameter Name
B-1 B-1 B-1 B-1 B-1 B-1 B-1 B-1 B-1	Dose conversion factors for inhalation, mrem/pCi: Ac-227+D Pa-231 Pb-210+D Po-210 Ra-226+D Th-230 U-234 U-235+D U-238+D	6.720E+00 1.280E+00 1.380E-02 9.400E-03 8.600E-03 3.260E-01 1.320E-01 1.230E-01 1.180E-01	6.720E+00 1.280E+00 1.380E-02 9.400E-03 8.600E-03 3.260E-01 1.320E-01 1.230E-01 1.180E-01	DCF2(1) DCF2(2) DCF2(3) DCF2(4) DCF2(5) DCF2(6) DCF2(7) DCF2(8) DCF2(9)
D-1 D-1 D-1 D-1 D-1 D-1 D-1 D-1 D-1 D-1	Dose conversion factors for ingestion, mrem/pCi: Ac-227+D Pa-231 Pb-210+D Po-210 Ra-226+D Th-230 U-234 U-235+D U-238+D	1.480E-02 1.060E-02 5.370E-03 1.900E-03 1.330E-03 5.480E-04 2.830E-04 2.670E-04 2.690E-04	1.480E-02 1.060E-02 5.370E-03 1.900E-03 1.330E-03 5.480E-04 2.830E-04 2.670E-04 2.690E-04	DCF3(1) DCF3(2) DCF3(3) DCF3(4) DCF3(5) DCF3(6) DCF3(7) DCF3(8) DCF3(9)
D-34 D-34 D-34 D-34	Food transfer factors: Ac-227+D , plant/soil concentration ratio, dimensionless Ac-227+D , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) Ac-227+D , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	2.500E-03 2.000E-05 2.000E-05	2.500E-03 2.000E-05 2.000E-05	RTF(1,1) RTF(1,2) RTF(1,3)
D-34 D-34 D-34 D-34 D-34	<pre>Pa-231 , plant/soil concentration ratio, dimensionless Pa-231 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) Pa-231 , milk/livestock-intake ratio, (pCi/L)/(pCi/d)</pre>	1.000E-02 5.000E-03 5.000E-06	1.000E-02 5.000E-03 5.000E-06	RTF(2,1) RTF(2,2) RTF(2,3)
D-34 D-34 D-34 D-34	<pre>Pb-210+D , plant/soil concentration ratio, dimensionless Pb-210+D , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) Pb-210+D , milk/livestock-intake ratio, (pCi/L)/(pCi/d)</pre>	1.000E-02 8.000E-04 3.000E-04	1.000E-02 8.000E-04 3.000E-04	RTF(3,1) RTF(3,2) RTF(3,3)
D-34 D-34 D-34 D-34	<pre>Po-210 , plant/soil concentration ratio, dimensionless Po-210 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) Po-210 , milk/livestock-intake ratio, (pCi/L)/(pCi/d)</pre>	1.000E-03 5.000E-03 3.400E-04	1.000E-03 5.000E-03 3.400E-04	RTF(4,1) RTF(4,2) RTF(4,3)
D-34 D-34 D-34 D-34	Ra-226+D , plant/soil concentration ratio, dimensionless Ra-226+D , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) Ra-226+D , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	4.000E-02 1.000E-03 1.000E-03	4.000E-02 1.000E-03 1.000E-03	RTF(5,1) RTF(5,2) RTF(5,3)
D-34 D-34 D-34 D-34	Th-230 , plant/soil concentration ratio, dimensionless Th-230 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) Th-230 , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	1.000E-03 1.000E-04 5.000E-06	1.000E-03 1.000E-04 5.000E-06	RTF(6,1) RTF(6,2) RTF(6,3)
D-34 D-34 D-34 D-34 D-34	<pre>U-234 , plant/soil concentration ratio, dimensionless U-234 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) U-234 , milk/livestock-intake ratio, (pCi/L)/(pCi/d)</pre>	2.500E-03 3.400E-04 6.000E-04	2.500E-03 3.400E-04 6.000E-04	RTF(7,1) RTF(7,2) RTF(7,3)

Dose Conversion Factor (and Related) Parameter Summary (continued) File: DOSFAC30.BIN

Menu	Parameter	Current Value	Parameter Name	
D-34 D-34 D-34 D-34	U-235+D , plant/soil concentration ratio, dimensionless U-235+D , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) U-235+D , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	2.500E-03 3.400E-04 6.000E-04	2.500E-03 3.400E-04 6.000E-04	RTF(8,1) RTF(8,2) RTF(8,3)
D-34 D-34 D-34 D-34	U-238+D , plant/soil concentration ratio, dimensionless U-238+D , beef/livestock-intake ratio, (pCi/kg)/(pCi/d) U-238+D , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	2.500E-03 3.400E-04 6.000E-04	2.500E-03 3.400E-04 6.000E-04	RTF(9,1) RTF(9,2) RTF(9,3)
D-5 D-5 D-5	Bioaccumulation factors, fresh water, L/kg: Ac-227+D , fish Ac-227+D , crustacea and mollusks	1.500E+01 1.000E+03	1.500E+01 1.000E+03	BIOFAC(1,1) BIOFAC(1,2)
D-5 D-5 D-5	Pa-231 , fish Pa-231 , crustacea and mollusks	1.000E+01 1.100E+02	1.000E+01 1.100E+02	BIOFAC(2,1) BIOFAC(2,2)
D-5 D-5	Pb-210+D , fish Pb-210+D , crustacea and mollusks	3.000E+02 1.000E+02	3.000E+02 1.000E+02	BIOFAC(3,1) BIOFAC(3,2)
D-5 D-5 D-5	Po-210 , fish Po-210 , crustacea and mollusks	1.000E+02 2.000E+04	1.000E+02 2.000E+04	BIOFAC(4,1) BIOFAC(4,2)
D-5 D-5 D-5	Ra-226+D , fish Ra-226+D , crustacea and mollusks	5.000E+01 2.500E+02	5.000E+01 2.500E+02	BIOFAC(5,1) BIOFAC(5,2)
D-5 D-5 D-5	Th-230 , fish Th-230 , crustacea and mollusks	1.000E+02 5.000E+02	1.000E+02 5.000E+02	BIOFAC(6,1) BIOFAC(6,2)
D-5 D-5 D-5	U-234 , fish U-234 , crustacea and mollusks	1.000E+01 6.000E+01	1.000E+01 6.000E+01	BIOFAC(7,1) BIOFAC(7,2)
D-5 D-5 D-5	U-235+D , fish U-235+D , crustacea and mollusks	1.000E+01 6.000E+01	1.000E+01 6.000E+01	BIOFAC(8,1) BIOFAC(8,2)
D-5 D-5	U-238+D , fish U-238+D , crustacea and mollusks	1.000E+01 6.000E+01	1.000E+01 6.000E+01	BIOFAC(9,1) BIOFAC(9,2)

03/12/98 22:36 Page 4 File: A:\CONC.RAD

Site-Specific Parameter Summary

Menu	Parameter	User Input	Default	Used by RESRAD (If different from user input)	Parameter Name
R011 R011 R011 R011 R011 R011 R011 R011	Area of contaminated zone (m**2) Thickness of contaminated zone (m) Length parallel to aquifer flow (m) Basic radiation dose limit (mrem/yr) Time since placement of material (yr) Times for calculations (yr)	2.970E+03 3.048E-01 1.000E+02 3.000E+01 2.000E+01 1.000E+00 3.000E+00 1.000E+01 3.000E+01 1.000E+02 3.000E+02 5.000E+02 9.000E+02 1.000E+03	1.000E+04 2.000E+00 1.000E+02 3.000E+01 0.000E+00 1.000E+00 1.000E+01 3.000E+01 1.000E+02 3.000E+02 1.000E+03 0.000E+00 0.000E+00		AREA THICKO LCZPAQ BRDL TI T(2) T(3) T(4) T(5) T(6) T(7) T(8) T(9) T(10)
R012 R012 R012 R012 R012 R012 R012	Initial principal radionuclide (pCi/g): U-234 Initial principal radionuclide (pCi/g): U-235 Initial principal radionuclide (pCi/g): U-238 Concentration in groundwater (pCi/L): U-234 Concentration in groundwater (pCi/L): U-235 Concentration in groundwater (pCi/L): U-238 Concentration in groundwater (pCi/L): U-238	2.300E+00 5.000E-02 6.000E-01 not used not used not used 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	 	S1(7) S1(8) S1(9) W1(7) W1(8) W1(9) COVER0
R013 R013 R013 R013 R013 R013 R013 R013	Density of cover material (g/cm**3) Cover depth erosion rate (m/yr) Density of contaminated zone (g/cm**3) Contaminated zone erosion rate (m/yr) Contaminated zone total porosity Contaminated zone effective porosity Contaminated zone hydraulic conductivity (m/yr) Contaminated zone b parameter Humidity in air (g/cm**3) Evapotranspiration coefficient Precipitation (m/yr) Irrigation (m/yr) Irrigation mode Runoff coefficient Watershed area for nearby stream or pond (m**2) Accuracy for water/soil computations	not used not used 1.800E+00 1.000E-03 3.000E-01 2.000E-01 1.000E+00 not used 5.000E-01 1.000E+00 7.600E-01 0verhead 2.000E-01 1.000E+06 1.000E-03	1.500E+00 1.000E-03 1.500E+00 1.000E-03 4.000E-01 2.000E-01 1.000E+00 8.000E+00 5.000E-01 1.000E+00 2.000E-01 0verhead 2.000E-01 1.000E+06 1.000E-03		DENSCV VCV DENSCZ VCZ TPCZ EPCZ HCCZ BCZ HUMID EVAPTR PRECIP RI IDITCH RUNOFF WAREA EPS
R014 R014 R014 R014 R014 R014 R014 R014	Density of saturated zone (g/cm**3) Saturated zone total porosity Saturated zone effective porosity Saturated zone hydraulic conductivity (m/yr) Saturated zone hydraulic gradient Saturated zone b parameter Water table drop rate (m/yr) Well pump intake depth (m below water table) Model: Nondispersion (ND) or Mass-Balance (MB) Well pumping rate (m**3/yr)	1.630E+00 3.000E-01 2.000E-01 1.000E+02 2.000E-02 5.300E+00 0.000E+00 1.000E+01 ND 2.500E+02	1.500E+00 4.000E-01 2.000E-01 1.000E+02 2.000E-02 5.300E+00 1.000E-03 1.000E+01 ND 2.500E+02		DENSAQ TPSZ EPSZ HCSZ HGWT BSZ VWT DWIBWT MODEL UW

Menu	Parameter	User Input	Default	Used by RESRAD (If different from user input)	Parameter Name
R015 R015 R015 R015 R015 R015 R015	Number of unsaturated zone strata Unsat. zone 1, thickness (m) Unsat. zone 1, soil density (g/cm**3) Unsat. zone 1, total porosity Unsat. zone 1, effective porosity Unsat. zone 1, soil-specific b parameter Unsat. zone 1, hydraulic conductivity (m/yr)	1 4.000E+00 1.630E+00 3.000E-01 2.000E-01 5.300E+00 1.000E+01	1 4.000E+00 1.500E+00 4.000E-01 2.000E-01 5.300E+00 1.000E+01		NS H(1) DENSUZ(1) TPUZ(1) EPUZ(1) BUZ(1) HCUZ(1)
R016 R016 R016 R016 R016 R016	Distribution coefficients for U-234 Contaminated zone (cm**3/g) Unsaturated zone 1 (cm**3/g) Saturated zone (cm**3/g) Leach rate (/yr) Solubility constant	5.000E+01 5.000E+01 5.000E+01 0.000E+00 0.000E+00	5.000E+01 5.000E+01 5.000E+01 0.000E+00 0.000E+00	 2.836E-02 not used	DCNUCC(7) DCNUCU(7,1) DCNUCS(7) ALEACH(7) SOLUBK(7)
R016 R016 R016 R016 R016 R016	Distribution coefficients for U-235 Contaminated zone (cm**3/g) Unsaturated zone 1 (cm**3/g) Saturated zone (cm**3/g) Leach rate (/yr) Solubility constant	5.000E+01 5.000E+01 5.000E+01 0.000E+00 0.000E+00	5.000E+01 5.000E+01 5.000E+01 0.000E+00 0.000E+00	2.836E-02 not used	DCNUCC(8) DCNUCU(8,1) DCNUCS(8) ALEACH(8) SOLUBK(8)
R016 R016 R016 R016 R016 R016	Distribution coefficients for U-238 Contaminated zone (cm**3/g) Unsaturated zone 1 (cm**3/g) Saturated zone (cm**3/g) Leach rate (/yr) Solubility constant	5.000E+01 5.000E+01 5.000E+01 0.000E+00 0.000E+00	5.000E+01 5.000E+01 5.000E+01 0.000E+00 0.000E+00	 2.836E-02 not used	DCNUCC(9) DCNUCU(9,1) DCNUCS(9) ALEACH(9) SOLUBK(9)
R016 R016 R016 R016 R016 R016	Distribution coefficients for daughter Ac-227 Contaminated zone (cm**3/g) Unsaturated zone 1 (cm**3/g) Saturated zone (cm**3/g) Leach rate (/yr) Solubility constant	2.000E+01 2.000E+01 2.000E+01 0.000E+00 0.000E+00	2.000E+01 2.000E+01 2.000E+01 0.000E+00 0.000E+00	 7.060E-02 not used	DCNUCC(1) DCNUCU(1,1) DCNUCS(1) ALEACH(1) SOLUBK(1)
R016 R016 R016 R016 R016 R016	Distribution coefficients for daughter Pa-231 Contaminated zone (cm**3/g) Unsaturated zone 1 (cm**3/g) Saturated zone (cm**3/g) Leach rate (/yr) Solubility constant	5.000E+01 5.000E+01 5.000E+01 0.000E+00 0.000E+00	5.000E+01 5.000E+01 5.000E+01 0.000E+00 0.000E+00	 2.836E-02 not used	DCNUCC(2) DCNUCU(2,1) DCNUCS(2) ALEACH(2) SOLUBK(2)
R016 R016 R016 R016 R016 R016	Distribution coefficients for daughter Pb-210 Contaminated zone (cm**3/g) Unsaturated zone 1 (cm**3/g) Saturated zone (cm**3/g) Leach rate (/yr) Solubility constant	1.000E+02 1.000E+02 1.000E+02 0.000E+00 0.000E+00	1.000E+02 1.000E+02 1.000E+02 0.000E+00 0.000E+00	 1.420E-02 not used	DCNUCC(3) DCNUCU(3,1) DCNUCS(3) ALEACH(3) SOLUBK(3)

Menu	Parameter	User Input	Default	Used by RESRAD (If different from user input)	Parameter Name
R016 R016 R016 R016 R016 R016	Distribution coefficients for daughter Po-210 Contaminated zone (cm**3/g) Unsaturated zone 1 (cm**3/g) Saturated zone (cm**3/g) Leach rate (/yr) Solubility constant	1.000E+01 1.000E+01 1.000E+01 0.000E+00 0.000E+00	1.000E+01 1.000E+01 1.000E+01 0.000E+00 0.000E+00	 1.402E-01 not used	DCNUCC(4) DCNUCU(4,1) DCNUCS(4) ALEACH(4) SOLUBK(4)
R016 R016 R016 R016 R016 R016	Distribution coefficients for daughter Ra-226 Contaminated zone (cm**3/g) Unsaturated zone 1 (cm**3/g) Saturated zone (cm**3/g) Leach rate (/yr) Solubility constant	7.000E+01 7.000E+01 7.000E+01 0.000E+00 0.000E+00	7.000E+01 7.000E+01 7.000E+01 0.000E+00 0.000E+00	 2.027E-02 not used	DCNUCC(5) DCNUCU(5,1) DCNUCS(5) ALEACH(5) SOLUBK(5)
R016 R016 R016 R016 R016 R016	Distribution coefficients for daughter Th-230 Contaminated zone (cm**3/g) Unsaturated zone 1 (cm**3/g) Saturated zone (cm**3/g) Leach rate (/yr) Solubility constant	6.000E+04 6.000E+04 6.000E+04 0.000E+00 0.000E+00	6.000E+04 6.000E+04 6.000E+04 0.000E+00 0.000E+00	 2.369E-05 not used	DCNUCC(6) DCNUCU(6,1) DCNUCS(6) ALEACH(6) SOLUBK(6)
R017 R017 R017 R017 R017 R017 R017 R017	<pre>Inhalation rate (m**3/yr) Mass loading for inhalation (g/m**3) Dilution length for airborne dust, inhalation (m) Exposure duration Shielding factor, inhalation Shielding factor, external gamma Fraction of time spent indoors Fraction of time spent outdoors (on site) Shape factor flag, external gamma</pre>	1.051E+04 2.000E-04 3.000E+00 5.000E+01 5.000E-01 3.300E-01 5.500E-01 2.100E-01 1.000E+00	8.400E+03 2.000E-04 3.000E+00 3.000E+01 4.000E-01 7.000E-01 5.000E-01 2.500E-01 1.000E+00	 1 shows circular AREA.	INHALR MLINH ED SHF3 SHF1 FIND FOTD FS
R017 R017 R017 R017 R017 R017 R017 R017	<pre>Radii of shape factor array (used if FS = -1): Outer annular radius (m), ring 1: Outer annular radius (m), ring 2: Outer annular radius (m), ring 3: Outer annular radius (m), ring 4: Outer annular radius (m), ring 5: Outer annular radius (m), ring 6: Outer annular radius (m), ring 7: Outer annular radius (m), ring 8: Outer annular radius (m), ring 8: Outer annular radius (m), ring 9: Outer annular radius (m), ring 10: Outer annular radius (m), ring 11:</pre>	not used not used not used not used not used not used not used not used not used not used	5.000E+01 7.071E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		RAD SHAPE(1) RAD SHAPE(2) RAD SHAPE(3) RAD SHAPE(3) RAD SHAPE(5) RAD SHAPE(5) RAD SHAPE(6) RAD SHAPE(8) RAD SHAPE(9) RAD SHAPE(10) RAD SHAPE(11)
R017	Outer annular radius (m), ring 12:	not used	0.000E+00		RAD_SHAPE(12)

Menu	Parameter	User Input	Default	Used by RESRAD (If different from user input)	Parameter Name
P017	Fractions of annular areas within ADEA.	<u> </u>		- <u></u>	
D017	Pine 1	not used	1 0005+00		FDACA (1)
D017	Ding 2	not used	2.732E - 01		FDACA (2)
D017	Ring 2 Ding 3	not used	0.0005+00		FRACA (2)
	Ring 5 Ding 4	not used	0.0005+00		FRACA(3)
D017	Ring 4 Ding 5	not used			FRACA (4)
R017	Ring 5	not used			FRACA (J)
D017	Ring 6 Ding 7	not used			FRACA(0)
R017	Ring /	not used			
R017	Ring 8 Bing 0	not used	0.00000000		FRACA(0)
R017	Ring 9 Bing 10	not used			FRACA(3)
RU17	Ring IU Ding 11	not used			FRACA(10)
RU17	Ring II Bing 12	not used			FRACA(11)
RUL	Ring 12	not used	0.0006+00		FRACA (12)
R018	Fruits, vegetables and grain consumption (kg/yr)	1.660E+02	1.600E+02		DIET(1)
R018	Leafy vegetable consumption (kg/yr)	1.100E+01	1.400E+01		DIET(2)
R018	Milk consumption (L/yr)	1.000E+02	9.200E+01		DIET(3)
R018	Meat and poultry consumption (kg/yr)	6.300E+01	6.300E+01		DIET(4)
R018	Fish consumption (kg/yr)	5.400E+00	5.400E+00		DIET(5)
R018	Other seafood consumption (kg/yr)	9.000E-01	9.000E-01		DIET(6)
R018	Soil ingestion rate (g/yr)	1.825E+01	3.650E+01		SOIL
R018	Drinking water intake (L/yr)	7.300E+02	5.100E+02		DWI
R018	Contamination fraction of drinking water	1.000E+00	1.000E+00		FDW
R018	Contamination fraction of household water	not used	1.000E+00	-	FHHW
R018	Contamination fraction of livestock water	1.000E+00	1.000E+00		FLW
R018	Contamination fraction of irrigation water	1.000E+00	1.000E+00		FIRW
R018	Contamination fraction of aquatic food	5.000E-01	5.000E-01		FR9
R018	Contamination fraction of plant food	-1	-1	0.500E+00	FPLANT
R018	Contamination fraction of meat	-1	-1	0.148E+00	FMEAT
R018	Contamination fraction of milk	-1	-1	0.148E+00	FMILK
P 019	Livestock fodder intake for meat (kg/day)	6 8005+01	6 800E+01		T.FT5
	Livestock fodder intake for milk (kg/day)	5.500E+01	5,500E+01		LEIG
	Livestock water intake for meat (I/day)	5.000E+01	5.000E+01		LWIS
D010	Livestock water intake for milk (L/day)	1.600E+01	1.600E+01		IWIS
D010	Livestock water intake for mirk (L/day)	5.000E+02	5.000E+02		TGT
	Mage loading for foliar deposition (g/m**3)	1.000E-01	1.0005-04		MLED
D010	Dopth of soil mixing lower (m)	1.000E-04	1.000E-04		DM
R019 D010	Depth of roote (m)	0.00E-01	1.000E-01		
R019 D010	Drinking water fraction from ground water	9.000E-01	1.000E-01		FCNDW
R019 D010	Uninking water fraction from ground water	1.00000000	1.00000+00	/	FCMUU
R019 D010	Livesterk water fraction from ground water	1.000E+00	1.00000000		FOWIN
R019	Livestock water fraction from ground water		1.00000000		FONTR
RUI9	irrigation fraction from ground water	1.000£+00	1.0005+00		FGWIR
C14	C-12 concentration in water (g/cm**3)	not used	2.000E-05		C12WTR
C14	C-12 concentration in contaminated soil (g/g)	not used	3.000E-02		C12CZ
C14	Fraction of vegetation carbon from soil	not used	2.000E-02		CSOIL
C14	Fraction of vegetation carbon from air	not used	9.800E-01		CAIR
C14	C-14 evasion layer thickness in soil (m)	not used	3.000E-01		DMC
C14	C-14 evasion flux rate from soil (1/sec)	not used	7.000E-07		EVSN
C14	C-12 continuation flux rate from soil (1/sec)	not used	1.000E-10		REVSN

Menu	Parameter	User Input	Default	Used by RESRAD (If different from user input)	Parameter Name
C14	Fraction of grain in beef cattle feed	not used	8.000E-01		AVFG4
C14	Fraction of grain in milk cow feed	not used	2.000E-01		AVFG5
STOR STOR STOR STOR STOR STOR STOR STOR	Storage times of contaminated foodstuffs (days): Fruits, non-leafy vegetables, and grain Leafy vegetables Milk Meat and poultry Fish Crustacea and mollusks Well water Surface water Livestock fodder	1.400E+01 1.000E+00 2.000E+00 7.000E+00 7.000E+00 1.000E+00 1.000E+00 4.500E+01	1.400E+01 1.000E+00 2.000E+00 7.000E+00 7.000E+00 1.000E+00 1.000E+00 4.500E+01		STOR T(1) STOR T(2) STOR T(3) STOR T(4) STOR T(5) STOR T(6) STOR T(7) STOR T(8) STOR T(9)
R021	Thickness of building foundation (m) Bulk density of building foundation (α/cm^{**3})	not used	1.500E-01 2.400E+00		FLOOR DENSFL
R021	Total porosity of the cover material	not used	4.000E-01		TPCV
R021	Total porosity of the building foundation	not used	1.000E-01		TPFL
R021	Volumetric water content of the cover material	not used	5.000E-02		PH2OCV
R021	Volumetric water content of the foundation	not used	3.000E-02		PHZOFL
R021 R021 R021	in cover material in foundation material	not used not used	2.000E-06 3.000E-07		DIFCV DIFFL
R021	in contaminated zone soil	not used	2.000E-06		DIFCZ
R021	Radon vertical dimension of mixing (m)	not used	2.000E+00		HMIX
R021	Average annual wind speed (m/sec)	not used	2.000E+00		WIND
R021	Average building air exchange rate (1/hr)	not used	5.000E-01		KEAG UDM
R021	Height of the building (room) (m)	not used	2.500E+00		FNT FNT
RUZI	Building interior area lactor	not used	-1 000E+00		DMFT.
KUZI	Building depth below ground Surlace (M)	not used	2500E-01		EMANA(1)
R021 R021	Emanating power of Rn-220 gas	not used	1.500E-01		EMANA (2)

Summary of Pathway Selections

Pathway	User Selection
<pre>1 external gamma</pre>	active
2 inhalation (w/o radon)	active
3 plant ingestion	active
4 meat ingestion	active
5 milk ingestion	active
6 aquatic foods	active
7 drinking water	active
8 soil ingestion	active
9 radon	suppressed

03/12/98 22:36 Page 9 File: A:\CONC.RAD

Contaminated Zon	e Dimensions	Initial Soil	Concentrations,	pCi/g
Area: 2970.0	0 square meters	U-234	2.300E+00	
Thickness: 0.3	0 meters	U-235	5.000E-02	
Cover Depth: 0.0	0 meters	U-238	6.000E-01	

Total Dose TDOSE(t), mrem/yr Basic Radiation Dose Limit = 30 mrem/yr Total Mixture Sum M(t) = Fraction of Basic Dose Limit Received at Time (t)

t (years): 0.000E+00 1.000E+00 3.000E+00 1.000E+01 3.000E+01 1.000E+02 3.000E+02 5.000E+02 9.000E+02 1.000E+03 TDOSE(t): 4.914E-01 4.775E-01 4.508E-01 3.687E-01 2.075E-01 2.795E-02 8.502E-01 1.183E+00 1.240E+00 3.678E-01 M(t): 1.638E-02 1.592E-02 1.503E-02 1.229E-02 6.918E-03 9.317E-04 2.834E-02 3.943E-02 4.133E-02 1.226E-02

Maximum TDOSE(t): 1.240E+00 mrem/yr at t = 902.1 ± 0.9 years

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 902.1 years

Water Independent Pathways (Inhalation excludes radon)

Radio- Nuclide	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000												
Total	0.000E+00	0.0000												

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 902.1 years

Water Dependent Pathways

Radio- Nuclide	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
	mrem/yr	fract.												
U-234 U-235 U-238	7.822E-01 5.952E-02 1.853E-01	0.6309 0.0480 0.1495	1.209E-03 7.185E-05 4.109E-05	0.0010 0.0001 0.0000	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	1.536E-01 1.171E-02 3.645E-02	0.1239 0.0094 0.0294	2.442E-03 4.297E-04 4.192E-04	0.0020 0.0003 0.0003	5.041E-03 1.084E-04 1.220E-03	0.0041 0.0001 0.0010	9.445E-01 7.184E-02 2.235E-01	0.7618 0.0579 0.1802
Total	1.027E+00	0.8284	1.322E-03	0.0011	0.000E+00	0.0000	2.018E-01	0.1627	3.291E-03	0.0027	6.369E-03	0.0051	1.240E+00	1.0000

03/12/98 22:36 Page 10 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

Dadia	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	3.424E-04 1.403E-02 3.005E-02	0.0007 0.0285 0.0612	2.934E-01 5.943E-03 6.841E-02	0.5970 0.0121 0.1392	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	4.914E-02 1.008E-03 1.218E-02	0.1000 0.0021 0.0248	1.158E-03 2.376E-05 2.872E-04	0.0024 0.0000 0.0006	3.178E-03 6.519E-05 7.882E-04	0.0065 0.0001 0.0016	9.028E-03 1.852E-04 2.239E-03	0.0184 0.0004 0.0046
Total	4.442E-02	0.0904	3.677E-01	0.7483	0.000E+00	0.0000	6.233E-02	0.1268	1.469E-03	0.0030	4.032E-03	0.0082	1.145E-02	0.0233

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

Water Dependent Pathways

Dedia	Wate	er	Fis	h	Rade	on	Plan	nt	Mea	t	Mill	k	All Pat	hways*
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	3.562E-01 2.125E-02 1.140E-01	0.7249 0.0432 0.2319										
Total	0.000E+00	0.0000	4.914E-01	1.0000										

· .

03/12/98 22:36 Page 11 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

Dadia	Grou	nd	Inhala	tion	Rade	on	Plan	nt	Meat	t	Mill	k	Soi	1
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	3.329E-04 1.364E-02 2.921E-02	0.0007 0.0286 0.0612	2.852E-01 5.778E-03 6.650E-02	0.5972 0.0121 0.1393	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	4.761E-02 9.798E-04 1.181E-02	0.0997 0.0021 0.0247	1.125E-03 2.346E-05 2.791E-04	0.0024 0.0000 0.0006	3.089E-03 6.335E-05 7.659E-04	0.0065 0.0001 0.0016	8.776E-03 1.801E-04 2.176E-03	0.0184 0.0004 0.0046
 Total	4.318E-02	0.0904	3.574E-01	0.7486	0.000E+00	0.0000	6.040E-02	0.1265	1.428E-03	0.0030	3.918E-03	0.0082	1.113E-02	0.0233

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

Water Dependent Pathways

Dealth	Wate	er	Fisl	h	Rad	on	Pla	nt	Mea	t	Mili	k	All Pat	hways*
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	3.461E-01 2.066E-02 1.107E-01	0.7248 0.0433 0.2319										
Total	0.000E+00	0.0000	4.775E-01	1.0000										

.

03/12/98 22:36 Page 12 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

Dedit	Grou	nd	Inhala	tion	Rad	on	Pla	nt	Mea	t	Mil	k	Soi	1
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	3.147E-04 1.289E-02 2.760E-02	0.0007 0.0286 0.0612	2.695E-01 5.462E-03 6.283E-02	0.5977 0.0121 0.1394	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	4.469E-02 9.260E-04 1.108E-02	0.0991 0.0021 0.0246	1.063E-03 2.286E-05 2.635E-04	0.0024 0.0001 0.0006	2.917E-03 5.983E-05 7.233E-04	0.0065 0.0001 0.0016	8.292E-03 1.705E-04 2.056E-03	0.0184 0.0004 0.0046
Total	4.080E-02	0.0905	3.378E-01	0.7492	0.000E+00	0.0000	5.670E-02	0.1258	1.349E-03	0.0030	3.700E-03	0.0082	1.052E-02	0.0233

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+00 years

Water Dependent Pathways

D - 11 -	Wate	er	Fis	h	Rad	on	Pla	nt	Mea	t	Mill	k	All Pat	hways*
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	3.267E-01 1.953E-02 1.046E-01	0.7247 0.0433 0.2319										
Total	0.000E+00	0.0000	4.508E-01	1.0000										

RESRAD, Version 5.70 The Limit = 30 days Summary : PG-8-08 Default Parameters

03/12/98 22:36 Page 13 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

D 11	Grou	nd	Inhala	tion	Rade	on	Pla	nt	Mea	t	Mil)	к	Soi	1
Nuclide	mrem/yr	fract.	mrem/yr	fract.										
U-234 U-235 U-238	2.595E-04 1.057E-02 2.264E-02	0.0007 0.0287 0.0614	2.210E-01 4.492E-03 5.152E-02	0.5994 0.0122 0.1398	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	3.580E-02 7.600E-04 8.878E-03	0.0971 0.0021 0.0241	8.694E-04 2.070E-05 2.156E-04	0.0024 0.0001 0.0006	2.387E-03 4.897E-05 5.919E-04	$0.0065 \\ 0.0001 \\ 0.0016$	6.800E-03 1.408E-04 1.686E-03	0.0184 0.0004 0.0046
Total	3.347E-02	0.0908	2.770E-01	0.7513	0.000E+00	0.0000	4.544E-02	0.1233	1.106E-03	0.0030	3.028E-03	0.0082	8.627E-03	0.0234

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years

Water Dependent Pathways

	Wate	er	Fis	h	Rad	on	Pla	nt	Mea	t	Mil	k	All Pat	hways*
Radio- Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	2.671E-01 1.604E-02 8.553E-02	0.7245 0.0435 0.2320										
Total	0.000E+00	0.0000	3.687E-01	1.0000										

03/12/98 22:36 Page 14 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

Radia-	Grou	nd	Inhala	tion	Rade	on	Pla	nt	Mea	t	Mill	ĸ	Soi	1
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	1.567E-04 6.008E-03 1.284E-02	0.0008 0.0290 0.0619	1.254E-01 2.578E-03 2.922E-02	0.6044 0.0124 0.1408	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	1.895E-02 4.309E-04 4.697E-03	0.0913 0.0021 0.0226	4.899E-04 1.483E-05 1.214E-04	0.0024 0.0001 0.0006	1.346E-03 2.763E-05 3.339E-04	0.0065 0.0001 0.0016	3.859E-03 8.180E-05 9.563E-04	0.0186 0.0004 0.0046
Total	1.900E-02	0.0916	1.572E-01	0.7576	0.000E+00	0.0000	2.408E-02	0.1160	6.261E-04	0.0030	1.708E-03	0.0082	4.897E-03	0.0236

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+01 years

Water Dependent Pathways

Dedia	Wate	er	Fis	h	Rad	on	Pla	nt	Mea	t	Mil	k	All Path	hways*
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	1.502E-01 9.141E-03 4.817E-02	0.7239 0.0440 0.2321										
Total	0.000E+00	0.0000	2.075E-01	1.0000										

03/12/98 22:36 Page 15 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

Dadia	Grou	nd	Inhala	tion	Rade	on	Plan	nt	Meat	t	Mill	k	Soi	1
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	6.244E-05 8.286E-04 1.743E-03	0.0022 0.0296 0.0623	1.743E-02 3.714E-04 4.016E-03	0.6235 0.0133 0.1437	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	1.970E-03 5.492E-05 4.824E-04	0.0705 0.0020 0.0173	6.638E-05 3.375E-06 1.629E-05	0.0024 0.0001 0.0006	1.816E-04 3.728E-06 4.498E-05	0.0065 0.0001 0.0016	5.356E-04 1.225E-05 1.314E-04	0.0192 0.0004 0.0047
Total	2.634E-03	0.0942	2.181E-02	0.7804	0.000E+00	0.0000	2.507E-03	0.0897	8.604E-05	0.0031	2.303E-04	0.0082	6.793E-04	0.0243

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

Water Dependent Pathways

De dé a	Wate	er	Fis	h	Rade	on	Pla	nt	Mea	t	Mill	k	All Pat	hways*
Radio- Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 5.659E-07 0.000E+00	0.0000 0.0000 0.0000	0.000E+00 1.129E-09 0.000E+00	0.0000 0.0000 0.0000	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	0.000E+00 1.123E-07 0.000E+00	0.0000 0.0000 0.0000	0.000E+00 1.842E-10 0.000E+00	0.0000 0.0000 0.0000	0.000E+00 1.266E-10 0.000E+00	0.0000 0.0000 0.0000	2.024E-02 1.275E-03 6.434E-03	0.7242 0.0456 0.2302
Total	5.659E-07	0.0000	1.129E-09	0.0000	0.000E+00	0.0000	1.123E-07	0.0000	1.842E-10	0.0000	1.266E-10	0.0000	2.795E-02	1.0000

03/12/98 22:36 Page 16 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

Dadia-	Grou	nd	Inhala	tion	Rade	on	Plar	nt	Mea	t	Mill	k	Soi	1
Nuclide	mrem/yr	fract.												
U-234 U-235 U-238	5.938E-06 3.829E-07 7.937E-07	0.0000 0.0000 0.0000	9.202E-06 4.642E-08 4.431E-07	0.0000 0.0000 0.0000	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	1.048E-06 6.910E-09 3.915E-08	0.0000 0.0000 0.0000	4.114E-08 7.712E-10 1.763E-09	0.0000 0.0000 0.0000	3.475E-08 4.063E-10 4.882E-09	0.0000 0.0000 0.0000	2.758E-07 1.671E-09 1.450E-08	0.0000 0.0000 0.0000
Total	7.114E-06	0.0000	9.691E-06	0.0000	0.000E+00	0.0000	1.094E-06	0.0000	4.367E-08	0.0000	4.004E-08	0.0000	2.920E-07	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+02 years

Water Dependent Pathways

Radio- Nuclide	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
	mrem/yr	fract.												
U-234 U-235 U-238	5.443E-01 2.562E-02 1.352E-01	0.6402 0.0301 0.1590	1.228E-04 2.625E-05 2.970E-05	0.0001 0.0000 0.0000	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	1.070E-01 5.040E-03 2.659E-02	0.1259 0.0059 0.0313	1.232E-03 1.265E-04 3.055E-04	0.0014 0.0001 0.0004	3.581E-03 7.618E-05 8.895E-04	0.0042 0.0001 0.0010	6.563E-01 3.089E-02 1.630E-01	0.7719 0.0363 0.1917
Total	7.051E-01	0.8293	1.787E-04	0.0002	0.000E+00	0.0000	1.387E-01	0.1631	1.664E-03	0.0020	4.547E-03	0.0053	8.502E-01	1.0000

1.1

03/12/98 22:36 Page 17 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 5.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

Radio- Nuclide	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000												
Total	0.000E+00	0.0000												

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 5.000E+02 years

Water Dependent Pathways

Radio- Nuclide	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
	mrem/yr	fract.												
U-234 U-235 U-238	7.521E-01 4.360E-02 1.851E-01	0.6358 0.0369 0.1565	3.750E-04 4.865E-05 4.074E-05	0.0003 0.0000 0.0000	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	1.479E-01 8.575E-03 3.640E-02	0.1250 0.0072 0.0308	1.836E-03 2.588E-04 4.184E-04	0.0016 0.0002 0.0004	4.927E-03 1.057E-04 1.218E-03	0.0042 0.0001 0.0010	9.071E-01 5.258E-02 2.232E-01	0.7669 0.0445 0.1887
Total	9.807E-01	0.8292	4.644E-04	0.0004	0.000E+00	0.0000	1.928E-01	0.1630	2.513E-03	0.0021	6.251E-03	0.0053	1.183E+00	1.0000

03/12/98 22:36 Page 18 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 9.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

Radio- Nuclide	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000												
Total	0.000E+00	0.0000												

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 9.000E+02 years

Water Dependent Pathways

Radio- Nuclide	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
	mrem/yr	fract.												
U-234 U-235 U-238	7.820E-01 5.973E-02 1.853E-01	0.6308 0.0482 0.1495	1.203E-03 7.230E-05 4.108E-05	0.0010 0.0001 0.0000	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	1.536E-01 1.175E-02 3.645E-02	0.1239 0.0095 0.0294	2.438E-03 4.289E-04 4.192E-04	0.0020 0.0003 0.0003	5.040E-03 1.084E-04 1.220E-03	0.0041 0.0001 0.0010	9.443E-01 7.209E-02 2.235E-01	0.7616 0.0581 0.1802
Total	1.027E+00	0.8284	1.317E-03	0.0011	0.000E+00	0.0000	2.018E-01	0.1627	3.286E-03	0.0027	6.368E-03	0.0051	1.240E+00	1.0000

RESRAD, Version 5.70 T½ Limit = 30 days Summary : PG-8-08 Default Parameters

03/12/98 22:36 Page 19 File: A:\CONC.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

Water Independent Pathways (Inhalation excludes radon)

Radio- Nuclide	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
	mrem/yr	fract.												
U-234 U-235 U-238	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000												
Total	0.000E+00	0.0000												

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years

Water Dependent Pathways

Radio- Nuclide	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
	mrem/yr	fract.												
U-234 U-235 U-238	2.430E-01 1.194E-02 4.857E-02	0.6609 0.0325 0.1321	1.348E-03 1.100E-05 1.111E-05	0.0037 0.0000 0.0000	0.000E+00 0.000E+00 0.000E+00	0.0000 0.0000 0.0000	4.749E-02 2.350E-03 9.553E-03	0.1291 0.0064 0.0260	1.390E-03 1.228E-04 1.101E-04	0.0038 0.0003 0.0003	1.467E-03 2.753E-05 3.196E-04	0.0040 0.0001 0.0009	2.947E-01 1.445E-02 5.857E-02	0.8014 0.0393 0.1593
Total	3.036E-01	0.8254	1.370E-03	0.0037	0.000E+00	0.0000	5.939E-02	0.1615	1.623E-03	0.00,44	1.814E-03	0.0049	3.678E-01	1.0000
RESRAD, Version 5.70 T¹/₂ Limit = 30 days Summary : PG-8-08 Default Parameters

03/12/98 22:36 Page 20 File: A:\CONC.RAD

Dose/Source Ratios Summed Over All Pathways Parent and Progeny Principal Radionuclide Contributions Indicated

Parent (i)	Product	Branch Fraction	t=	0.000E+00	1.000E+00	3.000E+00	DSR() 1.000E+01	j,t) (mren 3.000E+01	m/yr)/(pCi, 1.000E+02	/g) 3.000E+02	5.000E+02	9.000E+02	1.000E+03
U-234 U-234 U-234 U-234 U-234 U-234 U-234	U-234 Th-230 Ra-226 Pb-210 Po-210 ∑DSR(j)	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00	-	1.549E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.549E-01	1.505E-01 3.031E-06 1.101E-08 4.884E-11 1.791E-12 1.505E-01	1.420E-01 8.812E-06 9.565E-08 1.005E-09 6.407E-11 1.421E-01	1.161E-01 2.662E-05 9.429E-07 2.831E-08 2.407E-09 1.161E-01	6.525E-02 6.152E-05 6.084E-06 4.443E-07 4.267E-08 6.532E-02	8.675E-03 9.978E-05 2.347E-05 3.057E-06 3.439E-07 8.802E-03	2.853E-01 3.508E-06 7.448E-06 1.310E-05 4.629E-05 2.853E-01	3.901E-01 1.240E-06 3.186E-04 8.704E-04 3.052E-03 3.944E-01	3.898E-01 3.496E-06 1.547E-03 4.235E-03 1.501E-02 4.106E-01	1.021E-01 3.913E-06 1.938E-03 5.304E-03 1.884E-02 1.281E-01
U-235 U-235 U-235 U-235	U-235 Pa-231 Ac-227 ∑DSR(j)	1.000E+00 1.000E+00 1.000E+00		4.250E-01 0.000E+00 0.000E+00 4.250E-01	4.131E-01 1.033E-04 2.838E-06 4.132E-01	3.902E-01 2.903E-04 2.242E-05 3.906E-01	3.198E-01 7.801E-04 1.723E-04 3.207E-01	1.810E-01 1.268E-03 5.910E-04 1.828E-01	2.462E-02 4.864E-04 3.921E-04 2.550E-02	2.694E-01 7.365E-02 2.748E-01 6.179E-01	3.686E-01 1.634E-01 5.196E-01 1.052E+00	3.687E-01 2.880E-01 7.851E-01 1.442E+00	9.656E-02 8.354E-02 1.090E-01 2.891E-01
U-238 U-238 U-238 U-238 U-238 U-238 U-238 U-238	U-238 U-234 Th-230 Ra-226 Pb-210 Po-210 ∑DSR(j)	1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00		1.899E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.899E-01	1.846E-01 4.289E-07 4.297E-12 1.037E-14 3.766E-17 5.547E-19 1.846E-01	1.743E-01 1.210E-06 3.700E-11 2.688E-13 2.216E-15 1.282E-16 1.743E-01	$\begin{array}{c} 1.425E-01\\ 3.293E-06\\ 3.597E-10\\ 8.643E-12\\ 2.012E-13\\ 1.640E-14\\ 1.426E-01 \end{array}$	8.027E-02 5.550E-06 2.250E-09 1.570E-10 9.151E-12 8.654E-13 8.028E-02	1.072E-02 2.460E-06 8.218E-09 1.580E-09 1.820E-10 2.039E-11 1.072E-02	2.714E-01 2.589E-04 4.505E-10 2.693E-08 7.137E-08 2.891E-07 2.716E-01	3.714E-01 5.755E-04 1.451E-09 4.719E-07 1.264E-06 4.567E-06 3.719E-01	3.714E-01 1.018E-03 6.158E-09 2.134E-06 5.718E-06 2.036E-05 3.725E-01	9.728E-02 2.955E-04 7.274E-09 2.576E-06 6.905E-06 2.458E-05 9.761E-02

Branch Fraction is the cumulative factor for the j'th principal radionuclide daughter: $CUMBRF(j) = BRF(1)*BRF(2)* \dots BRF(j)$. The DSR includes contributions from associated (half-life ≤ 30 days) daughters.

Single Radionuclide Soil Guidelines G(i,t) in pCi/g Basic Radiation Dose Limit = 30 mrem/yr

U-238	1.579E+02	1.625E+02	1.721E+02	2.104E+02	3.737E+02	2.798E+03	1.104E+02	8.066E+01	8.054E+01	3.073E+02
U-235	7.059E+01	7.260E+01	7.681E+01	9.354E+01	1.641E+02	1.176E+03	4.855E+01	2.853E+01	2.081E+01	1.038E+02
U-234	1.937E+02	1.994E+02	2.112E+02	2.583E+02	4.593E+02	3.409E+03	1.051E+02	7.607E+01	7.307E+01	2.341E+02
			·			<u> </u>				<u> </u>
(i)	t= 0.000E+00	1.000E+00	3.000E+00	1.000E+01	3.000E+01	1.000E+02	3.000E+02	5.000E+02	9.000E+02	1.000E+03
Nuclide										

Summed Dose/Source Ratios DSR(i,t) in (mrem/yr)/(pCi/g) and Single Radionuclide Soil Guidelines G(i,t) in pCi/g at tmin = time of minimum single radionuclide soil guideline and at tmax = time of maximum total dose = 902.1 ± 0.9 years

Nuclide (i)	Initial pCi/g	tmin (years)	DSR(i,tmin)	G(i,tmin) (pCi/g)	DSR(i,tmax)	G(i,tmax) (pCi/g)
U-234	2.300E+00	$\begin{array}{r} 958.5 \pm 1.0 \\ 858.4 \pm 0.9 \\ 958.5 \pm 1.0 \end{array}$	4.136E-01	7.254E+01	4.107E-01	7.305E+01
U-235	5.000E-02		1.480E+00	2.027E+01	1.437E+00	2.088E+01
U-238	6.000E-01		3.725E-01	8.053E+01	3.725E-01	8.054E+01

03/12/98 22:36 Page 21 File: A:\CONC.RAD

Individual Nuclide Dose Summed Over All Pathways Parent Nuclide and Branch Fraction Indicated

Nuclide (j)	Parent (i)	BRF(i)	t=	0.000E+00	1.000E+00	3.000E+00	1.000E+01	DOSE(j,t) 3.000E+01	, mrem/yr 1.000E+02	3.000E+02	5.000E+02	9.000E+02	1.000E+03
U-234 U-234 U-234	U-234 U-238 ∑DOSE(j	1.000E+00 1.000E+00):		3.562E-01 0.000E+00 3.562E-01	3.461E-01 2.573E-07 3.461E-01	3.267E-01 7.261E-07 3.267E-01	2.670E-01 1.976E-06 2.670E-01	1.501E-01 3.330E-06 1.501E-01	1.995E-02 1.476E-06 1.995E-02	6.561E-01 1.553E-04 6.563E-01	8.973E-01 3.453E-04 8.977E-01	8.964E-01 6.107E-04 8.970E-01	2.347E-01 1.773E-04 2.349E-01
Th-230 Th-230 Th-230	U-234 U-238 ∑DOSE(j	1.000E+00 1.000E+00):		0.000E+00 0.000E+00 0.000E+00	6.972E-06 2.578E-12 6.972E-06	2.027E-05 2.220E-11 2.027E-05	6.122E-05 2.158E-10 6.122E-05	1.415E-04 1.350E-09 1.415E-04	2.295E-04 4.931E-09 2.295E-04	8.070E-06 2.703E-10 8.070E-06	2.853E-06 8.706E-10 2.854E-06	8.041E-06 3.695E-09 8.045E-06	9.000E-06 4.364E-09 9.005E-06
Ra-226 Ra-226 Ra-226	U-234 U-238 ∑DOSE(j	1.000E+00 1.000E+00):		0.000E+00 0.000E+00 0.000E+00	2.531E-08 6.223E-15 2.531E-08	2.200E-07 1.613E-13 2.200E-07	2.169E-06 5.186E-12 2.169E-06	1.399E-05 9.422E-11 1.399E-05	5.398E-05 9.478E-10 5.398E-05	1.713E-05 1.616E-08 1.715E-05	7.328E-04 2.832E-07 7.331E-04	3.558E-03 1.280E-06 3.559E-03	4.457E-03 1.546E-06 4.459E-03
Pb-210 Pb-210 Pb-210	U-234 U-238 ∑DOSE(j	1.000E+00 1.000E+00):		0.000E+00 0.000E+00 0.000E+00	1.123E-10 2.260E-17 1.123E-10	2.311E-09 1.330E-15 2.311E-09	6.510E-08 1.207E-13 6.510E-08	1.022E-06 5.491E-12 1.022E-06	7.030E-06 1.092E-10 7.030E-06	3.013E-05 4.282E-08 3.018E-05	2.002E-03 7.585E-07 2.003E-03	9.740E-03 3.431E-06 9.743E-03	1.220E-02 4.143E-06 1.220E-02
Po-210 Po-210 Po-210	U-234 U-238 ∑DOSE(j	1.000E+00 1.000E+00):		0.000E+00 0.000E+00 0.000E+00	4.119E-12 3.328E-19 4.119E-12	1.474E-10 7.691E-17 1.474E-10	5.536E-09 9.837E-15 5.536E-09	9.814E-08 5.192E-13 9.814E-08	7.909E-07 1.223E-11 7.909E-07	1.065E-04 1.735E-07 1.066E-04	7.020E-03 2.740E-06 7.023E-03	3.453E-02 1.221E-05 3.454E-02	4.334E-02 1.475E-05 4.335E-02
U-235	U-235	1.000E+00		2.125E-02	2.065E-02	1.951E-02	1.599E-02	9.048E-03	1.231E-03	1.347E-02	1.843E-02	1.843E-02	4.828E-03
Pa-231	U-235	1.000E+00		0.000E+00	5.166E-06	1.452E-05	3.901E-05	6.340E-05	2.432E-05	3.683E-03	8.172E-03	1.440E-02	4.177E-03
Ac-227	U-235	1.000E+00		0.000E+00	1.419E-07	1.121E-06	8.615E-06	2.955E-05	1.961E-05	1.374E-02	2.598E-02	3.925E-02	5.448E-03
U-238	U-238	1.000E+00		1.140E-01	1.107E-01	1.046E-01	8.553E-02	4.816E-02	6.432E-03	1.628E-01	2.228E-01	2.229E-01	5.837E-02

.

BRF(i) is the branch fraction of the parent nuclide.

