B 3.9.1 Boron Concentration

BASES

BACKGROUND

The limit on the boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity during refueling ensures that the reactor remains subcritical during MODE 6. Refueling boron concentration is the soluble boron concentration in the coolant in each of these volumes having direct access to the reactor core during refueling.

The soluble boron concentration offsets the core reactivity and is measured by chemical analysis of a representative sample of the coolant in each of the volumes. The refueling boron concentration limit is specified in the COLR. Plant procedures ensure the specified boron concentration in order to maintain an overall core reactivity of $k_{\text{eff}} \leq 0.95$ during fuel handling, with control rods and fuel assemblies assumed to be in the most adverse configuration (least negative reactivity) allowed by plant procedures.

GDC 26 of 10 CFR 50, Appendix A, requires that two independent reactivity control systems of different design principles be provided (Ref. 1). One of these systems must be capable of holding the reactor core subcritical under cold conditions. The Low Head Safety Injection System (LHSI) and the Medium Head safety Injection (MHSI) systems are either capable of maintaining the reactor subcritical in cold conditions by maintaining the boron concentration.

The reactor is brought to shutdown conditions before beginning operations to open the reactor vessel for refueling. After the RCS is cooled and depressurized and the vessel head is unbolted, the head is slowly removed to form the refueling cavity. The refueling canal and the refueling cavity can then flooded with borated water from the incontainment refueling water storage tank through the open reactor vessel by the use of the LHSI pumps.

The mixing action of the LHSI pump in RHR mode and the natural circulation currents due to thermal driving heads in the upper reactor vessel and refueling cavity further mix the added concentrated boric acid with the water in the refueling canal. The LHSI pump in RHR mode is in operation during refueling (see LCO 3.9.4, "Residual Heat removal (RHR) Loops - High Water Level," and LCO 3.9.5, "Residual heat removal (RHR) Loops - Low Water Level") to provide forced circulation in the RCS and assist in maintaining the boron concentrations in the RCS, the refueling canal, and the refueling cavity above the COLR limit.

APPLICABLE SAFETY ANALYSES

During refueling operations, the reactivity condition of the core is consistent with the initial conditions assumed for the boron dilution accident in the accident analysis and is conservative for MODE 6. The boron concentration limit specified in the COLR is based on the core reactivity at the beginning of each fuel cycle (the end of refueling) and includes an uncertainty allowance.

The required boron concentration and the plant refueling procedures that verify the correct fuel loading plan (including full core mapping) ensure that the k_{eff} of the core will remain \leq 0.95 during the refueling operation. Hence, at least a 5% $\Delta k/k$ margin of safety is established during refueling.

During refueling, the water volume in the spent fuel pool, the transfer canal, the refueling canal, the refueling cavity, and the reactor vessel form a single mass. As a result, the soluble boron concentration is relatively the same in each of these volumes.

The limiting boron dilution accident analyzed occurs in MODE 5 (Ref. 2). A detailed discussion of this event is provided in Bases B 3.1.1, "SHUTDOWN MARGIN (SDM)."

The RCS boron concentration satisfies Criterion 2 of 10 CFR 50.36(d)(2)(ii).

LCO

The LCO requires that a minimum boron concentration be maintained in the RCS, the refueling canal, and the refueling cavity while in MODE 6. The boron concentration limit specified in the COLR ensures that a core k_{eff} of ≤ 0.95 is maintained during fuel handling operations. Violation of the LCO could lead to an inadvertent criticality during MODE 6.

APPLICABILITY

This LCO is applicable in MODE 6 to ensure that the fuel in the reactor vessel will remain subcritical. The required boron concentration ensures a $k_{\text{eff}} \leq 0.95$. Above MODE 6, LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," ensures that an adequate amount of negative reactivity is available to shut down the reactor and maintain it subcritical.

The Applicability is modified by a Note. The Note states that the limits on boron concentration are only applicable to the refueling canal and the refueling cavity when those volumes are connected to the RCS. When the refueling canal and the refueling cavity are isolated from the RCS, no potential path for boron dilution exists.

ACTIONS

A.1

Continuation of positive reactivity additions (including actions to reduce boron concentration) is contingent upon maintaining the unit in compliance with the LCO. If the boron concentration of any coolant volume in the RCS, the refueling canal, or the refueling cavity is less than its limit, all operations involving positive reactivity additions must be suspended immediately.

Suspension of positive reactivity additions shall not preclude moving a component to a safe position. Operations that individually add limited positive reactivity (e.g., temperature fluctuations from inventory addition or temperature control fluctuations), but when combined with all other operations affecting core reactivity (e.g., intentional boration) result in overall net negative reactivity addition, are not precluded by this action.

<u>A.2</u>

In addition to immediately suspending positive reactivity additions, boration to restore the concentration must be initiated immediately.

In determining the required combination of boration flow rate and concentration, no unique Design Basis Event must be satisfied. The only requirement is to restore the boron concentration to its required value as soon as possible. In order to raise the boron concentration as soon as possible, the operator should begin boration with the best source available for unit conditions.

Once action has been initiated, it must be continued until the boron concentration is restored. The restoration time depends on the amount of boron that must be injected to reach the required concentration.

SURVEILLANCE REQUIREMENTS

SR 3.9.1.1

This SR ensures that the coolant boron concentration in the RCS, and connected portions of the refueling canal and the refueling cavity, is within the COLR limits. The boron concentration of the coolant in each required volume is determined periodically by chemical analysis. Prior to reconnecting portions of the refueling canal or the refueling cavity to the RCS, this SR must be met per SR 3.0.4. If any dilution activity has occurred while the cavity or canal was disconnected from the RCS, this SR ensures the correct boron concentration prior to communication with the RCS.

SURVEILLANCE REQUIREMENTS (continued)

The Frequency of once every 72 hours is a reasonable amount of time to verify the boron concentration of representative samples. The Frequency is based on operating experience, which has shown 72 hours to be adequate.

REFERENCES

- 1. 10 CFR 50, Appendix A, GDC 26.
- 2. Chapter 15.

B 3.9.2 Nuclear Instrumentation

BASES

BASES	
BACKGROUND	The source range neutron flux monitors are used during refueling operations and prior to criticality to monitor the core reactivity condition. The installed source range neutron flux monitors are part of the nuclear instrumentation system. These detectors are located external to the reactor vessel and detect neutrons leaking from the core.
	The installed source range neutron flux monitors are BF3 detectors operating in the proportional region of the gas filled detector characteristic curve. The detectors monitor the neutron flux in counts per second. The instrument range covers the lower six decades of neutron flux (1E+6 cps). The detectors also provide visual indication in the control room and can provide an audible count rate to alert operators to a possible dilution accident. The nuclear instrumentation is designed in accordance with the criteria presented in Reference 1.
APPLICABLE SAFETY ANALYSES	The source range neutron flux monitors have no safety function and are not assumed to function during any design basis accident or transient analysis. However, the source range neutron flux monitors provide the only on scale monitoring of neutron flux levels during startup and refueling. Therefore, they are being retained in the Technical Specifications.
LCO	This LCO requires that two source range neutron flux monitors be OPERABLE to ensure that redundant monitoring capability is available to detect changes in core reactivity. To be OPERABLE, each monitor must provide visual indication in the control room.
APPLICABILITY	In MODE 6, the source range neutron flux monitors must be OPERABLE to determine changes in core reactivity. There are no other direct means available to check core reactivity levels.

ACTIONS

A.1 and A.2

With one required source range neutron flux monitor inoperable redundancy has been lost. Since these instruments are the only direct means of monitoring core reactivity conditions, positive reactivity additions including introduction of coolant into the RCS with boron concentration less than required to meet the minimum boron concentration specified in the COLR must be suspended immediately. Suspending positive reactivity additions that could result in failure to meet the minimum boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than what would be required in the RCS for minimum refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Performance of Required Action A.1 shall not preclude completion of movement of a component to a safe position.

B.1 and B.2

With no source range neutron flux monitor OPERABLE, action to restore a monitor to OPERABLE status shall be initiated immediately. Once initiated, action shall be continued until a source range neutron flux monitor is restored to OPERABLE status.

With no source range neutron flux monitor OPERABLE, there are no direct means of detecting changes in core reactivity. However, since positive reactivity additions are not to be made, the core reactivity condition is stabilized until the source range neutron flux monitors are OPERABLE. This stabilized condition is determined by performing SR 3.9.1.1 to ensure that the required boron concentration exists.

The Completion Time of once per 12 hours is sufficient to obtain and analyze a reactor coolant sample for boron concentration and ensures that unplanned changes in boron concentration would be identified. The 12 hour Frequency is reasonable, considering the low probability of a change in core reactivity during this time period.

SURVEILLANCE REQUIREMENTS

SR 3.9.2.1

SR 3.9.3.1 is a CHANNEL CHECK, which is a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that the two indication channels should be consistent with core conditions. Changes in fuel loading and core geometry can result in significant differences between source range channels, but each channel should be consistent with its local conditions.

The Frequency of 12 hours is based on operating experience that demonstrates channel failure is rare.

SR 3.9.2.2

SR 3.9.3.2 is the performance of a CALIBRATION every 24 months. This SR is modified by a Note stating that neutron detectors are excluded from the CALIBRATION. The CALIBRATION for the source range neutron flux monitors consists of obtaining the detector plateau or preamp discriminator curves, evaluating those curves, and comparing the curves to the manufacturer's data. The CALIBRATION also includes verification of the audible count rate and alarm function. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage.

REFERENCES

- 1. 10 CFR 50, Appendix A, GDC 13, GDC 26, GDC 28, and GDC 29.
- 2. Chapter 15.

B 3.9.3 Containment Penetrations

BASES

BACKGROUND

During movement of recently irradiated fuel assemblies within containment, a release of fission product radioactivity within containment will be restricted from escaping to the environment when the LCO requirements are met. In MODES 1, 2, 3, and 4, this is accomplished by maintaining the containment OPERABLE as described in LCO 3.6.1, "Containment." In MODE 6, the potential for containment pressurization as a result of an accident is not likely; therefore, requirements to isolate the containment from the outside atmosphere can be less stringent. The LCO requirements are referred to as "containment closure" rather than "containment OPERABILITY." Containment closure means that all potential escape paths are closed or capable of being closed. Since there is no potential for containment pressurization, the Appendix J leakage criteria and tests are not required.

The containment serves to contain fission product radioactivity that may be released from the reactor core following an accident, such that offsite radiation exposures are maintained within the requirements of Regulatory Guide 1.183, Table 6 (Ref. 1). Additionally, the containment provides radiation shielding from the fission products that may be present in the containment atmosphere following accident conditions.

The containment equipment hatch, which is part of the containment pressure boundary, provides a means for moving large equipment and components into and out of containment. During movement of recently irradiated fuel assemblies within containment, the equipment hatch must be closed and held in place by at least four bolts. Good engineering practice dictates that the bolts required by this LCO be approximately equally spaced.

The containment air locks, which are also part of the containment pressure boundary, provide a means for personnel access during MODES 1, 2, 3, and 4 unit operations in accordance with LCO 3.6.2, "Containment Air Locks." Each air lock has a door at both ends. The doors are normally interlocked to prevent simultaneous opening when containment OPERABILITY is required. During periods of unit shutdown when containment closure is not required, the door interlock mechanism may be disabled, allowing both doors of an air lock to remain open for extended periods when frequent containment entry is necessary. During movement of recently irradiated fuel assemblies within containment, containment closure is required; therefore, the door interlock mechanism may remain disabled, but one air lock door must always remain closed.

BACKGROUND (continued)

The requirements for containment penetration closure ensure that a release of fission product radioactivity within containment will be restricted to within regulatory limits. The closure restrictions are sufficient to restrict fission product radioactivity release from containment due to a fuel handling accident involving recently irradiated fuel during refueling.

The Containment Ventilation System includes two subsystems, the full flow purge system and the partial flow purge system. During MODES 1, 2, 3, and 4, the valves in the full flow purge penetrations are secured in the closed position. The valves in the partial flow purge penetrations can be opened intermittently, but are closed automatically by the Protection System. Neither of the subsystems is subject to a Specification in MODE 5.

In MODE 6, large air exchanges are necessary to conduct refueling operations. The full flow purge system is used for this purpose, and the valves are closed by manual initiation or a high radiation signal.

The partial flow purge system remains operational in MODE 6, and all four valves are also closed by manual initiation or a high radiation signal.

The other containment penetrations that provide direct access from containment atmosphere to outside atmosphere must be isolated on at least one side. Isolation may be achieved by an OPERABLE automatic isolation valve, or by a manual isolation valve, blind flange, or equivalent. Equivalent isolation methods must be approved and may include use of a material that can provide a temporary, atmospheric pressure, ventilation barrier for the other containment penetrations during recently irradiated fuel movements.

APPLICABLE SAFETY ANALYSES

During movement of recently irradiated fuel assemblies within containment, the most severe radiological consequences result from a fuel handling accident involving handling recently irradiated fuel. The fuel handling accident is a postulated event that involves damage to recently irradiated fuel (Ref. 2). Fuel handling accidents, include dropping a single irradiated fuel assembly, or a handling tool or heavy object onto other irradiated fuel assemblies. The requirements of LCO 3.9.6, "Refueling Cavity Water Level," in conjunction with a minimum decay time of 34 hours without containment closure capability ensures that the release of fission product radioactivity, subsequent to a fuel handling accident, results in doses that are within the guideline values specified in Reference 1.

Containment penetrations satisfy Criterion 3 of 10 CFR 50.36(d)(2)(ii).

LCO

This LCO limits the consequences of a fuel handling accident involving handling recently irradiated fuel in containment by limiting the potential escape paths for fission product radioactivity released within containment. The LCO requires any penetration providing direct access from the containment atmosphere to the outside atmosphere to be closed except for penetrations capable of being closed by an OPERABLE Containment Ventilation System. The OPERABILITY requirements for this LCO ensure that the automatic Containment Ventilation System valve closure times specified can be achieved and, therefore, meet the assumptions used in the safety analysis to ensure that releases through the valves are terminated, such that radiological doses are within the acceptance limit.

APPLICABILITY

The containment penetration requirements are applicable during movement of recently irradiated fuel assemblies within containment because this is when there is a potential for the limiting fuel handling accident. In MODES 1, 2, 3, and 4, containment penetration requirements are addressed by LCO 3.6.1. In MODES 5 and 6, when movement of recently irradiated fuel assemblies within containment is not being conducted, the potential for a fuel handling accident does not exist. Therefore, under these conditions no requirements are placed on containment penetration status.

The following guidelines are included in the assessment of systems removed from service during movement of recently irradiated fuel.

- During fuel handling ventilation system and radiation monitor availability (as defined in NUMARC 91-06) should be assessed, with respect to filtration and monitoring of releases from the fuel. Following shutdown, radioactivity in the fuel decays away fairly rapidly. The goal of maintaining ventilation system and radiation monitor availability is to reduce doses even further below that provided by the natural decay and to avoid unmonitored releases.
- A single normal or contingency method to promptly close primary or secondary containment penetrations exists. Such prompt methods need not completely block the penetration or be capable of resisting pressure. The purpose is to enable ventilation systems to draw the release from a postulated fuel handling accident in the proper direction such that it can be treated and monitored.

ACTIONS

A.1

If the containment equipment hatch, air locks, or any containment penetration that provides direct access from the containment atmosphere to the outside atmosphere is not in the required status, the unit must be placed in a condition where the isolation function is not needed. This is accomplished by immediately suspending movement of recently irradiated fuel assemblies within containment. Performance of these actions shall not preclude completion of movement of a component to a safe position.

SURVEILLANCE REQUIREMENTS

SR 3.9.3.1

This Surveillance demonstrates that each of the containment penetrations required to be in its closed position is in that position. The Surveillance on the open valves will demonstrate that the valves are not blocked for closing. Also, the Surveillance will demonstrate that each valve operator has motive power, which will ensure that each valve is capable of being closed an OPERABLE Containment Ventilation System signal.

The Surveillance is performed every 7 days during movement of recently irradiated fuel assemblies within containment. The Surveillance interval is selected to be commensurate with the normal duration of time to complete fuel handling operations. As such this Surveillance ensures that a postulated fuel handling accident involving handling recently irradiated fuel that releases fission product radioactivity within the containment will not result in a release of significant fission product radioactivity to the environment.

SR 3.9.3.2

This Surveillance demonstrates that each Containment Ventilation System valve actuates to its isolation position on manual initiation or on an actual or simulated high radiation signal. The 24 month Frequency maintains consistency with other similar Protection System instrumentation and valve testing requirements.

The SR is modified by a Note stating that this Surveillance is not required to be met for valves in isolated penetrations. The LCO provides the option to close penetrations in lieu of requiring automatic actuation capability.

REFERENCES

- 1. Regulatory Guide 1.183, Table 6, July 2000.
- 2. Chapter 15.

B 3.9.4 Residual Heat Removal (RHR) Loops - High Water Level

BASES

BACKGROUND

The purpose of the Residual Heat Removal (RHR) System in MODE 6 is to remove decay heat and sensible heat from the Reactor Coolant System (RCS), as required by GDC 34, to provide mixing of borated coolant and to prevent boron stratification (Ref. 1). Heat is removed from the RCS by circulating reactor coolant through the LHSI heat exchanger(s), where the heat is transferred to the Component Cooling Water System. The coolant is then returned to the RCS via the RCS cold leg(s). Operation of the RHR System for normal cooldown or decay heat removal is accomplished from the control room. The heat removal rate is adjusted by controlling the flow of reactor coolant through the LHSI heat exchanger(s) and the bypass. Mixing of the reactor coolant is maintained by this continuous circulation of reactor coolant through the RHR System.

APPLICABLE SAFETY ANALYSES

If the reactor coolant temperature is not maintained below 200°F, boiling of the reactor coolant could result. This could lead to a loss of coolant in the reactor vessel. Additionally, boiling of the reactor coolant could lead to a reduction in boron concentration in the coolant due to boron plating out on components near the areas of the boiling activity. The loss of reactor coolant and the reduction of boron concentration in the reactor coolant would eventually challenge the integrity of the fuel cladding, which is a fission product barrier. One train of the RHR System is required to be in operation in MODE 6, with the water level \geq 23 ft above the top of the reactor vessel flange, to prevent this challenge. The LCO does permit the LHSI pump to be removed from operation for short durations, under the condition that the boron concentration is not diluted. This conditional stopping of the LHSI pump does not result in a challenge to the fission product barrier.

The RHR System satisfies Criterion 4 of 10 CFR 50.36(d)(2)(ii).

LCO

Only one RHR loop is required for decay heat removal in MODE 6, with the water level ≥ 23 ft above the top of the reactor vessel flange. Only one LHSI / RHR loop is required to be OPERABLE because the volume of water above the reactor vessel flange provides backup decay heat removal capability. At least one LHSI / RHR loop must be OPERABLE and in operation to provide:

a. Removal of decay heat;

LCO (continued)

- b. Mixing of borated coolant to minimize the possibility of criticality; and
- c. Indication of reactor coolant temperature.

An OPERABLE RHR loop includes an LHSI pump, an LHSI heat exchanger, valves, piping, instruments, and controls to ensure an OPERABLE flow path and to determine the low end temperature. The flow path starts in one of the RCS hot legs and is returned to the RCS cold legs.

The LCO is modified by a Note that allows the required operating RHR loop to be removed from operation for up to 1 hour per 8 hour period, provided no operations are permitted that would dilute the RCS boron concentration by introduction of coolant into the RCS with boron concentration less than required to meet the minimum boron concentration of LCO 3.9.1, "Boron Concentration." Boron concentration reduction with coolant at boron concentrations less than required to assure the RCS boron concentration is maintained is prohibited because uniform concentration distribution cannot be ensured without forced circulation. This permits operations such as core mapping or alterations in the vicinity of the reactor vessel hot leg nozzles. During this 1 hour period, decay heat is removed by natural convection to the large mass of water in the refueling cavity.

APPLICABILITY

One RHR loop must be OPERABLE and in operation in MODE 6, with the water level ≥ 23 ft above the top of the reactor vessel flange, to provide decay heat removal. The 23 ft water level was selected because it corresponds to the 23 ft requirement established for fuel movement in LCO 3.9.6, "Refueling Cavity Water Level." Requirements for the RHR System in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS). RHR loop requirements in MODE 6 with the water level < 23 ft are located in LCO 3.9.5, "Residual Heat Removal (RHR) Loops - Low Water Level."

ACTIONS

<u>A.1</u>

If the RHR loop requirements are not met, there will be no forced circulation to provide mixing to establish uniform boron concentrations. Immediate suspension of positive reactivity additions that could result in failure to meet the minimum boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation.

A.2

If RHR loop requirements are not met, actions shall be taken immediately to suspend loading of irradiated fuel assemblies in the core. With no forced circulation cooling, decay heat removal from the core occurs by natural convection to the heat sink provided by the water above the core. A minimum refueling water level of 23 ft above the reactor vessel flange provides an adequate available heat sink. Suspending any operation that would increase decay heat load, such as loading a fuel assembly, is a prudent action under this condition.

<u>A.3</u>

If RHR loop requirements are not met, actions shall be initiated and continued in order to satisfy RHR loop requirements. With the unit in MODE 6 and the refueling water level ≥ 23 ft above the top of the reactor vessel flange, corrective actions shall be initiated immediately.

A.4, A.5, and A.6.

If no RHR loop is in operation, the following actions must be taken:

- The equipment hatch must be closed and secured with four bolts;
- b. One door in each air lock must be closed; and

ACTIONS (continued)

c. Each penetration providing direct access from the containment atmosphere to the outside atmosphere must be either closed by a manual or automatic isolation valve, blind flange, or equivalent, or verified to be capable of being closed by an OPERABLE Containment Ventilation System.

With the RHR loop requirements not met, the potential exists for the coolant to boil and release radioactive gas to the containment atmosphere. Performing the actions described above ensures that all containment penetrations are either closed or can be closed so that the dose limits are not exceeded.

The Completion Time of 4 hours allows fixing of most RHR problems and is reasonable, based on the low probability of the coolant boiling in that time.

SURVEILLANCE REQUIREMENTS

SR 3.9.4.1

This Surveillance demonstrates that the RHR loop is in operation and circulating reactor coolant. The minimum flow rate specified is to prevent thermal and boron stratification in the core. The Frequency of 12 hours is sufficient, considering the flow, temperature, pump control, and alarm indications available to the operator in the control room for monitoring the RHR System.

REFERENCES

1. Chapter 5.

B 3.9.5 Residual Heat Removal (RHR) Loops - Low Water Level

BASES

BACKGROUND

The purpose of the Residual Heat Removal (RHR) System in MODE 6 is to remove decay heat and sensible heat from the Reactor Coolant System (RCS), as required by GDC 34, to provide mixing of borated coolant, and to prevent boron stratification (Ref. 1). Heat is removed from the RCS by circulating reactor coolant through the LHSI heat exchangers where the heat is transferred to the Component Cooling Water System. The coolant is then returned to the RCS via the RCS cold leg(s). Operation of the RHR System for normal cooldown decay heat removal is manually accomplished from the control room. The heat removal rate is adjusted by controlling the flow of reactor coolant through the LHSI heat exchanger(s) and the bypass lines. Mixing of the reactor coolant is maintained by this continuous circulation of reactor coolant through the RHR System.

APPLICABLE SAFETY ANALYSES

If the reactor coolant temperature is not maintained below 200°F, boiling of the reactor coolant could result. This could lead to a loss of coolant in the reactor vessel. Additionally, boiling of the reactor coolant could lead to a reduction in boron concentration in the coolant due to the boron plating out on components near the areas of the boiling activity. The loss of reactor coolant and the reduction of boron concentration in the reactor coolant will eventually challenge the integrity of the fuel cladding, which is a fission product barrier. Two trains of the RHR System are required to be OPERABLE, and one train in operation, in order to prevent this challenge.

The RHR System satisfies Criterion 4 of 10 CFR 50.36(d)(2)(ii).

LCO

In MODE 6, with the water level < 23 ft above the top of the reactor vessel flange, two RHR loops must be OPERABLE. Additionally, one loop of RHR must be in operation in order to provide:

- a. Removal of decay heat;
- b. Mixing of borated coolant to minimize the possibility of criticality; and
- c. Indication of reactor coolant temperature.

LCO (continued)

An OPERABLE RHR loop consists of an LHSI pump, an LHSI heat exchanger, valves, piping, instruments and controls to ensure an OPERABLE flow path and to determine the low end temperature. The flow path starts in one of the RCS hot legs and is returned to the RCS cold legs.

APPLICABILITY

Two RHR loops are required to be OPERABLE, and one RHR loop must be in operation in MODE 6, with the water level < 23 ft above the top of the reactor vessel flange, to provide decay heat removal. Requirements for the RHR System in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS). RHR loop requirements in MODE 6 with the water level \geq 23 ft are located in LCO 3.9.4, "Residual Heat Removal (RHR) Loops - High Water Level."

ACTIONS

A.1 and A.2

If less than the required number of RHR loops are OPERABLE, action shall be immediately initiated and continued until the RHR loop is restored to OPERABLE status and to operation or until ≥ 23 ft of water level is established above the reactor vessel flange. When the water level is ≥ 23 ft above the reactor vessel flange, the Applicability changes to that of LCO 3.9.4, "Residual Heat Removal (RHR) Loops − High Water Level," and only one RHR loop is required to be OPERABLE and in operation. An immediate Completion Time is necessary for an operator to initiate corrective actions.

B.1

If no RHR loop is in operation, there will be no forced circulation to provide mixing to establish uniform boron concentrations. Immediate suspension of positive reactivity additions that could result in failure to meet the minimum boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation.

B.2

If no RHR loop is in operation, actions shall be initiated immediately, and continued, to restore one RHR loop to operation. Since the unit is in Conditions A and B concurrently, the restoration of two OPERABLE RHR loops and one operating RHR loop should be accomplished expeditiously.

ACTIONS (continued)

B.3, B.4, and B.5

If no RHR loop is in operation, the following actions must be taken:

- a. The equipment hatch must be closed and secured with four bolts;
- b. One door in each air lock must be closed; and
- c. Each penetration providing direct access from the containment atmosphere to the outside atmosphere must be either closed by a manual or automatic isolation valve, blind flange, or equivalent, or verified to be capable of being closed by an OPERABLE Containment Ventilation System.

With the RHR loop requirements not met, the potential exists for the coolant to boil and release radioactive gas to the containment atmosphere. Performing the actions stated above ensures that all containment penetrations are either closed or can be closed so that the dose limits are not exceeded.

The Completion Time of 4 hours allows fixing of most RHR problems and is reasonable, based on the low probability of the coolant boiling in that time.

SURVEILLANCE REQUIREMENTS

SR 3.9.5.1

This Surveillance demonstrates that one RHR loop is in operation and circulating reactor coolant. The minimum flow rate specified is to prevent thermal and boron stratification in the core. The Frequency of 12 hours is sufficient, considering the flow, temperature, pump control, and alarm indications available to the operator for monitoring the RHR System in the control room.

SR 3.9.5.2

Verification that the required pump is OPERABLE ensures that an additional LHSI pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the required pump. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience.

REFERENCES

1. Chapter 5.

B 3.9.6 Refueling Cavity Water Level

BASES

BACKGROUND

The movement of irradiated fuel assemblies within containment requires a minimum water level of 23 ft above the top of the reactor vessel flange. During refueling, this maintains sufficient water level in the containment, refueling canal, fuel transfer canal, refueling cavity, and spent fuel pool. Sufficient water is necessary to retain iodine fission product activity in the water in the event of a fuel handling accident (Refs. 1 and 2). Sufficient iodine activity would be retained to limit offsite doses from the accident to well within regulatory limits, as provided by the guidance of Table 6 of Regulatory Guide 1.183 (Ref. 3).

APPLICABLE SAFETY ANALYSES

During movement of irradiated fuel assemblies, the water level in the refueling canal and the refueling cavity is an initial condition design parameter in the analysis of a fuel handling accident in containment, as postulated by Regulatory Guide 1.25 (Ref. 1). A minimum water level of 23 ft (Regulatory Position C.1.c of Ref. 1) allows a decontamination factor of 100 (Regulatory Position C.1.g of Ref. 1) to be used in the accident analysis for iodine. This relates to the assumption that 99% of the total iodine released from the pellet to cladding gap of all the dropped fuel assembly rods is retained by the refueling cavity water. The fuel pellet to cladding gap is assumed to contain 10% of the total fuel rod iodine inventory (Ref. 1).

The fuel handling accident analysis inside containment is described in Reference 2. With a minimum water level of 23 ft and a minimum decay time of 34 hours prior to fuel handling, the analysis and test programs demonstrate that the iodine release due to a postulated fuel handling accident is adequately captured by the water and offsite doses are maintained within allowable limits (Ref. 3).

Refueling cavity water level satisfies Criterion 2 of 10 CFR 50.36(d)(2)(ii).

LCO

A minimum refueling cavity water level of 23 ft above the reactor vessel flange is required to ensure that the radiological consequences of a postulated fuel handling accident inside containment are within acceptable limits, as provided by the guidance of Reference 3.

APPLICABILITY

LCO 3.9.6 is applicable when moving irradiated fuel assemblies within containment. The LCO minimizes the possibility of a fuel handling accident in containment that is beyond the assumptions of the safety analysis. If irradiated fuel assemblies are not present in containment, there can be no significant radioactivity release as a result of a postulated fuel handling accident. Requirements for fuel handling accidents in the spent fuel pool are covered by LCO 3.7.14, "Spent Fuel Storage Pool Water Level."

ACTIONS

A.1

With a water level of < 23 ft above the top of the reactor vessel flange, all operations involving movement of irradiated fuel assemblies within the containment shall be suspended immediately to ensure that a fuel handling accident cannot occur.

The suspension of fuel movement shall not preclude completion of movement of a component to a safe position.

SURVEILLANCE REQUIREMENTS

SR 3.9.6.1

Verification of a minimum water level of 23 ft above the top of the reactor vessel flange ensures that the design basis for the analysis of the postulated fuel handling accident during refueling operations is met. Water at the required level above the top of the reactor vessel flange limits the consequences of damaged fuel rods that are postulated to result from a fuel handling accident inside containment (Ref. 2).

The Frequency of 24 hours is based on engineering judgment and is considered adequate in view of the large volume of water and the normal procedural controls of valve positions, which make significant unplanned level changes unlikely.

REFERENCES

- 1. Regulatory Guide 1.25, March 1972.
- 2. Chapter 15.
- 3. Regulatory Guide 1.183, Table 6, July 2000.