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PRODUCT DESCRIPTION

This report documents the technical basis for and validation of Continuum Dynamics, Inc.
(C.D.L) proprietary load definition and stress analysis methods that can be used to demonstrate
the structural integrity of BWR steam dryers at Extended Power Uprate (EPU) conditions. The
report presents screening methods for assessing the potential for acoustic excitation within BWR
main steam lines (MSLs), conducting in-plant tests to define MSL fluctuating pressures using
strain gages, defining acoustic and hydrodynamic fluctuating pressures on the steam dryer based
on MSL pressure measurements, adjusting MSL fluctuating flow induced vibration (FIV)
pressures obtained at current licensed thermal power (CLTP) to EPU power, defining the
acoustic and flow loading on the steam dryer resulting from turbine stop valve (TSV) closure and
- main steam line break (MSLB) events, conducting ASME Code fatigue and primary stress
analyses of the steam dryer, and defining MSL strain gage limit curves to support power
ascension testing.

Results and Findings

The project developed and validated a suite of methods for demonstrating the structural integrity
of steam dryers at power uprate conditions. These methods are intended to comply with guidance
provided in BWRVIP-181 BWR Vessel and Internals Project: Steam Dryer Repair Design
Criteria (EPRI report 1013403), BWRVIP-182 BWR Vessel and Internals Project: Guidance for
Demonstration of Steam Dryer Integrity for Power Uprate (EPRI report 1016166), and U. S.
NRC Regulatory Guide 1.20 Comprehensive Vibration Assessment Program for Reactor
Internals during Preoperational and Initial Startup Testing, issued in March 2007.

Challenges and Objective(s)

In recent years, BWR plants have experienced damage to their steam dryers as a result of higher
steam flows generated under power uprate conditions. Such damage is attributed to acoustic and
turbulent pressure loading on the steam dryer. Validated methods for predicting pressure loading
on the steam dryer at power uprate conditions due to these phenomena were needed to allow
NRC approval of power uprate licenses. The purpose of this document is to provide validated -
generically applicable methods that can be used by utilities planning a power uprate to
demonstrate the structural integrity of their steam dryer.

Applications, Values, and Use

The methods documented in this report can be applied by any BWR utility to demonstrate the
structural integrity of their steam dryer under power uprate flow conditions. These methods
provide a basis for evaluating the loading on and response of the steam dryer at power uprate
flow conditions without need for operation of the plant above current licensed thermal power.



These methods can also inform decisions on the need for load mitigation prior to submitting an
application for power uprate. ’

EPRI Perspective

This report provides BWR utilities with a suite of methods that can be applied with confidence to
evaluate the structural integrity of their steam dryer at power uprate conditions. These methods
have been validated by comparison to separate effects and full-scale, in-plant data and follow
BWRVIP and NRC guidance for assessing vibratory loading on the steam dryer.

Approach

The research team developed analytical and subscale testing methods for screening for acoustic -
excitation in MSLs and an acoustic circuit model (ACM) for defining steam dryer fluctuating
pressure loading based on MSL pressure inferred from strain gages located on the MSLs.
Subscale testing can be used to adjust the MSL pressures obtained during in-plant testing at
CLTP to account for higher MSL flow velocities at power uprate. The adjusted MSL pressures
can be input to the ACM to define steam dryer pressure loading at power uprate. The team
validated the ACM by comparing it to full-scale, in-plant tests with an instrumented steam dryer.
The power uprate steam dryer pressures loading can be applied to a detailed finite element model
(FEM) of the steam dryer to evaluate structural response and stresses. Structural evaluation is
conducted in the frequency domain. The team developed methods for conducting an ASME code
fatigue evaluation based on the FEM analysis and validated the FEM analysis methodology by
comparing it to the results of shaker testing of a full-scale steam dryer. The team also developed
first-principles-based methods for defining the steam dryer loading resulting from TSV closure
and MSLB events and presented methods for conducting an ASME primary stress evaluation
using the loads and load combinations defined in BWRVIP-181. Finally, the team devised
methods for defining MSL strain gage limit curves to support power ascension testing.

Keywords
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Steam dryer

Power uprate
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INTRODUCTION

1.1 Overview

The purpose of this report is to document the technical basis for and validation of Continuum
Dynamics, Inc. (C.D.1.) proprietary load definition and stress analysis methods that can be used
to demonstrate the structural integrity of BWR steam dryers at Extended Power Uprate (EPU)
conditions. Methods are presented for:

- Screening to assess the potential for acoustic excitation within BWR main steam lines
(MSLs)

- Conducting in-plant tests to define MSL fluctuating pressures using strain gages
- Eliminating extraneous noise in MSL fluctuating pressure measurements

- Defining acoustic and hydrodynamic fluctuating pressures on the steam dryer based
on MSL pressure measurements

- Using subscale tests to “bump-up” MSL fluctuating pressures obtained at Current
Licensed Thermal Power (CLTP) to define MSL flow induced vibration (FIV)

pressures at EPU power

- Using Main Steam Isolation Valve (MSIV) closure tests to define fluctuating
pressures on the steam dryer at or near EPU power

- Defining the unsteady pressure load on the steam dryer resulting from a turbine stop
valve (TSV) closure event

- Defining the unsteady pressure load on the steam dryer resulting from a main steam
line break (MSLB)

- Defining primary and fluctuating stresses using a detailed finite element model
(FEM) of the steam dryer

- Conducting fatigue and primary stress analyses of the steam dryer usihg ASME Code
Section 111, Subsection NG as a guide

- Defining MSL strain gage limit curves to support power ascension to EPU conditions
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- Defining the pressure loading on all steam dryer surfaces based on measurements of
fluctuating pressure at specific locations on the steam dryer

The steam dryer evaluation approach described herein is intended to comply with guidance
provided in BWRVIP-181 “BWR Vessel and internals Project: Steam Dryer Repair Design
Criteria” [1.1], BWRVIP-182 “BWR Vessel an Internals Project: Guidance for Demonstration of
Steam Dryer Integrity for Power Uprate” [1.2], and U. S. NRC Regulatory Guide 1.20
“Comprehensive Vibration Assessment Program for Reactor Internals during Preoperational and
Initial Startup Testing” issued in March 2007 [1.3].

The methods presented herein can be applied generically to all BWR plants considering a power
uprate to demonstrate the structural integrity of the steam dryer.

This report addresses only methodologies for evaluating the structural integrity of the steam
dryer. The pressure fluctuations inside the main steam lines may also have a detrimental effect
on MSL instrumentation and other components such as relief valve operators. Potential
detrimental effects on such components as a result of MSL vibrations at power uprate conditions
should also be addressed as part of a power uprate submittal. Techniques for conducting such an
assessment are beyond the scope of this report.

1.2 Implementation Requirements

In accordance with the implementation requirements of Nuclear Energy Institute (NEI) 03-08,
Guideline for the Management of Materials Issues, if a BWRVIP utility choses to use the steam
dryer evaluation methodologies described in this report as a basis for a power uprate submittal,
Sections 3 through 11 are considered “Needed”.

1.3 References

1.1 BWRVIP-181: BWR Vessel and Internals Project Steam Dryer Repair Design Criteria,
December 2007. EPRI Report No. 1013403.

1.2 BWRVIP-182: BWR Vessel and Internals Project Guidance for Demonstrating Steam
Dryer Integrity for Power Uprate, January 2008. EPRI Report No. 1016166.

1.3 Regulatory Guide 1.20 “Comprehensive Vibration Assessment Program for Reactor
Internals during Preoperational and Initial Startup Testing, March 2007”.
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2

BACKGROUND

In 2002, shortly after increasing power to 117% of Original Licensed Thermal Power (OLTP),
the Quad Cities Unit 2 operated by Exelon Corporation suffered a series of structural failures of
its steam dryer assembly. After extensive evaluation by industry, the root cause for these failures
was traced to acoustic resonances produced at the inlets to safety and relief valves attached to the
main steam lines (MSLs). Such resonances can occur when the frequency of vortex shedding at
the upstream lip at the entrance to piping attached to the MSLs “locks in” with the quarter-
standing wave acoustic frequency of the attached piping. The frequency of vortex shedding is
related to the velocity of flow in the MSLs as well as the opening diameter of the attached
piping. The flow velocity in the MSLs is directly related to the operating power level in a BWR.
These pressure fluctuations were found to propagate acoustically through the MSLs back to the
reactor pressure vessel with the potential to damage the steam dryer.

Since that time, Continuum Dynamics, Inc. (C.D.1.), has worked with industry to develop and
validate proprietary analytical and test methods for assessing the potential that such resonances
may occur in a plant considering a power uprate and for defining the fluctuating pressure loading
on the steam dryer surfaces based on MSL pressure measurements derived from strain gages
attached to the MSLs during in-plant testing. In addition, C.D.I. has developed and validated
proprietary subscale test methods for adjusting the MSL pressures obtained in the plant at the
Current Licensed Thermal Power (CLTP) to Extended Power Uprate (EPU) flow conditions.
This predictive capability allows the determination of steam dryer fluctuating pressure loading at
EPU conditions without the need to conduct in-plant testing above CLTP.

C.D.I has also developed proprietary analytical methods for determining the acoustic pressure
and flow loading on the steam dryer resulting from the fast closure of the turbine stop valves
(TSV) and from a main steam line break (MSLB).

Finally, C.D.I. has developed and validated methods for evaluating the stresses in steam dryers
under the loads described above for comparison to ASME fatigue and maximum stress
allowables. The stress analysis is conducted in the frequency domain, which significantly
reduces data evaluation time.
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OVERVIEW OF STEAM DRYER EVALUATIO
APPROACH

The overall process for evaluating the structural integrity of BWR steam dryers at power uprate
follows the flowchart shown in Figure 3-1 (excerpted from BWRVIP-182). The process is
described in detail as follows.

Step 1: Screening to assess the potential for acoustic excitation in MSLs up to power uprate

The process begins with analytical screening and subscale testing to assess the potential for
acoustic excitation in the main steam lines (MSLs) at power levels beyond the Current Licensed
Thermal Power (CLTP) level as described in Section 4.

Step 2: Assess need for acoustic load mitigation

If screening tests indicate that a potential exists for significant acoustic excitation in the MSLs,
the applicant can opt to pursue acoustic load mitigation and re-screen. This approach would be
expected to result in a determination that the potential acoustic excitation in the MSLs (with
mitigation) is low and the applicant would follow the approach defined above for cases where
MSL acoustic excitation is not expected. If mitigation is not pursued, and acoustic excitation is
expected based on screening, or if acoustic excitation is not expected based on screening, in-
plant tests are conducted with the MSLs instrumented using pressure transducers or strain gages
to obtain MSL fluctuating pressures at power levels up to CLTP.

Step 3: Conduct in-plant tests at CLTP
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Step 4: Elimination of extraneous MSL data
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Step 6: Determine pressure loads on the steam dryer at power uprate based on MSL pressures
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Step 7: Account for bias and uncertainties
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Step 8: Conduct structural analysis at power uprate
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Step 9: Obtain NRC approval for power uprate

Once steam dryer stress margins at power uprate are demonstrated, the applicant requests NRC
to grant approval for power uprate and power ascension testing.

Step 10: Conduct power ascension testing up to power uprate
Upon NRC approval for power uprate, power ascension testing is conducted up to uprate power.
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Figure 3-1
BWRVIP Steam Dryer Integrity Demonstration Flowchart
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4

METHODS FOR SCREENING TO ASSESS THE
POTENTIAL FOR MAIN STEAM LINE (MSL) ACOUSTIC
EXCITATION

In accordance with guidance in BWRVIP-182, C.D.1. has developed proprietary analytical and
test methods for screening to assess the potential for acoustic excitation in main steam lines at
power uprate conditions. This section describes the analytical basis and validation of these
methods.

4.1 Objectives and Scope
The screening process involves up to three steps:
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4.2 Acoustic Pre-Screening Method

The phenomenon of flow-excited acoustic resonance of closed side branches has been examined
for many years (see as early as [4.1] and [4.2]). In this situation, acoustic resonance of the side
branch is caused by feedback from the acoustic velocity of the resonant standing wave in the side
branch itself.
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Figure 4-1
Schematic of the side branch geometry
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Figure 4-2 '
Strouhal number behavior, where q is the dynamic pressure (‘/szz) and p is the fluid
density [4.6].
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Table 4-1
Pre-Screening Standpipe/Valve Parameters (QC2)
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4.3 Refined Acoustic Modeling of MSL Standpipes

Since, in the plant, the standpipe/valve combination changes area as a function of distance from
the main steam line to the valve disk, a more accurate estimate of f; is needed to include these
area change effects. The combination of an accurate excitation frequency f; and subsequent
calculation of onset velocity with the appropriate Strouhal number then characterizes the
behavior of the standpipe/valve combination considered.
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Table 4-2
Refined Acoustic Model predictions for Standpipe/Valve Parameters (QC2)
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4.4 One-Fifth Scale Model Testing

In accordance with BWRVIP-182, in cases where analytical predictions indicate a potential for
acoustic excitation in the MSLs, a one-fifth scale single line test is conducted.
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Figure 4-3
Photographs of the QC2 blowdown facility: entire scaled main steam line A (top); the three
standpipe locations (bottom), with the first standpipe/valve in place.
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Figure 4-7 Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary
Information
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4.5 Validation of Refined Acoustic Model and One-Fifth Scale Model
Predictions of Excitation Frequency and Onset Velocity
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Table 4-3
Experimentally Determined Standpipe/Valve Parameters (QC2). The predicted excitation
frequency is taken from Table 4-2.
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Table 4-4
Comparisons between predicted and measured excitation frequencies and onset velocities
for the other plants analyzed using the refined model and the one-fifth scale test method.
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A typical one-fifth scale test result is shown in Figure 4-8, where normalized RMS pressure
(normalized by the dynamic pressure at CLTP conditions) measured at the disk ends of the
standpipe/valves is plotted against Mach number. The one-fifth scale test was conducted for
Plant B on a main steam line with three standpipe/valves. The Mach numbers at CLTP and EPU
conditions are shown on the figure, where it may be seen that the onset velocity measured in the
one-fifth scale test is expected to occur in the plant at a velocity very close to the Bounding EPU
Mach number, at a Normalized RMS Pressure of approximately Content Deleted-

Contains EPRI and Continuum Dynamics Inc. Proprietary Information.
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Figure 4-8

Normalized RMS pressure for all one-fifth scale tests of Plant B: upstream refers to the
pressure at the upstream standpipe/valve; middle refers to the pressure at the middle
standpipe/valve; and downstream refers to the pressure at the downstream
standpipe/valve. A cubic spline curve fit to all data is shown by the green curve.

Onset may be observed from full-scale data for Plant B as shown in Figure 4-9. This figure plots
the PSD of the signal recorded at the upper strain gage location on main steam line A for power
levels between 100% (CLTP) and
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Figure 4-9
PSD at the upper strain gage location on main steam line A in Plant B for various power
levels as shown.

4.6 Double Vortex Mode

In most cases the normalized RMS pressure plots show a typical bell-shaped curve as shown in
Figure 4-8. However, in some cases a second pressure peak may be observed, as shown in
Figure 4-10 for the one-fifth scale test for Plant A. In this particular example the normalized
RMS pressure peak at the double vortex occurs at a Mach number just above EPU conditions.
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Figure 4-10

Normalized RMS pressure for all one-fifth scale tests of Plant A: upstream refers to the
pressure at the upstream standpipe/valve; middle refers to the pressure at the middie
standpipe/vaive; and downstream refers to the pressure at the downstream
standpipe/valve. A cubic spline curve fit to all data is shown by the green curve.
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Figure 4-11
Sketch showing vortex formation at the mouth of a standpipe/valve: single vortex mode
(top); double vortex mode (bottom)
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METHODOLOGY FOR DEFINING MSL DYNAMIC
PRESSURES AND REMOVING EXTRANEOUS NOISE

Several steps are involved in defining main steam line dynamic pressure signals. These steps
include locating the strain gages optimally along the MSLs, installing them at these locations
with proper cable shielding, taking data with a correctly set up data acquisition system (DAS),
reducing the data, and understanding the data uncertainty in the data collection. Particular care
must be taken to protect the area where the gages are installed and to route strain gage
instrumentation cabling away from high temperature areas and_potential sources of
electromagnetic interference. In addition, steps must be taken to remove extraneous noise in the

MSL data.

5.1 Locating Pressure or Strain Gage Measurement Points Axially Along
MSLs :
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Figure 5-1
Strain gage schematic for location analysis
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Figure 5-2

Strain gage locations: L1 and L2 are measured from the vessel ID along the centerline of
the MSL to the upper and lower elevations, respectively, and should be at least two pipe
diameters away from the elbow welds. The distance between L, (the upper strain gage

location) and L; (the lower strain gage location) is AL.
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5.2 Uncertainty Associated with Axial Measurement Locations

The acoustic circuit model (ACM) has been benchmarked with data taken by strain gages on the
main steam lines of Quad Cities Unit 2 (QC2), located at average distances of
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Table 5-1 .
Strain gage spacing for QC2 (the actual spacing between strain gages was AL = 31.7 ft)
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5.3 Installation of Strain Gages around MSLs to Define Local Fluctuating
Pressures

The most direct method to obtain dynamic pressure measurements is to mount pressure
transducers on the piping. The orifice necessary for these instruments, however, requires a
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potentially undesirable opening in the pressure boundary of the affected system. Thus, mounting
the strain gages directly on the piping allows for an indirect measurement of the dynamic
pressure fluctuation and eliminates the need for affecting pressure boundary integrity.

One of the challenges in performing this indirect measurement is the potential presence of
significant axial strain affecting the hoop stress readings and producing signal content that is not
related to the internal pressure. The pressure fluctuations are derived from the “breathing” mode
of the piping; therefore, this indirect technique must be robust enough to reject the effects of
other shell modes and/or bending. Several factors influence the ability to ensure that the
breathing mode response can be measured. These factors include strain gage configuration
options and data processing methods. The tested strain gage configurations utilized up to eight
strain gages per location in an axisymmetric manner to facilitate the cancellation of any shell
mode responses that may exist. Data processing strategies utilizing channel combination and
filtering techniques can be applied to extract pure breathing mode data for conversion to dynamic
pressure.

Strain gages should be installed at
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Figure 5-3
Typical strain gage layout
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Figure 5-4
Strain gage orientation

5.4 Strain Gage Measurement System

A typical strain gage system is comprised of a Wheatstone Bridge (WB) as shown in Figure 5-5.
In the figure, Vi, is the DC voltage supplied to the WB circuit, V, is the output voltage
measured, and R;, R;, R; and Ry are the four resistances on the four arms of the WB circuit. In
order to improve the sensitivity of the SG measurements, each SG location has two similar strain
gages that are connected in the places of R; and R3. Since R, and Rj are in close proximity, they
experience similar strains. .The circuit analysis will show that R; and Rj in this case will be
additive. Before the start of the measurements, and with no applied strain on the active gages,
the compensating resistors R, and R4 will be adjusted such that the output voltage Vo is zero,
which means that the WB circuit is balanced. In the presence of applied strain, the resistances R,
and R; will vary, and the output voltage consequently will change and be proportional to the
applied strain. ~
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D
;o«—m—ll‘lll —

Vin
R1.R3 - Active Gage Resistors (Half-Bridge)
R2,R4 - Compensating Gage Resistors

Figure 5-5
Wheatstone bridge and strain gage electrical schematic

5.5 Circuit Analysis of Wheatstone Bridge

For a given input voltage Vi, the currents flowing through the junctions of the WB circuit may
be given as

mn

Vi, =L R, +R) =1 (R, +R;) (5.5.1)
The voltage drops between junctions A and B, and A and D, are given as

Vin l{1

Vg =Ligc R, =—>— 552

AB ABC 1 Rl + R2 ( )
V. R

Vap = Lape R, =—"2—+ 553

AD ADC 4 R4 + R3 ( )
The output voltage V,,; can then be obtained from
R, R,-R,R
Vou=Vas — L3 2 4 (5.5.4)

Vap = in
R, +R) R, + R3)
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If the bridge is initially balanced, then V is zero, which means that the numerator should be
zero. Thus

R,R;-R, R, =0 or R, R;=R,R, (5.5.5)
which can rewritten as

R, _R,

1
=— (5.5.6)
R, R; vy

In the presence of the applied strain, the change in the output voltage may be computed from
Equation (5.5.4) and may be given as

v (AR1 AR, AR, AR,
Vout = 2 - + -
(1+'Y) Rl RZ R3 l{4

J (I+mn)V, (5.5.7)

where 1 is given by

1
n= (5.5.8)
1+ I+y
AR, AR, AR, AR,
+ + +
R, R, R, R,

When the resistance changes are small (less than 5%), the second-order term of 1) in Equation
(5.5.8) may be neglected, resulting in the final relationship of

Y (AR1 _AR, AR, AR4J v. (559

AV , =
o (1+7)° R, R, R, R,

The coefficient -~ is called the circuit efficiency. In practice, all four resistances are

(I+7)

chosen to be nominally equal (R; = R; = R3 = R4 = R), thus making Y= 1 in Equation (5.5.9).
The change in voltage then can be further simplified to

AR, —AR2+AR3—AR4] v

AVOUI =
4R

(5.5.10)

The WB circuit arrangement with the active gage attached at R; and R; locations is called a half
bridge. If only one of the arms has an active gage (either R; or Rj is active), then it is termed a
quarter bridge.
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It is noted that during the strain measurements with a half bridge, AR, = AR4 = 0 in Equation
(5.5.10). In addition, the change in resistance to the strain ¢ is related through a factor called the
Gage Factor (GF), provided by the strain gage manufacturer, namely

AR
?:GF*E (5.5.11)

Hence, if AR, =AR; =AR and R, =R, =R, Equation (5.5.10) then becomes

14R
V., 2R,

1
=EGFX8 (5.5.12)

for the half-bridge configuration. Similarly, for a quarter-bridge configuration, the
corresponding relationship will be

= =5 0Fxe (5.5.13)

5.6 Conversion of MSL Strain Gage Measurements to Local Fluctuating
Pressure

Content Deleted-
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5.7 Bias and Random Uncertainties Associated with MSL Pressure
Measurements

The objective here is to determine the uncertainty in the measurement given the uncertainties in
the various quantities shown in Equation (5.6.8) that relate the pressure to the measured hoop
strain. The major uncertainties in the dynamic pressure estimation are:

1. Geometric uncertainties of the pipe such as the outside diameter (OD), thickness, etc.
2. Uncertainty associated with the gage factor (GF).

3. Uncertainties in the Young’s Modulus of Elasticity, (E).

4

Uncertainty in the orientation of the strain gage whose contribution is generally negligibly
small.

Therefore, to determine the uncertainty in the pressure measurement, the outside diameter (OD)
and wall thickness need to be determined at each of the strain gage locations. Prior to
installation of the strain gages, the pipe wall thickness at each strain gage location should be
obtained via UT measurement. The OD is often easiest determined from a circumference
measurement, and so the uncertainty in the OD measurements has to be derived from the
uncertainty in the circumference.

In order to develop an expression for the relative uncertainty in the internal pressure, first the
logarithm of both sides of Equation (5.6.8) is taken to yield
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5-13



Methodology for Defining MSL Dynamic Pressures and Removing Extraneous Noise

Content Deleted-
Contains EPRI and Continuum Dynamics Inc. Proprietary Information

5.7.1 The Effect of Approximation in the Determination of Uncertainty

In order to determine the effect of applying the approximation

Content Deleted-
Contains EPRI and Continuum Dynamics Inc. Proprietary Information
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5.7.2 Equivalency of Uncertainty Determination to Other Methods
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5.8 Testing Requirements and Recommendations

The recommended minimum requirements for a data acquisition system (DAS) that will be used
to monitor MS piping are now described. If the instrumentation follows the guidelines in Section
5.3, the DAS will be required to acquire to 32 channels of data simultaneously over a bandwidth
of 1 to 250 Hz for a period of at least 2 minutes. A typical modern DAS will be computer-based
with one or more high speed digital data acquisition cards. It is recommended that a minimum
sample rate of 2500 samples/second/channel (simultaneously) be supported at a 16-bit signal
amplitude resolution. It is critical that DAS be equipped with low pass anti-alias filter(s) with a
sufficiently high roll-off gradient (> 24 dB/octave).

The DAS should have selectable gain settings to help resolve signals of low amplitude which are
typical for the subject application. Recommended values are 1, 10, 20, 50, and 100. The data
files generated are substantial in size (40 MB typical); therefore, a storage medium with a
minimum of 30 GB capacity is recommended. In order to properly view the data as they are
being collected, the DAS should have the capability to display the signal time history, its
frequency spectrum, peak value, and root mean square (RMS) value.

Post-processing the data can involve scaling the data, combining channels, band pass filtering,
notch filtering, windowing, and overlap averaging of frequency spectra, so post-processing
software with such capabilities is also recommended.

5.9 Removal of Extraneous Noise from MSL Data
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5.9.1 Noise Removal by Content Deleted-Contains EPRI and Continuum Dynamics
Inc. Proprietary Information
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Table 5-2
Confidence limits on Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary
Information
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Figure 5-6 Content Deleted-Contains EPRI and Continuum D Inc. Proprietary Information
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5.9.2 Noise Removal by - Content Deleted - Contains EPRI and Continuum Dynamics
Inc. Proprietary Information
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5.9.3 Noise Removal Example

The effect of the various noise removal steps may be illustrated with the data from Plant A for
MSL A upper strain gage location.
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Figure 5-7
Original pressure signals at MSL A upper strain gage location for Plant A. Content Deleted-
Contains EPRI and Continuum Dynamics Inc. Proprietary Information
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Figure 5-8
Filtered pressure signals at MSL A upper strain gage location for Plant A.
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Figure 5-9 Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary
Information
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Figure 5-10 Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary
Information
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Figure 5-11 Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary
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6

METHODOLOGY TO PREDICT STEAM DRYER
FLUCTUATING PRESSURE LOADING FROM IN-PLANT
MSL PRESSURE MEASUREMENTS

This section details the technical basis for and validation of a methodology for determining the
fluctuating pressure loading on steam dryer surfaces resulting from acoustic sources based on
measured main steam line (MSL) fluctuating pressures (inferred by circumferentially-oriented
strain gages) and hydrodynamic sources within the steam dome based on Content Deleted-
Contains EPRI and Continuum Dynamics Inc. Proprietary Information. The methodology
is designated the C.D.1. Acoustic Circuit Model (ACM) Revision 4.

6.1 Overview of ACM Rev. 4 Methodology

In general, a BWR steam dryer pressure loading evaluation is split into two distinct analyses:

Content Deleted-
Contains EPRI and Continuum Dynamics Inc. Proprietary Information

The question naturally arises as to where the most significant source of acoustic pressure is
located. It is now understood that SRV/ERYV standpipes can be excited when the frequency of
vortex shedding in the shear layer over the standpipe, which is dependent on the steam velocity
in the main steam line, matches the organ pipe frequency of the standpipe. These sources are
downstream of the pressures measured on the steam lines. In addition, hydrodynamic pressure
loading can occur on the steam dryer surfaces resulting from Content Deleted-Contains EPRI
and Continuum Dynamics Inc. Proprietary Information. Revision 4 of the ACM predicts the
fluctuating pressure loading on the steam dryer due to both acoustic and hydrodynamic sources.

6.2 Acoustic Circuit Analysis

Analyses of pressure fluctuations in a single-phase compressible medium, where acoustic
wavelengths are long compared to component dimensions, and in particular long compared to
transverse dimensions (directions perpendicular to the primary flow directions), lend themselves
to application of the acoustic circuit methodology. If the analysis is restricted to frequencies
below 250 Hz, acoustic wavelengths are approximately six feet in length, and wavelengths are
therefore long compared to most components of interest, such as branch junctions.
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Acoustic circuit analysis
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Figure 6-1
Schematic of the pressure measurement locations in a main steam line

During plant operation, fluctuating pressures are derived at two locations along each steam line
using several circumferentially-mounted strain gages. The specific axial locations of the strain
gages along the MSLs are determined using the procedure described in Section 5.1. Content
Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary Information.

6-2



Methodology to Predict Steam Dryer Fluctuating Pressure Loading from In-Plant MSL Pressure Measurements

Content Deleted-
Contains EPRI and Continuum Dynamics Inc. Proprietary Information

6.3 Evaluation of Fluctuating Pressures on the Surface of the Steam Dryer

Steam dryer pressure loads are computed by a Content Deleted-Contains EPRI and Continuum
Dynamics Inc. Proprietary Information
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Information
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Figure 6-2
Typical cross-sectional description of the steam dome and steam dryer
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Figure 6-3
Cover and base plate low resolution load pressure node locations on a typical dryer
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Figure 6-3
Top plate low resolution load pressure node locations on a typical dryer.
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Figure 6-4
Outer and inner hood low resolution ioad pressure nodes on a typical dryer.
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Figure 6-5
Skirt and end plate low resolution load pressure nodes on a typical dryer.
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Figure 6-6
Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary Information

6.3.3 Low Frequency Contribution Due to Hydrodynamic Flow over the Steam
Dryer

In addition to the acoustic pressure loading on the steam dryer emanating from sources within
the MSLs, a low frequency hydrodynamic pressure loading can occur on the dryer due to
Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary Information. This
hydrodynamic component of the overall fluctuating pressure loading on the steam dryer is
evaluated in Revision 4 of the ACM as described below.
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To evaluate the hydrodynamic contribution of the pressure loading on the steam dryer, the
pressure computed from
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Figure 6-7
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Figure 6-8
Sketch of a main steam line inlet from the steam dome
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Figure 6-9
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Figure 6-10
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6.3.4 Combined Acoustic and Hydrodynamic Fluctuating Pressure Load

Definition
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6.4 Key Modeling Parameters

When the steam dryer geometry is defined and the physical parameters at the power level of
interest are provided (such as the mean steam flow in the main steam lines), the acoustic circuit

and
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Table 6-1 ‘
ACM Revision 4 locked modeling parameters
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These parameters were chosen for the following reasons:

Acoustic Speed: Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary
Information
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Acoustic Speed Damping in Steam Dome: Content Deleted-Contains EPRI and Continuum

Dynamics Inc. Proprietary Information

Steam-Froth Proportionality Factor (Z.): Content Deleted-Contains EPRI and Continuum

Dynamics Inc. Proprietary Information

Steam-Water Proportionality Factor (Zs,): Content Deleted-Contains EPRI and Continuum

Dynamics Inc. Proprietary Information

Main Steam Line Inlet Loss Coefficient: Content Deleted-Contains EPRI and Continuum

Dynamics Inc. Proprietary Information
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6.5 Validation of ACM Revision 4

This section summarizes the validation process to achieve ACM Revision 4.

6.5.1 Quad Cities Unit 2 Instrumented Steam Dryer Testing

In the spring of 2005, Exelon Corporation installed a replacement steam dryer in QC2. The
steam dryer was instrumented with 27 pressure transducers to measure the fluctuating pressures
on the surfaces of the steam dryer and in the steam dome. A photograph of the instrumented
dryer is shown in Figure 6-12. As can be seen in the photo, the pressure sensors were mounted
below “hubcap” enclosures to protect them during plant operation. The pressure transducers
were mounted both inside and outside the dryer as shown in Figure 6-13 to Figure 6-15 [6.3].
Sensor P19 appeared to fail during the startup but appeared to provide creditable information.
Sensor P26 was located on a mast above the dryer as shown in Figure 6-15.

Figure 6-11
Photograph of the QC2 instrumented steam dryer
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P13 Inside
\
P1 P4 P7 P10 P15
2 P5 P8 P11 /P17
/

P3 P6 P9 P12

P22 P25
P23

P24

Figure 6-12
Pressure transducer locations on QC2 dryer (MSL A and B side)

P19 P18

P21 P20 « P14
Inside

Figure 6-13
Pressure transducer locations on QC2 dryer (MSL C and D side)
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<+—— P26

/ P27/ P16

MSL A/B Side —>

Figure 6-14
Pressure transducer locations on QC2 dryer inner hoods

6.5.1.1 Main Steam Line Instrumentation

In addition to the pressure transducers on the steam dryer, two strain gage pairs were mounted at
90° from each other at each of two locations on each of the four main steam lines, upstream of
the ERV standpipes, as summarized in Table 6-2. These data proved reliable throughout the
QC2 startup. The strain gage data were taken at 2000 samples/sec, while the pressure sensor
data were taken at 2048 samples/sec, on different recording systems. Thus, the two data sets
each included a channel for a trigger. In this way a common zero time could be established for
the strain gage pairs and the pressure sensors, so as to eliminate any phasing differences. The
analysis was conducted to 200 Hz.

6.5.1.2 QC2 Tests used for Model Validation
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Table 6-2
Location of strain gage pairs on main steam lines
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Table 6-3 :
Summary QC2 power level used to finalize key parameters and validate ACM Revision 4
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6.5.2 ACM Revision 4 Model/Data Comparisons

The development of the ACM Revision 4 predictive methodology was necessitated by two
conditions: (1) the need to include a low frequency contribution beyond that provided by the
acoustic load alone, and (2) the desire to reduce uncertainty levels when comparing model
predictions with QC2 data, as compared to those for previous revisions of the methodology.
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Figure 6-15
ACM Revision 4 predictions at 790 MWe at the dryer pressure sensors: peak minimum
(top) and peak maximum (bottom) pressure levels, with data (blue) and predictions (red).
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Figure 6-16

PSD comparison for 790 MWe for pressure sensor data (blue curves) and ACM Revision 4
prediction (red curves), for sensor P20: PSD scale is logarithmic (top); PSD scale is linear
(bottom).
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Figure 6-17

PSD comparison for 790 MWe for pressure sensor data (blue curves) and ACM Revision 4
prediction (red curves), for sensor P21: PSD scale is logarithmic (top); PSD scale is linear
(bottom).
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6.5.3 Evaluation of ACM Revision 4 Prediction Bias and Uncertainty

Once predictions have been made with ACM Revision 4, those predictions can be compared with
the QC2 data to determine bias and uncertainty levels.

6.5.3.1 Data used for Evaluation of Bias and Uncertainty

As shown in this section, model comparisons with data demonstrate the high degree of
correlation found in the application of the acoustic circuit methodology Revision 4 to the QC2
steam dryer, steam dome, and main steam lines. It is natural then to ask about the applicable
range of the model and where model uncertainty is anticipated.

The approach taken for bias and uncertainty is
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Figure 6-18

Modified bounding pressure comparisons (790 MWe) at the six averaged pressure
sensors: P1, P2, and P3 (top); P4, P5, and P6 (bottom): data (blue curves), model
predictions (red curves).
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Figure 6-19

Modified bounding pressure comparisons (790 MWe) at the six averaged pressure
sensors: P7, P8, and P9 (top); P10, P11, and P12 (bottom): data (blue curves), model
predictions (red curves).
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Figure 6-20
Modified bounding pressure comparisons (790 MWe) at the six averaged pressure
sensors: P19 and P21 (top); P18 and P20 (bottom): data (blue curves), model predictions

(red curves).
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6.5.3.2 Bias and Uncertainty Evaluation

Bias is computed by taking the difference between the measured and predicted RMS pressure
values for the six “averaged pressures” group, and dividing the mean of this difference by the
mean of the predicted RMS. RMS is computed by integrating the PSD across the frequency
range of interest and taking the square root

1
N Z (Rlv[smeasured - RMSpredicted )

BIAS =N 1 (6.5.1)
?\I— Z RMSpredicted

where RMS easured 1 the RMS of the measured data and RMSredicied 1S the RMS of the predicted
data. Summations are over the number of “averaged pressures”, or N = 6.

Uncertainty is defined as the fraction computed by the standard deviation

1
\/ﬁ Z (RMSmeasured - RMSpredicled )2

1
_I:I— Z RMSpredicled

UNCERTAINTY = (6.5.2)

ACM bias and uncertainty summary results are compiled for specified frequency ranges of
interest and summarized in Table 6-4. The bias and uncertainty values within 2 Hz of each of
the three standpipe frequencies at QC2 (discussed in Section 4) are shown in Table 6-5. The
values for Dresser 6x8, Electromatic, and Target Rock are computed from Equations (6.5.1) and
(6.5.2) across the frequency intervals shown for each valve type.

Table 6-4
QC2 bias and uncertainty values for specified frequency intervals

Content Deleted-
Contains EPRI and Continuum Dynamics Inc. Proprietary Information

6-29



Methodology to Predict Steam Dryer Fluctuating Pressure Loading from In-Plant MSL Pressure Measurements

Table 6-5
QC2 bias and uncertainty values at standpipe resonances
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6.5.3.3 Revised Bias and Uncertainty Values at Acoustic Excitation Frequencies
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Table 6-6
QC2 bias and uncertainty values at standpipe resonances with optimal axial strain gage
spacing
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6.5.4 Blind Benchmark

To provide further confidence in the adequacy of the ACM Revision 4 model, an additional
comparison was made to another QC2 data set at power conditions above OLTP, corresponding
to Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary Information.

Table 6-7
QC2 blind benchmark test conditions
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A comparison of ACM Revision 4 model predictions of maximum and minimum peak pressures
to those measured at 820 MWe are shown in Figure 6-22. It should be noted that sensors P13
and P14 are positioned on the inner side of the outer bank hoods (aligned opposite P3 and P20,
respectively), P16 and P27 are positioned on the outside of inner bank hoods, P26 is on a mast
above the dryer, and P19 is considered inoperative by GE. Predictions of minimum and
maximum peak pressures bound the QC2 dryer data except for sensors P14, P16, and P27.
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Figure 6-21
ACM Revision 4 predictions at 820 MWe at the dryer pressure sensors: peak minimum
(top) and peak maximum (bottom) pressure levels, with data (blue) and predictions (red).
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Figure 6-22 ’

Modified bounding pressure comparisons (820 MWe) at the six averaged pressure
sensors: P1, P2, and P3 (top); P4, P5, and P6 (bottom): data (blue curves), model
predictions (red curves).
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Figure 6-23

Modified bounding pressure comparisons (820 MWe) at the six averaged pressure
sensors: P7, P8, and P9 (top); P10, P11, and P12 (bottom): data (blue curves), model
predictions (red curves).
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Figure 6-24
Modified bounding pressure comparisons (820 MWe) at the six averaged pressure
sensors: P19 and P21 (top); P18 and P20 (bottom): data (blue curves), model predictions

(red curves).
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A comparison of bias and uncertainty values computed for the 790 MWe case to those computed
for the 820 MWe case are summarized in Table 6-8.

Table 6-8
ACM Revision 4 bias and uncertainty comparison
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As shown in Table 6-8, the ACM Revision 4 predictive ability is determined to be essentially the
same based on benchmarking using QC2 data obtained at two different plant power levels.

6.6 Overall Bias and Uncertainty in ACM Revision 4

The bias and uncertainty values identified in Table 6-8 are added together to compute an overall
uncertainty that multiplies up the predicted pressure loading on the dryer to account for the
model not identically predicting the QC2 data. Besides the model comparison with data, there
are several sources of additional bias and uncertainty values that must be taken into account as
well. These additional bias and uncertainty values arise from two sources: (1) the accuracy of
the strain gage measurements on the main steam lines (detailed in Section 5.7), and (2) the
accuracy of the pressure measurements on the QC2 steam dryer.
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Table 6-9
Overall uncertainty on ACM Revision 4 predictions at 790 and 820 MWe

Content Deleted-
Contains EPRI and Continuum Dynamics Inc. Proprietary Information

Another way of plotting the model comparison shown in Figure 6-16 and Figure 6-22 is to plot
the measured peak pressures on the horizontal scale and the predicted peak pressures on the
vertical scale. Figure 6-26 plots the 790 MWe data from Figure 6-16, while Figure 6-27 plots
the 790 MWe data with multiplication by the overall uncertainty given in the second column of
Table 6-9. Figure 6-28 plots the 820 MWe data from Figure 6-22, while Figure 6-29 plots the
820 MWe data with multiplication by the overall uncertainty given in the last column of Table
6-9.
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Figure 6-25
Comparison between measured and predicted peak pressures at the 27 pressure sensors

in QC2 at 790 MWe. The line is the one-to-one boundary.
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Figure 6-26
Comparison between measured and predicted peak pressures at the 27 pressure sensors

in QC2 at 790 MWe with overall uncertainty added to the predicted load. The line is the
one-to-one boundary.
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Figure 6-27
Comparison between measured and predicted peak pressures at the 27 pressure sensors
in QC2 at 820 MWe. The line is the one-to-one boundary.
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Figure 6-28

Comparison between measured and predicted peak pressures at the 27 pressure sensors
in QC2 at 820 MWe with overall uncertainty added to the predicted load. The line is the
one-to-one boundary.
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6.7 Conclusions

The model evaluation presented herein confirms the adequacy of the C.D.1. acoustic circuit
model ACM Revision 4 for use with in-plant strain gage data collected on main steam lines. The
model with “locked” modeling parameters can be used with other steam dryer geometries and
other main steam line configurations to provide a representative pressure loading on the steam
dryer.
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An alternative evaluation approach, based on pressure transducer measurements on the steam
dryer, is discussed in Appendix F.

6.8 References

6.1. Indiana University Chemistry Department / Babcock and Wilcox Co. Fossil Generation
Division. Subprograms of 1967 ASME Steam Tables. Quantum Chemistry Program Exchange
Program No. SPHF006.

6.2. Bliss; D. B, T. R. Quackenbush, and M. E. Teske. 1982. Computational Simulation of
High-Speed Steady Homogeneous Two-Phase Flow in Complex Piping Systems. Transactions
of the ASME Journal of Pressure Vessel Technology 104: 272-277.

6.3.  General Electric Company (C. Hinds). 2005. Dryer Sensor Locations. Letter Report No.
GE-ENG-DRY-087. Dated 18 May 2005.

6-40



Methodology to Predict Steam Dryer Fluctuating Pressure Loading from In-Plant MSL Pressure Measurements

6.4. Communication from Enrico Betti. 2006. Excerpts from Entergy Calculation VYC-3001
(Rev. 3), EPU Steam Dryer Acceptance Criteria, Attachment I: VYNPS Steam Dryer Load
Uncertainty (Proprietary).

6.5.  Structural Integrity Associates, Inc. 2005. Quad Cities Strain Gage Evaluation.
Calculation Package File No. EXLN-20Q-301 (Rev. 0). Project No. EXLN-20Q.

6.6.  Exelon Nuclear Generating Co. 2005. An Assessment of the Effects of Uncertainty in the

Application of Acoustic Circuit Model Predictions to the Calculation of Stresses in the
Replacement Quad Cities Units 1 and 2 Steam Dryers (Rev. 0). Document No. AM-2005-008.

6-41



7/

MSIV CLOSURE TESTING

In accordance with guidance in BWRVIP-182, C.D.I. has developed a conservative analytical
method for constructing a composite dryer load from main steam line strain gage data when one
of the main steam line stop valves is closed. MSIV closure serves as an alternative way to obtain
EPU power level dryer loads, rather than through the use of one-eighth scale testing (to be
discussed in Section 8). This section describes the approach and its potential for predicting
pressure loads at EPU power when the plant is running at below CLTP conditions. This
approach can also be used as a means of screening for MSL acoustic excitation.

7.1 Testing Objectives
An MSIV closure test would enable the following:

1. Computation of a conservative EPU pressure load on a dryer, based on full-scale in-plant
MSL data, which can then be used to predict the conservative stresses that will likely exist at
EPU conditions.

2. Verification of the approach with the development of a conservative CLTP pressure load,
based on full-scale data with one MSIV closed, that could be checked against full-scale data
taken at CLTP conditions with all MSIVs open.

3. Screen for potential acoustic excitation at full scale at EPU conditions, without going to EPU
conditions.

7.2 Testing Approach
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Figure 7-1
Schematic of top view of steam dome and four main steam lines: A, B, C, and D.
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Figure 7-2 ‘

PSD comparisons of MSL pressures on main steam line A at 75% power (upper locations,
top; lower locations, bottom), comparing the signals with MSIV D closed (blue curves) and
MSIV C closed (red curves).
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Figure 7-3

PSD comparisons of MSL pressures on main steam line B at 75% power (upper locations,
top; lower locations, bottom), comparing the signals with MSIV D closed (blue curves) and
MSIV C closed (red curves).
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Figure 7-4

PSD comparisons of MSL pressures on main steam line C at 75% power (upper locations,
top; lower locations, bottom), comparing the signals with MSIV B closed (blue curves) and
MSIV A closed (red curves).
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Figure 7-5

PSD comparisons of MSL pressures on main steam line D at 75% power (upper locations,
top; lower locations, bottom), comparing the signals with MSIV B closed (blue curves) and
MSIV A closed (red curves).
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Figure 7-6

Time history comparisons of MSL pressures on the upper locations of main steam line A
and D at 75% power (top) and lower locations (bottom). The MSL A signal is obtained for
MSIV D closed (blue curves), while the MSL D signal is obtain for MSIV A closed (red

curves).
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7.3 Testing Results
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Figure 7-7
Comparisons of low resolution loads at CLTP power level from CLTP conditions (100%
power level) and 75% power conditions (100% composite).

7.4 Testing Conclusions

The comparison shown in Figure 7-7 is encouraging, and suggests that MSIV closure is a viable
way of conservatively estimating dryer loads at power levels above CLTP conditions.
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METHODOLOGY FOR PREDICTING THE EFFECT OF
MSL FLOW RATE ON MSL PRESSURES (WHEN
ACOUSTIC EXCITATION IS PRESENT)

In accordance with guidance in BWRVIP-182, C.D.I. has developed proprietary analytical and
test methods for measuring at subscale the effects of possible acoustic excitation in the main
steam lines caused by the standpipe/valves. This section describes the test procedure and
expected results, particularly with regard to Content Deleted-Contains EPRI and Continuum
Dynamics Inc. Proprietary Information

8.1 Objectives and Scope

Construction of a nominal one-eighth scale model of the complete steam delivery system at a
plant, from the steam dome to the turbine, is done so as to achieve the following:

1. Measure the excitation frequency and amplitudes 6f the as-built standpipe/valve
configuration (encompassing all four main steam lines), and determine the behavior of the
system at CLTP and EPU conditions.

2. Provide subscale main steam line pressure data to Content Deleted-Contains EPRI and
Continuum Dynamics Inc. Proprietary Information

8.2 One-Eighth Scale Testing Approach

A one-eighth scale four-line test facility is proposed as a means of measuring the effect of
standpipes on the anticipated acoustic signal to the steam dome. The one-eighth scale model test
includes a Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary
Information
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Figure 8-1
One-eighth scale model of the QC2 reactor vessel
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Figure 8-2
One-eighth scale model of a steam dryer
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Figure 8-3
Reactor vessel
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Figure 8-4
Stepping back shows the D-ring and turbine control valve assembly (resting on the table
on the center left of the picture)
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Figure 8-5
A view of the D-ring and the piping leading to the turbine control valves and out the
turbine. From top to bottom, MSLs are identified as B, A, D, and C.
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Figure 8-6
A view from the turbine end of the test rig. The four MSLs are the correctly scaled lengths.
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8.3 One-Eighth Scale Test System Description '

The purpose of the testing effort is to measure the excitation frequency and amplitudes of the as-
built standpipe/valve configuration, and determine its behavior at CLTP and EPU conditions. To
do so, a one-eighth scale test facility is constructed that represents the full-scale steam delivery
system.

The scaling basis for one-eighth scale follows exactly as the scaling basis for one-fifth scale, and
is found in Section 4.4.

In the subscale tests summarized herein for QC2, the main steam lines at the safety valves are
1.0/7.83 scale and the reactor dome and steam dryer are 1.0/8.04. This slight difference in scale
results from commercially available hemispherical vessel heads and readily available piping.

The line geometry upstream of the valves is geometrically scaled on all four main steam lines so
that the valve standpipes see a prototypical flow profile. Downstream of the standpipes, the
scaled main steam lines each end at their turbine location with a test initiation full bore ball valve
and an orifice plate that sets the test Mach number.

A schematic of the typical setup of the steam delivery system is shown in Figure 8-7. Content
Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary Information
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Figure 8-7

Schematic of a typical steam delivery system. Segment lengths marked 1 to 11 connect
the steam dome to the turbine. Typically, the standpipe/valves are positioned on segment
5, and a steam header is placed along segment 8, while the main steam turbine stop valve
is located between segment 10 and 11 in the plant.
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Figure 8-8
Behavior of the inlet Mach number and the Mach number immediately upstream of the

orifice plates, as a function of the ratio of the orifice area A, to the pipe area A, for a typical
one-eighth scale test.
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Figure 8-9

Normalized RMS pressure (RMS pressure normalized by the dynamic pressure at CLTP
conditions) for the pressure transducer at the end of a standpipe/valve, as a function of
inlet and orifice Mach numbers. The two curves illustrate the shift in Mach number from
the use of the inlet Mach number (blue points) to the use of the Mach number immediately
upstream of the orifice (red points). CLTP and EPU Mach numbers are shown for this
plant.

8.4 Validation of One-Eighth Scale Test System

One of the objectives of subscale testing is to develop Content Deleted-Contains EPRI and
Continuum Dynamics Inc. Proprietary Information that relate unsteady steam dryer loads at
CLTP conditions to those anticipated at EPU conditions. Content Deleted-Contains EPRI and
Continuum Dynamics Inc. Proprietary Information would then be applied to full-scale CLTP
strain gage data collected on the main steam lines to obtain a conservative estimate of the full-
scale EPU strain gage data. The EPU strain gage data would then be used to estimate steam
dryer stresses at EPU power.

As discussed previously, Exelon recorded pressure data on its replacement QC2 steam dryer at
several power levels, including OLTP and EPU [8.4]. These two data sets, at 790 MWe (used in
Section 6.5 for ACM validation) and 930 MWe, respectively, provide the data needed to validate
the use of Content Deleted-Contains EPRI and Continuum Dynamics Inc. Proprietary

- Information methodology with the subscale test results from a one-eighth scale test [8.3].
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Figure 8-10
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generated from QC2 main steam line data between OLTP and EPU power levels. The
separate curves identify the strain gage locations on the main steam lines. The standpipe
excitation frequencies of 115 Hz (Target Rock), 135 Hz (Electromatic), and 155 Hz (Dresser

6x8) are clearly seen in the plot.
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Figure 8-11

Normalized PSD for Test qc2-2: as-built configuration at a Mach number = OLTP. PD1:
MSL A upstream strain gage location; PD2: MSL A downstream strain gage location; and
PD11: Target Rock standpipe/valve end.
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Figure 8-12
Normalized PSD for Test qc2-2: as-built configuration at a Mach number = OLTP. PD3:
MSL B upstream strain gage location; PD4: MSL B downstream strain gage location.
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Figure 8-13
Normalized PSD for Test qc2-2: as-built configuration at a Mach number = OLTP. PDS5:
MSL C upstream strain gage location; PD6: MSL C downstream strain gage location
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Figure 8-14
Normalized PSD for Test qc2-2: as-built configuration at a Mach number = OLTP. PD7:
MSL D upstream strain gage location; PD8: MSL D downstream strain gage location.
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Figure 8-15
Normalized PSD for Test qc2-8: as-built configuration at a Mach number = EPU. PD1: MSL

A upstream strain gage location; PD2: MSL A downstream strain gage location; and PD11:
Target Rock standpipe/vaive end.
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Figure 8-16
Normalized PSD for Test qc2-8: as-built configuration at a Mach number = EPU. PD3: MSL

B upstream strain gage location; PD4: MSL B downstream strain gage location.
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Figure 8-17
Normalized PSD for Test qc2-8: as-built configuration at a Mach number = EPU. PD5: MSL
C upstream strain gage location; PD6: MSL C downstream strain gage location.
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Figure 8-18
Normalized PSD for Test qc2-8: as-built configuration at a Mach number = EPU. PD7: MSL
D upstream strain gage location; PD8: MSL D downstream strain gage location.
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Figure 8-19

Normalized PSD for Test qc2-12: as-built configuration at a Mach number = EPU. PD1:
MSL A upstream strain gage location; PD2: MSL A downstream strain gage location; and
PD11: Target Rock standpipe/valve end.
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Figure 8-20 .
Normalized PSD for Test qc2-12: as-built configuration at a Mach number = EPU. PD3:
MSL B upstream strain gage location; PD4: MSL B downstream strain gage location.
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Figure 8-21
Normalized PSD for Test qc2-12: as-built configuration at a Mach number = EPU. PD5:
MSL C upstream strain gage location; PD6: MSL C downstream strain gage location.
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Figure 8-22
Normalized PSD for Test qc2-12: as-built configuration at a Mach number = EPU. PD7:
MSL D upstream strain gage location; PD8: MSL D downstream strain gage location.
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Figure 8-23
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generated from subscale data qc2-2 (OLTP) and qc2-8 (EPU). The separate curves identify
the strain gage locations on the main steam lines.
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Figure 8-24

Content Deleted-Contains EPRI and Continuum Information generated Dynamics Inc.
Proprietary from subscale data qc2-2 (OLTP) and qc¢2-12 (EPU). The separate curves
identify the strain gage locations on the main steam lines.
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Figure 8-25
ACM Revision 4 predictions at 930 MWe at the dryer pressure sensors: peak minimum
(top) and peak maximum (bottom) pressure levels, with data (blue) and predictions for

subscale data #1 (red) and subscale data #2 (green).
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Figure 8-26

Modified bounding pressure comparisons (930 MWe) at the six averaged pressure
sensors: P1, P2, and P3 (top); P4, P5, and P6 (bottom): data (blue curves), model
predictions with subscale data #1 (red curves) and subscale data #2 (green curves).
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Figure 8-27

Modified bounding pressure comparisons (930 MWe) at the six averaged pressure
sensors: P7, P8, and P9 (top); P10, P11, and P12 (bottom): data (blue curves), model
predictions with subscale data #1 (red curves) and subscale data #2 (green curves).
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Figure 8-28 .

Modified bounding pressure comparisons (790 MWe) at the six averaged pressure
sensors: P19 and P21 (top); P18 and P20 (bottom): data (blue curves), model predictions
with subscale data #1 (red curves) and subscale data #2 (green curves).

8.5 Bias and Uncertainty Associated with Prediction of MSL Flow Rate
Effects on MSL Pressure Amplitudes

The averaged predicted pressures at EPU may then be used to generate the bias and uncertainty
with respect to the EPU data and compare the results with the bias and uncertainty for the QC2
data at OLTP conditions. This approach, as discussed previously in Section 6.5, results in the
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comparisons shown in Table §-1 Content Deleted-Contains EPRI and Continuum Dynamics
Inc. Proprietary Information.

Table 8-1
Composite ACM Bias and Uncertainty Based on QC2 EPU Data with the First Bump-Up
Factor (Subscale Data #1) Applied to QC2 OLTP Data
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Table 8-2
Composite ACM Bias and Uncertainty Based on QC2 EPU Data with the Second Bump-Up
Factor (Subscale Data #2) Applied to QC2 OLTP Data
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Figure 8-29
Comparison between measured and predicted peak pressures at the 27 pressure sensors
in QC2 at 930 MWe for subscale data #1. The line is the one-to-one boundary.
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Figure 8-30

Comparison between measured and predicted peak pressures at the 27 pressure sensors
in QC2 at 930 MWe for subscale data #1 with overall uncertainty added to the predicted
load. The line is the one-to-one boundary.
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Figure 8-31
Comparison between measured and predicted peak pressures at the 27 pressure sensors
in QC2 at 930 MWe for subscale data #2. The line is the one-to-one boundary.
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Figure 8-32

Comparison between measured and predicted peak pressures at the 27 pressure sensors
in QC2 at 930 MWe for subscale data #2 with overall uncertainty added to the predicted
load. The line is the one-to-one boundary.

8.6 References

8.1 Shapiro, A. H. 1953. The Dynamics and Thermodynamics of Compressible Fluid Flow.
Volume I. John Wiley and Sons: New York, NY. Chapter 4.

8.2 Kayser, J. C. and R. L. Shambaugh. 1991. Discharge Coefficients for Compressible Flow
through Small-Diameter Orifices and Convergent Nozzles. Chemical Engineering Science 46:
1697-1711.

8-24



Methodology for Predicting the Effect of MSL Flow Rate on MSL Pressures (when Acoustic Excitation is Present)

8.3.  Continuum Dynamics, Inc. 2006. Mitigation of Pressure Oscillations in the Quad Cities
Unit 2 Steam Delivery System: A Subscale Four Main Steam Line Investigation of Standpipe
Behavior (Rev. 0). C.D.I. Report 06-08.

8.4. Continuum Dynamics, Inc. 2007. Bounding Methodology to Predict Full Scale Steam
Dryer Loads from In-Plant Measurements (Rev. 4). C.D.I. Report No. 05-28.

8-25



9

STRESS ANALYSIS METHODOLOGY

The purpose of this section is to define the methodology for performing a stress analysis of the
steam dryer at extended power uprate (EPU) operating conditions. This section provides a
general overview of the methodology used to predict the structural response to flow induced
vibration loading, followed by a detailed description of the processes, assumptions, and bases of
the structural finite element analysis performed for the steam dryer.

9.1 Overview

The steam dryer stress analysis includes primary stress (P) and fatigue evaluations (P+Q+F)
consistent with the intent of the American Society of Mechanical Engineers Boiler and Pressure
Vessel Code (ASME B&PV Code). Although the steam dryer is not a Code component, the
methods and allowable stress intensities contained within the ASME B&PV Code, Section III,
Subsection NG [9.1] are used as guidelines for this evaluation. Further, the approach described
in this section follows guidance provided in BWRVIP-181 “Steam Dryer Repair Design Criteria’
[9.2]. Note that the secondary loads experienced by the steam dryer are insignificant; therefore,
primary plus secondary (P+Q) stress checks are not applicable to this component. The primary
stress check is performed using all relevant loads as defined in the plant Final Safety Analysis
Report (FSAR). In the absence of loads and load combination guidance in the plant FSAR, this
document provides recommendations on appropriate loads and load combinations. A fatigue
evaluation is performed considering the range of alternating stresses produced in the steam dryer
components from the fluctuating pressure loads contributed by normal operation Flow Induced
Vibration (FIV). Development of the flow induced vibration loads are discussed in Section 6.0.

b

The structural analysis is performed in the frequency domain, which confers several significant
computational advantages, in terms of storage and central processing unit (CPU) time, over
transient or time-domain approaches. These advantages include:

e Order of magnitude reductions in computer storage and calculation time;
e Ability to impose a constant 1% damping at all frequencies;

e Elimination of the initial startup transient response (real transients due to acoustic load
variations are captured);

e Ability to reanalyze the dryer for different loads (e.g., CLTP, EPU and/or frequency-shifted
loads) without performing additional finite element analyses;

e Easier and faster finite element calculation restart options following computer outage; and
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e The opportunity to monitor the stress intensities at a select subset of finite element nodes
(100 to 200 nodes) in real- or near real-time during power ascension.

These advantages are realized through the use of “unit” solutions representing the stress
distribution resulting from the application of a unit fluctuating pressure at a MSL at a particular
frequency. The solutions are summed over the four main steam lines and all frequencies in the
frequency band of interest.

In addition to a complete structural stress assessment, the methodology allows
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9.1.1 Application of FIV Loads to Finite Element Model (FEM)
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Figure 9-1

The mesh interpolation sequence. The pressure differences, rather than pressures, are
interpolated to prevent errors associated with interpolating pressure jumps across thin
plates. The process involves: (i) interpolating the pressure jumps over surfaces, (ii)
assigning pressure differences to adjacent lattice points, and (iii) spreadlng these values
to farther neighbors.

9.1.2 Formulation of Structural Solution for FIV Loading

This steam dryer structural FEM is constructed using the commercial ANSYS finite element
software [9.3] and consists of a combination of shell and solid elements. The fluctuating
pressure solution described in Section 6 is applied to the structural FEM as a force per unit area.
The harmonic nodal displacements q(®) are obtained by performing a harmonic analysis and

solving the equation
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Comparisons of stress results from a harmonic analysis based approach and a direct integration
transient analysis approach have been performed for a typical steam dryer in order to
demonstrate the adequacy of the harmonic methodology. These comparisons are summarized in
Appendix E.2 and confirm that the harmonic method accurately recovers the steady state
response with both amplitude and phase information intact.

9.1.3 Frequency Shifting to Account for FEM Uncertainties

The harmonic stress solutions can also be used to assess the effects of frequency shifts in the
applied loads. The sensitivity of the stress results to modeling approximations and perturbations
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9.1.4 Application to Real-Time Power Ascension Testing
Equations (9.1.2) and (9.1.3) can be applied to individual nodes. When performing a complete
stress analysis, every node on the dryer is processed for a given MSL pressure spectrum by first

computing the stress harmonics from Equation (9.1.2), then converting the harmonic solution to
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9.1.5 Compensation for Additional FEM Bias and Uncertainty

An extensive vibration test was performed on a spare Boiling Water Reactor (BWR) steam dryer
(See Appendix E.4). The dryer was subjected to shaker excitation at eight different locations and
the dryer responses measured using accelerometers at various points on the dryer for peak
forcing frequencies in the range 0 — 250 Hz. The measured response data was compared against
response predictions obtained with an ANSYS finite element model and the differences between
measured and computed responses used to develop an estimate of the bias and uncertainty
associated with approximations, mesh discretization, and modeling idealizations in the finite
element model. These approximations produce an overall uncertainty of
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9.1.6 Computational Considerations
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9.1.7 Solution Management

Upon completion of each frequency calculation, ANSYS is instructed to export the stresses
stored in text files.
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9.1.8 Calculation of Stress Intensities
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9.1.9 Consideration of Steam Dryer Cracking

The structural analysis methodology described in this report contains the inherent assumption
that the steam dryer components are uncracked. It is impractical to postulate cracking of
different sizes in each steam dryer component and assess the relative effect that these cracks
have on the results of the stress analysis; therefore, any cracking identified during a dryer
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inspection must be evaluated on a plant specific basis. An evaluation of observed cracking
should include the following two considerations:

1. Potential for additional crack growth as a result'of the suspected initiation mechanism
and all relevant propagation mechanisms (IGSCC, Fatigue); and

2. Effect of observed cracking on dynamic characteristics of the steam dryer.

The normal modes of a structure are generally not significantly affected by cracking unless there
are a large number of cracks distributed throughout the structure or a crack is very large;
nevertheless, a plant specific evaluation is considered appropriate to identify if the existence of
cracking must be included in the stress analysis. The output of this evaluation will assist the
utility in determining whether a repair must be applied.

9.2 Finite Element Model Description

This section describes the modeling methodology, assumptions, geometry, material properties,
and boundary conditions applied to the steam dryer structural FEM. Loads and Load
combinations are discussed separately in Section 9.3.

9.2.1 Steam Dryer Geometry

The analytical steam dryer geometry is built from available steam dryer design and as-built
drawings. The model includes any modifications made to the dryer since fabrication. A
completed model for a typical steam dryer is shown in Figure 9-2.
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Figure 9-2
Overall geometry of a typical steam dryer ANSYS model.

9.2.2 Material Properties

The steam dryer is constructed from Type 304 stainless steel and has an operating temperature of
550°F. Material properties for a plant specific analysis are obtained from the ASME B&PV
Code of Construction. Typical material properties are summarized in Table 9-1.
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Table 9-1
Typical Material Properties
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9.2.3 Model Simplifications

The following simplifications are made to achieve reasonable model size while maintaining good
modeling fidelity for key structural properties:
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Support brackets constraints
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Figure 9-3
Pinned support constraints for typical steam dryer

9.2.3.1 Perforated Plate Model
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9.2.3.2 Vane Bank Model

The vane bank assemblies consist of many vertical angled plates that are computationally
expensive to model explicitly, since a prohibitive number of elements would be required. These
parts have significant weight which is transmitted through the surrounding structure, so it is
important to capture their gross inertial properties. Here the vane banks are modeled as a
collection of point masses located at the center of mass for each vane bank section (see Figure
9-4).
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Figure 9-4
Point masses representing the vanes. The pink shading represents where constraint
equations between nodes are applied in the point mass implementation.
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9.2.3.3 Water Inertia Effect on Submerged Panels

Water inertia (hydrodynamic mass) is modeled by an increase in density of the submerged
structure. This added mass is determined by a separate hydrodynamic analysis and is included in
the ANSYS model by modifying the density of the submerged structural elements when
computing harmonic response. This additional density is given by
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9.2.3.4 Connections between Structural Components

Most connections between parts are modeled as node-to-node connections. This modeling is the
correct manner of joining elements in a finite element model. At joints between shells, this
approach omits the additional stiffness provided by the extra weld material. Also, locally 3D
effects are more pronounced. The latter effect is accounted for using weld factors in the fatigue
evaluation. The deviation in stiffness due to weld material is negligible, since weld dimensions
are on the order of the shell thickness. The consequences upon modal frequencies and amplitude
are, to first order, proportional to t/L, where t is the thickness and L a characteristic shell length.
The errors introduced by ignoring additional weld stiffness are thus small and readily
compensated for by performing frequency shifts as described in Section 9.1.3.
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Figure 9-5
Face to face shell to solid connection.
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Figure 9-5
Shell edge-to-solid face connection.

9.2.4 Damping in the FEM

This section describes the damping included in the ANSYS FEM for structural analyses of the
steam dryer.

9.2.4.1 Structural Damping

Structural damping is defined as 1% of critical damping for all frequencies. This damping is
consistent with guidance given on page 10 of NRC RG-1.20 [9.7], and is implemented in the
ANSYS model by setting the damping matrix C in Equation (9.1.1) to

2z
C=22K
(9.2.3)

where K 1s the stiffness matrix and  is the forcing frequency. While this representation does
not exactly enforce a constant damping ratio, the response peaks obtained with both models are
identical. Moreover, one can show that for the low 1% damping considered here, the maximum
difference between the response functions for the harmonic damping model above with z= 1%

and a damped oscillator with constant damping ratio { = 1% is less than 0.5% at all frequencies.
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9.2.5 Mesh Details and Element Types

ANSYS linear SHELL63 elements are used to model the skirt, hoods, perforated plates, side and
end plates, trough bottom plates, reinforcements, base plates, and cover plates. This element
models bending and membrane stresses, but omits transverse shear. SHELL181 elements are
used to model submerged parts of the drain channels, as fewer elements are needed to adequately
resolve the curved regions; also, more accurate stresses are computed as considerable shear
components develop in these areas. The use of shell elements is appropriate for most of the
structure, where the characteristic thickness is small compared to the other plate dimensions.

Quadratic SOLID186 elements are used for the upper and lower support rings and tie bars as
well as other components where strongly 3D stress fields can be expected. The SURF154
element is used to assure proper application of pressure loading to the structure.

Typical mesh details and element types are shown in Table 9-2 and Table 9-3.

The mesh is generated automatically by ANSYS with adaptive refinement near edges. The
maximum allowable mesh spacing is specified by the user. A 3-inch maximum allowable
spacing is specified everywhere except in the following areas:

¢ Drain pipes (2 inch maximum spacing);

e Base plates (2.75 inches);

e Perforated plates (2 inches);

e Top tie rods (0.75 inches); and

e Curved portions of the drain channels (1.5 inches).

Details of a typical steam dryer finite element mesh are shown in Figure 9-7 through Figure 9-9.
An assessment of the error due to the use of finite mesh size and modeling idealizations i