Alicia Mullins

From: Sent: To: Cc: Subject: Attachments: Paul Bertetti Friday, March 18, 2005 11:04 AM Jude Mcmurry John Bradbury Tpa.inp mods AppendixA_Arlt_Bertetti_Mods_Final.xls

Jude,

Here is my final draft spreadsheet for the PA folks. Changes (or final values) are highlighted in light blue. Based on Chris Grossman's discussion with Tim McCartin, I have selected the mean (or expected) values for the "minor" nuclides (Cm, Ra, Cs, Ni, Pb, Se, and Nb). I will note that I have only included final changes for those parameters that I have listed as assigned to me. In the cases where I recommended a change of assignment to you, I have removed my recommended values (but I have kept my comments in all cases). Also note that I would recommend that you be assigned the grain density values for the UZ layers (I have kept my recommended values in these cases for your convenience).

Some important points: The pH and CO2 distributions are not finished. I hope to have them on Monday. Many alluvium distribution types for Pb, Ni, etc. have been changed to constants. Retardation values for Se are lower in general, while most others are in the same range or higher than in TPA 4/5.0. An exception is Pb in the alluvium, which has a final Rf lower than its previous distribution.

Let me know what you think.

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments	
Independent variable: LogCO2PartialPressure_ AIIUZ_SZLayers[atm] Dependent variable: pH_AIIUZ_SZLayers[Stan dardUnits]	UZFT	correlateinput s	-0.83	Perfect et al (1995) compilation of geochemical data (field pH) screened using criteria in Turner and Pabalan (1999), and log Pco2 caluclated using MINTEQA2, version 3.11 (Turner and Pabalan, 1999). See additional information	DRT	CORR	2101	Bertetti McMurry	-0.95	Final Value for use in TPA 5.x	Value should have been modified previously by information provided in Bertetti, et al. 2004.	
AlluviumMatrixPorosity_S AV	Alluvium effective porosity of Amargosa Valley alluvium	uniform	1.0e-1, 1.5e-1	Best estimate of USFIC team; current data source is Walker and Eakin (1963) and Fischer (1992) but new data are expected when the	DF	SZFT	1440		no change		Only one alluvium field test known at this time. Measured value at 19D1 was 0.10. Current DOE range (SZFT AMR) is truncated normal with min=0.0 mean=0.18 and max=0.30 std dev=0.051	
ImmobileRd_STFF_I	Retardation factor for I in matrix during matrix diffusion	constant	0.0	Same as ImmobileRd_STFF_C	DP	SZFT	1444	Bertetti	no change		Experimental evidence (DOE) using I and alluvium shows that sorption not significantly different than zero (e.g. SZET AMR 2003). No retardation	and and a stand of the second seco
ImmobileRd_STFF_Tc	Retardation factor for Tc in matrix during matrix	constant	0.0	Same as ImmobileRd_STFF_C	DP	SZFT	1445	Bertetti	no change		Conservative assumption of Kd=zero. Confirmed by DOE and CNWRA experimental results.	- SERVICE DE CONTRACTOR DE LA CONTRACTÓRIA DE LA
ImmobileRd_STFF_CI	Retardation factor for Cl in matrix during matrix	constant	0.0	Same as ImmobileRd_STFF_C	DP	SZFT	1446	Bertetti	no change		Field evidence indicates CI behaves conservatively (chemically) in the SZ. No retardation.	
ImmobileRd_STFF_Cm	Retardation factor for Cm in matrix during matrix diffusion	constant	18000.0	Reversible not used any more; constant value selected based on analogy betwwen Cm 3+ and Am3+	DP	SZFT	1447	Bertetti	10400	Using analog with Am3+. Maintain as constant. Mean value used. Use U0100 (2001) and RT Ambient AMR (2003) distribution for devitrified tuff in UZ because differences in SZFT (2003) distributions STFF and UZ layers for Am not well justified. Devirtified distribution 0.1 to 2.1 uniform, mean=1.05. Conversion using 9880 factor gives Rf of 10374.	Can use Am values based on analogy (see Column E). Current DOE values for SZ STFF for Am are 1.0 to 10.0 with truncated normal distribution (mean=5.5, stdev=1.5) in m3/kg (SZFT 2003). UZ values (RT Ambient AMR 2003) are order of magnitude lower with cumulative distribution 0.10=0%, 0.40=50%, 1.0=100%. Numbers are supposedly based on same source material (attachment I analysis). Current NRC TPA range is more similar to higher DOE range. Assuming	Recall that STFF grain density in this table is 2470 kg/m3 (slightly different than DOE mean value of 2420 kg/m3). STFF porosity in this table is 0.20 (DOE mean value is 0.22). These numbers give a bulk density of 1976 kg/m3, and a Kd to Rf conversion factor of 9880.
mmobileRd_STFF_Ra	Retardation factor for Ra in matrix during matrix diffusion	constant	648.0	Same as ImmobileRd_STFF_C	DP	SZFT	1448	Bertetti	5400	Mean value used from SZFT (2003) distribution for STFF. Maintain constant. Consistent with UZ (slightly higher sorption due to enhanced IX in SZ possible). Mean value from SZFT (2003) is 0.55 m3/kg. Conversion	DRT recommends use of current DOE values. U0100 (2001) has range 0.1 to 0.5 uniform. Site- scale SZ transport AMR (2003) has 0.1 to 1 m3/kg, uniform (equivalent to 9.88e2 to 9.88e3 for retardation factor assuming rho=1976 and porosity=0.2. Note thatDOE Ra Kds in UZ for	Recall that STFF grain density in this table is 2470 kg/m3 (slightly different than DOE mean value of 2420 kg/m3). STFF porosity in this table is 0.20 (DOE mean value is 0.22). These numbers give a bulk density of 1976 kg/m3, and a Kd to Rf conversion factor of 9880.
mmobileRd_STFF_Pb	Retardation factor for Pb in matrix during matrix diffusion	constant	648.0	Same as ImmobileRd_STFF_C	DP	SZFT	1449	Bertetti	3000	Maintain constant. Use value from U0100 (2001) for devitrified tuff in SZ. Mean is 0.3 m3/kg. Conversion using 9880 gives Rf of 2964. Rounded to 3000.	DOE does not have Pb values in recent AMRs. U0100 values from 2001 show Pb Kds in SZ ranging from 0.1 to 0.5 m3/kg, uniform. That would correspond to 988 to 4940 for Rf assuming rho=1976 and porosity=0.20. No differences	en el la marcana da propositiva de la marcana por presenta a proma filamenza d
mmobileRd_STFF_Cs	Retardation factor for Cs in matrix during matrix diffusion	constant	1080.0	Same as ImmobileRd_STFF_C	DP	SZFT	1450	Bertetti	7200	Maintain constant. Use values from SZFT (2003) for alluvium as there should be little difference between alluvium and devitrified tuff for Cs retention. Mean value is 0.728 m3/kg (from a truncated normal, not uniform). Conversion using 9880 factor gives Rf of 7193. rounded to 7200.	DOE's values for Cs sorption are all over the board and not particularly well justified. Somehow, a piecewise distribution of 0.1=0%, 3.7=5%, and 7.5=100% is derived from the Attachment I discussion in Site Scale SZFT AMR 2003. There is no clear link to these values. The range for alluvium (assuming devitrified characteristics) is 0.1 to 1 m3/kg. The vitric values in U0100 are an order of magnitude lower at 0.01 to 0.1 m3/kg. Even though substantial Cs sorption is likely, I would recommend a more conservative range - so I choose the	τ
mmobileRd_STFF_Ni	Retardation factor for Ni in matrix during matrix diffusion	constant	216.0	Same as ImmobileRd_STFF_C	DP	SZFT	1451	Bertetti	990	Use U0100 (2001) values for devitrified tuff in SZ. Mean value is 0.1 m3/kg. Maintain constant. Conversion using 9880 factor gives Rf of 988. Rounded to 990.	Ni does not appear in recent DOE models. U0100 has Kd values of 0 to 0.05 for vitric, and 0 to 0.2 for devitrified/zeol (m3/kg). For STFF, devitrified is reasonable. Rfs would be 1 to 1.98e3, (uniform ditribution). (assuming rho=1976 and porosity=0.2).	
mmobileRd_STFF_Se	Retardation factor for Se in matrix during matrix diffusion	constant	65.0	Same as ImmobileRd_STFF_C	DP	SZFT	1453	Bertetti	2	Se has low Rf. Use U0100 (2001) values for Se Kd on devitrified tuff in SZ. Expected value from beta distribution is 0.0001 m3/kg. Conversion using 9880 factor gives Rf of 0.988 + 1 (need to add 1 in this	Like Ni and Pb, Se does not appear in recent DOE SZ models. Using U0100 from 2001, Se values in the SZ range from 0 to 0.001 m3/kg (beta exp distribution, expected value=0.0001 and stdev=0.0001). Rfs would be 1 to 9.88, beta exponential, expected value 0.988, stdev=0.988.	

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	d New Value	Notes	Comments	
ImmobileRd_STFF_Nb	Retardation factor for NE in matrix during matrix diffusion	constant	2160.0	Same as ImmobileRd_STFF_C	DP	SZFT	1454	Bertetti	10400	Using analog with Am3+. Maintain as constant. Mean value used. Use U0100 (2001) and RT Ambient AMR (2003) distribution for devitrified tuff in UZ because differences in SZFT (2003) distributions STFF and UZ layers for Am not well justified. Devirtified distribution 0.1 to 2.1 uniform, mean=1.05. Conversion using 9800 factor rives Rf of 10374.	Can use Am values based on analogy (see Column E). Current DOE values for SZ STFF for Am are 1.0 to 10.0 with truncated normal distribution (mean=5.5, stdev=1.5) in m3/kg (SZFT 2003). UZ values (RT Ambient AMR 2003) are order of magnitude lower with cumulative distribution 0.10=0%, 0.40=50%, 1.0=100%. Numbers are supposedly based on same source material (attachment I analysis). Current NRC TPA range is more similar to hidber DOE range Assuming	
SZFractureForceFactorForkdToRd	SZFFFFKTR=0 >Rd=1., else	constant	0.0	Program control switch to investigate retardation effects	DT	SZFT	1401	Bertetti	no change		indre sinniar to higher DOL range. Assuming	
FractureRD_STFF_I	Fracture retardation coefficient of tuff for I	constant	1.0		DT	SZFT	1409	Bertetti	no change		Assume no retardation in fractures for UZ and SZ.	
AlluviumMatrixRD_SAV_I	Alluvium retardation coefficient for I (SZ)	constant	1.0	Consistent with low Kd values (Kd,I = 1) for different soil types (Sheppard and Thibault, 1990); see	DT	SZFT	1410	Bertetti	no change		Experimental evidence (DOE) using I and alluvium shows that sorption not significantly different than zero (e.g. SZET AMB 2003). No retardation	
FractureRD_STFF_Tc	Fracture retardation coefficient of tuff for Tc	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1411	Bertetti	no change		Assume no retardation in fractures for UZ and SZ. All layers all nuclides	
AlluviumMatrixRD_SAV_ Tc	Alluvium retardation coefficient for Tc (SZ)	constant	1.0	Assumed bounding value for transport fo anionic species (TcO4-) in oxidizing environment. Consistent with low kd vlues (kd,Tc = 0.1) reported in Sheppard	т	SZFT	1412	Bertetti	no change	7	Conservative assumption of Kd=zero. Confirmed by DOE and CNWRA experimental results.	
FractureRD_STFF_CI	Fracture retardation coefficient of tuff for CI	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1413	Bertetti	no change		Assume no retardation in fractures for UZ and SZ. All layers, all nuclides.	
AlluviumMatrixRD_SAV_ CI	Alluvium retardation coefficient for CI (SZ)	constant	1.0	Same as AlluviumMatrixRD_SAV_C	DT	SZFT	1414	Bertetti	no change		Field evidence indicates CI behaves conservatively (chemically) in the SZ. No retardation.	
FractureRD_STFF_Cm	Fracture retardation coefficient of tuff for Cm	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1415	Bertetti	no change		Assume no retardation in fractures for UZ and SZ. All layers, all nuclides.	
AlluviumMatrixRD_SAV_ Cm	Alluvium retardation coefficient for Cm (SZ)	constant	7.5e4	Assumed equal to the lower bound for the Am alluvium Rd. Value based on analogy between trivalent species Cm3+ and Am3+. The lower bound for Am does not represent uncertainty but is likely to be a conservative bound [ALOG]	DT	SZFT	1416	Bertetti	35800	Use SZFT (2003) values for alluvium. Keep as constant. Mean of 5.5 m3/kg converts to Rf of 35750 using factor of 6500. Rounded to 35800.	Can use Am values based on analogy of trivalent species. Current DOE values for SZ alluvium for Am are 1.0 to 10.0 with truncated normal distribution (mean=5.5, stdev=1.5) in m3/kg (SZFT 2003). UZ values (RT Ambient AMR 2003) are order of magnitude lower wit cumulative distribution 0.10=0%, 0.40=50%, 1.0=100%. Numbers are supposedly based on same source material (attachment I analysis). Current NRC TPA range is	Recall alluvium porosity ranges from 0.15 to 0.30 and alluvium grain density is about 2520 kg/m3. To calculate Rf from Kd one should use bulk density and porosity. Bulk density would range from about 1764 to 2142 with an average about 1950. Porosity would be conservatively set at 0.30, giving a factor of 6500 for conversion from kd in m3/kg to Rf (ignoring addition of a constant of 1 for large values).
FractureRD_STFF_Ra	Fracture retardation coefficient of tuff for Ra	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1417	Bertetti	no change		Assume no retardation in fractures for UZ and SZ. All lavers, all nuclides.	
AlluviumMatrixRD_SAV_ Ra	Alluvium retardation coefficient for Ra (SZ)	loguniform	2.0e3, 8.0e3	Same as AlluviumMatrixRD_SAV_Nb	DT	SZFT	1418	Bertetti	3580	Use SZFT (2003) values for alluvium. Convert to constant expected value. Mean is 0.55 m3/kg, which converts to Rf of 3575 using factor of 6500. Rounded to 3580.	DRT recommends use of current DOE values. U0100 (2001) has range 0.1 to 0.5 uniform. Site- scale SZ transport AMR (2003) has 0.1 to 1 m3/kg, uniform (equivalent to 6.5e2 to 6.5e3 for retardation factor assuming rho=1950 and porosity=0.3. Note thatDOE Ra Kds in UZ and SZ are different, not sure	
FractureRD_STFF_Pb	Fracture retardation coefficient of tuff for Pb	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1419	Bertetti	no change		Assume no retardation in fractures for UZ and SZ. All layers, all nuclides.	
AlluviumMatrixRD_SAV_ Pb	Alluvium retardation coefficient for Pb (SZ)	loguniform	2.0e3, 8.0e3	Same as AlluviumMatrixRD_SAV_Nb	DT	SZFT	1420	Bertetti	1950	Use U0100 (2001) values for devitrified tuff in SZ. Convert to constant expected value. Mean is 0.3 m3/kg, which converts to Rf of	DOE does not have Pb values in recent AMRs. U0100 values from 2001 show Pb Kds in SZ ranging from 0.1 to 0.5 m3/kg, uniform. That would correspond to 650 to 3250 for Rf assuming	
FractureRD_STFF_Cs	Fracture retardation coefficient of tuff for Cs	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1421	Bertetti	no change	1 and " And a state in the last "Probability" and a state in the last "Probability" in the last state of the last sta	Assume no retardation in fractures for UZ and SZ. All layers, all nuclides.	
AlluviumMatrixRD_SAV_ Cs	Alluvium retardation coefficient for Cs (SZ)	loguniform	200.0, 2000.0		DT	SZFT	1422	Bertetti	4730	Convert to constant. Use values from SZFT (2003) for alluvium. Mean value is 0.728 m3/kg (from a truncated normal, not uniform). Conversion using 6500 factor gives Rf of 4732. Rounded to 4730.	DOE has all kinds of Cs Kds for SZ and UZ. Currently for the alluvium (SZFT 2003) DPE has 0.1 to 1.0 m3/kg, truncated normal with mean=0.728 and stdev=0.464 m3/kg. That corresponds to Rfs of 6.5e2 to 6.5e3 with mean approx. 4.73e3 and stdev approx 3e3. (using rho=1950 and porosity=0.30)	
FractureRD_STFF_Ni	Fracture retardation coefficient of tuff for Ni	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1423	Bertetti	no change		Assume no retardation in fractures for UZ and SZ. All layers, all nuclides.	1

Name	Description	PDF Type	Value(s)	Comments	CNWRA	TPA	Order for TPA.INP	Recommended	New	Notes	Comments
					Contact	Section		Contact	Value		
AlluviumMatrixRD_SAV_ Ni	Alluvium retardation coefficient for Ni (SZ)	beta	1.0, 4000.0, 6.502, 19.525	Data from Triay et al. (1997); justification for PDF in DOE/NRC agreement RT-2.10 [OBS, EXP]	DT	SZFT	1424	Bertetti	650	Convert to constant. Use values from U0100 (2001) for devitrified tuff in the SZ. Mean is 0.1 m3/kg which converst to Rf of 650 using 6500 factor. No rounding.	DOE does not have Ni values in recent AMRs. U0100 values from 2001 show Ni Kds in the SZ ranging from 0 to 0.05 m3/kg for vitric and 0 to 0.2 for devit/zeol (uniform distribution). Again, we assume devitrified tuff similar to alluvium and STFF, giving an Rf range of 1 to 1300 using tho-1950 and
FractureRD_STFF_C	Fracture retardation coefficient of tuff for C	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1425	Bertetti	no change		Assume no retardation in fractures for UZ and SZ. All layers, all nuclides.
AlluviumMatrixRD_SAV_ C	Alluvium retardation coefficient for C (SZ)	constant	1.0	Assumed no fracture retardation of anionic species (CI-, HCO3-, CO32-) which is consistent with the low Kd reported for carbon in Sheppard and Thibault(1990). The CI value is	DT	SZFT	1426	Bertetti	no change		Assume no retardation for C in UZ or SZ. C is subject to more exchange and sorption reactions than other anions (such as Tc) but assumption is conservative.
FractureRD_STFF_Se	Fracture retardation coefficient of tuff for Se	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1427	Bertetti	no change		Assume no retardation in fractures for UZ and SZ. All layers, all nuclides.
AlluviumMatrixRD_SAV_ Se	Alluvium retardation coefficient for Se (SZ)	beta	1.0, 300.0, 1.618, 10.79	Same as AlluviumMatrixRD_SAV_Ni	DT	SZFT	1428	Bertetti	2	Convert to constant. Se has low Rf. Use U0100 (2001) values for Se Kd on devitrified tuff in SZ. Expected value from beta distribution is 0.0001 m3/kg. Conversion using 6500 factor gives Rf of 0.65 + 1 (need to add 1 in this case because Rf is low. Note that	Like Ni and Pb, Se does not appear in recent DOE SZ models. Using U0100 from 2001, Se values in the SZ range from 0 to 0.001 m3/kg (beta exp distribution, expected value=0.0001 and stdev=0.0001). Rfs would be 1 to 6.5, beta exponential, expected value 0.65, stdev=0.65.
FractureRD_STFF_Nb	Fracture retardation coefficient of tuff for Nb	constant	1.0	Same as FractureRD_STFF_Am	DT	SZFT	1429	Bertetti	no change		Assume no retardation in fractures for UZ and SZ. All layers, all nuclides.
AlluviumMatrixRD_SAV_ Nb	Alluvium retardation coefficient for Nb (SZ)	loguniform	2.0e3, 3.0e4	Data from Triay et al. (1997); uses more conservative PDFdocumented in DOE/NRC agreement RT-2.10 [OBS, EXP]	DT	SZFT	1430	Bertetti	35800	Use SZFT (2003) values for alluvium. Convert to constant. Mean of 5.5 m3/kg converts to Rf of 35750 using factor of 6500. Rounded to 35800.	Can use Am values based on analogy of trivalent species. Current DOE values for SZ alluvium for Am are 1.0 to 10.0 with truncated normal distribution (mean=5.5, stdev=1.5) in m3/kg (SZFT 2003). UZ values (RT Ambient AMR 2003) are order of magnitude lower wit cumulative distribution 0.10=0%, 0.40=50%, 1.0=100%. Numbers are supposedly based on same source material (attachment I analysis). Current NRC TPA range is
ImmobilePorosityPenetrat ionFraction_STFF	Effective fraction of saturated rock matrix accessible to matrix diffusion during the time scale for transport from source to receptor, used to calculate effective immobile porosity and the matrix diffusion mass	loguniform	0.01, 0.1	Distribution based on CNWRA best estimates (see Mohanty et al. 2000, Chapter 10) [OBS]	λM	SZFT	1402				, , , , , , , , , , , , , , , , , , ,
MixingZoneDispersionFra ction	Dispersion fraction of the mixing zone (SZ) - longitudinal dispersion specified as a fraction of the path length	constant	0.01	Constant used as uncertainty effects are expected to be larger for effective porosity and groundwater flux. CNWRA best estimate and assumed to be conservative;	JW	SZFT	1404				Ē
DispersionFraction_STFF	Dispersion fraction of tuff (SZ) - longitudinal dispersion specified as a fraction of the path	constant	0.1	Same as MixingZoneDispersionFraction	JW	SZFT	1405				
DispersionFraction_SAV	Dispersion fraction of Amargosa Valley (SZ) - longitudinal dispersion specified as a fraction of the path length	constant	0.1	Data taken from de Marsily (1986) citing work of Lallemand-Barrés and Peaudcerf (1978)	JW	SZFT	1406				
FracturePorosity_STFF	Effective fracture porosity of the saturated tuff (i.e. volume fraction through which the bulk of flow occurs)	loguniform	1.0e-3, 1.0e-2	Based on CNWRA best estimates (see CNWRA Letter from Farrell et al. (2000) and Mohanty et al. (2000, Chapter 10)) [EXP]	лм	SZFT	1437				

3 of 33

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
AlluviumMatrixGrainDensi ty_SAV[kg/m3]		constant	2650.0	Constant specified because the range of feasible values and there effects are small; value is consistent with typical bulk densities which are not that variable in nature [EXP, ALOG, REL]	λ.	SZFT	1439	Bertetti	2520.0	DOE measures average grain density for alluvium as 2520 kg/m3 (SZFT AMR 2003). Variation is small: 2490 to 2550. Recommend changing to constant of 2520 kg/m3.	Matrix grain densities used to calculate Rd from Kds for all layers, and with exception of alluvium, used for SA calculation as well. Because of the way Kd and Rd are calculated, these densities algebraically cancel out for all layers except alluvium. DOE measures average grain density for alluvium as 2520 kg/m3 (SZFT AMR 2003). Variation is small: 2490 to 2550. Recommend chaption to constant of
ImmobileRd_STFF_C	Retardation factor for C in matrix during matrix diffusion	constant	0.0	Reversible not used any more; data from Triay et al. (19970	JW	SZFT	1452	Bertetti	no change		Assume no retardation for C in UZ or SZ. C is subject to more exchange and sorption reactions than other anions (such as Tc) but assumption is
ImmobileGrainDensity_S TFF[kg/m3]		constant	2470.0	Constant value because the parameter value is well known and has a very small range (Freeze and Cherry, 1979).	JM.	SZFT	1455	Bertetti	no change		Grain density values cancel out during internal TPA calculations (see alluvium density discussion). Also, bulk density should be used for SA calculations. Recent DDE data (SZFT AMR 2003) indicate that avergae grain density of layers that would make up STFF are not significantly different from 2470 kg/m3 to warrant a change. DOE mean is 2420 kg/m3 (bulk
ImmobilePorosity_STFF	Matrix porosity in saturated tuff	constant	0.2	CNWRA best estimate, considering uncertainty in pore velocity and effective diffusion rates (see Chapter 10 of Mohanty et al. 2000). Constant value based on the observation that performance is not	JW	SZFT	1456		no change		Average matrix porosity used by DOE in SZFT AMR 2003 is 0.22. A small range is evident but not likely to have significant effects as noted by JW previously.
ImmobilePoreRadius_ST		constant	5.0e-8	No information	JM	SZFT	1457	Bertetti	no change	Constant (1994)	same discussion as for BFw and UZFT units
DiffusionRate_STFF	Effective diffusion	uniform	1.0e-4,	Diffusion coefficient reported for	JW	SZFT	1458			na an ann an Aonaichtean a	
DistanceToTuffAlluviumIn terface[km]	Distance to tuff alluvium interface	uniform	12.0, 17.0	Data and rational draws from site characterization studies by Sims et al. (1999) and Winterle (2002) Maximum limit of 17.0 to	JW	SZFT	1459				
StreamTubeWidthMultipli er[]	accounts for uncertainties in groundwater flux and	uniform	0.5, 2.0	Best estimate based on experience from groundwater flow modeling; accounts for uncertainties in	JW	SZFT	1460				
SZFluxMultiplierAtGlacial	None	constant	1.0	No information	JW	SZFT	1462				
AlluviumTotalPorosity_SA V	Used for calculating retardation factor for radionuclides in the saturated alluvium layer.	uniform	0.15, 0.3	Range based on measured values from Fortymile Wash.	РВ	SZFT	1441		no change		Range based on data from a number of sources DOE, NYE and CNWRA. Additonal documentation required but no value change need at this time.
AlluviumMatrixSpecificSur faceArea	Used for calculating retardation factor for radionuclides in the saturated alluvium layer.	uniform	1.9e3, 1.21e4	Range based on sonic core samples from Fortymile Wash.	РВ	SZFT	1442		0.9e3 to 3.1e3, uniform		Previous range based on analysis of surface area data from Fortymile Wash wells (Bertetti et al 2004) and used mesopore and micropore analysis (BET method) to attempt to differentiate between clay and non-caly mineral contribution. Subsequent statistical analyses and experimental eveidence suggests 10% effective range should be applied with little or no contribution form other minerals. New range
AlluviumMatrixPoreRadiu s_SAV[m]		constant	5.0e-8	No information	PB	SZFT	1443	77 8 8	remove		Obsolete parameter, replaced by Alluvium Matrix Specific Surface Area
FractureAperture_STFF[m]		constant	1.0e-4	n an	RF	SZFT	1438	Bertetti	no change		Should remain consistent with values used for equivalent layers in UZET
MinimumResidenceTime_ STFF[yr]	Minimum residence time in tuff (SZ) (yr)	constant	10.0	Value selected for code efficiency reasons. Underlying model is very sensitive to coutiguous leg velocity	RWJ	SZFT	1407				
MinimumResidenceTime_ SAV[yr]	Minimum residence time in alluvium (SZ) (yr)	constant	100.0	Value selected for code efficiency reasons [EXP]	RWJ	SZFT	1408				
SaturatedZoneMinimumV elocityChangeFactor[Frac tion]	control 3 of entries for nevtran velocity file for saturated zone	constant	0.1	Value selected for code efficiency reasons. Model very sensitive to contiguous time step velocity ratios	RWJ	SZFT	1461	Pirthe Prince and Planes in			
SurfaceAreaFactor_SAV	None	constant	590.0	No information	SP	SZFT	1431				
SurfaceAreaFactor_STFF	None	constant	590.0	No information	SP	SZFT	1432		· · · · · · · · · · · ·		

Name	Description	PDF Type	Value(s)	Comments	CNWRA	TPA Section	Order for TPA.INP	Recommended	i New Value	Notes	Comments
ColloidRetardationEactor		usersupplied	20 1 0	Rost available information from ANI	SP	CTET	<u> </u>	Utiliaci	Value		
SAV [m3/ka]		pwisecdf	0.0.101	NBS-HS-000031 Rev 1. Table 8.	-]5'	5211					
			0.01. 1.5	Linearly interpolated in Log space							
			0.07, 2.0	, between tabulated values.		· ·					
			0.12, 4.0					· ·			
			0.22, 6.0							· · · ·	
· · ·			0.29, 8.0	t,				[
			0.33,								
		1	14.4, 0.4,	,							
			22.14,				1433			· ·	
		·	10.45,								
			154.0, 0.5,								
	• •		0.55								
			92 85								
		1	0.6.								
			153.5,								
			0.65,					-			
			253.9,								
			0.7,								· ·
ColloidRetardationFactor	•	usersupplied	15 1.0,	Best available information from ANI	LISP	SZFT			~		
_STFF[m3/kg]		pwisecdf	0.0, 1.01	NBS-HS-000031 Rev 1, Table 7.							
			0.01, 1.5	, Linearly interpolated in Log space							
			0.04, 2.0	, between tabulated values							•
			0.00, 4.0	· · · · · · · · · · · · · · · · · · ·			· ·	· .			•
			0.12, 0.0	2							
			10.23				1434				
			0.25,	*							
			14.86,								
			0.35,		· · ·	·		· .			
			26.0, 0.5,							· · · ·	and the second s
			34.35,								-
			0.6,								
0.11.110			45.39,			0	ļ			•	
ColloidConcentration_SA		usersupplied	116 1.0e	- see SCR #484 for description and	58	SZFI					
v_[kg/iii3]		pwisecui	2,510,6	references							
			0.1		. ·						
			6.31e-6.								
			0.2.	1				· .			
			1.58e-5,	1							
			0.3,				1425				
	· · ·	· .	3.98e-5,				1435				· ·
			0.4 1.0e	-							
			4, 0.5,								
			2.51e-4,			.				1	· · ·
			0.6,			1					
			b.31e-4,				· ·]			
			3 0 75	5		1		1			
			13. 0.73.	1							1

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	TPA.INP	Recommended Contact	New Value	Notes	Comments
ColloidConcentration_ST		usersupplied	16 1.0e- 6.0.0.	871	SP	SZFT					
[]			2.51e-6,		•						
			0.1,								
			0.2.								· · · · · ·
			1.58e-5,								
			0.3,				1436				
ļ			3.98e-5,								
1			4. 0.5.								
			2.51e-4,				· ·				
			0.6,								
			6.31e-4,	· · ·							
			3, 0.75,								
racturesPerMeter_STFF	Effective spacing	constant	0.05	CNWRA current best estimate,	тм	SZFT					
1/m]	between transmissive			based on assumed transmissive							
	used to calculate the			Winterle et al. 2000) [EXP]			1403				
	matrix diffusion mass-										· ·
	transfer rate coefficient				·						
* SZFT		loopstant	1 .	Program control writch: for value-1			1400				
ZFLOWSamplewoue	method for estimating	Constant	l'	the mean values of net infiltration		W					
	net infiltration using data			from maydtbl.dat, when aggegated							
	from maydtbl.dat or			for each subarea, are scaled to the							· ·
	smaydtbl.dat.			sampled value for		1					
				AtStart[mm/yr]. For value=2, the							
realAverageMeanAnnua	Aerially averaged mean	uniform	4.0, 13.0	Based on best estimate by USFIC	RF	UZFLO					•
nfiltrationAtStart[mm/yr]	annual infiltration			staff (EXP) from documentation in		W .	102				
.)	(modem) climate for the			Winterie et al. (1999a,D)		ì					
JZFLOWHydraulicProper	None	normal	-3.0857,	No information	RF	UZFLO	103				
/UncertaintyDeviation[N(3.0857			W					
,1)] AeanAnnualPrecipitation	Mean annual	uniform	20.30	Based on studies of the LISEIC	RF	UIZELO	· · · ·	-	· .		· · · · · · · · · · · · · · · · · · ·
IultiplierAtGlacialMaximu	precipitation multiplier at	unionn .	2.0, 0.0	(OBS, ALOG) documented in NRC		W					
n .	glacial maximum			(1997, 1999). Revisions (possibly			104				
				including correlations with							
leanAnnualTemperaturel	Mean average	uniform	-10 0	Based on studies of the USFIC	RF	UZFLO				· · · · · · · · · · · · · · · · · · ·	
creaseAtGlacialMaximu	temperature (MAT)		5.0	(OBS, ALOG) documented in NRC		w					· ,
n[degC]	increase at glacial			(1997). Revisions (possibly			105				
	maximum (oC)			including correlations with							
nnualInfiltrationLossMod	Flag that allows	iconstant	1	Program control parameter used to	RF	UZFLO					
(0=Loss,1=LossCalculat	UZFLOW net infiltration			allow net infiltration barrier to be	· ·	w					
d)	module to be bypassed			bypassed for importance analysis.			106				
	be used as percolation			subarea as an estimate of					· .		
	rate.			percolation. Value of 1 passes the							
imeStepForClimate[yr]	Time step used in the	constant	500.0	Based on USFIC staff expert	RF	UZFLO	107				
	climate model			Judgement for use of 500-yr climate		W					
		, i		function in climato2.dat for creating							· ·
			ŀ	input to net infiltration, also factors							• •
				in efficiency of the TPA Version 4.0						· ·	
				coue. Used in conjunction with climato2 dat: constant value is							

6 of 33

					CNWRA	TPA ·	Order for	Recommended	New	Notes	Comments
Name	Description	PDF Type	Value(s)	Comments	Contact	Section	TPA.INP	Contact	Value		
	Standard doviation of	constant	0.0	Artificial value that eliminates	DE		108			n	
hout MeaninOne Time Per	Standaru Geviation or	COnstant	0.0	variations in the mean annual	RF	W	100			· .	
od[mm/vr]	precipitation about mean		·	precipitation and hence removes		**					
ooluumaal	in one time neriod			the effect of this parameter and							
	(mm/vr)			mean annual temperature based on			¢				
				USEIC expert judgement that							
StandardDeviationOfMAT	Standard deviation of	constant	0.0	Artificial value that eliminates	RF	UZFLO	109				
boutMeanInOneTimePer	mean annual			variations in the mean annual		w					
od[deaC]	temperature about mean			temperature, and hence removes							
	in one time period (oC)		ļ	the effect of this parameter and							
				mean annual temperature, based on							
				USFIC expert judgement that							
CorrelationBetweenMAP	Correlation between	constant	-0.8	Parameter effectively not used	RF	UZFLO					
AndMAT	MAP and MAT			because MAP and MAT are both		w				-	
				constant; however the value is a			110				
				best estimate of the UFIC team						•	
				(EXP) drawing from climate expert							
ClimatePerturbationSet	Value identifies portion	iconstant	1	Program control parameter used to	RF	UZFLO					
	of climato1.dat file to			specify which part of climato1.dat is		w	111				
	use			to be used for climate perturbations			100				
			5.0- 0	Sama aa	00		100	14-14			
		constant	5.0e-8	Same as	00		1196	мсмипу	no change		I SW values consistent with median of 5 e-8.
III IntrivPoroPadius, CHavl	same description as	constant	5 00 8	Samo as	00			MoMum	no obango		Median value aleger to 4.5 o 7 for CHev
	MatrixPoroPadiue	constant	5.0e-o	Matrix Para Padius REw [m]	. 00		1197	weiwurry	no change		Mediali value closer to 4.5 e-7 for CHIV.
ul MatrixPoreRadius CHoz(same description as	constant	5 00-8	Same as	חח	LIZET		McMurp	no change		Median value about 5 e-8 for CHz, but a much
ni	MatrixPoreRadius TSw	constant	0.00-0	MatrixPoreRadius BEw [m]	00	0211	1198	wicividity.	no change		broader distribution than TSw
MatrixPoreRadius PPw (same description as	constant	5 0e-8	Same as	סס	UZET		McMurry	no change		Some units have 96% nores less than 5 e-8 while
nl	MatrixPoreRadius TSw			MatrixPoreRadius BFw [m]		5 2. ,	1199	lineinany	ne enange		others have only 16% nores less than 5 e-8
	[m]										Average for PPw is 53% less than 5 e-8.
MatrixPoreRadius UCF [same description as	constant	5.0e-8	Same as	DD	UZFT		McMurry	no change		No DOE information on UCF assume same as for
n]	MatrixPoreRadius TSw			MatrixPoreRadius BFw [m]			1200	,	Ĵ		BFw
MatrixPoreRadius_BFw_[same description as	constant	5.0e-8	Based on moisture retention curves	DD	UZFT		McMurry	no change.		Pore radius is used along with porosity and density
n]	MatrixPoreRadius_TSw			used by DOE; consistent with TPA				·			to calculate surface area for each hydrostratigraphic
	_[m]			model where sorption occurs only in						-	layer. Review of the Particle Tracking AMRs (2000
				matrix. Previous value (5E-8) '			1201				and 2004) show a more complex distribution of pore
				based on work by Travis and Nuttall			1201				sizes but a general agreement with the 5e-8 m
				(1987) should be updated to inlucde							value. To minmize surface area uncertainties the 5 e
				the pore size distribution in CRWMS							8 value should be retained until addtiional analyses
				M&O (2000) [OBS]							can be completed. Example distributions are
MatrixPoreRadius_UFZ_[same description as	constant	5.0e-8	Same as	DD	UZFT	1202	McMurry	no change		No information about this unit.
n]	MatrixPoreRadius_TSw			MatrixPoreRadius_BFw_[m]							
PermanentLossColloidFilt	Fraction of irreversible	constant	0.65	Same as	DP	UZFT					
en-actor_ISw_[]	colloids permamently			PermanentLossColloidFilterFactor_			1084				
	removed when mathx			BFW_[]			~				
Composet accColloidEilt	now occurs in the	constant	0.5	Samo aa	D D	11767					
Fermanenicossconolurni		CUIISIAIIE	0.5	Dormanonti ossColloidEiltorEactor	UP		1085				
Permanenti ossColloidEilt		constant	0.57	Same as	DP.	LIZET					
Factor CHnzII		constant	0.57	Permanenti ossColloidEilterEactor		0211	1086				
Permanentl ossColloidFilt		constant	0.19	Same as	DP	UZET					
erFactor PPw II		oonotant	0.10	Permanenti ossColloidEilterEactor	5,		1087				
PermanentLossColloidFilt		constant	0.25	Same as	DP	UZFT					
erFactor UCF II				PermanentLossColloidFilterFactor			1088				
PermanentLossColloidFilt		constant	0.18	Data derivation given in Notebook	DP	UZFT				•	
erFactor BFw []				133, pp. 67-70 (D. Pickett).			1089				
·				Uncertainties are very difficult to							
PermanentLossColloidFilt		constant	0.0	Same as	DP	UZFT	1000				
erFactor_UFZ_[]				PermanentLossColloidFilterFactor			1090				
JZFractureForceFactorFo	UZFFFFKTR=0	constant	0.0 ·	Program control switch used to	DT	UZFT	1004				
KdtoRd	>Rd=1., else			investigate retardation effects			1004				
MatrixKD_TSw_I[m3/kg]	Matrix Kd of I for	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1007	McMurry	no change		No significant retardation for I in UZ or SZ.
	Topopah Spring-		I				1007				•

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments	
MatrixKD_CHnvI[m3/kg]	Matrix Kd of I for Calico Hills—nonwelded vitric [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1008	McMurry	no change		No significant retardation for I in UZ or SZ.	
MatrixKD_CHnzI[m3/kg]	Matrix Kd of I for Calico Hills—nonwelded zeolitic [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1009	McMurry	no change		No significant retardation for I in UZ or SZ.	
MatrixKD_PPw_I[m3/kg]	Matrix Kd of I for Prow Pass-welded[m3/kg]	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1010	McMurry	no change		No significant retardation for I in UZ or SZ.	
MatrixKD_UCF_I[m3/kg]	Matrix Kd of I for Upper Crater Flat[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1 <mark>0</mark> 11	McMurry	no change		No significant retardation for I in UZ or SZ.	
MatrixKD_BFw_I[m3/kg]	Matrix Kd of I for Bullfrog—welded [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1012	McMurry	no change		No significant retardation for I in UZ or SZ.	
MatrixKD_UFZ_I[m3/kg]	Matrix Kd of I for Unsaturated Fracture Zone[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1013	McMurry	no change		No significant retardation for I in UZ or SZ.	
MatrixKD_TSw_Tc[m3/kg]	Matrix Kd of Tc for Topopah Spring-	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1014	McMurry	no change		Assume no retardation for Tc in the UZ and SZ. Consistent with experimental evidence.	
MatrixKD_CHnvTc[m3/kg]	Matrix Kd of Tc for Calico Hills—nonwelded vitric [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1015	McMurry	no change		Assume no retardation for Tc in the UZ and SZ. Consistent with expeirmental evidence.	
MatrixKD_CHnzTc[m3/kg]	Matrix Kd of Tc for Calico Hills—nonwelded zeolitic [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1016	McMurry	no change		Assume no retardation for Tc in the UZ and SZ. Consistent with expeirmental evidence.	
MatrixKD_PPw_Tc[m3/kg]	Matrix Kd of Tc for Prow Pass-welded[m3/kg]	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1017	McMurry	no change		Assume no retardation for Tc in the UZ and SZ. Consistent with experimental evidence.	
MatrixKD_UCF_Tc[m3/kg	Matrix Kd of Tc for Upper Crater Flat[m3/kg	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1018	McMurry	no change		Assume no retardation for Tc in the UZ and SZ.	
MatrixKD_BFw_Tc[m3/kg]	Matrix Kd of Tc for Bullfrog—welded [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1019	McMurry	no change	an a ann an ann an an far far far an an Angala ann an A	Assume no retardation for Tc in the UZ and SZ. Consistent with experimental evidence.	
MatrixKD_UFZ_Tc[m3/kg]	Matrix Kd of Tc for Unsaturated Fracture Zone[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1020	McMurry	no change		Assume no retardation for Tc in the UZ and SZ. Consistent with expeirmental evidence.	
MatrixKD_TSw_CI[m3/kg]	Matrix Kd of Cl for Topopah Spring-	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1021	McMurry	no change		CI behaves conservatively in UZ and SZ. Consistent with geochemical field evidence.	
MatrixKD_CHnvCl[m3/kg]	Matrix Kd of CI for Calico Hills—nonwelded vitric [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1022	McMurry	no change		CI behaves conservatively in UZ and SZ. Consistent with geochemical field evidence.	
MatrixKD_CHnzCl[m3/kg]	Matrix Kd of Cl for Calico Hills—nonwelded zeolitic [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1023	McMurry	no change		CI behaves conservatively in UZ and SZ. Consistent with geochemical field evidence.	
MatrixKD_PPw_Cl[m3/kg]	Matrix Kd of Cl for Prow Pass-welded[m3/kg]	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1024	McMurry	no change		CI behaves conservatively in UZ and SZ. Consistent with geochemical field evidence.	
MatrixKD_UCF_CI[m3/kg]	Matrix Kd of CI for Upper Crater Flat[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1025	McMurry	no change		CI behaves conservatively in UZ and SZ. Consistent with geochemical field evidence.	
MatrixKD_BFw_CI[m3/kg]	Matrix Kd of CI for Bullfrog—welded [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1026	McMurry	no change		CI behaves conservatively in UZ and SZ. Consistent with geochemical field evidence.	
MatrixKD_UFZ_CI[m3/kg]	Matrix Kd of CI for Unsaturated Fracture Zone[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1027	McMurry	no change		CI behaves conservatively in UZ and SZ. Consistent with geochemical field evidence.	
MatrixKD_TSw_Cm[m3/k g]	Matrix Kd of Cm for Topopah Spring- welded[m3/kg] (UZ)	constant	0.0	Use analogy with Am?	DT	UZFT	1028	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the units that make up the TSw are nearly vitric in nature in the UZ. Thus vitric DOE values are used. Using the trivalent analogy Am Kds are substituted for Cm. The RT Models Under Ambient AMR 2003 has vitric Am Kds of 0.1 to 1.0 m3/kg in a piecewise distribution, with 0.1=0%, 0.4=50%, and 1.0=100%. This has a slightly lower mean than the 0.1 to 1.0 uniform distribution used for zeolitic layers.	DRT recommends using DOE values for various nuclides not considered in the actinide SCM model. DOE provides values for vitric, devitrified, and zeolitic rocks, and SZ/UZ values (that may differ for the same nuclide). So the first effort is to determine which units are vitric, devitrified, or zeolitic. Based on review of AMRs this distinction is not readily traceable (each cell has a value from the mineral model, it appears). Based on my review of the Mineral model AMR, I have designated a rock type for each layer here. If you disagree, change it , justify it, and let us know.

Name	Description	PDF Type	Value(s)	Comments	CNWRA	TPA	Order for TPA.INP	Recommended	New	Notes	Comments
					Contact	Section		Contact	value		
MatrixKD_CHnvCm[m3/k g]	Matrix Kd of Cm for Calico Hills—nonwelded vitric [m3/kg] (UZ)	constant	0.0	Use analogy with Am?	DT	UZFT	1000	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the CH non-welded vitric has vitric layer properties with respect to sorption. Using the trivalent analogy Am Kds are substituted for Cm.
				1			1029				The RT Models Under Ambient AMR 2003 has vitric Am Kds of 0.1 to 1.0 m3/kg in a piecewise distribution, with 0.1=0%, 0.4=50%, and 1.0=100%.
MatrixKD CHarCon[m2/k	Matrix Kd of Cm for	constant	0.0	Lice analogy with Am2	DT	LIZET		Mahlum			I his has a slightly lower mean than the 0.1 to 1.0
	Calica Hillo papuraldad	constant	0.0	Use analogy with Am?	וט	UZFI		MCMUITY			Based on review of Mineralogical Model AMR
91	zeolitic [m3/ka] (117)						1030				(MMS.0), the CH non-weided Zeoliuc has zeoliuc
							1030				analogy Am Kds are substituted for Cm. The
											PTAmbient AMP 2003 bas zeolitic Kds for Am
MatrixKD PPw Cm[m3/k	Matrix Kd of Cm for	constant	0.0	Lise analogy with Am2	пт	LIZET		McMurn	and the second second		R TAILDIELL AWR 2003 Has 2001 LC Rds IOT AIL
	Prow Pass-	Constant	0.0	Use analogy with All			- 21	INICIVITIITY			(MM3.0) the Prov Pass units have both zeolitic and
a1	welded[m3/ka] (117)										(WW0.0), the Flow Fass units have both zeolitic and
	weided[iiio/kg] (02)										contion values exists between these two rock types
						1.12	1031				the lower range will be used arbitrarily. Using the
											trivalent analogy Am Kds are substituted for Cm
											The RTAmbient AMR 2003 has zeolitic Kds for Am
											ranging from 0.1 to 1.0 m3/kg uniform Kds for devit
MatrixKD UCF Cm/m3/k	Matrix Kd of Cm for	constant	0.0	Use analogy with Am?	DT	UZFT	a the particular sector of	McMurry			Based on review of Mineralogical Model AMR
a]	Upper Crater Flat[m3/kg]				-						(MM3.0), UCF is not listed. It may be assumed that
31	(UZ)										undifferentiated Crater Flat tuff would have
	/										characteristics of Prow Pass, Bullfrog, and Tram
											Tuffs, which are dominated by devitrified units but
							1032				have zeolitic and vitric subunits as well. As before
											for PPw and BFw, the lower of Kd ranges for zeolitic
											and devitrified rock type will be used for UCF. Using
											the trivalent analogy Am Kds are substituted for Cm.
											The RTAmbient AMR 2003 has zeolitic Kds for Am
MatrixKD_BFw_Cm[m3/k	Matrix Kd of Cm for	constant	0.0	Use analogy with Am?	DT	UZFT		McMurry			Based on review of Mineralogical Model AMR
g]	Bullfrog-welded										(MM3.0), subunits that comprise the BFw have vitric,
	[m3/kg] (UZ)										zeolitic and devitrified characteristics. The unit as a
	Pro Checker et al										whole appears to have significant devitrified zones.
							1033				It seems reasonable that the lower Kd value for
		1			1.4						zeolitic or devitriifed be used for the BFw. Using the
											trivalent analogy Am Kds are substituted for Cm.
											The RTAmbient AMR 2003 has zeolitic Kds for Am
											ranging from 0.1 to 1.0 m3/kg, uniform. Kds for devit
MatrixKD_UFZ_Cm[m3/k	Matrix Kd of Cm for	constant	0.0	Use analogy with Am?	DT	UZFT		McMurry	6		There is no direct information for UFZ in the
9]	Unsaturated Fracture										Mineralogical Model AMR (MM3.0), thus, and
	Zone[m3/kg] (UZ)						1000000				assumption of vitric is assumed for this layer/region,
							1034				since DOE vitric Kds are usually lowest and most
											conservative. Using the trivalent analogy Am Kds
					2						are substituted for Cm. The RTAmbient AMR 2003
11.11.110 70 0 1 00	11 11 11 12		1.0.1.1.0.0								has vitric Kds in a user defined distribution with
MatnxKD_TSw_Ra[m3/kg	Matrix Kd of Ra for	uniform		Same as MatrixKD_TSw_Cs[m3/kg]	וט	UZFT		McMurry			Based on review of Mineralogical Model AMR
1	Topopah Spring-										(MM3.0), the units that make up the TSw are nearly
	welded[m3/kg] (UZ)						1035				vitric in nature in the UZ. Thus vitric DOE values are
2											used. DOE range for Ra in vitric rocks is 0.05 to 0.6
		16	0.1, 0.5	0	DT	UTET					m3/kg, uniform. RT Ambient AMR 2003.
INIALITIXKD_CHINVKa[m3/kg	Calica Hilla	unitorm	0.05, 1.0	Same as		UZFI		MCMurry	6		based on review of Mineralogical Model AMR
1	Callco Hills-nonweided			MatnxKD_CHnv_Cs[m3/kg]			1036				(MM3.0), the CH non-weided vitric has vitric layer
	vitric [m3/kg] (UZ)			2			143 02039				properties with respect to sorption. DOE range for
MatrixKD CHarDelman	Motrix Kd of Do for	uniform	10.50	Somo oo	DT	11757		Maldurer		Construction of the second sec	Rain vitric rocks is 0.05 to 0.6 m3/kg, uniform. RT
	Calico Hills - nonwolded	uniom	1.0, 5.0	MatrixKD CHaz Calm2/kal		UZFI		MCMURY			(MM2 0) the CH per wolded realitie has realitie
μ	zeolitic [m3/ka] (117)						1037				(wiwis.u), the CH non-weided Zeonitic has Zeonitic
											in zeolitic rocks is 1 0 to 5 0 uniform PT Ambient
1	201	5 S S S S S S S S S S S S S S S S S S S				1 × ×					In zeondo rocka la 1.0 to 3.0, uniform. INT AMDENL

Name	Description	PDF Type	Value(s)	Comments	CNWRA	ТРА	Order for TPA.INP	Recommended	New	Notes	Comments
					Contact	Section		Contact	Value		
MatrixKD_PPw_Ra[m3/kg]	Matrix Kd of Ra for Prow Pass-welded[m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_PPw_Cs[m3/kg]	DT	UZFT	1038	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the Prow Pass units have both zeolitic and devitrified characteristics. When a difference in sorption values exists between these two rock types, the lower range will be used arbitrarily. DOE values for Pa in devitrified procks is 0.1 to 1.0 (m3/kg)
MatrixKD_UCF_Ra[m3/kg	Matrix Kd of Ra for Upper Crater Flat[m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_UCF_Cs[m3/kg]	DT	UZFT	1039	McMurry		2. on diff on d on a set or triff of a set that	Based on review of Mineralogical Model AMR (MM3.0), UCF is not listed. It may be assumed that undifferentiated Crater Flat tuff would have characteristics of Prow Pass, Bullfrog, and Tram Tuffs, which are dominated by devirified units but have zeolitic and vitric subunits as well. As before for PPw and BFw, the lower of Kd ranges for zeolitic and devitrified rock type will be used for UCF. DOE values for Ra in devitrified rocks is 0.1 to 1.0
MatnxKD_BFw_Ra[m3/kg]	Matrix Kd of Ra for Bullfrog—welded [m3/kg] (UZ)	uniform	1.0, 5.0	Same as MatrixKD_BFw_Cs[m3/kg]	DT	UZFT	1040	McMurry			Based on review of Mineralogical Model AMR (MM3.0), subunits that comprise the BFw have vitric, zeolitic and devitrified characteristics. The unit as a whole appears to have significant devitrified zones. It seems reasonable that the lower Kd value for zeolitic or devitrified be used for the BFw. DOE values for Ra in devitrified rocks is 0.1 to 1.0
MatrixKD_UFZ_Ra[m3/kg]	Matrix Kd of Ra for Unsaturated Fracture Zone[m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_UFZ_Cs[m3/kg]	DT	UZFT	1041	McMurry			There is no direct information for UFZ in the Mineralogical Model AMR (MM3.0), thus, and assumption of vitric is assumed for this layer/region, since DOE vitric Kds are usually lowest and most conservative. DOE range for Ra in vitric rocks is
MatrixKD_TSw_Pb[m3/kg]	Matrix Kd of Pb for Topopah Spring- welded[m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_TSw_Cs[m3/kg]	σт	UZFT	1042	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the units that make up the TSw are nearly vitric in nature in the UZ. Thus vitric DOE values are used. U0100 AMR 2001 has same range for Pb Kds for all rock types. 0.1 to 0.5 m3/kg. uniform
MatrixKD_CHnvPb[m3/kg]	Matrix Kd of Pb for Calico Hills—nonwelded vitric [m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_CHnv_Cs[m3/kg]	DT	UZFT	1043	МсМигту			Based on review of Mineralogical Model AMR (MM3.0), the CH non-welded vitric has vitric layer properties with respect to sorption. U0100 AMR 2001 has same range for Ph Kds for all took twoos
MatrixKD_CHnzPb[m3/kg]	Matrix Kd of Pb for Calico Hills—nonwelded zeolitic [m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_CHnz_Cs[m3/kg]	DT	UZFT	1044	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the CH non-welded zeolitic has zeolitic characteristics for soprtion. U0100 AMR 2001 has same range for Pb Kds for all rock types 0.1 to 0.5
MatrixKD_PPw_Pb[m3/kg]	Matrix Kd of Pb for Prow Pass-welded[m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_PPw_Cs[m3/kg]	DT	UZFT	1045	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the Prow Pass units have both zeolitic and devitrified characteristics. When a difference in sorption values exists between these two rock types, the lower range will be used arbitrarily. U0100 AMR 2001 has same range for Pb Kds for all rock types
MatrixKD_UCF_Pb[m3/kg]	Matrix Kd of Pb for Upper Crater Flat[m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_UCF_Cs[m3/kg]	DT	UZFT	1046	McMurry			Based on review of Mineralogical Model AMR (MM3.0), UCF is not listed. It may be assumed that undifferentiated Crater Flat tuff would have characteristics of Prow Pass, Bullfrog, and Tram Tuffs, which are dominated by devitrified units but have zeolitic and vitric subunits as well. As before for PPw and BFw, the lower of Kd ranges for zeolitic and devitrified rock type will be used for UCF. U0100 AMR 2001 has same range for Pb Kds for all
MatrixKD_BFw_Pb[m3/kg]	Matrix Kd of Pb for Bullfrog—welded [m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_BFw_Cs[m3/kg]	DT	UZFT	1047	МсМитту			Based on review of Mineralogical Model AMR (MM3.0), subunits that comprise the BFw have vitric, zeolitic and devitrified characteristics. The unit as a whole appears to have significant devitrified zones. It seems reasonable that the lower Kd value for zeolitic or devitrified be used for the BFw. U0100 AMR 2001 has same range for Pb Kds for all rock

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
MatrixKD_UFZ_Pb[m3/kg]	Matrix Kd of Pb for Unsaturated Fracture Zone[m3/kg] (UZ)	uniform	0.1, 0.5	Same as MatrixKD_UFZ_Cs[m3/kg]	DT	UZFT	1048	McMurry			There is no direct information for UFZ in the Mineralogical Model AMR (MM3.0), thus, and assumption of vitric is assumed for this layer/region, since DOE vitric Kds are usually lowest and most conservative. U0100 AMR 2001 has same range for Pb Kds for all rock types, 0.1 to 0.5 m3/kg, uniform.
MatrixKD_TSw_Cs[m3/kg]	Matrix Kd of Cs for Topopah Spring- welded[m3/kg] (UZ)	uniform	0.02, 1.0	Data are taken from DOE compilations (Triay et al. 1997). Justification for the PDF type is documented in DOE/NRC agreement RT-1.05 [OBS, EXP]	DT	UZFT	1049	McMurry	×		Based on review of Mineralogical Model AMR (MM3.0), the units that make up the TSw are nearly vitric in nature in the UZ. Thus vitric DOE values are used. RT Ambient AMR lists Cs Kd values for vitric rocks as user defined distribution, 0=0%.
MatrixKD_CHnvCs[m3/kg]	Matrix Kd of Cs for Calico Hills—nonwelded vitric [m3/kg] (UZ)	uniform	0.01, 0.1	Data are taken from DOE compilations (Triay et al. 1997). Justification for the PDF type is documented in DOE/NRC	DT	UZFT	1050	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the CH non-welded vitric has vitric layer properties with respect to sorption. RT Ambient AMR lists Cs Kd values for vitirc rocks as user
MatrixKD_CHnzCs[m3/kg]	Matrix Kd of Cs for Calico Hills—nonwelded zeolitic [m3/kg] (UZ)	uniform	0.5, 5.0	Data are taken from DOE compilations (Triay et al. 1997). Justification for the PDF type is documented in DOE/NRC agreement RT-1.05 [OBS. EXP]	DT	UZFT	1051	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the CH non-welded zeolitic has zeolitic characteristics for sorption. RT Ambient AMR 2003 lists Cs Kds for zeolitic layers as user defined distribution. 0.425=10%, 5.0=50%, 20.0=100%
MatrixKD_PPw_Cs[m3/kg]	Matrix Kd of Cs for Prow Pass-welded[m3/kg] (UZ)	uniform	0.02, 1.0	Data are taken from DOE compilations (Triay et al. 1997). Justification for the PDF type is documented in DOE/NRC agreement RT-1.05 [OBS, EXP]	DT	UZFT	1052	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the Prow Pass units have both zeolitic and devitrified characteristics. When a difference in sorption values exists between these two rock types, the lower range will be used arbitrarily. RT Ambient AMR 2003 lists a range of 0.001 to 0.015 m3/kg.
MatrixKD_UCF_Cs[m3/kg]	Matrix Kd of Cs for Upper Crater Flat[m3/kg] (UZ)	uniform	0.02, 1.0	Data are taken from DOE compilations (Triay et al. 1997). Justification for the PDF type is documented in DOE/NRC agreement RT-1.05 [OBS, EXP]	DT	UZFT	1053	McMurry			Based on review of Mineralogical Model AMR (MM3.0), UCF is not listed. It may be assumed that undifferentiated Crater Flat tuff would have characteristics of Prow Pass, Bullfrog, and Tram Tuffs, which are dominated by devitrified units but have zeolitic and vitric subunits as well. As before for PPw and BFw, the lower of Kd ranges for zeolitic and devitified rank type will be used for UCF. BT
MatrixKD_BFw_Cs[m3/kg]	Matrix Kd of Cs for Bullfrog—welded [m3/kg] (UZ)	uniform	0.02, 1.0	Data are taken from DOE compilations (Triay et al. 1997). Justification for the PDF type is documented in DOE/NRC agreement RT-1.05 [OBS, EXP]	DT	UZFT	1054	McMurry			Based on review of Mineralogical Model AMR (MM3.0), subunits that comprise the BFw have vitric, zeolitic and devitrified characteristics. The unit as a whole appears to have significant devitrified zones. It seems reasonable that the lower Kd value for zeolitic or devitrified be used for the BFw. RT Ambient AMR 2003 lists a range of 0.001 to 0.015
MatrixKD_UFZ_Cs[m3/kg]	Matrix Kd of Cs for Unsaturated Fracture Zone[m3/kg] (UZ)	uniform	0.02, 1.0	Data are taken from DOE compilations (Triay et al. 1997). Justification for the PDF type is documented in DOE/NRC agreement RT-1.05 [OBS, EXP]	DT	UZFT	1055	McMurry			There is no direct information for UFZ in the Mineralogical Model AMR (MM3.0), thus, and assumption of vitric is assumed for this layer/region, since DOE vitric Kds are usually lowest and most conservative. RT Ambient AMR lists Cs Kd values for vitric rocks as user defined distribution. 0=0%.
MatrixKD_TSw_Ni[m3/kg]	Matrix Kd of Ni for Topopah Spring- welded[m3/kg] (UZ)	beta	0.0, 0.5, 7.146, 28.585	Same as MatrixKD_TSw_Cs[m3/kg]	DT	UZFT	1056	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the units that make up the TSw are nearly vitric in nature in the UZ. Thus vitric DOE values are used. DOE values for Ni Kds in U0100 AMR 2001 are 0 to 0.05 m3/kg in vitric layers, beta distribution
MatrixKD_CHnvNi[m3/kg]	Matrix Kd of Ni for Calico Hills—nonwelded vitric [m3/kg] (UZ)	beta	0.0, 0.1, 4.091, 4.091	Same as MatrixKD_CHnv_Cs[m3/kg]	DT	UZFT	1057	McMurry		ann ill a fa stall i finn an leasann ann ann ann ann	Based on review of Mineralogical Model AMR (MM3.0), the CH non-welded vitric has vitric layer properties with respect to sorption. DOE values for Ni Kds in U0100 AMR 2001 are 0 to 0.05 m3/kg in vitric layer bets distribution surgested vitro 0.02
MatrixKD_CHnzNi[m3/kg]	Matrix Kd of Ni for Calico Hills—nonwelded zeolitic [m3/kg] (UZ)	beta	0.0, 0.5, 7.146, 28.585	Same as MatrixKD_CHnz_Cs[m3/kg]	σт	UZFT	1058	McMurry			Mine rayers, beta distribution, expected value 0.03, Based on review of Mineralogical Model AMR (MM3.0), the CH non-welded zeolitic has zeolitic characteristics for soprtion. Kds for Ni in DOE U0100 AMR 2001 are 0 to 0.2, beta, expected value 0.05, COV=0.33, stdev=0.01 for both devitrified and

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
MatrixKD_PPw_Ni[m3/kg]	Matrix Kd of Ni for Prow Pass-welded[m3/kg] (UZ)	beta	0.0, 0.5, 7.146, 28.585	Same as MatrixKD_PPw_Cs[m3/kg]	DT	UZFT	1059	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the Prow Pass units have both zeolitic and devitrified characteristics. When a difference in sorption values exists between these two rock types, the lower range will be used arbitrarily. Kds for Ni in DOE U0100 AMR 2001 are 0 to 0.2, beta, expected value 0.05 COV=0.33 stdev=0.01 for both
MatrixKD_UCF_Ni[m3/kg]	Matrix Kd of Ni for Upper Crater Flat[m3/kg] (UZ)	beta	0.0, 0.5, 7.146, 28.585	Same as MatrixKD_UCF_Cs[m3/kg]	DT	UZFT	1060	McMurry			Based on review of Mineralogical Model AMR (MM3.0), UCF is not listed. It may be assumed that undifferentiated Crater Flat tuff would have characteristics of Prow Pass, Bullfrog, and Tram Tuffs, which are dominated by devitrified units but have zeolitic and vitric subunits as well. As before for PPw and BFw, the lower of Kd ranges for zeolitic and devitrified rock type will be used for UCF. Kds for Ni in DOE U0100 AMR 2001 are 0 to 0.2, beta,
MatrixKD_BFw_Ni[m3/kg]	Matrix Kd of Ni for Bullfrog—welded [m3/kg] (UZ)	beta	0.0, 0.5, 7.146, 28.585	Same as MatrixKD_BFw_Cs[m3/kg]	DT	UZFT	1061	McMurry			Based on review of Mineralogical Model AMR (MM3.0), subunits that comprise the BFw have vitric, zeolitic and devitrified characteristics. The unit as a whole appears to have significant devitrified zones. It seems reasonable that the lower Kd value for zeolitic or devitrified be used for the BFw. Kds for Ni in DOE U0100 AMR 2001 are 0 to 0.2, beta, expected value 0.05 COV=0.33 stdey=0.01 for
MatrixKD_UFZ_Ni[m3/kg]	Matrix Kd of Ni for Unsaturated Fracture Zone[m3/kg] (UZ)	beta	0.0, 0.5, 7.146, 28.585	Same as MatrixKD_UFZ_Cs[m3/kg]	DT	UZFT	1062	McMurry			There is no direct information for UFZ in the Mineralogical Model AMR (MM3.0), thus, and assumption of vitric is assumed for this layer/region, since DOE vitric Kds are usually lowest and most conservative. Kds for Ni in DOE U0100 AMR 2001 are 0 to 0.2 beta expected value 0.05 COV=0.33
MatrixKD_TSw_C[m3/kg]	Matrix Kd of C for Topopah Spring- welded[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1063	McMurry			Assume no retardation for C in UZ or SZ. C is subject to more exchange and sorption reactions than other anions (such as Tc) but assumption is
MatrixKD_CHnvC[m3/kg]	Matrix Kd of C for Calico Hills—nonwelded vitric [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1064	McMurry		n in 19 killinge filling - statistication - stati	Assume no retardation for C in UZ or SZ. C is subject to more exchange and sorption reactions than other anions (such as Tc) but assumption is
MatrixKD_CHnzC[m3/kg]	Matrix Kd of C for Calico Hills—nonwelded zeolitic [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1065	McMurry			Assume no retardation for C in UZ or SZ. C is subject to more exchange and sorption reactions than other anions (such as Tc) but assumption is
MatrixKD_PPw_C[m3/kg]	Matrix Kd of C for Prow Pass-welded[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1066	McMurry			Assume no retardation for C in UZ or SZ. C is subject to more exchange and sorption reactions than other anions (such as Tc) but assumption is
MatrixKD_UCF_C[m3/kg]	Matrix Kd of C for Upper Crater Flat[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1067	McMurry			Assume no retardation for C in UZ or SZ. C is subject to more exchange and sorption reactions than other anions (such as Tc) but assumption is
MatrixKD_BFw_C[m3/kg]	Matrix Kd of C for Bullfrog—welded [m3/kg] (UZ)	constant	0.0	Data taken from Tray et al (1997) and assumes no retardation for carbon, consistent with anionic species. It is also a bounding value	DT	UZFT	1068	McMurry		9	Assume no retardation for C in UZ or SZ. C is subject to more exchange and sorption reactions than other anions (such as Tc) but assumption is conservative.
MatrixKD_UFZ_C[m3/kg]	Matrix Kd of C for Unsaturated Fracture Zone[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	DT	UZFT	1069	McMurry			Assume no retardation for C in UZ or SZ. C is subject to more exchange and sorption reactions than other anions (such as Tc) but assumption is
MatrixKD_TSw_Se[m3/kg]	Matrix Kd of Se for Topopah Spring- welded[m3/kg] (UZ)	beta	0.0, 0.03, 0.8, 7.2	Same as MatrixKD_TSw_Cs[m3/kg]	DT	UZFT	1070	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the units that make up the TSw are nearly vitric in nature in the UZ. Thus vitric DOE values are used. Most recent Se values are in U0100 AMR 2001 and are same for all rock types. Beta exponential distribution, 0 to 0.001 m3/kg, expected

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
MatrixKD_CHnvSe[m3/kg]	Matrix Kd of Se for Calico Hills—nonwelded vitric [m3/kg] (UZ)	beta	0.0, 0.02, 0.7, 3.961	Same as MatrixKD_CHnv_Cs[m3/kg]	DT	UZFT	1071	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the CH non-welded vitric has vitric layer properties with respect to sorption. Most recent Se values are in U0100 AMR 2001 and are same for all rock types. Beta exponential distribution, 0 to 0.001
MatrixKD_CHnzSe[m3/kg]	Matrix Kd of Se for Calico Hills—nonwelded zeolitic [m3/kg] (UZ)	beta	0.0, 0.015, 0.733, 4.767	Same as MatrixKD_CHnz_Cs[m3/kg]	DT	UZFT	1072	McMurry			(MM3.0), the CH non-welded zeolitic has zeolitic characteristics for soprtion. Most recent Se values are in U0100 AMR 2001 and are same for all rock types. Beta exponential distribution, 0 to 0.001 m3/kg. expected value= 0.0001. stdev= 0.0001
MatrixKD_PPw_Se[m3/kg]	Matrix Kd of Se for Prow Pass-welded[m3/kg] (UZ)	beta	0.0, 0.03, 0.8, 7.2	Same as MatrixKD_PPw_Cs[m3/kg]	DT	UZFT	1073	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the Prow Pass units have both zeolitic and devitrified characteristics. When a difference in sorption values exists between these two rock types, the lower range will be used arbitrarily. Most recent Se values are in U0100 AMR 2001 and are same for all rock types. Beta exponential distribution, 0 to 0.001 m3/kg. expected value= 0.0001 stdev=
MatrixKD_UCF_Se[m3/kg]	Matrix Kd of Se for Upper Crater Flat[m3/kg] (UZ)	beta	0.0, 0.03, 0.8, 7.2	Same as MatrixKD_UCF_Cs[m3/kg]	DT	UZFT	1074	McMurry			Based on review of Mineralogical Model AMR (MM3.0), UCF is not listed. It may be assumed that undifferentiated Crater Flat tuff would have characteristics of Prow Pass, Bullfrog, and Tram Tuffs, which are dominated by devitrified units but have zeolitic and vitric subunits as well. As before for PPw and BFw, the lower of Kd ranges for zeolitic and devitrified rock type will be used for UCF. Most recent Se values are in U0100 AMR 2001 and are same for all mock types. Bata exponential
MatrixKD_BFw_Se[m3/kg]	Matrix Kd of Se for Bullfrog—welded [m3/kg] (UZ)	beta	0.0, 0.03, 0.8, 7.2	Same as MatrixKD_BFw_Cs[m3/kg]	DT	UZFT	1075	McMurry			Based on review of Mineralogical Model AMR (MM3.0), subunits that comprise the BFw have vitric, zeolitic and devitrified characteristics. The unit as a whole appears to have significant devitrified zones. It seems reasonable that the lower Kd value for zeolitic or devitriifed be used for the BFw. Most recent Se values are in U0100 AMR 2001 and are same for all rock types. Beta exponential distribution. 0 to 0.001 m3/tre
MatrixKD_UFZ_Se[m3/kg]	Matrix Kd of Se for Unsaturated Fracture Zone[m3/kg] (UZ)	beta	0.0, 0.03, 0.8, 7.2	Same as MatrixKD_UFZ_Cs[m3/kg]	DT	UZFT	1076	McMurry			There is no direct information for UFZ in the Mineralogical Model AMR (MM3.0), thus, and assumption of vitric is assumed for this layer/region, since DOE vitric Kds are usually lowest and most conservative. Most recent Se values are in U0100 AMR 2001 and are same for all rock types. Beta exponential distribution 0 to 0 001 m3/kg expected
MatrixKD_TSw_Nb[m3/kg]	Matrix Kd of Nb for Topopah Spring- welded[m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_Nb[m3/kg]	DT	UZFT	1077	McMurry			MM3.0), the units that make up the TSw are nearly vitric in nature in the UZ. Thus vitric DOE values are used. Using the trivalent analogy, Am Kds are substituted for Nb. The RT Models Under Ambient AMR 2003 has vitric Am Kds of 0.1 to 1.0 m3/kg in a piecewise distribution, with 0.1=0%, 0.4=50%, and 1.0=100%. This has a slightly lower mean than the
MatrixKD_CHnvNb[m3/kg]	Matrix Kd of Nb for Calico Hills—nonwelded vitric [m3/kg] (UZ)	constant	0.0	Same as MatrixKD_BFw_Nb[m3/kg]	DT	UZFT	1078	McMurry			Based on review of Mineralogical Model AMR (MM3.0), the CH non-welded vitric has vitric layer properties with respect to sorption. Using the trivalent analogy, Am Kds are substituted for Nb. The RT Models Under Ambient AMR 2003 has vitric Am Kds of 0.1 to 1.0 m3/kg in a piecewise distribution, with 0.1=0%, 0.4=50%, and 1.0=100%. This has a slightly lower mean than the 0.1 to 1.0

						TDA	Order for	Recommended	Now	Notes	Comments
Name	Description	PDF Type	Value(s)	Comments	Contact	Section	TPA.INP	Contact	Value		
MatrixKD_CHnzNb[m3/kg	Matrix Kd of Nb for	constant	0.0	Same as MatrixKD_BFw_Nb[m3/kg]	DT	UZFT		McMurry			Based on review of Mineralogical Model AMR
Ĵ	Calico Hills—nonwelded										(MM3.0), the CH non-welded zeolitic has zeolitic
	zeolitic [m3/kg] (UZ)						1079				characteristics for soprtion. Using the trivalent
											analogy Am Kds are substituted for Nb. The
											RTAmbient AMR 2003 has zeolitic Kds for Am
MatrixKD_PPw_Nb[m3/kg	Matrix Kd of Nb for Prow	constant	0.0	Same as MatrixKD_BFw_Nb[m3/kg]	DT	UZFT		McMurry			Based on review of Mineralogical Model AMR
]	Pass-welded[m3/kg]										(MM3.0), the Prow Pass units have both zeolitic and
	(UZ)										devitnified characteristics. When a difference in
							1080				sorption values exists between these two rock types,
											the lower range will be used arbitranily. Using the
											trivalent analogy Am Kds are substituted for Nb. The
											RTAMDIENT AMR 2003 has zeolitic Kos for Am
			0.0		07	11757					ranging from 0.1 to 1.0 m3/kg, uniform. Kds for devit
MatrixKD_UCF_Nb[m3/kg	Matrix Kd of Nb for	constant	0.0	Same as MatrixKD_BFw_Nb[m3/kg]	וט	UZFI		MCMurry			Based on review of Mineralogical Model AMR
1	Upper Crater Flat[m3/kg]										(MM3.0), UCF is not listed. It may be assumed that
	(UZ)		1								undimerentiated Crater Flat tur would have
										La (Ale Carlos de Carlos d	characteristics of Prow Pass, Builing, and Train
							1081				Tuns, which are dominated by devitnined units but
											have zeolitic and vitric subunits as well. As before
											for PPW and BPW, the lower of Kd ranges for zeoliuc
											and devinitied fock type will be used for OCF.
											Using the trivalent analogy Am Kds are substituted
	Martin Martin Chille Com		0.0		DT	UZCT		Maldana			TOP ND. The RTAMDient AMR 2003 has zeolitic Kas
MatrixKD_BFw_Nb[m3/kg	Matrix Kd of Nb for	constant	0.0	Same as MatrixKD_BFw_C[m3/kg]	וט	UZFI		MCMUITY			Based on review of Mineralogical Model AMR
]	Bullfrog-welded [m3/kg]			with the additional comment: I hay							(MM3.0), subunits that comprise the Brw have vitric,
	(UZ)			et al. (1997) indicate that ND(OH)50							zeolitic and devitimed characteristics. The unit as a
				and ND(OH)6- are likely to be			1000				It accore recorded that the lower Kd value for
				dominant spcies			1002				The sector reasonable that the lower Ku value for
											trivelent analogy Am Kds are substituted for Nh. The
								1			The substituted for the su
											R TAMbient AWR 2003 has zeolitic Kus for Am
					DT	UZET		Malling			There is no direct information for LET in the
MatrixKD_UFZ_Nb[m3/kg	Matrix Kd of Nb for	constant	0.0	Same as MatnxKD_BFW_ND[m3/kg]	וט	UZFI		MCMUTY			Minerelagical Medal AMP (MM2 0) thus and
]	Unsaturated Fracture										Mineralogical Model AMR (MM3.0), thus, and
	Zone[m3/kg] (UZ)										assumption of vitric is assumed for this layernegion,
							1002				since DOE ville Rus are usually lowest and most
							1005				are substituted for Nb. The PT Models Linder
											Ambient AMP 2002 besuiting Am Kds of 0.1 to 1.0
											m2/kg in a piecowice distribution with 0 1-0%
								ia			0.4-50% and 1.0-100% This has a slightly lower
Freedow DD TOwn I	Freedure retendation	anatant	10	Came as Employed D. D.E.	DT	LIZET		MoMuro			No fracture retardation All layors all publides
FractureRD_1Sw_1	Fracture retardation	constant	1.0	Same as FractureRD_BFW_I			1001	IVICIVIUITY			no fracture retardation. All layers, all flucides.
	Tenenah						1091				
Freeture BD, Chieral	Fracture retordation	constant	10	Same as Erecture PD, PEW 1	DT	11757		McMurn			No fracture retardation All lavers all nuclides
FractureRD_CHitzi	Fracture retaruation	constant	1.0	Same as FlactureRD_BFW_I		0211		Wiciviuity			no naciore relatuation. An layers, an nuclides.
							1093				
Freedure DD BDu I	Zeolitic (UZ)	constant	10	Same as Emoture PD, PEur I	DT	11757		MoMurn			No fracture retardation All lavers all nuclides
FIACUIERD_PPW_I		constant	1.0	Sallie as FlactuleRD_bFw_l			1004	WCWUTY			no fracture retardation. All layers, all fucides.
	Coefficient of Lifer Prow		1.00				1094				
	Pass—weided (UZ)		10	Come as Easture DD, DEm 1	DT	LITET		Mahlum			No fracture retardation All layors all nuclides
FractureRD_UCF_I	Fracture retardation	constant	1.0	Same as FractureRD_BFW_I		UZFT	1005	MCMUITY		P*	no fracture retardation. All layers, all fluctudes.
	Creater Flot (17)						1092				
	Crater Flat (UZ)		10	Came as Employee DD. DEv. Cl	DT	UZET		Mahlum		ing in the second s	No fracture retardation All layors all publides
FractureRD_BFw_I	Fracture retardation	constant	1.0	Same as FractureRD_BFW_CI		0251	1000	INCIMUITY			no fracture retardation. All layers, all nuclides.
				with opiopio species (1)			1090		1		
	Execture retended (UZ)	aanata-t	10	Same as Erecture DD DEvi 1	DT	11757		MoMurry			No fracture retardation All lavore all publides
FractureRD_UFZ_I	racture retardation	constant	1.0	Same as FractureRD_BFW_I		0251		INCMUTY			no fracture retardation. All layers, all fucildes.
	coefficient of I for						1097				
	Unsaturated Fracture										
	ZONE (UZ)	L	1	Le se la contra de	1	L		1	1	1 Andrew State and the second state of t	

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
FractureRD_TSw_Tc	Fracture retardation coefficient of Tc for Topopah	constant	1.0	Same as FractureRD_BFw_Tc	DT	UZFT	1098	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvTc	Fracture retardation coefficient of Tc for Calico Hills—nonwelded	constant	1.0	Same as FractureRD_BFw_Tc	DT	UZFT	1099	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnzTc	Fracture retardation coefficient of Tc for Calico Hills—nonwelded zeolitic (UZ)	constant	1.0	Same as FractureRD_BFw_Tc	DT	UZFT	1100	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_PPw_Tc	Fracture retardation coefficient of Tc for Prow Pass—welded (UZ)	constant	1.0	Same as FractureRD_BFw_Tc	DT	UZFT	1101	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UCF_Tc	Fracture retardation coefficient of Tc for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_Tc	DT	UZFT	1102	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_Tc	Fracture retardation coefficient of Tc for Unsaturated Fracture Zone (UZ)	constant	1.0	Same as FractureRD_BFw_Tc	DT	UZFT	1104	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_TSw_CI	Fracture retardation coefficient of CI for Toponah	constant	1.0	Same as FractureRD_BFw_CI	DT	UZFT	1105	McMurry		an ang tang ana ang tang tang tang tang	No fracture retardation. All layers, all nuclides.
FractureRD_CHnzCl	Fracture retardation coefficient of CI for Calico Hills—nonwelded zeolitic (1/Z)	constant	1.0	Same as FractureRD_BFw_CI	DT	UZFT	1107	McMurry	100		No fracture retardation. All layers, all nuclides.
FractureRD_PPw_CI	Fracture retardation coefficient of CI for Prow Pass—welded (UZ)	constant	1.0	Same as FractureRD_BFw_CI	DT	UZFT	1108	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UCF_CI	Fracture retardation coefficient of CI for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_Cl	DT	UZFT	1109	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_CI	Fracture retardation coefficient of CI for Bullfrog—welded (UZ)	constant	1.0	Value assumes no fracture retardation (Kd=0,Rf=1) and is consistent with anionic species (CI-	DT	UZFT	1110	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_CI	Fracture retardation coefficient of Unsaturated Fracture	constant	1.0	Same as FractureRD_BFw_CI	DT	UZFT	1111	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_TSw_Cm	Fracture retardation coefficient of Cm for Topopah Spring—welded (UZ)	constant	1.0	Same as FractureRD_BFw_Cm	DT	UZFT	1112	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnzCm	Fracture retardation coefficient of Cm for Calico Hills—nonwelded zeolitic (UZ)	constant	1.0	Same as FractureRD_BFw_Cm	DT	UZFT	1114	McMurry		S af 4 See	No fracture retardation. All layers, all nuclides.
FractureRD_PPw_Cm	Fracture retardation coefficient of Cm for Prow Pass—welded	constant	1.0	Same as FractureRD_BFw_Cm	DT	UZFT	1115	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UCF_Cm	Fracture retardation coefficient of Cm for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_Cm	σт	UZFT	1116	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_Cm	Fracture retardation coefficient of Cm for Bullfrog—welded (UZ)	constant	1.0	Value assumes no fracture retardation (Kd=0,Rf=1). It is also a bounding assumption for fracture	DT	UZFT	1117	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_Cm	Fracture retardation coefficient of Unsaturated Fracture	constant	1.0	Same as FractureRD_BFw_Cm	DT	UZFT	1118	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_TSw_Ra	Fracture retardation coefficient of Ra for Topopah	constant	1.0	Same as FractureRD_BFw_Ra	DT	UZFT	1119	McMurry			No fracture retardation. All layers, all nuclides.

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
FractureRD_CHnvRa	Fracture retardation coefficient of Ra for Calico Hills—nonwelded	constant	1.0	Same as FractureRD_BFw_Ra	DT	UZFT	1120	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnzRa	Fracture retardation coefficient of Ra for Calico Hills—nonwelded zeolitic (UZ)	constant	1.0	Same as FractureRD_BFw_Ra	DT	UZFT	1121	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_PPw_Ra	Fracture retardation coefficient of Ra for Prow Pass—welded	constant	1.0	Same as FractureRD_BFw_Ra	DT	UZFT	1122	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UCF_Ra	Fracture retardation coefficient of Ra for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_Ra	DT	UZFT	1123	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_Ra	Fracture retardation coefficient of Ra for Bullfrog—welded (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1124	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_Ra	Fracture retardation coefficient of Ra for Unsaturated Fracture Zone (UZ)	constant	1.0	Same as FractureRD_BFw_Ra	DT	UZFT	1125	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_TSw_Pb	Fracture retardation coefficient of Pb for Topopah	constant	1.0	Same as FractureRD_BFw_Pb	DT	UZFT	1126	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvPb	Fracture retardation coefficient of Pb for Calico Hills—nonwelded	constant	1.0	Same as FractureRD_BFw_Pb	DT	UZFT	1127	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnzPb	Fracture retardation coefficient of Pb for Calico Hills—nonwelded zeolitic (UZ)	constant	1.0	Same as FractureRD_BFw_Pb	DT	UZFT	1128	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_PPw_Pb	Fracture retardation coefficient of Pb for Prow Pass—welded	constant	1.0	Same as FractureRD_BFw_Pb	DT	UZFT	1129	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UCF_Pb	Fracture retardation coefficient of Pb for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_Pb	DT	UZFT	1130	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_Pb	Fracture retardation coefficient of Pb for Bullfrog—welded (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1131	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_Pb	Fracture retardation coefficient of Pb for Unsaturated Fracture Zone (UZ)	constant	1.0	Same as FractureRD_BFw_Pb	DT	UZFT	1132	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_TSw_Cs	Fracture retardation coefficient of Cs for Topopah	constant	1.0	Same as FractureRD_BFw_Cs	DT	UZFT	1133	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnzCs	Fracture retardation coefficient of Cs for Calico Hills—nonwelded zeolitic (UZ)	constant	1.0	Same as FractureRD_BFw_Cs	DT	UZFT	1135	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_PPw_Cs		constant	1.0	Same as FractureRD BFw Cs	DT	UZFT	1136	McMurry			No fracture retardation. All lavers, all nuclides.
FractureRD_UCF_Cs	Fracture retardation coefficient of Cs for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_Cs	DT	UZFT	1137	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_Cs	Fracture retardation coefficient of Cs for Bullfrog—welded (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1138	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_Cs	Fracture retardation coefficient of Cs for Unsaturated Fracture Zone (UZ)	constant	1.0	Same as FractureRD_BFw_Cs	DT	UZFT	1139	McMurry			No fracture retardation. All layers, all nuclides.

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
FractureRD_TSw_Ni	Fracture retardation coefficient of Ni for Topopah	constant	1.0	Same as FractureRD_BFw_Ni	DT	UZFT	1140	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnzNi	Fracture retardation coefficient of Ni for Calico Hills—nonwelded zeolitic (UZ)	constant	1.0	Same as FractureRD_BFw_Ni	DT	UZFT	1142	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_PPw_Ni	Fracture retardation coefficient of Ni for Prow Pass—welded (UZ)	constant	1.0	Same as FractureRD_BFw_Ni	DT	UZFT	1143	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UCF_Ni	Fracture retardation coefficient of Ni for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_Ni	DT	UZFT	1144	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_Ni	Fracture retardation coefficient of Ni for Bullfrog—welded (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1145	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_Ni	Fracture retardation coefficient of Ni for Unsaturated Fracture Zone (UZ)	constant	1.0	Same as FractureRD_BFw_Ni	DT	UZFT	1146	McMurry		ž	No fracture retardation. All layers, all nuclides.
FractureRD_TSw_C	Fracture retardation coefficient of C for Topopah	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1147	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnzC	Fracture retardation coefficient of C for Calico Hills—nonwelded zeolitic (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1149	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_PPw_C	Fracture retardation coefficient of C for Prow Pass—welded (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1150	McMurry		an na san na san na san san san san san	No fracture retardation. All layers, all nuclides.
FractureRD_UCF_C	Fracture retardation coefficient of C for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1151	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_C	Fracture retardation coefficient of C for Bullfrog—welded (UZ)	constant	1.0	Value assumes no fracture retardation (Kd=0,Rf=1). It is also a bounding assumption for fracture	DT	UZFT	1152	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_C	Fracture retardation coefficient of C for Unsaturated Fracture Zone (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1153	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_TSw_Se	Fracture retardation coefficient of Se for Topopah	constant	1.0	Same as FractureRD_BFw_Se	DT	UZFT	1154	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvSe	Fracture retardation coefficient of Se for Calico Hills—nonwelded	constant	1.0	Same as FractureRD_BFw_Se	DT	UZFT	1155	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnzSe	Fracture retardation coefficient of Se for Calico Hills—nonwelded zeolitic (UZ)	constant	1.0	Same as FractureRD_BFw_Se	DT	UZFT	1156	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_PPw_Se	Fracture retardation coefficient of Se for Prow Pass—welded	constant	1.0	Same as FractureRD_BFw_Se	DT	UZFT	1157	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UCF_Se	Fracture retardation coefficient of Se for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_Se	DT	UZFT	1158	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_Se	Fracture retardation coefficient of Se for Bullfroo-welded (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1159	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_Se	Fracture retardation coefficient of Se for Unsaturated Fracture Zone (UZ)	constant	1.0	Same as FractureRD_BFw_Se	DT	UZFT	1160	McMurry			No fracture retardation. All layers, all nuclides.

17 of 33

12/19/2008

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	l New Value	Notes	Comments
FractureRD_TSw_Nb	Fracture retardation coefficient of Nb for Topopah	constant	1.0	Same as FractureRD_BFw_Nb	DT	UZFT	1161	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnzNb	Fracture retardation coefficient of Nb for Calico Hills—nonwelded zeolitic (UZ)	constant	1.0	Same as FractureRD_BFw_Nb	DT	UZFT	1163	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_PPw_Nb	Fracture retardation coefficient of Nb for Prow Pass—welded	constant	1.0	Same as FractureRD_BFw_Nb	DT	UZFT	1164	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UCF_Nb	Fracture retardation coefficient of Nb for Upper Crater Flat (UZ)	constant	1.0	Same as FractureRD_BFw_Nb	DT	UZFT	1165	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_Nb	Fracture retardation coefficient of Nb for Bullfrog—welded (UZ)	constant	1.0	Same as FractureRD_BFw_C	DT	UZFT	1166	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_UFZ_Nb	Fracture retardation coefficient of Nb for Unsaturated Fracture Zone (UZ)	constant	1.0	Same as FractureRD_BFw_Nb	DT	UZFT	1167	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvI	Fracture retardation coefficient of I for Calico Hills—nonwelded vitric	constant	1.0	Same as FractureRD_BFw_I	DT, DP	UZFT	1092	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_BFw_Tc	Fracture retardation coefficient of Tc for Bullfrog—welded (UZ)	constant	1.0	Same as FractureRD_BFw_Cl except for the comment: consistent with anionic species (TcO4-)	DT, DP	UZFT	1103	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvCl	Fracture retardation coefficient of CI for Calico Hills-nonwelded	constant	1.0	Same as FractureRD_BFw_Cl	DT, DP	UZFT	1106	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvCm	Fracture retardation coefficient of Cm for Calico Hills-nonwelded	constant	1.0	Same as FractureRD_BFw_Cm	DT, DP	UZFT	1113	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvCs	Fracture retardation coefficient of Cs for Calico Hills—nonwelded	constant	1.0	Same as FractureRD_BFw_Cs	DT, DP	UZFT	1134	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvNi	Fracture retardation coefficient of Ni for Calico Hills-nonwelded	constant	1.0	Same as FractureRD_BFw_Ni	DT, DP	UZFT	1141	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvC	Fracture retardation coefficient of C for Calico	constant	1.0	Same as FractureRD_BFw_C	DT, DP	UZFT	1148	McMurry			No fracture retardation. All layers, all nuclides.
FractureRD_CHnvNb	Fracture retardation coefficient of Nb for Calico Hills—nonwelded	constant	1.0	Same as FractureRD_BFw_Nb	DT, DP	UZFT	1162	McMurry		na di mana di m Professione di mana di m	No fracture retardation. All layers, all nuclides.
UnsaturatedZoneMinimu mVelocityChangeFactor[F raction]	Same velocity is used unless the velocity changes by this fraction of the initial velocity. However, the minimum time span over which velocity does not change	constant	0.4	Equivalent to a program control switch; specified constant based on experience and expert opinion	GWW	UZFT	1001				er H
LogCO2PartialPressure_ AllUZ_SZLayers[atm]	(correlated with pH_AIIUZ_SZLayers[Sta ndardUnits])	triangular	-4.0, -2.5, -1.0	Data from Perfect et al. (1995) and consistent with Yang et al. (1996). PDF slection based [OBS, EXP]	PB	UZFT	1005	Bertetti McMurry	Change required but not ready		Critical comments on Bertetti et al., 2004 (in which this distribution was determined) suggest a more rigorous analysis needed to establish distribution. Change may affect distribution type but will have little impact on max and min. Work in progress.
pH_AIIUZ_SZLayers[Stan dardUnits]	None (correlated with LogCO2PartialPressure _AllUZ_SZLayers[atm])	triangular	6.7, 7.8, 9.2	Data from Perfect et al. (1995) and consistent with Yang et al. (1996); PDF slection based [OBS, EXP]	РВ	UZFT	1006	Bertetti McMurry	Change required but not ready		Critical comments on Bertetti et al., 2004 (in which this distribution was determined) suggest a more rigorous analysis needed to establish distribution. Change may affect distribution type but will have little impact on max and min. Work in progress.

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
MatrixGrainDensity_TSw _[kg/m3]	Matrix grain density for Topopah Spring—welded (UZ) (kg/m3)	constant	2460.0	Same as MatrixGrainDensity_BFw_[kg/m3]	РВ	UZFT	1189	McMurry?	no change		These values along with porosities for each layer should be reviewed for consistency with the purported source materials. However, in the RT calculations they "cancel out" so that only matrix porosity is important in determining Rf. Thus, if
MatrixGrainDensity_CHnv [kg/m3]	Matrix grain density for Calico Hills—nonwelded vitric (UZ) (kg/m3)	constant	2260.0	Same as MatrixGrainDensity_BFw_[kg/m3]	PB	UZFT	1190	McMurry?	no change		
MatrixGrainDensity_CHnz [kg/m3]	Matrix grain density for Calico Hills—nonwelded zeolitic (UZ) (kg/m3)	constant	2400.0	Same as MatrixGrainDensity_BFw_[kg/m3]	РВ	UZFT	1191	McMurry?	no change		
MatrixGrainDensity_PPw [kg/m3]	Matrix grain density for Prow Pass—welded	constant	2540.0	Same as MatrixGrainDensity_BFw_[kg/m3]	PB	UZFT	1192	McMurry?	no change		
MatrixGrainDensity_UCF _[kg/m3]	Matrix grain density for Upper Crater Flat (UZ) (kg/m3)	constant	2420.0	Same as MatrixGrainDensity_BFw_[kg/m3]	РВ	UZFT	1193	McMurry?	no change		
MatrixGrainDensity_BFw _[kg/m3]	Matrix grain density for Bullfrog—welded (UZ) (kg/m3)	constant	2570.0	Best estimate by the USFIC team, based on averaging of subunit data reported by Flint (1998). Constant values assumed because little	РВ	UZFT	1194	McMurry?	no change		
MatrixGrainDensity_UFZ_ [kg/m3]	Matrix grain density for Unsaturated Fault Zone (UZ) (kg/m3)	constant	2630.0	Same as MatrixGrainDensity_BFw_[kg/m3]	РВ	UZFT	1195	McMurry?	no change		
MatrixLongitudinalDispers ivity[FractionOfLayer]	Maximum matrix longitudinal dispersivity specified as a fraction of	constant	0.06	Based on USFIC expert judgement using information from CRWMS M&O(2000), Gelhar et al. (1992)	RF	UZFT	1002				
FractureLongitudinalDisp ersivity[FractionOfLayer]	Maximum fracture longitudinal dispersivity specified as a fraction of layer thickness	constant	0.06	Based on USFIC expert judgement using information from CRWMS M&O(2000), Gelhar et al. (1992) and Jury et al. (1991) [EXP]	RF	UZFT	1003				
MatrixPermeability_TSw_ [m2]	Matrix permeability for Topopah Spring welded tuff (UZ) (m2)	lognormal	5.6e-20, 5.6e-18	Same as MatrixPermeability_BFw_[m2]	RF	UZFT	1168				
MatrixPermeability_CHnv m2]	Matrix permeability for Calico Hills Formation nonwelded vitric tuff (UZ) (m2)	lognormal	1.8e-15, 1.8e-13	Same as MatrixPermeability_BFw_[m2]	RF	UZFT	1169				
MatrixPermeability_CHnz m2]	Matrix permeability for Calico Hills Formation nonwelded zeolitic tuff (UZ) (m2)	lognormal	9.8e-19, 9.8e-17	Same as MatrixPermeability_BFw_[m2]	RF	UZFT	1170				
MatrixPermeability_PPw_ [m2]	Matrix permeability for Prow Pass welded tuff	lognormal	1.3e-18, 1.3e-16	Same as MatrixPermeability BFw [m2]	RF	UZFT	1171				
MatrixPermeability_UCF_ [m2]	Matrix permeability for undifferentiated moderately welded units of Crater Flat Tuff (UZ)	lognormal	5.4e-19, 5.4e-17	Same as MatrixPermeability_BFw_[m2]	RF	UZFT	1172				
MatrixPermeability_BFw_ [m2]	Matrix permeability for Bull Frog welded tuff (UZ) (m2)	lognormal	2.1e-20, 2.1e-18	Based on the expert judgement of USFIC KTI staff (EXP, OBS), drawing from information documented by Bechtel SAIC	RF	UZFT	1173				
MatrixPermeability_UFZ_ [m2]	Matrix permeability for unsaturated fault zone (UZ) (m2)	lognormal	1.8e-19, 1.8e-16	Same as MatrixPermeability_BFw_[m2]	RF	UZFT	1174				Besides sampled Kas, most important terms in calculating Rfs
MatrixPorosity_TSw_	Matrix porosity for Topopah Springs	constant	0.08	Same as MatrixPorosity_BFw_	RF	UZFT	1175				
MatrixPorosity_CHnv	Matrix porosity for Calico Hills Formation nonwelded vitric (UZ)	constant	0.32	Same as MatrixPorosity_BFw_	RF	UZFT	1176				
MatrixPorosity_CHnz	Matrix porosity for Calico Hills Formation nonwelded zeolitic (UZ)	constant	0.24	Same as MatrixPorosity_BFw_	RF	UZFT	1177				

	-			- State of the second sec	CNWRA	TPA	Order for	Recommended	New	Notes	Comments
Name	Description	PDF Type	Value(s)	Comments	Contact	Section	IPA.INP	Contact	Value		
MatrixPorosity_PPw_	Matrix porosity for Prow Pass welded (UZ)	constant	0.25	Same as MatrixPorosity_BFw_	RF	UZFT	1178				
MatrixPorosity_UCF_	Matrix porosity for Upper Crater Flat undifferentiated (UZ)	constant	0.22	Same as MatrixPorosity_BFw_	RF	UZFT	1179				
MatrixPorosity_BFw_	Matrix porosity for Bullfrog welded (UZ)	constant	0.10	Constant because measured variations are small: data averages	RF	UZFT	1180				a and the second s
MatrixPorosity_UFZ_	Matrix porosity for Unsaturated Fault	constant	0.12	Same as MatrixPorosity_BFw_	RF	UZFT	1181			Presidential and Color limited and an ender the second state of th	
MatrixBeta_TSw_	Matrix van Genuchten beta parameter for Topopah	constant	1.9	Same as MatrixBeta_BFw_	RF	UZFT	1182				
MatrixBeta_CHnv	Matrix van Genuchten beta parameter for Calico Hills-nonwelded	constant	1.3	Same as MatrixBeta_BFw_	RF	UZFT	1183				15
MatrixBeta_CHnz	Matrix van Genuchten beta parameter for Calico Hills—nonwelded zeolitic (UZ	constant	1.3	Same as MatrixBeta_BFw_	RF	UZFT	1184				
MatrixBeta_PPw_	Matrix van Genuchten beta parameter for Prow Pass—welded (UZ)	constant	1.5	Same as MatrixBeta_BFw_	RF	UZFT	1185				
MatrixBeta_UCF_	Matrix van Genuchten beta parameter for Upper Crater Flat	constant	2.1	Same as MatrixBeta_BFw_	RF	UZFT	1186				
MatrixBeta_BFw_	Matrix van Genuchten beta parameter for Bullfrog—welded (UZ)	constant	2.5	Constant because uncertainty is unimportant compared with uncertainties in matrix permeability:	RF	UZFT	1187				ч.
MatrixBeta_UFZ_	Matrix van Genuchten beta parameter for Unsaturated Fault Zone	constant	2.3	Same as MatrixBeta_BFw_	RF	UZFT	1188				
FracturePermeability_TS w_[m2]	Bulk fracture permeability (m2) of Topopah Spring welded	lognormal	1.1e-14, 1.1e-10	Same as FracturePermeability_BFw_[m2]	RF	UZFT	1203				
FracturePermeability_CH nv[m2]	Bulk fracture permeability (m2) of Calico Hills Formation nonwelded vitric tuff	lognormal	4.1e-16, 4.1e-12	Same as FracturePermeability_BFw_[m2]	RF	UZFT	1204				
FracturePermeability_CH nz[m2]	Bulk fracture permeability (m2) of Calico Hills Formation nonwelded zeolitic tuff	lognormal	4.1e-16, 4.1e-12	Same as FracturePermeability_BFw_[m2]	RF	UZFT	1205				
FracturePermeability_PP w_[m2]	Bulk fracture permeability (m2) of Prow Pass Tuff welded	lognormal	2.2e-15, 2.2e-11	Same as FracturePermeability_BFw_[m2]	RF	UZFT	1206				
FracturePermeability_UC F_[m2]	Bulk fracture permeability (m2) of Undifferentiated Crater Flat moderately welded	lognormal	2.5e-16, 2.5e-12	Same as FracturePermeability_BFw_[m2]	RF	UZFT	1207				
FracturePermeability_BF w_[m2]	Bulk fracture permeability (m2) of Bullfrog welded tuff (UZ)	lognormal	4.3e-15, 4.3e-11	Based on the expert judgement of USFIC staff drawing from information documented by Bechtel	RF	UZFT	1208				
FracturePermeability_UF Z_[m2]	Bulk fracture permeability (m2) of unsaturated fault zone	lognormal	1.0e-11, 1.0e-13	Same as FracturePermeability_BFw_[m2]	RF	UZFT	1209				
FracturePorosity_TSw_	Fracture porosity of Topopah Springs	loguniform	2.3e-3, 5.8e-2	Same as FracturePorosity_BFw_	RF	UZFT	1210				
FracturePorosity_CHnv	Fracture porosity of Calico Hills Formation nonwelded vitric (UZ)	loguniform	2.3e-4, 5.7e-3	Same as FracturePorosity_BFw_	RF	UZFT	1211				
FracturePorosity_CHnz	Fracture porosity of Calico Hills Formation nonwelded zeolitic (UZ)	loguniform	1.5e-4, 3.8e-3	Same as FracturePorosity_BFw_	RF	UZFT	1212				

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
FracturePorosity_PPw_	Fracture porosity of Prow Pass welded (UZ)	loguniform	1.9e-4, 4.9e-3	Same as FracturePorosity_BFw_	RF	UZFT	1213				
FracturePorosity_UCF_	Fracture porosity of Undifferentiated Crater Flat moderately welded	loguniform	7.4e-5, 1.9e-3	Same as FracturePorosity_BFw_	RF	UZFT	1214				
FracturePorosity_BFw_	Fracture porosity of Bullfrog welded (UZ)	loguniform	1.9e-4, 4.9e-3	Best estimate of the USFIC team based on mean values from DOE estimates for drift-scale model in	RF	UZFT	1215	E:			
FracturePorosity_UFZ_	Fracture porosity of Unsaturated Fault Zone	loguniform	1.0e-3, 1.0e-2	Same as FracturePorosity_BFw_	RF	UZFT	1216				
FractureBeta_TSw_	van Genuchten beta parameter for Topopah Spring welded (UZ)	constant	2.7	Same as FractureBeta_BFw_	RF	UZFT	1217				
FractureBeta_CHnv	van Genuchten beta parameter for Calico Hills nonwelded vitric	constant	2.7	Same as FractureBeta_BFw_	RF	UZFT	1218				
FractureBeta_CHnz	van Genuchten beta parameter for Calico Hills nonwelded zeolitic	constant	2.7	Same as FractureBeta_BFw_	RF	UZFT	1219				
FractureBeta_PPw_	van Genuchten beta parameter for Prow Pass welded (UZ)	constant	2.7	Same as FractureBeta_BFw_	RF	UZFT	1220				
FractureBeta_UCF_	van Genuchten beta parameter for Undifferentiated Crater Flat (UZ)	constant	2.7	Same as FractureBeta_BFw_	RF	UZFT	1221				
FractureBeta_BFw_	van Genuchten beta parameter for Bullfrog welded (UZ)	constant	2.7	Based on expert judgement and closely linked with related parameters to yield a consistent representation of observations,	RF	UZFT	1222				
FractureBeta_UFZ_	van Genuchten beta parameter for Unsaturated Fault Zone	constant	2.7	Same as FractureBeta_BFw_	RF	UZFT	1223	12 and 1 PP 1 and 1 at a la			
FractureAperture_BFw_[constant	1.0e-4		RF	UZFT	1224	McMurry			
FractureAperture_CHnv[constant	1.0e-4		RF	UZFT	1225	McMurry			
FractureAperture_CHnz[constant	1.0e-4		RF	UZFT	1226	McMurry			
FractureAperture_PPw_[constant	1.0e-4		RF	UZFT	1227	McMurry			
FractureAperture_ISw_[constant	1.0e-4		RF	UZET	1228	McMurry			
FractureAperture_UCF_[constant	1.0e-4	and a second	RF	UZFI	1229	McMurry			
TSw_Thickness_1SubAre	Topopah Spring-welded	constant constant	1.0e-4 100.0	Same as	RF	UZFT	1230	MCMUITY			Will thicknesses need to be modified if footprint is
a[m] CHnvThickness_1SubAre a[m]	Subarea1 Calico Hills- nonwelded vitric thickness (m) (UZ)	constant	19.0	Same as CHnvThickness_10SubArea[m]	RF	UZFT	1277				changed :
CH_Total_Thickness_1Su bArea[m]	Subarea1 Calico Hills- total thickness (m) nonwelded vitric and	constant	91.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1278				
PPw_Thickness_1SubAre a[m]	Subarea1 Prow Pass—welded thickness (m) (UZ)	constant	50.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1279				
UCF_Thickness_1SubAre a[m]	Subarea1 Upper Crater Flat thickness (m) (UZ)	constant	57.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1280				
BFw_Thickness_1SubAre a[m]	Subarea1 Bullfrog—welded	constant	22.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1281	10			
UFZ_Thickness_1SubAre a[m]	Subarea1 Unsaturated Fracture Zone thickness (m) (UZ)	constant	0.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1282				
TSw_Thickness_2SubAre a[m]	Subarea2 Topopah Spring—welded thickness (m) (UZ)	constant	161.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1283				

						TDA	Order for	Recommended	Now	Notes	Comments
Name	Description	PDF Type	Value(s)	Comments	Contact	Section	TPA.INP	Contact	Value		
					Contact	30000		Contact	Value		· · · · · · · · · · · · · · · · · · ·
CHnvThickness_2SubAre	Subarea2 Calico	constant	0.0	Same as	RF	UZFT				-	
a[m]	Hills-nonwelded vitric			CHnvThickness_10SubArea[m]			1284				
	thickness (m) (UZ)										
CH_Total_Thickness_2Su	Subarea2 Calico	constant	110.0	Same as	RF ·	UZFI	4005				
bArea[m]	Hills-total thickness			BFw_Thickness_10SubArea[m]			1285			-	
	(m) nonwelded vitric and				05						
PPw_Thickness_2SubAre	Subarea2 Prow	constant	50.0	Same as	RF	UZFI	4000				
a[m]	Pass-welded thickness			BFw_Inickness_10SubArea[m]			1280				. · ·
	(m) (UZ)		10.0		05						·
UCF_Inickness_2SubAre	Subarea2 Upper Crater	constant	18.0	Same as	IRF	UZFI	1287				-
almi	Flat thickness (m) (UZ)	aanatant	0.0	BFW_INICKNESS_IUSUDArea[m]		11757					· · · · · · · · · · · · · · · · · · ·
BFW_Thickness_2SubAre	Subareaz	constant	0.0	Same as REW Thickness 10SubAras[m]		02F1	1288				
a[m]	Subaraa2 Unceturated	constant	0.0	Samo ac	OF.						
orz_mickness_zoubAre	Subdiedz Unsaluraleu	CONSIGNE	0.0 /	BEW Thickness 10SubArestml		0211	1280				
alini	(m) (117)			Brw_Inickness_1030bArea[iii]	1		1203				
TSw Thickness 3SubAre	Subarea3 Toponah	constant	79.0	Same as	RF	UZET					
a[m]	Soring-welded	constant	10.0	BEw Thickness 10SubArea[m]	10	021	1290				
a[m]	thickness (m) (117)						-				
CHnyThickness 3SubAre	Subarea3 Calico	constant	24.0	Same as	RF	UZET					· · · · · · · · · · · · · · · · · · ·
alm]	Hills-nonwelded vitric	l	- 1.0	CHnyThickness 10SubArea[m]	[[*]	5 2	1291	1 1			•
	thickness (m) (UZ)										
CH Total Thickness 3Su	Subarea3 Calico	constant	79.0	Same as	RF	UZFT					
bArea[m]	Hills-total thickness			BFw Thickness 10SubArea[m]			1292				
	(m) nonwelded vitric										
PPw Thickness 3SubAre	Subarea3 Prow	constant	52.0	Same as	RF	UZFT					
a[m]	Passwelded thickness			BFw_Thickness_10SubArea[m]			1293				
	(m) (UZ)										
UCF_Thickness_3SubAre	Subarea3 Upper Crater	constant	68.0	Same as	RF	UZFT	1204				
a[m]	Flat thickness (m) (UZ)			BFw_Thickness_10SubArea[m]			1294			-	
BFw_Thickness_3SubAre	Subarea3	constant	81.0	Same as	RF	UZFT	1205				
a[m]	Bullfrog-welded			BFw_Thickness_10SubArea[m]			1235				· · · · · · · · · · · · · · · · · · ·
UFZ_Thickness_3SubAre	Subarea3 Unsaturated	constant	0.0	Same as	RF	UZFT					-
a[m]	Fracture Zone thickness			BFw_Thickness_10SubArea[m]	[1296				
	(m) (UZ)		·								· · · · · · · · · · · · · · · · · · ·
TSw_Thickness_4SubAre	Subarea4 Topopah	constant	144.0	Same as	RF	UZFT					
a(m)	Spring-welded			BFw_Thickness_10SubArea[m]	1		1297				
	thickness (m) (UZ)			-							
CHnv1 hickness_4SubAre	Subarea4 Calico	constant	17.0	Same as	KF	UZFI	4000				
a[m]	Hillsnonwelded vitric		i 1	CHnvThickness_10SubArea[m]	1		1298				
	thickness (m) (UZ)		105.0	0	00						
CH_total_Inickness_45u	Subarea4 Calico	constant	105.0	Same as	RF	UZFI	1200				
DArea[m]	Hills-total thickness			Brw_Inickness_IUSubArea[m]	1		1299				
PPu Thickness (SubAro	(III) NOTWEIDED VILITE AND	constant	56.0	Samo ac	DE	UTET					
	Dubaica+110w	constant		BEw Thickness 10SubArea[m]		0211	1300				•
almi	(m) (117)						1000				
LICE Thickness (SubAre	Subarea4 Linner Crater	constant	61.0	Same as	RF	LIZET					
a[m]	Flat thickness (m) (117)	constant	01.0	BEw Thickness 10SubAreafm]			1301				
BFw Thickness 4SubAre	Subarea4	constant	0.0	Same as	RF	UZFT					
a[m]	Bullfroo-welded	Conotant	0.0	BFw Thickness 10SubArea[m]			1302				
UFZ Thickness 4SubAre	Subarea4 Unsaturated	constant	0.0	Same as	RF	UZFT					
a[m]	Fracture Zone thickness			BFw Thickness 10SubArea[m]			1303				
	(m) (UZ)				1			Į į			
TSw Thickness 5SubAre	Subarea5 Topopah	constant	58.0	Same as	RF	UZFT					
a[m]	Spring-welded			BFw_Thickness_10SubArea[m]			1304				
	thickness (m) (UZ)		1								
CHnvThickness_5SubAre	Subarea5 Calico	constant	31.0	Same as	RF	UZFT					
a[m]	Hillsnonwelded vitric		[CHnvThickness_10SubArea[m]	1		1305	{			
	thickness (m) (UZ)					L					
CH_Total_Thickness_5Su	Subarea5 Calico	constant	80.0	Same as	RF `	UZFT		- 7			
bArea[m]	Hills-total thickness			BFw_Thickness_10SubArea[m]			1306				
	(m) nonwelded vitric and						1				

.

12/19/2008

22 of 33

Ξ.

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
Pw_Thickness_5SubAre [m]	Subarea5 Prow Pass—welded thickness (m) (UZ)	constant	65.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1307				
JCF_Thickness_5SubAre	Subarea5 Upper Crater Flat thickness (m) (UZ)	constant	71.0	Same as BFw Thickness 10SubArea[m]	RF	UZFT	1308				
BFw_Thickness_5SubAre	Subarea5 Bulifrog-welded	constant	101.0	Same as BEw Thickness 10SubArea[m]	RF	UZFT	1309				
JFZ_Thickness_5SubAre [m]	Subarea5 Unsaturated Fracture Zone thickness	constant	0.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1310				
Sw_Thickness_6SubAre [m]	(m) (UZ) Subarea6 Topopah Spring—welded thickness (m) (UZ)	constant	85.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1311				
CHnvThickness_6SubAre [m]	Subarea6 Calico Hills—nonwelded vitric thickness (m) (UZ)	constant	37.0	Same as CHnvThickness_10SubArea[m]	RF	UZFT	1312				
CH_Total_Thickness_6Su Area[m]	Subarea6 Calico Hills- total thickness (m) nonwelded vitric and	constant	95.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1313				
PPw_Thickness_6SubAre [m]	Subarea6 Prow Pass—welded thickness (m) (UZ)	constant	66.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1314				
JCF_Thickness_6SubAre I[m]	Subarea6 Upper Crater Flat thickness (m) (UZ)	constant	81.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1315				
3Fw_Thickness_6SubAre	Subarea6 Bullfrog-welded	constant	51.0	Same as BFw Thickness 10SubArea[m]	RF	UZFT	1316				
JFZ_Thickness_6SubAre [m]	Subarea6 Unsaturated Fracture Zone thickness (m) (UZ)	constant	0.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1317				
Sw_Thickness_7SubAre [[m]	Subarea7 Topopah Spring—welded thickness (m) (UZ)	constant	138.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1318	-			
CHnvThickness_7SubAre [m]	Subarea7 Calico Hills—nonwelded vitric thickness (m) (UZ)	constant	44.0	Same as CHnvThickness_10SubArea[m]	RF	UZFT	1319				
CH_Total_Thickness_7Su Area[m]	Subarea7 Calico Hills—total thickness (m) nonwelded vitric and	constant	107.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1320				
PW_Thickness_7SubAre [[m]	Subarea7 Prow Pass—welded thickness (m) (UZ)	constant	66.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1321				
JCF_Thickness_7SubAre [m]	Subarea7 Upper Crater Flat thickness (m) (UZ)	constant	67.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1322				
BFw_Thickness_7SubAre [m]	Subarea7 Bullfrogwelded	constant	0.0	Same as BFw_Thickness_10SubArea[m]	RF.	UZFT	1323				
JFZ_Thickness_7SubAre [[m]	Subarea7 Unsaturated Fracture Zone thickness (m) (UZ)	constant	0.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1324				
Sw_Thickness_8SubAre [[m]	Subarea8 Topopah Spring—welded thickness (m) (UZ)	constant	163.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1325		<u> </u>		
CHnvThickness_8SubAre [m]	Subarea8 Calico Hills—nonwelded vitric thickness (m) (UZ)	constant	0.0	Same as CHnvThickness_10SubArea[m]	RF	UZFT	1326				
CH_Total_Thickness_8Su Area[m]	Subarea8 Calico Hillstotal thickness (m) nonwelded vitric	constant	120.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT	1327				
PPw_Thickness_8SubAre	Subarea8 Prow Pass- welded thickness (m)	constant	25.0	Same as BFw_Thickness_10SubArea[m]	RF	UZFT .	1328	-			
JCF_Thickness_8SubAre [m]	Subarea8 Upper Crater Flat thickness (m) (UZ)	constant	0.0	Same as BFw_Thickness_10SubArea[m]	ŖF	UZFT	1329				
3Fw_Thickness_8SubAre	Subarea8 Bullfrog-welded	constant	0.0	Same as BFw Thickness 10SubArea[m]	RF	UZFT	1330				

23 of 33

Order for TPA.INP Recommended Notes Comments CNWRA TPA New Name Description PDF Type Value(s) Comments Contact Section Contact Value UFZ Thickness 8SubAre Subarea8 Unsaturated 0.0 UZFT constant Same as RF Fracture Zone thickness a[m] BFw Thickness 10SubArea[m] 1331 (m) (UZ) TSw Thickness 9SubAre Subarea9 Topopah constant 91.0 Same as RF UZFT Spring-welded a[m] BFw_Thickness_10SubArea[m] 1332 thickness (m) (UZ) CHnvThickness_9SubAre Subarea9 Calico 0.0 RF constant Same as UZFT Hills-nonwelded vitric a[m] CHnvThickness 10SubArea[m] 1333 thickness (m) (UZ) CH_Total_Thickness_9Su Subarea9 Calico constant 138.0 Same as RF UZFT bArea[m] Hills-total thickness BFw Thickness 10SubArea[m] 1334 (m) nonwelded vitric and PPw_Thickness_9SubAre Subarea9 Prow Passconstant 28.0 Same as RF UZFT 1335 welded thickness (m) BFw_Thickness_10SubArea[m] a[m] UCF_Thickness_9SubAre Subarea9 Upper Crater 9.0 constant Same as UZFT RF 1336 Flat thickness (m) (UZ) BFw_Thickness_10SubArea[m] a(m) BFw Thickness 9SubAre Subarea9 constant 0.0 Same as UZFT RF 1337 Bullfrog-welded BFw Thickness 10SubArea[m] a[m] UFZ_Thickness_9SubAre Subarea9 Unsaturated 0.0 UZFT constant Same as RF Fracture Zone thickness a[m] BFw_Thickness_10SubArea[m] 1338 (m) (UZ) TSw_Thickness_10SubAr Subarea10 Topopah constant 138.0 Same as RF UZFT ea[m] Spring-welded BFw_Thickness_10SubArea[m] 1339 hickness (m) (UZ) CHnvThickness 10SubAr Subarea10 Calico constant 0.0 Derived directly from the Geological RF UZFT Hills-nonwelded vitric ea[m] Framework Model 3.1 (CRWMS thickness (m) (UZ) M&O, 1999) using center of subarea. Chnv_Thickness derived from interpolation of borehole vitric 1340 and zeolitic data circa 2001. See Scientific Notebook #273, pages 1-67. Uncertainty in vitric versus zeolitic thickness needs to be CH Total Thickness 10 Subarea10 Calico constant 137.0 RF UZFT Same as SubArea[m] Hills-total thickness BFw_Thickness_10SubArea[m] 1341 (m) nonwelded vitric and zeolitic (UZ) PPw Thickness 10SubAr Subarea10 Prow Pass-0.0 constant Same as RF UZFT 1342 ea[m] welded thickness (m) BFw Thickness 10SubArea[m] UCF_Thickness_10SubAr Subarea10 Upper Crater 0.0 constant Same as -RF UZFT 1343 Flat thickness (m) (UZ) ea[m] BFw_Thickness_10SubArea[m] BFw_Thickness 10SubAr Subarea10 constant 0.0 Derived directly from the Geological RF UZFT ea[m] Bullfrog-welded Framework Model 3.1 (CRWMS thickness (m) (UZ) M&O, 1999) using center of subarea, EDA II design for repository elevation (varies north to 1344 south), and current best estimate of water table map of USFIC team in 2001. All thicknesses should be updated to reflect license application repository and UFZ Thickness 10SubAr Subarea10 Unsaturated 0.0 constant Same as RF UZFT Fracture Zone thickness ea[m] BFw Thickness 10SubArea[m] 1345 m) (UZ) SurfaceAreaFactor TSw constant 590.0 SP UZFT Same as 1231 SurfaceAreaFactor CHnv constant 590.0 UZFT Same as SP 1232 SurfaceAreaFactor CHnz constant 590.0 SP Same as UZFT 1233 SurfaceAreaFactor PPw 590.0 SP constant Same as UZFT 1234 SurfaceAreaFactor UCF constant 590.0 Same as ISP. UZFT 1235 SurfaceAreaFactor BFw 590.0 constant Dervied using site-specific data SP UZFT 1236 from Contardi et al. (2001) SurfaceAreaFactor UFZ 590.0 1237 constant UZFT Same as SP

					CNWRA	TPA	Order for	Recommended	New	Notes	Comments
Name	Description	PDF Type	Value(s)	Comments	Contact	Section	IPA.INP	Contact	Value		
FractureColloidRetardatio	None	usersupplied	15 1.0,	Same as	SP	UZFT				· · · · · · · · · · · · · · · · · · ·	
nFactor_TSw_[m3/kg]		pwisecdf	0.0, 1.01,	FractureColloidRetardationFactor_B							
			0.01, 1.5,	Fw_[m3/kg]							
		ĺ	0.04, 2.0,								
			0.06, 4.0,								
		ļ	0.12, 6.0,								
			10.15,	-			1228				
			0.25				1230				
			14.86.								
	Į	[0.35,		1			l I	ļ		
	-		26.0, 0.5,								
			34.35,		· .	·					· ·
			0.6,								
Event van Callaid Data minitia	<u> </u>		45.39,	Como og							
PractureColloidRetardatio		usersupplied	10 1.0,	Same as	55	UZFI					
In actor_or inv[ino/kg]		pwisecui	0.01 1.5	Fw [m3/kn]						· ·	
			0.04. 2.0.	[
			0.06, 4.0,								
]	0.12, 6.0,		1	1	1		1]	·
			0.15,								
			10.23,				1239				
			0.25,								
		ļ	14.00,		1	•	ſ		1		
		· ·	26.0. 0.5.					,			
			34.35,								
			0.6,								
			45.39,								
FractureColloidRetardatio	None	usersupplied	15 1.0,	Same as	SP	UZFT					
nFactor_CHnz(m3/kg)		pwisecar	0.0, 1.01,	FractureColloidRetardationFactor_B							
			0.04 20	[w_[iiio/kg]	· ·					1.	
			0.06, 4.0,		l		l		ļ		•
		}	0.12, 6.0,								
			0.15,		1					· ·	
			10.23,				1240				
			0.25,				l		l	l	
			0 35						1		
			26 0. 0 5.								
			34.35,								
			0.6,								
			45.39,	· · · · · · · · · · · · · · · · · · ·	l				<u> </u>	· · · · ·	
FractureColloidRetardatio	None	usersupplied	15 1.0,	Same as	SP	UZFT					
nFactor_PPw_[m3/kg]		pwisecat	0.0, 1.01,	FractureColloidRetardationFactor_B							
			0.01, 1.3,	rw_[iii5/kg]						· ·	
			0.06, 4.0,		1	1	1	1	1] .	
			0.12, 6.0,								
		1	0.15,								
			10.23,	· · ·			1241				
[0.25,			{		1		1	
]	14.86,		· .						1
			260.05							· ·	
			34.35.								
l		l	0.6,		ļ	ļ	l	1		{	1
]	45.39,								· · · ·

.

12/19/2008

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
FractureColloidRetardatio nFactor_UCF_[m3/kg]	None	usersupplied pwisecdf	15 1.0, 0.0, 1.01, 0.01, 1.5, 0.04, 2.0, 0.12, 6.0, 0.15, 10.23, 0.25, 14.86, 0.35, 26.0, 0.5, 34.35, 0.6, 45.39,	Same as FractureColloidRetardationFactor_B Fw_[m3/kg]	SP	UZFT	1242				
FractureColloidRetardatio	Retardation factor for colloids - Bull Frog welded	usersupplied pwisecdf	15 1.0, 0.0, 1.01, 0.01, 1.5, 0.04, 2.0, 0.12, 6.0, 0.15, 10.23, 0.25, 14.86, 0.35, 26.0, 0.5, 34.35, 0.6, 45.39,	Best available information; taken from DOE distribution (ANL-NBS- HS-000031 Rev 1, Table 7). Linearly interpolated in Log space between tabulated values	SP	UZFT	1243				
FractureColloidRetardatio nFactor_UFZ_[m3/kg]	None	usersupplied pwisecdf	15 1.0, 0.0, 1.01, 0.01, 1.5, 0.04, 2.0, 0.12, 6.0, 0.15, 10.23, 0.25, 14.86, 0.35, 26.0, 0.5, 34.35, 0.6, 45.39.	Same as FractureColloidRetardationFactor_B Fw_[m3/kg]	SP	UZFT	1244		-		

Name	Description	PDF Type	Value(s)	Comments	CNWRA	TPA	Order for TPA.INP	Recommended	New	Notes	Comments
MatrixColloidRetardation		usersupplied	20 1.0.	Same as	SP	UZFT		Contact	value		
Factor_TSw_[m3/kg]		pwisecdf	0.0, 1.01	MatrixColloidRetardationFactor_BF			·				· .
			0.01, 1.5, 0.07, 2.0,	,w_[m3/kg]							
			0.12, 4.0,								
			0.22, 6.0,						1		
			0.33,			· ·					
			22.14,		l,	l	1045		ļ		
			0.45,				1245				
			34.0, 0.5, 56.15,							· ·	
			0.55,					· .			
			92.85, 0.6,					ر			
			153.5,								
			253.9,								
		<u> </u>	0.7,		0.0		L				
Factor CHnv[m3/kg]		pwisecdf	0.0, 1.01	Same as MatrixColloidRetardationFactor BF	58	02F1					1
			0.01, 1.5,	,w_[m3/kg]							
· ·			0.07, 2.0, 0.12, 4.0,	5 1							· ·
			0.22, 6.0,								
]	0.29, 8.0,	· ·						•	
			14.4, 0.4,	•							
			0.45,			1	1246				
			34.0, 0.5,		1						
			0.55,								
			92.85,								
			153.5,								
	-		0.65,								
	-		255.9, 0.7,								
MatrixColloidRetardation		usersupplied	20 1.0,	Same as	SP	UZFT					· · · ·
racioi_Crinz[mə/ky]		pwisecui	0.01, 1.5,	w_[m3/kg]							
			0.07, 2.0,	,		·].	1				
			0.22, 6.0,								
			0.29, 8.0,								2
			14.4, 0.4,								
			22.14,				1247				· ·
		ļ	34.0, 0.5,								
			56.15,	· ·					1		
			92.85,							· ·	
			0.6,		-						
			0.65,	· · ·							· · · · · · · · · · · · · · · · · · ·
4			253.9,								
			10.7,		L	ι	L	L			1 · · · · · · · · · · · · · · · ·

-

27 of 33

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes -	Comments
MatrixColloidRetardation Factor_PPw_[m3/kg]		usersupplied pwisecdf	20 1.0, 0.0, 1.01, 0.01, 1.5, 0.07, 2.0,	Same as MatrixColloidRetardationFactor_BF w_[m3/kg]	SP	UZFT					
			0.12, 4.0, 0.22, 6.0, 0.29, 8.0, 0.33,								
	•	-	22.14, 0.45, 34.0, 0.5,				1248				
			0.55, 92.85, 0.6,								
			153.5, 0.65, 253.9, 0.7,								
MatrixColloidRetardation Factor_UCF_[m3/kg]		usersupplied pwisecdf	20 1.0, 0.0, 1.01, 0.01, 1.5, 0.07, 2.0,	Same as MatrixColloidRetardationFactor_BF w_[m3/kg]	SP	UZFT					
			0.12, 4.0 0.22, 6.0 0.29, 8.0 0.33,								
			14.4, 0.4, 22.14, 0.45, 34.0, 0.5.	· · ·			1249				
			56.15, 0.55, 92.85,					-			
			153.5, 0.65, 253.9,						-		
MatrixColloidRetardation Factor_BFw_[m3/kg]		usersupplied pwisecdf	20 1.0, 0.0, 1.01, 0.01, 1.5, 0.07, 2.0	Best available information from ANL NBS-HS-000031 Rev 1, Table 8. Linearly interpolated in Log space between tabulated values	SP	UZFT					
			0.12, 4.0, 0.22, 6.0, 0.29, 8.0, 0.33			-					
			14.4, 0.4, 22.14, 0.45,				1250				
			34.0, 0.5, 56.15, 0.55, 92.85,								
			0.6, 153.5, 0.65, 253.9,								

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
MatrixColloidRetardation Factor_UFZ_[m3/kg]		usersupplied pwisecdf	20 1.0, 0.0, 1.01,	Same as MatrixColloidRetardationFactor_BF	SP	UZFT					
	1		0.01, 1.5, 0.07, 2.0,	.w_[m3/kg]							
			0.12, 4.0, 0.22, 6.0,								
			0.29, 8.0,		{			 			
		7	14.4, 0.4,								
			22.14, 0.45,	· . ·	ļ		1251				
			34.0, 0.5, 56.15,								
			0.55,								
			0.6,		1						
			153.5, 0.65,								
		1	253.9, 0.7,								
FractureColloidConcentra		usersupplied	16 1.0e-	Same as FractureColloidConcentration BEw	SP	UZFT					
			2.51e-6,	[kg/m3]	1	-					
			0.1, 6.31e-6,								
			0.2. 1.58e-5,						-		
			0.3, 3.98e-5.				1252				
			0.4, 1.0e								
			4, 0.5, 2.51e-4,								
			0.6, 6.31e-4,								
			0.7, 1.0e- 3.0.75.								
FractureColloidConcentra	· ·	usersupplied	16 1.0e-	Same as	SP	UZFT					
		pwisecui	2.51e-6,	[kg/m3]	1						
			0.1, 6.31e-6,].						
			0.2. 1.58e-5,								
	1		0.3,				1253			-	
			0.4, 1.0e								
			4, 0.5, 2.51e-4,	,	ļ						
			0.6, 6.31e-4.								
			0.7, 1.0e							· .	

•

3

•

.

·····	r———	1	T	·····		T	Order for	-		Notes	Comments	י ו
Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	TPA.INP	Recommended Contact	New Value	Notes	Comments	
FractureColloidConcentra		usersupplied	16 1.0e-	Same as -	SP	UZFT					· · · ·	1 .
tion_Chnz[kg/m3]		pwisecdf	6, 0.0,	FractureColloidConcentration_BFw_	j	1	1	1 1				· ·
		-	2.51e-6,	[kg/m3]]							
			0.1,				1					
			6.31e-6,									
· ·			0.2.							-		
			1.58e-5,									•
			0.3,		{		1254					
· · ·	÷.,		3.98e-5,		•							
			10.4, 1.0e	1								
			4, 0.5,				1				· · ·	
			2.516-4,									
			6 310-4									· ·
	•		0.7 1 0e		l	l	l				Į	
1			3. 0.75.									
FractureColloidConcentra		usersupplied	16 1.0e-	Same as	SP	UZFT						1
tion_PPw_[kg/m3]		pwisecdf	6, 0.0,	FractureColloidConcentration_BFw_								
			2.51e-6,	[kg/m3]								
1			0.1,									
			6.31e-6,				·					
		1	0.2.		1	1	1] .]				
			1.58e-5,								· · ·	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -
			0.3,				1255					
			3.908-5,									
			4 0 5	· ·	1							
			2 51e-4		· ·		1					
			0.6.									
			6.31e-4.									
			0.7, 1.0e	-								
			3, 0.75,									
FractureColloidConcentra		usersupplied	16 1.0e-	Same as	SP	UZFT					· · · · · · · · · · · · · · · · · · ·]
tion_UCF_[kg/m3]	· .	pwisecdf	6, 0.0,	FractureColloidConcentration_BFw_								
		1	2.51e-6,	[[kg/m3]	ļ	ļ	{	{ {				
			0.1,									•
			6.31e-6,									
			0.2									
			1.508-5,		1							
			3 980-5	-			1256					
		l l	0.4 100		ļ		l	[]				
			4, 0, 5.	· · ·	1							
			2.51e-4.									
			0.6,									
			6.31e-4,									
			0.7, 1.0e	4								- M - 2
			3, 0.75,									

			T	1	1	T	Order for			Notes	Comments
Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	TPA.INP	Recommended Contact	New Value	notes	Comments
FractureColloidConcentra		usersupplied	16 1.0e	Best available information; taken from MDL-EBS-PA-000004 Rev 0.	SP	UZFT				· · · · · · · ·	
		pinicoodi	2.51e-6.	Table 5. linearly interpolated in log							
			0.1.	space				. •			· ·
			6.31e-6.								
1 ·	•		0.2.	1	1	1	1		1	1	1
			1.58e-5,			1					
			0.3,		,		4057				
			3.98e-5,				125/				
			0.4, 1.0e	· .					· ·		
	ļ	l l	4, 0.5,		}	{	{	}	{		1
· · ·	· ·		2.51e-4,								
			0.6,			1					
			6.31e-4,								
			0.7, 1.0e	4							
			3, 0.75,			L					
FractureColloidConcentra		usersupplied	16 1.0e-	- Same as	SP	UZFT					
tion_UFZ_[kg/m3]		pwisecdf	6, 0.0,	FractureColloidConcentration_BFw	- · · ·				1		
			2.51e-6,	[kg/m3]							
			0.1,								
			6.31e-6,		l l	1	l	ļ			
1) ·		0.2.								
			1.58e-5,								
•			0.3,			· ·	1258		i i	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			3.98e-5,		1	1		· ·			
			0.4, 1.0e	-	1	· ·	1	l	l	l	2
1		1	4, 0.5,								
			2.51e-4,								
			0.6,			1					
			0.316-4,	*							
			0.7, 1.08	-		1				· ·	
MatrixColloidConcentratio		usesupplied	16 1 60	Samo as	CD						
n TSw [kg/m3]		usersupplied	7 0 0	Matrix Colloid Concontration REw (k	, , , , , , , , , , , , , , , , , , , ,						
//_13w_[kg/iii3]		pwisecui	3 020-7		`						
			0.1	g/m3j							
			1 010-6								
		1 .	10.2	1	1	1	1	1)		
			2 538-6								
			0.3								
			6 37e-6			· ·	1259			1	
			0.4. 1.6e				1200				
			5.0.5.		1	1	1	1	1	1	
			4.02e-5								
			0.6.			· .					
			1.01e-4.							1	
			0.7, 1.6e	4		1		1			
{		1	4. 0.75			· ·	1	1			
			3 440-4		1				· .		

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
MatrixColloidConcentratio n_CHnv[kg/m3]		usersupplied pwisecdf	16 3.1e- 7, 0.0, 7.78e-7,	Same as MatrixColloidConcentration_BFw_[k g/m3]	SP	UZFT					
			0.1, 1.96e-6, 0.2,								
			4.99e-o, 0.3, 1.23e-5,				1260				
			5, 0.5, 7.78e-5, 0.6.								
			1.96e-4, 0.7, 3.1e- 4, 0.75,	-							
			6.66e-4,					· · · · · · · · · · · · · · · · · · ·			
n_Chnz[kg/m3]		pwisecdf	16 1.1e- 7, 0.0, 2 768e-7.	Same as MatrixColloidConcentration_BFw_[k g/m3]	SP	UZFI					
			0.1, 6.94e-7,	5							
			0.2, 1.74e-6, 0.3.								
			4.38e-6, 0.4, 1.1e-				1261				
·			5, 0.5, 2.76e-5, 0.6,								
			6.94e-5, 0.7, 1.1e-	-			-	· ·			
			4, 0.75, 2 37e-4								
MatrixColloidConcentratio		usersupplied	16 4.1e-	Same as	SP	UZFT			•		
n_PPw_[kg/m3]		pwisecdf	7, 0.0, 1.03e-6,	MatrixColloidConcentration_BFw_[k g/m3]							
· · ·			0.1, 2.59e-6, 0.2,								
			6.48e-6, 0.3,				1000				
			0.4, 4.1e- 5, 0.5,				1202		-	· · · ·	
•			1.03e-4, 0.6, 2.59o-4								
			0.7, 4.1e- 4, 0.75,								
		1	0 04 - 4	1	1		1				

Name	Description	PDF Type	Value(s)	Comments	CNWRA Contact	TPA Section	Order for TPA.INP	Recommended Contact	New Value	Notes	Comments
MatrixColloidConcentratio n_UCF_[kg/m3]		usersupplied pwisecdf	16 3.3e- 7, 0.0, 8.28e-7, 0.1, 2.08e-6,	Same as MatrixColloidConcentration_BFw_[k g/m3]	SP	UZFT			- -		
			0.2, 5.21e-6, 0.3, 1.31e-5, 0.4, 3.3e 5, 0.5, 8.28e-5, 0 6				1263				
			2.08e-4, 0.7, 3.3e 4, 0.75, 7.09e-4,								
MatrixColloidConcentratio n_BFw_[kg/m3]		usersupplied pwisecdf	16 7.1e- 8, 0.0, 1.78e-7, 0.1,	Data from MDL-EBS-PA-000004 Rev 0, Table 5 after scaling by a filtration factor	SP	UZFT	-			_	
			4.48e-7, 0.2, 1.22e-6, 0.3, 2.82e-6, 0.4, 7.1e	-			1264				
			6, 0.5, 1.78e-5, 0.6, 4.48e-5, 0.7, 7.1e 5, 0.75, 1.53e-4	-							
MatrixColloidConcentratio		constant	0.0	Same as	SP	UZFT	1265				
InletArea1SubArea[m2]	Inlet area (m2) - subarea	constant	5.4e5	Parameter serves only as a	ТМ	UZFT	1266			· ·	
InletArea2SubArea[m2]	1 (UZ) (not used) Inlet area (m2) - subarea 2 (UZ) (not used)	constant	5.4e5	Same as inletArea1SubArea[m2]	ТМ	UZFT	1267				
IntetArea3SubArea[m2]	inlet area (m2) - subarea 3 (UZ) (not used)	constant	5.4e5	Same as InletArea_1SubArea[m2]	тм	UZFT	1268				
InletArea4SubArea[m2]	Inlet area (m2) - subarea 4 (UZ) (not used)	constant	5.4e5	Same as InletArea_1SubArea[m2]	ТМ	UZFT	1269				-
InletArea5SubArea[m2]	Inlet area (m2) - subarea 5 (UZ) (not used)	constant	5.4e5	Same as InletArea_1SubArea[m2]	ŤΜ	UZFT	1270				
InletArea6SubArea[m2]	Inlet area (m2) - subarea 6 (UZ) (not used)	constant	5.4e5	Same as InletArea_1SubArea[m2]	ТМ	UZFT	1271				·
InletArea7SubArea[m2]	Inlet area (m2) - subarea 7 (UZ) (not used)	constant	5.4e5	Same as InletArea_1SubArea[m2]	ТМ	UZFT	1272				
InletArea8SubArea[m2]	Inlet area (m2) - subarea 8 (UZ) (not used)	constant	5.4e5	Same as InletArea1SubArea[m2]	тм	UZFT	1273				
InletArea9SubArea[m2]	Inlet area (m2) - subarea 9 (UZ) (not used)	constant	5.4e5	Same as InletArea_1SubArea[m2]	тм	UZFT	1274				
InletArea_10SubArea[m2]	Inlet area (m2) - subarea 10 (UZ) (not used)	constant	5.4e5	Same as InletArea_1SubArea[m2]	ТМ	UZFT	1275	ĺ ĺ			
** UZFT	l	L		I	1	UZFT	1000	L	L	1	L