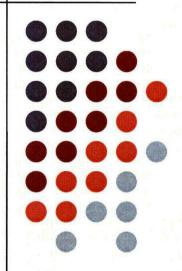
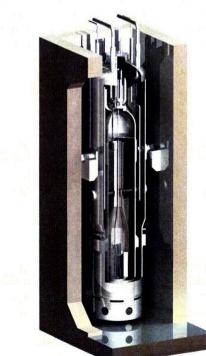
.............

NUSCALE POWER


Introduction

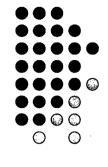

Dr. Paul Lorenzini

Chief Executive Officer

November 20, 2008

U.S. Nuclear Regulatory Commission Pre-Application Meeting Rockville, MD

.............


NUSCALE POWER

2

Proposed Pre-Application Schedule

	FY2008	FY2009		
	4Q	1Q	2Q	3Q
 1st Meeting NuScale and Design Introduction 				2 3 ¹² 8 d 81 10 10
Submit Design Description Report	ы б б 1973 - 185 1970 - 1970 - 1970 1971 -		and and an and an	8 8 8 8 1866916246 18 8 18
 2nd Meeting Codes and Methods Topical Report 	an 19 an 1 Status an 19 an 19 an 19		16 (1 1 Kei (160.61 (56)	
 3rd Meeting Online Refueling Topical Report Multi-Module I&C and Operations Staffing Topical Report 	ung ng ng n			
 4th Meeting Multi-Module PRA Topical Report Severe Accidents Topical Report Dose Calculations and Emergency Planning Topical Report 				

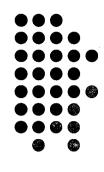
Purpose

SCALE

- Present NuScale's plan for codes and methods that will be used in core design and safety analyses
- Share our integral system testing plan
- Assure consistency with the current light-water reactor (LWR) licensing framework

Codes and Methods

- Unique NuScale Design Features
 - Small, reduced height core
 - Natural circulation under normal operation
 - Passive safety systems
- Key Elements to Address
 - Core and Safety analysis calculational framework
 - Selection of computer codes
 - Verification and validation plans
 - Experimental programs and applicability of existing LWR benchmark data
 - Planned integral system testing as it relates to verification and validation of these methods

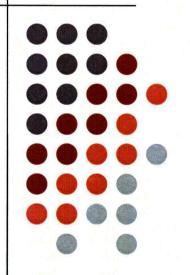

Agenda

NuScale Plant Design Overview Summary of Codes and Methods *Core Design *Fuel Performance Analysis Methods *Non-LOCA Methods *LOCA Methods *Containment Performance Analysis Methods

*Contains Proprietary Information

José Reyes José Reyes Brandon Haugh Kent Welter Kent Welter Eric Young Eric Young

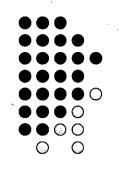
USCALE


NUSCALE POWER

Overview of NuScale Design

Dr. José N. Reyes, Jr. Chief Technical Officer

November 20, 2008


U.S. Nuclear Regulatory Commission Pre-Application Meeting Rockville, MD

Outline

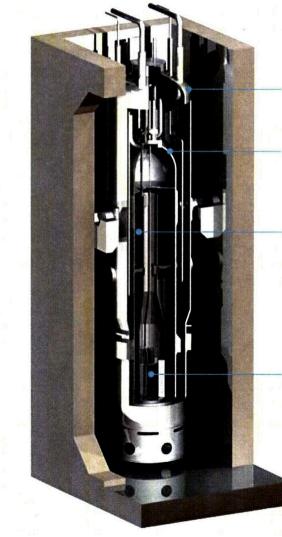
- Single Power Module
- Multi-Module Plant
- Engineered Safety Features

Power

Power Generation Unit

Turbine Generator Set

Condenser -


FW pump²

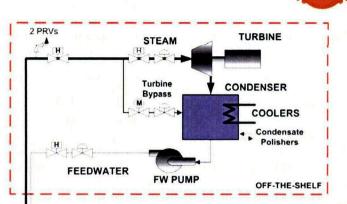
Containment Cooling Pool

NUSCALE POWER

> Containment And NSSS

NSSS and Containment

Containment


Reactor Vessel Helical Coil Steam Generator

Containment Trunnion NUSCALE Power

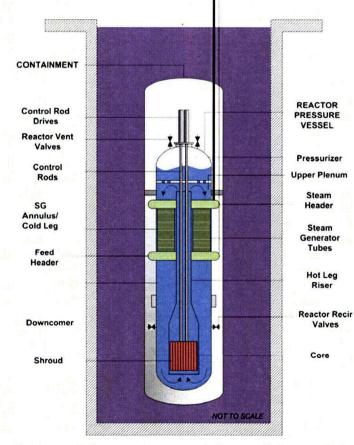
Nuclear Core

Power Generation Unit

One of Two FW Trains Shown

Steam

Header


Steam

Tubes

Hot Leg Riser

Valves

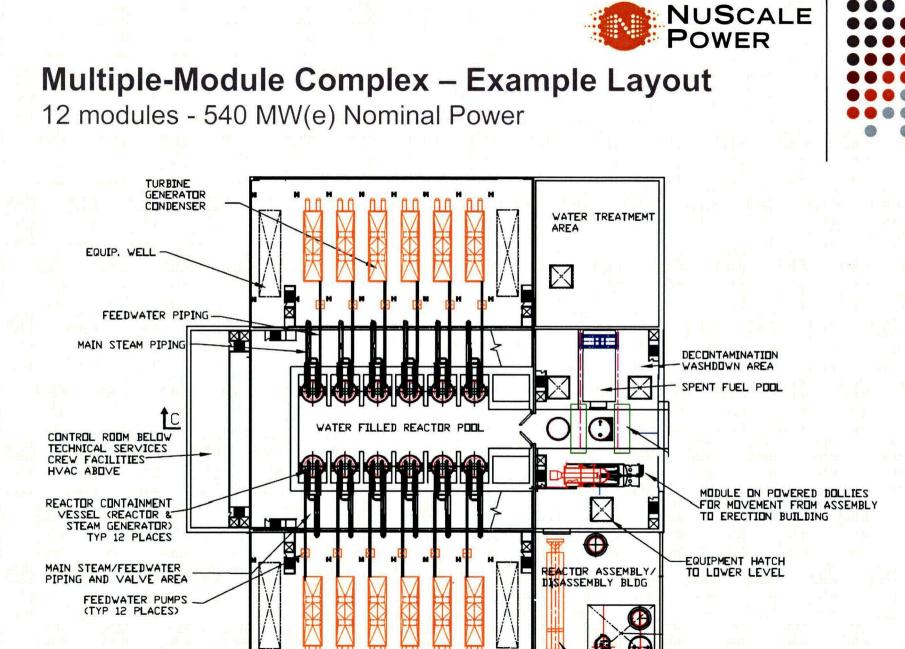
Core

Simple and Robust Design

Integrated Reactor Vessel enclosed . in an air evacuated Containment Vessel

NUSCALE POWER

Immersed in a large pool of water


- Located below grade
- Natural Circulation eliminates equipment and components
- Negatively buoyant

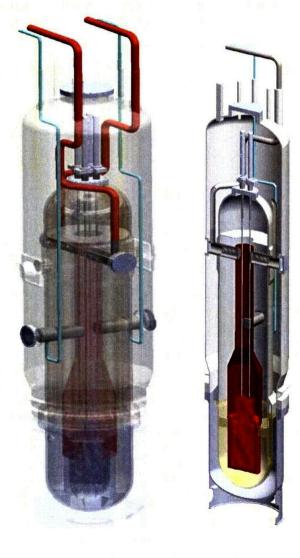
NUSCALE POWER

Preliminary Plant Parameters

Overall Plant	
 Nominal Electrical Output 	540 MW(e)
Nominal Station Efficiency	30%
Number of Power Generation Units	12
Nominal Plant Capacity Factor	> 90%
Power Generation Unit	
Number of Reactors	One
Nominal Electrical Output	45 MW(e)
Steam Generator Number	Two independent tube bundles
Steam Generator Type	Vertical helical tube
Steam Cycle	Slightly superheated
Turbine Type	3600 rpm, single pressure
Turbine Throttle Conditions	3.1 MPa/264 °C (450 psia/507 °F)
Module	
Thermal Power Rating	150 MWt
Cold Leg/Hot Leg Temperature	247.9 °C/288.85 °C (478.1 °F /551.9 °F)
Coolant Mass Flow Rate	~700 kg/s
Operating Pressure	~9.0 MPa
Reactor Core	-
Fuel	UO ₂ (< 4.95% enrichment)
 Refueling Intervals 	24 months

..............

-EQUIPMENT LOADING/UNLOADING



Engineered Safety Features

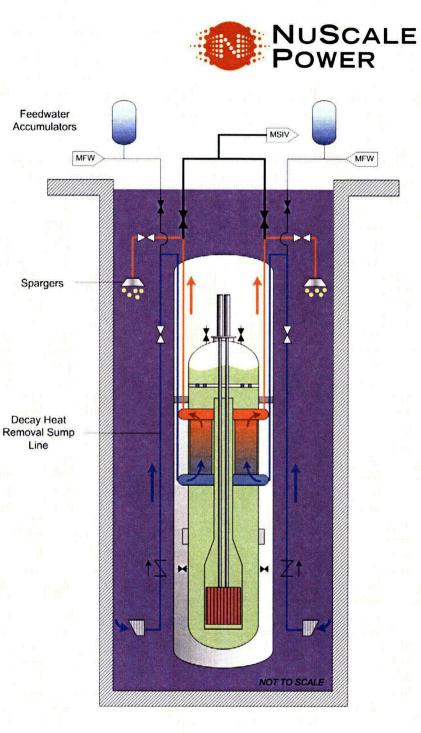
- High Pressure Containment Vessel
- Decay Heat Removal System (DHRS)
- Containment Heat Removal System (CHRS)
- Emergency Core Cooling System (ECCS)
 - Reactor Vent Valves
 - Reactor Recirculation Valves
 - CHRS

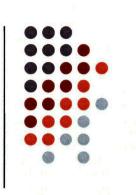
High Pressure Containment

Enhanced Safety

Capable of ~3.1 MPa (450 psia)

• Peak equilibrium pressure between reactor and containment following any LOCA is always below containment design pressure

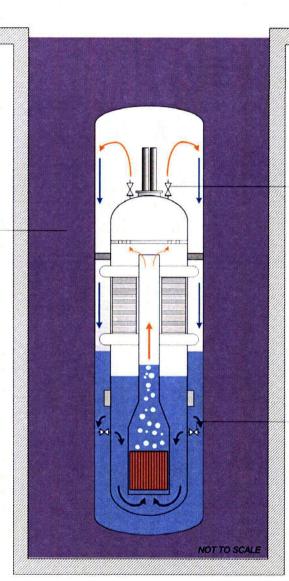

NUSCALE POWER


• Insulating Vacuum

- Significantly reduces convection heat transfer during normal operation
- No insulation on reactor vessel. ELIMINATES SUMP SCREEN BLOCKAGE ISSUE (GSI-191).
- Improves steam condensation rates during a LOCA by eliminating air
- Prevents combustible hydrogen mixture in the unlikely event of a severe accident (i.e., no oxygen)
- Eliminates corrosion and humidity problems inside containment

DHRS

- Two independent trains of emergency feedwater to the steam generator tube bundles
- Water is drawn from the containment cooling pool through a sump screen
- Steam is vented through spargers and condensed in the pool
- Feedwater accumulators provide initial feed flow while DHRS transitions to natural circulation flow
- Pool provides a 3 day cooling supply for decay heat removal


............

Containment

Cooling Pool

ECCS/CHRS

- Provides a means of removing core decay heat and limits containment pressure by:
 - Steam Condensation
 - Convective Heat Transfer
 - Heat Conduction
 - Sump Recirculation
- Reactor Vessel steam is vented through the reactor vent valves (flow limiter)
- Steam condenses on containment
- Condensate collects in lower containment region
- Reactor recirculation valves provide a path for natural circulation through the core

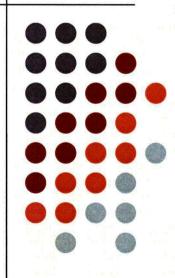
Reactor Vent Valves (Outlet)

NUSCALE POWER

> Reactor Recir Valves (Inlet)

NUSCALE POWER

NUSCALE POWER


Overview of NuScale Codes and Methods

Dr. José N. Reyes, Jr. **Chief Technical Officer**

November 20, 2008

U.S. Nuclear Regulatory Commission **Pre-Application Meeting** Rockville, MD

Outline

- Introduction
- List of Computer Codes
- Verification and Validation
- Sample Integral Assessment Benchmark
- OSU Integral Testing Matrix
- Code Approval Process
- Summary

JUSCALE

Introduction

- NuScale will employ a suite of well-established computer codes using industrystandard methods
- Unique features of the NuScale plant need to be considered in selecting and using the codes and methods (e.g., integrated reactor)
- All these codes are conventional codes that have a long history of being used for LWR licensing – we will not be breaking new ground in the codes and methods we plan to use
- These codes will all be brought in house and verified and validated under a NuScale QA system, with the exception of the Studsvik suite
- RELAP5 will be modified using an Appendix K approach

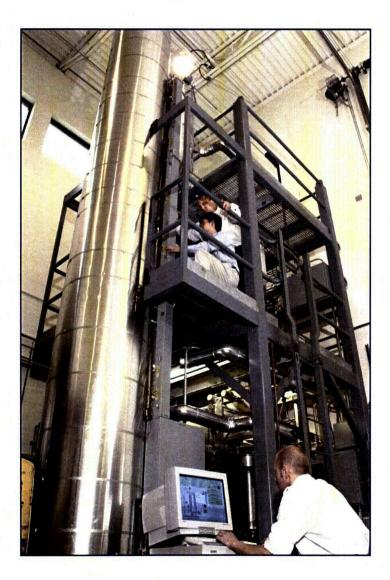
NUSCALE

List of Computer Codes

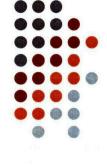
Event	NuScale Code(s) Used	
Increase in Secondary Side Heat Removal	N-RELAP5/K, N-COBRA-TF	
(Includes Containment Flooding)		
Decrease in Secondary Side Heat Removal	N-RELAP5/K, N-COBRA-TF	
Decrease in Reactor Coolant System Flow Rate	N/A	
Reactivity and Power Distribution Anomalies	N-RELAP5/K, SIMULATE-3K, N-COBRA-TF, N-FRAPTRAN	
Inadvertent Loading and Operation of a Fuel Assembly in an Improper Position	SIMULATE-3	
Spectrum of Rod Ejection Accidents	N/A	
Inadvertent Operation of ECCS that Increases Reactor Coolant Inventory	N/A	
CVCS Malfunction that Increases Reactor Coolant Inventory	N-RELAP5/K, N-COBRA-TF	
Inadvertent Opening of a PWR Pressurizer Pressure Relief Valve	N-RELAP5/K, N-COBRA-TF	
Steam Generator Tube Rupture	N-RELAP5/K	
Loss-of-Coolant Accidents	N-RELAP5/K	
ATWS	N-RELAP5/K, SIMULATE-3K, N-COBRA-TF, N-FRAPTRAN	

4

NUSCALE Power


Verification and Validation

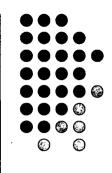
- Adequacy of codes for conducting steady-state core/fuel design and transient and accident analysis should include considerations for:
 - Reduced-height core
 - Integrated system (e.g., internal steam generators and pressurizer)
 - Natural circulation flow conditions
 - Lower operating pressure
 - Lower operating temperature
- A great deal of LWR validation data was generated in reduced-scale facilities at reduced flow, pressure, and temperature conditions
- Validation suite will utilize existing and well establish LWR benchmark data sets, coupled with reliance on the prototype test facility at OSU



NUSCALE Power

OSU Integral Test Facility

- Stainless steel integral system test facility operating at full system pressure and temperature
 - Reactor vessel
 - Electrically heated rod bundle
 - Core shroud with riser
 - Pressurizer
 - Reactor recirculation valves
 - Helical-coil steam generator
 - Variable speed feedwater pump
 - Containment vessel
 - Containment cooling pool
 - Instrumentation

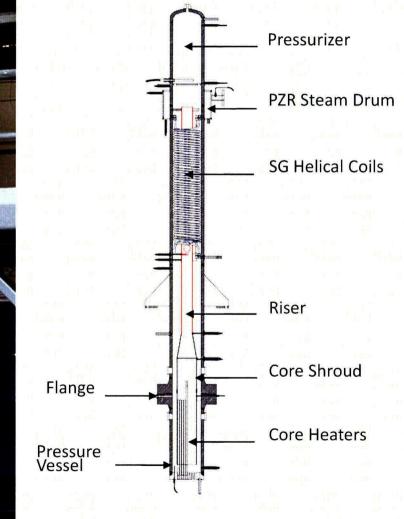


Integral System Test Facility

- A scaling analysis was used to guide the design, construction and operation of a 1/3-scale integral system test facility for the original MASLWR design
- NuScale has exclusive use of the test facility
- NuScale is modifying the facility to incorporate design improvements
- Facility can be used to:
 - Evaluate design improvements
 - Conduct integral system tests for NRC certification
- OSU has significant testing capability
 - Performed DOE and NRC certification tests for the AP600 and AP1000 designs
 - 10 CFR 50 Appendix B, NQA-1, 10 CFR 21

Scaling Ratios

NUSCALE Power


	·····
Pressure Ratio	1:1
Temperature Ratio	1:1
Length Ratio	1:3.1
Time Ratio	1:1
Velocity Ratio	1:3.1
Cross-sectional Area Ratio	1:82
Volume Ratio	1:254.7
Power Ratio	1:254.7
Active Heat Transfer Area Ratio	1:254.7
Active Heat Transfer Wall Thickness Ratio	1:1

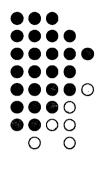
............

NUSCALE POWER

Integrated Reactor Test Vessel

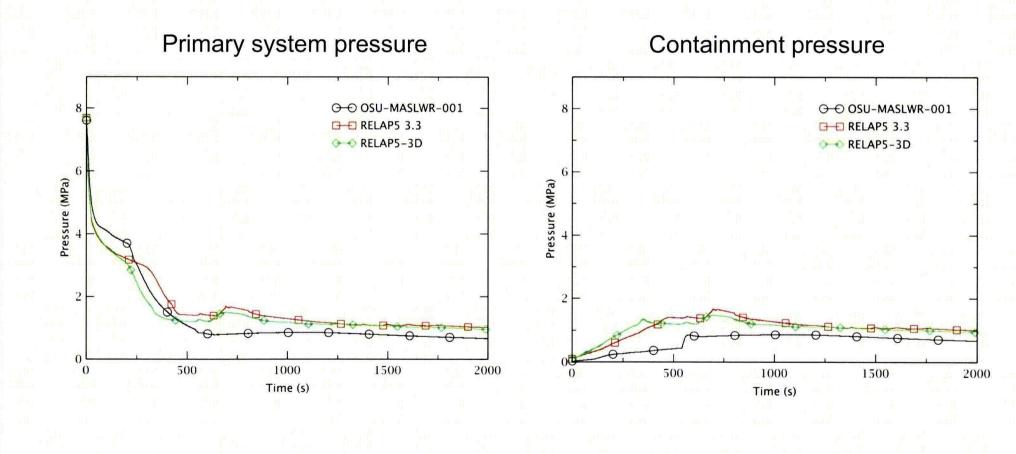
Containment and Cooling Pool

Containment Cooling Pool

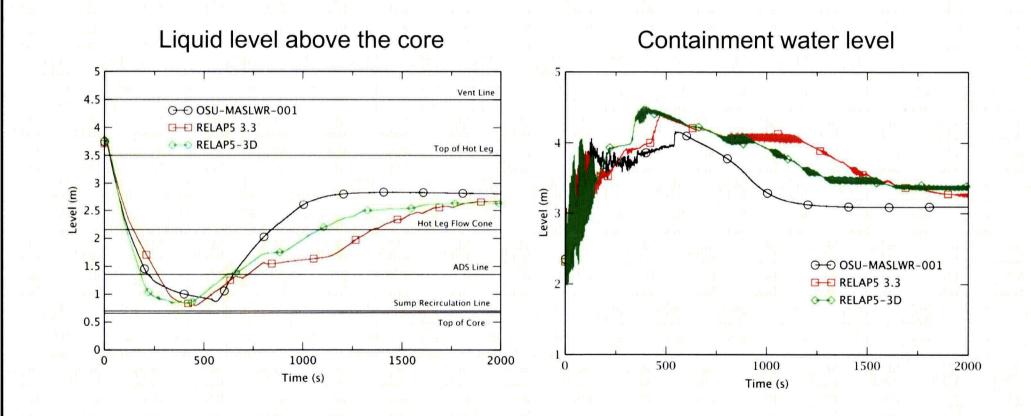


Trace Heated High Pressure Containment

Containment Heat Transfer Plate



Sample Integral Assessment Benchmark

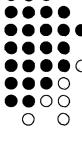


- Two codes were used in the comparisons: RELAP5-3D and RELAP5/MOD3.3. The codes were applied essentially "out-of-the-box".
- Same input model was used for both codes that modeled all major facility components
- OSU-MASLWR-001 Integral Test
 - Inadvertent actuation of one ADS valve
 - Followed by staged blowdown of the facility

Sample Integral Assessment Benchmark: OSU-MASLWR-001

Sample Integral Assessment Benchmark: OSU-MASLWR-001

13


NUSCALE POWER

NUSCALE POWER

OSU Integral Test Matrix to Support Design Certification

- The following tests are planned (2009-2010):
 - Increase in feedwater flow rate
 - Loss of feedwater flow/feed line break
 - Decrease in feedwater temperature
 - Main steam line break
 - Station blackout
 - 5 LOCAs

Code Approval Process

- Developmental assessment plans for four in-house codes are being prepared: N-RELAP5/K, N-COBRA-TF, N-FRAPCON-3, and N-FRAPTRAN
- Limited model development for N-RELAP5/K is expected for predicting helical-coil steam generator heat transfer
- No development work is expected for the other three codes
- Some validation will be carried out in-house for the 3-D simulator codes, SIMULATE-3 and SIMULATE-3K, while code verification will be done by Studsvik under their NQA-1 Quality Assurance Program
- Licensing Topical Reports on the verification and validation of in-house codes will be submitted during the design certification review

Summary

- Suite of codes selected for based on decades of LWR experience
- Four codes will be brought in-house under NuScale's QA Program
- Codes are well-established and have been reviewed and approved by the NRC for analyzing typical PWRs
- Verification and Validation
 - NuScale design has several features that will need to be evaluated for code applicability
 - Many code models are based on data from reduced-scale facilities with very similar conditions as the full-scale NuScale design
 - Minor model development expected for only one code: N-RELAP5/K. *Preliminary integral* assessments show current RELAP5 family of codes predict important data trends.
 - Integral system performance will be confirmed by running new tests at OSU

NUSCALE

NUSCALE POWER

Topics for Proprietary Session

- Core/Fuel Design Methods
- Non-LOCA Analysis
- LOCA Analysis
- Containment Performance Analysis
- Sample Calculations

