

Turkey Point Units 6 & 7 COL Application

Status of Geotechnical and Hydrological Evaluations

Florida Power & Light Company

December 5, 2008

The information provided in the following presentation is of a preliminary nature and is considered DRAFT.

<u>Agenda</u>

- Introduction Bill Maher
- Site Arrangement Paul Jacobs
- Storm Surge and Tsunami Effects Mustafa Samad
- General Geologic Conditions Dave Fenster
- Subsurface Investigation Overview John Sturman

Break

- Geotechnical Considerations John Sturman
- Groundwater Jerry McLane
- Construction Methods John Sturman, Greg Davis

Site Arrangement

Paul Jacobs Engineering Supervisor, FPL December 5, 2008

General Project Information

- Approximately 210 acre island area within the Turkey Point Plant Property
- Turkey Point Plant Property bordered on the east by Biscayne National Park and undeveloped wetlands on the west
- Located south of existing Turkey Point Units 1 thru 5 (Units 1 and 2 are Gas/Oil-Fired, Units 3 and 4 are Nuclear, Unit 5 is Gas-Fired Combined Cycle)
- Approximately 8 miles due east of Florida City
- Primarily a limestone site, with alternating layers of silty-sand and limestone
- AP1000 technology selected
- Mechanical draft cooling towers with a reservoir for storage of several days cooling water
- Finished grade at nuclear island will be raised approximately 26 ft due to storm surge wave run up

Plot Plan

Storm Surge and Tsnumai Effects

Mustafa Samad Engineering Specialist - Hydrology, Bechtel December 5, 2008

Hydrologic Description

Conceptualization of Flood Scenarios

- Man-made canals have altered general drainage of the south Florida region
- No major rivers or dams near the site
 - Stream or dam breach flooding not expected to affect the site
- No ice-jam flooding or flooding due to shoreline erosion
- Potential flooding from local PMP (Probable Maximum Precipitation)
 - Site will be built up to higher elevation
 - Local drainage to drain away from safety-related structures
- Potential flooding from storm surges and tsunamis

Reference: USGS 1999a

Physiographic Features of South Florida Watershed

Development of South-Dade Conveyance System

Conveyance Canals and Control Structures

Probable Maximum Surge and Seiche Flooding

Hurricanes, Category 3 and Above, near the Site

Probable Maximum Hurricane (PMH)

- Parameters are based on NOAA Report NWS-23
 - Site is approximately at milepost 1450 nautical miles from U.S.-Mexico border

PMH Parameter	Magnitude
Peripheral Pressure	30.12 inch Hg
Central Pressure	26.12 inch Hg
Radius of Max. Wind	4 to 20 NM
Forward Speed	6 to 20 knots
Track Direction (clockwise from north	72 to 185 deg)
Inflow angle	2 to 9 deg

The PMH central and peripheral pressure difference is 4.0 inch Hg, which is approximately 135.5 millibars

Probable Maximum Storm Surge

• PMH-induced surge height

- Estimated based on two approaches
 - -- Projection of existing SLOSH computer program results to PMH conditions
 - -- Run SLOSH for the PMH and antecedent water level

• 10% exceedance high spring tide

- Conservatively from RG 1.59
- Initial rise
 - Conservatively from RG 1.59
- Long-term sea level rise considered

PMH Surge Height from SLOSH Results Projection

Results from SLOSH Biscayne Bay Basin Model for Hurricane Categories 1 through 5 (Saffir-Simpson scale), Category 5 MOM is shown above

Surge Projection at the Site, SLOSH Grid (63, 40)

Surge Projection near Miami, SLOSH Grid (40, 88)

The projected surge elevation for the PMH at the site is approximately 18.7 ft National Geodetic Vertical Datum NGVD 29, which is approximately 17.2 ft NAVD 88

Antecedent Water Level Conditions

- Initial water level in SLOSH is 2 ft NGVD 29 (~ 0.5 ft NAVD 88)
- 10% exceedance high spring tide in RG 1.59
 - 3.6 ft MLW at Miami Harbor Entrance
- Initial rise
 - 0.9 ft MLW at Miami Harbor Entrance
- 10% Exceedance tide + Initial rise = 4.5 ft MLW (mean low water)
 - Which is ~ 2.6 ft NAVD 88
- Long-term sea level rise
 - 0.78 ft/century at the NOAA Miami Beach, Florida station
 - Nominally used 1.0 ft/century (~ 25% increase from current trend)

PMSS Still Water Level and PMH Wind Speed

- Adjusted surge projection (PMSS)
 - [(17.2 0.5) + 2.6] ft NAVD 88 + 1.0 ft = 20.3 ft NAVD 88
- PMH-induced maximum wind speed
 - Wind speeds estimated based on the methodology in NWS-23
 - -- Maximum stationary wind speed estimated
 - -- Maximum hurricane wind speed for moving hurricane for the range of PMH parameters
 - Resulting maximum wind speed (10-min average 33-ft high) at the site is 141 knots or ~ 162 miles per hour

Wind Wave Effects and Maximum Water Level

• Wave action

- Wave height governed by the breaking wave condition, limited by the water depth
- Wave runup estimated based on methodology in the CEM
- Resulting wave runup is 3.4 ft
- Maximum water level due to PMSS
 - (20.3 ft NAVD 88 + 3.4 ft) = 23.7 ft NAVD 88

Site Grade Elevation

Probable Maximum Tsunami Hazards

Tsunami Source Mechanisms and Sources

• Source identification based on National Geophysical Data Center (NGDC) Tsunami Database and published studies

Source mechanisms include

- Submarine landslides
 - -- U.S. and Canada Atlantic margin
 - -- Gulf of Mexico
- Earthquakes
 - -- Caribbean subduction zone
 - -- East Atlantic region (Azores-Gibraltar fracture zone)
- Volcanic activities
 - -- Cumbre Vieja volcano in the Canary Islands of La Palma

Landslide in Blake Escarpment

JFZ = Jacksonville fracture zone

Reference: Twitchell et al. 1996

Submarine Landslide in Gulf of Mexico

Caribbean Plate Boundary and Tectonic Elements

Note: red lines are plate boundaries and red arrows indicate relative plate movement Reference: AGMTHAG 2007

Puerto Rico and Hispaniola Trenches

Reference: AGMTHAG 2007

PMT Candidate Source

- Earthquake sources in the Azores-Gibraltar Fracture Zone (the source for the 1755 Lisbon Earthquake)
 - Two major views on plate tectonic summarized in AGMTHAG 2007
 - -- Strike-slip motion of plates
 - -- Fragmentation during Miocene with two narrow and active subduction zones
 - Primarily two source regions (AGMTHAG 2007)
 - -- Gorringe Bank
 - -- Gulf of Cadiz
 - AGMTHAG (2007) provides characterization of both sources

PMT Candidate Source (continued)

PMT Candidate Source (continued)

FPL

Tsunami Water Level

- Mader (2001) simulated the 1755 Lisbon tsunami to match known tsunami amplitudes in the Portugal coast and across the Atlantic Ocean
- PMT water level is taken from the simulation results of Mader (2001)
 - 2 m (6.6 ft) amplitude at 783 m (~ 2570 ft) water depth east of Miami
 - Onshore tsunami amplitude including runup is 2 x deepwater amplitude = 4 m (13.1 ft)
 - Antecedent water level same as defined for storm surge, i.e., 2.6 ft NAVD 88 for 10% exceedance high spring tide and initial rise, and 1.0 ft/century for long-term sea level rise
 - The maximum tsunami water level near the site is (13.1 ft + 2.6 ft NAVD 88 + 1.0 ft) = 16.7 ft NAVD 88

References

- USGS 1999a. Marella, R.B., *Water Withdrawals, Use, Discharge, and Trends in Florida, 1995*, Water-Resources Investigations Report 99-4002, 1999
- USGS 1999b. Lietz, A. C., *Methodology for Estimating Nutrient Loads Discharged from the East Coast Canals to Biscayne Bay*, Miami-Dade County, Florida, Water-Resources Investigations Report 99-4094, 1999
- USGS 1997. McPherson, B. F., and R. Halley, *The South Florida Environment: A Region Under Stress*, Survey Circular 1134, National Water Quality Assessment Program, 1997
- USGS 2005. Renken., R. A., et al., Impact of Anthropogenic Development on Coastal Ground-Water Hydrology in Southeastern Florida, 1900–2000, Circular 1275, 2005
- AGMTHAG 2007. The Current State of Knowledge Regarding Potential Tsunami Sources Affecting U.S. Atlantic and Gulf Coasts – A Report to the Nuclear Regulatory Commission, U.S. Geological Survey, Administrative Report, September 2007
- Twichell, D.C., Dillon, W.P., Paull, C.K., and N.H. Kenyon, Morphology of Carbonate Escarpments as an Indicator of Erosional Processes, Geology of the Unites States Seafloor – A View from GLORIA, Cambridge University Press, 1996
- Mader, C.M., Modeling the 1755 Lisbon Tsunami, Science of Tsunami Hazards, Volume 19, No. 2, pages 93–98, 2001

General Geologic Conditions

Dave Fenster Engineering Geology Supervisor, Bechtel December 5, 2008

Florida Geomorphology

Regional Geology

ERA	SYSTEM	SERIES	STRA	TIGRAPHIC UNIT	LITHOLOGY	THICKNESS (ft)	
		UPPER	Pin	e Key Formation	chalk, ls, dol	3000	
		LOWER	Naples Bay Group	Corkscrew Swamp Fm Rookery Bay Fm Panther Camp Fm	ls with anhyd & dol	450 500 350	
			p ss	Dollar Bay Fm	ls w. dol & anhyd	450-620	
			Big Cypre: Grour	Gordon Pass Fm	anhyd w. Is & dol	475	
	SU			Marco Junction Fm	ls w. dol & anhyd	350	
MESOZOIC	CRETACEO		Ocean Reef Group	Rattlesnake Hammock Fm Lake Trafford Fm	anhyd w. Is & dol Is with anhyd	600 150	
				Sunniland Fm	Is with dol & anhyd	200-300	
			Glades Group	Punta Gorda Anhydrite	salt with anhyd & dol	800	
					anhvd with ls. dol. sh	530-700	
				Lehigh Acres	anhyd, ls, dol	210	
				Formation	ls, dol, brown dol zone	300	
					sh	200	
			Pump	kin Bay Formation	anhyd with Is	1200	
			Bone	Island Formation	ls with anhyd & dol	1300-2000	
	ssic	UPPER	Wood River Formation		dol, anhyd, salt, ss	1700-2100	
	JURAS	MIDDLE LOWER			felsic rocks: rhyolite		
			baseme	ent volcanic province	mafic volcanics:		
PALEOZOIC			Suwanee terrane	Paleozoic sedimentary Suite	quartzitic sandstone & black shale		
				Osceola volcanic complex	felsic meta-igneous		
				Osceola Granite	granite		
				St. Lucie Meta-	pan-African metamorphics		
TOTAL THI	12,750-14,300						

Paleozoic & Mesozoic Regional Stratigraphic <u>Column</u>

Developed from selected references including:

Arthur, 1988; Dallmeyer, 1989; Pollastro, et al, 2001; Salvador, 1991; Winston 1987.

38

ERA	sys	тем	SERIES	ST	STRATIGRAPHIC UNIT LITHOLOGY		THICKNESS (ft)								
CENOZOIC	QUATERNARY		OCENE	Miam Li	i Limestone / Key Largo mestone/ Anastasia Formation	sandy, oolitic, corraline, shelly limestone	10-180								
			PLEIST	Calo Fort	osahatchee Formation/ Thompson Formation	poor/well indurated sandy, fossiliferous limestone	50-100								
		NEOGENE	PLIOCENE	Tamiami Formation/ Cypresshead Formation (Long Key Formation)		fossiliferous sand & silt with limestone	25-220								
			ENE	n Group	Peace River Formation	sands, clays, & phosphatic carbonates	100-650								
			DOIM	Hawthor	Arcadia Formation	fine XTLn limestone with sand/clay, phosphatic fossiliferous limestone, & dolomite	100-700								
	TERTIARY	PALEOGENE	OLIGOCENE	S	uwannee Limestone	poor/well indurated fossiliferous vuggy to moldic limestone	200-600								
													Ocala Limestone	poor/well indurated fossiliferous limestone	200-400
			EOCENE	A	von Park Fomration	poor/well indurated fossiliferours limestone & vuggy dolostone	400-1200								
				(Oldsmar Formation	vuggy limestone & dolomite	500-1500								
		PALEOCENE		Ce	edar Keys Formation	dolomite, gypsym, & anhydrite	500-2000								
TOTAL THICKNESS															

Cenozoic Regional Stratigraphic <u>Column</u>

Developed from selected references including:

Cunningham, et al, 1998; Halley, et al, 1997; Missimer, 2001; Reese, 1994; Reese & Richardson, 2008.

Regional Geologic <u>Structure</u>

BODC, 2008; Ewing & Lopez, 1991; French, et al, 2004.

Site Geology & Structure

Site Subsurface Exploration

Site Boring & Cross-Section **Locations**

Geology Cross-Section A – A'

<u>Geology Cross-Section D – D'</u>

Key Largo Limestone Sample: 26-36 ft.

Turkey Point COL B-601 DH Box 1 Depth: 26,8 Ft - 36.4 Ft. Run 1: 26.8'-31.5' Rec: 4.21. (89%) RQD: 3.2 F+ (68%) Run 2: 31.5'-36.4' Rec: 4.9 F+ (100%) RQD: 4.0 F+ (82%) (N 1 2 3 4 5 6 7 6 9 3 1 2 3 4 5 6 7 6 9

Fort Thompson Formation Sample: 51-66 ft

RUN-5 51.0'-56.0' Rec: 4.9'(98x) RQD: 4.9'(98x) 0X-2 RUN-6 56.0'-61.0' Rec: 4.5'(901) RQD: 3.0' (601) RUN-7 61.0'-66.0' REC: 5.0' (100%) Rad: 4.6' (92) 9 27 1 2 3 4 5 6 7 8 9 3 1 2 . .

Fort Thompson Formation Sample: 91-106 ft

0-106.07 RUN-14 96.0'- 101.0' Rec. 3.5'(701) Rad: 3.1 [62; RUN-15 101.0'-106.0' Rec: 5.0' (1007.) RQU: 5.0' (100%) 1 2 3 4 5 6 7 8 9 8 1 2 3 4 5 6 7

Site Stratigraphic Column

ERATHEM	SYSTEM	SERIES	HYDRO- GEOLOGIC UNIT		ST	RATIGRAPHIC UNIT	LITHOLOGY	TOP ELEVATION	THICKNESS (ft)
CENEZOIC	QUATERNARY	PLEISTOCENE OTO Aduifer system		(organic muck	organic soil and silt	0	3	
			Surficial aquifer system	Biscayne aquifer	Mia	ami Limestone	sandy, oolitic limestone	-3	25
					Key	Largo Limestone	well indurated, vuggy, coralline limestone	-28	22
					Fort Thompon Formation		poor/well indurated fossiliferous limestone	-50	65
	ТЕКТІАКҮ	PLIOCENCE		Semi-confining unit	Tamiami Formation		sand and silt with calcarenitic limestone	-115	105
		TERTIARY MIOCENE Intermediate confining unit	diate confining unit		thorn Group	Peace River formation	silty calcareous sand and silt	formation conta natural gamma -220	ct based on signature 235
			Наи	Arcadia formation	calcareous wackestone with indurated limestones, sandstone, and sand	-456 drilling ende	>160 ed at -616 ft		

Florida Geological Survey Sinkhole Map

Site Specific Dissolution Issues

- The Florida Geological Survey (FGS/USGS) map & report (1985)
 - Limestones underlying southeastern Florida have few sinkholes
 - Limestones exhibit shallow surface depressions
 - Dissolution develops gradually, not catastrophically
- The FGS "Sinkhole Website" does not list any occurrence of sinkholes in Dade County through February 2008
- The FSAR & SER for Turkey Point Units 3 & 4, and an engineering report (1976) on the Units 3 & 4 foundation:
 - The underlying limestones do not present a danger to foundations
 - Technical basis: good core recovery, examination of core samples and rock exposures in excavations, absence of karst topographic features, diver reconnaissance of deep excavations

Dissolution Investigation

- Field reconnaissance identified shallow surface depressions
- Borings did not find any significant dissolution features
 - Good core recovery: 60 to 80 percent
 - Negligible rod drops occurred during drilling
 - No unusual loss of drilling fluid
 - Caliper logs did not indicate any large voids
 - Acoustic logs did not indicate any large voids
- Geophysical investigation is planned to confirm the absence of dissolution cavities. Planned completion by Spring 2009.

References

- Arthur, J. D., *Petrogenesis of Early Mesozoic Tholeiite in the Florida Basement and an Overview of Florida Basement Geology*, Report of Investigations no. 97, Florida Geological Survey, 1988.
- British Oceanographic Data Centre (BODC), "Centenary Edition of the GEBCO Digital Atlas (GDA), Global One Arc-Minute Bathymetric Grid," *General Bathymetric Chart of the Oceans* (GEBCO), January 15, 2008, Available at http://www.bodc.ac.uk/data/online_delivery/gebco/, accessed March 25, 2008.
- Cunningham, K.J., McNeil, D. F., Guertin, L. A., Ciesielski, P. F., Scott, T. M., Verteuil, L., "New Tertiary Stratigraphy for the Florida Keys and Southern Peninsula of Florida," *Geological Society of America Bulletin*, v. 110, no. 2, February 1998.
- Dallmeyer, R. D., "A Tectonic Linkage between the Rodelide Orogen (Sierra Leone) and the St. Lucie Metamorphic Complex in the Florida Subsurface," *The Journal of Geology*, v. 97, no. 2, March 1989.
- Florida Geological Survey, "Sinkholes Database," *Data and Maps,* 2007, Available at http://www.dep.state.fl.us/geology/gisdatamaps/sinkhole_database.htm, updated March 2008.
- Halley, R.B., Vacher, H.L., and Shinn, E.A., "Geology and Hydrogeology of the Florida Keys," *Developments in Sedimentology, v. 54, Geology and Hydrology of Carbonate Islands*, 1997.
- Missimer, T. M., "Siliciclastic Facies Belt Formation and the Late Oligocene to Middle Miocene Partial Drowning of the Southern Florida Platform," *Transactions: Gulf Coast Association of Geological Societies and the Gulf Coast Section of the Society of Economic Paleontologists and Mineralologists*, v. 51, 2001.

References (continued)

- Pollastro, R. M., "1995 U.S. Geological Survey National Oil and Gas Play-Based Assessment of the South Florida Basin, Florida Peninsula Province," *National Assessment of Oil and Gas Project: Petroleum Systems and Assessment of the South Florida Basin*, Digital Data Series 69-A, U.S. Geological Survey, 2001.
- Reese, R. S., *Hydrogeology and the Distribution and Origin of Salinity in the Floridan Aquifer System, Southeastern Florida*, Water-Resources Investigations Report 94-4010, U.S. Geological Survey, 1994.
- Reese, R.S. and Richardson, E., *Synthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable Zone in Central and Southern Florida*, Scientific Investigations Report 2007-5207, U.S. Geological Survey, 2008.
- Salvador, A., Plate 5 in "Stratigraphic Correlation Chart," The Geology of North America, v. J, The Gulf of Mexico Basin, Geological Society of America, 1991.
- Scott, T.M., Campbell, K.M., Rupert, F.R., Arthur, J.D., Green, R.C., Means, G.H., Missimer, T.M., Lloyd, J.M., Yon, W.J., and Duncan, J.G, *Geologic Map of the State of Florida*, Map Series 146, Florida Department of Environmental Protection (FDEP), Florida Geologic Survey (FGS), 2001 (Revised - April 15, 2006 by David Anderson).
- Tihansky, A. B. and Knochenmus, L. A., "Karst Features and Hydrogeology in West-central Florida -- A Field Perspective," U.S. Geological Survey Karst Interest Group Proceedings, St. Petersburg, Florida, February 13-16, 2001, Water-Resources Investigations Report 2001-4011, U.S. Geological Survey, 2001.
- Winston, G. O., "Generalized Stratigraphy and Geologic History of the South Florida Basin," *Symposium on South Florida Geology*, Memoir 3, Miami Geological Society, December 1987.

