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FOREWORD

The 1985 Year Class Report was prepared by Versar, Inc.,
ESM Operations, with the support of Coastal Environmental
Services, Inc., for Consolidated Edison Company of New York,
Inc., Central Hudson Gas and Electric Corp., New York Power
Authority, Niagara Mohawk Power Co., and Orange and Rockland
Utilities, Inc., under contract number 6-22160. The objective
of this report is to summarize and interpret data collected
from the 1985 Hudson River fish sampling surveys.
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I. INTRODUCTION

Since 1973, a series of reports, referred to as Year Class
Reports, has been prepared annually for five utilities:
Central Hudson Gas and Electric Corp., Consolidated Edison
Company of New York, Inc., New York Power Authority, Niagara
Mohawk Power Co., and Orange and Rockland Utilities, Inc. The
main purpose of the Year Class Reports is to present and analyze
data on the distribution and abundance of the early life stages
of selected Hudson River fish species.

The first report, "The First Annual Multiplant Report"”
[Texas Instruments Incorporated (TI) 1975] summarized riverwide
data collected to estimate the impact of five electric generating
stations on striped bass, white perch, and Atlantic tomcod.

In 1974, the multiplant effort was refined and renamed the

Year Class Report (TI 1977). Patterns of abundance and distri-
bution of early life stages were examined in greater detail in
the 1975 report, but impacts of plant operations were not
estimated (TI 1978a). The 1976 report (TI 197%a) expanded the
focus to include ecological relationships of selected fish
populations. 1In the 1977 and 1978 reports (TI 1980a, 1980b),
the life histories of selected species were examined in the
context of power plant effects. The 1978 report (TI 1980b) was
expanded to include the life history and distributional infor-
mation on nine additional fish species. Data analysis for the
1979 report (TI 1981l) was also extended to include predictions
of environmental impact based on fish population age structure
and age-specific survival. Further statistical analysis of
biocharacteristics data available from 1973 to 1979 was included
for the three initial key species.

The Hudson River Settlement Agreement among the utilities,
the United States Environmental Protection Agency, and other
interested parties was announced in 1980, and became effective
in May 1981 (Sandler and Schoenhard 1981). The 1980~1981 Year
Class Report [Battelle New England Marine Research Laboratory
(Battelle) 1983] was the first Year Class Report prepared
after execution of the Settlement Agreement and was formatted
to continue presentation of life history and population dynamics
studies of selected Hudson River fish species. The 1981 study
program was also the first in which the length of the sampling
season was reduced to focus on the period when most Hudson
River fish are maturing from the larval to juvenile stage.

The 1982 Year Class Report {[Normandeau Associates, Inc. (NAI)
1985a] was similar in content to the 1980-1981 report, but the
estimation of year class strength was extended to include a
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fall index. 1In addition to the basic survey results, the 1983
report (NAI 1985b) included data on the first recaptures of

fish released from a striped bass hatchery which began operation
in 1983, The 1983 report also included an examination of the
relationship between environmental variables and the early

life histories of striped bass, white perch, and American

shad. The 1984 Year Class Report contained the types of infor-
mation presented in the 1982 and 1983 reports, but placed
additional emphasis on the indices of year class strength and
their interpretation.

The present report adds to the historical data base by
describing the results of the 1985 Longitudinal River ichthyo-
plankton survey and the 1985 Fall Shoals and Beach Seine juvenile
surveys. The primary objectives of this Year Class Report are
to:

[ 2N
® Present estimates of spatial distribution, temporal
distribution, and abundance for 12 selected fish species
(Table I-1), and to interpret these findings with
respect to life history and environmental variables

® Estimate year class strength using indices that were
developed in previous year class reports and develop
confidence intervals for these indices

® Identify the major shortcomings associated with previous
indices of year class strength and develop a new,
statistically reliable, index of year class strength
for white perch, striped bass, American shad, and bay
anchovy

® Identify factors that may influence year class strenygth
for these four species.

The report is organized into eight chapters. Data col-
lection and data analysis methods are described in Chapter
II and a summary of water guality measurements is presented in
Chapter III. Chapters IV-VII focus on the objectives outlined
above. Within each of these chapters, individual species are
discussed separately. Chapter VIII contains the literature
cited. An appendix volume contains supporting information.
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II. MATERIALS AND METHODS

A. SAMPLING DESIGN

Three fish surveys were conducted in the Hudson River from
spring through fall of 1985 in order to describe riverwide abun-
dances of selected ichthyoplankton and juvenile fish. The
Longitudinal River Survey (LRS) was designed to collect pre-
juvenile life stages; therefore, sampling was concentrated
between spring and midsummer when eggs and larvae of most of
the selected species are usually abundant.

The Fall Shoals Survey (FSS) was designed to provide data
on juvenile fish. Hence, sampling began when the LRS ended and
continued into the fall. The Beach Seine Survey (BSS) was
conducted at approximately the same time as the FSS since it
too was designed to collect juvenile fish species. Unlike
either the FSS or the LRS, samples for the BSS were limited to
the shore zone.

Sampling was conducted according to a stratified random
design in which the river was divided into 12 regions (Fig.
IT-1). For the LRS and FSS programs each region was further
divided into "strata" on the basis of river depth (Fig. II-2).
These strata included:

® Shoal - that portion of the river extending from the
shore to a depth of 6 m at mean low tide

® Bottom - that portion of the river extending from the
bottom to 3 m above the bottom where river depth is

greater than 6 m at mean low tide

® Channel - that portion of the river not considered
bottom where river depth is greater than 6 m at mean
low tide.

However, not all strata could be sampled in each region. The
strata actually sampled in each region during 1985 are given
in Table II-1.

Sampling effort within each region and strata for the LRS
and FSS programs was determined according to a Neyman alloca-
tion procedure based on distributions of fish observed in
previous years. For the BSS, the number of beaches sampled
in each region was assigned according to the size of the shore
zone area in the region. A minimum of three samples was assigned

II-1
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SHOAL SHOAL

\ CHANNEL /

Shoal: water of 20 ft (6 m) or less

Bottom: water within 10 ft (3 m) of the river
bottom in more than 20 ft (6 m) depth

Channel: water more than 10 ft (3 m) from the river
bottom in more than 20 ft (6 m) depth

Figure I1I-2. Cross section of the estuary showing locations
of the shoal, bottom and channel strata
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to each region for the LRS and FSS programs, and a minimum of
five samples was assigned to each region for the BSS. The
actual location of samples within each region and/or stratum
was randomly assigned.

A summary of general sampling information for each of the
surveys is provided in Table II-2. The specific field and
laboratory methods used for each survey are discussed below by
task and survey.

B. FIELD METHODS

In the LRS, two types of gear were used to sample ichthyo-
plankton in the shoal, channel, and bottom strata. A Tucker
trawl (Fig. II-3) was used to sample the channel, an epibenthic
sled (Fig. I1I-4) was used to sample the bottom, and both gears
were used to sample the shoal stratum (Fig. II-5). Each gear
had a 1-m?2 opening, a 505-um mesh net, and was towed against
the current. The tow speed (maintained by use of electronic
flowmeters mounted along side the vessel) was approximately
1 m/s for the epibenthic sled and 0.9 m/s for the trawl. When
an electronic flowmeter failed to operate, tow speed was esti-
mated based on engine RPM. Tow duration for each gear was
approximately 5 min. Volume sampled was determined from digital
flowmeters mounted in the mouth of the nets. Allocation of
effort among regions and strata for the LRS is given in Tables
II-3 through II-5. Samples taken during the first five weeks
of LRS were collected during the day. All remaining samples
were collected at night to decrease gear avoidance by post
yolk~sac larvae and juveniles.

In the FSS, two types of gear were used to collect juvenile
fish in the shoal, channel, and bottom strata. A l1-m2 Tucker
trawl (3000-pum mesh) was used for collecting samples in the
channel, while a 3-m beam trawl with 1.3 cm mesh (Fig. II-6)
was used for collections in the bottom and shoal strata. Both
gears were towed against the current for approximately 5 min
and the tow speed used for each gear was approximately 1.5 m/s
(maintained by use of electronic flowmeters deployed along side
the sampling vessel). Volume sampled was determined from
digital flowmeters mounted in the mouth of the nets. Allocation
of effort among regions and strata for the FSS is given in
Table II-6. All Fall Shoal samples were collected at night in
order to minimize gear avoidance.

II-5
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Figure II-3., 1.0 m? Tucker trawl (front view, top; side
view, bottom) used in the Longitudinal River
and Fall Shoals Surveys
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Table II-3. Weekly sample allocations for the 1985
Longitudinal River Survey during weeks

beginning 29 April, 6 May, and 13 May

Shoal Bottom Channel

Region (Sled) (Trawl) (Sled) (Trawl) Total
Yonkers 2 1 - 3 6
Tappan Zee 2 1 4 3 10
Croton—~Haverstraw 4 2 3 6 15
Indian Point 3 1 7 25 36
West Point - - 4 31 35
Cornwall 3 2 12 5 22
Poughkeepsie - - 10 10 20
Hyde Park - - 9 11 20
Kingston - - 6 7 13
Saugerties - - 3 3 6
Catskill - - 3 3 )
Albany - -~ 5 - 5

TOTAL 14 7 66 107 194*

* All samples were taken during the day.
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Table II-4. Weekly sample allocations for the 1985
Longitudinal River Survey during weeks
beginning 20 May, 27 May, and 3 June

Shoal Bottom Channel

Region (Sled) (Trawl) (Sled) (Trawl) Total
Yonkers 2 1 - 3 6
Tappan Zee 2 1 4 4 11
Croton-Haverstraw 3 2 4 4 13
Indian Point 2(a)  1(a) 6(b)  14(c) 23
West Point - - 7 23(d) 30
Cornwall 3 2 9 s(e) 19
Poughkéepsie - - 16 22 38
Hyde Park - - 7 12 19
Kingston - - 4 6 10
Saugerties - - 5 3 8
Catskill - - 3 3 6
Albany - - 3 - 3
TOTAL 12 7 68 99 186(f)

(a)yo samples were taken during the week of 27 May.
(b)Seven samples were taken during the weeks of 27 May and
3 June
(c)Twelve and fifteen samples were taken during the weeks
of 27 May and 3 June, respectively. :
(d)Twenty—four samples were taken during the week of 20 May.
(e)Six samples were taken during the week of 3 June.
(f)Samples taken during the weeks of 20 May and 27 May were
taken during the day. Samples taken during the week of
3 June were taken at night.
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Table II-5. Weekly sample allocations for the 1985
Longitudinal River Survey during weeks
beginning 10 June, 17 June, 24 June,
1 July, and 8 July

Shoal Bottom Channel

Region (Sled) (Trawl) (Sled) (Trawl) Total
Yonkers 1 - - 8 9
Tappan Zee 2 1 5 6 14
Croton-Haverstraw 3 1 6 6 16
Indian Point 3 2 5 16 26
West Point - - 8 25 33
Cornwall 2 1 12 13 28
Poughkeepsie - - 7 15 22
Hyde Park - - 5 9 14
Kinéston - - 4 6 10
Saugerties - - 4 2 6
Catskill - - 3 3 6
Albany - - 3 - 3
TOTAL 11 5 62 109 187*

* All samples were taken at night.
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Table II-6. Biweekly sample allocations for the 1985 Fall
Shoal Survey during 22 July to 14 November

Strata
Shoal Bottom Channel

Region (Sled) (Sled) (Trawl) Total
Yonkers 7 - 5 12
Tappan Zee 30(a) g (b) 8 46
Croton-Haverstraw 16 8 3 27
Indian Point 6 s(c) 3 14
West Point ~ 5 3 8
Cornwall 5 5 3 13
Poughkeepsie - 5 3 8
Hyde Park - 6 4 10
Kingston - 9(d) 6le) 15
Saugerties - 12 6 18
Catskill - 15(£) 6(9) 21
Albany - 8 - 8
TOTAL 64 86 50 200(h)

(a)Twenty—eight, thirty-one, and thirty-one samples were
taken during the weeks of 22 July, 19 August, and 10
November, respectively.

(b)seven samples were taken during the week of 10 November.

(C)Eight samples were taken during the week of 10 November.

(d)7en samples were taken during the week of 22 July.

(e)Five samples were taken during the week of 22 July.

(f)Sixteen samples were taken during the week of 22 July.

(g)Five samples were taken during the week of 22 July.

(h)a11l samples were taken at night.
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In the BSS, a 30.5 m bag beach seine was used to collect
juvenile fish in the shore zone of each region. The two wings
of the seine are each 2.4 m deep and 12.0 m long, and constructed
of 2,0 cm stretch mesh. The 6.1 m bag is 3.0 m deep with 9.5 mm
stretch mesh. The net was deployed by holding one end on shore
and towing the other end perpendicularly away from the shore
by boat. The seine was then hauled into the current in a
semicircular path toward shgore. The completed tow swept an
area of approximately 450 m2 (TI 1981). Allocation of samples
among regions in the BSS are given in Table II-7. All beach
seine samples were collected during the day.

For each survey, all yearling and older fish (length
classes 2-4, Table II-8) were processed in the field. Fish
were sorted by species, and the number in each length class was
counted. These fish were then returned to the river. Juvenile
fish (also called length class 1 or young-of-year) and earlier
life stages were preserved in 10% formalin and sent back to the
laboratory for processing.

All sturgeon that were collected were measured to the
nearest millimeter and weighed to the nearest gram. Fish that
remained alive were returned to the river; those that were dead

were frozen and held at the laboratory for the New York State
Department of Environmental Conservation (NYSDEC).

C. LABORATORY METHODS

Longitudinal River Survey

Eggs and early life stages were sorted by taxonomic group
and life stage (Table II-9), enumerated, and placed in vials
containing 5% formalin. For samples of fish eggs or bay anchovy
larvae that appeared to contain over 4000 specimens, vials
containing these groups were split to one-half, one-fourth, or
one-eighth of the original number using a Folsom plankton
splitter.

Only American shad, white perch, and striped bass were
measured for total length. Whenever possible, 30 individuals
of each of these species were measured per sample. When

available, at least 10 individuals per life stage were measured.
When fewer than 10 specimens of a life stage were encountered,
the remainder of the quota was allocated to remaining life
stages.

I1-15



Table II-7. Biweekly sample allocation for the 1985
Beach Seine Survey during 16 July to
21 November

Number of

Region Beaches Sampled
Yonkers 5
Tappan Zee 24
Croton-Haverstraw 14
Indian Point 5
West Point 5
Cornwall 6
Poughkeepsie 5
Hyde Park 5
Kingston S
Saugerties 9
Catskill 1o(a)
Albany 7
TOTAL 100(b)

(a)pleven samples were taken during the week of

23 September.
(bia11 samples were taken during the day.
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Table II-8., Length class divisions as defined for fish

collected from the Hudson River estuary
during 1985

Total Length Range

Length Class (millimeters)
1 0 mm up to Division 1
2 Division 1 + 1 mm

up to Division 2

3 Division 2 + 1 mm
up to 250 mm

4 251 mm and larger

NOTE: Division 1 and Division 2 represent the upper length
limits of young-of-year and yearling age groups,
respectively. Division 1 and Division 2 were
determined separately for each species as part of
the impingement program at the Indian Point power
station.
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Table II-9. Criteria used for determining life stage of

ichthyoplankton
Life Stage Criterion
Egg Embryonic stage from spawning to hatching
Yolk-sac larva From hatching to development of a complete

and functional digestive system

Post yolk-sac From development of a complete digestive
larva system to acquisition of a full complement
of adult fin rays

Young-of-year From stage when the full complement of
(or juvenile) adult fin rays is acquired to 31 December
of the year spawned

I1-18




Beach Seine and Fall Shoals

All length class 1 fish were identified and counted ac-
cording to species. In addition, the total length of 12 species
was measured to the nearest millimeter (Table II-10).

Up to 10 fish in length class 1 per species were measured
for samples taken in the following regions:

Survey Regions
BSS Yonkers, Indian Point, West Point,

Cornwall, Poughkeepsie

FSS West Point, Podghkeepsie

For all other regions, up to five fish per species per sample
were measured. When more specimens of a species were collected
than were needed for length measurements, the fish used to

£ill the quota were randomly selected.

D. WATER QUALITY

Two sets of water quality measurements were taken during
the 1985 sampling period. ©One set of measurements was taken in
conjunction with every beach seine collection. I!Measurements
were taken 0.3 m below the water surface and approximately 15 m
from the shoreline.

A separate water quality survey was conducted in associa-
tion with the LRS and FSS programs. Unlike the BSS, measure-
ments were not taken at the time of each fish collection.
Water quality sample locations for this survey were fixed and
allocated by region (Table II-11). In the channel locations,
samples were taken at surface, bottom, and mid-depth. For
shoal samples only surface and bottom samples were collected.

For both water quality surveys, the following parameters
were measured in situ: temperature to the nearest 0.1°C,
dissolved oxygen to the nearest 0.1 mg/l, conductivity to the
nearest 10 uS/cm, and sampling depth to the nearest 0.1 m.
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Table II-10. Fish species for which length measurements
(TL) were taken during 1985

Beach Seine and Fall Shoals Surveys

alewife shortnose sturgeon
American shad spottail shiner
Atlantic sturgeon striped bass
Atlantic tomcod weakfish

bay anchovy white catfish
blueback herring white perch

Longitudinal River Survey

American shad
striped bass

white perch
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Table II-11. Sample locations (river mile) for the 1985
Longitudinal River and Fall Shoals Water
Quality Survey

Sampling Locations

Number of
Samples

Region Shoals Channel Per Region
Yonkers 19 14, 17, 19, 22 16
Tappan Zee 29 25, 27, 29, 32 16(a)
Croton-Haverstraw 36 35, 36, 37, 38 16(b)
Indian Point 43 40, 42, 43, 46 16(c)
West Point - 49, 51, 53, 55 12
Cornwall 59 56, 57, 59, 61 16
Poughkeepsie - 63, 67, 71, 75 12
Hyde Park —-— 78, 80, 82, 84 12
Kingston - 87, 89, 91, 93 12(d)
Saugerties - 96, 99, 102, 105 12
Catskill - 109, 114, 118, 122 12
Albany -- 127, 131, 135, 138 12

TOTAL 164

(@)Thirteen samples were taken during the week of 27 May.
(b)Seventeen, eighteen, and eighteen samples were taken
during the weeks of 22 July, 14 October, and 10 November,

respectively.

(¢)six and thirteen samples were taken during the weeks of
27 May and 8 July, respectively.
(d)Nine samples were taken during the week of 8 July.

Dash indicates that no samples were taken due to limited

stratum.

I1-21




E. ANALYTICAL METHODS

Water Quality

In order to display the spatial and temporal patterns of
temperature, conductivity, salinity, and dissolved oxygen, a
mean of each parameter for each region and sampling week,
weighted by stratum volume, was calculated. Equation (1) was
used to compute these means for the standard water guality
stations sampled in conjunction with the LRS and FSS. Equation
(2) was used for data taken in conjunction with the BSS.
Overall weekly and regional means were computed using Egs. (3)
and (4). The mean.of each water quality parameter was calculated
for each of three estuary segments that have been defined in
previous Year Class Reports: lower estuary (Yonkers to Croton-
Haverstraw), middle estuary (Indian Point to Poughkeepsie), and
upper estuary (Hyde Park to Albany) using Eg. (5). Salinity
data were computed from conductivity data using Eg. (6) (Aanderaa
Instruments 1983). The 1985 conductivity had been adjusted to
a constant temperature of 25°C. These data were reconverted to
raw conductivity for the conversion to salinity.

Nyy Dkrw Ngkrw

1 1
Wew = E Pyr E E Widkrw (1)
Nkrw Ngkrw

k=1 d=1 i=1

where

Wyy = weighted mean of a water quality parameter
in region r during week w of the LRS and FSS

Widkrw = water quality measurement for location i, at
depth d, in stratum k, in region r, during
week w

Py, = proportion of the river volume of region r
that is contained by stratum k {bottom and

channel strata were combined for water quality
analysis)

ndkrw = number of sites at which measurements were made
at depth d, in stratum k, in region r, during
week w

Ny yy = Dumber of depths sampled in stratum k, in
region r, during week w

npy = number of strata sampled in region r during
week w.
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where

where

where

Nrw
1
Wew = — E Wirw (2)

mean of a water quality parameter in region r
during biweek w of the BSS

= water quality measurement for location i,
in region r, during biweek w

number of water quality measurements taken
in region r during biweek w.

2:3

12

W, = Z (Py) (Wpyg) (3)

r=1

mean of a water quality parameter during sampling
week w

proportion of the river volume contained in region r

weighted mean of a water quality parameter calculated
in Eq. (1).

Nr
1
W = =— E Wew (4)
Ny
W

mean of a water quality parameter in region r
number of weeks sampled in region r

weighted mean of a water quality parameter calculated
in Eq. (1).
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where

Salinity =

where

where

RST

RT

+

il

1

mean of a water guality parameter in estuary
segment s

proportion of the estuary segment volume contained
in region r

number of regions sampled in segment s

weighted mean of a water quality parameter cal-
culated in Eg. (1).

(6)

(-0.08996) + (28.8567)(R) + (12.18882)(R?)

(10.61869)(R>) + (5.98624)(R%) - (1.32311)(R>)
[R(R - 1.0)(0.0442)(T)] - (0.00046)(T%) - (0.0040)(R)(T)
[(0.000125 - 0.0000029)(T)(P)]

water temperature (°C)
pressure (dbar)
RST

RT

RSTP
1.0 + F
(0.6765836) + (2.005294)(TD) + (1.11099)(TD2)

- (0.726684)(TD3) + (0.13587)(TD%)
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C

RSTP = —eeme
42.906
F = (1.60836x1072)(P) - (5.4845x10710)(P?) + (6.166x1071°)(p3)
(1.0) + (0.030786)(T) + (0.0003169)(T?)
T
TD:———-—-—-
100.0
C = conductivity (mS/cm).

Density Estimates

Estimates of the population density were made for the LRS
and FSS. For these two surveys, the number of fish (by taxon
and life stage) in individual samples was first converted to
density (number per cubic meter of water sampled) using Eq.
(7). The mean density and the standard error of the mean were
calculated for each stratum, region, and sampling week using
Egqs. (8) and (9). To obtain a mean density and standard error
for each region during each sampling week, the stratum densities
were weighted by the proportion of the regional river volume
found in the stratum [Eg. (10) and (ll)]. If a stratum was
not sampled, its volume was added to the volume of an adjacent
stratum which was sampled. Stratum volume adjustments were
made according to the following rules:

If this stratum Its volume was added
was missing: to this stratum:
Shoal Bottom
Channel Bottom
Bottom Channel
Cikrw
Dikrw = (7)
Vikrw
where
Dikrw = density (for a life stage and a taxon) per cubic
meter for sample i, in stratum k, in region
r, during week w
C; = number of f£ish caught in sample i, in stratum
ikrw

k, in region r, during week w
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Vikrw = volume sampled (m3) by sample i, in stratum k, in
region r, during week w.

Ny rw
1
Dxrw = E Dikrw (8)
Nkrw &
i=1
where
Dypw = average density in stratum k, in region r,

during week w

Dikrw = sample density calculated in Eq. (7)

Nkry = number of samples taken in stratum k, in
region r, during week w.
Ok rw
2
SE(Dkrw) = Z (Dikrw = Dkrw)
i=1
(9)
(ngpry) (Nxpy = 1)
where
SE(Dkpyw) = standard error of the average density
in stratum k, in region r, during week w
Dikrw = sample density calculated in Eg. (7)

Drrw = gver?g? stratum density calculated in
q.

Nyy
Dry = % (Pyry) (P) (10)
k=1

where

g
]

rw average density in region r during week w

Dyyy = average stratum dénsity calculated in Eqg. (8)
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*Py = proportion of the regional river volume
found in stratum k (see Table II-12)

n,., = number of strata sampled in region r during
week w.
Nrw 2 2
SE(Dyy) = z SE(Dygyy) (Pyg) (11)
k=1

where

SE(Dyy) = standard error of the average density
in region r during week w

SE(Dk,y) = standard error of the average stratum
density calculated in Eg. (9)

Catches from the BSS were reported as number caught per
seine haul (CPUE) by life stage and taxon. The average CPUE for
a region and its standard error were calculated using Egs. (12)
and (13).

Z Cirw (12)

Cyw = average CPUE in region r during week w
Cirw = CPUE for sample i in region r during week w

number of samples taken in region r during
week w.

o
n

* When a stratum is missing, Py for the sampled stratum is
equal to the sum of the Py for the sampled stratum and the
Pk for the unsampled stratum.
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: Nyyw
2
E (Cirw = Cryw)
i=1

SE(Cpy) = (13)
Npyw (Npy = 1)

where
SE(Cy,y) = standard error of average CPUE in
region r during week w
Cyrw = average regional CPUE calculated in Eq. (12)

Standing Crop

Standing crop (the number of f£ish in an area at a particular
time) was estimated by life stage and taxon for each of the
three surveys. Standing crop estimates and the associated
standard errors were calculated for each stratum in a region by
taking the product of the average stratum density (or the
standard error) and the volume of water contained in that
stratum [Egs. (14) and (15) for LRS and FSS; Table II-12]. The
regional standing crop was then estimated as the sum of the
stratum standing crops [Egs. (16) and (17)]. Similarly, an
estimate of the standing crop for the river for each week was
calculated by summing the standing crops for the 12 river
regions [Egs. (18) and (19)].

SCkrw = (Vkr){Dkrw) (14)
where

SCxrw = standing crop estimate for stratum
k, in region r, during week w

Vky = river volume contained by stratum
k in region r

Dyrw = a@verage stratum density calculated in Eq. (8).
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SB(SCkrw) = (Vkr)[SE(Dkrw)] (15)

where
SE(SCkrw) = sténdard error of the standing crop estimate
for stratum k, in region r, during week w
SE(Dkyrw) = standard error of average stratum density
calculated in Eg. (9).
3
SCpry™* = SCxrw (16)
k=1
where

SCyy = standing crop estimate for region r
during week w

SCkrw = stratum standing crop estimate calculated
in Eq. (14).
3
:E: 2
SE(SCrw)* = [SE(SCkrw)] (17)
k=1
where
SE(SCyy) = standard error of standing crop estimate
for region r during week w
SE(SCkyw) = standard error of stratum standing crop

estimate calculated in Eg. (15).

*Volumes of unsampled strata were added to the volumes of an
adjacent stratum according to the rules for stratum volumes
listed on page I1I-25.
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SCy = z SCrw (18)

where

SCy standing crop estimate for week w

SC,y = regional standing crop estimate calculated
in Egs. (16) and (20).

12
}E: 2
SE(SCW) = [SE(SCrw)] (19)
r=1 '
where
SE(SCy) = standard error of standing crop estimate
for week w
SE(SCyy) = standard error of regional standing crop

estimate calculated in Egs. (17) and (21).

An estimate of regional standing crop (and standard error)
for the BSS was obtained by multiplying CPUE and the surface
area of the shore zone, and dividing by the empirically
derived estimate of the area sampled by the 30.5-m beach seine
[Egs. (20) and (21)]. The weekly estimate of standing crop for
the shore zone was calculated as the sum of the 12 regional
standing crops [Egs. (18) and (19)].

Crw Ar
where

SCyy = standing crop estimate for the shore zone in
region r during week w

Crw = average regional CPUE calculated in Eq. (12)
A, = surface area (mz) of the shore zone in region r
A = surfacs area (m?) sampled by the beach seine
(450 m“, TI 1981).
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[SE(Crw)](Ar)

SE(SCyry) = (21)
A
where
SE(SCyy) = standard error of standing crop estimate for
the shore zone in region r during week w
SE(Cyw) = standard error of average regional CPUE

calculated in Eg. (13).

Temporal and Geographic Distribution Indices

Distribution indices were computed to facilitate presenta-
tion of changes in distribution of selected species and life
stages through time and space. A geographic index which col-
lapse data over weeks was calculated for LRS and BSS data as
the relative density in each region (Eq. 22). To allow compar-
isons of 1985 with historical data, only April through July
data were used for LRS and data from weeks 33 to 40 {(where
week 1 is the first Monday in January) were used for the BSS.
In all cases, data were only used when all 12 regions were

sampled.
n
z f Drwy
w=1
Gyy = (22)
12 n
2 : 2 : Drwy
r=1 w=l
where

Gry = geographic index for region r in year y

Dywy = regional density for week w in year y calculated in
Eq. (10) (or regional CPUE calculated in Eg. (12)
for BSS

ny = number of weeks sampled in year y
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A temporal index that collapses data for the entire river
was computed for early life stages from LRS standing crops (Eq.
23).

Tw = (23)

where

temporal index for week w in year y

weekly standing crop estimate in year y
calculated in Eq. 18

wn
(@]
It

number of weeks sampled in year y
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IIT. WATER QUALITY

Two water quality surveys were conducted in conjunction
with fish sampling: the Longitudinal River/Fall Shoals (LR/FS)
and the Beach Seine surveys. This chapter emphasizes results
from the LR/FS water quality survey since it is the only one to
encompass the entire fish sampling period. However, water
temperature, salinity (converted from conductivity measurements),
and dissolved oxygen data are discussed for both surveys.
Freshwater flow data were obtained from the Green Island station
at Troy, New York, and are used to assist in further description
and interpretation of water quality patterns in the Hudson
River.

A. TEMPERATURE

Mean water temperature measured during the LR/FS water
quality survey increased from the beginning of sampling in
April to the end of July, stayed relatively constant through
August, and then decreased gradually from September until the
end of the sampling program in early November (Table III-1).
Peak temperatures occurred during the week beginning 22 July
when the riverwide mean was 25.1°C and regional mean values
were between 24.7 and 26.0°C (Table A-1). Lowest values oc-
curred during the last week of sampling when mean riverwide
temperature was 12,2°C and regional temperatures ranged from
8.9 to 14.7°C.

Comparison of temperature patterns of 1985 with that in
previous years (Appendix D) indicates that peak temperatures in
1985 were lower than in most previous years. No mean weekly
regional temperature exceeded 26°C in 1985. 1In previous years,
peak regional values regularly exceeded 27°C and in 1982 even
exceeded 30°C.

The highest mean regional temperature (pooled over all
dates) was found in the Croton-Haverstraw region (Table III-2).
The lowest mean value occurred in the Yonkers region, but the
difference between the highest and lowest regional values was
less than one degree. The upper estuary was generally warmer
than downriver areas during the spring, but was several degrees
colder in the fall (Fig. III-1), a pattern also observed in
previous years (Appendix D).

Weekly mean temperatures in the BSS were highest in late
July and August just after the BSS was first initiated (Table
II1-3). Temperatures fell rapidly in October from almost 19°C
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Table III~-1l. Weekly mean temperature, salinity, and dissolved
oxygen measured in the LR/FS water quality survey
of the Hudson River in 1985
Dissolved
Week Temperature Salinity Oxygen
Beginning (°C) (ppt) (ppm)
29 April 12.7 2.7 10.2
06 May 13.8 2.9 9.8
13 May 16.5 2.4 9.9
20 May 17.5 2.6 9.5
27 May 19.2 2.6 8.9
03 June 20.1 2.5 8.5
10 June 20.5 3.0 7.9
17 June 20.9 2.8 8.1
24 June 21.7 2.6 8.6
01 July 21.6 4,0 7.8
08 July 23.4 3.1 7.4
22 July 25.1 3.8 7.3
05 August 24.6 3.3 8.2
19 August 25.0 4.1 6.4
02 September 23.8 3.8 6.7
16 September 21.5 4.2 7.5
30 September 20.4 2.7 7.7
14 October 17.1 3.0 8.2
28 october 14.6 2.0 9.2
11 November 12.2 4.5 9.1
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Table III-2., Regional mean temperature, salinity, and dis-
solved oxygen values (pooled over all weeks)
measured in the LR/FS water quality survey of
the Hudson River in 1985

Dissolved
Temperature Salinity Oxygen
Region* (°C) (ppt) (ppm)
YK 19.2 12.3 7.2
TZ 19.7 7.8 8.5
CH 20.3 5.0 8.4
IP 20.0 3.3 8.0
WP . 19.5 1.5 8.1
CwW 19.7 0.7 8.4
PK 19.7 0.1 8.0
HP 19.4 0.0 8.3
KG 19.4 0.0 9.2
SG | 19.5 0.0 9.6
Ccs ' 19.6 0.0 8.9
AL 19.5 0.0 7.7

* See Table II-1 for explanation of region abbreviations
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Table III-3. Weekly mean temperature, salinity, and dissolved
oxygen measured in the Hudson River Beach Seine
Survey in 1985

Dissolved
Week Temperature Salinity Oxygen
Beginning (°C) (ppt) (ppm)
15 July 26.0 4.3 8.9
29 July 25.2 3.1 7.9
12 August 26.8 3.2 9.7
26 August 25.3 3.7 7.7
09 September 24.0 4.8 7.2
23 September 21.2 6.3 8.5
07 October 18.9 1.9 8.9
21 October 15.3 1.6 9.2
04 November 13.0 4.5 9.7
18 November 9.6 1.4 10.4
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during the week of 7 October to less than 10°C by mid-November.

Temporal patterns in the BSS temperature data were generally
in agreement with LR/FS measurements.

The highest mean regional temperature in the BSS (pooled
over all dates) occurred in the Indian Point region and the
lowest in the Albany region (Table III-4). Unlike the LR/FS
survey, the difference in mean temperature among regions was
more than 3°C. However, the BSS focuses primarily on the
latter weeks of the LR/FS survey when the upper estuary was
also found to be several degrees colder than the lower or
middle estuary in the LR/FS survey.

B. SALINITY

Mean salinity in the river was higher in 1985 than in any
other year since Year Class studies were undertaken (1974-1984).
Mean salinity in the river remained above 2 ppt in every week
of the study (Table III-1); in no other year had salinity
remained above even 1 ppt in all weeks (Appendix D). In past
years, mean salinity has generally been higher in July and
August than in the spring. 1In 1985, the same pattern was also
apparent, but the difference in salinity among these periods
was less.

As might be anticipated, mean salinity was highest in the
Yonkers region and declined with distance upriver (Table III-2).
Salinity values in 1985 were consistently high (Fig. III-2),
with values in the middle estuary never equal to zero as had
been observed in all previous years. The highest weekly mean
in the Yonkers region was 10 ppt, but unlike all previous
years, no weekly value in that region ever fell below 7 ppt
(Appendix D). Similarily, weekly mean salinity in the Tappan
Zee region never fell below 5 ppt during the study, even though
one or more weekly mean values in this region fell below 1 ppt
in every other year of the study.

The salinity patterns observed in the BSS were similar to
those observed in the LR/FS water quality survey. Mean salinity
was highest in the Yonkers region and decreased upstream (Table
III-4); mean weekly salinity never exceeded 0.5 ppt in any
region north of Cornwall (Tables A-5 and A-6). Mean weekly
salinities for the river exceeded 1 ppt in all weeks, with a
high value of 6.3 ppt in late September (Table III-3).

The higher than average salinity in the river can be
explained by the low freshwater flow in 1985 (Table III-5).
Monthly flows in 1985 were lower than the long-term average
in all but two months (January and November). Total freshwater
flow for the year was lower than in any year since 1974, except
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Table III-4. Regional mean temperature, salinity, and dis-
solved oxygen values (pooled over all weeks)
measured in the Hudson River Beach Seine Survey

in 1985
Dissolved
Temperature Salinity Oxygen
Region* (°C) (ppt) (ppm)
YK 20.9 9.7 8.3
T2 21.0 6.6 9.6
CH 21.5 4.9 9.5
1p 22.1 3.8 - 8.7
WP 21.0 1.2 8.4
CW 20.6 0.6 8.7
PR 20.6 0.1 8.2
HP 19.5 0.0 8.3
KG 19.5 0.0 9.3
SG 19.5 0.1 9.4
CS 19.5 0.1 9.1
AL 18.6 0.1 8.2

* See Table II-1 for explanation of region abbreviations
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Table III-5. Long—-term (1918-1984) and 1985 mean daily
freshwater flow (m3/sec) at Green Island,

New York
Flow (m3/sec)

1985 Long~Term Long-Term Long-Term
Month Average Average(2) Minimum Max imum
Jan 440 370 91 961
Feb 319 362 86 885
Mar 581 640 178 1595
Apr 456 887 290 l461
May 232 551 137 1156
Jun 157 279 92 839
Jul 133 195 81 637
Aug 104 158 70 414
Sep 171 180 81 612
Oct 206 240 72 854
Nov 423 353 93 929
Dec 338 402 123 948
Annual 296(b) 385 -

Average

(a)Simple mean of monthly means (based on Battelle 1983).
b)Mean of nonthly means weighted by number of days/month.
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1980. Flow in April was lower than in all years since 1974
except 1980, and in May, June and August was the lowest
since 1974 (Table III-6).

C. DISSOLVED OXYGEN

Dissolved oxygen values measured during the LR/FS water
guality survey were highest in May with weekly mean values for
the river exceeding 8 ppm until mid-June (Table III~-1l).
Dissolved oxygen values were lowest in mid-summer with weekly
mean values falling below 7 ppm from mid-August through early

September. Dissolved oxygen values increased again in the
fall.

This pattern of oxygen decline during summer has been
observed in all previous Year Class Reports (Martin Marietta
Environmental Systems 1986) and is primarily attributable to
the higher temperatures that occur during the warmer months
(Fig. III-4). Percent oxygen saturation remained relatively
high throughout the sampling period across the entire river,
with some decline in the summer (Fig. II-4). The lowest weekly
mean dissolved oxygen value observed in 1985 is within the
range of historical values. The highest weekly mean oxygen
value in 1985 has been exceeded in many years, but these higher
historical values were associated with earlier studies when
sampling schedules extended into colder months.

Dissolved oxygen (DO) values were generally similar in the
different segments of the river (Fig. III-3); however, DO values
were several ppm higher in the upper estuary at the end of the
surveys (i.e., fall), coincident with the lower temperatures
that occurred there at that time. Percent oxygen saturation was
also higher in the upper estuary than in the rest of the river
in July and August. Highest regional mean dissolved oxygen
(pooled over all dates) occurred in the Saugerties region,
while the lowest regional mean occurred in Yonkers (Table III-2).

Dissolved oxygen patterns in the BSS were similar to that
in the LR/FS survey: highest values occurred in the fall
(Table III~3) and there was little longitudinal pattern in
mean regional concentrations (Table III-4). Dissolved oxygen
values were generally about 1 ppm higher in the BSS survey
than in the LR/FS when regional/weekly means are compared
(Appendix A). This is consistent with similar comparisons
made in previous years and may be related to diel changes in
oxygen; the BSS is conducted during the day (when oxygen
concentrations are expected to be highest) and the LR/FS
survey is conducted during the night.

III-10



96¢ 8tV IRA% Sve [AA SLe 6LV 86¢ £99 £09 91¢S Sov Tenuuy
8¢t 8v¥ 66L £ec YA €Le 1198 €0t 0sL 66¢ (AR 6¥%S A9aquadaq
(%A 4 LLZ 6ct 961 S6t ive SS9y Lec 799 806 LE9 L8Y I9quUIDAON
20¢ 181 ol £ LSV 8ql vie vve AR 8G9 €99 96¢ I19qO320
TLT 06T €ET [AA! €ee 811 XA SLT 80% TLE c8v AYA Isquojdag
yo1 9L1 GS1 ¥l bel 0€T 6v1l 691 PGl 1A%7% AT4 08T 3snbny
£ET 682 LZT <81 oVl 1AA! (A1 1ET ¢91 1338 % 11¢C 2% Atnp
LST 81V 8G¢t cev 691 AN 9¢¢ 8¢ L0< 1R %7 L9t 3 44 aunp
cee P8 LEOT ¥GE 8¢C¢ vLe vas 0ES vsv 106 999 069 Key
50 4 ove €907 S80T &8¢ 8¥L 080T 0S6 6v1iT 1¥0T vl ¥58 TTady
189 Q9% 18s 0Z9 134 yeo €921 o619 £e?T Les L9 L8S Unaew
6Tt vl (A2 19¢ 168 8¢1 9¢¢ 00 Lee <88 6VS 824G Aaenaqag
ovy 80¢ 646¢ IC¢E 8¥v1 9s6¢ ILS SyL §¢e LTV ovs €29 Azenuep
G861 - ¥86T €861 <¢86T 1861 0861 6L6T 8L6T LL6T 9L61T GL6T VL6IT
aesa}x

HAOKX MON ‘pueis] usaisn e Aowm\mEv MOT3 Jejemysedl ATiep ueaw ATYjuol

*9-I11 oTq®el

ITrI-11



G86T UT I2ATY uospny ayl jo Aaaans
A31Tenb aejem si/d1 9yl ul peansesw usbAxo poalossIp uesu ATosp

*€~111 @2anb1g

lllldl(ll
W - dH suotfiad
fdenas3y Jaddn

Md - dI suothad
Aaenis3 BTPPIW

———

HO - MA suotbad
Adenis3y Jamo’)

- 17

(wdd) N39AX0 03AT0SSIC

III-12



G861 UT JI9ATY uospng a8yl 3Jo Asaans Ajr1enb
I93eM S4/d7 9yl Ul peansesw uoTjeanies usbAxo jusedaad uesw ATyedpM *y-ITI 2anbtg

41vd
QLR EFRSTRPPSOL LTS ISP

Q S QA A
m%waw ROFCIIC LT LIRS ,mmxmm.mn,%%,w%.%%.%%.ﬁ&vm@%mmwmnvnv
i 1 1 I i 1 1 1 ] ) T 1 1 | 1 ! 1 LR
-1 09
- 08
lllldll‘l ]
W - dH suotbad
Aden3ys3 daddn |
° 1
Sd - dI suoibad - 007
Adenis3z aTppIN 1
—— .
HJ - YA suotbad 1
Adenis3y JamoT J 21

NOILVHNLYS N39AX0 LIN3JIH3d

ITI-13



IV, SPATIAL AND TEMPORAL DISTRIBUTION OF SELECTED SPECIES

A. SPECIES COMPOSITION

A total of 84 fish species were captured during the 1985
Hudson River studies (Table 1IV-1l). This constitutes about 66%
of the total 128 species recorded during the previous 11 years
of the study (Table IV-2) and is slightly above the yearly mean
of 79 species (Fig. IV-1). No new species were collected in
1985, however, lookdown, scup, and gray snapper, which had not
been reported for several years, were collected. Black crappie
and walleye were reported in recent years of the study, but
were absent f£rom the 1985 list.

The 1985 species composition reflected a variety of taxa
from 63 different genera and 40 families. The species listed
represent resident cold, cool, and warm freshwater species,
resident estuarine and marine species, and migratory estuarine
and marine species.

B. STRIPED BASS

Striped bass, Morone saxatilis, is a long lived anadromous
species that inhabits coastal waters and tidal rivers. The
fish occur naturally along the Atlantic coast of North America
from Canada to Florida, and in the Gulf of Mexico from the
Appalachicola River in Florida to the Alabama River in Alabama
(Brown 1965). The Hudson River is considered the northernmost
spawning location for the species, although they range north to

the St. Lawrence River. Striped bass have also been successfully

introduced into numerous reservoirs and the Pacific coast of
the United States (Bailey 1975).

Striped bass enter the estuary in early spring to spawn.
Spawning extends from April through June and generally takes
place near the salt front, but may occur throughout the river
{Rathjen and Miller 1957; Dovel 1971). Females are typically
larger, later maturing and less abundant than males, and may
carry up to five million eggs (Lewis and Bonner 1966) which are
deposited during a near-surface spawning ritual (Werner 1980).
The eggs are semibuoyant and drift with the current until they
hatch. Incubation time for eggs is temperature dependent, but
is generally 2-3 days for the temperatures at which they are
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Table IV-1. Species composition of fish collected in each of
the Hudson River Year Class surveys during 1985

Table Species composition of fish collected in each of the

Hudson River year class surveys during 1885

TAXZON BEACH SEINE FALL SHOALS
CODE

ALEWIFE

AMERICAN EEL
AMERICAN SANDLANCE
AMERICAN SHAD
ATLANTIC CROAKER
ATLANTIC MENHADEN
ATLANTIC NEEDLEFISH
ATLANTIC SILVERSIDE
ATLANTIC STURGEON
ATLANTIC TOMCOD
BANDED KILLIFISH
BAY ANCHOVY

BLACK BULLHEAD
BLACKNOSE DACE
BLACK SEA BASS
BLUEBACK HERRING
BLUEFISH

BLUEGILL

BROWN BULLHEAD
BUTTERFISH

CARP

CONGER EEL

CREEK CHUB
CREVALLE JACK
CUNNER

EMERALD SHINER
FATHEAD MINNOW
FOQURSPINE STICKLEBACK
FOURSPOT FLOUNDER
GIZZARD SHAD
GOLDEN SHINER
GOLDFISH

GRAY SNAPPER
BOGCHOKER

INSHORE LIZARDFISH
LARGEMOUTH BASS
LONGNOSE DACE
LOOKDOWN

MUMMICHOG

NAKED GOBY
NORTHERN KINGFISH
NORTHERN PIPEFISH
RORTHERN PUFFER
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Table IV-1l. Continued

TAXON BEACH SEINE . FALL SHOALS LONG RIVER
CODE

NORTHERN SEAROBIN
NORTHERN STARGAZER
PUMPKINSEED

RAINBOW SMELT

RED HAKE

REDBREAST SUNFISH
ROCK BASS

ROUGH SILVERSIDE
SATINFIN SHINER
SHORTNOSE STURGEON
SILVER PERCH
SILVERY MINNOW
SMALLMOUTE BASS
SMALLMOUTH FLOUNDER
SPOT

SPOTFIN BUTTERFLYFISH
SPOTFIN SHINER
SPOTTAIL SHINER
SPOTTED HAKE
STRIPED ANCHOVY
STRIPED BASS
STRIPED CUSKEEL
STRIPED MULLET
STRIPED SEAROBIN
SUMMER FLOUNDER
TAUTOG

TESSELATED DARTER
THREESPINE STICKLEBACK
TIDEWATER SILVERSIDE
WEAKFISH

WHITE CATFISH

WHITE MULLET

WHITE PERCH

WHITE SUCKER
WINDOWPANE

WINTER FLOUNDER
YELLOW PERCH
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spawned in the Hudson River (Rogers et al. 1977). Early yolk-
sac larvae are incapable of sustained swimming and depend on
currents to keep them from smothering in silt (Mansueti 1958).
Newly hatched larvae retain their yolk-sac for about one week
after which time they begin active feeding on small zooplankton
(Doroshev 1970). Duration of the post yolk-sac stage is 30-33
days at 18°C (Rogers et al. 1977).

As water temperature decreases during the fall, juveniles
move into deep-water overwintering sites in the lower estuary
(McFadden et al. 1978) or into adjacent bays or sounds. These
fish may remain in the vicinity of the estuary mouth for two or
more years before emigration (Kohlenstein 1980, 1981). Older
fish may undergo coastal migrations, though for Hudson River
populations most fish remain within 50 km of the Hudson or in
Long Island Sound (McLaren et al. 198l; Austin and Custer
1977). Hudson River striped bass constitute ~ 10-50% of Atlantic
coastal stocks depending on the year (VanWinkle and Kumar
1982), and constitute a higher proportion of the stock in Long
Island Sound (Fabrizio and Saila 1986).

Eggs

Striped bass eggs were collected from late April through
early July from the Yonkers to the Catskill regions,, but were
most abundant in the Cornwall and Vest Point regions (Fig. IV-
2). Peak egg abundance occurred at West Point, but historical
records indicate that egg distributions are generally further
downstream than were recorded in 1985 (Fig. IV-3). The lower
than average freshwater inflows in the spring of 1985 (Table
III-5) may have contributed to selection of more upstream
spawning areas by striped bass.

Density estimates indicated a single spawning peak during
early May, when water temperatures averaged between 13-14°C.
This unimodal peak is consistent with most other years, but
differs from 1984 when a bimodal temporal distribution was
observed. The peak of egg abundance occurred earlier in 1985,
and at colder water temperatures than in most other years
(Table IV-3). Striped bass eggs were first collected in 1985
when water temperatures were as low as 12°C, and continued to
be taken in low numbers until water temperatures rose to approx-
imately 22°C. Spawning of striped bass is thought to be triggered
by rapid warming of water in spring (DiNardo et al. 1985).
Assuming this is the case, the 0.6~1.6°C mean rise observed in
spawning areas between the first and second weeks of LRS was
apparently sufficient to induce spawning.
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Figure IV-3. Geographic distribution of striped bass eggs,
yolk-sac larvae, and post yolk-sac larvae,
collected in the Longitudinal River Survey.
Bars represent index values for 1985.

Lines represent average values for 1974-1984.
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Striped bass eggs were most frequently taken from the
Hyde Park and West Point regions, with the highest densities
observed at West Point during the week of 6 May. Most eggs
were taken in water with salinity of 1.5 ppt or less, although
one striped bass egg was collected at Yonkers in mid-June in
water with a mean salinity of 14.6 ppt.

Most striped bass eggs were collected in the bottom stratum.
Although striped bass eggs are considered semi-buoyant and
found in the water column, Albrecht (1964) reported that eggs
fall to the bottom in slow moving water.

Yolk-Sac Larvae

In 1985, striped bass yolk-sac larvae were collected
primarily from mid-May to early June (Fig. IV-4) from Croton-
Haverstraw to Albany. As in most previous years, the peak
of yolk-sac density occurred between West Point and Poughkeepsie
(Fig. IV-3). However, unlike most previous years, very few
striped bass yolk-sac larvae were distributed downstream of
West Point, probably due to the more upstream location of the
salt front in the river in 1985. Some larvae were captured in
the Croton-Haverstraw region in water with salinity as high
as 5 ppt, but the majority were taken at some distance upstream
of the salt front.

The peak of yolk-sac collections occurred one to two
weeks earlier in 1985 than in previous Year Class studies
(Fig. IV-5) and three weeks earlier than in 1984 (Table 1IV-3).
Although yolk-sac larvae were collected in samples through
early July, only small numbers were taken after the end of May.
Over 50% of the yolk-sac larvae collected during LRS of 1985
were taken during the week of 20 May; historically, peaks in
yolk-sac abundance have been more spread out in time, with the
peak week of abundance comprising less than 30% of the total
collected for the entire survey. Mean temperature during the
period of peak yolk=-sac larvae standing crop was between 16~
18°C, while the temperature range over which striped bass
yolk-sac larvae were taken was 12-22°C.

Post Yolk-Sac Larvae

Striped bass post yolk-sac larvae were first collected
during the week of 13 May, with highest densities observed
during a 2 week period beginning the week of 28 May (Fig.
IV-6). This peak period followed peak yolk-sac larval densi-
ties in the same regions by one to two weeks. This is slightly
longer than the 6-7 days suggested by Setzler et al. (1980) as
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Figure IV-5, Temporal index for striped bass eggs, yolk-sac
larvae, post yolk-sac larvae, and young-of-year
collected in the Longitudinal River Survey. Bars
represent index values for 1985, Lines
represent average values for 1974- 1984.
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necessary for development from the yolk-sac to post yolk-sac
stage, even though mean water temperatures were not unusually
cold during this period (17-19°C). As with yolk-sac larvae,
over 50% of striped bass post yolk-sac larvae were taken during
a single sampling week (28 May), one to two weeks ahead of the
historical LRS mean (Fig. IV-5).

Geographically, post yolk-sac larval densities were highest
in the regions bordering the salt front, especially in the
Cornwall region. Historically, an average of greater than 60%
of striped bass post yolk-sac larvae were taken from regions
downstream of Cornwall:; whereas, in 1985, about 30% were taken
from these regions (Fig. IV-3).

Young-of~-Year

Juvenile striped bass were first collected during the LRS
in mid June (Fig. IV-7), one of the earliest dates on which
juveniles have historically been taken during LRS. All juve-
niles taken during LRS were from regions upstream of Indian
Point, which is in contrast with previous years when an average
of over 50% of LRS juvenile striped bass came from below West
Point.

Striped bass young-of-year were also taken during every
week of the FSS (Fig. IV-8) and BSS (Fig. IV-9). However,
none were taken from the Yonkers region until the last week of
each survey in November, when temperatures in the upper estuary
had fallen below 10°C and may have initiated movement of striped
bass to downriver overwintering areas. As in previous years,
juveniles were most often taken in 1985 in the lower estuary,
although fewer were collected at Yonkers and Tappan Zee where
salinity was highest (Fig. IV-10). Juveniles were captured
from estuarine waters with a wide range of salinities and
temperatures (0-19 ppt and 8-25°C, respectively), although
most were collected in regions where salinity was 0-7 ppt and
temperature was 15°C or above).

Yearling and Older Fish

Yearling and older striped bass were collected throughout
the LRS (Fig. IV-11), FSS (Fig. IV-12), and BSS (Fig. IV-13).
They were also collected in all 12 regions, although catches
came mainly from the lower estuary, except Yonkers. Catches
of yearling and older striped bass were more sporadic in the
upper estuary; most were caught between mid-June and mid-August,
but some were caught in November when mean temperatures in the
region of capture dipped to 7°C.
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C. WHITE PERCH

White perch, Morone americana, are endemic to the east
coast of North America, occurring from Nova Scotia to South
Carolina. They are primarily estuarine, but also occur in
rivers and have been introduced to a number of landlocked
impoundments (Woolcott 1962). They invaded the lower Great
Lakes during the early 1950s and populations are believed to
still be expanding in some areas (Dence 1952; Hergenrader 1980;
Werner 1980). Coastal white perch populations are considered
semi-anadromous because they show seasonal movement patterns
associated with spawning, but movements are generally limited
to within an estuary.

White perch are prolific spawners with a mean fecundity of
50,000 eggs per female (Bath and O'Conner 1982). The eggs are
demersal, adhesive, apparently scattered in haphazard fashion
and are left unprotected (Werner 1980); this spawning behavior
may contribute to irregular fluctuations in year class strength
noted in some waters (St. Pierre and Hoagman 1975). White
perch feed on a variety of prey, including minnows, crustaceans,
and insects. They typically travel in schools and forage over
broad areas. They are a fairly long lived species, and
individuals up to 12 years of age have been recorded.

White perch are found from the mouth of the Hudson River
to the base of Troy Dam north of Albany (250 km upstream).
They are a dominant species in most portions of the river (Bath
and O*Connor 1982), and comprise greater than 50% of total
impingement at Hudson River power plants in most years (McFadden
et al. 1978). During spring they move upriver to spawn.
Spawning generally takes place in freshwater in the Hudson
River (Klauda et al. in press), though eggs can survive equally
well in salinities up to 10 ppt (Morgan and Rasin 1982).
Following spawning, adults gradually move downriver to the
overwintering grounds (LMS 1987). In the Hudson River, over-
wintering generally takes place in deepwater areas from Yonkers
to Indian Point (TI 1981).

Eggs

Although white perch eggs were collected in every region
during the LRS, most eggs were found in freshwater with over
50% of the total estimated standing crop occurring in the
Saugerties and Catskill regions (Fig. IV~14 and IV-15). 1In
previous Year Class studies, the peak extended downriver as
far as Poughkeepsie, but remained within fresh water areas (TI
1979a, 1980b; NAI 1985b; Martin Marietta Environmental Systems
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1986). 1In 1985, eggs were taken at salinities as high as 13.5

ppt, but were encountered only sporadically in waters greater
than 3 ppt.

White perch eggs were found in samples during all but the
last week of the LRS. However, concentrations were highest
during the initial two weeks of LRS and densities greater than
100/1000m3 were not observed after 16 June. Individual
peaks were observed during the weeks of 29 April and 13 May;
this is 2-4 weeks earlier than peaks observed in most years
(Fig. IV-16). However, this conclusion should be viewed cau-
tiously since periods of peak egg abundance may be poorly
estimated due to the demersal, adhesive nature of the eggs.

Yolk~Sac Larvae

Yolk-sac larvae were collected as far downstream as Croton-
Haverstraw in 5 ppt salinity water (Fig. IV-17). As with eggs,
however, concentrations were centered upriver and few yolk-sac
larvae were found in water with greater than 3 ppt salinity.
This upstream distribution is typical of, but more pronounced
than in, previous years (Fig. IV-15). Regional temperatures
in which white perch yolk-sac larvae were captured ranged from
12-23°C with a mean of 15°C.

The estimate for peak yolk-sac abundance occurred during
the week of 6 May. This is about two weeks earlier than in
most previous years (Fig. IV-16). The 6 May peak occurred
prior to the highest observed egg density (Fig. IV-16), but
this may be based on sampling limitations since the demersal,
adhesive nature of white perch eggs may restrict their collec-
tion by the sampling gear. White perch yolk-sac larvae contin-

ued to be taken until the end of the LRS, but abundance declined
sharply beginning in June.

Post Yolk~Sac Larvae

White perch post yolk-sac larvae were captured in all
weeks of the LRS, but were most abundant from late May to mid-
June (Fig. IV-18), when water temperature averaged 20°C. The
peak of post yolk-sac collections followed peak yolk-sac col-
lections by about three weeks, even though development between
these stages is thought to be less than one week (Morgan and
Rasin 1973). One possible explanation would be an influx of
tributary-spawned post yolk-sac larvae to the river during
June. Alternatively, some of the earlier spawned larvae may
have suffered disproportionately high mortality. Regional
densities gradually declined after June, and no regions exceeded
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250/1000 m3 after the first week in July. 1In many previous
years, observed declines have occurred 2-3 weeks later (Fig.

Post yolk-sac larvae were caught as far downstream as
Yonkers, but consistent catches were recorded only upstream of
Croton-Haverstraw, in salinities less than 5 ppt. Dispersal or
immigration from tributaries was apparent after mid-May, as
post yolk-sac larvae were found in abundance over an increasingly
greater portion of the river.

Young-of -Year

Young-of -year white perch were first collected during the
LRS on 24 June (Fig. IV-19). Juvenile white perch have been
taken as early as late May in some previous Year Class studies,
but the date of first capture in 1985 is not atypical of most
years {(Fig. IV-16). Young-of-year white perch were also taken
during all weeks of FSS (Fig. IV-20) and BSS (Fig. IV-21).
BSS catches were generally higher in the early fall, and catches
in the FSS were higher in the late fall, suggesting that an
onshore/offshore movement occurs during the fall. This pattern
has also been reported in other Year Class reports.

Young-of ~year white perch were taken from all regions but
Yonkers. The largest juvenile abundances associated with the
BSS occurred at or near the salt front (Fig. IV-21), while
peaks found during the LRS and FSS were located between
Poughkeepsie and Kingston. Despite this difference, the dis-
tribution of juvenile white perch in the shore zone was typical
of that in previous Year Class studies (Fig. IV-22).

Yearling and Older

Yearling and older white perch were collected in every
region and in every week during the LRS (Fig. IV~-23), FSS
(Fig. IV=-24), and BSS (Fig. IV-25). White perch were least
abundant in the higher salinity waters of Yonkers, and there
appeared to be a bimodal geographic distribution of fish in the
estuary beginning at the start of the FSS and BSS. The down-
stream peak was located between Tappan Zee and Indian Point,
while the upstream peak ranged from Poughkeepsie to Albany on
some dates. Similar bimodal abundance peaks have been observed
historically.

Prior to the start of the FSS and BSS, a single broad peak,

probably representing the spawning population, was observed.
This peak period followed peak egg densities by several weeks.
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NAI (1985c) suggested that such peaks in yearling and older
white perch density may be associated with the return of tribu-
tary spawners to the main river.

During the BSS and FSS, temporal distribution of yearling
and older white perch was not well defined, but as water temp-
eratures fell below 15°C, white perch were taken less frequently
near shore. Downstream migration may also have begun at the
end of FSS, but no clear trend was apparent.

D. ATLANTIC TOMCOD

Atlantic tomcod, Microgadus tomcod, is an anadromous
species, inhabiting the Atlantic coast from Canada to Virginia
(Peterson et al. 1980). Adults normally enter estuaries in
November and spawn there in December; however, spawning can
occur through February. Spawning typically takes place in
freshwater, as sperm cannot fertilize the eggs at salinities
greater than 2 ppt (Booth 1967). The eggs, which are demersal
and adhesive, hatch in 36-42 days (Hardy and Hudson 1975).
After hatching, larvae become buoyant and drift downstream toward
the mesohaline environment, where optimal larval development
occurs (Peterson et al. 1980).

Post Yolk-Sac Larvae

Consistent with their winter spawning behavior, no Atlantic
tomcod eggs or yolk-sac larvae were taken during 1985, and
nearly 99% of post yolk-sac larvae taken were captured in the
first two weeks of the LRS (Fig. IV-26). Historically, an
average of over 85% of all the post volk-sac larvae collected

were taken during the first week of the LRS, but in some years
relative few were collected through the first week in July.

Post yolk-sac larval densities were highest at the salt
front near West Point, well upstream of Yonkers and Tappan Zee
where abundance peaks have occurred in previous years. Larvae
were also captured as far upstream as Albany in 1985, which is
atypical of previous vears. This pattern may be explained by
the lack of large freshwater inflows in early 1985. Tempera-

tures during periods in which larvae were collected ranged
from 12-18°C.
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Young-of-Year

Juvenile tomcod were taken throughout the LRS (Fig. IV-
27), FSS (Fig IV-28), and BSS (Fig. IV-29). Densities were
greatest from late April to mid-June and declined thereafter.
During the FSS and BSS, density estimates of juvenile tomcod
peaked during the first week of each survey and subsequently
declined throughout the surveys.

Atlantic tomcod young-of-year were most abundant between
the salt front and areas less than 3 ppt salinity (Croton-
Haverstraw to Cornwall) during the LRS and FSS, but some
were collected in all regions. As was typical in other years,
highest BSS densities were found at Tappan Zee, and no juveniles
were taken north of West Point during the BSS (Fig. IV=-30).

E. ALOSA SPP.

This taxonomic group comprises the early developmental
stages of three anadromous clupeids: American shad (Alosa
sapidissima), blueback herring (Alosa aestivalis) and alewife
(Alosa pseudoharengus). In previous Year Class Reports American
shad has been presented separately.

All three species are anadromous, entering rivers and
estuaries along the Atlantic coast in spring to spawn in brackish
or freshwater areas. Although the spawning runs of these three
species overlap to some extent, peak egg abundance for each of
these species can often be identified based on water temperature
at time of spawning, water depth, and substrate. Alewife and
American shad spawn earliest. Alewife spawning occurs first at
temperatures near 13° (Tyus 1974). American shad spawning
follows when water temperature is between 13-18 °C (Leggett and
Whitney 1972). American shad spawn primarily over sand or
pebbly substrates with moderate flow (Marcy 1972; Mansueti 1955).
Spawning by alewife generally occurs in lower velocity currents
and over a wider range of substrates, including sand, gravel,
and detritus-covered bottom (Cooper 1961). Blueback herring
may not spawn until temperature exceeds 20 °C and generally
spawn on sand or gravel in high flow environments (Loesch and
Lund 1977).

All three species are repeat spawners that mature beginning
at Age 3 (Chittenden 1975; Tyus 1974; Kissil 1974). All are
broadcast spawners, with the number of eggs typically exceeding
50,000 per female (Loesch and Lund 1977; Messieh 1977; Kissil
1974; Leggett 1969). All three species overwinter in coastal
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waters. Juveniles leave the estuary in fall with declining
temperature (Kissil 1974; Richkus 1974; Burbidge 1974; Watson
1968) and may not return until they reach spawning age.

Eggs

Alosa spp. were collected during the LRS until late June
(Fig. IV-31). However, highest egg densities were observed
during the first week of LRS in late April, suggesting that as
in previous years, alosid spawning may have peaked prior to
initiation of the LRS in April. Although eggs were collected
as far downstream as West Point, in the vicinity of the salt
front, they were most abundant from Saugerties to Albany.
Consistent with historical patterns, Albany was the region
containing the greatest density estimates for these species.

Yolk=-Sac Larvae

Like Alosa eggs, yolk-sac larvae were collected only from
regions above Indian Point, with highest densities observed in
the Albany Region (Fig. IV-32). Peak density of yolk-sac
larvae followed peak egg density by about one week. This is
consistent with the less than one week incubation time for
eggs at 15°C, which was the temperature observed in the region
(Albany). and week (6 May) when peak yolk-sac density was observed.
The highest mean temperature observed in regions where yolk-sac
larvae were collected was 22.2°C and occurred during the week
of 24 June, the last week that yolk-sac larvae were found.

Post Yolk-Sac Larvae

Alosa spp. post yolk-sac larvae were collected in all
weeks and from all regions but Yonkers during the LRS (Fig. IV-
33). However, few were taken downstream of the salt front, and
concentrations were heaviest from Kingston to Saugerties between
mid-May and mid-June. Peak densities followed the period of
peak yolk-sac abundance by 3-4 weeks. As with eggs and yolk-sac
larvae, density estimates for post yolk-sac larvae of this
taxonomic group were lower in the lower estuary in 1985 than
in many previous years. This may reflect reduced downstream
dispersal as a result of low rainfall in 1985,
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F. AMERICAN SHAD

Post Yolk-Sac Larvae

Nearly 80% of American shad post yolk-sac larvae were
caught in the Albany and Catskill regions in 1985, but some
post yolk-sac larvae were caught as far south as West Point
(Fig. IV-34). Peak estimated concentrations were observed
during the weeks of 20 May and 3 June, approximately 1-3 weeks
ahead of the mean peak in previous years.

Nearly all post yolk-sac larvae were taken in the freshwater
portion of the river and the highest mean regional salinity in
which larvae were collected was 2.6 ppt at West Point. Temper-

ature ranged from 15-25°C during the period of time that shad
post yolk-sac larvae were taken, with temperatures during peak
abundance ranging from about 18-20.5°C.

Young~of-Year

Juvenile American shad were collected from the end of the
LRS (Fig. IV-35) through the end of the BSS and FSS (Figs. IV-
36 and IV-37). Peak young-of-year density estimates occurred
in mid=-July and followed post yolk-sac larval density peaks by
about 3-5 weeks. Similar periods of peak juvenile density
have been reported previously (Battelle 1983; Martin Marietta
Environmental Systems 1986).

During the LRS, young-of-year shad were collected in
greatest numbers from the upper estuary, where larval stages
had been most abundant. During FSS and BSS, young-of-year shad
were again most abundant in the upper estuary, but peaks were
less pronounced. In previous years, juvenile shad were most
frequently collected at Cornwall and Poughkeepsie (Fig. IV-38).
The greater upstream concentration in 1985 may have reflected
the lesser than average rainfall during the spring. Highest
observed densities of juveniles during LRS, BSS, and FSS were
during the weeks of 24 June, 16 July and 22 July, respectively.
This extended period of abundance roughly corresponds with the
duration of post yolk-sac larval abundance. From about the
first week in July during LRS, young-of -year shad began disper-
sing in small numbers from freshwater reaches of the river
into mesohaline regions. Juvenile shad were taken least often
in the Yonkers region where mean salinities were substantially
higher than upstream areas.

A general decline in density estimates of young-of-year

shad was evident over the duration of the FSS and BSS. During
1985, juvenile shad apparently emigrated downstream in response
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to declining fall temperatures; by the last week of BSS no shad
were captured in waters below 10°C. Juvenile shad generally
leave their natal rivers after water temperatures drop below
15°C for several days (Leggett and Whitney 1972; Chittenden

and Westman 1967). In 1985 juvenile shad emigration appeared
to more closely follow the 10°C isocline.

G. ALEWIFE

Young-ocf-Year

Alosids identifiable as juvenile alewife were collected
during the LRS in early June, significantly sooner than in
most years, but similar to 1980 (Battelle 1983) (Fig. IV-39).
As was the case for alosid post yolk-sac larval distribution,
early alewife juveniles were most abundant from Kingston to
Albany during LRS and a small number were taken from low
salinity waters as far south as Croton-Haverstraw.

Juvenile alewives were taken from all regions during the
FSS and BSS, in salinities as high as 18 ppt (Fig. IV-40 and
Fig. IV-41). Consistent with findings in earlier Year Class
studies, greatest catch occurred during July and early August,
though density estimates remained high in the FSS until mid-
September. A general decline in abundance and possible down-
stream movement of juveniles below the 10°C isocline was
apparent after mid-October; Richkus (1975) suggested that
downstream movement of juveniles is associated with rapid
declines in water temperature. Results from the last week of
the BSS suggest an abandonment of near shore zones throughout
the estuary, while limited numbers of alewife were caught in
all but the Albany region during the last week of the FSS.

Yearling and Older

Yearling and older alewife were caught infrequently from

the first week of LRS (Fig. IV-42), to the end of the FSS (Figs.
IVv-43 and IV-44). Most capture locations of yearling and older

alewife were in the middle and lower estuary but highest regional
catches occurred at Albany in May and Kingston in late September.

Collection of yearling and older alewife in previous years
was sporadic and a definable fall downriver movement was docu-
mented only in the 1982 Year Class Report. It is likely that
gear avoidance by yearling and older alewife masks the ability
to discern spatio-temporal distributions or movements within
the estuary.
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H. BLUEBACK HERRING

Young—-of—-Year

Identifiable young-of-year blueback herring were collected
from the final week of the LRS (Fig. IV-45) to the end of the
FSS (Fig. IV-46) and BSS (Fig. IV-47). After mid-July, juveniles
were taken from most regions on a weekly basis, but abundant
catches most often came from areas upstream of the salt front.
In comparison to alewife, the 1985 distribution of juvenile
blueback herring was less restricted to the upper estuary and
catches occurred more evenly over many weeks and regions. As
in other years, peak densities of juvenile blueback herring in
1985 occurred in early August and gradually declined thereafter.
Also, this species was generally absent from the estuary after
water temperatures began to decline in the upper estuary in
mid-September. Downstream migration was not suggested by the
distribution pattern observed in 1985, but has been thought
to occur in other years.

Yearling and Older

Yearling and older blueback herring were collected
sporadically from the first week of LRS (Fig. IV-48) until the
final week of the FSS (Figs. IV-49). Only three yearling and
older fish were collected in the BSS. 1In May, yearling and
older blueback herring were taken most regularly from the
lower estuary, although an isolated peak was observed at Albany;:
presumably these fish were spawning adults. After May, no
clear trend was apparent, although a downstream fall migration
might be implied by the fact that fish were taken only at
Yonkers during the last 2 weeks of FSS. As with alewife, gear
avoidance by yearling and older fish probably masks the ability
to discern true distributional patterns.

I. BAY ANCHOVY

Bay anchovy (Anchoa mitchilli) are abundant fish found
along the Atlantic and Gulf coasts of North America from Maine
to the Yucatan peninsula. They are primarily estuarine but may
be found in environments ranging from freshwater to full-strength
seawater. They form an important forage base for many estuarine
fish, including bluefish, Atlantic tomcod, white perch and
striped bass (Richards 1976; Olney 1983).

Spawning by bay anchovy occurs from May to September (Dovel
1971) at temperatures of 15-30°C (Wang and Kernehan 1979) and
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may occur over a wide range of salinities. However, Wang and
Kernehan (1979) have suggested that egg mortality is high at
salinities less than 5 ppt. Spawning is generally believed to
be greatest in mesohaline environments (Dovel 1971), and high
egg abundance often occurs in higher salinity environments
(Olney 1983).

Young-of-Year

No young-of-year bay anchovy were collected during the
LRS in 1985, 1In previous Year Class studies over 80% of the
young-of-year bay anchovy from the LRS were taken during the
second week in July, with highest densities in the Tappan Ze€,
Croton-Haverstraw, and Indian Point regions.

Young-of-year bay anchovies were taken, however, during
nearly all of the FSS (Fig. IV-50) and BSS (Fig. IV 51), with
the majority of fish taken during FSS. Highest density during
the FSS occurred between mid-August and the end of September.
This peak is consistent with the peak of juvenile bay anchovy
standing crops reported in previous Year Class Reports. As in
previous years, young-of-year bay anchovy were most abundant
in samples from the mesohaline waters of the lower estuary
(Fig. IV-52), but at least some fish were taken in all regions
of the river.

Yearling and Older

Yearling and older bay anchovy were captured during every
week of sampling except the week of 5 November. Although these
fish were caught in all regions, few were caught in regions
upstream of the salt front, and most of the catch came from
areas with 4 ppt or greater. Estimated regional densities
were initiallg low in the LRS (Fig. IV-53) but increased to
80-200/1000 m” in the lower estuary by mid-June. As in pre-
vious years, sample densities remained high until mid-August,
after which they declined rapidly (Fig. IV-54 and IV-55). The
recurrent increase in density during mid-summer each year may
be due to upstream movement of bay anchovy from outside of the
study area as salinity within the study area increases.

J. WEAKFISH

Weakfish (Cynoscion regalis) inhabit coastal oceanic and
inland tidal waters from Florida to Nova Scotia, but are most
abundant from Chesapeake Bay to Long Island Sound (Thomas 1971;
Colton et al. 1979). Although adults are euryhaline, spawning
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generally occurs in water with salinities between 28 and 31 ppt
(Lippson and Moran 1974) in and near the mouths of estuaries
from April to August (Merriner 1976; Yetman et al. 1985).
Spawning peaks typically occur during June and July (Thomas 1971;
Johnson 1978).

Weakfish eggs, which are pelagic and initially have high
bouyancy, lose bouyancy as they develop (Lippson and Moran
1974). They reportedly hatch in 40 hours at temperatures of
20-21°C (Harmic 1958). Newly hatched larvae are carried upstream
by bottom currents (Thomas 1971), where early development
occurs. As juveniles, weakfish tend to occupy deeper shoal and
channel waters with low salinities (Smith 1971). With the
decline of water temperatures below 8-10°C in the fall, weakfish
from Northeastern regions of the country abandon their estuaries
(Thomas 1971; TI 1981) and are believed to overwinter off the
Virginia-Carolina coast (Bigelow and Schroeder 1953; Yetman et
al. 1985).

Young-of—-Year

Juvenile weakfish were collected just downstream of the
salt front during the last week of the LRS (Fig. IV-56) and
continued to be taken in nonfreshwater areas until the end
of FSS in mid-November (Fig. IV-57). As in previous years,
standing crop estimates during FSS declined in late summer,
but the decline was less evident in the BSS (Fig. IV-58).
Spatial distribution of juvenile weakfish collected during the
BSS was however, similar to years past in that most fish were
captured in the Yonkers and Tappan Zee regions.

K. WHITE CATFISH

The white catfish (Ictalurus catus) is a resident of
coastal streams along the eastern U.S. coast (Trautman 1957).
They are generally found in fresh or brackish water but can
tolerate salinities up to 14 ppt (Kendall and Schwartz 1968).
White catfish have been widely introduced in inland waters.

White catfish successfully spawn in waters with 2 ppt or
less salinity (Perry and Avault 1968) in late spring or early
summer. The eggs, which are adhesive, are laid in a prepared
nest; the young are defended until they become free swimming
larvae (Breder and Rosen 1966). White catfish are generally
found in deep bottom waters, though shoreward movement occurs
during spawning periods (Schmidt 1971; Marcy 1976; TI 1981;
NAI 1982).
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Young-of-Year

Prejuvenile stages of white catfish are not sampled well
by the sampling gear and strategy used in the LRS. Therefore,
no information is available on the spatio-temporal distribution
of these eggs and larvae. Standing crop of juveniles was
highest from early August to mid-September (Fig. IV-59)}, which
is typical of all previous years except 1984, when peak juvenile
density was observed in early July. Juvenile white catfish
were collected on only one occasion during the BSS; this
paucity of collection by beach seine has been historically
observed and is likely due to the preference by white catfish
for deeper water.

The majority of juvenile white catfish were captured in
the freshwater areas upriver from Kingston. Juvenile white
catfish were also taken sporadically in regions just upstream
of the salt front. In all but a single instance during 1985,
juveniles were taken upstream of the salt front. The single
case occurred at Indian Point during the week of 5 August when
mean regional salinity was 3.7 ppt.

Yearling and Older

As in most years, yearling and older white catfish were
collected throughout the LRS (Fig. IV-60), FSS (Fig. IV-61l),
and BSS (Fig. IV-62) during 1985. They were collected primarily
from bottom and shoal strata, with no apparent temporal peak
in abundance. During 29 April to 20 May, white catfish were
caught most frequently in the middle estuary. After the begin-
ning of June, the highest catch rates occurred in the upper
estuary regions, with fish apparently concentrated in the
Albany region.

The early LRS concentration of catfish in the middle
estuary may represent an upstream spawning migration, while
later occurrence in the upper estuary during June and July may
represent fish present at their spawning grounds. NAI (1985b),
however, has suggested that while the upstream peak may repre-
sent spawning fish, the downstream peak likely reflects those
non-spawning catfish that remained within their overwintering
area.

L. SPOTTAIL SHINER

Spottail shiner (Notropis hudsonius) is a freshwater
species whose distribution extends from the eastern U.S. coast

to west of the Mississippl drainage (Trautman 1957). Spottail
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shiner is important recreationally as a baitfish and also as
forage for piscivorous gamefish. This midwater schooling
species prefers clear water with little turbidity and avoids
strong currents (Pflieger 1975). Spawning generally takes
place in June or July (Werner 1980) over sand or gravel sub-
strate (Jones et al. 1978) and the 1300-2600 demersal eggs
deposited by each female are not given parental care (McCann
1959). Eggs hatch in about 4 days at 20°C, and yolk-sac
absorption takes place shortly thereafter.

Movement patterns for this species are poorly described
outside of the Hudson River. Based on distributional data, TI
(1981) has suggested that spottail shiners in the Hudson River
move shoreward from deeper water overwintering areas to spawn
in the spring and then return to deepwater areas in the fall.
Juveniles apparently remain inshore through summer and disperse
to deeper areas in fall.

Young—-of-Year

No eggs or larvae of spottail shiners were captured during
1985 year class studies; this is likely due to tributary and
near-shore spawning habits as well as the fact that eggs are
demersal and adhesive. Juveniles were not collected during
the LRS but were captured during all weeks of the BSS (Fig.
IV-63) and most weeks of the FSS (Fig. IV-64). This pattern
is similar to most previous years when spottail shiners were
taken with regularity during the BSS and sporadically during
FSS. Although some fish were taken from areas with mean re-
gional salinities of near 5 ppt, most were collected upstream
of the salt front and densities were highest above Pougnhkeepsie.
As in 1980, peak standing crop of juveniles occurred in July,
but a second, smaller peak was observed in early October.

Yearling and Older

Yearling and older spottail shiners were collected begin-
ning in mid-May during the LRS (Fig. IV-65) and during each
week of the FSS (Fig. IV-66) and BSS (Fig. IV-67). Highest
observed densities occurred during June in the Kingston and
Saugerties regions. Spatio-temporal distribution in previous
Year Class reports was attributed primarily to the location of
the salt front and the magnitude of freshwater flows; in 1985
a relatively low flow and stable temperature pattern restricted
spottail shiner distribution primarily to areas north of Indian
Point.
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M. ATLANTIC STURGEON

Atlantic sturgeon (Acipenser oxyrhynchus) is a very long
lived, slow growing anadromous species that inhabits estuarine
and offshore waters from Labrador to South America; although the
range of the more abundant northern subspecies (A. oxyrhynchus
oxyrhynchus) extends only as far south as Florida (Vladykov and
Greeley 1963; Smith 1985). Adults generally reside in coastal
waters near their natal estuary, but are occassionally collected
offshore (Murawski and Pacheco 1977).

Individual sturgeon may spawn as infrequently as once every
3-6 years (Scott and Crossman 1973; Smith 1985). Spawning
takes place in spring on hard bottomed shoal areas (Borodin
1925)., Large females may carry several million eggs each, but
may take more than 20 years before first reproducing (TI 1981).
Eggs are demersal, adhesive, and hatch in 4-7 days when water
temperature is 18~20°C (Jones et al. 1978). Yolk-sac absorbtion
is thought to occur within one week. As juveniles, Atlantic
sturgeon tend to remain in their natal estuary for 3-5 years
(Huff 1975), but do not overwinter in the upper estuary (Brundage
and Meadows 1982; Lazzari et al. 1986). Adults may remain in
the estuary through summer, but generally overwinter outside of
the estuary.

Young-of-Year

No juvenile or earlier life stages of Atlantic sturgeon
were collected during 1985 year class studies. The last year
young-of-year were captured was 1980 when 37 individuals were
collected.

Yearling and Older

As in previous years, collections of yearling and older
Atlantic sturgeon in 1985 were sporadic (Figs. IV-68 and IV-69).
Only one fish was taken in the BSS. Most were taken from the
bottom stratum at or above the salt front. Atlantic sturgeon
were collected from mid-May until mid-November, and in all
regions except Yonkers.

N. SHORTNOSE STURGEON

The shortnose sturgeon (Acipenser brevirostrum) is an
endangered species (Dadswell 1979) that inhabits near shore and
estuarine waters from the St. John River in New Brunswick to
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the St. Johns River in Florida (Vladykov and Greeley 1963).
Historically, shortnose sturgeon were abundant in large estu-
aries from the Connecticut to the Potomac Rivers (Scott and
Crossman 1973), and a landlocked population exists in the
Connecticut River (Taubert 1980).

As with other species of Acipenser, the shortnose is long
lived, has slow growth and sexual maturity rates, and individuals
spawn aperiodically. Age at first spawning may be 8-17 years
(Scott and Crossman 1973; Jones et al. 1978; Taubert 1980),
and spawning may occur only 1-2 times per lifetime, with as
much as 20 years between spawns (Taubert 1980). Spawning is
thought to occur mostly in freshwater during spring (DiNardo
et al. 1985).

Unlike the Atlantic sturgeon, shortnose sturgeon tend to
remain within an estuary during most of their life. However,
extensive movement (as much as 20 km/day) within estuaries has
been noted (McCleave et al. 1977; Buckley and Kynard 1985). 1In
the Hudson River, shortnose sturgeon are thought to overwinter
in the middle estuary, move upriver to spawn and return to
overwintering areas following spawning (TI 1981).

Only 15 shortnose sturgeon were collected during 1985;
all were yearlings or older and all were collected during the
FSS (Table IV-4) from regions with salinities of 5 ppt or
less. Most of the shortnose sturgeon captured were taken from
the bottom stratum during September, when temperatures were
between 17-22°C.
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Collections of shortnose sturgeon during 1985 Year
Class studies

Number
Date Region Stratum Collected
22 August Hyde Park' Bottom 1
18 September Kingston Bottom 5
19 September Poughkeepsie Bottom 1
01 October Kingston Bottom 2
01 October Saugerties Bottom 1
02 October Hyde Park Bottom 2
03 October West Point Bottom 1
15 October Kingston Bottom 1
29 October Croton-Haverstraw Channel 1
29 October Saugerties Bottom 1
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V. HISTORICAL ABUNDANCE INDICES

A. INTRODUCTION

Indices of annual year class strength for white perch and
striped bass in the Hudson River have historically been calcu-
lated using FSS and BSS data. Two basic types of abundance
indices have been used: indices based only on beach seine
data and those based on combined standing crop (CSC). Combined
standing crop is an estimate of the number of fish in the
river at a given point in time. It is calculated as the sum
of the standing crop estimate for the offshore areas (volumetri-
cally expanded FSS density estimates) and the standing crop
estimate for the shore zone region (from areally expanded BSS
density estimates). The first use of a CSC index was in the
1974 report (Table V-1). This index has developed over the
years into three different types of indices for striped bass
and white perch:

® Summer and fall regression indices for both species
@ The peak method index for striped bass
¢ The geometric mean method index for white perch.

The purpose of this chapter is to present results of
these previously developed indices, to present confidence
intervals for these indices where possible, and to evaluate
the methods used for calculating indices of year class strength.
For presentation of these indices, methods were standardized
to eliminate minor differences that existed in calculation of
the indices among years. Generally, the values computed were
close to previously reported values, although some differences
resulted when methods were standardized. Confidence intervals
were also determined for annual values of the historical indices.
This was done to provide a means for assessing the significance
of annual differences and for identifying apparent trends in
year class strength.

Section B of this chapter outlines characteristics which
are desirable in any useful index of abundance. These charac-
teristics form the basis for evaluating each of the historical
indices. Section C discusses the historical beach seine index.
Section D discusses the calculation of weekly combined standing
crop as it pertains to the historical indices. The three CSC
index methods: the peak method for striped bass, the geometric



Table V-1.

Indices of relative year class strength presented

in Hudson River Year Class Reports (1973-1985)

First Applied

First Applied

Index In: To: Citation
Beach seine catch 1973 striped bass, TI (1975)
per unit area white perch,
bluefish
Combined standing 1974 striped bass, TI (1977)
crop -- peak and white perch,
no extrapolation Atlantic
tomcod
Combined standing 1979 striped bass TI (1981)
crop -- peak and
extrapolation
Combined standing 1979 white perch TI (1981)*
crop =-- geometric
mean and extrapola-
tion
Combined standing 1982 striped bass, NAI (1985a)
crop -- summer and white perch
fall regression
Coordinate pair 1985 striped bass, MMES (1987)

white perch,
American shad




mean method for white perch, and the summer and fall regression
methods, are discussed in Sections E, F and G, respectively.
Section H summarizes the major limitations associated with each
of these previously developed indices.

B. DESIRABLE CHARACTERISTICS OF AN
INDEX OF ABUNDANCE

Two conditions must be met if an index of abundance is to
accurately reflect year class strength of fish in the Hudson
River:

@ The index must accurately estimate relative abundance
among years in the areas from which sample sites
are selected

@ The proportion of the population in the sampled
areas must be constant among years.

The first condition requires that the expected catch per
unit effort for samples collected in the area subject to samp-
ling is a constant fraction of the number of fish present in
this area. This condition implies that gear efficiency must
remain the same among years. Differences in gear efficiency
among years could, for instance, lead to an erroneous conclusion
that the number of fish in a sampled area had changed when, in
fact, only the ability to collect them had changed.

The second condition is necessary if inferences about the
Hudson River population as a whole are to be drawn from the
sampled population. If a larger proportion of the population
occurs in areas subject to sampling in one year relative to
another, then differences in the index would be attributable to
the change in distribution of the fish and not to a difference
in year class strength. The importance of satisfying this
requirement is low if a high percentage of the population
occurs in the area subject to sampling. However, inferences
to the Hudson River population can be grossly incorrect if
only a small proportion of the population inhabits the area
subject to sampling and their use of the area is transient
(i.e., £ish move into and out of the area). Furthermore,
erroneous inferences would be highly likely if the area subject
to sampling is not the same in all years.



C. BEACH SEINE INDEX
Methods

The beach seine index ia expresied as the average number
of fish caught per 10,000 ft< (929 m4) sampled [Eqg.
(24))}. Only data from the Yonkers to Cornwall regions from
mid-July to mid-September are used to calculate this index
for striped bass, and data taken from all regions from mid-July
to mid-October are used to compute this index for white perch.

Ve Te
E E (Cry) (npy)
W=Wg  r=Cg

Igg = (929) (24)
(N)(A)

Igg = beach seine index

Cyw = average CPUE in region r during week w (as calculated
in Eq. (12), Chapter II

nyp, = number of samples taken in region r during week w
rg = first region included in the index

ro = last region included in the index

wg = first week included in the index

Wwe = last week included in the index
N = total number of samples used to calculate the index

A = surfaca area (m2) sampled by the 30.5 m beach seine
(450 m*<).

The standard error of the beach seine index is given in
Eg. (25).



We Ye

Z SE(Crw)2 (nrw)2 (25)

WSWg  Y=rg 5
(929°%)

SE (IBS) =
(N2) (a2)

where

standard error of the beach seine index

SE(Ipg)

SE(Cyy) = standard error of the average CPUE in region
r and week w {as calculated in Eq. (13),
Chapter II).

The beach seine index is the simple mean CPUE for all
samples taken within the relevant temporal and geographic
window. Confidence intervals for this index have not been
previously calculated but can be approximated by invoking
the Central Limit Theorem. This theorem states that the dis-
tribution of a sample mean (e.g., the beach seine index) ap-
proaches a normal distribution as sample size increases (Walpole
and Myers 1978). A sample size of 30 is usually sufficient to
generate reliable results. This implies that a 95% confidence
interval can be established for each yearly value of the beach
seine index using normal theory techniques. A 95% confidence
interval for the beach seine index value would therefore be
approximated as plus/minus two standard errors of the index
value. This confidence interval provides a means for making
hypothesis tests concerning yearly values of the beach seine
index. A significant difference in the values of the index for
the two years can be assumed to exist (at o = 0.05) if the
beach seine index confidence intervals for two years do not
overlap.

Results

Beach seine index values and their associated confidence
intervals do not suggest a trend in year class strength for
striped bass during the years 1974-1985 (Fig. V~1). There are
instances of isolated high index years (e.g., the index for
1981 is significantly higher than all other years except 1978
and 1983) and low index years (e.g., 1979 is significantly
lower than 1975, 1977, 1978, 1981, 1983, and 1984). However,
it is notable that the index value for 1985, which is almost
one~third of the next smallest value observed in 1979, is
significantly lower than the index wvalue for every other year
in the study.
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For white perch, the beach seine index and associated
confidence intervals do not suggest a clearly defined long-
term trend in year class strength during 1974 to 1985 (Fig.
V-2). However, this index suggests two separate groupings
(relatively high and relatively low index values) of years.
The average index value from 1975 through 1983 was 24, while
only 1979 was significantly higher than any other years in
that span of time. The years 1974, 1984 and 1985 form a
second grouping of years. Average index value in this group
is less than one half of the average value for the years 1975~
1983. No significant differences could be detected among
years in the second grouping, but each was significantly lower
than any year in the first group.

-‘Assumptions and Limitations

The historically developed beach seine index does not
appear to meet either of the criteria discussed in Section B of
this chapter. The estimate of mean CPUE for the 284 beach
locations from which weekly sample sites are selected is biased.
This problem is relatively minor and could be corrected by
using an alternative method for calculating mean CPUE. However,
there are considerable problems associated with making infer-
ences to the Hudson River population that are generic to any
index based solely on beach seine data. The problems related
to both criteria are discussed below.

The beach seine index, as historically calculated, does
not provide an unbiased estimate of relative population size
within the areas subject to sampling. The weekly average CPUE
is calculated as the simple mean of all samples in the week.
However, sampling effort is allocated on a stratified basis
such that some beaches have a higher probability of being
sampled than others. Should fish be concentrated in a region
where the number of beaches sampled is disproportionately high
(e.g., 24 of the 100 samples in a week are allocated to the
Tappan Zee region), a disproportionately high index value will
be calculated. 1In contrast, if the same population of fish was
concentrated in a region where fewer samples are taken (e.g.,
only 5 out of 100 samples are allocated to the Yonkers region),
the index would be disproportionately low. Thus, the index
could confound true differences in abundance among years with
distributional differences among years.

Furthermore, relative gear efficiency may not be the same
among years because the temporal period over which the index
was historically calculated varied among years. Both the
striped bass and white perch index are calculated for the period
beginning mid-July (week 29). However, the beach seine sampling
program did not begin until as late as week 33 in one year
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(Fig. V-3). 8Since gear efficiency is likely to be a function
of fish size and water temperature, both of which vary with
time of year, relative gear efficiency among years may differ
when these different temporal periods are used for comparison
of beach seine catch among years.

The larger problem, however, is that only limited conclu-
sions about Hudson River fish populations can be inferred from
the beach seine index because the proportion of the population
occurring in the areas subject to sampling is unlikely to
remain constant from year to year. The beach seine index is
particularly sensitive to this assumption since the areas
subject to sampling are limited to 284 beaches which constitute
no more than 2% of the total shoreline of the river. Therefore,
small differences in distribution between sampled and unsampled
shore zone areas among years could severely affect year to year
comparisons using the index. Further, differences in distribu-
tion of fish between the shore zone and the rest of the river
may confound the results of this index, since these offshore
data are not included in the beach seine index. To examine the
importance of this type of movement, the ratio of nearshore/
offshore catch (i.e., BSS/FSS) was compared among years. Data
from a common set of weeks (weeks 33-40) and for a common set
of regions (Yonkers to Poughkeepsie) were used to calculate the
ratio of mean catch per unit effort in offshore sampling to
mean catch per unit effort in nearshore sampling. Data from
1985 were not included because the beam trawl was used in place
of the epibenthic sled in that year. This ratio differed by as
much as 12 fold among certain years for striped bass and white
perch (Figs. V-4 and V-5). This result suggests that the
proportion of these populations that is subject to sampling by
the beach seine may differ substantially among years.

D. WEEKLY COMBINED STANDING CROP

Methods

The weekly combined standing crop method has been used to
estimate the abundance of white perch and striped bass young-
of -year for each week of sampling in the Hudson River between
river miles 12 and 152. For the LRS, this is accomplished by
adjusting regional standing crop estimates for gear efficiency
and summing these values across all regions [Eg. (26)]. Equation
(27) was used for calculating the standard error of weekly
combined standing crop estimates based on data from the LRS.
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12

CSCW = E

r=1

(26)

where
CsC, = combined standing crop estimate for week w

- SCyyw = regional standing crop (as calculated in Eq. (16),

Chapter II)
E;, = gear efficiency adjustment for the LRS, where gear
efficiency is assumed to be 50%
12 : 2
SE (SCLy,)
SE(CSCy) = E —_ (27)
EL,
r=1
where
SE(CSCy) = standard error of weekly CSC estimate
SE(SCyy) = standard error of the regional standing

— crop estimate (as calculated in Eq. (17),
' Chapter II).

During the fall surveys, weekly combined standing crop
estimates were computed in six-steps that combined data from
the Fall Shoals and Beach Seine surveys:

® Adjust the standlng crop estimate of the shoal stratum
for area sampled in the shore zone

® Sum the stratum standing crop estimates within a region
for each survey

® Adjust regional standing crop estimates from each survey
for gear efficiency

® Sum the regional standing crop estimates for each week
for each survey

® Predict standing crop estimates for unsampled weeks of
each survey

® Combine weekly standing crop estimates from the two
surveys.



The standing crop estimate of the shoal stratum was reduced
by 25% prior to summation of the three strata standing crop
estimates for each region. This adjustment was made in order
to eliminate overlap between the shoal stratum (0-6 m) sampled
in the FSS and the shore 2zone (0-3 m) sampled with the beach
seine. It was based on the assumption that the bottom slopes
uniformly from 0 to 6 m.

After summing the stratum standing crop estimates in each
region for each survey, the regional standing crop estimates
were adjusted for gear efficiency. For Fall Shoals samples,
gear efficiency for the epibenthic sled and the Tucker trawl
was assumed to be 50%. The beach seine catch efficiencies
were estimated (TI 1978b; 1979b) as 0.255 for juvenile striped
bass and 0.182 for juvenile white perch. Since FSS sampling
takes place at night and BSS sampling takes place during the
day, species-specific gear efficiency adjustments (designed to
account for night/day differences between the two fall surveys)
were applied to standing crop estimates from the BSS. Texas
Instruments (1978b; 1979) estimated night/day ratios of 2.136
and 1.685 for striped bass and white perch, respectively.

As described in Chapter II, the epibenthic sled that had
been used historically since 1974 was replaced with a beam
trawl for the 1985 FSS. Studies conducted by NAI (1986) in
which the two gear were sampled in the same region found sta-
tistically significant, species~specific differences in catch
between the two sampling devices. Adjustment factors, based
on these relative catches, were developed in this report to
estimate beam trawl gear efficiency (based on the assumed gear
efficiency for epibenthic sled) so that data collected in 1985
could be compared to data collected prior to 1985 (Table
V-2). When an adjustment resulted in a revised gear efficiency
greater than 100%, gear efficiency was assumed to be 100%.

After the Fall Shoals and Beach Seine regional standing
crop estimates were adjusted, the regional values were summed
to estimate the adjusted standing crop for each week sampled.
These steps are summarized for the BSS and FSS in Egs. (28)
and (29), respectively.

e
R
SCw,B = E (SCrw,B) ‘E' (28)
r=rg

where

SCy,B = adjusted standing crop estimate for week w of
the BSS

v-14



Table V-2. Adjustment factors by which gear efficiency of
the beam trawl were divided to standardize values
with that of the epibenthic sled (NAI 1986)

Species Adjustment Factor
Striped bass 4
White perch 13
American shad 0.1
Bay anchovy 0.02

v-15




SCrw,B = standing crop estimate (as calculated in Eq.
(20), Chapter II)

C = catch efficiency of the beach seine

R = night/day adjustment factor for beach seine
catches

rg = first region included in the index

re = last region included in the index.
Te 3
1
SCy,F = z - [(0.75)(sck=1,r,w) + z: SCkrw] (29)
Ep
r=rg k=2
where
S5Cy,Fr = adjusted standing crop estimate for week w of
the FSS

EF = gear efficiency adjustment for the FSS

SCkrw = standing crop estimate (as calculated in Eq.
(14), Chapter II)

k = (1 = shoal stratum
2 = bottom stratum
3 = channel stratum).

Only regions 1-7 were sampled during the FSS from 1975 to
1978 so only FSS and BSS data from those regions were included
in the CSC indices for these years. However, data from all
regions were used in the calculation of CSC indices for 1979~
1985 (as was done for the 1979-1984 year class reports).

The final step in the calculation of weekly combined
standing crop was to add the BSS and FSS adjusted weekly
standing crop estimates to obtain a weekly estimate incorpor-
ating data from both surveys. In most years, FSS and BSS
sampling were conducted in alternate weeks. Therefore, for
weeks when no FSS sampling was conducted, the weekly FSS stand-
ing crop estimate was set equal to the mean of the FSS standing
crop estimates for the two adjacent weeks. In weeks when no
BSS sampling was conducted, the BSS standing crop estimate was
set equal to the BSS estimate of the previous week.



Formulae for estimating the standard error for the combined
standing crop estimates are presented below. Equation (30) was
used to estimate the standard error of the adjusted standing
crop estimates for the FSS, and Eq. (31) was used to estimate
the standard error of the BSS adjusted standing crop estimates
(Kendall and Stewart 1977). The standard error of the weekly
combined standing crop estimate was computed as the square root
of the sum of the squared estimates of standard errors for the
BSS and FSS estimates [Eg. (32)].

2 2

(0.75)SE(SCk=1,r,w) SE(SCk=2,r ,w)
SE(SCyy,r) = *
Ep Ep

SE(SCy=3 )
+ A (30)
Ep

where

SE(SCyy,p) = standard error of adjusted standing crop estimate
for region r, during week w of the FSS

SE(SCypy) = standard error of stratum standing crop estimate
~(as calculated in Eq. (15), Chapter I1)

C VR vC [SE(SCrw)]2
SE(SCyy,B) = SCry,B -;— ;5 + Ei + —-;E;;E——- (31)
where
SE(SCyyw,B) = standard error of adjusted standing crop estimate
for region r, during week w of the BSS
SCrw = regional standing crop estimate (as calculated
in Egq. (20), Chapter II)
VR = estimated variance of night/day catch ratio
VC = estimated variance of beach seine catch efficiency
SE(SCyry) = standard error of regional standing crop estimate

(as calculated in Eg. (21), Chapter II).



Te

SE(CSC,,) = Z [SE(SCW,F)2 + SE(SCrw’B)Z] (32)
r=1
where
SE(CSCy) = standard error of weekly CSC estimate
SE(SCyyw,r) = standard error of adjusted standing crop estimate
for the FSS calculated in Eq. (30)
SE(SCyw,B) = standard error of adjusted standing crop estimate

for the BSS calculated in Eq. (31).

Assumptions and Limitations

The CSC index approach improves upon the beach seine index
by increasing the proportion of the total river subject to
sampling. However, the weekly CSC value appears to be a poor
estimator of relative abundance within the area subject to
sampling because it is sensitive to the weighting system used
to combine FSS and BSS data which has not been empirically
estimated. Furthermore, the proportion of the population
within the sampling area varies among years because of changes
to the number of strata and regions sampled since 1974.

The principal concern with the estimate of relative abun-
dance in the sampled area is that the CSC assumes a relative
importance weighting for the offshore trawl sampling and the
nearshore beach seine sampling that has not been empirically
estimated. The weighting is based on a set of areas and volumes
for each survey that do not correspond to the areas and volumes
actually subject to random sampling and on a set of estimated
gear efficiencies. The result is that the FSS component of
the CSC is weighted over ten times more heavily than the BSS
component. If the proportion of the population that is sampled
by each survey changes from year to year (as was indicated by
the pronounced differences in onshore/offshore distribution
patterns among years), and the weighting factors for the two
surveys are incorrect, year-to-year differences in the combined
standing crop estimates may simply reflect changes in distribu-
tion patterns rather than changes in abundance.

For the beach seine component of CSC, the area that is
actually subject to sampling consists of 284 beaches that are

about 30 m in length and extend <30 m from shore. In weighting
the beach seine catch, it is assumed that these sampled beaches
represent the entire shoreline in the river to a depth of 3.1 m.



For offshore gear, the volume used for weighting is more repre-
sentative of the actual area subject to sampling; although
there are still many areas, such as upstream shoals which are
not sampled but whose volumes are included in the weighting
factors. However, unlike the beach seine efficiency value
which is based on empirical observations, the gear efficiency
value of 50% for the offshore gear was selected to conservatively
estimate the size of fish populations. Use of this gear effi-
ciency for combining BSS and FSS data for year~to-year compari-
sons appears to be inappropriate. Most studies of trawl gear
would suggest that efficiency is considerably lower than 50%
(Kjelson and Colby 1977). 1In addition, when the beam trawl and
the epibenthic sled were deployed in the same regions and weeks
to measure relative gear efficiency, the beam trawl collected
ten times as many white perch and four times as many striped
bass for the same volume filtered (NAI 1986). Thus, it appears
that gear efficiency for the epibenthic sled can be no higher
than 10% for white perch and 25% for striped bass, at least in
those regions and weeks where the comparisons were made. Gear
efficiency for the epibenthic sled may be considerably lower
than even these values since the gear efficiency of a beam
trawl has been reported to be as low as 10% (Kjelson and Colby
1977).

The estimate of relative abundance within the area subject
to sampling is also confounded by the fact that the same gear
has not been used to sample the bottom habitat in all years.

The epibenthic sled was replaced by the beam trawl in 1985.
While relative gear efficiency adjustment factors are available,
they ~are based on only one month of sampling, conducted primar-
ily in a single region and in the shoal stratum. For striped
bass, this adjustment was based on more than 500 fish collected
with each gear. However, for white perch the adjustment factor
was based on less than 25 fish caught in the epibenthic sled.

The ability to draw inferences about the river as a whole
from collections made in the area subject to sampling is
limited because the area subject to sampling has not been the
same in all years. With the exception of one region sampled
in 1974, the channel has only been sampled since 1979 (Fig.
V-6). The bottom stratum has been sampled in all years, but
from 1974-1978 bottom sampling only occurred as far upriver as
region 7 (Fig. V-7). The shoal stratum has been consistently
sampled in all years except in 1975 and 1976, when region 6
went unsampled (Fig. V-8). These differences in sampling among
years will affect different species differentially. The lack
of upriver sampling will be a more important factor for species
like American shad which is generally distributed in the upriver
regions (Figs. IV-36 and IV-37). Striped bass and white perch
are distributed more downriver (Figs. IV-10 and IV-22) and
indices for these species would not be as sensitive to the lack
of upriver sampling in some years. The lack of channel data



S861-¥,.61 woay wexboad

Aening steoys TTed ay3z Aq peydues sem UM3eA3S TOUURYD Byl YOoTym ul suoiboy *9-A 9unbtg

IMBJ] Jadang

B R N LT T Py P R Y PR PR

w w ; “ L ; ; M ; w i
et 11 07 3) 8 V4 9 g |74 E c T
NOI93H HY3A

B1RJIS Tauueyn

V=20



$861-7L6T wouay weaboad

Koaing sTeoyg TTed oy3 Aq pordwes sem wnjieuls wo33oq oyl yoTym ul suoiboy *[L-A 2anbB1g

MeJl Wweag

¢¢¢¢¢¢¢

vl ",

pals 91y3uaqidy

6T
86T
£867
. | 2867
.| 1967

0“.)’. “ "’" “‘} ava

.| o8s?
.| 6L67
.| aL6Y
- | 1267

9/61
GL6T
V6T

13

!

0

}

NOI9dH HY3A

v-21



S86T-v.6T Wwoay weaboad
Asnang steoys Tred syl Aq pordues sem wunjedis Teoys 8yl yorym cw suoibay *g-p sunbig

[mMed] weag pals 2tyjusgrdly

T R 2 > IR G867

L N 56

b NN 05

o — o5}
-_— W

1 I | | 1 | | i i I}

27 15 o 6 @8 L 9 § v € 2 73

NOI93H HY3A

v-22



is likely to be less important for striped bass and white perch
than for American shad because these fish generally feed on the
bottom whereas shad are filter feeders and are more likely to
be found in the water column.

E. PEAK METHOD INDEX FOR STRIPED BASS
Method

The peak method CSC index has been calculated for striped
bass since 1976. This method is calculated in the following
manner:

® Weekly CSC values are plotted and visually inspected
to determine the week of peak abundance

® The abundance on 1 Augqust is predicted using the peak
abundance value and an assumed rate of mortality
[Eg. (33)].

CSCy
e"zt
where
CSCo, = predicted CSC on day 0 (1 August)
CSCy = CSC estimate for peak week w
t = number of days between midpoint of the peak
abundance week and 1 August
z = instantaneous (daily) mortality rate corresponding

to an annual mortality rate of 0.75 (z = 3.79 1073)
(Battelle 1983).

A simplified estimate of the standard error of the peak CSC
method index is given in Eq. (34):

SE(CSCy)
SE(CSCq) = = (34)
e-zt

where

SE{CSCy) = the standard error of the predicted.
CSC on 1 August

V=23



SE(CSCy) = the standard error of the weekly CSC value
for peak week w [Egq. (27)].

Confidence intervals for the peak method index could be
calculated by first assuming an underlying distribution of
the estimate of peak weekly CSC. However, there are no data
to examine the distribution directly because there is only one
estimate of the peak. It is also not possible to determine
the distribution of the peak estimate indirectly from weekly
CSC values because these observations are too few and are not
independent (recall that they are linear combinations of each
other). Therefore, rather than assuming an underlying distribu-
tion for which there is no evidence, confidence intervals could
be calculated using Chebycher's Theoren (Walpole and Myers 1978)
which does not require any information on the distribution. This
approach is conservative and yields large confidence intervals,
and therefore tends to minimize Type I errors for year to year
comparisons. An approximate 95% confidence interval for the
real value of the peak method index can be calculated as the
index plus or minus 4.5 times the standard error of the peak
week as calculated in Eqg. (34). A confidence interval computed
in this manner can be determined for each year of the peak CSC
method index to determine whether significant differences
existed among years.

Results

CSC values could not be calculated for 1974 because a
large number of strata and regions were not sampled in that
vear. Peak CSC index values and associated confidence intervals
for striped bass from 1975-1985 are given in Fig. V-9. MNo
trends in year class strength are apparent. The highest index
value using the peak method occurred in 1978 and the lowest in
1985. However, 1985 could not be distinguished statistically
from any year other than 1980. The confidence intervals with
this method are very wide and the lower limit in many years
overlaps zero. This was due, in part, to the conservative
procedure used for calculating the confidence interval.

Assumptions and Limitations

In addition to the limitations associated with the weekly
CSC values, the peak method index has further disadvantages
as an estimator of relative abundance in the area subject to
sampling. First, the time of year of the peak differs among
years. This occurred because the peak CSC values were observed
at different times in different years, and because the starting
and ending dates for the BSS (Fig. V-5) and FSS (Fig. V-10)
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differed among years. Second, because these samples were taken
at different times of the year, gear efficiency may have been
different in different years. Third, the index is based on the
highest value, which also generally is the most variable value.
Hence, the variance of the peak method index is generally high
and differences in year class strength may be masked.

The peak method also assumes a fixed mortality rate after
1 August that is common to all years. This mortality rate is
not estimated from the yearly data, but is taken as a fixed
constant for all years of interest. If the true mortality
rate fluctuates from year to year, these estimates of relative
abundance would not be comparable among years.

In addition, the standard error of this index is a biased
estimate because it is assumed to be equal to the product of
the standard error of the peak CSC and the extrapolation term.
This only includes the variation in the peak week CSC wvalue:; it
does not include the variation caused by choosing the peak CSC
from a group of CSC values. Inclusion of this source of varia-
tion in the estimate of the standard error of the peak would
necessitate an assumption regarding the distribution of the
weekly CSC values, which as stated earlier can not be based on
available data.

F. GEOMETRIC MEAN METHOD FOR WHITE PERCH
Method

The geometric mean index is based on the geometric mean
of all weekly CSC values for white perch from July to early
September. The projected mean value for 1 August is then
computed in a manner identical to that used for the peak method
index [Eq (35)]:

e 1n(CSC)
GM = (35)
where
GM = geometric mean CSC index
In(CSC) = mean of the natural log of the CSC values from

July to early September

V=27



P
i

time from the midpoint of sampling period (July
to early September) to 1 August

N
i

ins%antaneous (daily) mortality rate (z = 3.79 x
1072).

Confidence intervals for these index values were developed
historically and are determined in the following manner:

@ A 95% confidence interval is determined for the
arithmetic mean of the logarithms of the observations
using the student's t-distribution

® An exponent function is used to identify the 95%
confidence interval for the geometric mean

© The endpoints of the geometric mean confidence interval
are extrapolated to 1 August using the instaneous
mortality rate above to obtain a 95% confidence interval
for the index value.

Results

Values of the geometric mean CSC index for white perch
and associated confidence intervals are given in Fig. V-11l.
Significantly lower index values were found for 1977, 1984,
and 1985 than for all other years except 1978. A downward
trend in the index value occurs from 1979 through 1985, though
no significant difference in the index value can be distin-
guished for any pair of years between 1979-1983.

Assumptions and Limitations

Other than limitations associated with the CSC weekly
values, the principal concern with the geometric mean index is
that the temporal period used in the index varies among years,
which, as discussed earlier, may affect relative gear efficiency
among years. The index is supposed to be calculated from July
(week 27) to early September (week 36). However, the fall
sampling programs have not begun until as late as week 33 in
some years (Figs. V-3 and V-10).

The development of confidence intervals for this index
requires that weekly CSC values be independent and identically
distributed. CSC values that are adjacent in time are not
independent of each other due to the interpolation scheme that
is used to determine weekly Fall Shoals standing crops and
weekly Beach Seine standing crops.
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G. REGRESSION METHODS (SUMMER AND FALL)

Methods

The two regression methods of calculating a CSC index for
striped bass and white perch were developed in the 1982 Year
Class Report (NAI 1985a). The first index, referred to as the
summer regression index is an estimate of the standing crop
on 1 August. It is calculated by regression of the natural
logarithms of weekly CSC on date (from the week including 1
August to the week including 10 October):

In{CSC¢] = 1In({CSCy]l - bt ‘ (36)
where
CSCy = combined standing crop at time t
CSCy = combined standing crop at time O (1 August)

b = estimated instantaneous mortality rate

t = time from the midpoint of sampling period
to 1 August.

A similar method known as the fall regression method was
performed on weekly standing crop data from the first week of
September to the first week of October to estimate standing
crop on 15 September.

Confidence intervals for the two methods were developed
historically and were based on the confidence limits for esti-
mates from the linear regression of the natural logarithms of
the CSC values. The confidence limits for the index were
computed by exponentiating the confidence limits for the natural
logarithms of CSC. For both indices, if the regression was
not significant at the 0.05 level of significance, a geometric
mean of the weekly CSC values was determined and a confidence
interval similar to that for the geometric mean CSC method was
calculated.

Results

For striped bass, regression using the summer index method
was insignificant in 1975, 1978, 1983, and 1984, while for
white perch, it was insignificant in 1975, 1977, 1983, and



1984. The fall regression was only significant for striped
bass in 1976, 1981, and 1982. For white perch it was only
significant in 1976 and 1982.

The striped bass summer regression index values for the
years 1982-1985 were lower than for most other years and
significantly lower than in the two previous years (Fig. V-12).
In addition, the value for 1985 was significantly lower than
for all other years and more than twenty times lower than in
1981. The fall regression index for striped bass was not higher
in 1980 and 1981 than in the later years, but the wvalue for
1985 was lower than in any other year and significantly lower
than in all years except 1979 (Fig. V-13).

The summer regression index for white perch was significantly
lower in 1977, 1984, and 1985 than in any other years (Fig. V-
14). In addition there was a downward trend in the index from
1979 to 1985, with the values from 1983-1985 significantly
lower than any of the values from 1979-1982. For the white
perch fall regression index the downward trend since 1979 was
less apparent, though the values for 1977, 1984, and 1985 were
still significantly lower than for all other years (Fig. V-15).

Assumptions and Limitations

Both regression methods require the assumption that the
logarithms of the weekly CSC values are normally distributed
and that the errors are independent. Because sampling effort
is staggered among weeks and interpolation is necessary to
combine the beach seine and fall shoals data, weekly values of
CSC are linear combinations of each other. This implies that
the error terms associated with the CSC values are not indepen-
dent; therefore, the least squares procedure is unreliable in
estimation of the parameters of the regression equation (Draper
and Smith 1981).

H. SUMMARY OF MAJOR LIMITATIONS OF PREVIOUSLY
DEVELOPED INDICES OF YEAR CLASS STRENGTH

The previously developed indices of abundance all have
two basic flaws that limit their usefulness as indicators of
trends in year class strength:

© They either fail to consider information collected in
the offshore survey or they combine data from the
offshore sampling and the nearshore beach seine sampling
using non-empirical correction factors.
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@ They use data from dissimilar temporal and geographic
windows among years, thus comparing populations with
different characteristics (other than abundance) in
different years.

Indices based on weekly CSC estimates assume a relative
weighting of importance for catch per unit effort information
from two forms of sampling (beach seine and offshore sampling).
The weight given to the offshore CPUE is more than ten fold
higher than that given to the beach seine CPUE. Unless these
weighting factors reflect true relative probability of capture
for the two sampling programs, actual among year differences
in abundance will be confounded by among year differences in
onshore/offshore distribution patterns. The beach seine
index ignores data from offshore and consequently also suffers
from confounding of abundance differences among years and
differences in distribution patterns.

In addition, the historically developed indices do not use
comparable sets of data for among year comparisons. The temporal
and spatial windows during which sampling was conducted differ
among years. Geographic differences among years may hinder
inferences to the larger population because the fraction of
the larger population occurring within the sampled area may
have varied among years. Temporal differences in sampling
among years may have affected relative gear efficiency and may
also have affected the proportion of the Hudson River population
at risk to the gear because movement patterns into and out of
the sampled areas are season specific.



VI. COORDINATE PAIR INDEX OF RELATIVE YEAR
CLASS STRENGTH

A. INTRODUCTION

One of the objectives of the 1985 Year Class Report was to
examine whether a new, statistically reliable index of year
class strength could be developed for striped bass, white
perch, American shad, and bay anchovy. This chapter presents
an alternative index that overcomes the two major shortcomings
of the previously developed indices described in Chapter V
(Section H). Section B of this chapter presents an overview
of, and rationale for the new index, while the method of
calculating the new index is presented in Section C. Results of
analysis based on this index for the four key species are
presented in Section D. Assumptions and limitations of the new
index are presented in Section E.

B. OVERVIEW OF THE COORDINATE PAIR INDEX

The index we propose is one that is based on a coordinate
pair, with one axis of the pair corresponding to a weighted
average CPUE from the BSS and the other axis corresponding to
a weighted average CPUE from the FSS. As opposed to a scalar
index, the coordinate pair approach treats the two data sets
independently and does not place a relative weighting on the
two axes. Conclusions concerning relative year class strength
are drawn when one year is superior to another on both the BSS
and FSS axes. This approach is conservative in that it identi-
fies a more limited set of among-year differences in year
class strength than does a scalar index that allows for a
superior value on one axis to mask an inferior value on the
other. However, the coordinate pair approach is more useful
since it uses information from both sets of available data
without basing conclusions on assumed weightings for the two
axes.

The coordinate pair approach uses a ranking procedure to

assign a value to each axis for each year. A weighted catch
per unit effort is first calculated for each week of sampling

in each year. Then all weeks in all years are ranked and a
mean rank for each year is calculated. The ranking procedure
is used in preference to using a mean CPUE among weeks in a
year because of the decided non-normality of the data; over
90% of the offshore samples in most years contain no striped
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bass or white perch. Nevertheless, mean CPUE is also presented
to depict the magnitude of difference among years. Statistical
inferences, however, are based on nonparametric analyses of the
ranks.

The index is based on data collected in a spatial and
temporal window held in common among all years. The temporal
window used for both axes is weeks 33-40. The geographic
extent for the BSS axis includes all 12 regions since these
have been sampled in all years (Fig. VI-1). Geographic
extent used in the offshore component varied among species.
For each species, a sensitivity analysis (Section D) was used
to determine whether inclusion of the regions and strata not
sampled consistently in all years substantially altered the
relative index value. For those species affected by addition
of the more recent (post-1979) data, the index was calculated
only for 1979-1985 using the larger geographic extent sampled
in those years.

C. METHODS

Computation of the coordinate pair index involves a three
step process:

® Calculation of weekly average CPUE values for the BSS
and FSS programs

® Recalculation of the FSS values using additional strata
collected only since 1979, and conducting a sensitivity
analysis to determine whether the index should be
limited to the data set collected only in the later
years

® Rank transformation of the weekly average CPUE values
to calculate the index and test for significant
differences among years.

Each step in this procedure is detailed below.

Weekly average CPUE for the beach seine component of the
index was calculated as the weighted mean of average regional
CPUE values [Eg. (37)]1. The weighting factor used was the
percent of the 284 sampleable beaches occurring in a region
(Table VI-1). This differs from the CSC indices discussed in
Chapter V, total shore zone surface area in each region was
used as the weighting factor.

VI-2
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Table VI-1.

Revised volume estimates used for weighting
strata means for bottom and shoal strata, and
number of beaches used for weighting regional
means in calculation of riverwide relative
abundance for the coordinate pair index.
Channel volume weightings remain the same as in

Table II-12.

Bottom Shoal Number of

Region Volume Volume Beaches
1 -— 5,784,084 15
2 20,377,231 26,405,643 25
3 10,665,784 11,698,493 25
4 10,961,311 2,744,651 22
5 8,520,739 -——- 9
6 12,060,110 1,766,407 15
7 20,719,147 -—- 30
3 10,499,936 ——— 17
9 11,637,437 - 11
10 14,053,185 —-— 20
11 13,868,236 -—- 41
12 4,433,636 -—- 54

vi-4




12
Z(Br)(crw)
r=1

BS,, = (37)
12

2,

r=1

where
BS,, = beach seine average CPUE in week w

number of sampleable beaches in region r

w
a
i

@]
1]

average regional CPUE (as calculated in Eq. (12),

rw
Chapter II).

Weekly CPUE for the offshore component was calculated by
first computing weekly strata densities for each stratum of the
river using Egquation (38):

ng_
E erkri
i=1

Dwrkr = (38)
n
ky
V .
z wrk,.1
i=1
where
Dyrk. = estimated density in stratum k, of region r during
¥  week w
ng = number of samples taken in stratum k, of region r
r
Cwurk_i = number of fish caught in sample i in stratum k.,
v of region r during week w
Vwrkri = volume of sample i in stratum k, of region r

during week w.

Offshore data from 1985 had to be adjusted for relative
gear efficiency since the beam trawl replaced the epibenthic
sled for sampling the bottom and shoal habitats in that year.
Adjustment factors used to correct 1985 offshore density
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estimates for comparison with epibenthic sled data collected
in previous years were calculated from data presented in NAI
(1986), and are given in Table V-1.

These strata density estimates were then combined to form
a weekly offshore average density estimate [Eq. (39)]. Percent
volumes contained in each stratum were used to weight strata
density estimates. These volumes differed from those used in
weighting of CSC values in that only the volume from which
random samples were collected was used in these computations
(Table VI-1l). In the CSC calculation, bottom volumes used for
calculation of standing crop estimates were defined by the
portion of the river that is within 3 m of the bottom. However,
since sampling by the epibenthic sled was limited to the volume
within one meter of the bottom, bottom volumes were reduced to
reflect this more limited area which was actually subject to
random sampling. Similarly, assumed shoal volumes used to
compute the CSC index (the portion of the region that was
between 3 m and 6 m in depth) were larger than the volumes
actually subject to sampling. In the FSS, sampling was limited
to the shoal bottom using an epibenthic sled and inspection of
the data indicated that shoal sampling occurred regularly to
depths as shallow as two meters. Therefore, our corrected
shoal volumes correspond to the portion of the river between 2
m and 6 m in depth, and within 1 m of the bottom.

e Kre
Z (Vrk )(Dwrk )
r=r k..=k £ r
s r “rs
re Kre
Vv
Z 2: rky
r=rg r=Kyrg

D, = average offshore density estimate for week w

Dyrk. = estimated stratum density calculated in Eq.
T (38)
Vyx. = volume weighting factor for stratum k, in region

¥ r (Table VI-1)
rg = first region included in the index
re = last region included in the index
kyg = first stratum included from region r in ﬁhe index

k = last stratum included from region r in the index.
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Sensitivity of Index to Data from Areas Not Sampled: 1974-1978

Since the goal was to develop an index for all years
between 1974 and 1985, the procedure for computing average CPUE
for the offshore axis was initially applied only to those
regions and strata which were sampled in all years. This
baseline set of data consisted of observations only from the
shoal stratum in regions 1-4 (Yonkers to Indian Point) and the
bottom stratum from regions 2-7 (Tappan Zee to Poughkeepsie)

Starting in 1979, the channel stratum in regions 1-11 and
the upriver bottom stratum in regions 8-12 were added to the
sampling regime. The shoal stratum in region 6 was sampled in
every year after 1975. These strata are potentially important
in determining year class strength, since they constitute a
large fraction of total river volume. A sensitivity analysis
was conducted to assess their importance. First, the offshore
weekly average density estimates were recalculated for years
1979 to 1985 using an extended set of data consisting of obser-
vations from the shoal stratum for regions 1-4 and 6, the
bottom stratum for regions 2-12, and channel stratum for regions
1-11. However, channel data were excluded from the extended
data set if ten fish of the species were never caught in a
region-week during the 12 years of sampling (ten fish corresponds
to the 95% confidence limit for a catch of zero assuming a
Poisson sampling distribution). Then the average annual CPUE
for the initial and extended data sets were compared by correla-
tion analysis. If the correlation was significant (a = 0.05)
then the index was based on only the data common to years 1974
to 1985. However, If the correlation was not significant,
indicating that the additional data altered conclusions concerning
year class strength, the index was redefined to include only
the years 1979 to 1985 using the extended data set.

Rank Transformation

After weekly average CPUE values were computed for an
axis, all weeks in all years were ranked, and the mean rank for
each year was computed. A Kruskal-Wallis nonparametric analysis
of variance was performed on the rank transformed data to test
for among year differences (Conover 1971). A nonparametric
multiple comparison procedure was then performed on the mean
ranks for each year to assess particular differences between
years (Daniel 1978). These procedures were conducted indepen-
dently on each of the two axes of the index.

vIi-7



D. RESULTS

Striped Bass

Based on results of the sensitivity analysis, only strata
in which data were collected in all years since 1974 were
included in the FSS axis for striped bass. No information was
added from the channel sampling since only 21 young-of-year
striped bass were collected in the channel during seven years
of sampling. Also, a Pearson correlation coefficient of 0.99
was obtained when offshore yearly mean density estimates from
the baseline set of data (shoal regions 1-4, bottom regions
2-7) were compared to the yearly mean density estimates for
the extended data set.

The Kruskal-Wallis test on weekly ranks of densities
showed statistically significant differences among years for
both the beach seine and offshore components of the index.
Results from multiple comparison procedures, applied to determine
specific between year differences (Table VI-2), showed that
the only pairwise yearly comparisons that were significant
(¢ =0.05) on both dimensions of the index involved 1985.
Many preceeding years (1974, 1975, 1977, 1878, 1981, 1984) had
significantly higher values than 1985 on both dimensions of
the index. For most of these comparisons the index wvalue in
1985 was more than an order of magnitude smaller on both axes
(Fig. VI-2) and corresponded to a similar magnitude of difference
in CPUE (Fig. VI-3).

White Perch

Only the data collected in all years since 1974 were
included in the index of abundance for white perch. Very few
white perch were collected in channel sampling; on only two
occasions were an acceptably large number of perch caught to
consider use of channel data in the index. However, in each of
these instances, the catch was the result of a single haul in
which the depth of the sample indicated that the Tucker trawl
had been inadvertently deployed in the bottom stratum. The
upstream bottom and shoal areas sampled since 1979 were not
included in the index, because the Pearson correlation coeffi-
cient between the yearly mean density estimates from the baseline
and extended data sets was 0.93.

Results from the Kruskal-Wallis test indicated there were
significant differences in mean rank among years on both the
BSS and FSS axes. The index indicates that 1974, 1984 and
1985 were relatively poor years (Fig. VI-4). The index for
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1974 was significantly less than that for 1976 and 1979, and
the indices for 1984 and 1985 were significantly less than
those for 1976, 1979, 1980, and 1981 in both dimensions at
the & =0.05 level of significance (Table VI-3).

The data also suggest that year class strength of white
perch has declined since 1979. Mean rank for the offshore axis
falls monotonically from 1979 to 1985 (Fig. VI-4) with mean
CPUE differences exceeding an order of magnitude over this
period (Fig. VI-5). Mean ranks on the BSS axis also declined
from 1979 to 1985, but the decline occurred as a step function,
with all years between 1979-1983 statistically distinguishable
from 1984 and 1985, but not from each other. Although a decline
since 1979 is apparent, such a decline may only be part of a
cyclical pattern; the low years in that decline, 1984 and 1985,
could not be statistically distinguished from 1974 or 1977 on
either axis.

American Shad

Unlike striped bass and white perch, the index for American
shad was calculated only for 1979-1985 using data from the
greater geographical extent sampled in those years. The Pearson
correlation coefficient between the yearly mean density estimates
from the baseline and the extended data sets was 0.28 and not
significant, indicating that the channel and upriver data
sampled only since 1979 are important to the determination of
an index for American shad (Fig. VI-6). The importance of the
upriver data is attested to by the geographic index for American
shad (Fig. IV-38) which shows that a large segnent of the
population is found in the upriver regions.

No significant differences in year class strength among
years were detected for American shad (Fig. VI-7). For the
offshore axis the Kruskal-Wallis test indicated no significant
differences in mean ranks among years. This is supported by
the fact that the range in mean CPUE between 1979-1985 was
less than four-fold (Fig. VI-8). Significant differences were
detected on the BSS axis of the index (Table VI-4), but these
differences were small in magnitude (corresponding to only
about two-fold differences in CPUE).

Bay Anchovy

The Pearson correlation between yearly average offshore
density estimates of young-of-year bay anchovies from the
baseline and extended sets of data for years 1979 to 1985 was
not significant (r = 0.8) (Fig. VI-9). This low correlation
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Probability levels for significant differences

in American shad relative abundances between two
years. The upper triangle (above Xs) refers to
the beach seine density estimates.
triangle (below Xs) refers to the offshore
density estimates.

The lower

1979 1980 1981 1982 1983 1984 1985
1979 X 0.91 0.20 0.29 0.22 0.55 0.35
1980 0.97 X 0.17 0.24 0.18 0.62 0.41
1981 0.26 0.25 X 0.84 0.97 0.08 0.04
1982 0.25 0.23 0.97 X 0.87 0.12 0.06
1983 0.67 0.64 0.49 0.46 X 0.08 0.04
1984 0.46 0.44 0.70 0.67 0.76 X 0.75
1985 0.16 0.14 0.76 0.80 0.32 0.49 X
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indicated that an index based only on offshore data common to
all years (1974 to 1985) could be unreliable. Thus, an index
for young-of-year bay anchovy was developed only for the years
1979 to 1985 using the extended data set.

The Kruskal-Wallis test indicates significant differences
among years in both the beach seine and offshore components of
the index. However, no year had a significantly higher value
than any other year on both axes (Table VI-5). On the offshore
axis, 1985 was significantly higher than all preceeding years
except 1982, at the 0.08 level of significance. However,

1985 was only an average year on the beach seine axis (Fig.
VI-10) and could not be distinguished statistically from any
other year. Mean beach seine CPUE ranged from 0.9 CPUE in
1983 to 12.2 CPUE in 1984 (Fig. VI-1l). Offshore density
estimates ranged from 20 £ish/1000 m3 in 1979 to 254 fish/1000
m3 in 1980.

E. ASSUMPTIONS AND LIMITATIONS

Limitations on the usefulness of the coordinate pair
index can be grouped into two categories: those dealing with
gear efficiency and those dealing with unsampled areas. These
same limitations were also found for the historically developed
indices of abundance, but for the coordinate pair index these
limitations have been minimized. They cannot be eliminated
entirely because in part they represent limitations imposed by
the historic sampling protocol. For some species or in some
years, these limitations may hinder inferences about vear
class strength. This section examines these limitations to
determine the degree to which they reduce reliability of
conclusions based on the coordinate pair index.

Gear Efficiency

The coordinate pair index uses species-specific adjustment
factors to correct for differences in relative gear efficiency
between the beam trawl (used in 1985) and the epibenthic sled
(used in all other years). For striped bass, the adjustment
factor is based on a reasonably large sample size (NAI 1986),
but was limited to studies conducted only in the shoal stratum
and conducted primarily in a single region. For white perch
and American shad, the same limitation holds true but is
compounded by small sample sizes (an average of less than 0.5
fish per haul and less than 50 fish total) for at least one of
the gears. Because CPUE values are multiplied directly by the
adjustment factor, an error in the adjustment factor could
substantially bias the comparison of 1985 with all other years.
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Table VI-5.

Probability levels for significant differences
in bay anchovy relative abundances between two
years. The upper triangle (above Xs) refers to
the beach seine density estimates. The lower
triangle (below Xs) refers to the offshore
density estimates.

1979 1980 1981 1982 1983 1984 1985

1979
1980
1981
1982
1983
1984

1985

X 0.24 0.36 0.36 0.07 0.85 0.63

0.01 X 0.84 0.84 <0.01 0.36 0.11

<0.01 0.76 0.46 X 0.01 0.49 0.19
0.25 0.18 0.37 0.10 X 0.06 0.21
0.04 0.67 >0.99 0.46 0.37 X 0.52
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In addition, the coordiante pair index assumes an equal
gear efficiency for the epibenthic sled and the Tucker trawl so
that channel data can be included in the offshore axis of the
index for American shad and bay anchovy. This assumption could
be eliminated by treating the channel data as a third axis,
but doing so would further reduce ability to detect differences
among years. While there are no data to support the assumed
equality in gear efficiency between the Tucker trawl and epi-
benthic sled, the two gears have equal mesh size, equally
sized net openings and are towed at the same speed during
collections.

Unsampled Areas

Inferences from the coordinate pair index to the Hudson
River populations are still limited by the assumption that the
fraction of the larger population that occurs within the
areas subject to sampling remains the same from year to year.
The index is sensitive to this because a sizable area of the
Hudson River system remains unsampled and includes:

®¢ The Hudson River downstream of river mile 12. (No
similar concern exists for the upstream area because
the Troy Dam provides an upstream limit to young-of-year
fish movement)

® Unsampled strata within the sampled regions (primarily
the shoal in regions 5 and 7-12, but also including the

bottom in region 1 and the channel in region 12)
® Shore zone area not included in the 284 sampled beaches.

Index values for all four species are sensitive to the
possibility of a large fraction of the riverwide population
inhabiting the unsampled shore zone areas. As discussed earlier,
the beaches subject to sampling constitute less than 2% of the
total shoreline. In addition, the sampled shore zone includes
only those areas less than 30 m from the shore and shoal stratum
sampling was limited to depths exceeding 2 m. Consequently,
there exists a substantial amount of “shore zone" area less
than 2 m in depth but more than 30 m from shore that was not
sampled. Finally, the beaches actually sampled in the BSS are
~ probably not representative of the remaining shore zone because
the sampled beaches are generally, flat areas that have been
cleared of obstructions that might serve as refuge.

Sensitivity of the index to the unsampled areas is species-
specific. The index for striped bass appears to be the least
sensitive to the unsampled areas. Striped bass generally do
not spawn or develop in small tributaries of rivers, and there
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are no large tributaries to the Hudson River below the Troy
Dam. Downstream distribution (below the George Washington
Bridge) is of minor concern because striped bass young-of-year
generally develop at or above the salt front (Fig. IV-10)

and mark-recapture studies conducted in the 1970's indicated
that the downstream migration of young-of-year striped bass

to overwintering grounds doesn't begin until after week 40

(TI 1981). The fact that the upriver shoal areas have gone
unsanpled is also of little concern, as striped bass are
generally distributed downstream of Poughkeepsie.

The white perch index is even less sensitive than striped
bass to the unsampled downstream areas because white perch are
distributed further upstream than striped bass (Fig. IV-22)
and mark-recapture studies also indicate that white perch
remain within the region they were marked during weeks 33-40
(TI 1981). However, because they are distributed further
upstream, the white perch index is more sensitive to the un-
sampled shoal area in regions 7-12. 1In addition, white perch
are more likely to spawn in tributaries than are striped bass,
but the young-of-year are still likely to be concentrated in
the mainstem of the river, rather than in the tributaries.

American shad are distributed even further upriver than
white perch (Fig. IV-38) and their index is therefore insensitive
to the unsampled downstream areas. However, shad are concentrated
in the regions where the shoal is unsampled and where the
number of beaches available to be sampled is small. Thus, the
American shad index will be sensitive to this unsampled area,
if the proportion within the area subject to sampling changes
among years. In addition, American shad are likely to spawn
in tributaries, although most young-of-year are likely to
develop in the river.

The index for bay anchovy is likely to be a very poor
indicator of year class strength. Bay anchovy spawn primarily
in mesohaline areas and move upstream as they develop. The
majority of the population is likely to occur downstream of
the study area, as is suggested by the distribution pattern
observed in Year Class studies (Fig. IV-52). Thus, the index
value may be determined primarily by longitudinal distribution
patterns, which may be heavily influenced by rainfall and
salinity patterns within the river, rather than by abundance
of the bay anchovy population.

There is an additional problem with the bay anchovy index:
recruitment of young-of-year anchovy to the gear may not be
complete by week 33 (the first week included in the index).

Bay anchovy may continue to spawn this late and the smaller
juvenile bay anchovy may not be captured by the large mesh
gear being used in these sampling programs. This problem
could be overcome by developing an index for yearling bay
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anchovy. However, classification of arnchovy into age classes

on the basis of size alone after the first year is difficult,
because their protacted spawning season does not lead to clear
age~-size class peaks. In addition, an index based on yearling
anchovy would still be unreliable because of the same downstream
distribution problem that occurs for the juveniles.
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VII. FACTORS INFLUENCING YEAR CLASS STRENGTH

A, INTRODUCTION

Interpretation of patterns in year class strength, such as
those identified in Chapter VI, can be improved by understanding
the factors that influence year class strength. Available
water quality data interpreted in conjunction with relative
abundance estimates and distribution patterns of early life
stages can provide such an understanding. This chapter identi-
fies and examines factors that may have affected year class
strength of striped bass and white perch between 1974 and 1985,
Bay anchovy was not considered in this chapter because a reliable
index of their year class strength could not be developed.
American shad were not included because no differences in their
year class strength were detected in Chapter VI.

Previous Year Class Reports have attempted to correlate
year class strength with environmental variables. The approach
used in these previous reports was primarily to correlate
environmental variables with indices of year class strength for
all years. However, factors affecting year class strength,
particularly those responsible for causing a poor year class,
may differ from year to year and among lifestages. Thus, in
our approach we have taken a more mechanistic approach, examining
survival at each lifestage individually.

The ultimate objective of this chapter is to identify how
(i.e., which environmental factors) and when (i.e., at what
point in the life cycle) year class strength has been determined
in the Hudson River since 1974. This was conducted as a two
step process. The first step was to identify those environmental
factors that led to low survival of individual life stages.
The second step was to examine survival data and identify the
principal life stage at which year class strength is determined.

The approach used in the first step was to identify years
when survival of particular lifestages was poor and to inde-
pendently identify years when potentially adverse environmental
conditions occurred. Then a determination was made as to
whether any of these environmental conditions occurred during
periods of low survival and whether they were also absent in
years of high survival.

However, identification of factors affecting survival of

individual lifestages is not by itself sufficient to identify
the factors most affecting year class strength. Year class
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strength is a function of both the number of eggs deposited and
the survival of those eggs to the young-of-year stage. Thus,
as a second step following identification of low survival
events and their potential causes, relative year class strength
was examined to see whether poor survival, low egg abundance,

or a combination of both factors were responsible for years of
low year class strength.

The remainder of this chapter is organized into two sec-
tions. Section B describes the methods that were used to
identify factors that may have influenced year class strength
for each of the species of interest; the last section presents
results from these analyses for each species.

B. METHODS

The first step, identification of factors affecting
lifestage survival, consisted of four elements:

© Calculation of relative abundance indices for
each lifestage

o Calculation of relative survival indices for each
lifestage

® Identification of unusual environmental conditions
and what lifestages were abundant when they occurred

@ Assessment of whether years with low survival at

various lifestages were also years with unusual environ-
mental conditions.

Methods used in performing each of these elements are
described below. The second step, integration of survival data
to determine whether years of low year class strength were
primarily attributable to low survival at particular lifestages
or to low egg abundance, was accomplished by comparing vyear
class strength with survival at each lifestage.

1. Relative Abundance Index

An index of relative abundance was calculated for each
lifestage and species (egg to young-of-year). Coordinate pair
indices were developed for juvenile striped bass, white perch,
and American shad in Chapter VI. Because a single scalar value
could not be associated with each year, the years were classi-
fied as having high, low, or unknown year class strength in
this chapter. For eggs, yolk-sac larvae, and post yolk-sac
larvae, scalar indices of relative abundance were developed.
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Young-of ~Year

The protocol for classification of annual young-of-year
abundance consisted of three steps:

¢ Identification of years with high mean ranks on the
beach seine axis and years with low mean ranks on the
beach seine axis

© Identification of years with high mean ranks on the
offshore axis and years with low mean ranks on the
offshore axis

o Concatenation of these findings to identify years which
had high mean ranks on both axes and years which had
low mean ranks on both axes.

Years with high mean ranks on both axes were classified as
having high year class strength, and years with low mean ranks
on both axes were classified as having low year class strength.

The selection of high and low years on each axis was
accomplished in two steps. First, Duncan's underscore method
was used to summarize which years had mean ranks that were
significantly different (a = 0.05) from each other. The year
with the highest mean rank and the year with the lowest mean
rank were identified. If the mean ranks were significantly
different (a = 0.05) in these two years, the year with the
high mean rank was classified as a good year on that axis, and
the year with the low mean rank was classified as a poor year
on that axis. The years with next highest and next lowest mean
ranks, for each axis, were then identified and retained as good
and poor years, respectively, if their mean ranks were signi-
ficantly different. This procedure was repeated until no
additional pair of years that were significantly different from
each other were found.

After completion of this exercise, the years classified
as low for both axes, and the years classified as high for
both axes were identified. Years classified as low for both
axes were defined as years with low year class strength.
Years classified as high for both axes were defined as years
with high year class strength.

If at least one year could not be defined as being a good
year on both axes, or at least one year could not be identified
as a poor year on both axes, the level of significance was
increased (up to 0.10) and the process repeated until each of
the two categories contained at least one year. Unclassified
years were defined as having had unknown year class strengths.
They may have been years with a high mean rank on one axis but
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an intermediate or low mean rank on the other. Without knowing
the relative weighting for the two axes, such years can only

be classified as years with unknown year class strength. This
approach is conservative in that many years may fall into the
"unknown" category, and misclassification of intermediate years
as low or high is improbable.

Eggs and Larvae

Relative abundance indices for eggs and larvae were computed
using weekly standing crop estimates (Eq. 18) for each year for
striped bass and white perch. The index was calculated as the
total standing crop of each lifestage for the year, normalized
(by dividing by the maximum value) to a relative index among
years for each lifestage. An index of relative abundance was
computed for eggs, yolk-sac larvae and post yolk-sac larvae for
striped bass and only for yolk-sac and post-yolk sac larvae for
white perch. An index for white perch eggs was not calculated
since white perch eggs are adhesive and demersal (Mansueti
1964) and therefore, may not be sampled well by gear used in
the LRS.

This index of early lifestage abundance is independent of
sampling effort if the entire temporal event of the lifestage
is sampled. This assumption appears to have been met in all
but one year. In 1982, 20% of the total standing crop of
striped bass eggs was collected in the first week of sampling.
This suggests that in 1982, when sampling did not begin until
10 May, a substantial number of striped bass eggs may have
occurred prior to initiation of sampling. Thus, the relative
egg abundance index for 1982 may be an underestimate for striped
bass. For white perch, the standing crop estimate of yolk-sac
or post yolk-sac larvae collected in the first or last week of
sampling never exceeded 10% of the total standing crop for the
year, suggesting that relative larval abundance of white perch
was not underestimated to a large extent in any year.

2. Relative Survival Index

Survival can be simply expressed by the ratio of abundances
of one lifestage to another. For instance, egg survival is
equal to the number of yolk-sac larvae produced divided by the
number of eggs spawned. Similarly, post yolk~sac survival is
equal to the number of young-of-year divided by the number of
post yolk-sac. For eggs and yolk-sac larvae, relative survival
was approximated by dividing the total standing crop for the
year of the second lifestage by the total standing crop for the
first lifestage. Absolute survival can not be inferred from

VII-4



this approximation of relative survival using total standing
crop, since different lifestages have different durations.
Therefore, this ratio was normalized to a 0 to 1 scale in the
same manner as the relative abundance index.

Survival of post yolk-sac could not be quantified in the
same way as egg and yolk-sac survival because a single estimate
of young-of-year abundance was not available. Therefore, an
alternative approach based on categorization was developed.
This approach was based on the classification scheme already
described for year class strength (low, unknown, and high) and
three categories for post yolk-sac abundance (low, medium, and
high).

Years with low post yolk-sac survival were identified by
comparing relative year class strength (i.e., high, low, or
unknown) to the relative abundance of post yolk-sac larvae.
Years with relatively high post yolk-sac abundance and low year
class strength were classified as having low ichthyoplankton
survival. Conversely, years with relatively low post yolk-sac
abundance and high year class strength are classified as having
high post yolk-sac survival.

To be consistent with the categorical representation of
year class strength, relative post yolk-sac abundances were
classified as high, medium, and low. Thus the comparisons used
to identify years of high and low ichthyoplankton survival can
be depicted graphically in terms of a simple 3 x 3 matrix (Fig.
VII-1l). Years with low ichthyoplankton survival are represented
by the cells in the upper left hand corner of the matrix.
Similarly, years with high ichthyoplankton survival are repre-
sented by the cells in the lower right hand corner of the
matrix. It should be reiterated that years with unknown year
class strength are not necessarily years of medium year class
strength. A year classified as unknown could have had

® Medium year class strength

e High year class strength with a high value on one axis
of the index but a low value on the other axis

@ Low year class strength with a high value on one axis
of the index but a low value on the other axis.

Years of low, medium, and high post yolk-sac abundance
were categorized using the index of relative abundance described
above. Years of low abundance were defined as those with index
values more than one median absolute deviation (Mosteller and
Tukey 1977) below the median index value. Years of high abundance
were defined as those with index values more than one median
absolute deviation above the median index value.
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Figure VII-1.

RELATIVE YEAR CLASS STRENGTH

Relative ichthyoplankton survival deduced from

relative post yolk-sac abundance and relative
year class strength
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3. 1Identification of Unusual Environmental Conditions

The objective of this element is to identify the periods
of unusual environmental conditions that may have led to low
survival of eggs or larvae. The variables selected for examina-
tion were based on known or anticipated effects of these variables
on striped bass larvae and includes the variables considered in
previous Year Class Reports. However, the list of variables
selected was limited by available data. A number of factors
that could affect survival and year class strength, such as
food availability (Eldridge et al. 1981), contaminant levels
(Hall et al. 1984, 1985), fishing pressure (Goodyear 1985) or
predation, could not be considered because data were unavailable.
Unusual conditions for the variables selected were defined by
examining patterns over the 12 year period and identifying
deviations from the average.

Eight different environmental variables were examined as

potentially affecting survival of eggs or larvae of striped
bass and white perch:

o Large flow events
e Sudden temperature declines or increases

o Above or below average temperature during peak abundance
periods

o Above or below average salinity during peak abundance
periods

@ High or low salinity encroachment

@ Occurrences of low dissolved oxygen

o High vulnerability to entrainment for ichthyoplankton
® Long juvenile exposure period.

Six of these are measures of physical variables. The
seventh is a measure of spatial distribution relative to poten-
tial entrainment through power plants. The eighth is a measure
of temporal distribution.

For some of the environmental variables selected, an
unusual condition could be defined based on laboratory studies
identifying tolerance levels for these fish. For other variables,
however, unusual conditions could only be defined by examining
patterns over the 12 year period and identifying deviations
from the average. 1In such circumstances, an attempt was made
to establish criteria such that 3-6 events were identified as
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unusual. The rationale for this arbitrary selection was that
after about 6 events in a 12 year period, an event ceased to

be unusual; if fewer than 3 events were identified, meaningful
analysis could not be conducted. The data sources and definition
of unusual conditions for each variable is given below.

Large flow events can displace larvae downstream and
potentially affect their survival. United States Geological
Survey daily freshwater flow data (1974 to 1985) from the Green
Island, New York station were used to identify large flow
events. Large flow events were defined, based on deviation
from average conditions, as daily discharge volumes greater
than 2,000 m3 sec™l that were observed between the last week in
April and 15 June, and discharge volumes greater than 600 m3 sec~!
observed between 16 June and the end of July. The two-tiered
criteria for defining unusual flow was required because of large
differences in base flow during the two periods.

Water temperature (°C), salinity (ppt), and dissolved
oxygen {(ppm) data were obtained from the LR/FS water quality
program for each year (see Appendix D for methods and data sum-
maries). Weekly means by region, weighted by stratum volumes,
were calculated for each of these water guality parameters.

The hatching success and survival of larval white perch
and striped bass have been shown in laboratory studies to be
temperature-dependent (Morgan and Rasin 1982; Morgan et al.
1981). Therefore, years in which water temperature at the time
and place of peak abundance for each lifestage varied from the
average were identified using the median absolute deviation
technique described earlier. In addition, Kernehan et al.
(1981) and Dey (1981) have suggested that rapid temperature
declines of 2 °C can lead to mortality of striped bass larvae
and therefore all declines of 2 °C or more were identified
as anomolous events. Eggs and larvae are less sensitive to
rapid increases in temperature (Schubel and Auld 1974), but
will respond with developmental difficulties (Koo and Johnston
1978). All temperature increases of 4 °C within a one week
period were identified as unusual events.

Criteria for unusual salinity conditions were examined in
two ways. First, years in which the average salinity in the
regions and weeks during peak abundance was significantly above
or below average for that lifestage were identified using the
median absolute deviation procedure. Second, years of unusual
salinity conditions were also defined based on degree of salinity
encroachment. Years of high salinity encroachment were defined
as those when mean salinity exceeded 2 ppt in the Cornwall
region. Years when the mean salinity in the West Point region
did not reach 2 ppt were defined as low salinity encroachment
years.
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Dissolved oxygen levels below 3 ppm have been shown to
substantially stress many estuarine fish species including
striped bass (Harrell and Bayless 1981; Thornton 1975). Generally,
mean dissolved oxygen in the Hudson River is well above 3 ppm
(Appendix D); however, dissolved oxygen occasionally dropped
below this value, and all such occurrences were noted as unusual
conditions.

Entrainment through power plants has been suggested as a
factor that increases ichthyoplankton mortality in the Hudson
River. Since estimates of entrainment abundance for the three
largest plants (Indian Point, Bowline, and Roseton) are not
available for all years between 1974-1985, an index of entrain-
ment vulnerability based on geographic distribution of entrainable
lifestages and plant withdrawal rates was computed. This index
was calculated by lifestage, and is intended to reflect the
proportion of the riverwide standing crop that may have been at
risk to entrainment by the three plants. The index is based on
Egq. (40) but is presented in terms of values normalized to range

from 0 to 1.
3 Ny 12
(F ) (Ppy)
pwy pr
)2ID ID DR,

p=1 w=l r=1 V.
Ey = (40)

12
w=; r=1

Ey = relative entrainment vulnerability index for year y

SCrwy = standing crop estimate in region r duing week w
of year y (as calculated in Eq. (16), Chapter II)

F = flow through plant p during week w of year y (m3)

Ppr = proportion of the flow through plant p that is
withdrawn from region r

V.. = volume of region r (m3)
Nyy = number of weeks sampled in year y.

The estimates for the proportion of each plant's water
withdrawal that comes from each region (Ppr) were taken from
Lawler, Matusky and Skelly, Engineeers (l€83) (Table VII-1).
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Table VII-1.

Proportion of power plant cooling water flows
withdrawn from each longitudinal region of the
Hudson River (from Lawler, Matusky and Skelly
Engineers 1983)

Power Plant

Region Roseton Indian Point Bowline Point
YK 0 0 0
TZ 0 0 0.271
CH 0 0.298 0.358
1P 0 0.562 0.371
WP 0 0.140 0
Cw 0.273 0 0
PK 0.727 0 0
HP 0 0 0
KG 0 0 0
SG 0 0 0
CS 0 0 0
AL 0 0 0
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Monthly withdrawal rates for each plant for May, June, and
July of each year were provided by Consolidated Edison. Volumes
of the longitudinal regions are given in Table II-12.

Years of high and low entrainment vulnerability were
defined according to the following procedure. For each life
stage, each year was assigned a rank from 1 to 12 based on the
value of the entrainment vulnerability index. A mean rank for
each year was then computed by averaging the ranks for the
three life stages (egg, yolk-sac larvae, and post yolk-sac
larvae). The three years with the highest mean ranks and the
three years with the lowest mean ranks were defined as years
with high and low entrainment vulnerability, respectively.

The juvenile exposure index represents a measure of poten-
tially decreased survival that might occur in those years when
eggs are spawned early and young-of-year are exposed to an
extended period of risk prior to the time f£rom which the young-
of ~year index is calculated (week 33). The length of time
between the peak of the post yolk-sac stage and week 33 (the
first week of data used in the index of year class strength)
was examined by computing the "mean" week of post yolk-sac
abundance:

z ; WKy SCyy
W=
Py = - (41)
wy
SCyy
w=1
where
Py = mean week of post yolk-sac larvae abundance for

year y

SCyy = standing crop estimate for week w of year y (as
calculated in Eg. (18), Chapter II)

WKy = week number in year y where week 1 begins with the
first Sunday in January

Nyy = number of weeks sampled in year y.

Years of extended or shortened post yolk-sac/young-of-year
exposure periods were defined as those in which the mean week
was at least 1 week earlier or later than the average of mean
weeks for all years. Early peak periods of post yolk-sac
larvae suggest that the risk of these fish to mortality (i.e.,
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prior to week 33) was higher since they were exposed to risks
for a longer period of time. Similarily, late post yolk-sac
peaks suggest that the time period of risk was less in those
years.

4, Concordance Between Ichthyoplankton Survival and
Environmental Conditions

Identif ication of factors that may have influenced egg or
larval survival was conducted in three steps. The first step
was to determine which, if any, unusual environmental conditions
occurred in each of the years identified as having low ichthyo-
plankton survival. This step produced initial hypotheses about
possible factors affecting ichthyoplankton survival. The
second step was to determine whether these initial hypotheses
were consistent across all years. If an unusual event was
associated with low survival of a lifestage in a single vear,
but with high or average survival in other years, then that
event was dismissed as an important unifying factor.

If an unusual environmental event corresponded only with
years of low survival, the final step was to examine data on
temporal distribution patterns (of each life stage) for evidence
of the loss of organisms. For example, a large peak of yolk-sac
larvae observed in week t might be expected to be followed by a
peak of post yolk-sac larvae in week t+l. No post yolk-sac
larvae observed in week t+1 would be evidence of high mortality
during the period from t to t+l. This was done to corroborate
hypotheses on unusual conditions that were thought to have
caused high mortality.

C. RESULTS

1. Relative Abundance Index

Young-of-Year

Year class strength for striped bass was classified accord-
ing to the procedures described in Section B as low in 1982
and 1985, and as high in 1977 (Fig. VII-2). For striped bass
this classification was conducted with a significance level

of a = 0.08. For white perch, 1984 and 1885 were classified as
having had low year class strength, and 1979 was classified as

having had high year class strength (Fig. VII-2). This classi-
fication was conducted with a significance level of a = 0.05.
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Striped Bass
low high

I - |
Beach Seine: 1985 1976 1982 1979 1975 1984 1974 1980 1983 1977 1981 1978

| low | | high |
QOffshore: 1985 1980 1982 1983 1979 1981 1974 1978 1984 1975 1976 1977
a < 0,08 Low years: 1982 and 1985

High years: 1977

White Perch
low high

l |
Beach Seine: 1974 1984 1985 1977 1975 1976 1980 1983 1982 1981 1978 1979

| low | high
Of fshore: 1985 1984 1977 1983 1982 1978 1974 1981 1980 1976 1979 1975
a < 0.05 Low years: 1984 and 1985

Bigh years: 1979

American Shad

low high

[ ! I
19858 1984 1980 1979 1982 1983 1981
Beach Seine:

Offshore: 1980 1979 1983 1984 1981 1982 1985

a < 0.10 Low years: None

High years: None

Figure VII-2. Classification of years of high and low year

class strengths for striped bass, white perch,
and American shad in the Hudson River.
Underscores indicate years not significantly
different from each other.
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For American shad, no years could be classified as having
had high or low year class strength when the classification was
conducted with a significance level of 0.10 (Fig. VII-2). The
level of significance had to be dropped to unacceptably low
levels (a > 0.25) before high and low years could be identified.
This finding is consistent with the discussion in Chapter VI
for American shad. Because no years of high or low year class
strength were identified, no effort was made to establish
relationships between environmental variables and young-of~year
abundance.

Eggs and Larvae

An index of relative abundance was calculated for striped
bass eggs, yolk-sac larvae, and post yolk-sac larvae (Fig.
VII-3) and for white perch yolk-sac and post yolk-sac larvae
(Fig. VII-4). Striped bass egg abundance was lowest in 1985
and highest in 1983, However, the 1983 value should be viewed
cautiously because the extraordinary high egg abundance was
primarily the result of a single sample containing over 10,000
eggs that almost equalled the total number of striped bass
eggs in the nearly 2,000 remaining samples from that year.
Years 1974 and 1977 also had relatively high egg abundances.
Relative abundance of yolk-sac larvae was lowest in 1874, 1976,
and 1985 and highest in 1975, 1977, and 1982. The year of
lowest post yolk-sac abundance of striped bass occurred in
1976; highest abundance was observed in 1981.

Relative yolk-sac larvae abundance for white perch was
higher in 1982 and 1983 than in all other years and post yolk-
sac larvae were most abundant in 1982 and 1985. The lowest
relative abundances of both larval stages were observed for
1974 and 1975.

2. Relative Survival Index

Egg and Yolk-Sac Larvae

Striped bass egg survival based on the ratio of yolk=-sac
abundance to egg abundance was higher in 1975 and 1982 than in
other years and was lowest in 1974 and 1983 (Fig. VII-5).
Survival of yolk-sac larvae was high in 1981 and low in 1976
and 1977 (Fig. VII-5). For white perch, the highest yolk-
sac survival occurred in 1978 and the lowest in 1983 (Fig.
VIii-6).
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Figure VII-3. Relative striped bass egg, yolk-sac, and post
yolk-sac abundance in the Hudson River, 1974 to
1985
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Figure VII-5. Relative egg and yolk-sac larvae survival of
striped bass in the Hudson River, 1974 to 1985
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Post Yolk—-Sac Larvae

Since scalar annual values for post yolk-sac larvae survival
were unavailable, a matrix approach was used to categorize
survival. The relative abundances of striped bass post yolk-sac
larvae and young-of-year suggest that post yolk-sac survival
must have been low in 1982, was probably high in 1977, and was
not high enough in 1985 to prevent a low abundance of post
yolk-sac from resulting in a weak year class (Fig. VII-7). For
white perch, post yolk-sac survival appeared to be very low in
1985 when a large number of post yolk-sac larvae resulted in
relatively poor year class strength. Post yolk-sac survival
was also low in 1984. 1In 1979, survival of white perch larvae
(high abundance) was sufficient to maintain a strong year
class. All other years (for striped bass and white perch) had
unknown year class strength and therefore no conclusions about
post yolk-sac survival could be drawn.

3. Identification of Unusual Environmental Conditions

Large temperature declines, as defined in Section B, oc-
curred in eight of the 12 years (Table VII-2). Three of these
declines occurred immediately after mean water temperature
reached 15°C (1976, 1983, and 1984) which corresponds to the
onset of peak spawning for striped bass in most years (Table
IV-3). The remainder of the declines occurred after the mean
temperature reached 20-22°C, and the temperature did not drop
below 15°C. None of these drops in temperature were observed
below region 6 (Cornwall). Sharp temperature increases of more
than 4°C within one week were observed in 1974, 1977, 1978, and
1984. An increase as high as 8°C in one week was recorded for
early June in 1984.

The average temperature during the periods and in the
regions of peak abundance of each lifestage are given in Figures
VII-8 and VII-9, for striped bass and white perch, respectively.
Most years had at least one lifestage where the temperature
deviated from average (exceptions were 1974 and 1977 for
striped bass and 1980 and 1981 for white perch). 1In 1985, peak
abundances of all three lifestages of striped bass occurred at
below average temperature. In 1984, peak abundance of all
three lifestages for white perch occurred at above average
temperature.

Periods of high freshwater flow, as defined in Section B,
occurred in seven years. In 1974, 1975, 1982, and 1984, rela-
tively high flows occurred in late June and early July. 1In
1976, 1977, 1983, and 1984 high flows were recorded on at
least one day in April or May (Table VII-2). The wettest year
based on total April to July flow was 1976.
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(a) Striped Bass
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High 82 81
84

74
Relative 75
Medium 78 77

Post Yolk- 79
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Low Unknown High

Young-of -Year Index

(b) White Perch

81
High 85 82 79
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Young-of-Year Index

Figure VII-7. Relative post yolk-sac larvae abundance and

relative year class strength of striped bass
(a) and white perch (b) in the Hudson River,
1974 to 1985

VIIi-20



aealk

*g30a19 utejuod Aeu p1 g7 I0F ejep

*DoST #0T2q paddoap sianjeasdwel(q)

uoPAxo peatossip eyl 3Isobbns eleq(e)

- ybTH - - - SB61
Atnp 60 -L0
- - Key 1¢-0¢€ sung GI-¥0 (q)eunr go-Aen 1z v861
Aew g0-20
- ybtH 11ady Lz-52 - (q)eung zo-Kew €7 £861
AInp to-sunp Qg
- - Tradvy 61 - aunp 0-10 861
- - - - - 1861
wdd ¢> ybtH - - sunf £1-20 0861
wdd ¢g> MmO - - aunp zo-Key 1Z 6L61
- - - sunp zo-Aew zz - 8L61
- - T1adv 9z‘sz ‘10 Aen 9z-91 sunp g0-AeW T¢€ LL6T
Atne p1-€1
Atne go0-10
- Mo Key 12-07 -~ (q)hen 9z-L1 9L6T
- - sung yI-€1 - sunp g£1-20 SL6T
(eywdd €> Mo A{nr Lo~-€0 aung y1-v0 - vL6T
uabixo Juau MOTd o8Ty suyioeq aesx
pPoAIOSSIQ ~yoroaouyg xaj3emysaiyg sanjexeduay, sanjeasadue],
Mo Katurtes yb1H daeys dieys

I9ATY uospnyg oyl ur yoaad o3Tym a0 sseq padrals Jo yibuaals SseIO
pedouany jul eaey Aew jeY3} SUOTIITPUOD TEIUSWUOITAUS Tensnun Jo AJeuung

*C-11IA °19el

VIii-21



Table VII-3.

Mean salinity during peak abundance periods
of striped bass and white perch eggs and
larvae in the Hudson River,

1974 to 1985

Striped Bass

White Perch

Yolk~Sac Post Yolk- Yolk-Sac Post Yolk-
Year Egg Larvae Sac Larvae Egg Larvae Sac Larvae
1974 0.0 0.2 0.2 0.4 0.0 0.0
1975 0.0 0.1 0.7 0.1 0.1 0.3
1976 0.0 0.0 0.1 0.0 0.0 0.0
1977 0.0 0.3 0.8 0.2 0.0 0.0
1978 0.0 0.0 0.6 0.0 0.0 0.0
1979 0.0 0.0 0.3 0.0 0.0 0.0
1980 0.0 0.1 1.4 0.0 0.0 0.0
1981 0.2 0.2 0.3 0.0 0.0 0.0
1982 0.1 0.0 0.0 0.0 0.0 0.0
1983 0.0 0.0 0.2 0.0 0.0 0.0
1984 0.0 0.0 g.8 0.0 0.0 g.a
1985 0.3 0.1 0.4 0.0 0.0 0.0
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in the Hudson River, 1974 to 1985
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The three years of high salinity encroachment (1980, 1983,
and 1985) were the only years when mean salinity exceeded 2 ppt
in region 6 (Cornwall). The three lowest salinity encroachment
years (1974, 1976, and 1979) were the only years when the mean
salinity in region 5 (West Point) did not reach 2 ppt in any
week (Table VII-2).

Peak abundance of striped bass eggs occurred at locations
with above average salinity in 1981, 1982, and 1985 (Table VII-3).
In 1974 and 1977, peak abundance of yolk-sac larvae occurred at
above average salinity. No years could be identified as ones
in which the peak abundance of eggs or yolk-sac occurred in an
area of low salinity since in most years these lifestages
developed in fresh water (Table VII-3). Peak post yolk-sac
abundance of striped bass occurred at above-average salinities
in 1975, 1980 and 1984. Lowest salinities for post yolk-sac
occurred in 1976 and 1982. White perch eggs and larvae were
generally found in freshwater. Average salinity during peak
abundance of white perch only exceeded 0.1 ppt in 1974 and 1977
for eggs, and 1975 for post yolk-sac larvae.

Mean dissolved oxygen values below 3 ppm have been recorded
in three years (1974, 1979, and 1980). 1In 1974, zero values
were recorded for the entire region of West Point and Cornwall
during one week in September. Since it is unlikely that dis-
solved oxygen concentration in all samples (including samples
collected at the surface) was zero, the dissolved oxygen data
for 1974 are suspect. The lowest values in 1979 and 1980 were
2.5 and 2.9, respectively.

The index of vulnerability to entrainment, as measured by
the procedure described in Section B, varied considerably
among years (Table VII-4). For striped bass, the three years
of highest vulnerability were 1975, 1977, and 1979; the three
lowest years of vulnerability were 1974, 1982, and 1985. For
white perch, the two years of highest vulnerability were 1975
and 1977; 1979 and 1983 were tied for the third highest wvalue
of entrainment vulnerability index. The year of lowest vulner-
ability was 1985 followed by 1981 and 1982 (Table VII-S5).

The mean week statistic for post yolk-sac abundance ranged
from 21.5 in 1985 to 25.5 in 1984 for striped bass and from
21.9 in 1985 to 25.1 in 1984 for white perch. For striped
bass, only 1985 had a "mean week"” more than a week before the
average "mean week" for all years. For white perch, the "mean
week" in 1981 and in 1985 was more than a week before the
average for all years. Thus, juvenile striped bass were at
risk to mortality for an extended period (prior to week 33) in
1985 and juvenile white perch experienced an extended exposure
period in 1981 and 1985.
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Table VII-4. Entrainment vulnerability index for striped bass
in the Hudson River. Mean rank is the mean of
the ranks of the index values for the three life
stages. High rank indicates high entrainment
vulnerability.

Entrainment Vulnerability Index

Year Egg Yolk-Sac Post Yolk-Sac Mean Rank
1974 0.43 0.34 0.52 2.3
1975 0.58 0.79 0.91 9.2
1976 0.40 0.70 0.82 6.0
1977 0.63 1.00 0.96 11.3
1978 1.00 0.77 0.78 8.7
1979 0.58 0.90 1.00 10.8
1980 0.51 0.57 0.71 5.7
1981 0.56 0.68 0.60 | 5.8
1982 0.21 0.41 0.58 1.7
1983 0.27 0.82 0.91 7.3
1984 0.49 0.53 0.91 6.3
1985 0.25 0.46 0.60 2.8
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Table VII-5. Entrainment wvulnerability index for white perch
in the Hudson River. Mean rank is the mean of
the ranks of the index values for the three life
stages. High rank indicates high vulnerability
to entrainment.

Relative Entrainment Vulnerability Index

Year Egg Yolk-Sac Post Yolk-Sac Mean Rank
1974 1.00 0.38 0.63 8.3
1975 0.48 0.76 1.00 10.3
1976 0.21 0.59 0.48 6.0
1977 0.38 0.79 0.63 9.0
1978 0.13 1.00 0.59 8.0
1979 0.12 0.65 0.96 7.8
1980 0.10 0.28 0.47 3.0
1981 0.02 0.33 0.61 3.7
1982 0.04 0.22 0.63 4.0
1983 0.14 0.84 0.87 9.5
1984 0.07 0.84 0.58 5.8
1985 0.12 0.19 0.34 2.5
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4. Concordance Between Ichthyoplankton Survival and Environmental
Conditions ‘

Striped Bass

Striped bass egg survival was low in 1974 and 1983 (Fig.
VII-5) but there were no environmental factors that were well
correlated with egg survival. Only three of the potentially
adverse environmental conditions we examined did not occur in
years of high egg survival (1975 and 1982): a sudden temperature
decline, below average temperatures during peak egg abundance,
and large freshwater flow events (Table VII-6). Of the variables,
no unusual conditions occurred in 1974 that might explain why
relatively few eggs survived. In 1983, there was a 2° temperature
decline to 12.8° during the peak period for eggs. Temperature
this low can reduce the frequency of hatching to less than 50%
(Morgan et al. 198l1). However, the egg survival estimate for
1983 may be an artifact of a single large value as discussed
earlier and therefore any correlation of temperature leading to
low survival in 1983 should be viewed with caution.

Survival of striped bass yolk-sac larvae was low in 1976
and 1977 (Fig. VII-5) and several potentially adverse conditions
occurred in these years (Table VII-6). 1In 1976, a bimodal
temporal distribution of yolk-sac larvae was observed. The
early peak occurred during the week of 17 May, and was followed
by a second peak during the weeks of 7 and 14 June. Apparently
most of the yolk-sac larvae collected in late May died, since
substantial numbers of post yolk-sac larvae were not collected
until the week of 14 June. Dey (1981l) has previously suggested
that this mortality was the result of a 2° temperature drop
during the week of 24 May. However, the Year Class data suggest
that this temperature drop was limited to those regions north
of Cornwall (Table D-4) and that no such drop occurred south of
Cornwall where over 90% of the yolk-sac larvae were found in
that week. It is possible that the weekly measurements used
in the Year Class sampling program are too infrequent to detect
a temperature drop as Dey (1981) used daily data from the
Poughkeepsie water works plant to reach his conclusion. However,
it is also possible that in the lower estuary the drop was
ameliorated by mixing with warmer water from the New York
harbor area. Daily water intake temperature data available
from the Indian Point generating station indicated a temperature
drop in late May but to a lesser extent than at Poughkeepsie
water works. An alternative hypothesis for the high yolk-sac
mortality in 1976 could be that the high f£lows which occurred
during 20-21 May washed the yolk-sac larvae out of the study
area. During the week of 24 May salinity in the lower most
region of the study area was less than 0.5 ppt, and peak abun-
dance of striped bass post yolk-sac larvae in the Hudson River
have often been observed at salinities above that level (Table
VIii-3).
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In 1977, the peak of yolk-sac larvae did not seem to dis-
appear as in 1976. These larvae experienced a sharp temperature
rise followed by a sudden decline during the week of peak
abundance, and the entrainment vulnerability index was high for
this lifestage in 1977. None of these factors occurred in
years of high yolk-sac survival (Table VII-6), and may have
influenced the mortality of striped bass yolk-sac larvae in
1977.

Relative survival of post yolk-sac could not be directly
estimated since a scalar index of abundance was not available
for young-of-year. Hence, most years were classifed as having
unknown survival because their relative yearclass strength was
unknown. Three of the twelve years were classified as to their
survival: 1977 striped bass post yolk-sac larvae had high
survival, 1982 larvae had low survival and 1985 larvae probably
had average survival (Fig. VII-7), since a relatively low
abundance of post yolk-sac larvae led to a relatively low
young-of-year abundance.

Sharp temperature drops don't appear to have been an im-
portant factor in determining post yolk-sac survival since a
sharp drop occurred in 1977 when survival was high. The only
unusual conditions that occurred in 1982 and not in 1977 were
below average temperature and below average salinity during
peak abundance. Bayless (1972) reported better survival of
larval striped bass in water exceeding 3 ppt than in freshwater
and Lal et al. (1977) reported that optimal salinity increased
with age of the larvae. Post yolk-sac were found further down
river on the average in 1982 than in any other year of the
study. These conditions may have exposed post yolk-sac larvae
in 1982 to different predators, such as juvenile weakfish and
bluefish, which are more typically found in oligohaline rather
than freshwater environments.

White Perch

Several of the environmental factors we examined were
found to be relatively unimportant in determining yolk-sac
larvae survival (Table VII-7). Below average temperature
during peak abundance was inconsistently associated with yolk-sac
survival. Low temperatures occurred in 1981 when survival was
lowest, but also occurred in 1985, which was the second highest
year for yolk-sac survival (Fig. VII-6). Similarly, high
salinity encroachment occurred in years of low (1983), inter-
-mediate (1980), and high (1985) survival. The index of entrain-
ment vulnerability was highest in 1978, the year of highest
survival. In addition, average salinity during peak abundance,
dissolved oxygen, and sharp temperature rises did not occur in
years of high or low survival, suggesting that these factors,
at least in the ranges that occurred during the study period,
do not greatly influence yolk-sac survival.
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The environmental factors remaining that may adversely
influence volk-sac survival are temperature declines, and high
flow events (Table VII-7). In 1983, the year of lowest survival,
white perch yolk-sac exhibited a large, broad peak from 9-23 May
and then a secondary, smaller peak in early June. Catches of
post yolk-sac suggest that survival was greater for the second
peak of yolk-sac larvae. The higher mortality for the earlier
yolk-sac larvae may be attributable to the temperature decline
(from around 15° C to about 12° C) that occurred in late May.
This temperature change did not appear to decimate the early
cohort, but may have reduced their survival, perhaps by increasing
their lifestage duration and hence, their risk to predation. A
similar pattern of a dual temporal peak occurred in 1976 in
which the first peak of yolk-sac larvae appears to have had
extremely low survival. However, in 1976 the mortality of the
first peak corresponded to both a temperature drop and to larqge
freshwater flows.

The year of low post yolk-sac survival (1985) was a year
of high salinity encroachment and a long post yolk-sac/juvenile
exposure duration (Table VII-7). In 1984, when survival was
also low, the only unusual condition occurring during the
period was above average temperature. Since no years of high
survival were identified, it is not possible to further eliminate
some of these potential factors affecting post yolk-sac survival.

Summary

The approach we used to identify environmental factors
potentially leading to low survival of individual lifestages is
limited in two ways. First, one must assume that the relative
survival estimates accurately portray differences is survival
among yvears. Since the lifestage duration of the eggs and volk-
sac larvae is shorter than the one week interval between sampling
runs (Rogers et al. 1977), it is possible that relative abundance
of a lifestage will be poorly estimated in years when many eggs
are released over a very short time period. However, since a
high abundance of striped bass and white perch eggs appears to
occur over at least a three week period in most years (Figs. IV-5
and IV-16), it is unlikely that a single large spawn between
sampling periods will highly influence relative between-lifestage
survival estimates among years.

The second shortcoming is that inferences about environmental
factors drawn from this approach are merely the result of
correlation. They do not necessarily imply cause and effect
nor do they eliminate other potential causes of mortality that
could not be investigated with available data. However, it is
interesting that two environmental factors, freshwater flow and
temperature declines, were consistently found to be associated
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with low survival. High freshwater flows may wash the eggs or
larvae downstream and into the water column where they may be
more vulnerable to predators. Alternatively, high flows may
increase turbidity, which at high levels can affect survival

of striped bass and white perch larvae (Auld and Schubel 1978).
No laboratory studies have directly tested the effects of
temperature decline on larval survival, but survival of early
life stages of both species has been shown in the laboratory to
be temperature sensitive (Morgan and Rasin 1982; Morgan et al.
1981). Low temperatures or temperature declines have also
been suggested to inhibit feeding and thereby affect survival
(Dey 1981; Eldridge et al. 1981) though the importance of a
temporary cessation in feeding has yet to be fully established
(Boreman 1983; Rogers and Westin 1981).

The approach used here also allows us to identify those
environmental factors that are unlikely to be significantly
affecting mortality. This can be accomplished by identifying
those factors which are consistently associated with years of
average or high survival. Several variables, including high
salinity, salinity encroachment, temperature increases,
entrainment vulnerability, and exposure duration, appeared to
fit in this category.

5. Concordance Between Ichthyoplankton Survival, Egg Abundance,
and Year Class Strength

The objective of this chapter is to relate environmental
variables to year class strength. In the previous section,
relative survival of each lifestage was examined in relation to
a list of environmental variables that may potentially affect
survival of any particular lifestage. However, the strength of
a year class is determined by both the number of individuals
entering the population and the survival of those individuals
in the first year. Therefore, the last step in the process is
to determine at what lifestage(s) year class strength of striped
bass and white perch have been determined in the Hudson River
since 1974. Although, definitive conclusions can not be drawn
since only three years for each species were classified as
having high or low year class strength, several observations
can be made. ‘

Striped Bass

Striped bass year class strength seems to be related to
two factors primarily: survival of post yolk-sac larvae and
relative egg abundance. Of the three lifestages, survival of
the post yolk-sac larvae appears to be most important (Fig. VII-5).
Egg survival was high in 1982, a year of low year class strength.
In 1977, a year of high year class strength, yolk-sac larvae
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survival was low. Therefore, relative survival of eggs and
yolk-sac larvae does not consistently lead to lower year class
strength. On the other hand, 1977 had high post yolk-sac
survival and 1982 and 1985 had low post yolk-sac survival.

The relative abundance of eggs was also consistently
related to year class strength for the three years that could
be examined (Fig. VII-3). The second highest year of egg
abundance occurred in 1977 while the lowest two years for egg
abundance were 1982 and 1985, the two years classified as
having low year class strength.

White Perch

For the three years in which relative year class strength
of white perch could be determined, there seemed to be little
correlation with larval abundance (Fig. VII-4). For exanple,
the 1985 year class was poor, yet the relative abundance indices
for yolk-sac and post yolk-sac larvae were high. On the other
hand, low survival of post-yolk-sac corresponded to low year
class strength of white perch. This was not always the case
for yolk-sac larvae (e.g., 1985). Thus, for white perch in the
Hudson River, environmental factors affecting the post yolk=-sac
stage appear to be of primary importance in determining year
class strength for the three years for which such a determination
can be made.
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