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ABSTRACT

A series of thermal-hydraulic and cladding material experiments are being
conducted using light-water reactor fuel bundles as part of the Pacific North-
west Laboratory Loss-of-Coolant Accident (LOCA) Simulation Program. Experi-
mental data and initial results from the fourth experiment in the program--
thermal-hydraulic experiment 2 (TH-2)--are presented in this report. The
program is being conducted in the National Research Universal (NRU) reactor,
Chalk River, Ontario, Canada. A full-length test buridle containing nonpres-
surized water reactor fuel rods was used to develop reflood control parameters
and procedures that will produce a reduced heatup rate or a "flat top" tran-
sient for extended periods of time. Variable reflood rates were used, and
experimentally determined control system logic parameters were developed.
Using these concepts, fuel cladding temperatures from 1033 to 1274K (1400 to
1834 F) were produced for 283 s.






SUMMARY

L

The Loss-of-Coolant Accident (LOCA) Simulation Program is being conducted
by Pacific Northwest Laboratory (PNL) to evaluate the thermal-hydraulic and
mechanical deformation behavior of a full-length light-water reactor (LWR) fuel
bundle under LOCA conditions. The test conditions are designed to simulate
the heatup, reflood, and quench phases of a large-break LOCA and are performed
in the National Research Universal (NRU) reactor using nuclear fission to simu-
late 1ow—]eve1 decay power typical of these conditions.

Data and initial results from the fourth experiment in the program—
thermal- hydraulic experiment 2 (TH-2)--are presented in this report.” TH-2
included 14 tests and had the following major objectives:

e to develop operating conditions for the loop control system (LCS)
that could be used for a subsequent materials experiment (MT-3)

e to evaluate the possibility of using a combination of preset reflood
flow rates to produce a peak fuel cladding temperature in the range
of 1033 to 1089K (1400 to 1500°F) for up to 200 s

e to demonstrate the capability of the data acquisition and control
system (DACS) using measured temperature in a feedback control Toop
to provide a peak fuel cladding temperature in the range of 1033 to
1089K (1400 to 1500°F) for up to 200 s.

The results of the experiment showed that the DACS controlled peak fuel
cladding temperatures better than a combination of preset reflood flow rates.
The delay time and automatic control system used to control the variable
reflood rate demonstrated the capability of holding temperatures above 1033K
(1400°F) for periods of up to 280 s. The experimental conditions approach a
steady-state boil-off condition in which the quench front is in an equilibrium
position with the reflood rate. Test repeatability was also demonstrated by
precise control of peak cladding temperature.

Graphical data are presented from 4 of the 14 TH-2 tests: TH-2.02,
TH-2.12, TH-2.13, and TH-2.14. The data demonstrate fuel cladding temperature
control using both preset reflood flow and temperature feedback. Test repeat-
ability is demonstrated using temperature feedback control, and local fuel
power temperature effects are shown. Preliminary graphical data on test assem-
bly temperatures, cooling flow, and the neutronics environment are presented
in the appendices.
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INTRODUCTION

The Loss-of-Coolant Accident (LOCA) Simulation Program is being conducted’
in the National Research Universal (NRU) reactor at Chalk River Nuclear Labo-
ratories (CRNL),{2) Chalk River, Ontario, Canada, by Pacific Northwest Labo-
ratory'(PNL).(bj The program is sponsored by the U.S. Nuclear Regulatory
Commission (NRC) to evaluate the thermal-hydraulic and mechanical deformation
behavior of a full-length, 3% enriched light-water reactor (LWR) fuel rod
bundle during the heatup, reflood, and quench phases of a LOCA. Low-level
nuclear fission he?t simulates the decay heat in the fuel and cladding that is
typical of a LOCA.(L |

The program is composed of thermal-hydraulic experiments using nonpres-
surized test fuel rods and cladding material experiments using pressurized
test assemblies that balloon-and rupture. The initial thermal-hydraulic
experiment (PTH-1), which was performed in October 1980, provided a data base
for predicting the quench1n% characteristics of Zircaloy-clad fuel rods under
various reflood conditions The first materials experiment (MT-1) was
performed in April 1981 and used a pressurized cruciform of 11 test rods with
1 water tube and 20 unpressurized guard rods. The test rods were pressurized
to 3.1 MPa (450 psig). The delay time and the reflood rate were selected to
duplicate the TH-1.10 experiment, which reached a peak fuel c]add1ng c) tem-
perature of 1144K §l600 F). These conditions were achieved, and 6 of the
11 rods ruptured.

The second materials experiment (MT-2), which was performed in July 1981,
used the same guard rod and shroud assembly as MT-1; it was reconstituted in
the rod bay underwater using a new cruciform test bundle. OUne test objective
was to perform a low-temperature--1089K (1500°F)--test using variable reflood
rates. A malfunction of the test loop occurred and resulted in an adiabatic
heat transfer condition as well as higher temperatures than desired. Eight of
the 11 rods ruptured dur]ng the MT-2 exper1ment (4)

~ This report presents data and initial results from the second thermal-
hydraulic experiment (TH-2), which was performed in September 1981. The
experiment was jointly funded by the NRC and the United Kingdom Atomic Energy
Authority (UKAEA) to evaluate the thermal-hydraulic test conditions for "flat
top" or extended transient LOCA conditions. A new unpressurized 12-rod test
bundle was inserted into the guard rod and shroud assembly previously used for
MT-1 and MT-2. The results from the previous MT-2 experiment had made it
apparent that in-reactor flat top transient test conditions are difficult to
obtain and that significant modifications to the test procedure were needed.
These flat top transient conditions require that Zircaloy cladding temperatures
be maintained in the high alpha range of 1033 to 1103K (1400 to 1525°F) for

(a) Operated by Atomic Energy of Canada Ltd. (AECL).

(b) Operated for the U.S. Department of Energy (DOGE) by Battelle Memorial
Institute. '

(c) Fuel cladding is subsequently referred to as cladding.



more than 200 s. To obtain these conditions, a variable reflcod rate was
needed; and, due to the variability in the control parameters, it was shown
that preprogrammed or manual over-ride control concepts would provide the
accuracy required. /-

Ouring TH-2, the variable reflood feedback control logic concepts demon-
strated that it was possible to maintain the temperature in the ballooning
window for up to 280 s. Thermal-hydraulic calculational techniques adequately
predicted the Zircaloy cladding thermal behavior in the peak-power region for
the initial part of the transient but were not able to account for steam cool-
ing conditions caused by prolonged low reflood flow rates or for the behavior
of the fuel rod out of the peak-power region.

‘TH-2 was a calibration experiment that was performed to develop reflood
control parameters and procedures for the subsequent materials experiment
(MT-3). TH-2 consisted of 14 tests that developed the capability of the data
acquisition and control system (DACS) and the loop control system (LCS) to con-
trol the variable reflood flow rate, thus producing an elevated peak cladding
temperature for an extended time. TH-2 fuel rods were pressurized witn helium
at 0.101 MPa (14.7 psia), which was low enough that many LOCA transients could
be simulated without causing fuel rod deformation or rupture.

The primary objective of TH-2 was to develop reliable cladding tempera-
ture control of a simulated LOCA Peak cladding temperatures were to range
from 1033 to 1089K (1400 to 1500 F) for at least 150 s, using variable
rate reflood water coolant.

A secondary objective was to develop experiment protection controls that
would trip the NRU reactor and establish emergency coolant flow if 1) the peak
cladding temperature exceeded a trip set point or 2) the cladding heatup rate
was not maintained or did not meet preselected requirements of magnitude and
time. 1n addition, each test in TH-2 provided thermal-nydraulic test data for
low reflood rates and var1ab]e reflood conditions that were not previously
available.

The results from TH-2 provide full-Tength nuclear-heated cladding thermal-
hydraulic response data in the high alpha temperature range for variable
reflood conditions. These conditions extend the éxisting data base on thermal-
hydraulic response to LOCA operating conditions not previously investigated by
FLECHT(5) or other out-of-reactor test programs. These tests provided valu- °
able information on the control of quench fronts and two-phase cooling that
will be used for subsequent thermal-nydraulic and materials experiments. They
also provided information on the quench1ng characteristics of nondeformed rods
as compared with deformed rods.

Data from TH-2 will be used in conjunction with previous test results to
assess various calculational models for reactor safety analyses and conclu-
sjons derived from the large series of electrically heated tests and smaller
scale in-reactor tests being conducted elsewhere. The experimental results of
the orogram address 17 specific items outlined in the Code of Federal Requla-
tions 10 CFR 50.46 and 10 CFR 50, Appendix K. These results will be used to

1

~



provide additional data for model calibration and to help define the primary
heat transfer mechanisms for new analytical models. The major contribution of
these tests to LWR technology is to reduce the uncertainty on licensing cri-

teria and offer the potential for raising the operating 1imits on some commer-
cial LWRs.

The data presented in this repdrt form the basic understanding of how to
control peak elevated temperatures in a test assembly using reflood rate. The
concepts developed are the building blocks for future severe fuel damage test-

.ing and give some insight into the thermal-hydraulic response that can be
expected.






EXPERIMENT DESCRIPTION

This section describes the components of the test train assembly that was
used for TH-2 and details the instrumentation that was provided. The test
operation consisted of a preconditioning phase with 3 rises to power, 2 adia-
batic transient tests, and 12 reflood transient tests.

TEST TRAIN ASSEMBLY

A schematic of the test train used for the LOCA test program is depicted
in Figure 1. The total length of the test train (including the head closure,
hanger tube, and test assembly) was ~9 m (~30 ft). The closure region provided
the primary pressure boundary and included penetrations for 183 instrumentation
leads. The hanger tube was used to suspend the test bundle and shroud from the
head closure plug, and instrument leads were attached to the hanger to protect
them during transport and testing. The shroud, which supported the fuel bundle
and served as a protective liner during the experiment and transfer operations,
also provided proper coolant flow distribution during various stages of the
experiment. The stainless steel (SS) shroud consisted of two halves clamped
together at 17.78-cm (7-in.) intervals and attached at the end fittings. The
split shroud design makes it possible to disassemble, examine, and reassemble
the test train underwater after its irradiation. The highly instrumented
shroud and test assembly was approximately 4.27 m (14.17 ft) long.

The test assembly consisted of a 6 x 6 segment of a 17 x 17 PWR fuel
assembly with the four corner rods removed (see Figure 1). Of the 32-rod fuel
array, the 20 rods in the outer row were guard rods and the 12 inner rods were
test rods arranged in a cruciform pattern (see Table 1). A1l 32 unpressurized
fuel rods were filled with helium. '

The test train instrumentation included: 24 self-powered neutron detec-—
tors (SPNDs), 115 fuel rod thermocouples (TCs), 18 steam probe TCs, and 4 clo-
sure head TCs.. The instrumentation was located at 21 elevations or levels
along the test train assembly. Each of these levels is defined in Figure 2,
and Figures 3 through 6 detail the instrumentation at each level. Four TCs
were located at an additional level to measure the closure temperature. Addi-
tional detail and nomenclature can be found on the blueprints referenced in
Figure 3.

Turbine flowmeters and TCs provided the main source of thermal-hydraulic
data. Local coolant temperatures were measured with steam probe TCs that pro-
truded into the coolant channel and with TCs attached to the shroud. TCs were
also located at the fuel centerline and attached to the inside of the cladding
surface to measure azimuthal temperature variations. These cladding TCs were
spot welded to the interior cladding surface and monitored the cladding tem-
perature without interference from fuel pellet chips or unintentional TC
relocation.
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TABLE 1. Test Fuel Rod Design Variadles

Cladding material Lircaloy-4

Cladding outside diameter (0D) 0.963 cm (0.379 in.)
Cladding inside diameter (10) - 0.841 cm (0.331 in.)
Pitch (rod to rod) - -1.275 cm (0.502 in.)

- Fuel-'pellet 0D N 0.826 cm(0.325-9n.)
-Fuel pellet length 0.953 cm (0.375 1in.)
Active fueled length 365.76 ¢cm (144 in.)
Total shroud length 423.1 cm (170,125 in.)
Helium pressurization” o unpressur1zed a) _

Fuel enrichment . 2. 93% 235

(a) 0.101 MPa (14.7 psia).

v ~SPNDs provided neutron flux measurements within the fuel bundle. They
could also detect coolant density variations (through flux changes) associated
with the quench front that passed each SPND during the reflood phase of the
transient. SPND data with regard to coolant density are currently being
evaluated. '

The instrument signals wefe monitored on a real-time basis with the UACS.
The recorded data characterized the coolant flow rates, temperature, neutron
flux, and operating history.

EXPERIMENT OPERATION

The TH-2 experiment included a preconditioning phase and 14 successive
tests, each having a pretransient and transient phase. All of the tests were
conducted in position L-24 of the NRU reactor (see Figure 7). The TH-2 assem-
bly was oriented in the reactor with side F facing north (fuel rods 2F, 3F,
4F, and 5F faced north).

Preconditioning was conducted at an average test assembly fuel rod power
of about 18.7 kW/m (5.7 kW/ft) with the U-2 loop providing water cooling.
Three short runs to full power permitted the fuel to crack and relocate within
the cladding in a prototypic manner. System loop pressure was held at 8.62 MPa
(1250 psia). Test assembly power was determined by calorimetric methods.

The pretransient phases of the tests were conducted with steam cooling
provided by the U-1 loop at a mass flow rate of about 0.378 kg/s (3000 1bm/n)

“and a reactor power of about 7.4 MW. -NRU reactor power was increased or

decreased as required to maintain the same steam temperature increase across
the test assembly. Even though the peak cladding temperatures varied from

test to test, the total assembly power remained about the same since the cool-
ing steam flow rate was maintained as consistently as possible at 0.378 kg/s
(3000 1bm/h). During the TH-2.10 pretransient, it was discovered that the tem-
perature reading of one of the four TCs in the test assembly outlet tempera-
ture pseudo sensor had been drifting downward over the test period, which meant
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meant that test assembly power .and coolant temperature had gradually increased.
For the remaining tests (10 through 14), this TC was removed from the outlet
temperature pseudo sensor. Test TH-2.13 was an adiabatic test that used no
reflood water; it was conducted to determine the fuel rod axial power distribu-
tion using a .temperature ramp rate technique. The average assembly power for
TH-2.13 was 1.228 or 1.310 kW/m (0.3744 or 0.3993 kW/ft) as determined by calo-
rimetric and adiabatic power calculation techniques, respectively.

The transient phase for each TH-2 test began when the steam coolant flow
was reduced from 0.378 kg/s (3000 1bm/h) to 0 (as indicated by a.sharp drop in
temperature of the Level 1 TCs); reactor power was maintained at about 7.4 MwW.
‘Test TH-2.02 was the only test to use a preprogrammed reflood delay and ref lood
coolant flow controlled by the LCS with no temperature feedback control; all
remaining tests used feedback control concepts. Tests TH-2.03 through TH-2.05
used LCS preprogrammed control for 85 s and DACS temperature feedback after
85 s. Tests TH-2.06 through TH-2.14 (excluding adiabatic test TH-2.13) .used
LCS preprogrammed control for 95 s and DACS temperature feedback after 95 s.
The DACS with temperature feedback monitored selected temperatures (hot spot.
sensors) at Levels 13, 15, and 17 and used the hottest average for control.

Af ter test TH-2.03, the hot spot sensors at Level 13 were removed from the con-
trol system.. The DACS used a combination of proportional, integral, and ‘dif--
ferential control. Weighting parameters for the first and second derivative

of temperature with respect to time were changed witnh successive tests to opti-
mize performance. . :
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EXPERIMENT CONDITIONS AND RESULTS

The test conditions measured during the experiment are described in
Table 2. The table also includes the reactor trip criteria, the type of test
(adiabatic, reflood, or transient), and the type of reflood control (LCS pre-
programmed reflood flow or DACS with temperature feedback).

Test TH-2.02 used a preprogrammed reflood delay and reflood coolant flow
controlled by the LCS. One of the major problems with preprogrammed control
is obtaining the precise reflood delay time. A slightly different delay time
can affect the time at temperature and the test repeatability. The average
test rod temperatures at Levels 13, 15, and 17 for TH-2.02 are presented in
Figure 8. '

With the exception of adiabatic test TH-2.13, tests TH-2.03 through
TH-2.14 used LCS preprogrammed f low for the first 85 to 95 s and DACS clad-
ding temperature feedback control for the remainder of the test. These tests
developed the DACS parameters until the desired control and repeatability were
obtained in tests TH-2.12 and TH-2.14. Figures 9 through 19 demonstrate the
evolution of the DACS using temperature feedback where selected hot spot sen-
sors were used.

Adiabatic heatup tests determined local fuel power for the first test
(TH-2.01) and for test TH-2.13. These adiabatic tests are compared in Fig-
ures 20 through 22.

Test repeatability using the DACS for .companion tests TH-2.12 and TH-2.14
is shown in Figures 23 through 25. Average test rod inside cladding tempera-
tures at Levels 13, 15, and 17 and reflood rates are indicated.

Appendices A through F summarize the preliminary data resulting from tests
TH-2.02, TH-2.12, TH-2.13, and TH-2.14. The data are arranged as follows:

Appendix A - Preconditioning Test Assembly Temperatures
Appendix B - Pretransient Test Assembly Temperatures
Appendix C - Transient Fuel and Cladding Temperatures
Appendix D - Test Coolant and Shroud Temperatures
Appendix E - Neutron Flux

Appendix F - Reflood Flow Measurements.
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TABLE 2. Measured'Experfmeﬁta]

Operating Conditions*

(a)

Transient,

Tt

. ; . Ref lood Transient,' Tranéient, Transient, Transient, Transient,
Parameter Preconditioning _ Calibration TH-2.ul TH-2.u2 TH-¢.u3 TH-2.u4 TH-¢2.05 TH-2.00
Reactor power, MW 127 0 ~7.4 -7.4 ~7.4 ~7.4 ~7.4 R
Test assembly 0
power, kW
Coolant U-2 water U-1 steam/ U-1 steam/ U-1 steam/ U-1 steam/ U-1 steam/ U-1 steaw/ U-1 steam/
reflooding -.reflooding retlooding reflooding reflouding retlooding reflooaing
Coolant flow, U to 16.30 '0.378 (3000) 0.3 (30lo) 0.383 (3usu) U.382 (303U) u.382 (3usu) L.382 (3u3u} U. 331 (3023)
kg/s (1bm/h) {0 to 129,400) . :
Reflood delay, s NA(D) 0 NA
Reflood rates, U.0508, 0.0254, U . h
m/s (in./s) 0.0508 (2.0,
1.u, 2.0) »
Transient - NA - NA y/3u/81 9/3U/8t w/1/8L 10/1/81 lu/l/8l 10/1/81
initiation time(c) : ~21:25:44 ~23:07:43 ~1:29:40 ~14:20:u4 ~16:46:1U ~18:13:45
Pretransient clad- NA NA 707 (813)
dins temperature,
K (F) ’
Peak cladding 700 (80V) 433 (320) 1uus (1350)
temperaturg : -
(PCT), K (°F) ) _
Reactor conditional NA 978 (13uv) 11u3 \1525) 1103 (15¢5)  1144- (1o00) . '1144 (lou0) 1144 (Ll6Vu)
trip criteria . - - ) .
“(PCT), K (°F)
PCT t?fnaround ~3U s )
time,ld) s : TRV T
¢1:27:48 .
Bundi? ?uencn “NA
time,(d) s
Type of test " NA Keflood “adiapatic Transient Transient . Transient _Transient Trausient
Type of reflood NA Lesle) DACS () DACS ~ UACS VACS
‘control : after 85 s ~ after 85 s ~after Y5 s

. after 85 s



L1

Coolant flow, 0.378 {3000)

kg/s {1bm/h)

0.383 (3040)

Reflood delay, s

Reflood rates,
mfs {in./s)

10/2/81
~9:46:0Y

Transient
initiation time

10/1/81
~19:3u:49

Pretransient clad-
ding temperature,
F

K (°F)

Peak cladding
temperaturg
(PCT), K (°F)

Reactor conditional
trip criteria
(PCT), K (F)

1144 (1500) 1144 (160u)

PCT turnaround
time, s

Bundle guencn

time, s
Type of test Transient Transient
Type of reflood DACS UACS

after 95 s after 95 s

control

TH-2.12 and TH-2.14 were the principal TH-2;

Not applicable.

0.379 (3010}

10/2/18
~11:22:25

1144 (1600)

Transient

DACS
after 95 s

0.378 (3uuu)

10/2/81
~12:53:52.

1144 (160v)

- Transient

DALS
after 95 s

U.378 (3000) U.378 (3V0U)

7

U.572 (2.25) for
22 s; U.u36l
(1.42) for 1lb s;
U.029 {U.90) for
20 s; U.U3¢
(1.19) for 26 s;
0.U137 (0.54)

for 172 s
1u/2/81 1u/2/81
~14:37:11 ~15:59:07

743 (877)

1174 (1653

Ll44 (160U)  lida (Lobu)

2173

3Ub
Transient Transient
DACS UVACS
after 95 s after Yb s

0.378 (3000}

NA

J

~10/2/81

~16:39:31

783 (869)

Luis {1364)

1144 (louu)

33

NA

Adiabatic

NA

TABLE 2. (contd)
Transient, ‘Transﬁent, Transient, Transient, Transient, Transient, Transient, Transient,
Parameter TH-2.07 ‘TH-2.08 TH-2.09 TH-2.10 Tr-2.11 TH-2.1¢ TH-2.13 TH-2.14
Reactor power, MW ~7.4 .o ~7.4 ~7.4 ~7.4 ~7.4 ~7.4 ~7.4 ~7.4
Test assembly 138.7 143.8 14z.8
power, kW .
~ Coolant U-1 steam/ U-1 steam/ u-1 steam/ U-1 steam/ U-1 steam/ u-1 steam/ U-1 steam/ U-1 steam/
reflooding reflooding reflooding reflooding reflooding reflooding refiooding reflooaing

U. 378 {sUuu)

/

u.Us5 (z.lg) for
54 55 0.u361
(1.42) for 1o s;
U.udZe (v.8Y)
for 24 s; 0.034>
(1.30) for 16 s;
U.0137 (U.5%4
for 136 s; v.ULl38
{U.74) for 14 s
J.ulldu {u.nl)
for 72 s

lu/z/8l
~17:20:21

737 {807)
1e74 (los4)
1144 louwy)
44

338
fransient

JALS
after v5 s

tests data-not reported for tihe other tests way be reported in.a subseguent report.

Transient initiated by termination of steam flow.

LCS = loop control system.

(a)

(b)

(c)

(d) Time after initiation of transient.

(e)

(f) DACS = data acquisition and control system.
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I NSTRUMENTATION FAILURES

. The assembly used in this series of tests consisted of a new test rod
fuel bundle with the guard rod bundle and shroud that had been used in the
MT-1 and MT-2 experiments. Table 3 lists the test assembly instrumentation
that failed and indicates when failure occurred.
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TABLE 3. TH-2 Test Assembly Instrumentation Failure Status

Instrument Time of Failure
TC~-3-6A-S5-C before TH-2.01 transient
TC~4-6F-S-C during TH-2.04 transient
TC~6-6A-S-C before TH-2.01 preconditioning
TC-7-6C-0R-4 before TH-2.01 preconditioning
TC-7-4F-0R-1 ~  before TH-2.01 preconditioning
TC~7-1D0-0R-2 before TH-2.01 preconditioning
TC-7-3A-0R-3 ~ during TH-2.01 transient
TC-8-5B-0R-1 before TH-2.01 preconditioning
TC-8-6F-S-C - before TH-2.01 preconditioning

TC-8-5E-QR-2 during TH-2.04 transient
TC-10-1A-S-C before TH-2.01 preconditioning
TC-11-6C-OR-4 before TH-2.01 preconditioning
TC-11-4F-0R-1 during TH-2.05 transient
TC-12-2B8-SP-2 before TH-2.01 preconditioning
TC-14-58-SP-3 before TH-2.01 preconditioning
~TC-14-2B-SP-2 before TH-2.01 preconditioning
TC-15-3C-1R-2 = before TH-2.01 preconditioning
TC-15-1F-S-C before TH-2.01 preconditioning
TC-16-2E-SP-1  before TH-2.01 preconditioning
TC-16-28-SP-2 removed at reconstitution of TH-2
TC-16-5€-SP4 before TH-2.01 preconditioning
TC-17-3D-1R-3 before TH-2.01 preconditioning -
TC-17-5E~IR4 between TH-2.07 and TH-2.08 ’
- TC-17-5D0-0R-3 during TH-2.11 transient

TC-21-HT-1 before TH-2.01 precond1t1on1ng
TC-21-HT-2 not connected to DACS .
TC-21-HT-3 not connected to DACS
TC-21-HT-4 not connected to DACS
SPND-3-6F-S- before TH-2.01 preconditioning

$-3
SPND-6-1F-S-4 before TH-2.01 preconditioning

SPND-10-6A~S-2  before TH-2.01 preconditioning
SPND-13-1F-S-4  before TH-2.01 preconditioning
SPND-13-1A-S-1  before TH-2.01 preconditioning
- SPND-13-6A~S5-2  before TH-2.01 preconditioning
SPND-15-1A-S-1  before TH-2.01 preconditioning.
SPND-16-1F-C before TH-2.01 preconditioning
SPND-17-6A-S-2  before TH-2.01 preconditioning
SPND-17-1F-S-4  before TH-2.01 preconditioning
SPND-18-6F-S-3  between TH-2.13 and TH-2.14

SPND-18-1A-S-1  before TH-2.0l1 preconditioning
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THERMAL-HYDRAULIC ANALYSIS AND CUMPARISON OF TEST DATA

A thermal-hydraulic analysis was conducted prior to-TH-2 using the TRUMP
code to.determine the test parameters.required for a flat top temperature test.
For this test, the peak cladding temperature rose. from about 728 to 1033K (350
to 1400°F) and was maintained between 1033 and 1103K (1400 and 1525 °F). Post-
test analyses were also performed using improved test parameters obtained from
the TH-2 test data. The TRUMP code analysis, the test:-assembly power calcula-
tions, a comparison of TH-2.12 and TH-2.14 test data, and quench-front behavior
are discussed in this section.

TRUMP CODE ANALYSI1S

Pretest calculations for TH-2 were made using heat transfer coefficients
determined from the FLECHT correlation{5) as input to tne TRUMP(6) heat conduc-
tion code. The calculations were performed to determine the best combination
of parameters (for example, average rod power, delay time, and reflood rates)
to obtain a rapid cladding heatup to between 1033 and 1103K (1400 to 1525°F)
and then reduce the heatup rate to <1K/s (1.8 F/s) Once the cladding tempera-
ture reached this range, the accuracy of the prediction for the slower heatup
rate was less important for running the test. Feedback control using the DACS
“was designed to account for small changes in the heatup rate.

For these calculations, the control period of preprogrammed parameters was
Timited to 90 s—-at which time the peak cladding temperature was expected to be
between 1033 and 1103K (1400 and 1525°F). The average cladding temperatures
for tests TH-2.12 and TH-2.14 at level 15 are compared with a TRUMP-FLECHT pre-
diction in Figures 26 and 27, respectively.

TH-2.12 and TH-2.14 post-test calculations involved evaluating the test
data to improve the ability of TRUMP to calculate cladding temperatures for a
given set of test parameters for up to 90 s, which would also provide improved
pretest calculations for following tests. The test data evaluation included
determining specific delay times, reflood rates and their durations, and the
local axial rod power (used to modify the FLECHT convection heat transfer input
to TRUMP). Measured cladding temperature data are compared with the TRUMP-
FLECHT post-test calculation for the temperature ramp values of the fuel rod
Tinear power in Figures 28 througn 33, which illustrate temperature histories
at Levels 13, 15, and 17.(a)  These figures demonstrate 1) the ability of
the improved TRUMP model to determine peak cladding temperatures for the first
90 s and 2) the limitations of TRUMP to model cladding temperatures later in
the test. The FLECHT heat transfer coefficients were obtained from tests

(a) Levels 13, 15, and 17 are 1.94, 2.47, and 3.00 m (76.3, 97.3, and
118.3 in.), respectively, from the bottom of the fuel.
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that had reflood rates ranging from 0.010 to 0.254 m/s (0.4 to 10 in./s). At
reflood rates below ~0.010 m/s and for pseudo steady-state test conditions with
a large two-phase region, TRUMP using FLECHT was less accurate. Additional
Timitations of the TRUMP model are that it used 1 rod instead of 32 rods and
did not consider heat losses to the shroud. '
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TEST ASSEMBLY POWER CALCULATIONS

Test assembly powers for the TH-2,12, TH-2.13, and TH-2.14 pretransients
were calculated by a calorimetric and a heat conduction method. The calorimet-
ric powers were obtained using the flow rates measured by the U-2 loop instru-
mentation, the inlet test assembly (Level 1) TC readings, and the outlet
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(Level 20) TC readings.
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and Post-Test TRUMP-FLECHT Calculation for Level 13

During TH-2.12

and TH-2.14, resoect1ve1y.

- TEMPERATURE, K

Comparison of Measured Average Cladding Temperature

Using this method, average rod powers were calculated _
as 1.185, 1.228, and 1.220 kw/m (0.361, 0.374, and 0.372 kw/ft) for TH-2.12,
TH~-2.13,

Local fuel rod powers were also calculated by using a heat conduction cal-
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culation based on the cladding temperature heatup rates during the nominally
adiabatic heatup period between the times when the steam cooling was turned off
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FIGURE 29. Comparison of Measured Average Cladding Temperature
and Post-Test TRUMP-FLECHT Calculation for Level 15
During TH-2.12 g

and the reflood cooling was turned on. Total assembly powers are calculated
by adding local fuel rod powers to those of the shroud. Test TH-2.13 was per-
formed between tests TH-2.12 and TH-2.14 to obtain heatup rate data. Inte-
gration of the axial power distribution so obtained gave an average fuel rod
power of 1.309 kW/m (0.399 kW/ft)--a difference of 6.7% greater for the heatup
rate than for the calorimetric calculation. The heatup rate method of deter-
mining local fuel power was used for post-test TRUMP code calculations as
described in the previous section.
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During TH-2.12

TH-2.12 AND TH-2.14 CONVECTIVE HEAT TRANSFER COEFFICILENTS

The heat transfer coefficients for TH-2.12 and TH-2.14 were calculated
based on local assembly powers and the difference between the average fuel rod
temperature and an artificial coolant temperature, which was assumed to be at
saturated conditions for 40 psia (267 F).
TH-2.12 and TH-2.14 at Levels 13, 15, and 17 were used as jnput to predictive
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Local heat transfer coefficients for
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FIGURE 31. Comparison of Measured Average Cladding Temperature-
and Post-Test TRUMP-FLECHT Calculation for Level 13
During TH-2.14

codes to provide information on test rod ballooning and deformation (see
Figures 34 through 36). These heat transfer coefficients were also input to
TRUMP to improve cladding temperature predictions.

-

QUENCH-FRONT ANALYSIS

A Took at the quench front helps demonstrate what is happening in the test'
assembly. During the TH-2.14 transient, the quench front for the cladding
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FIGURE 32, Comparison of Measured Average Cladding Temperature
and Post-Test TRUMP-FLECHT Calculation for Level 15
During TH-2.14

. ‘7-.

started at the bottom of the test assembly and moved upward as the reflood
water started to flood the test assembly from the bottom (see Figure 37). The
test conditions between 150 and 300 s were such that a near steady-state boil-
of f condition was achieved as shown by the Tow slope in Figure 37. The circles
represent the first and last rod cladding that quenched at a given elevation,
and the line represents the average quench time. As the test progressed, the
quench front moved upward; and finally the reactor tripped.
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and Post-Test TRUMP-FLECHT Calculation for Level 17
During TH-2.14

o Figure 38 shows the gquench-front elevation data for the shroud during the
TH-2.14 test. The shroud quenched before the cladding because it was cooler.

Figures 39 through 41 present the test and guard rod cladding tempera-
tures within #1 standard deviation of the average temperature. The fuel rods
were hotter than the shroud, which is consistent with the shroud quenching
before the rods. There was a tendency for the test rods to become hotter than
the guard rods, showing that heat was transferred radially outward and
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demonstrating the need for the guard rods. Adiabatic tests have demonstrated

that the guard rods heat up faster than the test rods, which tends to indicate
that the NRU fuel is driving the test assembly. The fact that the guard rods

are at a higher power and lower temperature than the test rods further estab-

lishes that heat is transferred radially outward from the test rods.

48



P R

w
o

f
—— TH212 AVE. ROD J \ ;
- TH214 AVE. ROD : { ;
|
|
I
|

+~
(&)

N
O .

(&N ] (&3]
(@) &)1
P’_’-’-_‘m- e Y T

N
(&)
0
Y
’
e LA
-"‘
-
[]
R T

— N
(821 o
LN
%
U
>
)
2

HEAT TRANSFER COEFFICIENT, 8fu/hr—ft2—°F

o
——

0 40 80 120 160 200 240 280 320
TIME, s

FIGURE 35. Comparison of Heat Transfer Coefficients for Level 15
‘ During TH-2.12 and TH-2.14 B

49



1|!|‘.|I|ﬂ|.‘|.y|.|‘ e e e g el e s g o l.ﬂ;
e e B LT NPt PSRN S

AN U ISR B I N o

180 210 240

f
R E— Q
L S S A S 1
e e — + —

120

H ‘
[
i
i
i
1
|
T
|
!

T
— TH212 AVE. ROD

D

i

|

!
90

—_—— e H - -

—_ R i — .

———— L —md S
i

TH214 AVE, RO

r
|

+

=
|
—
|
e
!
—
|
|
B
.
|
1

() ) o Tp) o e) o Tp] (e}
T3] < <+ o) M ™~ ~N - — Tg] o

472h-1u/mg ‘INIIDII4300 HIISNVEL LV3H

TIME, s

Comparison of Heat Transfer Coefficients for Level 17

During TH-2.12 and TH-2.14

FIGURE 36.

50




12
=
10
8 ‘L/
& - "-‘___—..—
- e
i . — ”’
9 6
< T o
> o
w L F
w <4
4 o
'_.
[ - Q
<
— w
2 = @
=
0 N WS VAU A U VA U T O U WOUE T TN N VOO S A AN SN TG N T 0 Y 0 B I B O B B B Y
0 50 100 . 150 200 " 250 300 350

TIME AFTER STEAM OFF, s

FIGURE 37. Quench-Front Elevation Data for the Rods in TH-2.14

12
O O
1w [ —O
s
‘:_" -
~ |
3 -
£ 5
< =
> -
4
o -
s B
r—
,
B
B L
0
0 10 20 30 40 50 60 70 80

TIME AFTER STEAM OFF s

FIGURE 38. Quench-Front Elevation Data for the Shroud in TH-2.14

ol
fuy



°F

FIGURE 39.

FIGURE 40.

TEMPERATURE,

1600 |—

°F

TEMPERATURE,

1600

1400 ..-iil"l"“""""m““"ll
I|||II||

1200

1000

600 b [=] TEST ROD TEMPERATURE

{TTT) GUARD ROD TEMPERATURE :
400
. . s~ai
200 - ' V
0 1 I | I ! 1 11 |
o 20 40 60 80 100 120 140 160 180

TIME, s

Combarison of Test Rod and Guard Rod Average Temperatures
(#1 standard deviation) for Level 13 During TH-2.14

1800

D

1400

1200

1000

RXN] TEST ROD TEMPERATURE
[H]II] GUARD ROD TEMPERATURE

400 |-

200 }—

_1 J 1 ] ] | L ] 1

(] 40 80 120 160 200 240 280 320 360

TIME, s

Comparison of Test Rod and Guard Rod AVerage Temperatures

(#1 standard deviation) for Level 15 During TH-2.14

52



1800

1600

B

3,

1400

1200
|19
o]
w
W 1000
s }
/ =
5 800 TEST ROD TEMPERATURE
g [1][{] GUARD ROD TEMPERATURE
=
600 |—
400 -
200 |-
o . ] ! i | | 1 i i |
0 40 80 120 160 200 240 280 320 360

TIME, s

FIGURE 41. Comparison of Test Rod and Guard Rod Average Temperatures
(#1 standard deviation) for Level 17 During TH-2.14

53






REFERENCES

Hann, C. R. 1979. Program Plan for LOCA Simulation in the National
Research Universal (NRU) Reactor. PNL-3056, Pacific Northwest Labora-
tory, Richland, Washington. -

Mohr, C. L., et al. 1981. Prototypic Thermal-Hydraulic Experiments in
NRU to Simulate Loss-of-Coolant Accidents. NUREG/CR-1832, PNL-3681,
Pacific Northwest Laboratory, Richland, Washington.

Russcher, G. E., et al. 1981. Materials Test-1 LOCA Simulation in the'
NRU Reactor. NUREG/CR-2152 Vol. 1, PNL-3835, Pacific Northwest Labora-
tory, Richland, Washington.

;, Mohr, C. L., et al. Materials Test-2 LOCA Simulation in the NRU Reactor.

NUREG/CR-2509, PNL-4155, Pacific Northwest Laboratory, Richland,
Washington. March 1982.

Lilly, G. P., et al. 1977. PWR FLECHT Cosine Low Flooding Rate Test
Series Evaluation Report. WCAP-8838, Westinghouse Electric Corporation,
Pittsburgh, Pennsylvania. '

Edwards, A. L. September 1972. TRUMP: A Computer Program for Transient

and Steady-State Temperature Distributions in Multidimensional Systems.
UCRL-14754, Rev. 3, TID-4500, Lawrence Livermore Laboratory, Un1vers1ty
of Ca11forn1a, L1vermore, Ca11forn1a

55






APPENDIX A

PRECONDITIONING TEST ASSEMBLY TEMPERATURES







APPENDIX A

PRECONDITIONING TEST ASSEMBLY TEMPERATURES

Data from the second thermal-hydraulic experiment (TH-2) were recorded
during the power ascension and during the full-power, steady-state precondi-
tioning phase of National Research Universal (NRU) reactor.operation. This
appendix contains plots showing the test assembly environment at the third and
final rise to full power. U-2 loop water at 16.3 kg/s (129,400 1bm/h) and
827 MPa (1200 psig) was used to cool the cracking fuel.

The average axial temperature profile for the test assembly shroud is
shown in Figure A.1l, and the individual corner channel axial temperature
profiles are presented in Figure A.2. Modest (<12K) coolant temperature
gradients (in water) across the test assembly are evident from this comparison
of individual corner channel temperatures. The inlet piping temperature at
~27.43 m (-1080 in.) upstream from the test assembly and the outlet region
coolant (Level 20) and shroud temperatures are illustrated in Figure A.3.
Intervening data (Levels 1 through 18) represent average shroud temperatures

“in the test asseTbly These eTperatures are very comparable to temperatures
measured in MT-13) and MT-2. Axial and radial coolant channel
temperatures are provided by steam probe thermocouples (TCs) (see Figures A.4
and A.5, respectively).

Average fuel rod cladding temperatures during preconditioning are shown
in Figure A.6. TCs located on both the ‘interior and exterior of the cladding
provided axial temperature distributions. Coolant temperatures determined by
steam probes at four elevations are also included on Figure A.6 for comparison.
Temperatures for exterior TCs for three fuel rods at three levels are shown in

Figure A.7 to illustrate the negligible effect of radial power gradients. The

average of the interior cladding temperatures is shown in Figure A.8 along with
plots of average exterior cladding temperatures and the average fue] centerline
temperature for Level 17.

The remainder of this appendix consists of the following graphical data:
Figure A.l1. Average Temperature Profile for the Shroud During Preconditioning

Figure A.2. Individual Axial Temperature Profiles for the Shroud During
- Preconditioning

Figure A.3. Shroud and Test Train Coolant Temperatures During Preconditioning

Figure A.4. Average Steam Probe Temperature Profile (in water) During
‘ Preconditioning

Figure A.5. Diagonal Temperature Profiles Across Test Assemb]y Coolant at
Levels 13, 15, and 17 During Preconditioning

A.l



Figure A.6.
Figure A.7.

Figure A.8.

Average Fuel Rod Cladding Temperature Profiles for Interior and
Exterior TCs During Preconditioning

Individual Guard Rod Cladd1ng Exter1or Temperature Profiles
During Preconditioning : :

Average Fuel Rod C]add1ng Temperature Profiles for Exterior,
Interior, and Center TCs During Preconditioning

i
!
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APPENDIX B

PRETRANSIENT TEST ASSEMBLY TEMPERATURES

- Pretransient temperature data summaries are presented in this appendix.
-Steam at 0.378 kg/s (3000 1bm/h) was used to cool the test assembly, and test
assembly backpressure was maintained at 0.28 MPa (40 psia).

Diagonal temperature profiles from one shroud corner to the opposite
shroud corner at Levels 13, 15, and 17 are shown in Figures B.l through B.4.
A set of axial temperature profiles obtained from steam probes, carrier ther-
mocouples (TCs), and shroud TCs (all Tocated in the shroud corners) are shown
in Figures B.5 through B.8. "Average steam probe axial temperatures are shown
in Figures B.9 through B.12.

The remainder of this appendix consists of the following graphical data:

Figure B.1. Diagonal Temperature Profile Across Test Assembly Coolant
During Pretransient for TH-2.02

Figure B.2. Diagonal Temperature Profile Across Test Assembly Coolant
During Pretransient for TH-2.12

Figure B.3. Diagonal Temperature Profile Across Test Assembly Coolant
 During Pretransient for TH-2.13

Figure B.4. Diagonal Temperature Profile Across Test Assembly Coolant
During Pretransient for TH-2.14

Figure B.5. Axial Temperature Profiles for the Shroud During Pretransient
for TH-2.02

Figure B.6. Axial Temperature Profiles for the Shroud During Pretransient
for TH-2.12

Figure B.7. Axial Temperature Profiles for the Shroud During Pretransient
for TH-2.13 ‘

Figure B.8. Axial Temperature Profiles for the Shroud During Pretransient
for TH-2.14

Figure B.9. Average Steam Probe Temperature Profile (in steam) During
Pretransient for TH-2.02

B.1



Figure B.10. Average Steam Probe Temperature Profile (in steam) During
Pretransient for TH-2.12

- Figure B.11. Average Steam Probe Temperature Profile (in steam) During
' Pretransient for TH-2.13

Figure B.12. 'Average Steam Probe Temperature Profile (in steam).During
Pretransient for TH-2.14
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APPENDIX C

TRANSIENT FUEL AND CLADDING TEMPERATURES

Transient fuel and cladding temperatures are presented in this appendix.
The test assembly environment during the transient can be steam, water, or both
with a changing neutron flux depending partially on control rod position and
the changing reactivity of water and steam. The test assembly backpressure was
maintained at about 0.28 MPa (40 psia). ,

Test rod center and interior cladding temperatures are shown in Fig-
ures C.1 through C.12 at Levels 13, 15, and 17 for selected tests. Axial tem-
perature profiles for the shroud and test train (Figures C.13 through C.15)
show the effects of reflooding and the axial power profile on temperature dis-
tributions throughout the transient.

Two adiabatic tests—--TH-2.01 and TH-2.13--were performed to determine

‘radial and axial fuel power and to provide a check on the pretransient calori-

metric (see Figures C.16 and C.17). Test rod power is indicated by the heatup
rates at Levels 13, 15, and 17; the amount of heat loss to the shroud, by
shroud temperatures at Levels 13, 15, and 17.

The ab111ty of the Tloop contr01 system (LCS) to maintain a constant clad-
ding temperature above 1033K (1400°F) using preprogrammed reflood flow is
shown in Figure C.18. Figures C.19 and C.20 illustrate the ability of the
data acquisition and control system (DACS) with cladding temperature feedback
to repeatedly maintain cladding temperatures above 1033K.

Average fuel temperatures for guard and test rods at Levels 13, 15, and 17
for test TH-2.14 are shown in Figures C.21 through C.23. These flgures demon-
strate the resultant average guard and test fuel temperatures when us1ng hot
spot sensor feedback control.

The remainder of this appendix consists of the following graphical data:

Figure C.1. Test Rod Interior Cladding Temperature History
at Level 13 During Transient for TH-2.02

Figure C.2.  Test Rod Interior Cladding Temperature History
at Level 13 During Transient for TH-2.12

Figure C.3. Test Rod Interior Cladding Temperature History
at Level 13 Ouring Transient for TH-2.13 '

Figure C.4. Test Rod Interior Cladding Temperature History
: at Level 13 During Transient for TH-2.14

C.1
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Figure C.22. Average Guard .and Test Rod Interior Cladding
Temperatures at Level 15 for TH-2.14

. Figure C.23. Average Guard and Test Rod Interior Cladding

Temperatures at Level 17 for TH-2.14 :
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APPENDIX D

TEST COOLANT AND SHROUD TEMPERATURES

It is difficult to measure the temperature of the coolant once reflooding
occurs because much of the time the coolant is in two phases: 1iquid and
entrained 1iquid with steam. Thermocouple (TC) readings of coolant flow are
thus a rough indication of the steam and water temperature with the additional

effects of the response time and the in situ environment. Test assembly inlet,
outlet, and steam probe TCs at Levels 12, 14, and 16 are shown in Figures D.1
through D.4

Shroud temperatures at Levels 10, 13, 15, and 17 are shown in Figures D.5
through D.20. The shroud temperature should be known to insure that the shroud
does not overheat; if it did, it could warp and thereby delay removal of the
test assembly from the test site. ,

Shroud temperatures tended to be lower than coolant temperatures, which
may be an indication that the heat was transferred radially outward, allowing
the shroud TCs to quench before the coolant TCs. There may be a tendency for
upper level shroud and coolant TCs to be hotter, which might be caused by less
quenching by entrained liquid at the higher levels.

The remainder of this appendix consists of the following graphical data:

Figure D.1. Temperature Histories for Inlet TCs (Level 1), Outlet TCs
(Level 20), and Steam Probe TCs at Levels 12, 14, and 16 During
Transient for TH-2.02 : :

Figure D.2. Temperature Histories for Inlet TCs (Level 1), Outlet TCs
(Level 20), and Steam Probe TCs at Levels 12, 14, and 16 During
Transient for TH-2.12 ‘

Figure D.3. Temperature Histories for Inlet TCs (Level 1), Outlet TCs
(Level 20), and Steam Probe TCs at Levels 12, 14, and 16 During
Transient for TH-2.13

Figure D.4. Temperature Histories for Inlet TCs (Level 1), Outlet TCs
(Level 20), and Steam Probe TCs at Levels 12, 14, and 16 During
Transient for TH-2.14 '

Figure D.5. Shroud Temperature H1stor1es at Level 10 During Transient
for TH-2.02

Figure D.6. Shroud Temperature Histories at Level 10 During Transient

for TH-2.12
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APPENDIX E

NEUTRON FLUX

This appendix discusses the neutron flux that was measured during the
preconditioning, pretransient, and transient phases of the second thermal-
hydraulics experiment (TH-2).

PRECONDITIONING AND PRETRANSIENT NEUTRON FLUX

Neutron flux was measured inside the test assembly on the wall of the
shroud and elsewhere in the National Research Universal (NRU) reactor. The
internal flux was measured by self-powered neutron detectors (SPNDs) in oppo-
site corners of the stainless steel (SS) shroud and at several elevations,
ranging from 0.337 to 3.538 m (13.3 to 139.3 in.) above the bottom of the fuel
column. The SPNDs provided both a measure of the radial neutron flux gradient
and the neutron flux distribution over the vertical axis of the test assembly.
Because neutron flux was measured in opposite corners of the test assembnly,
radial neutron flux gradients are evident. Figure t.l presents the axial dis-
tribution of neutron flux measured in each corner; the maximum radial neutron
flux gradient--(maximum-minimum/nominal)--was less than 22%.~ The neutron flux
gradient for the preconditioning operation was 19%. Similar measurements made
during the MT-2 experiment w?r§ 20% and 33%, respectively, for preconditioning
and pretransient operations. (4 .

Flux detector rods in the NRU reactor provided an independent measure of
the neutron flux axial distribution at two other locations. In Figure E.2,

neutron flux measured inside and outside the test assembly is compared. The
magnitude of the difference is predominately due to the addition of structural

~material (SS) and absorber material (light water) in a heavy-water-moderated
reactor. However, the normalized neutron flux distributions are quite compar-
able, especially when platinum flux detector rods are corrected for burnup.

The only obvious difference among these flux distributions is the location
of the peak flux measured inside the test assembly--fuel rods 3.66 m (144 in.)
long--compared with the peak measured in the NRU reactor--fuel rods 2.74 m
(108 in.) long. The core midplanes are offset by 0.305 m (12 in.).

TRANSIENT NEUTRON FLUX

To investigate the possibility of changing neutron flux during a simulated
loss-of-coolant accident (LOCA) (while the NRU reactor power is held constant),
neutron flux histories are presented with time histories of control rod move-
ment. During the course of the transient, light water is injected to reflood
the test train. In a heavy-water-moderated reactor, this injection acts as a
mild absorber; consequently, the dynamic control rod is withdrawn. Control

E.l



rod positioning is displayed in Figure E.3 as 1s the average neutron flux time
history measured at Level 15. It is evident that there is no direct correla-
tion between the two for any of the transients (see, for example, Figure £.4).

[t has been proposed that the measured neutron flux is affected by the
changing temperature of test assembly SPNDs and their instrument leads. The
“effect is primarily due to dielectrical resistivity changes in the leads due -
to a high-temperature, ionizing environment. High-temperature calibration of
these sensors can be further compensated by SPNU characteristics measured in
high-temperature transients of the initial thermal-hydraulic experiment. How-
ever, because the temperature of the SPNDs and their instrument leads (attached
to the shroud) remained cool throughout the experiment, temperature compensa-
tion of these data is not appropriate. The temperatures remained well within
the SPND calibration temperature range.

The calculated neutron flux distribution is shown in Figure E.5 and is
compared to SPND data and adiabatic heatup rate data. These data represent the
SPND neutron flux and power generated during the adiabatic heatup portion of
the transient--the same time when transient thermal data provided the thermal-
hydraulic basis for power estimates. The two power estimates compare well;
Figure E.5 shows their axial distribution during the heatup transient.

: Thé remainder of this appendix consists of the following graphical data:
Figure E.1. Axial Distribution of Pretransient Neutron Flux for TH-2.14

Figure E.2. Normalized Axial D1str1but1on of Pretrans1ent Neutron
F]ux for TH-2.14

Figure E.3. Chang1ng Control Rod 15 Position and Neutron Flux
' During TH-2.12 "~

Figure £.4. Changing Control Rod 15 Position and Neutron Flux
During TH-2.14

Figure £.5. Comparison of TH-2.13 SPND Data and TH-2.13 Heatup Rate

Based on Calculated Axial Power Profiles for the NRU
Test Assembly
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APPENDIX F

REFLOOD FLOW MEASUREMENTS

The reflood flow system included a Fisner-Porter turbine flowmeter in the
high flow rate Tine and series-connected Barton and Fisher-Porter turbine flow-
meters in a parallel low flow rate line. A parallel standby reflood line was
also provided to supply emergency reflood coolant, but it was not used during
the TH-2 experiment.

The reflood control system was calibrated befaore the first transient using
steam preobe data to monitor the water/steam interface during reflood operation.
Prior to the pretransient test phase, three reflood flow tests were performed
at 0.0508, 0.0254, and 0.0508 m/s (2.0, 1.0, and 2.0 in./s) to calibrate the
reflood loop (see Figures F.1 through F.3 for the flow rate recordings).

Steam probe temperature histories provided independent measurements of
the reflood coolant level {(and reflood flow rate) in the test assembly.
-Figures F.4 through F.6 provided the data for the pretest reflood rate cali-
brations by showing the time required between subsequent level quenches.

Transient test starting times and reflood delay times are dependent on the
flow conditions at the bottom of the active fuel. Tnese flow conditions are
related to the temperature response of TCs located at Level 1, which is 0.013 m
(0.5 in.) below the active fuel. The transients start when steam coolant is
shut off, as determined from a quick drop in temperature at Level 1. The
reflood initiation times occur when the reflood water quencnes thermocouples
(TCs) at Level 1, as indicated by a second quick drop in temperature.

At the start of each transient test, a fast reflood rate was used to bring
the reflood coolant level up to the bottom of the fuel rods (Level 1). After
that, the loop control system (LCS) used preset reflood rates. For transient
TH-2.02, the reflood rate was controlled by the LCS throughout the test (see
Figure F.7). For tests TH-2.03 through TH-2.05, the data acquisition and con-
trol system (DACS) computer controlled the reflood flow rate after 85 s. For
tests TH-2.06 through TH-2.14 (excluding adiabatic test TH-2.13), tne DACS con-
trolled the reflood rate 95 s after initiation of the transient. The reflood
rates for TH-2.12 and TH-2.14 best represent DACS-controlled reflood f]ow (see
Figures F.8 and F.9).

The remainder of this appendix consists of the following graphical aata:
Figure F.1. Pretest Reflood Flow Rate for Calibration Test 1
Figure F.2. Pretest Reflood Flow Rate for Calibration Test 2

Figure F.3. Pretest Refiood Flow Rate for Calibration Test 3
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Steam Probe and Shroud Temperatures for Reflood Calibration Test 1
Steam Probe and Shroud Temperatures for Reflood Calibration Test 2

Steam Probe and Shroud Temperatures for Reflood Calibration Test 3

. Turbine Flowmeter Data for TH-2.02

Turbine Flowmeter Data for TH-2.12

Turbine F]owmeter Data for TH-2.14
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