

Geotechnical Environmental and Water Resources Fingineering

Transfer of Fugro RCTS Report for Natural Soils Transmittal Letter No. 3

July 10, 2008 Project 07223

Mr. Frank X. Bellini Field Project Manager AREVA NP, INC. Solomon Pond Park 400 Donald Lynch Boulevard Marlborough, MA 01752

Dear Mr. Bellini:

Re: Transmittal No. 3 – Resonant Column Cyclic Torsional Shear Tests (RCTS) Report for Natural Soils Nine Mile Point Site Characterization Oswego, New York

The purpose of this letter is to document GEI Consultants, Inc.'s transmittal (via hardcopy and your ftp site) of the Fugro RCTS Test Report for Natural Soils dated July 9, 2008. This document has been reviewed and revised under the guidance of Larry Peterson for AREVA and Herb Scribner for GEI. This Transmittal is being prepared according to the AREVA NP, INC. Purchase Order and Scope of Work provided in our proposal dated July 6, 2007, which is the basis of our current contract with AREVA.

Documents

This Letter of Transmittal No. 3 transfers Fugro RCTS Tests Report for Natural Soils dated July 9, 2008 for the Nine Mile Point Site Characterization Project; it includes one RCTS test and report.

1. Resonant Column Cyclic Torsional Shear Tests (RCTS) Report for Natural Soils.

All test samples were managed and tested in accordance with the following AREVA-approved procedures:

- 38-9058206-004: GEI Procedure 124 R4 Transportation and Tracking of Soil and Rock Samples.
- 38-9080235-000: GEI Procedure 109 Resonant Column Cyclic Torsional Shear CCyTS).
- 38-9065537-001: GEI Procedure 101 R1- Water Content Measurement.

Prior to testing, all Fugro personnel involved in the work were trained to the procedures.

Please call me, Tom Kahl or Robert Lambe if you have questions regarding this Transmittal Letter.

Sincerely,/ GEI CÓNSULTANTS, INC.

Herbert C. Scribner QA Manager

HCS/bdp

www.geiconsultants.com

6100 Hillcroft (77081) P.O. Box 740010 Houston, Texas 77274 Tel: 713-369-5400 Fax: 713-369-5518

July 8, 2008

Mr. Thomas W. Kahl Senior Vice President GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

Dear Mr. Kahl:

RE: Letter of Transmittal Resonant Column Cyclic Torsional Shear Tests Natural Samples Nine Mile Point Unit 3 Oswego, New York

Test Results Summary

Fugro performed two RCTS tests on remolded specimens of natural samples provided by GEI Consultants, Inc. The <u>final</u> reports of the tests along with Dr. Kenneth Stokoe's approval sheet are presented in Attachment A.

Test Procedures

All test samples were managed and tested in accordance with the following AREVAapproved procedures:

- 38-9058206-004: GEI Procedure 124 R4- Transportation and Tracking of Soil and Rock Samples
- 38-9080235-000: GEI Procedure 109- Resonant Column Cyclic Torsional Shear (RCCyTS)
- 38-9065537-001: GEI Procedure 101 R1- Water Content Measurement

Prior to testing, all Fugro personnel involved in the work were trained to the procedures.

A member of the Fugro group of companies with offices throughout the world.

Test Documents

Copies of completed test forms related to the testing required by the above-referenced procedures are contained in Attachment B.

Please call me at if you have any questions.

Sincerely,

ĩ log

Jiewu Meng, PhD, P.E. Project Engineer

Enclosure(s)

Bill De Sroff

Bill DeGroff, P.E. Laboratory Department Manager

ATTACHMENT A

×

FUGRO #0411-08-1696

RCTS TEST APROVAL

PROJECT SITE/NAME | Nine-Mile Point

Test ID	Sample ID	Depth B.S. (Ft)	Approved By (Initials)	Date
RCTS#C	Natural-1		KABR	4 July 08
RCTS#D	Natural-2		KIAGA	4. Tuh '08
		I.,		121019 00

Two RCTS tests for the site referenced above were tested, and two reports were prepared, by Fugro Consultants, Inc.

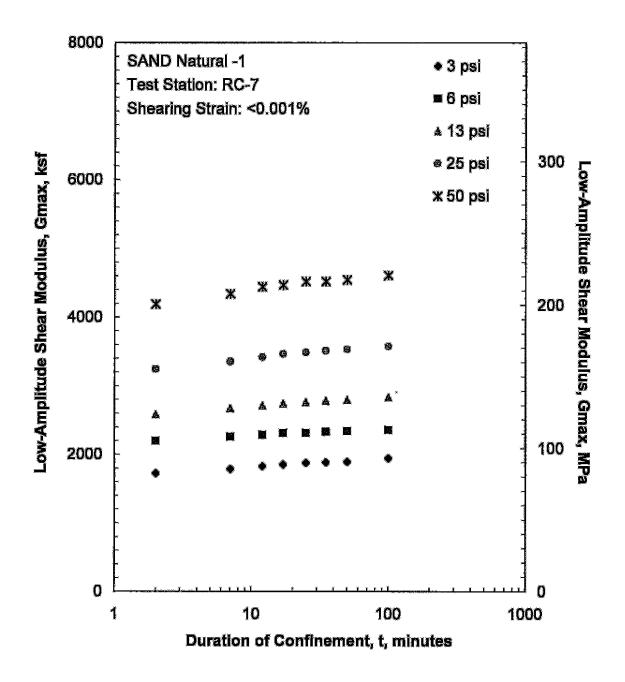
I have reviewed the data and associated results listed above and found them to be reasonable.

Approved By:

H. Stolered

Dr. Kenneth Stokoe

ž,



APPENDIX C

Specimen NATURAL

Borehole ---NA Sample ----1 Depth = --- ft (--- m) Total Unit Weight = 124.3 lb/ft³ Water Content = 7.5 % Estimated In-Situ Mean Effective Stress = 13 psi

> FUGRO JOB #: 0411-08-1696 Testing Station: RC7



Figure C.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

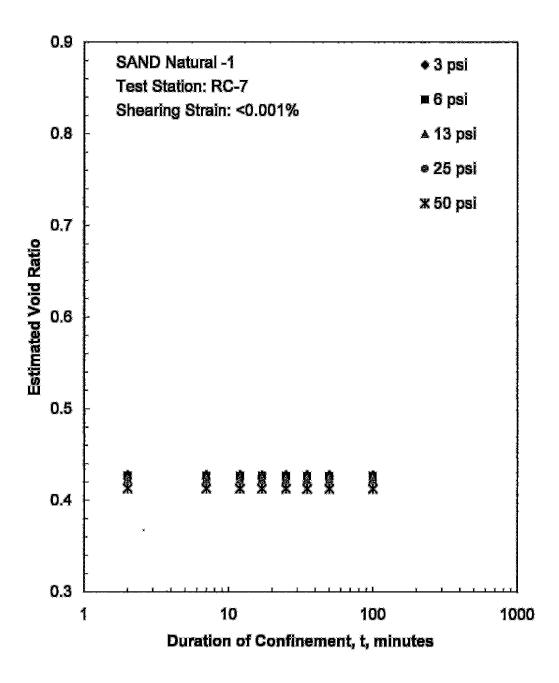


Figure C.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

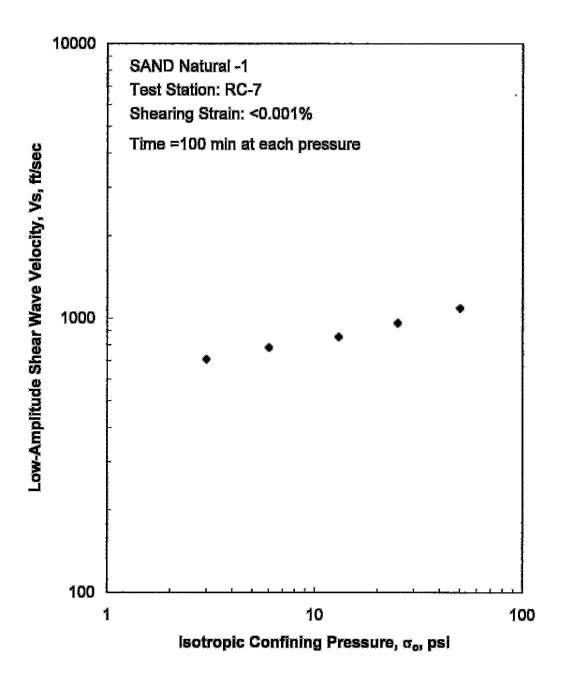


Figure C.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

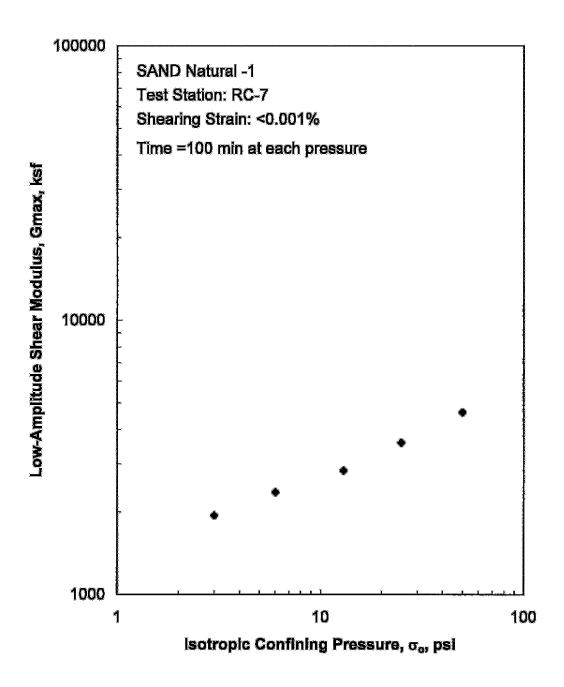


Figure C.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

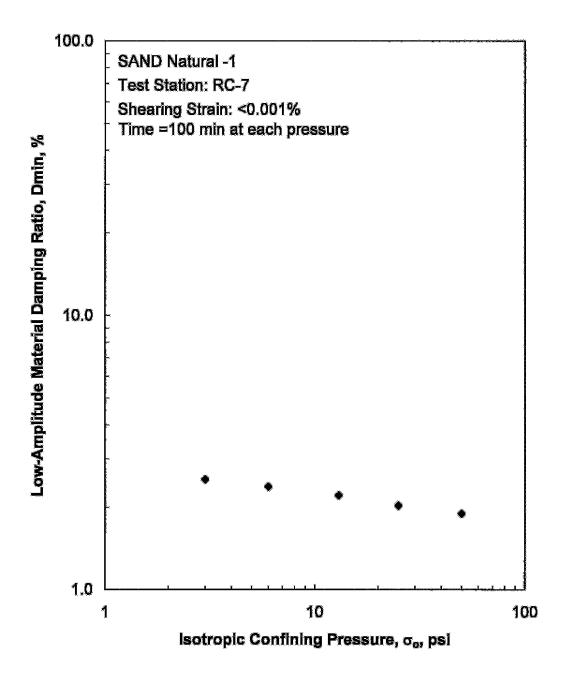


Figure C.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

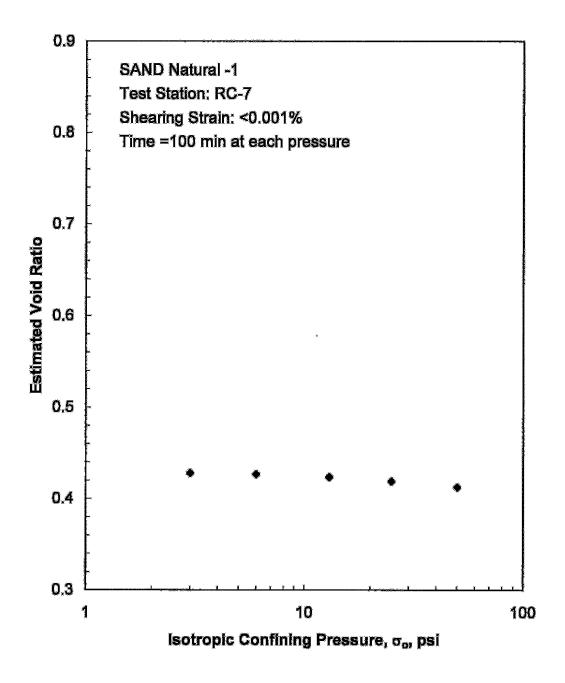


Figure C.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

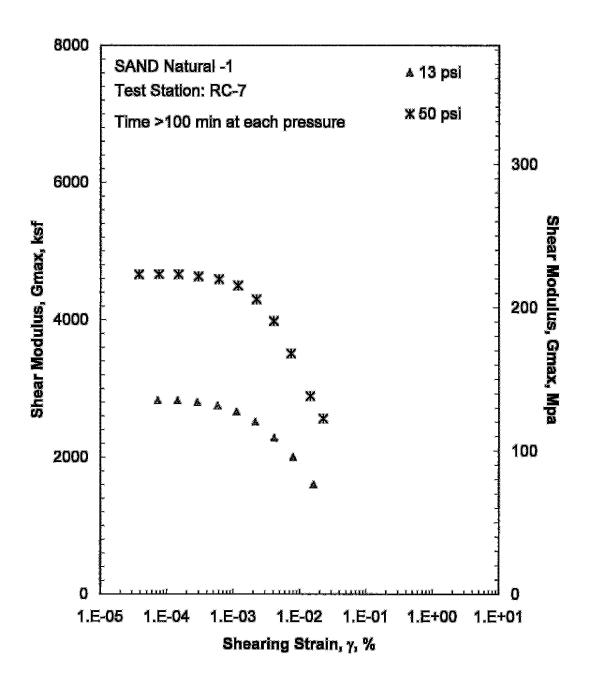


Figure C.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

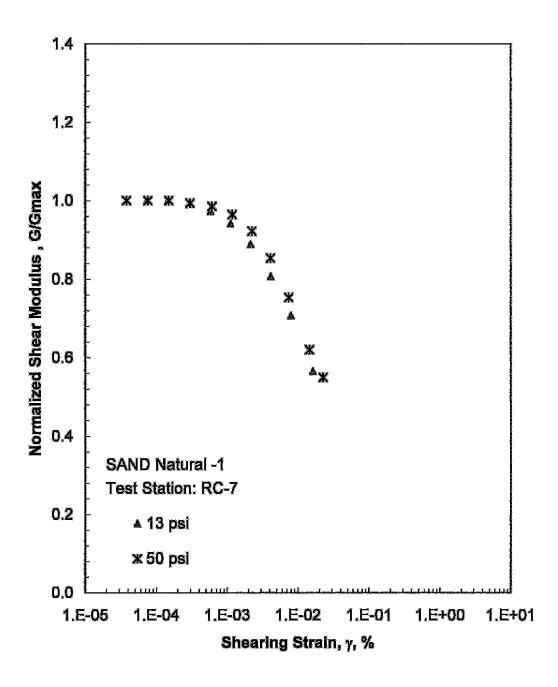
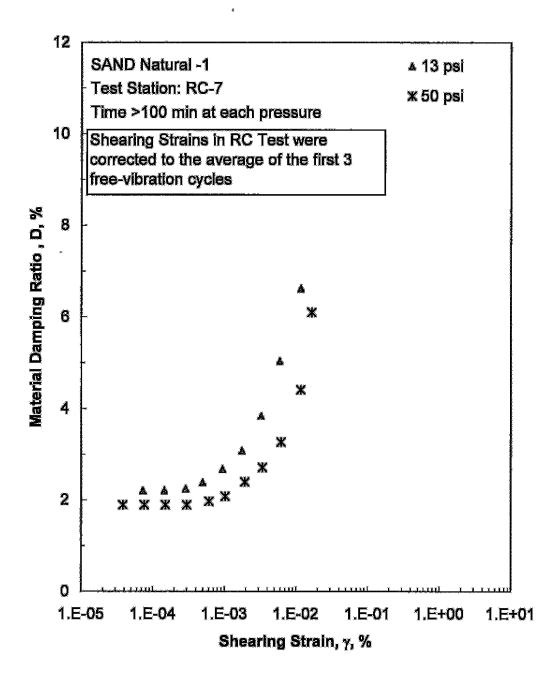




Figure C.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

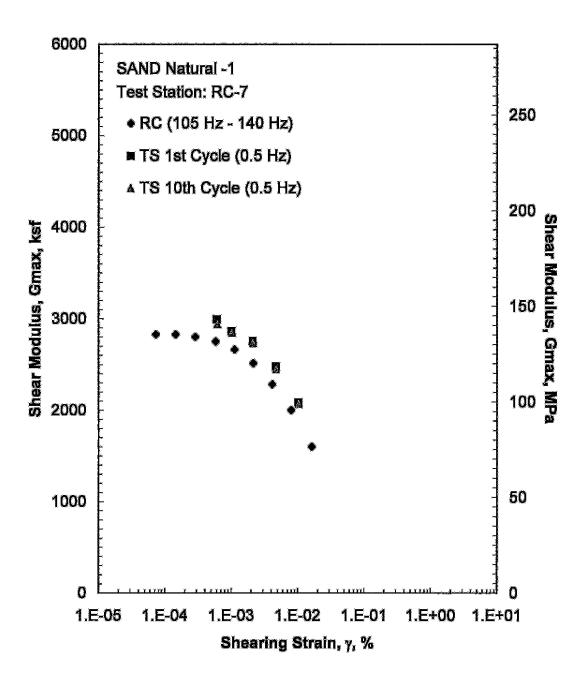
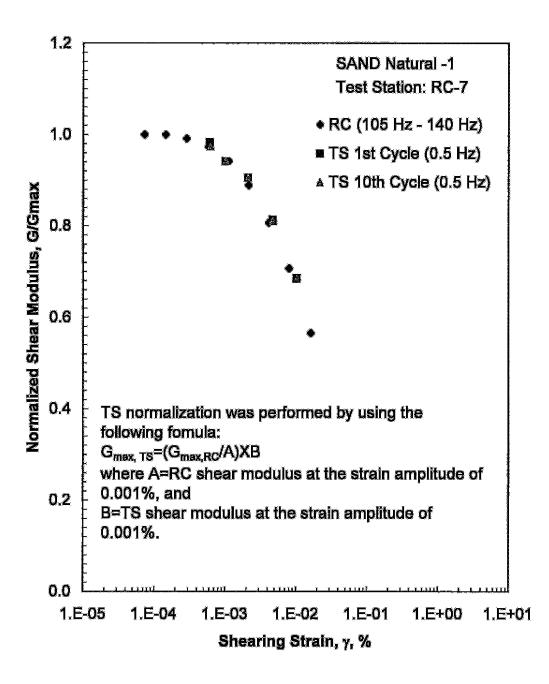
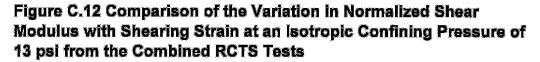
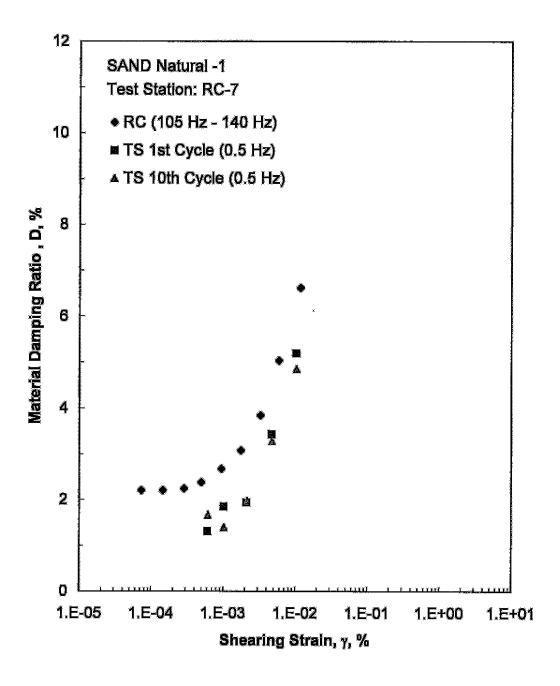





Figure C.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 13 psi from the Combined RCTS Tests

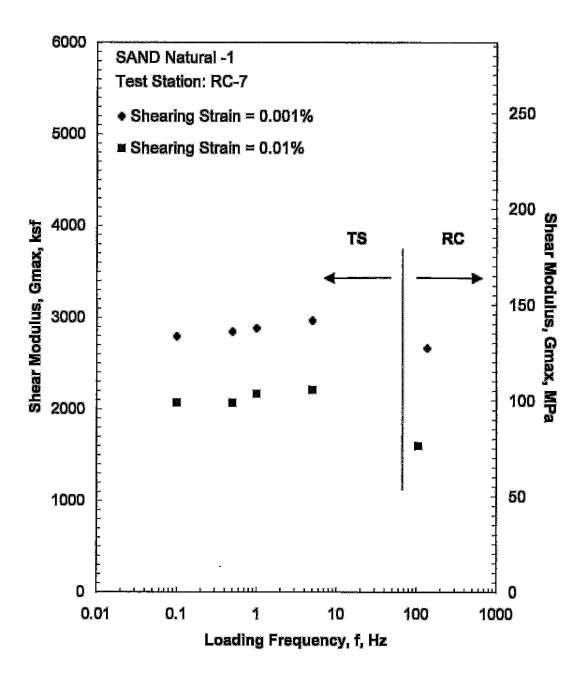


Figure C.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 13 psi from the Combined RCTS Tests

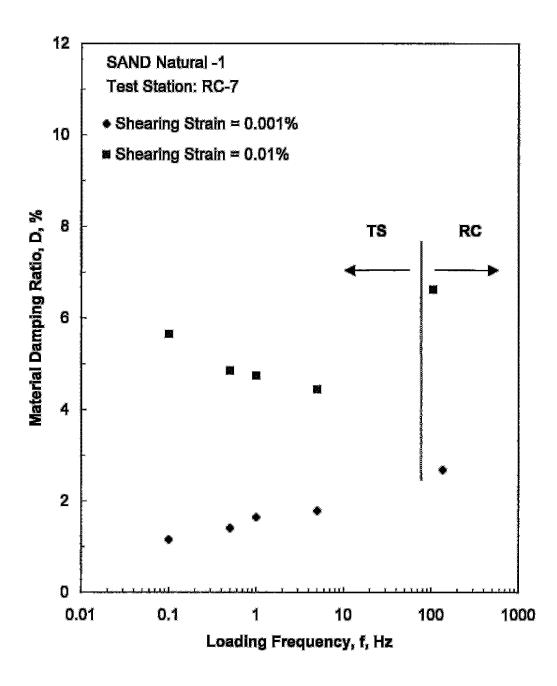


Figure C.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 13 psi from the Combined RCTS Tests

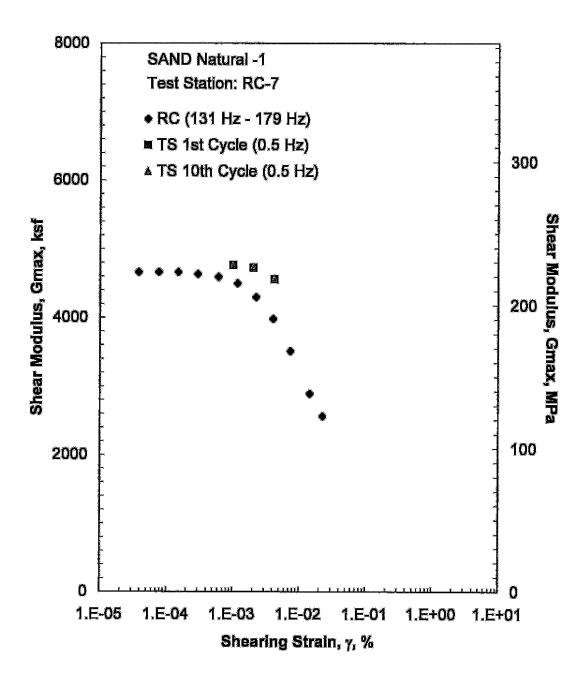
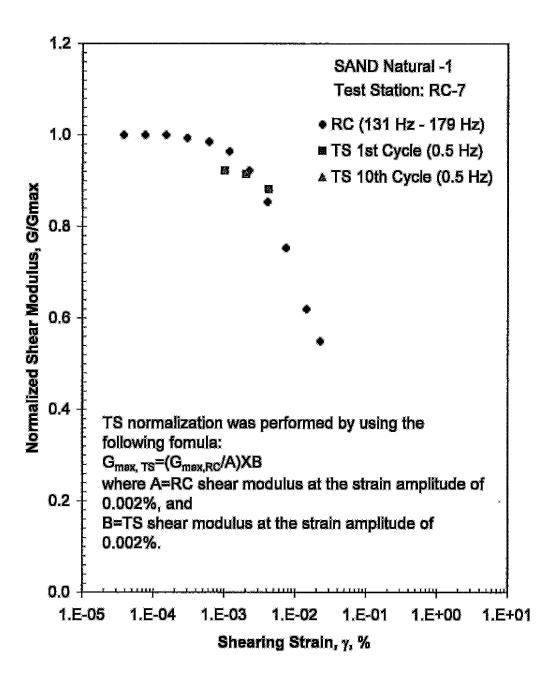
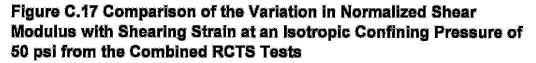




Figure C.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 50 psi from the Combined RCTS Tests

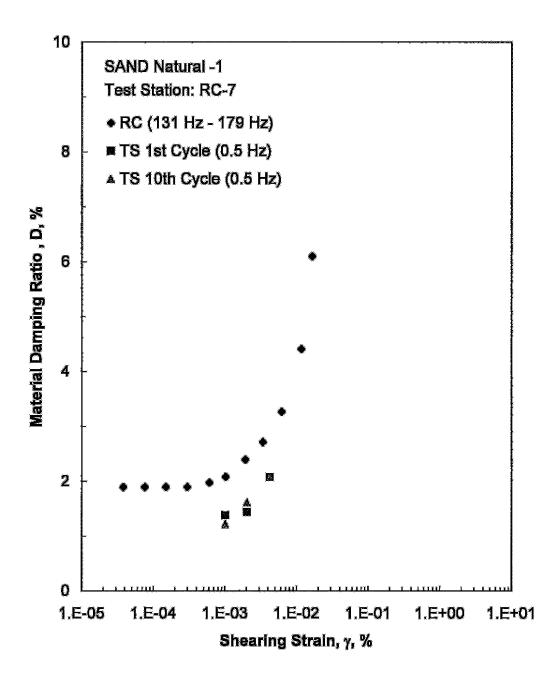


Figure C.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 50 psi from the Combined RCTS Tests

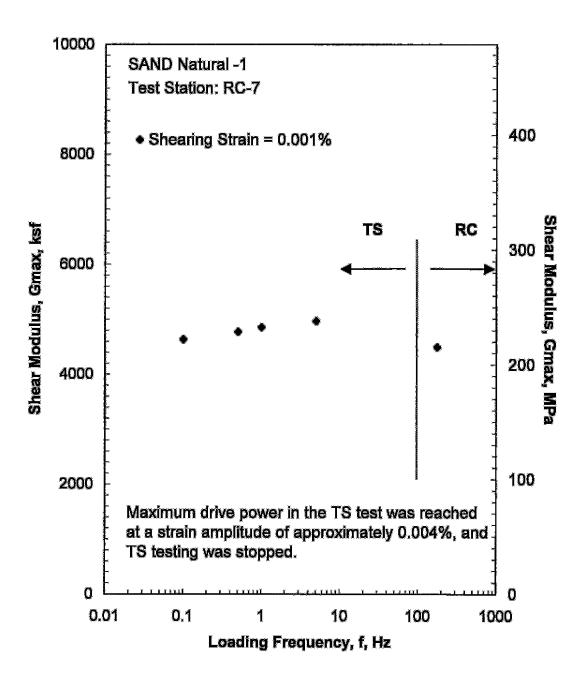


Figure C.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 50 psi from the Combined RCTS Tests

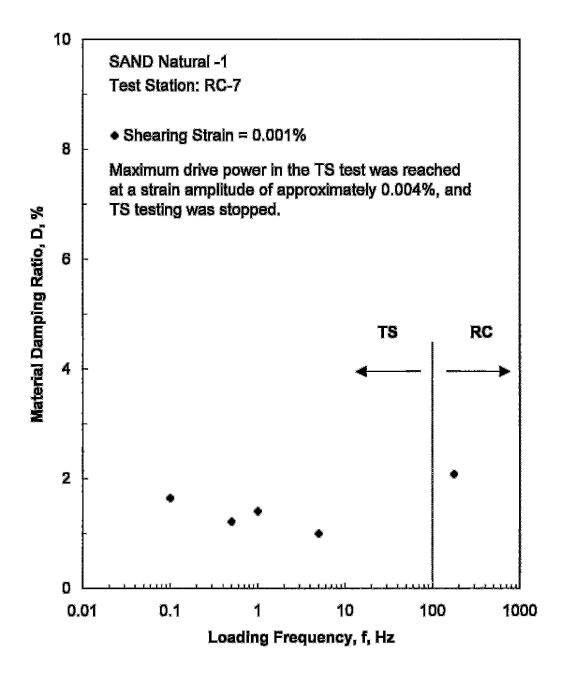


Figure C.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 50 psi from the Combined RCTS Tests

 Table C.1
 Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude

 Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests

 of Specimen NATURAL

Isotropic Confining Pressure, σ_{a}		Low-Amplitude Shear Modulus, G _{mex}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Vold Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
3	432	21	1942	93	708	2.53	0,43
6	864	41	2359	113	780	2.38	0.43
13	1872	90	2831	136	854	2.21	0.42
25	3600	172	3577	172	958	2.03	0.42
50	7200	345	4610	221	1085	1.89	0.41

Table C.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen NATURAL; Isoptropic Confining Pressure, $\sigma_o = 13$ psi (1.9 ksf = 90 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
7.30E-05	2827	1.00	7.30E-05	2.21
1.45E-04	2827	1.00	1.45E-04	2.21
2.87E-04	2802	0.99	2.87E-04	2,25
5.82E-04	2751	0.97	4.95E-04	2.38
1.12E-03	2662	0.94	9,41E-04	2.68
2.14E-03	2513	0.89	1.75E-03	3.08
4.14E-03	2282	0.81	3.27E-03	3.84
7.96E-03	1999	0.71	5.89E-03	5.04
1.62E-02	1599	0.57	1.17E-02	6.62

* Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve * Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve Table C.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen NATURAL; Isotropic Confining Pressure, σ_o= 13 psi (1.9 ksf
=90 kPa)

First Cycle				Tenth Cycle				
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material	
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping	
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %	
6.07E-04	2992	0.98	1.31	6.18E-04	2939	0.97	1.67	
1.01E-03	2867	0.94	1.85	1.02E-03	2843	0.94	1.40	
2.11E-03	2756	0.91	1.94	2.13E-03	2734	0.91	1.98	
4.69E-03	2478	0.81	3.43	4.75E-03	2447	0.81	3,28	
1.02E-02	2087	0.69	5.19	1.03E-02	2068	0.68	4.85	

 Table C.4
 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests

 of Specimen NATURAL; Isoptropic Confining Pressure, σ₀= 50 psi (7.2 ksf = 345 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average* Shearing Strain, %	Material Damping Ratio [*] , D, %
3,80E-05	4661	1.00	3.80E-05	1.89
7.60E-05	4661	1.00	7.60E-05	1.89
1.50E-04	4661	1.00	1.50E-04	1.89
2,97E-04	4631	0.99	2.97E-04	1.89
6.06E-04	4591	0.99	6.06E-04	1.97
1.17E-03	4494	0.96	1.02E-03	2.08
2.23E-03	4298	0.92	1.92E-03	2,39
4.08E-03	3980	0.85	3.38E-03	2.71
7.43E-03	3510	0.75	6.17E-03	3.26
1.45E-02	2889	0.62	1.16E-02	4.41
2.26E-02	2561	0.55	1.65E-02	6.10

* Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve * Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

ж

Table C.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen NATURAL; Isotropic Confining Pressure, σ_o= 50 psi (7.2 ksf = 345 kPa)

First Cycle				Tenth Cycle				
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{mex}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	
1.01E-03	4764	0.92	1.38	1.01E-03	4773	0.92	1.21	
2.03E-03	4726	0.91	1.44	2.03E-03	4735	0.91	1.61	
4.22E-03	4555	0.88	2.07	4.21E-03	4567	0.88	2.07	

APPENDIX D

Specimen NATURAL

Borehole ---NA Sample ---2 Depth = --- ft (--- m) Total Unit Weight = 124.3 lb/ft³ Water Content = 7.4 % Estimated In-Situ Mean Effective Stress = 13 psi

> FUGRO JOB #: 0411-08-1696 Testing Station: RC7

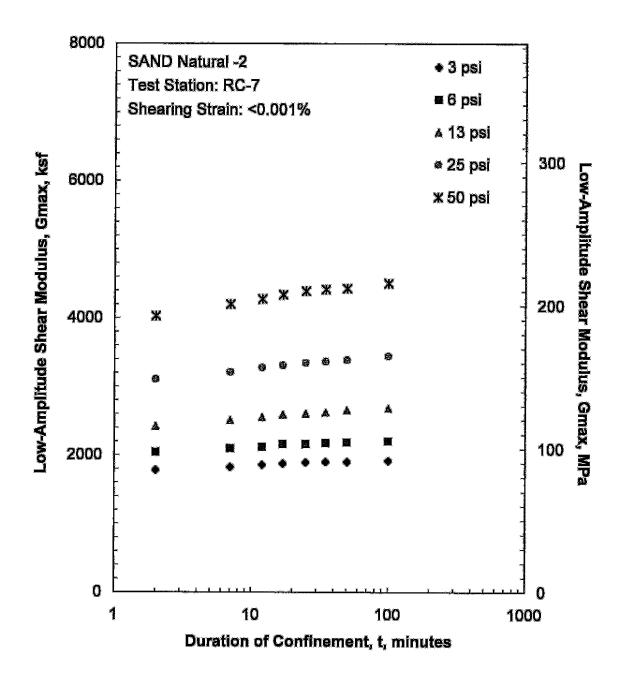
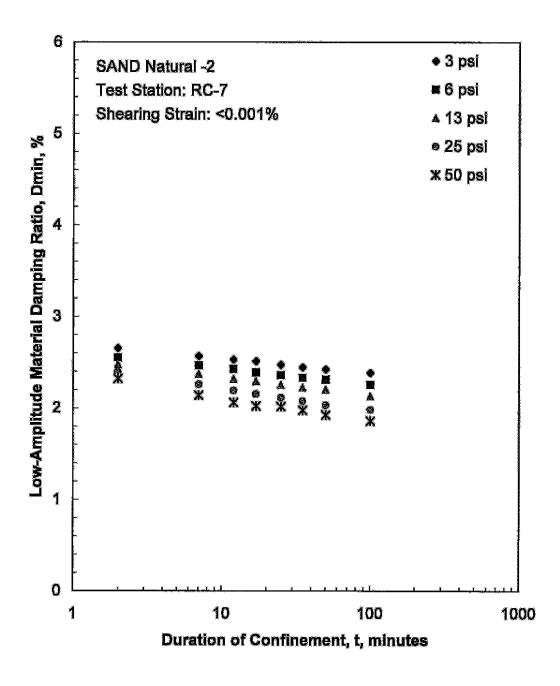



Figure D.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

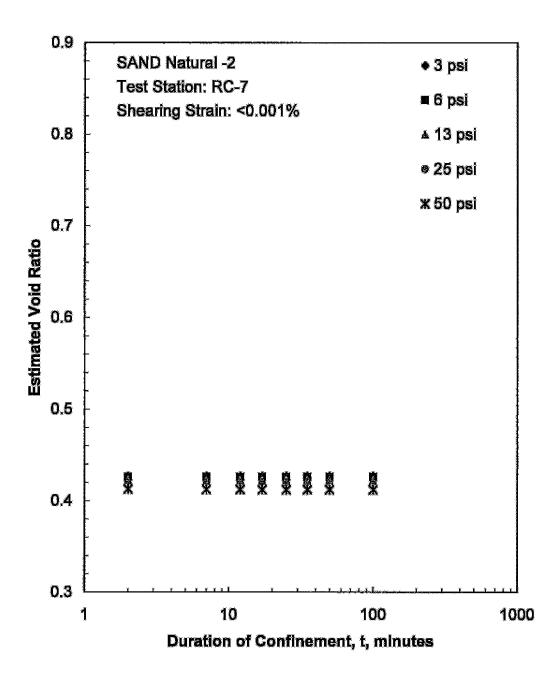


Figure D.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

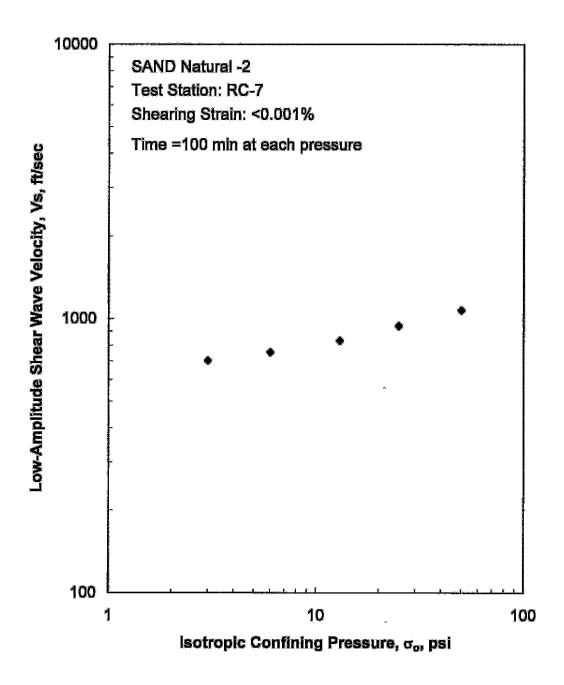


Figure D.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

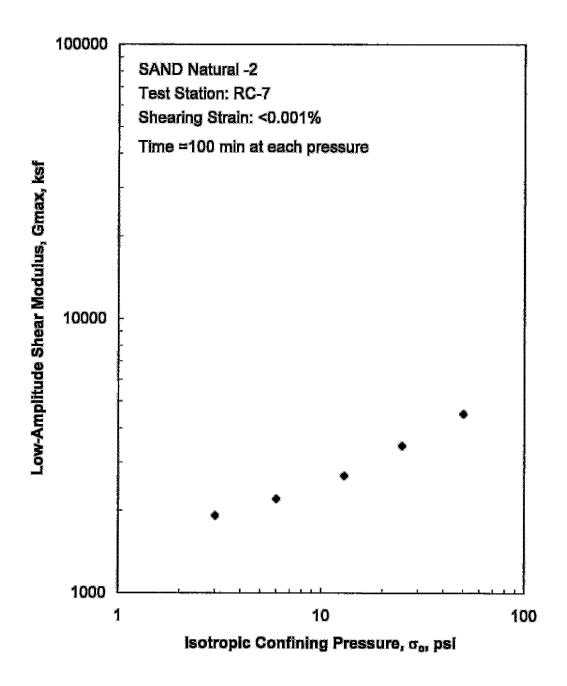


Figure D.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

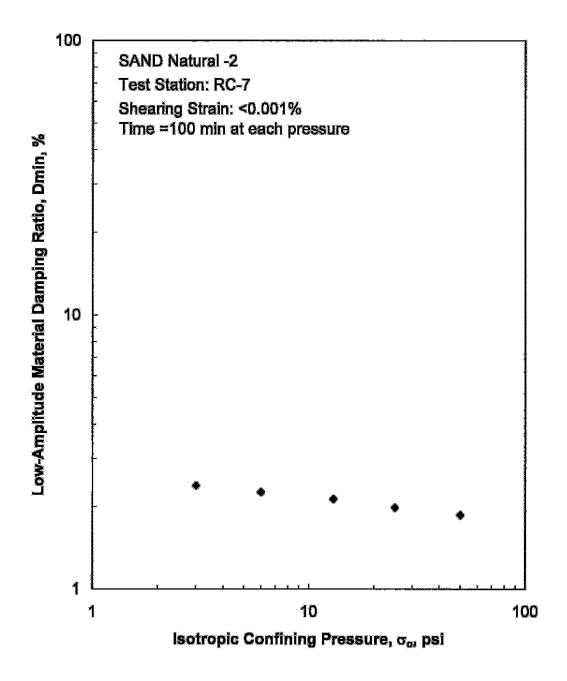


Figure D.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

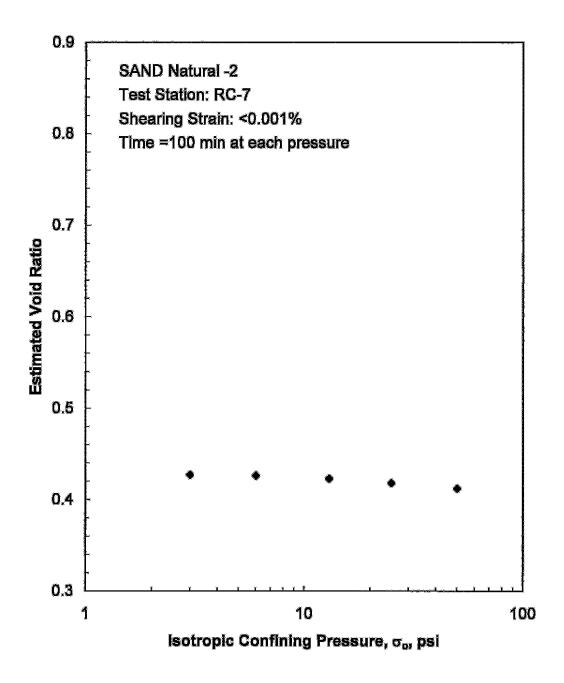


Figure D.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

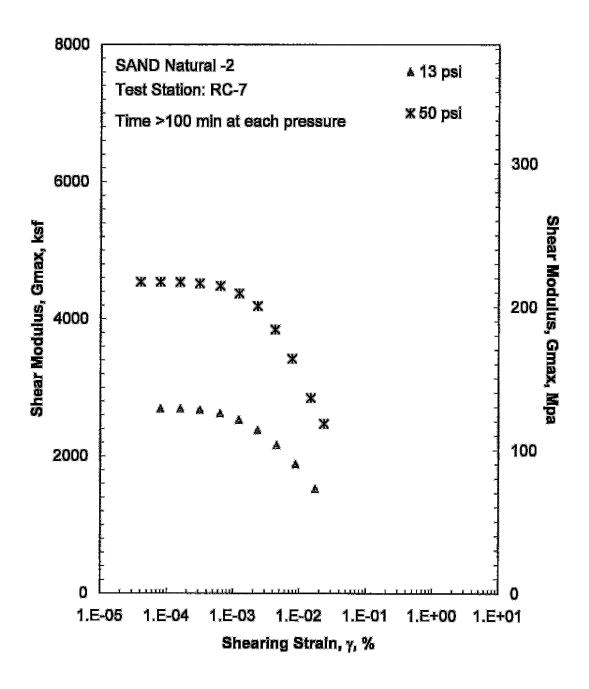
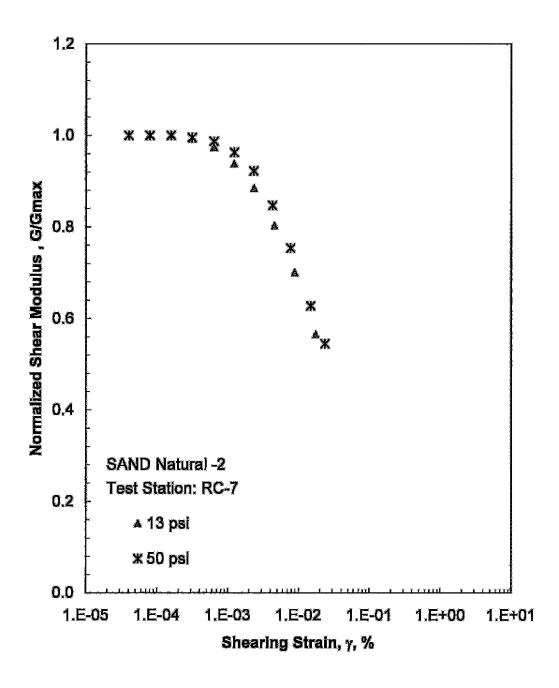
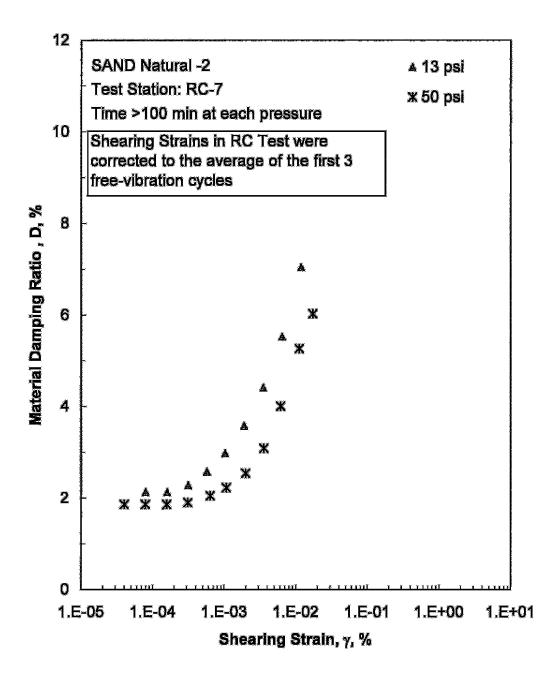
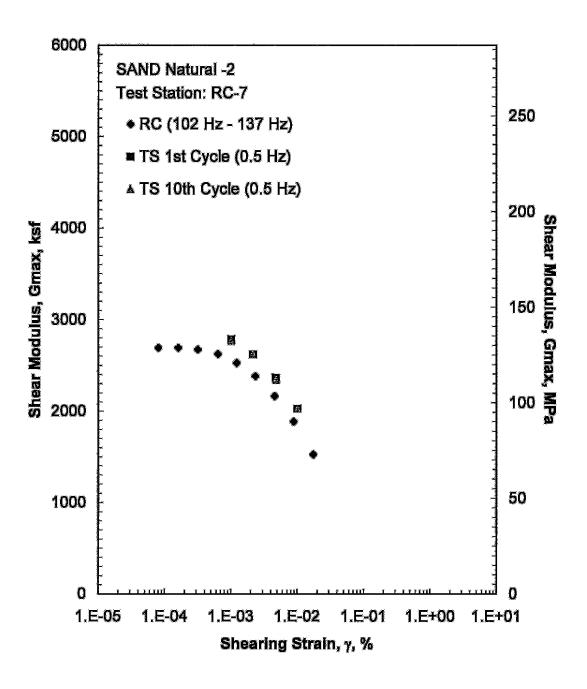
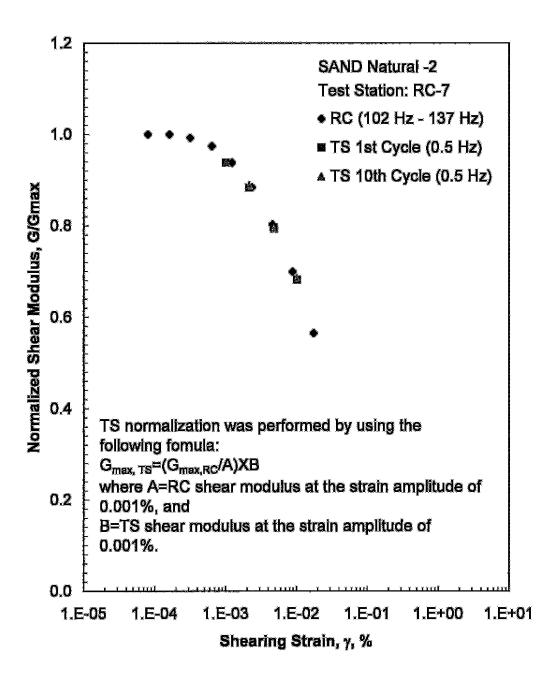





Figure D.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

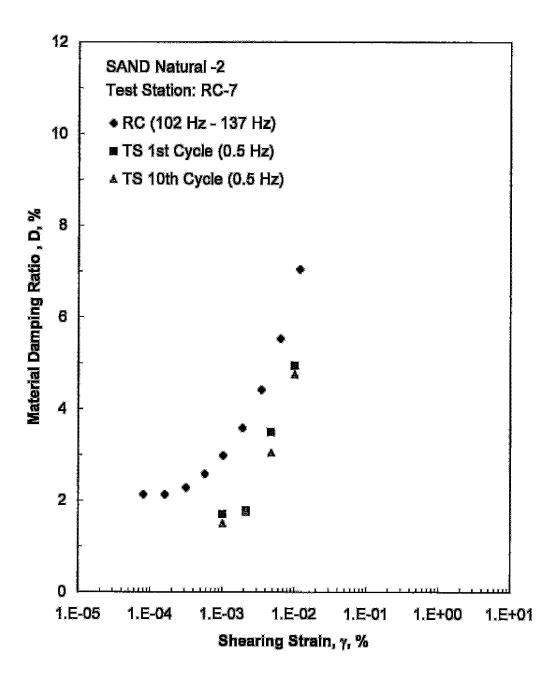


Figure D.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 13 psi from the Combined RCTS Tests

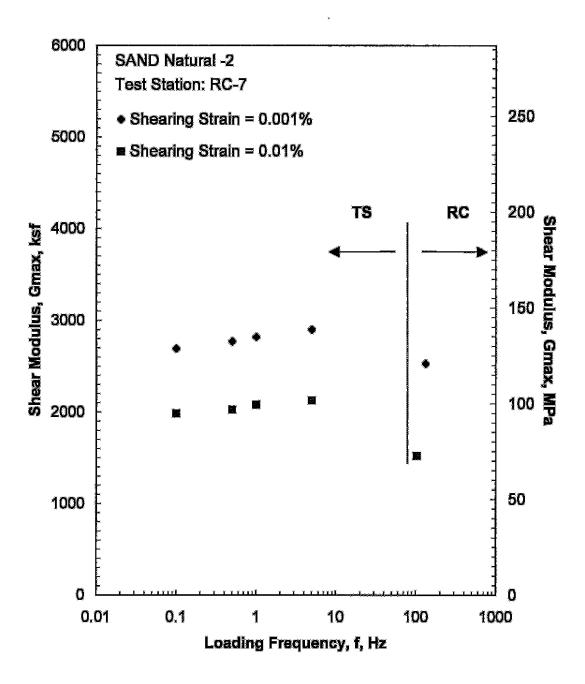
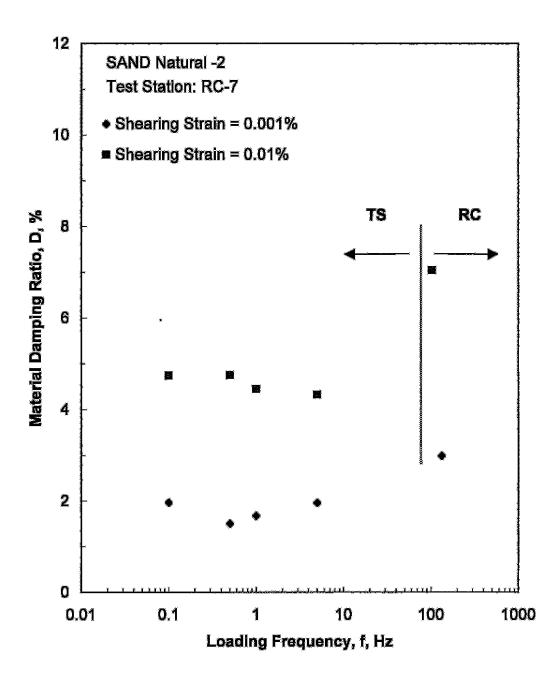
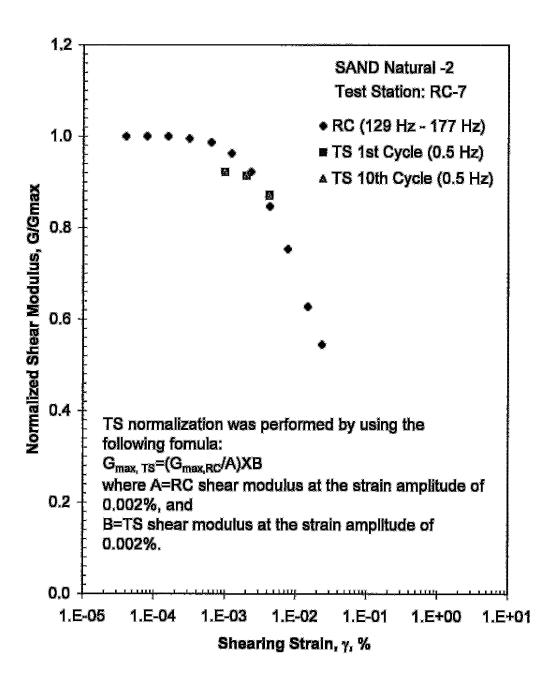
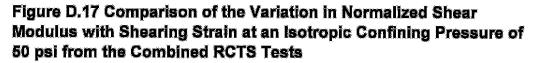


Figure D.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 13 psi from the Combined RCTS Tests

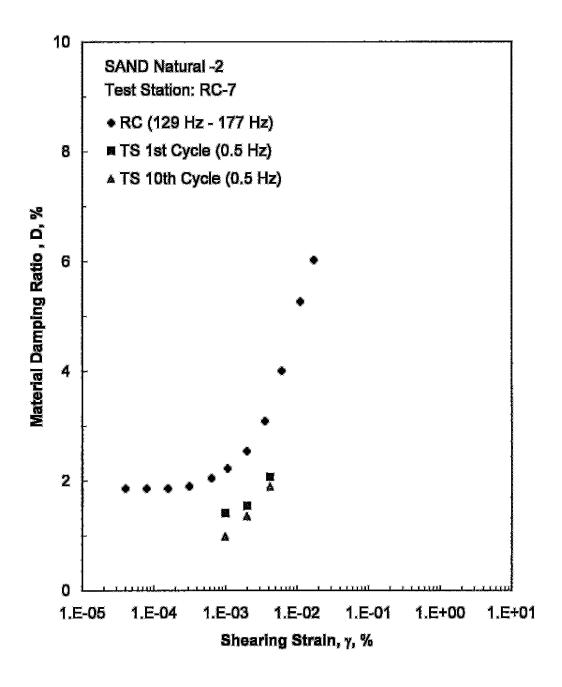


Figure D.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 50 psi from the Combined RCTS Tests

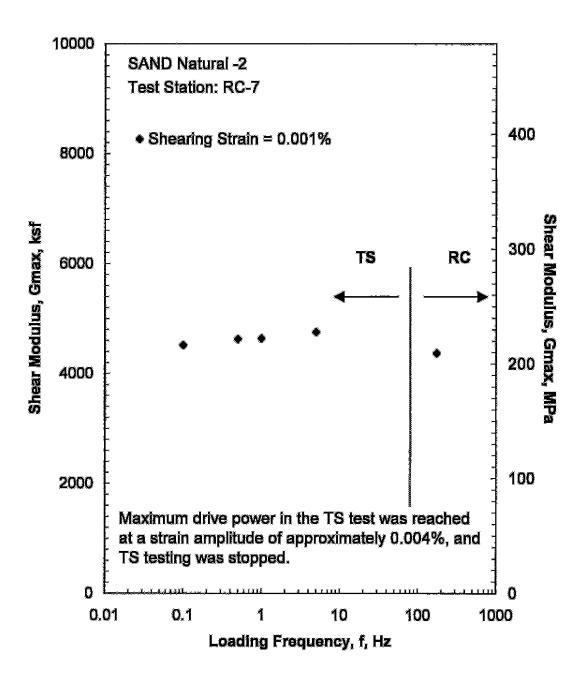


Figure D.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 50 psi from the Combined RCTS Tests

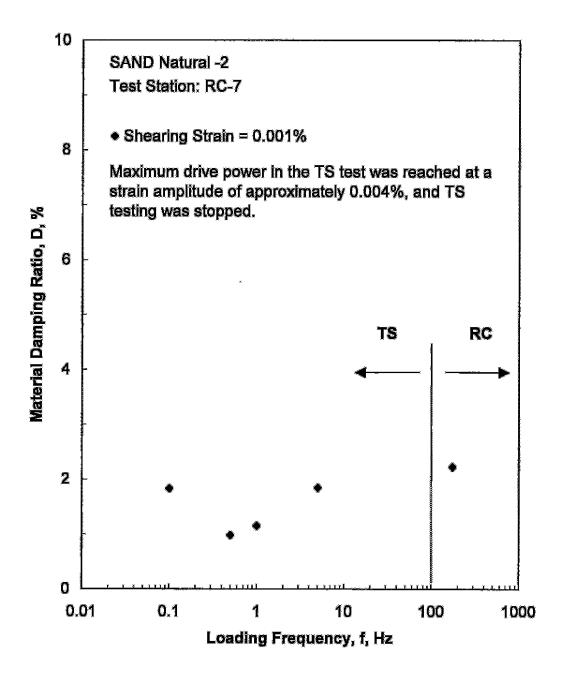


Figure D.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 50 psi from the Combined RCTS Tests

Table D.1 Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests of Specimen NATURAL

isotropic Confining Pressure, σ_o		Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e	
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
3	432	21	1916	92	704	2,39	0,43
6	864	41	2203	106	754	2.25	0.43
13	1872	90	2681	129	831	2.13	0.42
25	3600	172	3443	165	940	1.98	0.42
50	7200	345	4504	216	1073	1,86	0.41

Table D.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen NATURAL; Isoptropic Confining Pressure, σ_0 = 13 psi (1.9 ksf = 90 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{mex}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
8.00E-05	2692	1.00	8.00E-05	2.13
1.60E-04	2692	1.00	1.60E-04	2.13
3.15E-04	2672	0.99	3.15E-04	2.28
6.36E-04	2623	0.97	5.72E-04	2.57
1.22E-03	2526	0.94	1.03E-03	2.98
2.34E-03	2380	0.88	1.90E-03	3,58
4.54E-03	2161	0.80	3.50E-03	4.41
8.82E-03	1884	0.70	6.44E-03	5.52
1.74E-02	1522	0.57	1.19E-02	7.04

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve * Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

i

Table D.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen NATURAL; Isotropic Confining Pressure, σ_e= 13 psi (1.9 ksf
=90 kPa)

	First Cycle				Tenth Cycle				
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %		
1.01E-03	2782	0.94	1.70	1.01E-03	2769	0.94	1.50		
2.15E-03	2618	0.88	1.78	2.14E-03	2622	0.89	1.75		
4.76E-03	2363	0.80	3.49	4.80E-03	2340	0.79	3.04		
1.01E-02	2022	0.68	4.94	1.01E-02	2023	0.69	4.75		

Table D.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen NATURAL; Isophropic Confining Pressure, σ_o= 50 psi (7.2 ksf = 345 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average* Shearing Strain, %	Material Damping Ratio [*] , D, %
4.00E-05	4540	1.00	4.00E-05	1.86
7.90E-05	4540	1.00	7.90E-05	1.86
1.57E-04	4540	1.00	1.57E-04	1.86
3.11E-04	4519	1.00	3.11E-04	1.90
6.34E-04	4480	0.99	6,34E-04	2.05
1.23E-03	4371	0.96	1.07E-03	2.22
2.32E-03	4187	0.92	1.97E-03	2.54
4.28E-03	3845	0.85	3.55E-03	3.09
7.73E-03		0.75	6.10E-03	4.00
1.48E-02	2849	0.63	1.11E-02	5.26
2.34E-02	2473	0.54	1.71E-02	6.02

×

* Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

* Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table D.5 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen NATURAL; Isotropic Confining Pressure, σ₀= 50 psi (7.2 ksf = 345 kPa)

First Cycle				Tenth Cycle				
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	
9.92E-04	4607	0.92	1.41	9.88E-04	4628	0.92	0.98	
2.00E-03	4566	0.91	1.54	1.99E-03	4587	0.91	1.35	
4.20E-03	4357	0.87	2.07	4.19E-03	4364	0.87	1.89	

x

ATTACHMENT B

×

FUGRO #0411-08-1696

Ano. C							
RESONANT COLUMN CYCLIC TORSIONAL SHEAR (RCCyTS) TEST							
Specimen Setup / Take Down	×						
Project No: 0411-08-1696 Test Type: 4076 Cell No.: RC7 File Name: 8-2-4644	, (•						
	(1)						
Task No.: <u>r-/A</u> Stoke Resonant Column Device Gs = <u>r-/A</u> Meas.; Assumed							
Test No.: <u>»///</u> Test Series No.: <u>»//1</u> Top Cap ID: <u>00 3</u>							
Assig. Remarks:							
Tobe Field Extruded Liner Specimen Preparation (for reconstituted samples)							
Boring No.: 2 Reconstituted / Target Dry Density (15.7 % Lift Thickness 36,64,67 No. Lifts 5 Sample No.: Madera (Composite No.: 1/1 Final Ht. 143.18 Final Area 39,7 Final Vol. 34	1-1-6						
Boring No.:	51 2100						
$ \begin{array}{c} \text{Sample No.:} & \underline{\mu} \\ \text{Depth (ff):} & \underline{\mu} \\ \hline \end{array} \\ \begin{array}{c} \text{Specimen No.:} & \underline{I} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \text{Final Total Mass} \\ \text{Final Total Mass} \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	53						
Spec. Selection by X-ray; Geomarine Sample							
Type Ko stress path	67 84						
Consolidation: Anisotropic 45o stress path	CM						
Water Initial - Trimming Location Final (Wat) SOIL MASSES: Initial Final							
Content (WC); Top (Wo,1) Bottom (Wo,2) Sides (Wo,3) (see below) Moist + Tare (etc.)(g): //45.+2 //41.26							
Container No 799 AS 6/11/02 009 Tare (etc.) (g): 0 0							
Mass Moist Soil + Cont. (g) / 32.75							
Mass Dry Soil + Cont. (g) 35.72 (66.29 EXCESS DRY SOIL (stuck to membrane, filters stones, etc.)							
Mass Container (g) 72.12 /7.10 . Container No: 4/1							
Water Content, Wo,n (%) 7.51 F/A W/A 7.19 Mass Dry Soil + Container (g): N/A							
Avg. Initial WC, Wo,avg (%) 7.5 Final (Wat); Slice; Whole Spec. Mass Container (g): w/A							
Mass Excess Dry Soil (g): N/A							
Specimen Dimensions Estimated Initial Unit Weight:							
Height (mm) Diameter (mm) Total, gt,o (lb/ft3) = ν/μ Dry, gd,o (lb/ft3) = ν/μ							
Initial (Ho) Final (Hat) Initial (Do) Final (Dat) Membrane / Filter Paper / Apparatus /							
GB O T 71.5 Membrane (mm): Top Bottom							
1 143.37 143.25 M 71.5 71.2 Number: Thickness: NA -A							
2 143.07 143.11 B 71.5 71.0 = Single; × Double 0,77 0.84							
2 /43./0 /43./8 T 3 /43./0 /43./7 M 4 /43./3 /43./7 M							
his and the second seco							
NA, Naj Analizablar IIV. Dabaanar OD. Cana Black							
MATINE >= 2.3/533	*						
Note: (1) Each Test Stress is identified as a Test Stage or Sequence on other data sheets.	3.8%						
Final Specimen Description (USCS group name & symbol, color, layering, max. part. size, slickensided, fissured, blocky, honeycombed, etc.):							
CL CO, DL B w/frew Bravels							

Photo taken (internal sliced surface & outside surface) Other Remarks

> × × ×

х

	×× ×××××××××××××××××××××××××××××××××××	Boring: 25/08		
Resonant Column Cyclic Torsional Sh	Boring: As for 2			
Signature & Equipment Pa	Sample: NATURAL-1			
		Depth (ft): ~/A		
		Test No. ~/A		
Project: Nine Mile Point Site Characterization	Fugro			
Location: Oswego, New York	Project No.: 0	ull-08- 1696		
SIGNA	TURES			
Specimen Trimmed/Recompacted by:	BN	Date: 6/1/08		
Specimen Setup by: Jupra		Date: 6/1/08		
(per GEI Procedure 109 rev)	Date: $6/1/08$ Date: $6/1/08$ Date: $6/1/08$			
Specimen Takedown by: Jup ** 🤇	Date: 6/3/08			
Preliminary Calculations by:	2	Date: 6/12/08		
Calculated by:		Date: 6/12/08		
Reviewed by:		Date: 6/24/08		
EQUIPMI	ENT USED			
RCCyTS Workstation No.: RC-7 1	Balance ID:	BA-006		
Caliper ID: UH-10838 1	PI Tape ID:	VH- 10 822		
Dven ID: #14 8	Scalping Sieve Size	&ID: 3/8" B.31		
	Other (specify) ID:			
Other (specify) ID:	Smer (speeny) ID:			

×

Water Content Measurement									
Project Name: Nine Mile Po Project No.: 07223		د ۱							
Performed by, per Proc 101	, rev (NA):	DANIL	<u>el B. n</u>	VARKO				elislos	
Checked By:	Checked By: Date:/16/08								
Determination No.	481 # 07223		×						
Boring	TP-102		K.	*			ļ		
Sample	1-2						j		
Oven ID	14			\sim]		
Balance ID	BA 006			\sim			e .		
Date/Time in Oven	5/27/08				\sim]		
Date/Time Out of Oven	5/28/08					\sim			
Tare No.	6057								
(a) Wel Wf. + Tare	150.29	~	g	9	g	9			
(b) Dry Wt. + Tare	142.079	9	9	Ð	9	<u> </u>			
(c) WI. Tare	31.61 0	9	9		8	. 9		×	
(d) Wt. Water (a – b)	8.22 0	9	بعر		9	9		×	
WI. Wet Solids (a - c)	118,680		9	g	<u>a</u>	9			
(a) Wł. Dry Solids (b – c)	(10,469	-	g	9	9	g	135	6/18/08	
Water Content (d/e) x 100, %	7.44						1		
Is Wet Wi. Enough for Method B? (ves/no)	YES			×			, 		
Remarks:				×	~ ~ ~		Ţ		
				×	~~~~				
Test Notes: 1. Oven dry at 110°C (±5°C) for 12 hours minimum. 2. Cool in desiccator for a minimum of 30 minutes before weighing. GEI									
					Form	101.1, rev. 1	*		

** ***

4

	RCTS Testing Record (Page 1 of 10)
NATU	rpl-1
25	Project #: 0411-08-1696 Project: Nine Mile Point Unit 3, Oswego, New York
× 1	- Specimen #: MATURAL Precimen Description: <u>CL, SA, OL C w/ Fuw GRAVELS</u>
2/9/08	Tested By, per GEI Procedure 109 rev (o): 746 C Date: 6.1.08
-	Checked By:Date:
	4.7
	Test Station: RC7
	Confining Pressure: <u>3./ 1/21</u> Testing Stage: X0.25

RC Time Effect Tests

	Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
fm	3:17	B-2-NATURAL-1-P3-TO	, 4	1	109.3	
рм	4:57	B-2-NATULAL 193-T		1	416,	
200	<u> </u>					

šime min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
	\	· · · · · · · · ·		¥.	
	<u> </u>				/
	<u> </u>			- A	
				+	* * * * ****
	`		/	1	
		<u> </u>			
	******				~
			×	1	
	* * * * * ** **			-	
	/	× 3	`		
					_
<u>esonant]</u>	Frequency Check	after Higher		ude Tests	
ïme 🖊		Input	Gain @		
min)	File Name	(mV)	Charge	fr (Hz)	Notes
<u> </u>		,	Amplifier	1	

×

07/09/2008 Page 59 of 81

RCTS Testing Record (Page 2 of 10)

×

Station:	Date:			Tested by:		p5 1 0 0 0 B
Project #:		Proj	ject Name:			p? - 1 1
Boring #:	Speci	imen #:				
Confining P	ressure:	_ Te	sting Sta	ge: <u>X0.</u> 2	25/	
TS Tests (p	ridr to tests, fr=	Hz)		/	/	-
Frequency (Hz)	File Name	Pre-Amp Input (mV)	Post-Amp Input (mV)	Strain Amplitude	Notes	
0.5]
0.5			× /			
0.5						7
0.5					× × · ·	1
0.1						7
0.5						
1			/		A & A M. MARK.	~
5			······································		0.00000000000	
10						
0.5						
0.5					<i></i>	-
0.5		/				
0.1	1.			8 6 60 F 900		
0.5		× *********				Ĩ
1	7				× × × × 3000000	
5	1					1
10			×			1
0.5	/		- 699		* **	1
0.5	7					1
L	requency Check after		in Amplitude	Tests		

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
V				I	· .

×

	Testing Record (Pag				6.24.08 sted by: <u>Ft Surg</u>
		Date: 6.2.	<u> </u>	Ter	
roject	#:0411-08-1696	II	Project Name:	<u> </u>	<u></u>
loring	#: <u>8·2</u>	Specimen #:			
onfini	ing Pressure: 6.2	<u>tı/</u>	Testing S	Stage:	<u>X0.5</u>
RC Th	me Effect Tests		× 35.		
l'ime min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
7:36	B-2- wohral-1-P	6-76 10	1	123.3	
	12-Natural-1-P6		1	127.8	
ENO					A
<u></u>	118/08	y Yweenel	l v vointenannen er		
lC Sh	ain Amplitude Effec	t Tests			/·
Sime min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
		· · · · · · · · · · · · · · · · ·			
X NIG .					
		· · · · · · · · · · · · · · · · · · ·		/	-
<u> </u>			/		
	A A A A A A A A A A A A A A A A A A A				
4.				-	······································
				-	Mich Lauren
			×		
	<u> </u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
					···· · ····
	· · · · · · · · · · · · · · · · · · ·				
	/				
					· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·		
		I	I		· · · · · · · · · · · · · · · · · · ·
eenn	ant Frequency Check	after Higher	Strain Amnlit	ude Tests	
Гіте	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
'miŋ)					

RCTS Testing Record (Page 4 of 10)

Station:			<u>. </u>	Tested by		105 1/108
Project #:	×	_ Proj	ect Name:	xxxxxx		4- 11
Boring #:	n. n.				_ /	
Confining P	ressure:	_ Te	sting Sta	ge: <u>X0.</u>	<u>5/·</u>	
	rior to tests, fr=	Hz)			<u>.</u>	
Frequency (Hz)	Rile Name	Pre-Amp Input (mV)	Post-Amp Input (mV)	Strein Amplitude	Notes	
0.5						
0.5	\				0 00 0.48	×
0.5						
0.5						
0.1						
0.5		\mathbf{N}				
1						
5						
10			c			
0.5				·		
0.5						
0.5						
0.1	\sim					
0.5]
1						
5				N ~ [
10					*	
0.5					*]
0.5			*			
Resonant	/ requency Check after	Higher Strai	in Amplitude	Tests		

Resonant/Frequency Check after Higher Strain Amplitude Tests

x

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes

	*				
	*** **				

××

51 **RCTS Testing Record (Page 5 of 10)** 6.2404 Tested by: St Sword Lupic Date: 6.2.08 Station: RC7
 9 4
 Project Name:

 Specimen #:
 N-1-L9(-)
 Project #: 0411-08-1694 Bei Boring #: B-2 Testing Stage: X1 Confining Pressure: 12. (Psi **RC Time Effect Tests** Gain @ Time Input File Name Charge fr (Hz) Notes (min) (mV)

Amplifier

1

×.

1725

139.8

kn	7:21	K+Z= N=10/91=17-12-
An	11:06	B-2- Nuchural -1-P12-T7
eng.	{r9	

15 6/18/68 RC Strain Amplitude Effect Tests

9:27 B-2- Noloral -1-P-12-TO 10

KC SI	ram Amphitude Effect 1 e	SIS			***
Time (min)	Rife Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
12:36	B-2-Natural-1-8/2-5-	5	1	139.6	
12:36	B-2-10-6-1-1-12- 5-1	10	١	139.8	*
12:37	B-2-N-hurd-1-PR-5-2	20	1	139.1	*
12:37	8-2-Untral-1-12-5-2	40	1	137.8	
12:28	B-2-Nahal-1-P12-5-4	80	1	135-6	
12:39	B2-Nahral-1-MJA.0	160	10	174 8	V
12:39	B2-N-torol-1-PR-CA-1	320	10	125.5	
12:40	B-2-10-4-101-102 0	640	10	117.0	
12:41	B-2-N-44-1-1-1-1-5-5-6-3	12 80	10	104.9	
	Sind	205 6/24			
	A REAL PROPERTY AND A REAL				

15

Resonant Frequency Check after Higher Strain Amplitude Tests

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
A:43	B-2-Natural -1-PR-10	/L 10	1	,36.4	

07/09/2008 Page 63 of 81

108,74

~ 60%.

(1)Station: $\mathcal{R} \subset 7$ Date: 6.2.08Tested by: \mathcal{H} Sured JupicProject #: 0 + 1/1 - 08 - 1/694Project Name: $G \in I$ Boring #: B - 2Specimen #: N - h/0 I - 1Confining Pressure: $12 \cdot \Gamma f ci$ Testing Stage: X1

TS Tests (p	rior to tests, $fr = /31 $	HZ)		X X 200000	
Frequency (Hz)	File Name	Pre-Amp Input (mV)	Post-Amp Input (mV)	Strain Amplitude	Notes
0.5	B-2-Natural -PR-Tio	0.1	1.98	1.53-6	
0.5	1-2-6-6-1-12-12-12-12-12-12-12-12-12-12-12-12-1	0.2	3.96	2.9-6	
0.5	8-2-10-1-12-TSO2	0.4	7. 73	0.6-5	
0,5	B-2-webral-PR-TIOY	0.64	12.70	1.02-5	
0.1	81-10-401-P12-750C	0.64	12.70	1.03-5	
0.5	22-matural-1912-1506	1	1	1.02-5	
1	82-Volunl-PN-5507			1.21-5	
5	02-naturel-112-1508	V	V	0-98-5	
10	87- Notorol-PN-TS 09	0.64	12.70	0.95-5	
0.5	8-2-10-6-1-1-15/0	1.28	25.40	2.1-5	
0.5	B-2-wotoric-FR-TI/	2.56	50.81	0.4.7-5	
0.5	B-2-Nohmi-PR-T-S 12	4.7	93.35	1.07-4	
0.1	8-2-Nation (-PR-TS/)	1		1.0r-4	
0.5	BA-Lowbrod-112-TS14			1-4	
1	22-mahral-pro-TSIS			0.98-4	
5	Br-w-wn1-PN-TS/L	Ŵ	V	0.96-4	
10	8-2-M-hol-12-TS 17	4.7	93.71	0-95-4	
0.5	END				
0.5					

TS Tests (prior to tests, fr=/31 & Hz)

Resonant Frequency Check after Higher Strain Amplitude Tests

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
11:35	8-2- Natural - 812-75 CK	10	1	136.3	· · · · · · · · · · · · · · · · · · ·
2:34	NA	10	/	139.6	
100					

×

×

×

* **

		_	Project Name	i		—
Confinin	ng Pressure: 2 C Pr	<u>. (</u>	Testing 8	Stage:	<u>X2</u>	
RC Tim	ie Effect Tests					
Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes	
17:47	3.2. unhanl-1-P25-To	10	1	149.6		
126	1-2-potent-1-1-P25-77	10		1:7.1		
RC Stre	ain Amplitude Effect Tes		Gain @			
	ain Amplitude Effect Tes File Name	its Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes	25 6 1 6 1
RC Stre		Input	Charge	fr (Hz)	Notes	
RC Stre		Input	Charge	fr (Hz)	Notes	
RC Stre		Input	Charge	fr (Hz)	Notes	
RC Stre		Input	Charge	fr (Hz)	Notes	
RC Stre		Input	Charge	fr (Hz)	Notes	
RC Stre		Input	Charge	fr (Hz)	Notes	

Resonant Frequency Check after	er Higher	Strain Amplitu	ıde Tests	
Time (min) File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes

×

ľ,

RCTS Testing Record (Page 8 of 10)

* .

Station:	Date:			Tested by:	: •	, as plalot
Project #:		Pro	ject Name:	-		-
Boring #:	Speci	men #;				
Confining Pr	essure:	_ Te	sting Sta	ge: <u>X2</u>		
TS Tests (p)	nar to tests, fr=	Hz)			<i>•</i>	
Frequency (Hz)	Rile Name	Pre-Amp Input (mV)	Post-Amp Input (mV)	Strain Amplitude	Notes	
0.5						_
0.5	* \		/	1		
0.5	<u>\</u>			ļ	*****	с —
0.5						
0.1	<u> </u>					
0.5						š
1						
5						
10		\wedge	x			s
0.5						
0.5						
0.5						
0.1						
0.5						
1						
5						
10	7		<pre></pre>			
0.5	• /		<			
0.5 ·			8			*
Resonant	requency Check after	Higher Stra	in Amplitude	Tests	<u> </u>	-

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
					X

*

x

11 **RCTS Testing Record (Page 9 of 10)** 6.24.08 Tested by: At Surad Jupic Date: 6.2.08 Station: RC7 Project #: 04/1-0 8 - 169 6 GÉÍ Project Name: Specimen #: No~~(-) Boring #: B-2 Testing Stage: X4 Confining Pressure: Cota' **RC Time Effect Tests** Gain @ Time Input File Name Charge fr (Hz) Notes (min) (mV) Amplifier m 2:15 B-2-Nohral-1-950-TO 169. 5 10 1 Pn 4:13 B-2-Natural -1-950-T7 177.9 1 10 147 11 6242 - 11 FA 147 min 1 5701 178.<u>6</u> 10 Qmp B-2-4-4/14-1-10-TA **RC Strain Amplitude Effect Tests** Gain @ Time Input File Name Charge fr (Hz) Notes (min) (mV)Amplifier J PM 6:02 B-2-MAMAL-PPSO-S 179.1 (103 B2-mhoral-1-Pro-S, 10 178.8 1 22-10-fal-1-P50-52 61=3 178.8 20 ¥ 6:03 B.J. wateral-1-pro-1.7 40 178.Y 1 6103 B-2-6-1-1-P50-5-4 80 177. 4 6105 22-u-hal-1-P50-5-0-0 175.5 160 10 6:05 171,6 Br-Nohrd-1-Pro-SA-1 320 10 2017 B-1-N-4-1-1-PTO- 10-0 640 105 10 154 Cia C Br- unfrol-1-PRO-16-0 1280 10 140.1 (:07 B-2-200-01-1-PO-50-0 10 2560 C-08 22-Notorel-1-PREF-2 4000 10 131.4 PA 4.ND

Resonant Frequency Check after Higher Strain Amplitude Tests

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
6:09	B-2-Noberal-P-PSO-SCL	10	1	172.8	

Station: AC.7Date: 6.2.98Tested by: 145000 JupicStation: AC.7Date: 6.2.98Tested by: 145000 JupicProject #: 0411-98-169 CProject Name: 551Boring #: B-2Specimen #: M-h/h(-)Confining Pressure: 59 PuiTesting Stage: X4

Pre-Amp Post-Amp Frequency Strain File Name Input Input Notes (Hz)Amplitude (mV) (mV) 0.5 B-2-Natural-PSO-TLOI 1.5-5 0.15 2.975 0.5 B2-Noton 1- PSO-TO2 0.3 C.95 3 - 6 0.5 pe-untral -pro-1203 0.6 11.9 0.58-5 0.5 B-2-MAKAL-PRO-TSOY 1.05 20, 33 1.01 - 5 0.1 B2-Notural-Pro-7505 1.05 20.83 1.03-5 0.5 Bi-Noticl-100-TSOK 1-5 1 02-1-tord-pro-7507 0.99-5 5 0.96-5 10 1.05 8-2-4-61-1-PSR-7509 20.93 0.94 0.5 B2-Notuni-RD-TS 10 41.67 2.03-5 2.1 0.5 4.2-5 B-2-Nohral-Pro-TS/1 85.40 4.2 0.5 BI-Noton -Pro-TIN 4.6r - 5 4.7 93.75 MGA la pro t 0.1 az-untural ATO-TS12 <u>4.7</u> 93.75 4.75-5 0.54.6-5 1 22- Notoral -ASD-TS M 95-5 5 B2-10-1-10-75/6 44-5 10 BZ-Latura-Ro 751 97.21 4.7 4.3.5 0.5 END 0.5

TS Tests (prior to tests, fr=178.6 Hz)

Resonant Frequency Check after Higher Strain Amplitude Tests

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
<u>(</u> 128	8-2-Natura (-1- P50-70	£ 10	1	177.4	
۲،۰۱	Wh	/0	1	178.6	
21-10	t. 10%				· · · · · · · · · · · · · · · · · · ·

p5 6/08

RESC		I CYCLIC TOR Decimen Setup		AR (RCCyTS) TES	гÅ	pp. D) •		
Project No: 0	411-08-1696	Test Type:		Cell No.: 257	- File Name:	Ala			
- 	(<u>a</u> v	est Stress(es), o' =		62,125,	25 8	50 psi	(1)		
		okoe Resonant Colu		 M/ب = Gs	Meas.;	Assumed	\. <u>,</u>		
Test No.: 🙀 👍	Test Series No.:	<u> N/A Top C</u>	2ap ID; 003	, <u>, , , </u>					
Assig. Remarks:					3	7.38cm ²			
Tube Field Extruded	1 Liner	HR_Specimen I	Preparation (for rec	constituted samples)	- 01.10	Tax 9/9	[न्ह]		
Boring No.: 2	Reconstituted		ry Density 115	R LIFE Thickness	28.612				
Sample No .: NATURAL	Compostite No.:	S C C	Final Ht. 1413).06 Final Area ユ	19-78 M	Final Vol.	.40 m ³		
Depth (ft):		Final To	otal Mass 📢	11.08 Water Cont.	1.8%	563	40		
Spec. Selection by X-ray;	Geomarine S	ample			•	<u>~</u>			
Type 🛛 Iso	tropic Ko str	ess path			X 1999 X 1999				
Consolidation: An	isotropic 45o st	ress path							
Water	Initial - Trim	ming Location	Final (Wat)	SOIL MASSES:	Initial	Final			
Content (WC);	(Wo,2) Sides (Wo,		Moist + Tare (etc.)(g):	1144.1	1141,08				
Container No		17-5	Tare (etc.) (g):	0	0				
Mass Moist Soil + Cont. (g)	138.67	- Vila	192.82	Spec. Moist Mass (g):	1144.1	1141.03			
Mass Dry Soil + Cont. (g)			181.0= EXCESS DRY SOIL (stuck to membrane, filters storpes, etc.)						
Mass Container (g)			17.14 Container No: N/A						
Water Content, Wo,n (%)						m/A			
Avg. Initial WC, Wo,avg (%)	q.uy Fina	i (Wat); Slice;	Whole Spec.		Container (g):	N/∩			
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				Mass Exce	ss Dry Soil (g):	r/8			
	en Dimensions			Estimated Initial Unit					
Height (mm)	Diamete		Total, gt, o (lb/ft3) = h_{A} Dry, gd, o (lb/ft3) = h_{A}						
Initial (Ho) Final (Ha		Final (Dat)	P: N	<u>//embrane / Filter Paper /</u>					
GB 0 0 1 /43.08 143.1			Membrane (mm):	5997 X. X		Bottom			
		70.8	Number:	Thickness:	-14	0.84			
2 143.01 1430	The second se		= (Single; < Double Circumference (Crm,o)	0.72 216	216			
		And a	(1) Total thickness	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	hickness (1)	Dia.(Crm.o/p)			
5 143.12 143.1			(1) 1000 (11000)0000	Average:	HICKIESS (1)	W/A			
	Dbave 745	70.83	Filter Paper:	Top + Bottom: Yes ;					
/ Measuring Devices:	Ao (cm2) =				x	mber = <i>»(n</i>			
C.433 Pi Tape: X	Dia. ^{2,2747} Vo (cm3) =		lf yes number =	i hand i h		1 E			
	Dia. Aat (cm2)=	/n	" or =	A or Spriak: 14"					
Dial Comparator: X Ht.	Dia. Vat (cm3) =	r-/81	Mass p	rive Plate & Cap, Mdpc =	MIK 9.	MA Ibf			
NA - Nat Applicables UK - Unknown CB - Core Black // / /////									
-2.24326									
Note: (1) Each Test Stress is identified as a Test Stage or Sequence on other data sheets.									
Final Specimen Description (USCS group, name & symbol, color, layering, max. part. size, slickensided, fissured, blocky, honeycombed, etc.):									
ClSa, OCG uffeu Gravels									
	æ					* * * · · · · · · · · · · · · · · · · ·			

Photo taken (Internal sliced surface & outside surface) Other Remarks

×

×××

ĩ

×

ž Į

Location: Oswego, New York Project No.: $0411-08-1696$ SIGNATURES Specimen Trimmed/Recompacted by: DBN Date: $6[3/08]$ Specimen Setup by: J.p.* Date: $6[3/08]$ Specimen Setup by: J.p.* Date: $6[3/08]$ Specimen Setup by: J.p.* Date: $6[3/08]$ Specimen Setup by: J.p.* Date: $6[3/08]$ Specimen Takedown by: J.p.* Date: $6/10/08$ Specimen Takedown by: J.p.* Date: $6/10/08$ Specimen Takedown by: J.p.* Date: $6/10/08$ Calculated by: Date: $6/10/08$ Reviewed by: Date: $6/29/08$ EQUIPMENT USED CCcyTS Workstation No.: $R (-7)$ Balance ID: $9/8 - 0.06$	4	
Depin (it):Test No.Project: Nine Mile Point Site Characterization Location: Oswego, New YorkFugro Project No.:Oct11-05-1696SignATURESSpecimen Trimmed/Recompacted by:DBNDate:bignameSpecimen Setup by:J.p.*Date:bignameSpecimen Setup by:J.p.*Date:bignameSpecimen Setup by:J.p.*Date:bignameSpecimen Takedown by:J.p.*Date:bignameSpecimen Takedown by:J.p.*Date:bignameDate:<	RAL"	
Project: Nine Mile Point Site Characterization Fugro Project No.: $0411-05-1696$ SignATURES SignATURES Specimen Trimmed/Recompacted by: $) \beta N$ Date: $6 3 08$ Specimen Trimmed/Recompacted by: Date: $6 3 08$ Specimen Technologies Date: $6 3 08$ Specimen Trimmed/Recompacted by: Date: $6 3 08$ Specimen Setup by: $J - p^{-1}$ Date: $6 3 08$ Project No.: Date: $6 3 08$ Specimen Setup by: $J - p^{-1}$ Date: $6 3 08$ Date: $6 5 08$ Specimen Takedown by: $J - p^{-1}$ Date: $6 5 08$ Calculations by: $J - p^{-1}$ Date: $6 5 08$ Reviewed by: Date: $6 5 08$ EQUIPMENT USED RCCyTS Workstation No.: $R (-7)$ Balance ID: $D A - 006$ Culter	ŧ	
Location: Oswego, New York Project No.: $0411-08-1696$ SIGNATURES Specimen Trimmed/Recompacted by: DBN Date: $6[3/08]$ Specimen Setup by: J.p.* Date: $6[3/08]$ Specimen Setup by: J.p.* Date: $6[3/08]$ Specimen Setup by: J.p.* Date: $6[3/08]$ Specimen Setup by: J.p.* Date: $6[3/08]$ Specimen Takedown by: J.p.* Date: $6/10/08$ Specimen Takedown by: J.p.* Date: $6/10/08$ Specimen Takedown by: J.p.* Date: $6/10/08$ Calculated by: Date: $6/10/08$ Reviewed by: Date: $6/29/08$ EQUIPMENT USED CCcyTS Workstation No.: $R (-7)$ Balance ID: $9/8 - 0.06$		
SIGNATURES SIGNATURES SignATURES Specimen Trimmed/Recompacted by: DAV Date: 6 $\left 3 \middle 0 8$ Specimen Setup by: Jr'' Date: 6 $\left 3 \middle 0 8$ Specimen Setup by: Jr'' Date: 6 $\left 3 \middle 0 8$ Specimen Setup by: Jr'' Date: 6 $\left 3 \middle 0 8$ Specimen Setup by: Jr'' Date: 6 $\left 3 \middle 0 8$ Specimen Takedown by: Jr'' Date: 6 $\left 1 6 \biggr 0 8$ Specimen Takedown by: Jr'' Date: 6 $\left 1 6 \biggr 0 8$ Date: 6 $\left 1 6 \biggr 0 8$ Calculated by: Date: 6 $\left 1 6 \biggr 0 8$ EQUIPMENT USED RCCyTS Workstation No.: R (-7 Balance ID: $\mathcal{D} A - OO_{D}$ Caliper ID: $\mathcal{U} H - 10 8 3 3$ Differ ID: <th c<="" td=""><td>ļ</td></th>	<td>ļ</td>	ļ
Specimen Trimmed/Recompacted by: $\mathcal{D}\mathcal{BN}$ Date: $6 3 0 8$ Specimen Setup by: $\mathcal{D}\mathcal{A}^{+-}$ Date: $6 3 0 8$ Test Performed by: $\mathcal{D}\mathcal{A}^{+-}$ Date: $6 3 0 8$ Specimen Setup by: $\mathcal{D}\mathcal{A}^{+-}$ Date: $6 3 0 8$ Specimen Setup by: $\mathcal{D}\mathcal{A}^{+-}$ Date: $6 3 0 8$ Specimen Takedown by: $\mathcal{D}\mathcal{A}^{+-}$ Date: $6 5 0 8$ Preliminary Calculations by: $\mathcal{D}\mathcal{A}^{+-}$ Date: $6 1 b 0 8$ Calculated by: Date: $6 1 b 0 8$ Bate: $6 2 4 0 8$ Reviewed by: $\mathcal{M}\mathcal{A}^{+}\mathcal{A}^{+}$ Date: $6 2 4 0 8$ EQUIPMENT USED RCCyTS Workstation No.: $\mathcal{R} (-7)$ Balance ID: $\mathcal{D} A - 006$ Caliper ID: $\mathcal{V} H - \{0 8 3 8$ PI Tape ID: $\mathcal{V} H - \{0 8 3 4$ Diven ID: $\mathcal{H} (\mathcal{L})$ Scalping Sieve Size & ID: $3 / 8$ $B - 3 / 2$ Diher (specify) ID: Other (specify) ID: $ -$	<u> </u>	
Specimen Setup by: $J \neq \cdot \cdot$ Date: $b 3 08$ Test Performed by: $J \neq \cdot \cdot \cdot$ Date: $b 3 08$ Specimen Takedown by: $J \neq \cdot \cdot \cdot \cdot$ Date: $b 5 08$ Specimen Takedown by: $J \neq \cdot \cdot \cdot \cdot$ Date: $b 5 08$ Preliminary Calculations by: $J \neq \cdot \cdot \cdot \cdot$ Date: $b 5 08$ Calculated by: Date: $b 1b 08$ Reviewed by: Date: $b 1b 08$ Reviewed by: Date: $b 24 08$ EQUIPMENT USED Balance ID: $\beta A - 006$ Caliper ID: $V H - \{ 0838$ PI Tape ID: $V H - \{ 0832$ Oven ID: $4 4$ Scalping Sieve Size & ID: $3/8$ " Diher (specify) ID: Other (specify) ID: $-$		
Test Performed by: John Markov Date: $b/8/06$ Specimen Takedown by: John Markov Date: $b/8/08$ Preliminary Calculations by: Date: $b/10/08$ Calculated by: Date: $b/10/08$ Reviewed by: Date: $b/10/08$ EQUIPMENT USED Date: $6/10/08$ RCCyTS Workstation No.: $R(-7)$ Balance ID: $DA - 00/6$ Caliper ID: $V I - 10838$ PI Tape ID: $V I - 10832$ Oven ID: $H = 14$ Scalping Sieve Size & ID: $3/8$ " $B.3/$ Other (specify) ID: Other (specify) ID: Other (specify) ID: $-$	8	
Iper GEI Procedure 109 rev.))) Date: $b/8/08$ Specimen Takedown by: Jupro Date: $b/8/08$ Preliminary Calculations by: Date: $b/1b/08$ Calculated by: Date: $b/1b/08$ Reviewed by: Date: $b/1b/08$ EQUIPMENT USED RCCyTS Workstation No.: $R (-7)$ Balance ID: $\mathcal{D} A - 006$ Caliper ID: VH - 10838 PI Tape ID: Oven ID: $\mathcal{H} (\mathcal{A})$ Scalping Sieve Size & ID: $3/8$ " Other (specify) ID: Other (specify) ID: —		
Specimen Takedown by: J_{PP} · · · · · Date: $b 5/08$ Preliminary Calculations by:Date: $b / 1b/08$ Calculated by:Date: $b / 1b/08$ Reviewed by:Date: $b / 1b/08$ EQUIPMENT USEDDate: $6 / 24/08$ EQUIPMENT USEDEQUIPMENT USEDRCCyTS Workstation No.: $R (-7)$ Balance ID:Balance ID: $\mathcal{D} A - 00/6$ Caliper ID: $V H - 10838$ PI Tape ID: $\cdot V H - 10832$ Oven ID: $\# (4)$ Scalping Sieve Size & ID: $3/8$ '' $B - 3/2$ Other (specify) ID:Other (specify) ID:		
Calculated by:Date: $6/16/08$ Reviewed by:NetworkDate: $6/24/08$ EQUIPMENT USEDRCCyTS Workstation No.: $R(-7)$ Balance ID: $\beta A - 00.6$ Caliper ID: $V H - 10838$ PI Tape ID: $V H - 10832$ Coven ID: $4/4$ Scalping Sieve Size & ID: $3/8$ $B - 3/4$ Other (specify) ID:	*	
Calculated by:Date: $6/16/08$ Reviewed by:NetworkDate: $6/24/08$ EQUIPMENT USEDRCCyTS Workstation No.: $R(-7)$ Balance ID: $\beta A - 00.6$ Caliper ID: $V H - 10838$ PI Tape ID: $V H - 10832$ Coven ID: $4/4$ Scalping Sieve Size & ID: $3/8$ $B - 3/4$ Other (specify) ID:	8	
Reviewed by: $Melger D$ Date: $6/24/28$ EQUIPMENT USEDRCCyTS Workstation No.: $R (-7)$ Balance ID: $B A - 00/6$ Caliper ID: $VH - 10838$ PI Tape ID: $VH - 10832$ Coven ID: $H (H)$ Scalping Sieve Size & ID: $3/8$ " $B - 3/7$ Other (specify) ID:		
ACCyTS Workstation No.: R (-7Balance ID: $\oint A - 006$ Caliper ID: $\vee H - 10835$ PI Tape ID: $\vee H - 10832$ Oven ID: $\# (4)$ Scalping Sieve Size & ID: $3/8$ '' $B - 3/2$ Other (specify) ID: \bigcirc Other (specify) ID:	ଞ	
Caliper ID: $VH - (083\%)$ PI Tape ID: $VH - 10832$ Oven ID: $#(4)$ Scalping Sieve Size & ID: $3/8$ " $B.3/2$ Other (specify) ID:Other (specify) ID: $-$		
Oven ID: $4(4)$ Scalping Sieve Size & ID: $3/8$ '' $B.3/2$ Other (specify) ID:Other (specify) ID:		
Oven ID: $#(4)$ Scalping Sieve Size & ID: $3/8$ '' $B-3/2$ Other (specify) ID: $-$		
	. 3/	
Comments/Notes:		
Comments/Notes:		

X

х

Y	Water	Content N	<i>l</i> easureme	ent	, <u>, , , , , , , , , , , , , , , , </u>	····· ·······	
Project Name: Nine Mile Po Project No.: 07223 Performed by, per Proc 101	× **	- · · ·	wego, NY EL B. N) VARKO			x X
Checked By:	05	2	Date:	3/10/0	8		
Determination No.	07223			ps unio			65 6/18/08
Boring	TP-102		× ·				-
Sample	1-2	k				· · · · · · · · · · · · · · · · · · ·	
Oven ID	14				/		-
Balance ID	BAOOL			X			
Date/Time in Oven	5/27/08				\sim		1
Date/Time Out of Oven	5/28/08		\sim	*			1
Tare No.	6057		ſ			\sim	
(a) Wet Wi. + Tare	150,298	\sum	g	g	g		
(b) Dry Wl. + Tare	142.079	g	9	g	9	g	
(c) WI. Tare	31.61 9	9	ġ		g	g	×
(d) Wt. Waler (a - b)	8.22 8	g				g	*
WI. Wet Solids (a - c)	118,68°	a)	9	g	7	g	
(e) Wi. Dry Solids (b - a)	110.460		9	9	9) a	15 1/18/08
Water Content (d/e) x 100, %	7.44						
Is Wet WI. Enough for Method B? (ves/no)	YES						
Remarks:				k	•		6 *
						*	5
Test Notes: 1. Oven dry at 110°C (±5°C) for 2. Cool in desiccator for a minim	12 heurs minin um of 30 minul	wm. les before wei	ghing.		0	EI 💭	×
	<u> </u>				Form '	101.1, rev. 1	

* * * * * *

x × × x

хx

×

¥.

××

*

RCTS Testing Record (Page 1 of 10)

	Project	#: 0411-08-1695	_Project:	: <u>Nine Mile Poin</u>	t Unit 3, Os	wego, New York	
NATORIN	Specim	ien #: <u>#-1</u>	en Descri	iption: <u>CLS</u>	/بد ٢٠	for gravell	
233/08	Checke	tien #: <u>#-A-A</u> Specim By, per GEI Procedure 10 ed By:	2 rev (0) Date	1: Jupic C	<u> </u>	te: <u>6. 9.58</u>	
3/1/08		. (_		·			
	~~~~	ation: $2c7$		Pers 1.8 00			
	Confin	ing Pressure: 3. 1 P.	<u> </u>	Testing S	stage:	<u>X0.25</u>	
	RC Th	me Effect Tests					
	Time		Input	Gain @			
	(min)	File Name	(mV)	Charge Amplifier	fr (Hz)	Notes	
AM	8:-5	B-2-Amtral-2-13-To	4	/	111.1		
		82-10t-n1-2-13.T-1	4	1	115.4		
	-62D 45 b/				1		1.1.4
,		ain Amplitude Effect Tes	sts				1036/10/08
	Time (min)	File Name	Input (mV)	Gain @ Charge	fr (Hz)	Notes	• •
				Amplifier	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
					* ***	/	
			····		/		
	united and the of the		4				
						1 20200	
					*		
	^x	0.0		$\leftarrow$			
		/					
				- <del></del>			
ļ							
	Resona	int Frequency Check afte	r Hjøher	Strain Amelite	ide Tests		
	Time			Gain @			
	(min)	File Name	Input (mV)	Charge Amplifier	fr (Hz)	Nôtes	

				. 6	(1 ,24.08	
RCTS	Festing Record (Page 2	of 10)	8 23/19/	08		
Station:	AC7 Da	te: 6.4.0	8	Tested b	v: fts	wood Jupic
Project	#:041-08-1696	P	roject Name:	<u> </u>		
Boring	#: sint B-2 Sp	ecimen #: 1	toral of -			¥#
Confini	Festing Record (Page 2 AC.7 Da #: o.441-o.8-1696 #: b.447-0.8-1696 #: b.447-0.8-2 Sp ag Pressure $Magain Graves 1$		<b>Cesting Sta</b>	nge: <u>X0</u>	.25	123 6/10/08
TS Test	ts (prior to tests, fr=	Hz)				10
Freque (Hz)	ncy File Name	Pre-Am Input (mV)	p Post-Amp Input (mV)	Strain Amplitude	Notes	
0.5		(m +)_	(			-
0.5					/	-
0.5		*				
0.5						
0.1						
0.5				7		
1						
5					· · · · · · · · · · · · · · · · · · ·	1
10						
0.5			/			
0.5						
0.5	····					
0.1			N			
0.5		/				
1	/	/				
5						
10			<b>`</b>			
0.5			····			
0.5						
Resona	at Frequency Check aft	er Higher St	rain Amplitude	Tests		
Time (min)	File Name	Input (mV)	Gain @ Charge # Amplifier	îr (Hz)	Notes	
						1

**RCTS Testing Record (Page 3 of 10)** 

12	
624	0B

	Station: Project	<u>дс7</u> #:0411-08-1696	e:6: 4	Project Name: Notoro	Ter G	sted by: £+ Sov	ad Jupic
	Boring	#: <u>8-2</u> Spe	cimen #:_	Notoral -1	جير		
	Confini	ing Pressure: 6.2 13	<u>1</u>	Testing S	tage:	<u>X0.5</u>	×
	RC Tir	ne Effect Tests			·····	*	
	Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes	
AM	9:54	8-2-Notrol-2-96 -T.O	10	_/	119		
A٩	11:33	2-2-Notoral-2-96-7.7	10	1	123.6		108
Engl	Cort.	B-2-Notrol-2-96-T.0 B-2-Notrol-2-96-T.7	·				- chpt-
	4	/18 /08 ain Amplitude Effect Tes	ate				· p3 6/10/08
(	Rime (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes	¢ B
				۶ 	<u>.</u>		
	ļ						
					/	<u> </u>	
	<u> </u>					· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·			/		
			<u> </u>				
		······			······		
	*	· · · · · · · · · · · · · · · · · · ·					
		<u></u>		<u> </u>			
		· · · · · / ·					
	<b> </b>					1.000 A 100	
				·		······································	
	Resona	ant Frequency Check afte	er Higher	Strain Amplitu	nde Tests		
	Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes	

## RCTS Testing Record (Page 4 of 10)

*

Station:	Dat	e*		Tested by	¢.	,050/10/0
Project #:		e:Pro Pro cimen #:	iect Name:	roatou oy.	· · · · · · · · · · · · · · · · · · ·	1 P · ·
Boring #:	Spe	cimen #:	,		/	
Confining Pr	essure:	_ <b>T</b> (	esting Sta	ge: <u>X0.</u>	5	
TS Tests (pr	har to tests, fr=	Hz)				
Frequency (Hz)	Rile Name	Pre-Amp Input (mV)	Post-Amp Input (mV)	Strain Amplitude	Notes	
0.5					<u></u>	
0.5						]
0.5						]
0.5						]
0.1						]
0.5				1		]
1			/			]
5	· · · · · · · · · · · · · · · · · · ·	$\overline{\langle } \rangle$				1
10						1
0.5						]
0.5		1				
0.5		/			· · ·	1
0.1	/					1
0.5	/					1
1					n	7
5	/				XXY	
10						1
0.5			к с			]
0,5						
	equency Check afte File Name	Input (	Fain @		Notes	-
<u> </u>			mpimer	N		

### **RCTS Testing Record (Page 5 of 10)**

Contin	ng Pressure: 12.5 P.	<u>//</u>	Testing	stage:	
RC Tir	ne Effect Tests				
Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
	B-2-N-+(-2-P12-1	0 10	1	129.3	
1127	0.2-Nutoral -2-112-T-7	,0	1	136.1	
END.	5 6/18/08				
	5 6/18/08				
RC Str	ain Amplitude Effect Te	sts			·
Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
3~18	B-2-Notun 1-2-12- 5.0	r	}	136.6	
1.18	B-2-1-60-1-2-P12-5-1	10	١	136.1	
7~19	B.Z-Notical-2-PR-S-2			125.9	
\$/9	B-2-Nahral-2-P12-5-3		1	134.6	
19	B-2-Autoral -2-12-5-4		1	132.1	
1.20	B-2-Nator-l-2-PA-5A.0		10	12.8.1	<u>v</u>
1:2/	Ba-w-ford-z-pa-sh-1	320	10	122	
	B-2-Notur-1-2-PN-58-0	640	10	113.8	
3.12	8-2- Natura (-2- PA-5 C-0	12 80	10	102.3	
	p luz			<u> </u>	* * * * * * * * * * * * * * * * * * *
				×	
	-				· · · · · · · · · · · · · · · · · · ·
					· · · · ·

#### Resonant Frequency Check after Higher Strain Amplitude Tests

	Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
-PM	3.24	B. 2-Nahral-2-PR-SCI	. /0	1	/]2,8	

x

5

### **RCTS Testing Record (Page 6 of 10)**

Station: RC7 Date: 6.4	.08	Tested by: Sur	1 Jupic
Project #: 0411~08~1694	Project Name	<u>GET</u>	
Boring #: <u>B-2</u> Specimen #:	Project Name:		
Confining Pressure: 12. [ Pal	<b>Testing Stage</b>	: <u>X1</u>	

Frequency (Hz)	File Name	Pre-Amp Input (mV)	Post-Amp Input (mV)	Strain Amplitude	Notes	
0.5	B-2-U-H-1-2-PM-TS	010.10	1.98	1.3-6		
0.5	B-2-10-10-2-7/201502	0.20	3.96	2.8-6		
0.5	\$2-04-1-2-P12-TSO>	0.4	7.92	0.6-5.		. ini
0.5	82-14/001-2-PR-TSOY	0.640	613ª n. 28	1.07-5	1.02-5 5	f 61
0.1	B2-1-40-1-2-192-7505	0.62	12.28	1.05-5		
0.5	or-w-fund-r-p12-7506	1		1.01 -5		
1	82-11-1-1-1-11-1507			1-5		
5	BI-Andrond-2-PATS08	· • •	4	0.97-5		
. 10	82-U-M-1-2-PA 7109	0.62	12.28	0.95-5		
0.5	02-10-10-12-11-TJ10	1.24	24.56	2.15-5		
0.5	82-11-hand-2-PR-7311	2.48	49.13	4.8-5		
0.5	Bruchenles-PRTS12	4.5	89.31	1.01-4		
0.1	12-10-1-1-PD-T-117	4.5	B9.75	1.04-4		
0,5	12-10-toral-2-172-1514	r	)	1-4		с с
1	92-Not-1-2-P127515			0.99-4		6
5	82-Notural-2-PA-TS/6	Ŵ	V .	0-96 - 4	* * * * *	
	02-10-turl-2-1712-1517	4.0	89.71	0.94-4		
0.5	4.~9	• •				
0.5						

TS Tests (prior to tests, fr=/36.1 Hz)

### Resonant Frequency Check after Higher Strain Amplitude Tests

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
2:/2	B 2-NAMA (-2-P/2-7)	ck 10	1	171.8	
D:12	NK	10	1	36.1	
' ENO	,		· · · · · · · · · · · · · · · · · · ·		

Project Boring	$\frac{P-C7}{\#; 0.41-08-169}$ $\frac{B-2}{2}$ $\frac{P-C7}{2}$	≦_ cimen#: ∘	Project Name:	<u> </u>	sted by: $f^{f}$
Confini	ing Pressure: 2 ( $p_4$		Testing S	Stage:	<u>X2</u>
RC Th	ne Effect Tests				
Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
:29	B-2-Looky 1-2-125-T.	. 10	1	1462	
			1	1541	
		, ,			
I <mark>C Str</mark> Sime	5 6/18/08 ain Amplitude Effect Tes	sts Input	Gain @		
(mid)	File Name	(mV)	Charge Amplifier	fr (Hz)	Notes
<u> </u>					
					/
			······································		1
		· · · · · · · · · · · · · · · · · · ·			
×			/	4	
,				1	
	····				
				•	3000-00
~	· · · · · · · · · · · · · · · · · · ·		K		
	· · · · · · · · · · · · · · · · · · ·				
		<b></b>			
			<b>`</b>		
		а <i>отора,</i> тора К			
<u> </u>		<u>t</u>			
Reson	ant Frequency Check after	er Higher		ude Tests	
Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes

## RCTS Testing Record (Page 8 of 10)

×

Station:	Date	×		Tested by:	
Project #:		Pro	ject Name:		
Boring #:	Spec	1111 men #:			
<i>S</i> .	essure:				
TS Tests (pr	ior to tests, fr=	Hz)			/
Frequency (Hz)	File Name	Pre-Amp Input (mV)	Post-Amp Input (mV)	Strain Amplitude	Notes
0.5					
0.5				Y	
0.5					
0.5					
0,1				i	····· *··
0.5					N 2003000
1			7	* ****	
5					
10	222200			<u> </u>	- X X // 2000
0.5					
0.5				· ····	
0.5					
0.1				· · · · · · · · · · · · · · · · · · ·	
0.5				· · · · · · · · · · · · · · · · · · ·	
1					
5			· · · · · · · · · · · · · · · · · · ·		x 2000,200
10			×		
0.5			~ *		
0.5	7		······		* */**/

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
			·····		

XXX

x x

	RCTS	Testing Record (Page 9 a		51 6.2408					
	Station	<u>pc</u> Dat	e: <u>6.4</u>		Te	sted by: At Surad Jup	ic		
	Project	Station: $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $							
	Boring	#: <u></u> Spe							
	Confin	ing Pressure: TO Pri	<u> </u>	Testing 8	Stage:	<u>X4</u>			
	RC Ti	me Effect Tests							
	Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes			
P/7	5:12	8-2-10/1-2-P50-50	10	1	166.3				
10	6:49	0-2-Notion -2-1 50-7-7	10	/	175.9	2 A.F. 200 X 2 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)			
147 <i>m</i> in	7:38	147 1 62408 -TA	10	1	176.6				
* * * * *					*				
	RC Sta	ain Amplitude Effect Te	sts						
	Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes	*		
PM	8:47	8-2-Nof-1-2-150-5-	2 5	1	176.6				
	8147	8-2-Notoral-2- 750-5-1	ular o	I	174.6				
1		B-2-Nohon (-2- Pro-S-2		1	176.3				
	B:48	B-2-MAMI-2-Pro-(_)	40	1	176.1				
	8:48	87-N+421-2-P50-1-4	80	1	1253				
1		B-2-1-1-1-2-10-1 A-0	160	10	173.1				
	8:50	BZ-Habural-Z-PSOSA-1	320	10	169.4	i i			
l l	8:51	0-2-Notrol-2-POR-50-0	640	10	162.4				
1	8:52	0-2-wotur-1-2-P.00-56-00	1280	10	152.7				
4		22-110-2-Pro-1D-2	2560	10	138.9				
РM	8:54	8-2-Hohural-2-AD-17= 0	4000	10	129.4				
	Ļ	LooD			~~ <u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>				
					- A Second				
				<u> </u>					
		A.C A.C	· · · · · · · · · · · · · · · · · · ·	~ ×					
		· · · · · · · · · · · · · · · · · · ·							

# **Resonant Frequency Check after Higher Strain Amplitude Tests**

	Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
pm	6:22	B-2-Nahral 2-Pro-SCK			171.6	

, ł

x

### **RCTS Testing Record (Page 10 of 10)**

RC18 Testing Record (Page 10 o	*	6.24.08	
	6.4.08	Tested by: FJSuv	ad Jupic
Project #:0411-08-1696	Project Name:	GÉI	
Boring #: <u>B-2</u> Speci	men #: <u>Nation</u> 7		
Confining Pressure:/	_ Testing Stage	e: <u>X4</u>	

12

Frequency (Hz)	File Name	Pre-Amp Input (mV)	Post-Amp Input (mV)	Strain Amplitude	Notes
0.5	B-2-N-K-1-2-PSO-74	01 0.15	2.97	1.56-6	X XX
0.5	8-2-40/ml-2-Pro-102	0.7	5.94	7.1 - 6	
0.5	\$-2-4-hora(-2-10-150)	0.6	11.89	0.6-5	· · · · · · · · · · · · · · · · · · ·
0.5	B2-U-ture (-2-Pro-TSOY	]	19.83	1-5	ana di X
0.1	\$2-40hrol-2-Pro.7607	1	17.87	1.07-5	x
0:5	B2-Mahal-2-PSD-TSOL	1	1	1-5	
1	B2-Noturel-2-PSD-TSO7	1		0.98-5	0.000
5	82-babreliz-pro-7508	1	¥	0.96-5	
10	12-40/4-1-2-770-7809	1	19.83	0.77-5	
0.5	32-10-1-2-Pro-7510	2	39.66	2-1	
0.5	8-2-16fund-2-750-TS11	4	73.35	4.2-5	
0.5	07-110/-1-2-P50-75/L	4.7	92.27	4.2-5	
0.1	p-2-410/mal-2-Pro-251)	47	93.27	4.9-1	
0.5	BZ-Hafuni-L-Pro-III	1	1	4717-r	x you paysoned
1	B-2-Hatural-2-PSO-THS			4-7-5	
5	82-11-1-2-750-7516	¥		4.55-5	
	102-Hofurd-2-750-15/7	4.7	93.27	4.4-5	
0.5	LwD				
0.5					97

### TS Tests (prior to tests, fr=176, 6 Hz)

## **Resonant Frequency Check after Higher Strain Amplitude Tests**

Time (min)	File Name	Input (mV)	Gain @ Charge Amplifier	fr (Hz)	Notes
8:17	B-2-habra (-2-PJa-+SCK	10	1	174.8	
8:41	Wh	10	1	176.6	
END			5 		