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4.0 THE WASTE DOES NOT REQUIRE PERMANENT ISOLATION IN A DEEP
GEOLOGIC REPOSITORY FOR SPENT FUEL OR HIGH-LEVEL RADIOACTIVE
WASTE

Section 31 16 (a) of the NDAA provides in pertinent part:

[T]he term "high-level radioactive waste" does not include waste from
reprocessing of spent nuclear fuel that the Secretary of Energy ....... in
consultation with the Nuclear Regulatory Commission... determines -

(I) does not require permanent isolation in a deep geologic repository
for spent fuel or high-level radioactive waste[.]

The purpose of Section 3116 is to clarify the Secretary's authority, in consultation with the NRC,
to determine that certain waste from reprocessing that meets the criteria set out in the section
should not be classified as "high-level radioactive waste." It sets out two specific criteria for
making this determination in clauses (2) and (3). Clause (2) requires DOE to remove highly
radioactive radionuclides to the maximum extent practical. Clause (3) generally mirrors the
criteria that the NRC has established for determining whether waste qualifies for land disposal as
low level waste(See 10 CFR. 61.55 and 61.58). This includes waste that falls within one of the
classes set out in Section 61.55, as well as waste that will be. disposed of so as to meet the-
performance. objectives of subpart C of Part 61.

Clause (1) is a broader criterion that requires the Secretary, in consultation with the NRC to
consider whether, notwithstanding that waste from reprocessing meets the other two criteria,
there are other considerations that, in the Secretary's judgment, require its disposal in a deep

> geologic repository. Generally speaking, this would be an unusual case. This is because waste
that meets the third criterion would be waste that the Secretary, in consultation with the NRC, has
already determined either falls within one of the classes set out in section 61.55 that the NRC has
specified are considered "generally acceptable for near-surface disposal" or that the Secretary, in
consultation with the NRC, has already determined will be disposed of in a manner that meets the
Part 61 subpart C performance objectives. These latter objectives, in turn, as the NRC recently
explained, "set forth the ultimate standards and radiation limits for: (1) protection of the general
population from releases of radioactivity; (2) protection of individuals from inadvertent intrusion;
(3) protection of individuals during operations; and (4) stability of the disposal site after closure."
In the Matter of Louisiana Energy Services (National Enrichment Services), CLI-05-05, slip op.
at II (Jan. 18, 2005). It follows that if disposal of a waste stream in a facility that is not a deep
geologic repository will meet these objectives, in the ordinary case that waste stream does not
"require disposal in a deep geologic repository" because non-repository disposal will . be.'
protective of the public health and safety.

That said, it is possible that in rare circumstances, a waste stream that meets the third criterion
might have some other unique radiological characteristic or may raise unique policy

February 28, 2005
Page 27 of 94

4.0 THE WASTE DOES NOT REQUIRE PERMANENT ISOLATION IN A DEEP 

GEOLOGIC REPOSITORY FOR SPENT FUEL OR HIGH-LEVEL RADIOACTIVE 
WASTE 

Section 3116 (a) of the NDAA provides in pertinent part: 

[T]he term "high-level radioactive waste" does not include waste from 
reprocessing of spent nuclear. ·fuel that the Secretary of Energy ...... , in 
consultation with the Nuclear Regulatory Commission ... determines -

(1) does not require permanent isolation in a deep geologic repository 
for spent fuel or high-level radioactive waste[.] 

The purpose of Section 3116 is fh clarify the Sec~etary' s authority, in consultation with the NRC, 
to determine that certain waste from reprocessing that meets the criteria set out in the section 
should not be classified as "high-level radioactive waste." It sets out two specific criteria for 
making this dettrmination in clauses (2) and (3). Clause (2) requires DOE to remove highly 
radioactive radionuclides to the maximum extent practical. Clause (3) generally mirrors the 
criteria that the NRC has established for determining whether waste qualifies for land disposal as· 

--~) low level waste(See 10 CFR. 61.55 and 61.58). This includes waste that falls within one of the 
classes set out in Section 61.55, as well as waste that will be disposed of so as to meet the_ 
performance objectives of subpart C of Part 61. 

Clause (1) isa broader criterion that requires the Secretary, in consultation with the NRC to 
consider whether, notwithstanding that waste from reprocessing meets the other two criteria, 
there are other considerations that, in the Secretary's judgment, require its disposal in a deep 

--~) geologic repository. Generally speaking, this would be an unusual case. This is because waste 
that meets the third criterion would be waste that the Secretary, in consultation with the NRC, has 
already determined either falls within one of the classes set out in section 61.55 that the NRC has 
specified are considered "generally acceptable for near-surface disposal" or that the Secretary, in 
consultation with the NRC, has already determined will be disposed of in a manner that meets the 
Part 61 subpart C performance objectives. These latter objectives, in turn, as the NRC recently 
explained, "set forth the ultimate standards and radiation limits for: (l) protection of the general 
population from releases of radioactivity; (2) protection of individuals from inadvertent intrusion; 
(3) protection of individuals during operations; and (4) stability of the disposal site after closure.". 
In the Matter of Louisiana Energy Services (National Enrichment Services), CLI-05-05, slip op. 
at 11 (Jan. 18, 2005). It follows that if disposal ofa waste stream in a facility that is not a deep 
geologic repository will meet these objectives" in the ordinary case that waste stream does not 
"require disposal in a deep geologic repository" because non-repository disposal will. be • 
protective of the public health and safety. 

That said, it is possible that in rare circumstances, a waste stream that meets the third criterion 
might have some other unique radiological characteristic or may raise unique policy 

February 28, 2005 
Page 27 of94 



RESPONSE TO RAI COMMENT 10
ROADMAP TO REFERENCES

REFERENCED DOCUMENT *EXCERPT LOCATION REMARK
Boyles et al 2001 RPP-7702 Section 4.8.3.2 enclosed Section 4,8.3.2 provides the Hanford

following response. scoping cost estimate for building one
tank, assuming four tanks are built. (For
evaluation purposes, the Hanford costs are
assumed comparable within uncertainties,
to SRS cost.)

RPP-7702 Section 4.8.3.3 enclosed Section 4.8.3.3 provides the Hanford
following response. schedule for building one tank, assuming

four tanks are built. (For evaluation
purposes, the Hanford schedule is assumed
comparable to those items applicable to
SRS.)

d'Entremont et al. 2005 CBU-PIT-2005-00150 .enclosed following This document provides the details
response. concerning the cost and benefit evaluation

performed for evaluating the three salt
waste treatment cases. It can be used to
provide additional details in response to
the RAI#10.

d'Entremont et al. 2005 CBU-PIT-2005-00150, Section 3, 4 & 5 Section 3.3 and 3.4 of this document
enclosed following response. quantify worker and population dose.

Section 4 addresses cost. Section 3.1 and
3.2 discuss activity reduction and tank
years. Section 5 addresses additional
qualitative evaluation factors.

7/14/2005 APPROVED for Release for
Unlimited (Release to Public)

REFERENCED DOCUMENT . 
Boyles et al2001 

" 

d'Entremont et al. 2005 

d'Entremont et al. 2005 

RESPONSE TO RAI COMMENT 10 
ROADMAP TO REFERENCES 

*EXCERPT LOCATION 
RPP-7702 Section 4.8.3.2 enclosed 
following response. 

RPP-7702. Section 4.8.3.3 enclosed 
following response. 

CBU-PIT -2005-00150 .enclosed following 
response. 

CBU-PIT-2005-00150, Section 3,4 & 5 
enclosed following response. 

7/14/2005 

REMARK 
Section 4 .. 8.3.2 provides the Hanford 
scoping cost estimate for building one 
tank, assuming four tanks are built. (For 
evaluation purposes, the Hanford costs are 
assumed comparable within uncertainties, 
to SRS cost.) 
Section 4.8.3.3 provides the Hanford 
schedule for building one tank, asswning 
four tanks are built. (For evaluation 
purposes, the Hanford schedule is assumed 
comparable to those items applicable to 
SRS.) 
This document provides the details 
concerning the cost and benefit evaluation 
performed for evaluating the three salt 
waste treatment cases. It can be used to 
provide additional details in response to 
the RAI#lO. 
Section 3.3 and 3.4 of this document 
quantify worker and population dose. 
Section 4 addresses cost. Section 3.1 and 
3.2 discuss activity reduction and tank 
years. Section 5 addresses additional 
qualitative evaluation factors. 

APPROVED for Release for 
Unlimited (Release to Public) 



RESPONSE TO RAI COMMENT 10
ROADMAP TO REFERENCES

DRAFT Section 3116 Determination DOE-WD-2005-001, Page 7 enclosed DOE-WD-2005-001, Page 7, para 3
following response. provides a brief general description of the

(not specifically called out as a reference in current salt waste disposition strategy.
RAI but can be inferred)
NCRP 1987 NCRP Report No. 93, Page 14, Table 2.3 NCRP Report No. 93, Page 14, Table 2.3

enclosed following response. provides the radiation exposure from
natural background.

WSRC 1993 WSRC-OS-94-42 Section E enclosed Section E contains the requirement for
following response. DOE to submit to the EPA and SCDHEC

schedules for tanks that do not meet
secondary containment requirements.

7/14/2005

j 

DRAFT Section 3116 Detennination 

(not specifically called out as a reference in 
RAJ but can be inferred) 
NCRP 1987 

WSRC 1993 

RESPONSE TO RAI COMMENT 10 
ROADMAP TO REFERENCES 

DOE-WD-2005-001, Page? enclosed 
following responSe. 

NCRP Report No. 93, Page 14, Table 2.3 
enclosed following response. 

WSRC-OS-94-42 Section E enclosed 
following response. 

7/14/2005 

DOE-WD-2005-001, Page 7, para 3 
provides a brief general description of the 
current salt waste disposition strategy. 

NCRP Report No. 93, Page 14, Table 2.3 
provides the radiation exposure from 
natural background. 

Section E contains the requirement for 
DOE to submit to the EPA and SCDHEC 
schedules for tanks that do not meet 
secondary containment requirements. 



RPP-7702, Rev. 0

Tank Space Options Report

V. C. Boyles at &I
CH2M HILL Hanford Group, Inc., Richland, WA 99352
Office of River Protection Contract DE-AC27-99RL14047

EDT/ECN:
Org Code:
B&R Code:

EDT- 632177
7M100
EW 3120074

UC: 2070
Contract No.: 7899-32
Total Pages: /15

Key Words: Tank Space, SST Retrieval, DST Capacity

Abstract: N/A

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade nrame.
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services. P.O. Boa
950. Mailstop V16-08, Richland WA 99352. Phone (509) 372-2420: Fax (5 176-49R9

DATE- HARM.3F

____I i.APR I
Release, Approval Date elease Stamp

Approved for Public Release

A-6400-073 (01/97) GEF321

Tank Space Options Report 

V. C. Boyles at al 
CH2M HILL Hanford Group, Inc., Richland, WA 99352 
Office of River Protection Contract DE-AC27-99RL14047 

EDT/ECN: 
Org Code: 
B&R Code: 

EDT- 632177 
7M100 
EW 3120074 

UC: 2070 
Contract No.: 7899-32 
Total Pages: I~' 

Key Words: Tank Space, SST Retrieval, DST Capacity 

Abstract: N/A 

RPP-7702, Rev. 0 

TRADEMARK DISCLAIMER. Reference herein 10 any specific commercial producl. process. or service by IT1Ide I1.Ime. 
lnidemark. IJUInufacrurer. or otherwise. does nOi neccssarily constilUte or imply irs cndorsement. reconunendalion. or favoring by 
IhC Uniled Stites Governmenl or any agency thc:reof or its contractors or subcontractors. 

Printed in the Uniled Stales of America. Tu obtain copics of thi.! document. conlael: Document Control Services. P.O. BOA 

950. Mailslop H6·08. Richlallll WA 99352. Phone (S09) 372·2420; FaA (5~looIijiMiilllll"' ____________ ... 

DATE: 

ST~' 

AP112~ 

ID. 

d 
clea.sc Stamp 

Approved for Public Release 

A-6400"()73 (01/97) GEF321 



RPP-7702 Rev. 0

4.8 CONSTRUCT NEW DOUBLE-SHELL TANKS

4.8.1 Description

This option would create additional waste storage capacity by construction of DSTs similar to the
existing design. These new tanks will meet state and federal regulations and will have a 50-year
design life. Each additional DST would increase available capacity by 1200 kgal.

4.8.2 Background

This option is consistent with current program strategy of moving SST wastes to compliant DST
storage. The tanks will be designed using lessons learned from the Waste Tank Safety Program,
the Multi-Function Waste Tank Facility design (WHC 1995), and the AQ and AT Tank Farm
designs. Additional waste storage capacity could be available for use in the 2007 - 2011 time
frame. The funding process is expected to take approximately two years; design and construction
are expected to take five years. It is expected that savings would be obtained if a tank farm were
built instead of individual tanks. The costs were based on a design that contained four tanks.

4.8.3 Evaluation of Option

4.8.3.1 Additional Capacity (Gallons)

Construction of each new DST will create 1200 kgal of additional capacity using an existing
design.

4.8.3.2 Cost

The cost estimate for this option is presented in Table 4-25.

/

Table 4-25. Cost Estimate for Construct New Double-Shell Tanks Option
(Based on Each One of at Least Four Tanks)

Activity Description Cost:($K)
Obtain Permitting and Regulatory Approval 1000
Design 7000
Procurement and Construction 66000
Start-Up and Testing 1000
OPTION TOTAL $ 75,000
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The cost estimate is based on the following assumptions:

* adjustments were made to the $360M Advanced Conceptual Design cost estimate of
Project W-236A, "Multi-Function Waste Tank Facility," a four-tank facility (WHC
1995);

* the Project W-236A estimate is used as a basis without detailed evaluation;

* an escalation factor of 3% per year was used to calculate past cost to present cost;

a weather enclosure for the tank farm was deleted from the Project W-236A estimate;

* mixer pumps are not used and were deleted from the Project W-236A estimate;

0 tanks are constructed of carbon steel instead of 304L stainless steel;

a modification of the Environmental Impact Statement is required; and

0 a tank farm containing four tanks, the same as Project W-236A was used as the basis for
the cost of one tank. Additions of less than four tanks are likely to cost more per unit of
volume.

An annual estimate of expenditures per tank in groups of four is as follows:

Year Annual Total
I $250K
2 $250K
3 $6,100K
4 $18,1OOK
5 $17,1OOK
6 $16,100K
7 $17,1OOK

This preliminary schedule of expenditures is not budget grade, but is for scoping purposes only.

4.8.3.3 Schedule

The schedule for this option is presented in Figure 4-8.
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Figure 4-8. Schedule for Construct New Double-Shell Tanks Option

Activity Ac1ty , - Y ear s
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P200400 PROCUREMENT & CONSTRUCTION 91.
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Figure 4-8. Schedule for .Construct New Double~Shell Tanks Option 
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4.8.3.4 Feasibility Considerations

Additional considerations for the feasibility of constructing new DSTs are discussed below.
Table 4-26 provides the summary assessment of these considerations.

Table 4-26. Feasibility Considerations ror Construct New Double-Shell Tanks Option
tcrltei~i~a- -: .• :;:::) ::I:.:: i~i h:eastbllity" Medium Feasbiiity Low Feasibility:

Technical Feasibility X
Environmental Risk X
Health and Safety Risk x
Maintainability and Operability _ _' _X

Environmental Regulatory Impacts X
Authorization Basis Impacts X

Technical Feasibility

Construction of new DSTs is technically feasible based upon previous engineering,
construction, and operations experience. Detailed analysis of previous conceptual design
estimates for DST construction is wanranted and has the potential to reduce the cost per
gallon derived from cost estimates for the Multi-Function Waste Tank Facility. For example,
the River Protection Project plans to build 1500 kgal of low-activity waste feed storage
capacity at the WTP for $43M.

* Environmental Risk

New DSTs would be constructed per the requirements of Washington Administrative Code
173-303-640 (4)(c)(iii) that double walled tanks be designed as an integral structure (i.e., an
inner tank completely enveloped within an outer shell) and be provided with a built-in
continuous leak detection system. Operation of new DSTs would incur minimal incremental
environmental risk; however, additional DSTs will result in an increase in closure costs for
the Hanford Site.

* Health and Safety Risk

The construction of new DSTs is a major construction activity that presents industrial safety
hazards commensurate with other projects of this magnitude. No additional health risk to the
public is expected from construction of new DSTs.
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Malntalnability/Operability

Additional maintenance or operational expense is incurred for the routine operation of
additional DSTs. The maintenance and operational activities are similar current activities,
although the newer DSTs are likely to be subject to fewer equipment failures.

Environmental Regulatory Impacts

Construction of new DSTs would require a change to the RCRA Part B permit to incorporate
the new facilities. In addition, supplemental National Environmental Policy Act (NEPA)
documentation would be needed. Significant public comment would be expected.

Authorization Basis Impacts

Construction of new DSTs would require an amendment to the tank farm Authorization Basis
(CHG 2000a, CHG 2000b) to incorporate the new facilities. However, this would not
involve new processes.
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ACROIN
ARP
B
CSSX
D&D
DDA
DOE
DWPF
EPA
ETP
FFA
HLW
1W
LCC
LCS
LIP
M

MCU
NC
NIP
NRC
RAI
SCDHEC
SDF
SPF
SRS
SWPF
WD

YMS
Actinide Removal Process
Used to denote billions of dollars ($B)
Caustic Side Solvent Extraction
Decontamination and Decommissioning
Dissolution, Deliquification, and Adjustment
U.S. Department of Energy
Defense Waste ,Processing Facility
Environmental Protection Agency
Effluent Treatment Process
Federal Facilities Agreement
High Level Waste
Inhibited Water
Life Cycle Cost
Low Curie Salt. The use of this term has been replaced with DDA
Limited Interim Processing
Million. Used to denote millions of gallons (Mgal), millions of Curies, and millions
of dollars ($M)
Modular CSSX Unit
Noncomplaint.
No Interim Processing
U.S. Nuclear Regulatory Commission
Request for Additional Information
South Carolina Department of Health and Environmental Control
Saltstone Disposal Facility
Saltstone Production Facility
Savannah River Site
Salt Waste Processing Facility
Waste Determination contained as Reference 1
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GLOSSARY

Baseline Case - The Interim Salt Treatment Strategy is described in the Waste Determination
(Ref. 1) (WD) and involves initial salt waste disposition using Deliquification, Dissolution, and
Adjustment (DDA) followed by Actinide Removal Process (ARP) and Modular CSSX (Caustic
Side Solvent Extraction) Unit (MCU) in combination with DDA until the Salt Waste Processing
Facility (SWPF) comes on line. Once the SWPF facility starts up, all salt waste streams will be
treated using the SWPF.

Curie Years - The number of years a tank is in service multiplied by the activity (Curies) in the
tank.

Life Cycle - The term, applied to the entire period from facility conceptualization to completion
of Decontamination and Decommissioning (D&D).

Life Cycle Cost (LCC) - The cost of a good or service over its entire life cycle.

Limited Interim Processing (LIP) Case - This case waits to begin initial salt waste disposition
until the ARP and MCU facilities are ready to begin operation in 2007. No salt waste is
processed using the DDA process. Upon start-up of SWPF, ARP/MCU operations cease and all
salt waste is processed using the SWPF.

Noncompliant Tanks - HLW Tanks that do not have full secondary containment.

No Interim Processing (NIP) Case - This case waits to begin initial salt waste disposition until
the SWPF is ready to begin operation in 2009. No salt waste is processed using the DDA
process or with the ARP/MCU facilities. Using this case, all salt waste is processed using the
SWPF.

Old-Style Tanks - Tank Types 1, 11, and IV.

Sunk Cost - Funds previously expended that cannot be recovered regardless of future events.

(Old Style) Tank Years - A term used to describe material at risk in terms of noncompliant tanks.
One "Old Style (noncompliant) Tank Year" is equal to one noncompliant tank in HLW service
for one year.
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EXECUTIVE SUMMARY

The U.S. Nuclear Regulatory Commission (NRC) staff reviewed the Draft Salt Waste Disposal
Section 3116 Determination (WD) (Ref 1) and provided a request for additional information
(RAI) (Ref. 2) in the form of comments on the WD. This document addresses the comment
numbered 10 in the RAI. That comment states, "Additional information is needed to support the
conclusion that, use of interim treatment measures before the completion of the Salt Waste
processing Facility (SWPF) is consistent with removal of highly radioactive radionuclides to the
maximum extent practical." The comment further requests that the U.S. Department of Energy
(DOE) "Provide a detailed cost/benefit analysis supporting a comparison of the proposed
alternative with alternative treatment plans. The response should address the quantitative and
qualitative costs and benefits of treating waste with the SWPF alone as well as the costs and
benefits of treating waste with both the Actinide Removal Process (ARP)/Modular Caustic Side
Solvent Extraction (MCU) and the Salt Waste Processing Facility (SWPF)."

This document evaluates ,and compares financial and non-financial costs and benefits associated
with three different cases and demonstrates that the salt waste disposition strategy described in
the Salt Waste Disposal Waste Determination (WD) is the most cost effective case and the case
that will provide the lowest overall risk to the site worker and to the general public.

The following three cases were evaluated and compared in this document:

Case #1: Baseline Case - The Interim Salt Treatment Strategy is described in the Salt Waste
Disposal Waste Determination and involves initial salt waste disposition using
Deliquification, Dissolution, and Adjustment (DDA) followed by Actinide Removal
Process (ARP) and Modular CSSX (Caustic Side Solvent Extraction) Unit (MCU) in
combination with DDA until the Salt Waste Processing Facility (SWPF) becomes
operational. Once the SWPF facility becomes operational, all salt'waste streams will
-be treated using the SWPF.

Case #2: Limited Interim Processing (LIP) Case - This case does not begin salt waste
disposition until the ARP/MCU facilities begin operation in 2007. No salt waste is
processed using the DDA process. Upon start-up of SWPF, ARP/MCU operations
cease and all salt waste is processed using the SWPF.

Case #3: No Interim Processing (NIP) Case - This case does not begin salt waste disposition
until the SWPF is ready to begin operation in 2009. No salt waste is processed using
the DDA process nor with the ARP/MCU facilities. Using this case, all salt waste is
processed using the SWPF.
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Note that the Baseline Case is the case that was described in the WD and that the other two cases
were requested for evaluation in the RAI. These other two cases evaluated herein, namely LIP
and NIP, represent scenarios for evaluation only and do not represent detailed plans that have
been accepted by either the DOE or by the facilities involved.

When these three cases were evaluated, the following fundamental differences were noted
between the cases:

Completion of Operations: The Baseline Case completed High Level Waste (HLW) system
operations in 2019. The salt waste dispositioned to SDF by DDA and ARP/MCU created
compliant tank space in the HLW Tank Farm that permitted Defense Waste Processing Facility
(DWPF) operations to continue without inteiruption and permitted SWPF operations to
commence processing at forecast production rates. The Limited Interim Processing Case
required 3+ years longer to complete HLW system operations than the Baseline Case. The delay
.in mission completion resulted from the reduced processing rates through SWPF and DWPF
caused by the limited compliant tank space available to prepare the salt and sludge waste streams
for processing during initial years of SWPF operation. DWPF production rates are impacted
because of the limited compliant tank space prevents sludge washing which is required prior to
processing sludge waste at DWPF. The No Interim Processing (NIP) Case required
approximately 5+ years longer to complete HLW system operations than the Baseline Case. The
delay in mission completion resulted from the reduced processing rates through SWPF and
DWPF caused by the limited compliant tank space available to prepare the salt and sludge waste
streams for processing during initial years of SWPF operation.

Risk: The doses (exposures) associated with each of the three cases were compared as well as the
material/facilities at risk. Dose was further broken down in terms of dose to the facility worker,
dose to the public from both ongoing operations and from material dispositioned to the SDF, and
dose to the inadvertent intruder from the SDF. In order to appropriately characterize the risks
from ongoing operations, the differences between- the cases in terms of old style tank closure
years and Tank Farm waste disposition rates expressed in Curie Years were evaluatedl The
evaluations are summarized in the following table.
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Table 1: Summary of Dose, Tank Years and Curie Year Impacts
Current SDF SDF All Tank

Worker Old Style
Case Evaluated Dose (1) Public Intruder Pathways rTankm

(rem) Dose (2) Dose (3) Dose (4) Curie
(mrem/yr) (rem) (mrem/yr) Years Years (5)

Baseline 890 0.19 36.9. 2.3 240 3.7E+09
LIP Case 1100 0.19 36 2.3 300 4.7E+09

(change from baseline) (+24 %) (0 %) (- 2.5 %) (0 %) (+25%) (+25%)

NIP Case 1200 0.19 36 2.3 340 5.3E+09

(change from baseline) (+35 %) (0 %) (- 2.5 %) (0 %) (+42%) (+42%)
(1) Integrated dose to HLW workers
(2) Dose to public from current SRS operations
(3) 100 year integrated dose (2105 - 2205); includes 360 mrem/yr contribution from

background radiation
(4) Total number of years old style tanks are in service, where 20 tanks in service for 2 years

= 40 Tank Years
(5) Total number of years a curie is in the Tank.Farm, where 30 MCi in the Tank Farm for

three years = 90M Curie Years

It can be seen from Table 1 that the Baseline Case results in significantly lower worker dose and
significantly shorter time that radioactive material remains in the old style tanks. Intruder doses
are higher for this case, but the difference is not significant when compared to exposure from
background sources of radiation (360 mremlyear) (Ref. 11). The LIP and NIP Cases show
significant increases from the Baseline Case for worker exposure and time that radioactive
material remains in the Tank Farm. Thus, the Baseline Case provides the lowest risk for worker
exposure, as well as, from a time of radiological material at risk perspective, especially in old
style tanks.

Financial Cost: The Baseline Case is the most cost effective case. The primary reason that the
Baseline Case is the most cost effective is the difference in lifecycle costs associated with
extending the HLW system (Tank Farms, DWPF, SWPF, Saltstone Production Facility (SPF),
Saltstone Disposal Facility (SDF), etc.) operations by 3+ years for the LIP Case and 5+ years for
the NIP Case. This results in an additional cost for operation of approximately $1B ($1.6B
escalated) and $1.5B ($2.6B escalated), respectively. Since the sunk costs for ARP/MCU
construction are high relative to the total project cost, and since the life cycle costs for the HLW
system are much higher than the project construction and D&D (decontamination and
decommissioning) costs, life cycle costs dominate the cost comparison. As a result of the
relative costs, the case that results in the shortest life cycle will have the lowest financial cost.

Other aspects of the facility operations thatwere reviewed as a part of this evaluation included
consideration of slowing down DWPF rather than shutting down DWPF due to feed streams
(sludge batches) to DWPF being unavailable. The slowdown avoids a shutdown of DWPF and
subsequent restart. The evaluation shows that slowing down DWPF is preferred over shutdown
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from a cost perspective. Cost comparisons utilized this basis when DWPF operation was
evaluated.

Construction of new HLW storage tanks are evaluated against the baseline case. Since the cost
of new tank construction' was significantly more than the lifecycle cost for ARP/MCU facility
(less sunk costs), this was not consideredto be cost effective. In addition, the feasibility of
designing, constructing and starting up new tanks within the timeframe required to keep from
impacting SWPF start-up assumptions is unlikely.

Qualitative Discussion: The primary influence on cost and risk associated with these cases is the
duration of-facility operationm The evaluation assumes that the dates projected for facility start-
up will be achieved and that throughput rates will be as forecasted. Delays in facility start-up
and reductions in throughput rates would extend the duration of facility operation with associated
increases in cost and a decrease in benefits. It should be noted that this extension in facility
operation is likely greater than a day for day match with a delay in facility start-up. Delays in
facility start-up will result in less tank space available for salt batch and sludge batch preparation.
It would take years of operation at reduced rates to recover the "lost" tank space. In the cases
analyzed, it took 4+ years after SWPF start-up for the LIP Case and 7+ years for the NIIP Case
for. SWPF to achieve forecast processing rates. Attaining these forecast processing rates was
limited by the availability of compliant tank space to prepare salt batches to feed SWPF at a rate
of seven million gallons of salt waste solution per year.

Taken as a whole, the above fundamental differences in the cases evaluated demonstrate that the
Baseline Case is the most cost effective option and provides the lowest worker dose. Public
doses (including inadvertent intruder doses) are marginally highest with the Baseline Case, but
this dose is not significant when compared to exposure from natural sources of radiation. The
Baseline Case also reduces radioactive material at risk the most quickly because it facilitates
stabilization of radioactive material in the Tank Farm more quickly than in the other cases, as
well as permitting closure of old style tanks per the Federal Facility Agreement (FFA) schedule.
For these reasons, the Baseline Case provides the greatest overall benefit at the lowest cost.

1 INTRODUCTION

The U.S. NRC staff reviewed the Draft WD (Ref. 1) and provided a RAI (Ref. 2) in the form of
comments on the WD. This document responds to the comment numbered 10 in the RAI. That
comment states:

Comment: Additional information is needed to support the conclusion that use of interim
treatment measures before the completion of the SWPF is consistent with
removal of highly radioactive radionuclides to the maximum extent practical.
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Basis: The NRC agrees with the conclusion in Reference 4 that the determination of
whether highly radioactive radionuclides have been removed to the maximum
extent practical can include a wide variety of considerations. However, it is
expected that any factors included in the determination will be supported by a
technical basis and, when possible, quantitative comparisons.

For example, although it is stated that risk to the public is reduced by
continuing sludge processing at the Defense Waste Processing Facility (DWPF)
[4], no information is presented to support the amount of risk reduction
achieved by continuing waste processing prior to completion of construction of
the SWPF. Furthermore, insufficient information is presented to enable a
comparison between the increased risks associated with disposing of
Deliquification, Dissolution and Adjustment (DDA) and Actinide Removal
Process ARP/MCU waste in saltstone with the risks associated with postponing
treatment until all of the waste can be treated at the SWPF.

Similarly, although it is stated that it is necessary to treat waste with interim
procedures prior to the completion of the SWPF because shutdown of the
DWPF due to tank space limitations will be economically impractical, a
comparison between the costs of shutting down and restarting the DWPF with
the costs of implementing the proposed interim treatment procedures and
disposing of higher activity waste in the SDF has not been provided. Although
it was estimated that it would cost $1 billion to halt and restart waste
processing with the DWPF [4], no basis for that estimate was given.

Path Forward: Provide a detailed cost/benefit analysis supporting. a comparison of the
proposed, alternative with alternative treatment plans. The response should
address the quantitative and qualitative costs and benefits of treating waste with
the SWPF alone as well as the costs and benefits of treating waste with both the
ARP/MCU and the SWPF. The response should include:

1) A comparison between the dose to the general public, workers, and
inadvertent intruders associated with the proposed treatment plan and the
two alternatives (e.g., treating'waste with the SWPF alone or treating waste
with the ARP/MCU and SWPF). The response should also include an
estimate of the dose that the tanks currently pose to the public as well as the
number of Tank Years of waste storage in old style that would be avoided
by treating waste with DDA and ARP/MCU instead of waiting to treat
waste with the SWPF (e.g., percent reduction). Consideration should be
given to the fact that the wastes that have been proposed to be removed are
the lowest activity wastes [4].
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2) A comparison, of the financial costs associated with at least three
alternatives (i.e., the proposed alternative, treating waste at the SWPF alone,
and treating waste with the ARP/MCU and SWPF). The response should
address the costs associated with construction and operation of interim
procedures and the costs associated with disposing of a higher activity
waste on site, as well as the costs of ceasing and restarting sludge
processing. Additional alternatives, such as slowing down the throughput of
the DWPF or creating new interim tank storage, should be considered. The
comparison should also consider factors other than economic cost (e.g.,
schedule) and the factors should be converted into a comparable metric
(e.g., cost and risk) to the extent practical.

The analysis should reflect uncertainties in the timing of when sludge
processing would need to cease due to lack of tank space and the
uncertainty in the availability of the ARP/MCU, and SWPF treatment
facilities.

1.1 Purpose

The purpose of this document is to respond to the NRC RAI comment 10, Ref. 2. To put the
response in context, the following background information will be provided. A fundament
element of the comment is a request that DOE demonstrate that a technical basis using
quantitative comparisons supports the recommended case. The salt disposition cases that the
NRC requests this response evaluate are:

Case #1: Baseline Case - The Interim Salt Treatment Strategy is described in the WD and
involves initial salt waste disposition using DDA followed by ARP/MCU in
combination with DDA until the SWPF comes on line. Once the SWPF facility starts
up, all salt waste streams will be treated using the SWPF.

Case #2: Limited Interim Processing (LIP) Case - This case waits to begin initial salt waste
disposition until the ARP/MCU facilities are ready to begin operation in 2007. No salt
waste is processed using the DDA process. Upon start-up of SWPF, ARP/MCU
operations cease and all salt waste is processed using the SWPF. It should be noted
that this case is for evaluation only and does not represent detailed plans that have been
accepted by either the DOE or by the facilities involved.

Case #3: No Interim Processing (NIP) Case - This case waits to begin initial salt waste
disposition until the SWPF is ready to begin operation in 2009. No salt waste is
processed using the DDA process or with the ARP/MCU facilities. Using this case, all
salt waste is processed using the SWPF. It should be noted that this case is for
evaluation only and does not represent detailed plans that have been accepted by either
the DOE or by the facilities involved.
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This document provides an evaluation of the costs and benefits associated with the three cases
described above and documents the basis for the Conclusion that the Baseline Case provides the
most cost effective treatment for the salt waste at the greatest benefits.

2 DISCUSSION

This section of the report provides an initial comparison of the three cases so that the reader can
understand the differences in terms of salt waste dispositioned by the different processes for each
case in terms of curies and gallons processed by year. The Baseline Case is as described in the
WD and the other two cases, LIP and NIP, are presented to represent alternate scenarios for
evaluation only. These two other cases do not represent detailed plans that have been accepted by
either the DOE or by the facilities involved. The information provided in that comparison will
then be used to evaluate the impact that these differences have on dose and on cost for each of
the alternatives. Risk will be expressed in terms of exposure to the public, to the facility worker
and to an inadvertent intruder who is located at the Saltstone Disposal Facility (SDF) after
institutional controls restricting site access have ended. Risk will further be quantified in terms
of material at risk, both in terms of Old Style Tank Years and Curie Years. These terms will be
described in detail in the appropriate sections.

Next, the financial cost associated with each of the cases will be compared to determine the most
cost effective case. In addition to the three cases described above, additional discussion will be
provided comparing costs for DWPF shutdown vs. slowdown and for construction of additional
compliant tank space as compared to the Baseline Case.

Following these quantitative evaluations, qualitative discussion will be provided that describes
pertinent information that is difficult to quantify but important to understand to appropriately
evaluate the cases described. The last section in the report is a summary of the conclusions that
can be drawn from the evaluation of cost and risk for the cases described in the discussion.

2.1 Flowsheets & Curie Balance

Baseline Case (Case #1): DOE is separating the low activity fraction of salt waste at SRS using
a two-phase, three part process. The first phase will involve two parts to treat the lower activity
salt waste: a) beginning in 2005, processing of a minimal amount of the lowest activity salt waste
through a process involving DDA of the waste; and b) beginning in approximately 2007,
processing of a minimal amount of additional salt waste with slightly higher activity levels using
ARP/MCU, along with deliquification and dissolution of saltcake. The second, and longer term
phase, beginning in approximately 2009, involves the separation and processing of the remaining
(and by far the majority) of the salt waste using SWPF. This second phase will. begin as soon as
SWPF is constructed, permitted by the State of South Carolina, and operational.
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Per Ref. 5 after both liquid removal by processing through the Tank Farm evaporator systems
and later additions of liquids for saltcake dissolution and chemistry adjustments required for
processing, approximately 84 Mgal (5.9 Mgal existing salt waste through the DDA process,
1.0 Mgal future. salt waste through the DDA process, 2.1 Mgal through ARP/MCU, 69.1 Mgal
existing salt waste through SWPF, and 5.9 Mgal future salt waste through SWPF) of salt solution
will be processed by Interim Salt Processing and SWPF resulting in approximately 168 Mgal of
grout output from SPF to be disposed in SDF. Refer to Figure 1.
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Figure 1: Salt Processing Pathways

Baseline Case (Case #1): This figure shows that for the Baseline Case approximately 2.5 MCi of
decontaminated salt waste is planned to be sent to SPF/SDF following processing by DDA and
approximately 0.3 MCi of decontaminated salt waste sent to SPF/SDF from following processing
by ARP/MCU. This salt waste will be sent in a total of nine batches. Seven of the nine batches
are DDA batches. The other two are ARP/MCU batches. Following the completion of interim
salt processing, approximately 0.2 MCi of decontaminated salt waste will be sent to SPF/SDF
following processing in SWPF.

Cost & Benefit Evaluation for
Three Salt Waste Treatment Cases at SRS

CBU-PIT-2005-00150
Rev. 1

July 7, 2005

14 of 42

Per Ref. 5 after both liquid removal by processing through the Tank Farm evaporator systems 
and later additions of liquids for saltcake dissolution and chemistry adjustments required for 
processing, approximately 84 Mgal (5.9 Mgal existing salt waste through the DDA process, 
1.0 Mgal future salt waste through the DDA process, 2.1 Mgal through ARP/MCU, 69.1 Mgal 
existing salt waste through SWPF, and 5.9 Mgal future salt waste through SWPF) of salt solution 
will be processed by Interim Salt Processing and SWPF resulting in approximately 168 Mgal of . 
grout output from SPF to be disposed in SDF. Refer to Figure 1. 

,---_-, 8.8 MCi 
o 2.5MCi 

1---- 0 

en 
E·~ 

L-____ -, ____ ~ Q Q 

Salt 
·"W~sttb 

Key: 

"C (f) 

.s~ 
c 0 -0: 

~en 
u c co .-
Q.(/) 
co (/) 
u~ 
.s;::.O 
en~ .- c.. 
J: 

3.4 MCi 
2MCi 

Q 

6.3MCi 
o 
Q 

217.1 MCi 
221 MCi 
223 MCi 

BOLD font is for Baseline Case 
Italicized/ont is/or LIP Case 
Underlined font is for NIP Case 

3.1 MCi 
1.8MCi 

Q 

DWPF 

O.3MCi 
O.2MCI 

Q 

~. 3.0MCi .' .'; .... 
OAMQ .SPF:!:SPF 
O.2MCi .' .'. '. 

····,'Federaf 
-----~····.· .•. ···;.R~pci~it~ry·'·· 

Figure 1: Salt Processing Pathways 

Baseline Case (Case #1): This figure shows that for the Baseline Case approximately 2.5 MCi of 
decontaminated salt waste is planned to be sent to SPF/SDF following processing by DDA and 
approximately 0.3 MCi of decontaminated salt waste sent to SPF/SDF from following processing 
by ARP/MCU. This salt waste will be sent in a total of nine batches. Seven of the nine batches 
are DDA batches. The other two are ARP/MCU batches. Following the completion of interim 
salt processing, approximately 0.2 MCi of decontaminated salt waste will be sent to SPF/SDF 
following processing in SWPF. 

Cost & Benefit Evaluation for 
Three Salt Waste Treatment Cases at SRS 

14 of 42 

CBU-PIT-2005-00150 
Rev. 1 

July 7,2005 



LIP Case (Case #2): This case involves limited interim processing of salt waste as compared to
the Baseline Case. Phase one salt waste processing in the LIP Case begins in approximately
2007. The initial batches processed in the LIP Case use ARP/MCU to decontaminate the salt
waste. The second, and longer term phase, beginning in approximately 2009, involves the
processing of the remaining (and by far the majority) of the salt waste using SWPF. This second
phase will begin as soon as SWPF is constructed, permitted by the State of South Carolina, and
operational.

After both liquid removal by processing through the Tank Farm evaporator systems and later
additions of liquids for saltcake dissolution and chemistry adjustments required for processing,
approximately 84 Mgal (2.1 Mgal through ARP/MCU, 75 Mgal existing salt waste through
SWPF, and 6.9 Mgal future salt waste through SWPF) of salt solution will be processed by
Interim Salt Processing and SWPF resulting in approximately 168 Mgal of grout output from
SPF to be disposed in SDF.

This figure (Figure 1) shows that for the LIP Case, approximately 0.2 MCi of decontaminated
salt waste sent to SPF/SDF following processing by ARP/MCU. This salt waste will be sent in a
total of two ARP/MCU batches. Following the completion of interim salt processing,
approximately 0.2 MCi of decontaminated salt waste will be sent to SPF/SDF following
processing in SWPF.

Note that the fundamental difference between the Baseline Case and the LIP Case are that no salt
waste is processed in the LIP Case using the DDA process. Initial processing begins two years
later than in the Baseline Case because ARP/MCU does not start-up until approximately 2007.
As a result of the LIP, a significant reduction in volume of salt solution is processed prior to
SWPF start-up (6.9 Mgal), and insufficient compliant Type III Tank space is available to support
SWPF start-up at a rate of 7 Mgal/year throughput. It is estimated that only two compliant Type
III Tanks are available to prepare salt batches in 2009, and that it will take approximately 4+
years of SWPF operation to recover sufficient additional compliant Type III Tanks to support a
SWPF processing rate of 7 Mgal/year. This initial reduction in the SWPF throughput rates is
projected to have an overall impact of a 3+ year extension to the HLW system lifecycle. Note
that for financial cost analysis and worker dose, the years of lifecycle increase for the LIP Case
over the Baseline Case' are conservatively rounded to three years. When using this data to
calculate Curie Years, it is estimated that this quantity of radioactive material is at risk for 3+
years.

NIP (Case #3): This case involves "No Interim Processing" of salt waste as compared to the
Baseline Case. Salt waste processing in the NIP Case begins in approximately 2009. All batches
processed in the NIP Case use SWPF to decontaminate the salt waste. Salt waste processing will
begin as soon as SWPF is constructed, permitted by the State of South Carolina, and operational.
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LIP Case (Case #2): This case involves limited interim processing of salt waste as compared to 
the Baseline Case. Phase one salt waste processing in the LIP Case begins in approximately 
2007. The initial batches processed in the LIP Case use ARP/MCU to decontaminate the salt 
waste. The second, and longer term phase, beginning in approximately 2009, involves the 
processing of the remaining (and by far the majority) of the salt waste using SWPF. This second 
phase will begin as soon as SWPF is construc'ted, permitted by the State of South Carolina, and 
operati onal. 

After both liquid removal by processing through the Tank Farm evaporator systems and later 
additions of liquids for saltcake dissolution and chemistry adjustments required for processing, 
approximately 84 Mgal (2.1 Mgal through ARP/MCU, 75 Mgal existing salt waste through 
SWPF, and 6.9 Mgal future salt waste through SWPF) of salt solution will be processed by 
Interim Salt Processing and SWPF resulting in approximately 168 Mgal of grout output from 
SPF to be disposed in SDF. 

This figure (Figure 1) shows that for the LIP Case, approximately 0.2 MCi of decontaminated 
salt waste sent to SPF/SDF following processing by ARP/MCU. This salt waste will be sent in a 
total of two ARP/MCU batches. Following the completion of interim salt processing, 
approximately 0.2 MCi of decontaminated salt waste will be sent to SPF/SDF following 
processing in SWPF. 

Note that the fundamental difference between the Baseline Case and the LIP Case are that no salt 
waste is processed in the LIP Case using the DDA process. Initial processing begins two years 
later than in the Baseline Case because ARP/MCU does not start-up until approximately 2007. 
As a result of the LIP, a significant reduction in volume of salt solution is processed prior to 
SWPF start-up (6.9 Mgal), and insufficient compliant Type III Tank space is available to support 
SWPF start-up at a rate of 7 Mgallyear throughput. It is estimated that only two compliant Type 
III Tanks are available to prepare salt batches in 2009, and that it will take approximately 4+ 
years of SWPF operation to recover sufficient additional compliant Type III Tanks to support a 
SWPF processing rate of 7 Mgallyear. This initial reduction in the SWPFthroughput rates is 
projected to have an overall impact of a 3+ year extension to the HLW system lifecycle. Note 
that for financial cost analysis and worker dose, the years of lifecyde increase for the LIP Case 
over the Baseline Case are conservatively rounded to three years. When using this data to 
c.alculate Curie Years, it is estimated that this quantity of radioactive material is at risk for 3+ 
years. 

NIP (Case #3): This case involves "No Interim Processing" of salt waste as compared to the 
Baseline Case. Salt waste processing in the NIP Case begins in approximately 2009. All batches 
processed in the NIP Case use SWPF to decontaminate the salt waste. Salt waste processing will 
begin as soon as SWPF is constructed, permitted by the State of South Carolina, and operational. 
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After both liquid removals by processing through the Tank Farm evaporator systems and later
additions of liquids for Saltcake dissolution and chemistry adjustments required for processing,
approximately 84 Mgal of salt solution will be processed by SWPF resulting in approximately
168 Mgal of grout output.from SPF to be disposed in SDF. As Figure 1 shows, for the NIP Case,
approximately 0.2 MCi of decontaminated salt waste will be sent to Saltstone following
processing in SWPF.

-Note that the fundamental difference between the Baseline Case and the NIP Case are that no salt
waste is processed in the NIP Case using the DDA, and ARP/MCU process. Initial processing
begins four 'years later than in the Baseline Case because SWPF start-up is* not until
approximately 2009. As a result of NIP, no salt solution is processed prior to SWPF start-up (vs.
approx. 9 Mgal in the Baseline Case), and insufficient compliant Type III Tank space is available
to support SWPF start-up at a rate of 7 Mgal/year throughput. It is estimated that only one
compliant Type III Tank is available to prepare salt batches in 2009, and that it will take 7+ years
of SWPF operation to recover sufficient additional compliant Type III Tanks to support a SWPF
processing rate of 7 Mgal/year. This initial reduction in the SWPF throughput rates is projected
to have .an overall impact of a 5+ year extension to the HLW system lifecycle. Note that for
financial cost analysis and worker doses, the years of lifecycle increase for the NIP Case over the
Baseline Case are conservatively rounded to five years. When using this data to calculate Curie
Years, it is estimated that this quantity of radioactive material is at risk for 5+ years.

2.2 Processing Rates

This section of the report uses the cases described above and shows the quantity of radioactive
material that is processed via DDA, ARP/MCU, SWPF, and DWPF each year for each of the
cases. The evaluation will be used to show the quantity of material in the Tank Farms at the end
of each year in order to provide a comparison of the unstabilized radioactive material at risk
through time for each of the cases evaluated. Significant risk reduction is achieved by
permanently stabilizing salt and sludge wastes in a solid form (grout and glass, respectively).
When the wastes are solidified, they are no longer available to leak from the HLW storage tanks
in the Tank Farm. Therefore, it is appropriate to characterize the quantity of radioactive material
remaining in the Tank Farms each year when evaluating the differences between the cases.

The following assumptions are used for all of the cases evaluated. Where individual case
assumptions are different, they are presented with the review for each case.

As stated in Reference 6 there are 432 Million Curies (MCi) of supernate, suspended
solids, interstitial liquid, and sludge, salt currently in the Tank Farms. Of the total
inventory, 199 MCi will be processed through sludge processing and the remainder (233
MCi) will be processed via salt processing. The inventories used in this evaluation are
based on most current data (Ref. 3) and differ from the information presented in Figure 1
and in the WD.
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After both liquid removals by processing through the Tank Farm evaporator systems and later 
additions of liquids for Saltcake dissolution and chemistry adjustments required for processing, 
approximately 84 Mgal of salt solution will be processed by SWPF resulting in approximately 
168 Mgal of grout outputJrorri SPF to b~ disposed in SDF. As Figure 1 shows, for the NIP Case, . 
approximately 0.2 MCi of decontaminated salt waste will be sent to Saltstone following 
processing in SWPF. 

. Note that the fundamental difference between the Baseline Case and the NIP Case are that no salt 
waste is processed in the NIP Case using the DDA, and ARPIMCU process. Initial processing 
begins four 'years later than in the Baseline Case because SWPF start-up is not untii 
approximately 2009. As a result of NIP, no salt solution is processed prior to SWPF start-up (vs. 
approx. 9 Mgal in the Baseline Case), and insufficient compliant Type III Tank space is available 
to support SWPF start-up at a rate of 7 Mgal/year throughput. It is estimated that only one 
compliant Type III Tank is available to prepare salt batches in 2009, and that it will take 7+ years 
of SWPF operation to recover sufficient additional compliant Type III Tanks to support a SWPF 
processing rate of 7 Mgal/year. This initial reduction in the SWPF throughput rates is projected 
to have an overall impact of a 5+ year extension to the Ill.,W system lifecycle. Note that for 
financial cost analysis and worker,doses, the years of lifecycle increase for the NIP Case over the 
Baseline Case are conservatively rounded to five years. When using this data to calculate Curie 
Years, it is estimated that this quantity of radioactive material is at risk for 5+ years. 

2.2 Processing Rates 

This section of the report uses the cases described above and shows the quantity of radioactive 
material that is processed via DDA, ARPIMCU, SWPF, and DWPF each year for each of the 
cases. The evaluation will be used to show the quantity of material in the Tank Farms at the end 
of each year in order to provide a comparison of the unstabilized radioactive material at risk 
through time for each of the cases evaluated. Significant risk reduction is achieved by 
permanently stabilizing salt and sludge wastes in a solid form (grout and glass, respectively). 
When the wastes are solidified, they are no longer available to leak from the Ill., W storage tanks 
in the Tank Farm.' Therefore, it is appropriate to characterize the quantity of radioactive material 
remaining in the Tank Farms each year when evaluating the differences between the cases. 

The following assumptions are used for all of the cases evaluated. Where individual case 
assumptions are different, they are presented with the review for each case. 

As stated in Reference 6 there are 432 Million Curies (MCi) of supernate, suspended 
solids, interstitial liquid, and sludge, salt currently in the Tank Farms. Of the total 
inventory, 199 MCi will be processed through sludge processing and the remainder (233 
MCi) will be processed via salt processing. The inventories used in this evaluation are 
based on most current data (Ref. 3) and differ from the information presented in Figure 1 
and in the WD. 
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* Annual DWPF processing rates were assumed to equal to the total number of sludge
curies to be processed/number of years remaining of DWPF operation unless slowed in
early years (2005 through SWPF processing. at full production rate) to match SWPF
lifecycle.

* Start-up dates for facility operation match those in case description.
* Annual SWPF disposition rates (Curies) are scaled to throughput in terms of gallons.
* Decay is not considered for the purpose of this evaluation.

2.2.1 Baseline Case Assumptions

The assumptions are as follows.

Five compliant Type III Tanks available for SWPF feed
production rate of 7 Mgal/year is achieved quickly.

. SWPF will complete salt waste processing in 20.19.

preparation in 2009, so full

Table 2: Case #1 = Baseline Case Disposition Rate
Total*Year/ DDA ARP/MCU, SWPF DWPF Processed

Batch (MCi) (MCi) (MCi) (MCi) (MCi)

B0 0
2005 B1 0.46 0 0 13 14.

_ B2 0.31
B3 0.52

2006 B4 0.44 0 0 13 15
i B5 0.43

B6 0.18
2007 B6 0 0.80 13 13
2007 B7 0.04 0
2008 B8 0 0.11 0 13 14
_008 iB9 0.26 0

2009 0 0 10 13 23

2010 0 0 22 13 35

2011 0 0 22 13 35

2012 0 0 22 13 35

2013 0 0 22 13 35

2014 0 0 22 13 35

2015 0 0 22 13 35

2016 0 0 22 13 35

2017 0 0 22 -13 35

2018 0 0 22 13 35

2019 0. 0 22 13 35

Sum* 2.5 0.29 230 199 432
*Note: Numbers may not sum to actual totals because of rounding
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Annual DWPF processing rates were assumed to equal to the total number of sludge 
curies to be processed/number of years remaining of DWPF operation unless slowed in 
early years (2005 through SWPF processing at full production rate) to match SWPF 
IifecycIe. 
Start-up dates for facility operation match those in case description. 
Annual SWPF disposition rates (Curies) are scaled t6 throughput in terms of gallons. 
Decay is not considered for the purpose of this evaluation. 

2.2.1 Baseline Case Assumptions 

The assumptions are as follows. 

~ Five compliant Type III Tanks available for SWPF feed preparation in 2009, so full 
production rate of 7 MgaVyear is achieved quickly. 

• SWPF will complete salt waste processing in 2019. 

a e : T bI 2 C ase = ase me #1 B r C ase ISPOSI IOn a e n· ·f R t 

Year/ DDA ARPIMCU SWPF DWPF Total* 
Processed Batch (MCi) (MCi) (MCi) (MCi) 
~Cil 

Lll . .1L 0 
2005 '--~L 0.46 0 0 13 14. 

: B2 0.31 
B3 0.52 

2006 -»-:.t ... 0.44 0 0 13 15 
B5 0.43 

2007 ~ 0 0.18 0 13 13 i B7 0.04 0 

2008 : B8 0 0.11 0 13 14 
i B9 0.26 0 

2009 0 0 10 13 23 

2010 0 0 22 13 35 

2011 0 0 22 13 35 
.. 

2012 0 0 22 13 35 

2013 0 0 22 13 35 

2014 0 0 22 13 35 

2015 0 0 22 13 35 

2016 0 0 22 13 35 

2017 0 0 22 -13 35 

2018 0 0 22 13 35 

2019 0 0 22 13 35 

Sum* 2.5 0.29 230 199 432 
*Note: Numbers may not sum to actual totals because of roundmg 
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2.2.2 LIP Case Assumptions

The assumptions are as follows:

* Two compliant Type III Tanks available for SWPF feed preparation in 2009, so full
production rate of 7 Mgal/year is not achieved for first four, full years of SWPF
operation.

* DWPF processing is slowed in years 2006 through 2010 to avoid shutdown costs.
Production rates ramped up to match SWPF throughput following slowdown.

* SWPF will complete salt waste processing in year 2023 (vice year 2019 for Baseline
Case).

Table 3: Case #2 = LIP Case Disposition Rate
Year/ DDA ARP/MCU SWPF DWPF Total Processed*
Batch (MCi) (MCi)i ) (M) (MCi) (MCi)

2005 0 0 0 13 13

2006 0 0 0 8.0 8

2007 0 1 0 8.0 9

2008 0 ,1 0 8.0 9

2009 0 0 4.2 8.0 .12

2010 0 0 8.5 8.0 16

2011 0 0 9.9 12 22

2012 0 0 13 12 25

2013 0 0 17 12 29

2014 0 0 20 12 32

2015 0 0 20 12 32

2016 0 0 20 12 32

2017 0 0 20 12 32

2018 0 0 20 12 32Z

2019 0 0 20 12 32

2020 0 0 20 12 32

2021 0 0 20 12 .32

2022 0 0 20 12 32

2023 0 0 0.8 0 0.8

Sum* 0 2 231 199 432
*Note: Numbers may not sum to actual totals because of rounding
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2.2.2 LIP Case Assumptions 

The assumptions are as follows: 

• Two compliant Type III Tanks available for SWPF feed preparation in 2009, so full 
production rate of 7 Mgal/year is not achieved for first four, full years of SWPF 
operation, 

• DWPF processing is slowed in years 2006 through 2010 to avoid shutdown costs, 
Production rates ramped up to match SWPF throughput following slowdown, 

• SWPF will complete salt waste processing in year 2023 (vice year 2019 for Baseline 
Case). 

a e : T bl 3 C ase = #2 LIP C ase ISPOSI IOn ae D' 'f R t 
Year/ DDA ARPIMCU SWPF DWPF Total Processed* 
Batch JMC!l (MCi) (MCi) (MCi) (MCi) 

2005 0 0 0 13 13 

2006 0 0 0 8,0 8 
2007 0 1 0 8,0 9 
2008 0 1 0 8,0 9 

2009 0 0 4,2 8,0 12 

2010 0 0 8,5 8,0 16 

2011 0 0 9,9 12 22 

2012 0 0 13 12 25 

2013 0 0 17 12 29 

2014 0 0 20 12 32 

2015 0 0 20 12 32 

2016 0 0 20 12 32 

2017 0 0 20 12 32 

2018 0 0 20 12 32, 

2019 0 0 20 , 12 32 

2020 0 0 20 12 32 

2021 0 0 20 12 32 

2022 0 0 20 12 32 

2023 0 0 0.8 0 0,8 

Sum* 0 2 231 199 432 
*Note: Numbers may not sum to actual totals because ofroundmg 
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2.2.3 NIP Case Assumptions*

The assumptions are as follows:
* One compliant Type III Tank is available for SWPF feed preparation in 2009, so full

production rate of 7 Mgal/year is not achieved for first seven full years of SWPF
operation.

* DWPF processing is slowed in years 2006 through 2010 to avoid shutdown costs.
Production rates ramped up to match SWPF throughput following slowdown.

* SWPF will complete salt waste processing in 2025 (vice 2019 for Baseline Case).

Table 4: Case #3 = NIP Case Disposition Rate
Total*

Year DDA ARP/MCU SWPF DWPF Processed
(MCi) (MCi) (MCi) (MCi) Prces

2005 0 0. 0 13 13

2006 0 0 0 8 8

2007 0 0 0 8 8

2008 0 0 0 8 8

2009 0 0 2.8 8 11

2010 0 0 5.5 8 14

2011 0 0 6.9 10 17

2012 0 0 8.3 10 19

2013 0 0 8.3 10 19

2014 0 0 9.6 10 20

2015 0 0 12 10 23

2016 0 0 17 10 27

2017 0 0 19 10 30

2018 0 0 19 10 30

2019 0 0 19 10 30

2020 0 0 19 10 30

2021 0 0 19 10 30

2022 0 0 19 10 30

2023 0 0 19 10 30

2024 0 0 19 10 30

2025 0 0 8.5 0 8.5

Sum* 0 0 233 199 432

*Note: Numbers may not sum to actual totals because of rounding
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2.2.3 NIP Case Assumptions· 

The assumptions are as follows: 

• One compliant Type III Tank is available for SWPF feed preparation in 2009, so full 
production rate of 7 Mgal/year is not achieved for first seven full years of SWPF 
operation. 

• DWPF processing is slowed in years 2006 through 2010 to avoid shutdown costs. 
Production rates ramped up to match SWPF throughput following slowdown. 

• SWPF will complete salt waste processing in 2025 (vice 2019 for Baseline Case). 

Year 

2005 

2006 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

2021 

2022 

2023 

2024 

2025 

Sum* 

Table 4: Case #3 = NIP Case Disposition Rate 

DDA 
(MCi) 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

ARPIMCU 
(MCi) 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

SWPF 
(MCi) 

o 
o 
o 
o 

2.8 

5.5 

6.9 

8.3 

8.3 

9.6 

12 

17 

19 

19 

19 

19 

19 

19 

19 

19 

8.5 

233 

DWPF 
(MCi) 

13 

8 

8 

8 

8 

8 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

o 
199 

TotaI* 
Processed 

(MCi) 

13 

8 

8 

8 

11 

14 

17 

19 

19 

20 

23 

27 

30 

30 

30 

30 

30 

30 

30 

30 

8.5 

432 

*Note: Numbers may not sum to actual totals because of roundmg 
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An evaluation of the data in the three tables above makes the following significant points.

* Failure to begin salt waste processing in 2005 will result in extension in facility lifecycle
* Failure to begin salt waste processing in 2005 will result in a reduction in the rate of

radioactive material stabilization in the HLW system.

3 MATERIAL AT RISK AND DOSE COMPARISONS

3.1 Activity Reduction Over Time

Figure 2 illustrates the total curies in the Tank Farms as a function of time for the three cases
described above in Tables 2, 3, and 4. The area under each curve (Curie Years) would be
indicative of the material at risk associated with continued storage of wastes in thd Tank Farm.
The area under each curve is 3.7E+09 Curie Years, 4.7E+09 Curie Years, and 5.3E+09 Curie
Years for the Baseline Case, the LIP Case, and the NIP Case, respectively. The NIP Case
increases Curie Years in the Tank Farms by 42% over the Baseline Case. The LIP Case
increases the Curie Years in the Tank Farms by 25% over the Baseline Case.

Curies in the Tank Farm
As a Function of Time
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An evaluation of the data in the three tables above makes the following significant points. 

Failure to begin salt waste processing in 2005 will result in extension in facility lifecycle 
Failure to begin salt waste processing in 2005 will result in a reduction in the rate of 
radioactive material stabilization in theHLW system. 

3 MATERIAL AT RISK AND DOSE COMPARISONS 

3.1 Activity Reduction Over Time 

Figure 2 illustrates the total curies in the Tank Farms as a function of time for the three cases 
described above in Tables 2, 3, and 4. The area under each curve (Curie Years) would be 
indicative of the material at risk associated with continued storage of wastes in the Tank Farm. 
The area under each curve is 3.7E+09 Curie Years, 4.7E+09 Curie Years, and 5.3E+09 Curie 
Years for the Baseline Case, the LIP Case, and the NIP Case, respectively. The NIP Case 
increases Curie Years in the Tank Farms by 42% over the Baseline Case. The LIP Case 
increases the Curie Years in the Tank Farms by 25% over the Baseline Case. 
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Figure 2 shows that the Baseline Case reduces the radioactive material at risk in the Tank Farm
atthe greatest rate as compared to the other cases.

3.2 Tank Years

The waste tanks in the Tank Farm are of essentially four different types. Tank Types I, II, and
TV are considered single shell tanks, while Type III is considered to have secondary containment.
The non-Type III Tanks are considered to be noncompliant with current standards for HLW.
storage tank construction, and therefore, are called noncompliant tanks. In support of the Federal
Facilities Agreement (FFA) (Ref. 9), a schedule for the closure of the noncompliant waste tanks
has been developed and is summarized below. This closure schedule is a tool used by the
regulators to ensure that the highest risk tanks (the noncompliant tanks) are closed expeditiously
to minimize the risk associated 'with their continued use. Failure to meet the closure schedule
may result in fines imposed on the DOE as specified in the FFA.

Prior to tank closure, the HLW solutions stored in the tanks must be removed. During waste
removal, water that has been chemically treated to prevent corrosion of the carbon steel waste
tanks, inhibited water (IW), is added to the waste tanks and agitated by slurry pumps. If the tank
contains salt, this TW, and agitation if required,. dilutes the concentrated salt or re-dissolves the
saltcake. If the tank contains sludge, this water, and agitation, suspends the insoluble sludge
solids. In either case, the resulting liquid slurry, which now contains the dissolved salt or
suspended sludge, can be pumped out of the tanks and transferred to waste treatment tanks.

Waste removal is a multi-year process. First, each waste tank must be retrofitted with slurry and
transfer pumps, infrastructure to support the pumps, and various service upgrades (power, water,
air, and/or steam). These retrofits can take between two and four years to complete. Then, the
pumps are operated to slurry the waste. Initially, the pumps operate near the top of the liquid and
are lowered sequentially to the proper depths as waste is slurried and transferred out of the tanks.
Waste removal activities remove the bulk of the waste to prepare the tank for closure.

Following the bulk waste removal process described above, heel removal activities are initiated.
The heel removal process includes processes targeted at the "hard to remove" materials
remaining in the tank following bulk waste removal. These processes can involve chemical heel
removal techniques such as addition of acid, mechanical removal techniques such as targeted
high pressure jets, and combinations of mechanical and chemical methods, etc. Similar to the
bulk waste removal process, these processes increase the volume of the radioactive waste
material that must be stored and processed through the addition of IW and chemical cleaning
solutions. Therefore, bulk waste removal and heel removal processes to prepare for tank closure
require available waste storage capacity in the Tank Farms.
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Figure 2 shows that the Baseline Case reduces the radioactive material at risk in the Tank Farm 
at the greatest rate as compared to the other cases. 

3.2 Ta'nk Years 

The waste tanks in the Tank Farm are of essentially four different types. Tank Types I, II, and 
IV are considered single shell tanks, :while Type III is considered to have secondary containment. 
The non-Type III Tanks are considered to be nOJ:?compliant with current standards for HL W 
storage tank construction, and therefore, are called noncompliant tanks. In support of the Federal 
Facilities Agreement (FF A) (Ref. 9), a schedule for the closure of the noncompliant waste tanks 
has been developed and is summarized below. This closure schedule is a tool used by the 
regulators to ensure that the highest risk tanks (the noncompliant tanks) are closed expeditiously 
to minimize the risk associated /with their continued use. Failure to meet the closure schedule 
may result in fines imposed on the DOE as specified in the FF A. 

Prior to tank closure, the HL W solutions stored in the tanks must be removed. During waste 
removal, water that has been chemically treated to prevent corrosion of the carbon steel waste 
tanks, inhibited water (IW), is added to the waste tanks and agitated by slurry pumps. If the tank 
contains salt, this IW, and agitation if required, dilutes the concentrated salt or re-dissolves the 
saltcake. If the tank contains sludge, this water, and agitation, suspends the insoluble sludge 
solids. In either case, the resulting liquid sluITy, which now contains the dissolved salt or 
suspended sludge, can be pumped out of the tanks and transferred to waste treatment tanks. 

Waste removal is a multi-year process. First, each waste tank must be retrofitted with slurry and 
transfer pumps, infrastructure to support the pumps, and various service upgrades (power, water, 
air, and/or steam). These retrofits can take between two and four years to complete. Then, the 
pumps are operated to slurry the waste. Initially, the pumps operate near the top of the liquid and 
are lowered sequentially to the proper depths as waste is slurried and transferred outofthe tanks. 
Waste removal activities remove the bulk of the waste to prepare the tank for closure. 

Following the bulk waste removal process described above, heel removal activities are initiated. 
The heel removal process includes processes targeted at the "hard to remove" materials 
remaining in the tank following bulk waste removal. These processes can involve chemical heel 
removal techniques such as addition of acid, mechanical removal techniques such as targeted 
high pressure jets, and combinations of mechanical and chemical methods, etc. Similar to the 
bulk waste removal process, these processes increase the volume of the radioactive waste 
material that must be stored and processed through the addition of IW and chemical cleaning 
solutions. Therefore, bulk waste removal and heel removal processes to prepare for tank closure 
require available waste storage capacity in the Tank Farms. 
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If salt waste processing is not initiated to recover compliant Type III Tank Space, tank closure
operations will be impacted due to the lack of tank space to process the waste generated during
the bulk waste and heel removal processes. Therefore, extensions in HLW System lifecycle will
delay tank closure by an equivalent number of years. Failure to delay tank closure activities
would result in waste generation associated with bulk waste and heel removal processes for the
tanks being prepared for closure. The tank space that this waste would consume would result in
further lifecycle extensions for the HLW System with associated cost and risk. Therefore, for
the purposes of this evaluation, each year of lifecycle extension associated with the cases
evaluated will result in a corresponding delay in the continuation of noncompliant tank closures
(note that two noncompliant tanks are currently closed).

To assess the differences between the cases in risk associated with using noncompliant tanks,, the
number of years that the old style, noncompliant tanks will be in service is calculated for each
case. This risk will be quantified in terms of old style Tank Years where one old style Tank Year
is equal to one old style tank in service for one year. Likewise, twenty old style Tank Years are
equal to five old style tanks in service for four years. The difference in the number of years that
the old style tanks will be compared between each of the cases evaluated.

Table 5 presents, for each noncompliant (old style) tank, the number of years from 10/2005 to its
closure date - the years at risk, and the number of tanks not closed at that closure date for the
Baseline Case. The number of at risk tanks and the years at risk can be graphically represented
as a step-wise curve (see Figure 3). The area under the step-wise curve would represent the
number of Tank Years of risk for the continued storage of wastes in these noncompliant tanks.
The area under the step-wise curve is 237 Tank Years. Note that for this evaluation the closure
of Tanks 18 and 19 will commence regardless of the salt processing case chosen. Therefore for
this analysis, only 20 noncompliant tanks will be addressed.
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If salt waste processing is not initiated to recover compliant Type III Tank space, tank closure 
operations will be impacted due to the lack of tank space to process the waste generated during 
the bulk waste and heel removal processes. Therefore, extensions in HL W System lifecycle will 
delay tank closure by an equivalent number of years. Failure to delay tank closure activities 
would result in waste generation associated with bulk waste and heel removal processes for the 
tanks being prepared for closure. The tank space that this waste would consume would result in 
further lifecycle extensions for the HL W System with associated cost and risk. Therefore, for 
the purposes of this evaluation, each year of lifecycle extension associated with the cases 
evaluated will result in a corresponding delay in the continuation of noncompliant tank closures 
(note that two noncompliant tanks are currently closed). 

To assess the differences between the cases in risk associated with using noncompliant tanks,. the 
number of years that the old style, .noncompliant tanks will be in service is calculated for each 
case. This risk will be quantified in terms of old style Tank Years where one old style Tank Year 
is equal to one old style tank in service for one year. Likewise, twenty old style Tank Years are 
equal to five old style tanks in service for four years. The difference in the number of years that 
the old style tanks will be compared betwe·en each of the cases evaluated. 

Table 5 presents, for each noncompliant ( old style) tank, the number of years from 1012005 to its 
closure date - the years at risk, and the number of tanks not closed at that closure date for the 
Baseline Case. The number of at risk tanks and the years at risk can be graphically. represented 
as a step-wise curve (see Figure 3). The area under the sfep-wise curve would represent the 
number of Tank Years of risk for the continued storage of wastes in these noncompliant tanks. 
The area under the step-wise curve is 237 Tank Years. Note that for this evaluation the closure 
of Tanks 18 and 19 will commence regardless of the salt processing case chosen. Therefore for 
this analysis, only 20 noncompliant tanks will be addressed. 

Cost & Benefit Evaluation for 
Three Salt Waste Treatment Cases at SRS 

22 of 42 

CBU-PIT-2005-00150 
Rev. 1 

July 7. 2005 



Table 5: Closure Dates for Noncompliant Tanks with Years at Risk
(as of 10/2005)

Years at
Risk Number

Tank # Closure Date (years) of Tanks
14 9/30/2010 5 20
11 9/30/2010 5 20
12 9/30/2011 6 18
21 9/30/2012 7 17
22 9/30/2012 7 17
15 9/30/2013 8 15
23 9/30/2014 9 14
24 9/30/2014 9 14
13 9/30/2015 10 12
16 9/30/2015 10 12
2 9/30/2019 14 10
1 9/30/2020 15 9
9 9/30/2020 15 9
10 9/30/2020 15 9
3 9/30/2022 17 6
8 9/30/2022 17 6
4 9/30/2022 17 6
5 9/30/2022 17 6
6 9/30/2022 17 6
7 9/30/2022 17 6
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Closure Date (years) 

9/30/2010 5 
9/3012010 5 
9/30/2011 6 
9/30/2012 7 
9/30/2012 7 
9/3012013 8 
9/3012014 9 
9/30/2014 9 
9/3012015 10 
9/3012015 10 
9/30/2019 14 
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Number of Noncompliant
Tanks after 10/2005

(Excluding Tanks 18 and 19)
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Figure 3: Number of Noncompliant Tanks
(after 10/2005)

For each year of life cycle extension caused by limited Type III tank space availability, the step-
wise curve would move one year to the right with no decrease in the number of noncompliant
tanks. Thus, each year of life cycle extension represents an additional 20 Tank Years.

For the LIP Case, the area under the curve would increase by 60 Tank Years (= 20 Tank Years /
year x 3 years). This increase in area represents a 25% increase in the number of Tank Years
from the Baseline Case.

Cost & Benefit Evaluation for CBU-PIT-2005-00150
Three salt Waste Treatment Cases at SRS Rev. 1

July 7, 2005

24 of 42

20 

18 

16 

'" 14 ..:a::: c 
~ 

E-< ...... 12 c 
~ .... -Q., e 10 
0 
(oJ 

c 
0 

8 Z 
Ii-o 
0 
r-. 
Q.l 

6 ,.Q 

e = z 
.4 

2 

Number of Noncompliant 
Tanks after 10/2005 

(Excluding Tanks 18 and 19) 

4 8 12 

Years After 1 0/2005 

Figure 3: Number of Noncompliant Tanks 
(after 1012005) 

16 

For each year of life cycle extension caused by limited Type III tank space availability, the step­
wise curve would move one year to the right with no decrease in the number of noncompliant 
tanks. Thus, each year of life cycle extension represents an additional 20 Tank Years. 

For the LIP Case, the area under the curve would increase by 60 Tank Years (= 20 Tank Years / 
year x 3 years). This increase in area represents a 25% increase in the humber of Tank Years 
from the Baseline Case. 
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The NIP Case would increase the area under the curve by 100 Tank Years (= 20 Tank Years /
year x 5 years). This increase in area represents a 42% increase in the number of Tank Years
from the Baseline Case.

The result of the comparison of old style Tank Years between the cases clearly shows that the
lowest risk case is the Baseline Case. Both the LIP and the NIP Case result in significant
increases in the number of years that the old style tanks remain in service which represents an
increase in risk of leaks associated with tank failure. Therefore, the Baseline Case provides the
lowest risk in terms of old style Tank Years.

3.3 Worker Dose

Table 6 presents the 2005 annual worker doses for F and H Tank Farms, SDF, DDA, and DWPF
based on SRS ALARA reports. These doses will be held constant for the purposes of this
analysis. After initiation of SPF/SDF operations to dispose of DDA material, the estimated total
worker exposure at SPF will be 1.5 rem/yr (Ref. 6). Since this dose is a result of the relatively
high Cs-137 concentration in the DDA waste, for the purposes of this comparison, the total
SPF/SDF worker dose during ARP/MCU and SWPF processing periods will be assumed to be 0
rem/year. The additional worker dose resulting from the DDA process is estimated to be 5
rem/year and results from additional maintenance and operations exposure in the Tank Farms
during salt removal' equipment installation and maintenance. The ARP/MCU dose without DDA
is estimated to be 10 rem/year. This includes 5 rem/year for installation and maintenance of salt
removal equipment and 5 rem/year for operation and maintenance of the MCU.

Table 6: Current SRS Worker Exposures

Current SRS Facility

Tank Farm DWPF SPF/SDF* DDA
F H (rem/yr) (rem/yr) (rem/yr)

(rem!yr) (rem/yr)

Worker Dose 15 22 6.5 0.035 5

Note*: Current dose for SPF/SDF is 0.035, during interim processing value will increase to 1.5
rem/year. After interim processing, value is assumed to be zero (Ref. 6).

Since SWPF operations will be similar to DWPF operations, the dose to workers at SWPF is
estimated to be double the 6.5 rem/year to account for the elevated inventory of Cs-137. Lastly,
the additional exposure to workers in the Tank Farm resulting from SWPF operation will be the
same as the additional exposure for DDA (5 rem/year) since operation of SWPF will require
installation and maintenance of salt removal equipment. Therefore, the total projected worker
exposure resulting from SWPF operations is 18 rem/year (•[6.5 rem/year x 2] + 5 rem/year
from Tank Farms).
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The NIP Case would increase the area under the curve by 100 Tank Years (= 20 Tank Years I 
year x 5 years). This increase in area represents a 42% increase in the number of Tank Years 
from the Baseline Case. 

The result of the comparison of old style Tank Years between the cases clearly shows that the 
lowest risk case is the Baseline Case. Both the LIP and the NIP Case result in significant 
increases in the number of years that the old style tanks remain in service which represents an 
increase in risk of leaks associated with tank failure. Therefore, the Baseline Case provides the 
lowest risk in terms of old style Tank Years . 

. 3.3 Worker Dose 

Table 6 presents the 2005 annual worker doses for F and H Tank Farms, SDF, DDA, and DWPF 
based on SRS ALAR A reports. These doses will be held constant for the purposes of this 
analysis. After initiation of SPF/SDF operations to dispose of DDA material, the estimated total 
worker exposure at SPF will be l.5 rem/yr (Ref. 6). Since this dose is a result of the relatively 
high Cs-137 concentration in the DDA waste, for the purposes of this comparison, the total 
SPF/SDF work~r dose during ARPIMCU and SWPF processing periods will be assumed to be 0 
rem/year. The additional worker dose resulting from the DDA process is estimated to be 5 
rem/year and results from additional maintenance and operations exposure in the Tank Farms 
during salt removal" equipment installation and maintenance. The ARP/MCU dose without DDA 
is estimated to be 10 rem/year. This includes 5 rem/year for installation and maintenance of salt 
removal equipment and 5 rem/year for operation and rriaintenance of the MCU. 

a e : T hI 6 C urren tSRS W k E or er xposures 

Current SRS Facility 

Tank Farm 
DWPF SPF/SDF* DDA 

F H (rem/yr) (rem/yr) (rem/yr) 
(remlyr) (remlyr) 

Worker Dose 15 22 6.5 0.035 5 

Note*: Current dose for SPF/SDF is 0.035, during interim processing value will Increase to 1.5 
rem/year. After interim processing, value is assumed to be zero (Ref. 6). 

Since SWPF operations will be similar to DWPF operations, the dose to workers at SWPF is 
estimated to be double the 6.5 rem/year to account for the elevated inventory of Cs-137. ,Lastly, 
the additional exposure to workers in the Tank Farm resulting from SWPF operation will be the 
same as the additional exposure for DDA (5 rem/year) since operation of SWPF will require 
installation and maintenance of salt removal equipment. Therefore, the total projected worker 
exposure resulting from SWPF operations is 18 rem/year (~[ 6.5 rem/year x 2] + 5 rem/year 
from Tank Farms). 
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Tables 7, 8, and 9 display the worker doses for each of the three cases. The total worker dose is
increased in Cases #2 and #3 due to the extension of operations for the facilities by at least three
years and at least five years respectively. The total worker exposures are summarized in Table
10.

Table 7: Case #1 = Worker Dose for Baseline Case
DDA ARP SWPF DWPF HTF FTF SPF/SDF Total

Year (rem) (rem) (rem) (rem) (rem) (rem) (rem) (rem).
2005 5 0 0 6.5 22 15 1.5 50
2006 5 0 0 6.5 22 15 1.5 50
2007 0 10 0 6.5 22 15 1.5 55
2008 0 10 0 6.5 22 15 1.5 55
2009 0 0 18 6.5 22 15 0 62
2010 0 0 18 6.5 22 15 0 62
2011 0 0 18 6.5 22 15 0 62
2012 0 0 18 6.5 22 15 0 62
2013 0 0 18 6.5 22 15 0 62
2014 0 0 18 6.5 22 15 0 62
2015 0 0 18 6.5 22 15 0 62
2016 0 0 18 6.5 22 15 0 62
2017 0 0 18 6.5 22 15 0 62
2018 0 0 18 6.5 22 15 0 62
2019 0 0 18 6.5 22 15 0 62

Total 10 20f200 98 330 230 6 890

Note: Numbers may not sum to actual totals because of rounding.
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Tables 7, 8, and 9 display the worker doses for each of the three cases. The total worker dose is 
increased in Cases #2 and #3 due to the extension of operations for the facilities by at least three 
years and at least five years respectively. The total worker exposures are summarized in Table 
10. 

Table 7: Case #1 = Worker Dose for Baseline Case 
DDA ARP SWPF DWPF HTF FTF SPF/SDF Total 

Year (rem) (rem) (rem) (rem) (rem) (rem) (rem) 
2005 5 0 0 6.5 22 15 1.5 
2006 5 0 0 6.5 22 15 1.5 
2007 0 10 0 6.5 22 15 1.5 
2008 0 10 0 6.5 22 15 1.5 
2009 0 0 18 6.5 22 15 0 
2010 0 0 18 6.5 22 15 0 
2011 0 0 18 6.5 22 15 0 
2012 0 0 18 6.5 22 15 0 
2013 0 0 18 6.5 22 15 . 0 
2014 0 0 18 6.5 22 15 0 
2015 0 0 18 6.5 22 15 0 
2016 0 0 18 6.5 22 15 0 
2017 0 0 18 6.5 22 15 0 
2018 0 0 18 ·6.5 22 15 0 
2019 0 0 18 6.5 22 15 0 

Total 10 20 200 98 330 230 6 

Note: Numbers may not sum to actual totals because of round mg. 

Cost & Benefit Evaluation for 
Three Salt Waste Treatment Cases at SRS 

26 of 42 

(rem) 
50 
50 
55 
55 
62 
62 
62 
62 
62 
62 
62 
62 
62 
62 
62 

890 

CBU-PIT -2005-00150 
Rev. 1 

July 7, 2005 



Table 8: Case #2 = Worker Dose for LIP Case
DDA ARP SWPF DWPF HTF FTF SPF/SDF Total

Year (rem) (rem) (rem) (rem) (rem) (rem) '(rem) (rem)
2005 0 0 0 6.5 22 15 0 44
2006 0 0 0 6.5 22 15 0 44
2007 0 10 0 6.5 22 15 1.5 55
2008 0 10 0 6.5 22 .15 1.5 55
2009 0 0 18 6.5 22 15 0 62
2010 0 0 18 6.5 22 15 0 62
2011 0 0 18 6.5 22 15 0 62
2012 0 0 18 6.5 22 15 0 62
2013 0 0 18 6.5 22 15 0 62
2014 0 0 18 6.5 22 15 0 62
2015 0 0 18 6.5 22 15 0 62
2016 0 0 18 6.5 22 15 0 62
2017 0 0 18 6.5 22' 15 0 62

2018 0 0 18 6.5 22 15 0 62
2019 0 0 18 6.5 22 15 0 62
2020 0 0 18 6.5 22 15 0 62
2021 0 0 18 6.5 22 15 0 62
2022 0 0 18 6.5 22 15 0 62

Total 0 20 250 120 400 270 3 1100

Note: Numbers may not sum to actual totals because of rounding
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Table 8: Case #2 = Worker Dose for LIP Case 
DDA ARP SWPF DWPF HTF FTF SPF/SDF Total 

Year (rem) (rem) (rem) (rem) (rem) (rem) ,(rem) (rem) 
2005 0 0 0 6.5 22 15 0 44 
2006 0 0 0 6.5 22 15 0 44 
2007 0 10 0 6.5 22 15 . L5 55 
2008 0 10 0 6.5 22 ·15 L5 55 
2009 0 0 18 6.5 22 15 0 62 
2010 0 0 18 6.5 22 15 0 62 
2011 0 0 18 6.5 22 15 0 62 
2012 0 0 18 6.5 22 15 0 62 
2013 0 0 18 6.5 22 15 0 62 
2014 0 0 18 6.5 22 15 0 62 
2015 0 0 18 6.5 22 15 0 62 
2016 0 0 18 6.5 22 15 0 62 
2017 0 0 18 6.5 22 15 0 62 
2018 0 0 18 6.5 22 15 0 62 
2019 0 0 18 6.5 22 15 0 62 
2020 0 0 18 6.5 22 15 0 62 
2021 0 0 18 6.5 22 15 0 62 
2022 0 0 18 6.5 22 15 0 62 

Total 0 20 250 120 400 270 3 1100 

Note: Numbers may not sum to actual totals because of roundmg 
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Table 9: Case #3 = Worker Dose for NIP Case
DDA ARP SWPF DWPF HTF FTF SPF/SDF Total

Year (rem) (rem) (rem) (rem) (rem) (rem) (rem) (rem)
2005 0 0 0 6.5 22 15 0 44
2006 0 0 0 6.5 22 15 0 44
2007 0 0 0 6.5 22 15 0 44
2008 0 0 0 6.5 22 15 0 44
2009 0 0 18 6.5 22 15 0 62
2010 0 0 18 6.5 22 15 0 62
2011 0 0 18 6.5 22 15 0 62
2012 0 0 18 6.5 22 15 0 62
2013 0 0 18 6.5 22 15 0 62
2014 0 0 18 6.5 22 15 0 62
2015 0 0 18 6.5 22 15 0 62
2016 0 0 18 6.5 22 15 0 62
2017 0 0 18 6.5 22 15 0 62
2018 0 0 18 6.5 22 15 0 62
2019 0 0 18 6.5 22 15 0 62
2020 0 0 18 6.5 22 15. 0 62
2021 0 0 18 6.5 22 15 0 62
2022 0 0 18 6.5 22 15 0 62
2023 0 0 18 6.5 22 15 0 62
2024 0 0 18 6.5 22 15 0 62

Total 0 0 290 130 440 300 0 .1200

Note: Numbers may not sum to actual totals because of rounding

Table 10: Worker Exposure
Cumulative Percent Difference From

Case Worker Difference From Baseline Case
Exposure (rem) Baseline Case (rem)

Baseline Case 890 N/A N/A.
LIP Case 1100 24% 210
NIP Case 1200 35% 310

Note: Numbers may not sum to actual totals because of rounding.
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Table 9: Case #3 = Worker Dose for NIP Case 
DDA . ARP SWPF DWPF HTF FTF SPF/SDF Total 

Year (rem) (rem) (rem) (rem) (rem) (rem) (rem) (rem) 

2005 0 0 0 6.5 22 15 0 44 
2006 0 0 0 6.5 22 15 0 44 
2007 0 0 0 6.5 22 15 0 44 
2008 0 0 0 6.5 22 15 0 44 
2009 0 0 18 6.5 22 15 0 62 
2010 0 0 18 6.5 22 15 0 62 
2011 0 0 18 6.5 22 15 0 62 
2012 0 0 18 6.5 22 15 0 62 
2013 0 0 18 6.5 22 15 0 62 
2014 0 0 18 6.5 22 15 0 62 
2015 0 0 18 6.5 22 15 0 62 
2016 0 0 18 6.5 22 15 0 62 
2017 0 0 18 . 6.5 22 15 0 62 
2018 0 0 18 6.5 22 15 0 62 
2019 0 0 18 6.5 22 15 0 62 . 

2020 0 0 18 6.5 22 15. 0 62 
2021 0 0 18 6.5 22 15 0 62 
2022 0 0 18 '6.5 22 15 0 62 
2023 0 0 18 6.5 22 15 0 62 
2024 ·0 0 18 6.5 22 15 0 62 

Total 0 0 290 130 440 300 0 1200 

Note: Numbers may not sum to actual totals because of roundmg 
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3.4 Population Dose

Three sources of dose to the population were considered for this evaluation. The first is the
projected dose that a member of the public receives from on-going operations at the Savannah
River Site. The second dose is the projected future dose that a hypothetical intruder could
receive from the SDF under certain specified conditions. Third, the All Pathways dose that a
member of the public could receive in the future under certain specified scenarios.

3.4.1 Public Dose

Historically, the dose to a member of the public resulting from all operations at SRS has been
estimated to be 0.19 mrem/year (Ref. 6). This is the projected dose for the maximally exposed
member of the public considering waterborne and airborne pathways of exposure. The operation
of DDA, ARP/MCU, and SWPF is not expected to significantly impact this dose. As a result,
any case that extends the life-cycle of SRS, increases the cumulative dose from operations.
Since this dose (0.19 mrem) is small in comparison to the other doses discussed, the difference
between cases in dose to the public from this source is negligible and will not be considered
further.

3.4.2 Intruder Dose

For the Baseline Case, Intruder dose from material disposal at the SDF is at its maximum at 100
years (Ref. 6). The projected SDF Cs-137 inventory of 1.35 million curies contributes greater
than 99% of the total intruder dose. Starting at the end of institutional control (calendar year
2105), the dose for an intruder living directly on top of Vault 4 would be 22.5 mrem/year (Ref.
6). Table 11 provides the projected intruder dose in 20 year increments for the period of 100 to
300 years after institutional control ends. It can be seen that by the year 2305, the individual
intruder dose is projected to be only 0.2 mrem/yr. Also shown in Table 11, is the cumulative
dose to an individual intruder living directly on Vault 4. It can be seen that for an intruder living
on Vault 4 for the first 100 years after the end of institutional control, the cumulative, dose is
projected to be -890 mrem (0.89 rem). During the next 100 year period (2205 - 2305), the
cumulative projected dose to an individual intruder drops to -90 mrem. For convenience, Table
11 also shows the yearly and cumulative doses for a family of four intruders living on Vault 4 for
the 200 year period in 20 year increments. For the purposes of this comparison, the Intruder
doses for Case #2 and Case #3 are assumed to be 0 mrem/year as a result of the removal of Cs-
137 through the MCU and SWPF processes. The individual intruder annual dose and the total
cumulative dose to 4 intruders from Table 11 is displayed graphically in Figures 4 and 5. As
shown in Figure 4 and in Table 11, the total cumulative projected dose to 4 intruders living on
Vault 4 is less than 4 rem (Ref, 6).
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3.4 Population Dose 

Three sources of dose to the population were considered for this evaluation. The first is the 
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3.4.2 Intruder Dose 

For the Baseline Case, Intruder dose from material disposal at the SDF is at its maximum at 100 
years (Ref. 6). The projected SDF Cs-137 inventory of 1.35 million curies. contributes greater 
than 99% of the total intruder dose. Starting at the end of institutional control (calendar year 
2105), the dose for an intruder living directly on top of Vault 4 would be 22.5 rnrem/year (Ref. 
6). Table 11 provides the projected intruder dose in 20 year increments for the period of 100 t9 
300 years after institutional control ends. It can be seen that by the year 2305, the individual 
intruder dose is projected t6 be only 0.2 mrem/yr. Also shown in Table 11, is the cumulative 
dose to an individual intruder living directly on Vault 4. It can be seen that for an intruder living 
on Vault 4 for the first 100 years after the end of institutional control, the cumulative. dose is 
projected to be -890 mrem (0.89 rem). During the next 100 year period (2205 - 2305), the 
cumulative projected dose to an individual intruder drops to -90 rnrem. For convenience, Table 
11 also shows the yearly and cumulative doses for a family of four intruders living on Vault 4 for 
the 200 year period in 20 year increments. For the purposes of this comparison, the Iritruder 
doses for Case #2 and Case #3 are assumed to be 0 mrem/year as a result of the removal of Cs-
137 through the MCU and SWPF processes. The individual intruder annual dose and the total 
cumulative dose to 4 intruders from Table 11is displayed graphically in Figures 4 and 5. As 
shown in Figure 4 and in Table 11, the total cumulative projected dose to 4 intruders living on 
Vault 4 is less than 4 rem (Ref. 6). 
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Table 12 below provides accomparison of the 100 year cumulative individual intruder doses for
all three cases. The cumulative dose to an individual for the 100 year period also includes the
360 mrem per year an individual would receive from natural and man-made background
radiation sources. It can be seen that the total projected 100 year dose to an individual varies by
only 2.5% between the cases.

Table 11: Baseline Case Cumulative Dose to 1 and 4 Intruders
(Starting calendar ye r 2105)

Individual Four-Person
Calendar Dose Cumulative Dose Dose Cumulative Dose

Year (mrem/yr) (mrem) (mremiyr) (mrem)
2105 22.5 22.5 90.0 90.0
2125 14.2 379 56.8 1520
2145 9.0 604 35.8 2420
2165 5.7 746 22.6 2980
2185 3.6 835 14.3 3340
2205 2.2 892 9.0 3570
2225 1.4 927 5.7 3710
2245 0.9 950 3.6 3800
2265 0.6 964 2.3 3860
2285 0.4 973 1.4 3890
2305 0.2 979 0.9 3910

Table 12: Comparison of Individual Dose Projected at 100 Years
Case Cumulative Dose Cumulative Dose Total Dose

from Case(2) From Background(3) (Case + Background)
(mrem) (mrem) (rem)

Baseline Case 890 36000 36.9
LIP Case 0 36000 36
NIP Case' 0 36000 36

(1) Numbers may not sum to actual totals because of rounding.
(2) For an individual living on Vault 4 for 100 years (2105 -,2205)
(3) Assumes 360 mremlyear for 100 years
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3.4.3 All Pathways Dose

The projected all pathways dose from material disposal at the SDF of 2.3 mrem/year is driven by
Se-79 and 1-129 (Ref 6). All other nuclides contribute less than 0.01 % of the all pathways dose.
The only difference in SDF inventory for Se-79 and 1-129 is due to the lower filtration efficiency
of the DDA process relative to the ARP/MCU and SWPF processes. For Se-79 and 1-129, less
than 0.1% of the total SDF inventory is from insoluble solids carry over (based on Ref. 4).
Therefore, the difference in Se-79 and 1-129 inventories for all three cases is insignificant, and as
a result, the differences in all pathways doses for all three cases are negligible. The All
Pathways dose of each of the three Cases is shown in Table 13.

Table 13: All Pathways Dose Comparison
Case All Pathways Dose

(mrem/yr)
Baseline Case 2.3

LIP Case 2.3
NIP Case 2.3

It can be seen in Tables 12 and 13 that there is an inconsequential difference in dose to the public
between Cases #1, #2, and #3 and therefore, dose to the public should not be used as a Criterion
for measuring the relative risk between the Baseline Case, the LIP Case, and the NIP Case.

4 FINANCIAL COST COMPARISON

4.1 Case Comparison

The financial cost associated with each of the cases will be compared to determine the most cost
effective case. In addition to the three cases described above, additional discussion will. be
provided comparing costs for construction of additional compliant tank space as compared to the
Baseline Case.

There are approximately 85 Mgal of material to be dispositioned via DDA, ARP/MCU, and
SWPF at the disposition rates presented in Tables 2, 3, and 4 for the three cases being considered.
The assumptions used in the cost comparison are as follows:

For Case #1, DDA and ARP/MCU have made five tanks available for SWPF feed preparation at
startup, so full rate is achieved quickly. For Case #2, ARP/MCU has cleared an additional tank
of salt, so two tanks are available for SWPF feed preparation at startup. For Case #3, only one
tank is available to feed SWPF at startup. Another tank must be cleared of salt and available for
feed preparation before the SWPF processing rate increases.
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4.1 Case Comparison 

The financial cost associated with each of the cases will be compared to determine the most cost 
effective case. In addition to the three cases described above, additional discussion will be 
provided comparing costs for construction of additional compliant tank space as compared to the 
Baseline Case. . . 

There are approximately 85 Mgal of material to be dispositioned via DDA, ARPIMCU, and 
SWPF at the disposition rates presented in Tables 2, 3, and 4 for the three cases being considered. 
The assumptions used in the cost comparison are as follows: 

For Case #1, DDA and ARP/MCU have made five tanks ayailable for SWPF feed preparation at 
startup, so full rate is achieved quickly. For Case #2, ARPIMCU has cleared an additional tank 
of salt, so two tanks are available for SWPF feed preparation at startup. For Case #3, only one 
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Because available tank space is scarce in the Tank Farms, the emptied tank space from DDA &
ARP/MCU operations is critical to prepare adequate feed for SWPF startup.

Without DDA & ARP/MCU, SWPF has to empty its own tank space to prepare feed. Due to a
lack of available feed capacity, SWPF must ramp up slowly to reach its maximum processing
rate of 7 Mgal per year.

For Cases #2 and #3, it was assumed that the DWPF would be slowed down, not shutdown. An
analysis of the cost of shutting down DWPF showed that a shutdown and restart, which would
require replacing the melter and a number of other activities, would be prohibitively expensive.
Slowing down the DWPF is the most cost effective strategy (References 7 and 10) for the time
period addressed by the three cases.

The annual costs of operating each of the facilities are estimated in Table 14.

Table 14: Approximate Annual Financial Costs
(Non-escalated 2004$)

Facility Annual Operating Bases
Cost ($ M)

H Tank Farm 125 Actual 2004 cost
F Tank Farm 54 Actual 2004 cost

ETP 15 Actual 2004 cost
DWPF 110 Actual 2004 cost

ARP/MCU 16 Non-escalated. 2007 first year of operating

Non-escalated. 2009 first year of operating.

SWPF19 (2009) Cost approximated basedon processing ratio.
42PF oFor each full year of operation, 100%
42 (2010-based on first thereafter.

year full operation)

rNote: Summeo numbers
simplifications.

will not reflect approximate annual total because or vanauon

Estimated capital and D&D Costs for ARP/MCU after 2006 are shown in the table below. Not
included capital are costs for 2004 & 2005 which are assumed to be sunk costs. No costs are
shown for DDA. Because' DDA uses mostly Tank Farm equipment, the costs are difficult to
extract from the Tank Farm budget. Also, most of the costs are captured as part of the Tank
Farm costs. For example, the transfers required for DDA are already part of the Tank Farm
operation. Also, the tanks and equipment must undergo D&D whether DDA operates or not.
Therefore, the costs for DDA are small and would not affect the budget comparisons shown in
this analysis. Refer to Table 15.
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Estimated capital and D&D Costs for ARP/MCU after 2006 are shown in the table below. Not 
included capital are costs for 2004 & 2005 which are assumed to be sunk costs. No costs are 
shown for DDA. Because' DDA uses mostly Tank Farm equipment, the costs are difficult to 
extract from the Tank Farm budget. Also, most of the costs are captured as part of the Tank 
Farm costs. For example, the transfers required for DDA are already part of the Tank Farm 
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Table 15: Additional Capital and D&D Costs for ARP/MCU
Fiscal Capital Capital D&D D&D
Year MCU ARP MCU ARP

($M) ($M) ($M) ($M)
2006 38 16
2007 13
2008
2009

2010. 4 1

Totals 51 16 4 1
Grand 72 t
Total

Based on
Table 16.

the above information, a comparison of costs of the three cases is shown below in

Table 16: Approximate Life Cycle Costs of SRS Liquid Waste Facilities
(Non-escalated, 2004$)

Operating Costs Case #1 Case #2 Case #3
(except as noted) ($M) ($M) ($M)
H Tank Farm 1,900 2,300 2,500

F Tank Farm 550 710 820

ETP 230 270 300

DWPF 1,700 2,000 2,200

Saltstone -Assumed Negligible for all NAo) NAo) NA(1)
cases

H Canyon NA(2) NA(2) NA(2)

DDA NA(3 ) NA(3). NA(3)

ARP/MCU 32 32 ' 0

ARP/MCU 72 72 0
(Capitol Construction & D&D)
SWPF 440 500 500

Totals 4,900 5,800 6,300

Additional Cost from Baseline Baseline A 1,000 A 1,500

Escalated Additional Cost from Baseline Baseline A 1,600 A 2,600

Note: Numbers may not sum to actual totals because of rounding.

(1) Saltstone operating costs are assumed to be low enough to be neglected. The most
significant cost at Saltstone is. constructing new vaults to receive the grout. Vault
construction will not affect the comparison because the same amount of salt solution is
processed for all cases, so the number of vaults is the same for each case.
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Based on the above information, a comparison of costs of the three cases is shown below in 
Table 16. 

Table 16: Approximate Life Cycle Costs of SRS Liquid Waste Facilities 
(Non-escalated, 2004$) 

Operating Costs Case #1 Case #2 Case #3 
(except as noted) ($M) ($M) ($M) 
H Tank Farm 1,900 2,300 2,500 

F Tank Farm 550 710 820 

ETP 230 270 300 

DWPF 1,700 2,000 2,200 

Saltstorie -Assumed Negligible for all NA(l) NA(l) NA(I) 
cases 

H Canyon NA(2) NA(2) NA(2) 

DDA NA(3) NA(3) NA(3) 

ARPIMCV 32 32 
I. 

0 

ARPIMCV 
72 72 0 

(Capitol Construction & D&D) 
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Totals 4,900 5,800 6,300 
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Note: Numbers may not sum to actual totals because of-rounding. 

(1) Saltstone operating costs are assumed to be low enough to be neglected. The most 
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(2) Interim Processing and Tank Farm space assumed not to directly impact H Canyon
Costs.

(3) DDA costs are assumed to be with F and H Tank Farm Costs.

Additional Notes:

(1) Operating costs for Tank Farms, ETP, and DWPF are based on actual $2004 dollars starting
in 2005 and continuing through the end of their useful life.

(2) It is assumed that H Tank Farm, ETP, and DWPF must continue to operate approximately as
long as SWPF. An actual sequence for shutting down these facilities has not been
determined, but the sequence would be the same for all cases and will not affect the
comparison.

(3) No D&D cost is considered or Tank Farms, ETP, DWPF, or SWPF. Again, the non-
escalated amount should be the same for all cases and will not affect the comparison.

(4) No Capital cost is considered for all facilities other than ARP/MCU. Again, the non-
escalated amount should be approximately the same for all cases and will not affect the
comparison.

The following conclusions can be drawn from a review of the cost comparison data provided
above:

Case #1 (Baseline) is the most cost effective case evaluated. This is because it has the
shortest lifecycle and relatively small capital costs associated with ARP/MCU. Since the
annual operating costs dominate the cost evaluation, this is the least expensive case.

Case #2 (LIP) is more expensive than the Baseline Case because it extends the life of SWPF
by 3+ years, which requires similar extensions to the lives of DWPF, the Tank Farms, ETP,
and Saltstone. The extra expense of operating these facilities for 3 additional years is
approximately $1B (2004$) or $1.6B escalated.

Case #3 (NIP) is the most expensive of the three cases because it extends the life of SWPF
and the associated facilities by 5+ years. The extra expense of operating these facilities for
an additional 5 years (minus the cost saved from not completing construction and subsequent
operation of ARP/MCU) is approximately $1.5B (2004$) or $2.6B escalated.
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4.2 Cost Of Building New Tanks

The possibility of building additional tanks was also considered but found to be not economically
attractive. A recent study at Hanford indicated that building new waste tanks of 1.2 Mgal
capacity would cost approximately $75M (2001) per tank if the tanks were built in sets of four
(Ref. 8). Four tanks would be the correct capacity needed to increase the capability to feed
SWPF comparable to the same degree as operating DDA and ARP/MCUI Based on the Hanford
study, building four tanks would cost about $300M (2001), compared to an estimated additional
$72M for finishing the building and eventually decommissioning ARP/MCU. Also, note that
new tanks would require additional operating cost and decommissioning cost, which would
increase the difference between the two possibilities. A second consideration is that it might not
be possible to have new tanks ready to use by 2009. The new tanks would need to be funded,
designed, constructed, permitted, and put into service by 2009. Usually, just the funding phase
of a project of this size requires several years.

Construction of new HLW storage tanks: In 2001, the cost of new tank construction at Hanford
was estimated to be $75M assuming that at least 4 tanks were built. The breakdown of the costs
supporting this total is shown in Table 17. In order to support SWPF start-up at full capacity, 4
new tanks would need to be constructed for staging dissolved salt solution. Therefore, a total of
$300M (2001) would be required to construct adequate tank space. Since the cost of new tank
construction is significantly more than twice the lifecycle cost for ARP/MCU facility, this was
not considered to be cost effective. Hanford also estimated an overall schedule of approximately
7 years, the details of which are shown in Figure 6. This schedule is not within the timeframe
required to support SWPF start-up assumptions. One further note: The construction of new tank
space does not support DOE's and the State of South Carolina's overall objective of risk
reduction.

Table 17: Cost Estimate for Constructing New Tanks
(Based on Each One of at Least Four Tanks, Ref. 8)

(2001)
Activity Description Cost ($K)

Obtain Permitting &Regulatory Approval 1,000
Design 7,000
Procurement and Construction 66,000
Start-up and Testing 1,000

Total $75,000
Note: Numbers may not sum to actual totals because of rounding.
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Figure 6: Schedule for Constructing of New Tanks

5 QUALITATIVE EVALUATION OF ADDITIONAL FACTORS

There are several other factors that are discussed due to their potential for impact on the risk and
cost associated with the cases being evaluated.

5.1 Additional Transfers

The first factor that is discussed is that if the Baseline Case is not pursued, tank space available
for preparing salt batches and sludge batches in 2009 when SWPF is scheduled to begin
processing salt waste will be significantly reduced. The limited tank space available will result
in a significant increase in the number of individual transfers required to prepare a salt batch or
sludge batch for processing. These additional transfers are required because numerous small
volume transfers would replace single large volume transfers due to restrictions in tank space
available. These additional transfers incur increased operating risk due to the probability of
leaks and inadvertent transfers associated with each transfer evolution. This risk is not
quantified in terms of dose or other comparable metric, but is magnified when the compounding
considerations of the aging infrastructure used for the transfers and the delay in operation
completion for the HLW system are taken into account. The potential consequences of this
increase in operating risk include increased leak incidence, operational delays due to
compromise of salt batch or sludge batch characterization from receipt of an inadvertent transfer,
increased maintenance and worker exposure directly from transfers as well as from maintenance
of transfer infrastructure, etc. Directly related to the increase in risk associated with the
increased number of transfers is the increase in the cost associated making the transfers
(procedures, personnel monitoring the transfer evolution, planning, etc.) and the indirect cost of
maintaining- the transfer infrastructure (pumps, leak detection systems, electrical distribution,
ventilation, etc.).
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5.2 Impact of Delays

Another area that is discussed qualitatively in terms of comparison between the cases is the
impact of delays in facility start-up on risk and cost. The cases described above demonstrate that
delays in beginning processes that are capable of dispositioning salt waste so that compliant tank
space is available to support salt batching and sludge batching result in: 1) the extension of
facility lifecycle with the associated increase in exposure to the public and to the worker, 2) the
increase in risk by the failure to permanently disposition waste and leaving the waste in the aging
HLW system including old style, non-compliant waste tanks for longer periods of time and 3)
incurring the additional cost of maintaining the HLW system for the longer durations, etc. Any
delays in facility start-up will adversely impact the HLW system operation completion dates.
Costs and risks have been presented earlier in this document in terms of annual operating costs
and risk in terms of annual exposure and material at risk. While this discussion does not attempt
to quantify delays in start-up in terms of additional cost or risk, it has been clearly demonstrated
earlier in this document that the cost and risk for the IHELW system is minimized by earliest
mission completion. It should be noted that this extension in facility operation is likely greater
than a day for day match with a delay in facility start-up. Delays in facility start-up will result in
less tank space available for salt batch and sludge batch preparation. It would take years of
operation at reduced rates to recover the "lost" tank space. In the cases analyzed, it took 4+
years after SWPF start-up for the LIP Case and 7+ years for the NIP Case for SWPF to achieve
forecast processing rates. Attaining these forecast processing rates was limited by the
availability of compliant tank space to prepare salt batches to feed SWPF at the baseline rate of
seven million gallons of salt waste solution per year.

5.3 Aging Infrastructure

A critical element to the discussion on material at risk (expressed in terms of Tank Years and
Curie Years) is the consequence of materials leaked from the aging noncompliant tanks and
related infrastructure (pipes, valves, secondary containment structures, etc.). While the sections
of the document that address worker dose and life cycle costs clearly show the expected
increases to exposure and cost associated with lifecycle extensions, they cannot accurately
quantify the risk associated with the continued use of the aging tank farms during the period of
lifecycle extension.

Clearly the risk of leaks increases proportionally with the increase in facility lifecycle associated
directly with the increase in years of operation, e.g. a ten percent increase in lifecycle is a ten
percent increase in risk of an incident. The probability of leaks also increases as a result of the
fact that tanks and transfer infrastructure continue to degrade due to the corrosive environment
and radiation associated with the storage and processing of I-]LW. No attempt is made to
quantify the probability of failure of the degrading infrastructure, but the increased probability is
clear. Likewise, no attempt is made to quantify the impact of the contamination to the
environment or to quantify the worker/public dose associated with such a leak.
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The quantity and type of material, the location of the leak, duration of the leak, proximity of
workers, proximity of transport media, environmental conditions, etc. all effect the impact of
such an occurrence. While SRS has robust systems for preventing and/or mitigating such an
occurrence through tank inspections, corrosion control programs, solution chemistry
management, secondary containment, leak detection systems, etc., the probability of occurrence
of a leak increases with facility lifecycle extensions. The quantification of Tank Years and Curie
Years is directly related to this increase in risk and demonstrates the exigencies associated with
implementation of salt waste stabilization utilizing the Interim Salt Processing Strategy described
in the Salt WD.

6 CONCLUSION

When the Baseline, the LIP and. the NIP Cases were evaluated, the following fundamental
differences were noted between the cases:

Completion of Operations: The Baseline Case completed HLW system operations in 2019. The
salt waste dispositioned to SPF/SDF by DDA and ARP/MCU created compliant tank space in the
HLW Tank Farms that permitted DWPF operations to continue without interruption and
permitted SWPF operations to commence processing at forecast production rates. The Limited
Interim Processing Case required 3+ years longer to complete HLW system operations than the
Baseline Case. The delay in mission completion resulted from the reduced processing rates
through SWPF and DWPF caused by the limited compliant tank space available to prepare the
salt and sludge waste streams for processing during initial years of SWPF operation. DWPF
production rates are impacted because of the limited compliant tank space prevents sludge
washing which is required prior to processing sludge waste at DWPF. The NIP Case required
approximately 5+ years longer to complete HLW system operations than the Baseline Case. The
delay in mission completion resulted from the reduced SWPF and DWPF processing rates
caused by the limited compliant tank space available to prepare the salt and sludge waste feed
streams for processing during initial years of SWPF operation.

Risk: The dose (exposure) associated with each of the three cases were compared as well as the
material/facilities at risk. Dose was further broken down in terms of dose to the facility worker,
dose to the public from both ongoing operations and from material dispositioned to the SPF/SDF,
and dose to the inadvertent intruder from the SPF/SDF. In order to appropriately characterize the
material at risk from ongoing operations, the differences between the cases in terms of old style
tank closure dates and Tank Farm waste disposition rates were also evaluated. The evaluation is
shown in Table 18:
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Table 18: Summary of Dose, Tank Years and Curie Year Impacts
Current SDF SDF All Old Tank

Case Worer) Public Intruder Pathways Style FarmDose (2)(3Evaluated Dose Dose Dose Tank Curie
(mrem/yr) (rem) (mrem/yr) Years (4) Years (5)

Baseline 890 0.19 36.9 2.3 240 3.7E+09
LIP Case 1100 0.19 36 2:3 300 4.7E+09
(change from baseline) (+24 %) (0 %) (- 2.5 %) (0 %) (+25%) (+25%)
NIP Case 1200 0.19 36 2.3 340 5.3E+09
(change from baseline) (+35 %) (0 %) (- 2.5 %) (0 %) (+42%) (+42%)
(1) Integrated dose to HLW workers
(2) Dose to public from current SRS operations
(3) 100 year integrated dose (2105 - 2205); includes 360 mrem/yr contribution from background

radiation
(4) Total number of years old style tanks are in service, where 20 tanks in service for 2 years =

40 Tank Years
(5) Total number of years a curie is in the Tank Farm, where 30 MCi in the Tank Farm for three

years = 90M Curie Years

It can be seen from Table 18 that the Baseline Case results in significantly lower worker dose
and significantly shorter time that curies remain in the old style tanks-. Intruder doses are higher
for this case, but the difference is not significant when compared to exposure from background
sources of radiation. The difference in public doses from sources associated with salt processing
are negligible between the cases. The LIP and NIP cases show significant increases from the
baseline case for worker exposure and time that radioactive material remains in the Tank Farm.
Thus, using the Interim Salt Processing plan provides a significant decrease in perceived risk
from a worker exposure perspective as well as from potential tank failures and subsequent
potential releases to the environment.

Financial Cost: The Baseline Case was financially the most cost effective. The primary reason
that the Baseline Case was the most cost effective was the difference in lifecycle costs associated
with extending the HLW system (Tank Farms, DWPF, SWPF, SPF/SDF, etc.) operations by 3+
years for the LIP Case and 5+ years for the NIP Case. .This resulted in an additional escalated
cost for operation of approximately $1B and $1.5B (2004$) for Case #2 and Case #3,
respectively (or $1.6B and $2.6B escalated). Since the sunk costs for ARP/MCU construction
are high relative to the total project cost and since the life cycle costs for the HLW system are
much higher than the project construction, and D&D (decontamination and decommissioning)
costs, the annual operating costs dominate the cost comparison and demonstrate that the case that
results in the shortest life cycle will have the lowest financial cost.

Sensitivity to facility start-up delays: Since the primary influence on cost and risk associated
with these cases is life cycle, delays in facility start-up will have a significant impact on both risk
and cost. The evaluation assumes that the dates projected for facility start-up will be achieved
and that throughput rates will be as forecasted. Delays in facility start-up. and reductions in
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throughput rates would extend the duration of facility operation with associated increases in cost
and a decrease in benefits (risk reductions).

DWPF slowdown versus DWPF shutdown: Other aspects of the facility operations that were
reviewed as a part of this evaluation include consideration from a financial perspective of
slowing down DWPF rather than shutting down to accommodate processing when feed streams
(sludge batches) to DWPF are unavailable. The evaluation shows that slowing down DWPF
operations is preferred over shutdown from a cost perspective and cost comparisons utilized this
basis when DWPF operation was evaluated.

Construction of new HLW storage tanks: Since the cost of new tank construction was
significantly more than the lifecycle cost for ARP/MCU facility, this was not considered to be
cost effective. In addition, the feasibility of designing, constructing and starting up new tanks
within the timeframe required to keep from impacting SWPF start-up assumptions is unlikely.

Taken as a whole, the above fundamental differences in the cases evaluated demonstrate that the
Baseline Case is the most cost effective option and provides the lowest worker dose. Inadvertent
intruder doses are, marginally higher with the Baseline Case, but this dose is not significant when
compared to exposure from natural sources of radiation. The Baseline Case also reduces
radioactive material at risk the most quickly because it facilitates stabilization of radioactive
material in the Tank Farm more quickly than in the other cases, as well as permitting closure of
old style tanks per the Federal Facility Agreement (FFA) schedule. For these reasons, the
Baseline Case provides the greatest overall benefit at the lowest cost.
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certain waste from reprocessing is not HLW and that it may instead be disposed of as low-level
waste (LLW) if it meets the criteria set forth in that Section: that it does not require disposal in a
deep geologic repository, that it has had highly radioactive radionuclides removed to the
maximum extent practical, that it meets concentration limits and/or dose-based .performance
objectives for near-surface disposal of radioactive waste, and that it will be disposed pursuant to a
State-issued permit or State-approved closure plan. In this document, the Secretary proposes to
determine that the treated, solidified low-activity salt waste from the tanks will meet all of these
criteria. Accordingly, this material may be determined not to be HLW and may be disposed of
instead as LLW in SDF.

Although this draft 3116 Determination addresses only the disposal of solidified low-activity salt
waste streams, it is important to understand that successful and timely salt waste removal and
disposal is integral to DOE's efforts to proceed with all aspects of tank cleanup and closure,
extending well beyond disposal of the solidified low-activity salt waste streams themselves. This
is not only for the obvious reason that the salt waste must be removed and treated before the
tanks may be closed. Less obviously, but more importantly, the disposal pursuant to this draft
3116 Determination will enable DOE to continue without interruption to remove and stabilize the
high-activity fraction of the waste. This is because DOE uses the tanks to prepare the high-
activity waste so that it may be fed into DWPF. The issue is that the salt waste is filling up tank
space needed to allow this preparation activity to continue. Thus, removal and disposal of low-
activity salt waste is critical in order to relieve this tank space shortage and assure that
vitrification of the high-activity fraction will be able to continue uninterrupted.

The Department of Energy is tailoring the waste treatment for the salt waste based on the
radiological properties of those wastes as shown by tank waste characterization data. DOE is
separating the salt waste to segregate the low-activity fraction at SRS using a two-phase, three-
part process. The first phase will involve two parts to treat the lower activity salt waste: a)
beginning in 2005, processing of a minimal amount of the lowest activity salt waste through a
process involving deliquification, dissolution, and adjustment (DDA) of the waste; and b)
beginning in approximately 2007, processing of a minimal amount of additional salt waste with
slightly higher activity levels using an Actinide Removal Process (ARP) and a Modular Caustic
Side Solvent Extraction (CSSX) Unit (MCU), along with deliquification and dissolution of
saltcake. The second, and longer term phase, beginning in approximately 2009, involves the
separation and processing of the remaining (and by far the majority) of the salt waste using a Salt
Waste Processing Facility (SWPF) (augmented as necessary by ARP). This second phase will
begin as soon as SWPF is constructed, permitted by the State of South Carolina, and operational
[3,4].

This document refers to the first phase as Interim Salt Processing because it will be used to
initiate treatment and disposal of solidified low-activity salt waste streams using the technologies
available during the interim period between 2005 and approximately 2009 when DOE anticipates
that SWPF will become operational. As explained in more detail later in this draft 3116
Determination, DOE believes it should proceed with this interim approach because doing so will
enable DOE to continue uninterrupted use of DWPF as well as to use SWPF at higher capacity as
soon as it comes on line. This will allow DOE to complete cleanup and closure of the tanks years
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14 / 2. RADIATION EXPOSURE FROM NATURAL BACKGROUND

TABLE 2.3-Estimated average annual dose equivalents to various tissues for a member
of the populatiin in the United States from various sources of natural background

radiation (#Sv)'

Bronchial Other soft Bone Bone
epithelium tismsu murfses marrow

Cosmic 270 270 270 270
Cosmogenic 10 10 10 30
Terrestrial 280 280 280 280
Inhaled& 24,000 - - -
In the body8  360 1,100 500

Rounded total 25,0009 1,700 1,100
a I Aqv - 0.1 mren•
b Doses to other tissues from inhaled radionuclides are included under "In the Body."
oThis includes all radionuclides in the body (see Table 2.2) excluding the cosmogenic

component shown separately in this Table.

of radon. The differences in the dose equivalent rate reported here
and those in the earlier NCRP Report (NCRP, 1975) are quite marked.
The major change is in the annual dose estimate to the bronchial
epithelium from inhaled radon decay products, which increased from
4.5 to 24 mSv (450 to 2,400 mrem). The increases in the estimated
dose equivalent from internal emitters were due to the higher quality
factor for a radiation, to data showing higher concentrations of the
210Pb-210Po pair in bone, to a higher estimate for the tissue dose from
radon decaying in the bodY, and to higher radon levels indoors as
compared to outdoors. The dose equivalent values for cosmic radiation,
cosmogenic radionuclides and terrestrial gamma radiation are very
little changed from the previous estimates.

The annual dose equivalents have been converted to effective dose
equivalent using the weighting factors (wT) of the ICRP (ICRP, 1977,
1981). The individual contributions are shown (in pSv) in Table 2.4,
and their sum is a total of Hz of 3.0 mSv (300 mrem). This estimate
of average effective dose equivalent is considered to apply to both
sexes and all ages.

In the case of irradiation of the entire public (such as by natural
background), the GSD is equal to the gonadal dose equivalent. The
value of the gonadal dose equivalent is the same as that for other soft
tissues shown in Table 2.3, viz 0.9 mSv/y (90 mrem/y).

We assume that the average effective dose equivalents given in
Table 2.4 apply to all members of the U.S. population (230,000,000)
and therefore the collective effective dose equivalent from natural
sources is 69 X 10' person-Sv (69 million person-rem).
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include installed leak detection equipment and procedures, photographic or
visual inspections that show liquid or accumulating dried waste, or sampling and
analysis.

E. Removal of Waste Tank System(s) From Service
1. The DOE shall submit to EPA and SCDHEC for review

and approval, a plan(s) and schedule(s) for the removal from service of waste
tank system(s)/component(s) that do not meet the secondary containment
standards of Subsection C herein, or that leak or have leaked. This plan(s) and
schedule(s) shall be submitted and/or amended by DOE as follows: (a) within
ninety (90) days of the effective date of this Agreement for tank system(s) or
secondary containment system(s) known to leak or have leaked prior to the
effective date of this Agreement that will not be repaired in accordance with
Subsection D herein; (b) within ninety (90) days of discovery of leaks from tank
system(s) or secondary containment system(s) not known before the effective date
of this Agreement that will not be repaired in accordance with Subsection D
herein; and (c) within ninety (90) days of receipt of written notification from
SCDHEC of the determination that any waste tank system(s)/component(s) do
not meet the secondary containment standards of Subsection C herein. After
approval of the schedule by EPA and SCDHEC, DOE shall remove the tanks
from service according to the approved plan(s) and schedule(s). In lieu of the
requirements of E.l(c) above, DOE may submit a plan that meets the
requirements of Subsection C herein to provide secondary containment for
substandard tank system(s)/component(s). Subject to the applicable
requirements of Appendix B, the DOE may continue to use tanks
systems/components scheduled to be removed from service for receipt and storage
of wastes according to the approved schedule and prior to approval of the
schedule, unless SCDHEC notifies DOE in writing that specific tanks are
unsuitable for continued service. Waste tanks deemed unsuitable by SCDHEC
shall not receive additional waste prior to schedule approval for such receipt and
only if waste receipt is approved as a part of the plan associated with such
schedule.

2. The DOE's waste tank system(s) removal plan(s) shall
provide for the removal or decontamination of all residues, contaminated
containment system components (liners, etc.), contaminated soils and structures
and equipment contaminated with hazardous and/or radioactive substances. If
the DOE demonstrates that it cannot practicably remove or decontaminate soils
or structures and equipment, then the DOE shall conduct all necessary response
actions under Section XI through XVI of this Agreement for those waste tank
system(s). The SCDHEC is the designated oversight agency for review and
approval of all response action documents leading up to the Proposed Plan. The
DOE must obtain written concurrence from both EPA and SCDHEC prior to
publication of Proposed Plans and RODs. SCDHEC will be the designated
oversight agency for review/approval of RD/CM and CA/RA documents for the
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RESPONSE TO RAI COMMENT 11
ROADMAP TO REFERENCES

REFERENCED DOCUMENT *EXCERPT LOCATION REMARK
10 CFR 61 NRC 10 CFR 61 subpart index and The subpart index identifies the

sections 61.55, 61.41, 61.42, and 61.43 are breakdown of the performance objectives.
enclosed following the response. Section 61.55 describes waste

classification and identifies radionuclide
classification limits, by concentration.
Section 61.41 addresses protection of the
public and gives the 25 mrem/yr public
whole body dose limit. Section 61.42
addresses protection of the inadvertent
intruder, but does not specify the intruder
dose limit. The applicable intruder limit,
500 mrem/yr, is identified in Section 5.2 of
NUREG-0945, Vol. 1 (Final
Environmental Impact Statement on 10
CFR Part 61 "Licensing Requirements for
Land Disposal of Radioactive Waste").
Note that Section 5.2 of NUREG-09, Vol.
1 is enclosed following the response. 10
CFR 61.43 addresses protection of
workers, but does not specify the worker
dose limit. The applicable worker limit,
5.0 renl/yr, is identified in 10 CFR
20.1201. Note that 10 CFR 20.1201 is
enclosed following the response.
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groundwater transport pathway and
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system, waste form, and vault were taken
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of Subsection 5.1.
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RESPONSE TO RAI COMMENT 11
ROADMAP TO REFERENCES

Reboul 2005 CBU-PIT-2005-00141 is enclosed
following the response.

This document provides the technical
bases for a) identifying highly radioactive
radionuclides in SRS salt waste and b)
quantifying removal efficiencies of
planned treatment processes. All inputs,
assumptions, and computation methods for
determining highly radioactive
radionuclides are given in the
Methodology section, pp. 7-11. All
computational results related to identifying
highly radioactive radionuclides are given
in the Results and Discussion section, pp.
12-20. All inputs, assumptions,
computational methods, and results related
to the planned treatment processes and
projected removal efficiencies are given in
the Methodology section, p. 11, and the
Results and Discussion section, pp. 21-26.
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5.0 THE WASTE HAS HAD HIGHLY RADIOACTIVE RADIONUCLIDES REMOVED TO
THE MAXIMUM EXTENT PRACTICAL

Section 3116 (a)(2) of the NDAA provides in pertinent part:

[T]he term "high level waste" does not include radioactive waste resulting from
the reprocessing of spent nuclear fuel that the Secretary of Energy..., in
consultation with the Nuclear Regulatory Commission..., determines -

(2) has had highly radioactive radionuclides removed to the maximum
extent practical[.]

5.1 RADIONUCLIDES CONSIDERED

For the purpose of this draft 3116 Determination, the radionuclides considered in detail are: Cs-
137 (including its daughter, Ba-137m), Sr-90 (including its daughter, yttrium (Y)r90), the
actinides (isotopes of U, Pu, Am, Np, and Cm), selenium (Se)-79, technetium (Tc)-99, iodine (I)-
129, and tin (Sn)-126 10.

The short-lived fission products Cs-137 and Sr-90 and their equilibrium daughters, Ba-137m and
Y-901 1, are by far the predominant sources of radioactivity present in the SRS salt waste. Based
on process and sampling knowledge as reflected in the current WCS database, more than 99% [2]
of the current radioactivity in the SRS tank salt waste is associated with these two radionuclides
and their daughters. Indeed, Cs-137 and its daughter Ba-137m alone account for over 95% of the

10 DOE has reviewed the inventory of 41 radionuclides in the salt waste in the SRS waste tanks, as reflected in the
current Waste Characterization System (WCS) database. WCS is discussed in further detail in Appendix 2. The
radionuclides considered in detail for removal in this draft 3116 Determination take into account scientific expertise,
knowledge, and health physics principles as applied to the SRS salt waste, and include those radionuclides in Tables
I and 2 in 10 CFR 61.55 that are in the SRS salt waste and are in quantities such that they may be important to
meeting the performance objectives in 10 CFR 61, Subpart C. All radionuclides in Tables I and 2 are considered in
Section 6.0 and , where relevant, Section 7 of this draft 3116 Determination. However, radionuclides with less than
five-year half-lives, H-3, C-14, Co-60, and Ni-63 are present in concentrations so low (well below Class A
concentration limits) that they are not discussed for the purposes of removal in Section 5.0. The radionuclides
considered in detail for the purposes of removal also include other radionuclides that are not in the above referenced
tables that may be important to meeting the performance objectives in 10 CFR 61, Subpart C. Some of the
radionuclides considered in detail in this draft 3116 Determination may not be considered in detail in other 3116
Determinations if the circumstances or waste forms do not warrant such consideration.
" Cs-137, and its daughter Ba-137m, are typically considered as a single radionuclide for human health protection
purposes because the half-life of Ba-137m is so short that it only exists when Cs-137 is present. The same is true for
Sr-90 and its daughter Y-90. Accordingly, the discussions that follow in this draft 3116 Determination focus on Cs-
137 or Sr-90 since approaches that are effective in removing Cs-137 and Sr-90 also remove Ba-137m and Y-90,
respectively.
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The short-lived fission products Cs~137 and Sr-90 and their equilibrium daughters, Ba-137m and 
Y _90 11

, are by far the predominant sources of radioactivitY present in the SRS salt waste. Based 
on process and sampling knowledge as reflected in the current WCS database, more than 99% [2] 
of the current radioactivity in the SRS tank salt waste is associated with these two radionuclides 
and their daughters. Indeed, Cs-137 and its' daughter Ba-137m alone account for over 95% of the 

10 DOE has reviewed the inventory of 41 radionuclides in the salt waste in the SRS waste tanks, as reflected in the 
cUrrent Waste Characterization System (WCS) database. WCS is discussed in further detail in Appendix 2. The 
radionuclides considered in detail for removal in this draft 3116 Determination take into account scientific expertise, 
knowledge, and health physics principles as applied to the SRS salt waste, and include those radionuclides in Tables 
1 and 2 in 10 CFR 6l.55 that are in the SRS salt waste and are in quantities such that they may be important to 
meeting the performance objectives in 10 CFR 61, Subpart C. All radionuclides in Tables 1 and 2 are considered in 
Section 6.0 and , where relevant, Section 7 of this draft 3116 Determination. However, radionucIides with less than 
five-year half-lives, H-3, C-14, Co-60, and Ni-63 are present in concentrations s6 low (well below Class A 
concentration limits) that they are not discussed for the purposes of removal in Section 5.0. The radionucIides 
considered in detail for the purposes of removal also include other radionucIides that are not in the above referenced 

---"3> tables that may be important to meeting the peiformance objectives in 10 CFR 61, Subpart C. Some of the 
radionucIidesconsidered in detail in this draft 3116 Determination may not be considered in detail in other 3116 
Determinations if the circumstances or waste forms do not warrant such consideration. 
11 Cs-137, and its daughter Ba-137m, are typically considered as a single radionuclide for human health protection 
purposes because the half-life of Ba-137m is so short that it only exists when Cs-I37 is present. The same is true for 
Sr-90 and its daughter Y -90. Accordingly, the discussions that follow in this draft 31 16 Determination focus on Cs-
137 or Sr-90 since approaches that are effective in removing Cs-137 and Sr-90 also remove Ba-137m and Y-90, 
respectively. 
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salt waste's radioactivity [2]. Moreover, Cs-137, Sr-90, and their daughters are present in
sufficient concentrations in the salt waste so that without shielding and controls they produce
radiation emissions that would present risk to humans simply due to their proximity, without
direct inhalation or ingestion. Accordingly, they are of potential acute hazard to occupational
workers, the public, and the environment.

Although the actinides in the concentrations present in the salt waste (e.g., U, Pu, Am, Np, and
Cm) do not require distance and shielding to protect workers and the public, these radionuclides
contain the majority of the long-lived isotopes that may pose the greatest risk in the future to
human health because of their long life and because they present human health risk if directly
inhaled or ingested. Other radionuclides considered in detail are those that persist in the waste
form well into the future due to their long lives, are relatively mobile in the environment, and
may present a health risk if ingested. These radionuclides are Se-79, Tc-99, 1-129, and Sn-126.
These two groups of radionuclides (i.e., the actinides, Se-79, Tc-99, 1-129, and Sn-126) together
account for less than 1% [2] of the radionuclide inventory in the tank salt waste.

As explained above, the radionuclides considered in detail in this draft 3116 Determination are
based on, and take into account, scientific and health physics principles, knowledge, and
expertise. In addition, the radionuclides considered in detail account for over 99.9% [2] of the
current radioactivity in the SRS tank salt waste, based on process and sampling knowledge:

5.2 REMOVAL TO THE MAXIMUM EXTENT PRACTICAL

Section 3116 (a) of the NDAA provides that certain waste resulting from reprocessing is not
high-level waste if the Secretary, in consultation with the NRC, determines, among other things,
that the waste has had highly radioactive radionuclides removed "to the maximum extent
practical." This section discusses the basis on which the Secretary may conclude that DOE's
two-phase, three-part strategy for removing the radionuclides considered above meets this
criterion.

Removal to the extent "practical" is not removal to the extent "practicable" or theoretically
"possible." Rather, a "practical" approach to removal is one that is "adapted to actual
conditions," 12 "adapted or designed for actual use; useful,''13 a method that is selected "mindful
of the results, usefulness, advantages or disadvantages, etc., of [the] action or procedure."'14 The
considerations that bear on whether radionuclide removal will be accomplished to the maximum

12 A Dictionary of Modern English Usage 453, H. Fowler (1930).

"3 Random House Unabridged Dictionary, Copyright © 1997, by Random House, Inc., on Infoplease
(www.infoplease.com/iDd/A0598638.html).
14 Id. definition 7. See also Cambridge Dictionary of American English, Cambridge University Press 2004
(http://dictionary.cambridge.org/define.asp?key=practical*2+0&dict=A): "practical (EFFECTIVE): fitting the needs
of a particular situation in a helpful way; helping to solve a problem or difficulty; effective or suitable".

It is notable that while prior NRC and Department criteria for waste incidental to reprocessing called for removal "to
the maximum extent technically and economically practical," the statute omits the adverbs, thereby suggesting that a
broad range of considerations, including but not limited to technical and economic practicalities, may appropriately
be taken into account in determining the extent of removal that is practical.
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Based on the analysis in Chapter 2 of the draft EIS (§ 2.2), the preferred P
approach selected and followed by NRC in the preparation of the proposed
Part 61 was to develop both performance objectives and prescriptive require-
ments. Overall performance objectives were developed to define the level of
safety that should be achieved in the land disposal of LLW. Minimum technicaI

,performance requirements were also developed for each of the major components
of an LLW disposal system that should be considered in all cases in the dis- I
posal of LLW to help ensure that the overall performance objectives for land
disposal would be met. Finally, prescriptive requirements were established
where they were deemed necessary and where sufficient technical information
and rationale were available to support them.

Based on public comments on the Part 61 rule, draft EIS, and NRC's analysis of
these comments, NRC has made no change to this approach. It has been followed I
in the development of the final Part 61 rule.

5.2 DEVELOPMENT OF PERFORMANCE OBJECTIVES

As part of the analysis performed in the draft EIS, NRC analyzed a range of
alternative performance objectives for low-level radioactive waste disposal.
This analysis involved an extensive series of case studies plus an extensive
examination of the case study results. From the analysis NRC staff identified
four such overall performance objectives:

1. Protect public health and safety (and the environment) over the long
term;

2. Protect the inadvertent intruder;

3. Protect workers and the public during the short-term operational phase;
and

4. Long-term stability to eliminate the need for active long-term maintenance
after operations cease;

There were few comments from the public on the overall numerical analysis per-
formed in the draft EIS to arrive at the preferred performance objectives.
There were, however, some comments on the specific details of the analysis such
as assumptions on environmental monitoring costs. Based upon the comments,
NRC made a number of revisions to the numerical inputs to the impact analysis
methodology including an improved method of cost analysis, a more extensive
analysis of the impacts of waste classification and analysis of a new pathway
(trench overflow and leachate treatment). The effect of the revisions to the
analysis methodology had no effect on the overall conclusions but, rather, con-
firmed NRC's original conclusions. To provide greater clarity, an effort was
made to reduce the number of cases considered and this resulted in the analysis
performed in Chapter 4 of this final EIS. Based on public comments on the pro-
posed rule, no new areas were identified which should be addressed in the
Part 61 rule as overall performance objectives for land disposal of LLW.
Commenters generally supported development of performance objectives in the
above four areas.

5-2

Based on the analysis in Chapter 2 of the draft EIS (§ 2.2l, the preferred 
approach selected and followed by NRC in the preparation of the proposed 
Part 61 was to develop both performance objectives and prescriptive require­
ments .. Overall performance objectives were developed to define the level of . 
safety that should be achieved in the land disposal of lLW. Minimum technical 

'performance requirements were also developed for each of the major components 
of an LLW disposal syste. that should be considered in all cases in the dis­
posal of LLW to help ensure that the overall performance objectives for land 
disposal would be met. Finally, prescriptive requirements were established 
where they were deemed necessa~ and where sufficient technical inforaation 
and rationale were available to support the •. 

Based on publi~ cOlments on the Part 61 rule, draft EIS, and NRC's analysis of 
these comlents. NRC has aade no change to this approach. It has been followed 
in the development of the final Part 61 rule. 

5.2 DEVELOPMENT OF PERFORMANCE OBJECTIVES 

As part of the analysis performed in the draft EIS. NRC analyzed a range of 
alternative perfonaance objectives f9r low-level radioactive waste disposal. 
This analysis involved an extensive series of case studies plus an extensive 
exa.ination of the case stu~ results. Fro. the analysis NRC staff identified 
four such overall performance objectives: 

1. Protect public health and safety (and the environment) over the long 
tel"ll; 

2. Protect the inadvertent intruderi 

3.· Protect workers and the publ ic during the short-term operational phase; 
and 

4. Long-ten. stability to eli.inate the need for active long-ten. maintenance 
after operations cease; 

There were few comments fr~ the public on the overall numerical analysis per­
formed in the draft EIS to arrive at the preferred performance objectives. 
The·re were, however. sa. co_nt5 on the specific details of the analysis such 
as assumptions on environmental 8Onitoring costs. Based upon the co ... nts, 
NRC made a nu.ber of revisions to the nUierical inputs to the inpact analysis 
.. thodology including an improved method of cost analysis. a .ore extensive 
analysis of the impacts of waste classification and analysis of a new pathway 
(trench overflow and leachate treatment). The effect of the revisions to the 
analysis aethodology had no effect on the overall conclusions but. rather. con­
finled NRC's original conclusions. To provide greater clarity. an effort was 
.ade to reduce the nu.bar of cases considered and this resulted in the analysis 
perfor.ed in Chapter 4 of this final EIS. Based on public comments on the pro­
posed rule, no new areas were identified which should be addressed in the 
Part 61 rule as overall perfprmance objectives for land disposal of llW. 
Commenters generally supported development of performance objectives in the 
above four areas. . 

5-2 

I 

, 
J 
I 



One rule commenter challenged the performance objectives in Part 61 as being
premature in advance of relevant EPA standards and beyond the agency's authority
to the extent that they are not already embodied: in 1.0 CFR Part 20 and that
they are unduly stringent and unsupported. With respect to this comment, EPA,
under its ambient environmental standards setting authority assigned by
Reorganization Plan No. 3 of 1970 has the authority to prepare a standard that
will set limits for releases of radioactivity to the general enviroment Ifrom
disposal facilities. Presently there is no such EPA standard. In thp absence
of such a standard, the Commission examined a range of limits which bound that
expected for the EPA standard and selected a proposed performance objective
that establishes a release limit for the site boundary, a regulatory action
within the limits of NRC authority. In a rulemaking action, the Commission is
not solely limited to existing standards in Part 20 and the Commission does
not intend to withdraw any portion of the rule that may be related to the
performance objectives.

With regard to the specific performance objective for releases to-the
environment, the Environmental Protection Agency commented that the 'establish-
ment of an individual exposure limit at the site boundary for releases as
proposed in §61.41 is appropriate. They stated that the 25 mrem/yr limit is
in thi correct range of values (1 to 25 mrem/yr was analyzed by the Commission)
which should encompass any future EPA standard for low-level waste disposal
facilities.- Based on the analysis, NRC does not anticipate any need to change
the technical requirements of Part 61 to meet a&future EPA standard. , In their
comments, EPA stated their opinion that it was inappropriate to apply the EPA
drinking water standard as proposed in 661.41. Accordingly, this part of the
performance objective has been deleted. However, this does not diminish the
Commission's concern over protecting sources of drinking water. The Commission
will assess the potential impact on drinking water supplies as part of its
licensing 'review.,

Reaction to the'proposed performance objective to protect potential. inadvertent
intruders was mixed.1 There were some who felt the proposed 500 arem whole
body dose to the intruder was too high, some felt that it was the right value
for a standard, and others felt that higher values were in order. Those that
felt that the standard should be higher suggested values of 5 rem or 25 rem to
correspond to limits for occupational exposure or one-time exposures to workers
from potential accidents. A number of commenters, in their comments about
considering the probability that intrusion will occur, expressed concern about
weighting too heavily the protection against, inadvertent intrusion in deter-
mining disposal requirements for waste. Based on these comments, the Commission
believes that the primary concern of .those who feel that the intruder protection
objective is too restrictive is the effect that this has on the concentrations
of certain nuclides that are acceptable for disposal in a near-surface facility
and the need to meet waste form requirements such as stability'for some wastes.
With this in mind, and in response to other comments, the Coemission has
reevaluated the calculations that establish the waste classification concentra-
tion limits to eliminate unnecessarily conservative assumptions with the
result that the analyss is more realistic and the limits for several important
isotopes have been raised. With this action, the Commission believes that
most of the concerns of those who encouraged higher exposure limits or less
emphasis on protection of intruders will have been met.
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With respect to those who suggested that lower limits would be appropriate,
there were no compelling arguments or technical demonstrations presented that
persuaded the Commission to lower the dose limit for intruders.

The EPA commented that it was not appropriate to state the 500 mrem (whole body) I
dose limit as a regulatory limit in the Part 61 rule, since the licensee would
not be able to monitor or demonstrate compliance with a specific dose limit
that applies to an event that might occur hundreds of years from now.- They I
did recognize use of the 500 mrel whole body dose limit as the basis for
determining the concentration limits in Table 1 of Part 61. Noting that,
given ALARA, actual exposures to an inadvertent intruder would be lower than
500 mrem per year, the 500 mrem dose limit has been deleted from the performance
objective but has been retained as the basis of the waste classification
concentration limits. !
EPA asked for a clarification of the intent of the performance objective in
§61.43 as it pertains to effluents from the site. This performance objective
states that operations at the land disposal facility must be conducted in com-
pliance with the standards for radiation protection set out in Part 20.
Part 20 contains standards for concentrations of radioisotopes in air and water
released from a licensed facility. Section 61.41 sets forth limits on concen- I
trations of radioisotopes released from a land disposal facility which are lower 1
than those in Part 20. It is the Comission's intent that the provisions of
Part 20 will apply to all aspects of radiation protection during operation excepi I
for releases of radioactivity from the site which will be governed by the more
stringent requirements of §61.41. The rule has been modified to clarify this
point.

Commenters pointed out a need to be clearer in the rule on how the principle
of maintaining radiation exposures to'a level that is as low as reasonably
achievable (ALARA) will be handled. The Commission intends that the ALARA
principle apply to the performance objectives for long-term environmental
release and protection of individuals during site operations. It cannot apply
to the intruder performance objective, since Part 61 sets out requirements for
intrusion protection which are beyond the disposal facility licensee's control.
Appropriate changes have been made in §§66.41 and 61.43 to reflect the ALARA
principle.

Based upon the EIS analysis, and Comments provided on the proposed Part 61 rule,
the following performance objectives were derived for the final Part 61 rule:

5.2.1 Protection of the General Population From Releases of Radioactivity I
Concentrations of radioactive material.which may be released to the general
environment in ground water, surface water, air,.soil, plants, or animals must
not result in an annual dose exceeding an equivalent of 25 millirems to the
whole body, 75 millirems to the thyroid, and 25 millirems to any other organ
of any member of the public. Reasonable effort should be made to maintain
releases of radioactivity in effluents to the general environment to levels as
low as is reasonably achievable.

5.2.2 Protection of Individuals from Inadvertent Intrusion

Design, operation, and closure of the land disposal facility must, ensure pro-
tection of any individual inadvertently intruding into the disposal site
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10 CFR Part 20--Standards for Protection Against Radiation Page 1 of 1

Subpart C--Occupational Dose Limits

Source: 56 FR 23396, May 21, 1991, unless otherwise noted.

§ 20.1201 Occupational dose limits for adults.

(a) The licensee shall control the occupational dose to individual adults, except for planned special exposures t
20.1206, to the following dose limits.

(1) An annual limit, which is the more limiting of--

The total effective dose equivalent being equal to 5 reins (0.05 Sv); or

(ii) The sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue
the lens of the eye being equal to 50 rems (0.5 Sv).

(2) The annual limits to the lens of the eye, to the skin of the whole body, and to the skin of the extremities, v

(i) A lens dose equivalent of 15 rems (0.15 Sv), and

(ii) A shallow-dose equivalent of 50 rem (0.5 Sv) to the skin of the whole body or to the skin of any extremity.

(b) Doses received in excess of the annual limits, including doses received during accidents, emergencies, and
special exposures, must be subtracted from the limits for planned special exposures that the individual may re
the current year (see § 20.1206(e)(1)) and during the individual's lifetime (see § 20.1206(e)(2)).

(c) The assigned deep-dose equivalent must be for the part of the body receiving the highest exposure. The a!
shallow-dose equivalent must be the dose averaged over the contiguous 10 square centimeters of skin receivit
exposure. The deep-dose equivalent, lens-dose equivalent, and shallow-dose equivalent may be assessed frorn
other radiation measurements for the purpose of demonstrating compliance with the occupational dose limits,
individual monitoring device was not in the region of highest potential exposure, or the results of individual m(
unavailable.

(d) Derived air concentration (DAC) and annual limit on intake (AU) values are presented in table 1 of append
20 and may be used to determine the individual's dose (see § 20.2106) and to demonstrate compliance with t
occupational dose limits.

(e) In addition to the annual dose limits, the licensee shall limit the soluble uranium intake by an individual to
in a week in consideration of chemical toxicity (see footnote 3 of appendix B to part 20).

(f) The licensee shall reduce the dose that an individual may be allowed to receive in the current year by the a
occupational dose received while employed by any other person (see § 20.2104(e)).

[56 FR 23396, May 21, 1991, as amended at 60 FR 20185, Apr. 25, 1995; 63 FR 39482, July 23, 1998; 67 FR
5, 2002]
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§ 20.1201 Occupational dose limits for adults. 

(a) The licensee shall control the occupational dose to individual adults, except for planned special exposures l 
20.1206, to the following dose limits. 

(1) An annual limit, which is the more limiting of--

7(i) The total effective dose equivalent being equal to 5 rems (0.05 Sv); or 

(ii) The sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue, 
the lens of the eye being equa, to 50 rems (0.5 Sv) . 

. (2) The annual limits to the lens ofthe eye, to the skin of the whole body, and to the skin of the extremities, v 

(i) A lens dose equivalent of 15 rems (0.15 Sv), and 

(ii) A shallow-dose equivalent of 50 rem (0.5 Sv) to the skin of the whole body or to the skin of any extremity. 

(b) Doses received in excess of the annual limits, including doses received during accidents, emergencies, and 
special exposures, must be subtracted from the limits for planned special exposures that the individual may re 
the current year (see § 20.1206(e)(1» and during the individual's lifetime (see § 20.1206(e)(~». 

(c) The assigned deep-dose equivalent must be for the part of the body receiving the highest exposure. The a~ 
shallow-dose equivalent must be the dose averaged over the contiguous 10 square centimeters of skin receivir 
exposure. The deep-dose eqUivalent, lens-dose eqUivalent, and shallow-dose equivalent may be assessed fron 
other radiation measurements for the purpose of demonstrating compliance with the occupational dose limits, 
individual monitoring device was not in the region of highest potential exposure, or the results of individual me 
unavailable. . 

(d) Derived air concentration (DAC) and annuallimiton intake (AU) values are presented in table 1 of append 
20 and may be used to determine the individual's dose (see § 20.2106) and to demonstrate compliance with t 
occupational dose limits. 

(e) In addition to the annual dose limits, the licensee shall limit the soluble uranium intake by an individual to 
in a week in consideration of chemical toxiCity (see footnote 3 of appendix B to part 20). 

(f) The licensee shall reduce the dose that an individual may be allowed to receive in the current year by the a 
occupational dose received while employed by any other person (see § 20.2104(e». 

[56 FR 23396, May 21, 1991, as amended at 60 FR 20185, Apr. 25, 1995; 63 FR 39482, July 23, 1998; 67 FR 
5,2002] 
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arce as folows: §§60.1, 60.2. 60.3. 60.5.
60.6. 60.7. 60.8. 60315. 60.16. 60.17. 60.18.
60.21. 60.22. 60.23. 60.24. 60.31. 60.32, 60.33,
60.41, 60.42. 60.43. 60.44. 60.45. 60.46, 60.51.
60.52. 60,61. 60.62, 60.63, 60.64, 60.65.
60.101. 60.102. 60.111. 60.112. 60.113, 60.121.
60.122, 60.130. 60.131. 60.132, 60.133. 60.134,
60.135. 60.137. 60.140. 60.141, 60.142, 60.143,
60.150. 60.151. 60.152. 60.162. 60.181, and
60.183.

157 FR 55076. Nov. 24. 19921

PART 61--UCENSING REQUIRE-
MENTS FOR LAND DISPOSAL OF
RADIOACTIVE WASTE

Subpart A-General Provisions

Sec.
61.1 Purpose and scope.
61.2 Definitions:
61.3 License required.
61.4 Communications.
61.5 Interpretations.
61.6 Exemptions.
61 7 Concepts.
61.8 Information collection requirements:

OMB approval.
61.9 Employee protection.
61.9a Completeness and accuracy of infor-

mation.
61.9b Deliberate misconduct.

Subpart B-Licenses

61.10 Content of application.
61.11 General information.
61.12 Specific technical information.
61.13 Technical analyses.
61.14 Institutional information.
61.15 Financial information.
63.16 Other information.
61.20 Filing and distribution of application.
61.21 Elimination of repetition.
61.22 Updating of application.

.63.23 Standards for issuance of a license.
63.24 Conditions of Iicenses.
61.25 Changes.
61 26 Amendment of license.
61.27 Application fur renewal or closure.
61.28 Contents of application for closure.
61.29 Post-closure observation and olainte

nance.
61.30 Transfer of license.
61.31 Termination of license.

Subpart C-Performance Objectives

61340 General requirement.
61.41 Protection of the general population

from releases of radioactivity.
61.42 Protection of individuals from inad-

vertent intrusion.
61.43 Protection of Individuals during oper-

ations.

Pt. 61

61.44 Stahility of the disposal site after clo-
sure.

Subpart D-Technlcal Requirements for
Land Disposal Facilities

61.50 Disposal site suitability requirements
for land disposal.

61.51 Disposal site design for land disposal.
61.52 Land disposal facility operation and

disposal site closure.
61.53 Environmental monitoring.
61,54 Alternative requirements for design

and operations.
61.55 Waste classification.
61.56 Waste characteristics.
61.57 Labeling.
61.58 Alternative requirements for waste

classification and characteristics.
61.59 Institutional requirements.

I Subpart E-Financial Assurances

61.61 Applicant qualifications and assur-
ances.

61.62 Funding for disposal site closure and
stabilization.

61.63 Financial assurances for institutional
controls.

Subpart F-Participation by State
Governments and Indian Tribes

61.70 Scope.
613.71 State and Tribal government consulta-

tion.
61.72 Filing of proposals for State and Trib-

al participation.
61.73 Commission approval of proposals.

Subpart G-=Records, Reports, Tests, andInspections

61.80 Maintenance of records, reports, and
transfers.

61.81 Tests at land disposal facilities.
61.82 Commission inspections of land dis-

posal facilities.
61.83 Violations.
61.84 Criminal penalties.

AtliHORITY: Secs. 53. 57. 62. 63. 65. 81. 161.
182. 183. 68 Stat. 930. 932. 933. 935. 948, 953. 954.
as amended (42 U.S.C. 2073. 2077. 2092. 2093.
2095. 2111. 2201. 2232. 2233): secs. 202. 206. 88
Stat. 1244. 1246. (42 U.S.C. 5842, 5846)' secs. 30
and 14. Pub. L. 95-601. 92 Stat. 2951 (42 U.S.C.
2021a and 5851) and Pub. L. 102-486. sec. 2902.
106 Stat. 3123. (42 U.S.C. 5851): sec. 1704. 112
Stat. 2750 (44 U S.C. 3504 note).

SOURCE: 47 FR 57463. Dec. 27. 1982. unless
otherwise noted.

153

" 
., 

lO C,FR 61 

Nuclear Regulatory Commission 

are as follows: 1i~60.1, 60.2, 60.3, 60.5, 
606, 607, 60.8, 6015. 60.16. 60.17. 60.18. 
6021. 60.22.602:\.60.24.60.31.60.32.60.33. 
6041. 6042. 6043. 60.44. 60.45. 60.46. 60.51. 
6052. 60.61. 6062. 60.63, 60.64, 60.65, 
60.101. 60.102. 60.111. 60.112, 60.113, 60.121. 
60.122.60.130.60.131.60.132,60.133,60.134, 
60.135.60.137.60.140.60.141,60.142,60.143, 
60.150. 60.151. 60.152, 60.162. 60.181. and 
60.183. 

157 FR 55076. Nov. 24. 19921 

PART 61--lICENSING REQUIRE-
MENTS FOR LAND DISPOSAL OF 
RADIOACTIVE WASTE 

~ubpart A-General ProvisIons 

Sec. 
61. I Purpose and scope. 
61.2 Definitions: 
61.3 License. required. 
61.4 Communications. 
61.5 Interpretations. 
61.6 Exemptions. 
6L7 Concepts. 
61.8 Information collection requirements: 

OMS approval. 
61.9 Employee protection. 
61.9a Completeness and accuracy of infor­

mation. 
61.9b Deliberate misconduct. 

Subpart B-Llcenses 

61.10 Content of application. 
61.11 General information. 
61.12 Specific technical information. 
61.13 Technical analyses. 
61.14 Institutional Information. 
61.15 Financial information. 
61.16 Other Information. 
61.20 Filing and distribution of application. 
61.21 Elimination of repetition. 
61.22 Updating of application. 
• 61.23 Standards for issuance of a license. 
SI.24 Conditions of licenses. 
61.25 Changes. , 
61 26 Amendment of license. 
61.27 Application for renewal or closure. 
61.28 Contents uf application for closure. 
61.29 Post-closure nbservatinn and JIlilint,,· 

nance. 
61.30 Transfer of license. 
61.31 Termination of license. 

_____ / Subpart C-Performance Objectives 

61.40 General requirement. 
61.41 Protection of the general population 

from releases of radioactivity. 
61.42 Protection of Individuals from inad­

vertent Intrusion. 
61.43 Protection of Individuals during oper-

ations. '. 
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61.44 Stability of the dispns<tl sit~, aflPr clo­
sure. 

Subpart D--Technlcal ReqUirements tor 
Land Disposal Facilities' 

61.50 Disposal site suitability requirements 
for land disposal. 

61.51 Disposal site design for land disposal. 
61.52 Land disposal facility operation and 

disposal site closure. 
61.53 Environmental monitoring. 
61,54 Alternative requirements for design 

and operations. 
61.55 Waste claSSification. 
61.56 Waste characteristics. 
61.51 Labeling. 
61.58 Alternative requirements for waste 

classification and characteristics. 
61.59 Institutional requirements. 

Subpart E-Flnanclal Assurances 

61.61 Applicant qualifications and assur­
ances. 

61.62 Funding for disposal site closure and 
stabilization. 

61.63 Financial assurances for institutional 
controls. 

Subpart F-Partidpallon by State 
Governments and Indian Tribes 

61.70 Scope. 
61.11 State and Tribal government consulta­

tion. 
61.72 Filing of proposals for State and Trib­

al participation. 
61.73 CommiSSion approval of proposals. 

I 
Subpart ~ecords. Reports, Tests, and 

InspecHons 

61.80 Maintenance of records. reports. and 
transfers . 

61.81 Tests at land disposal faeiliti('s. 
61.82 Commission inspections of land dis­

posal facilities. 
61.83 Violations. 
61.84 Criminal penalt ics. 

AUTHORITY: Sees. 53. 57. 62. 63. 65. 81. 161. 
18Z. 183.68 Stat 930. 93Z. 933. 935. 948. 953. 954. 
as amended (42 U.s.C. 2073. l071. 209l. l093. 
2095. llli. 2201. l232. 2233); sees. 202. 206. 88 
Stat. 1244. 1246. (42 U.S.C. 5842. 5846); secs. 10 
and 14. Pub. L. 95-601. 92 Stat. 2951 (42 U.S.C 
2021a and 585t) and Pub. L. 102-486. sec 2902. 
106 Stat. 3123. (42 U.s.c. 5851): sec. 1704. 112 
Stat. 2750 (44 U s.c. 3504 note). 

SOURCE: 41 FR 51463. Dec. 27. 1982. unless 
otherwise noted. 
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§ 61.30

§61.30 Transfer of license.

(a) Following closure and the period
of post-closure observation and mainte-
nance, the licensee may apply for an
amendment to transfer the license to
the disposal site owner. The license
shall be transferred when the Commis-
sion finds:

(1) That the closure of the disposal
site has been made in conformance
with the licensee's disposal site closure
plan, as amended and approved as part
of the license:

(2) That reasonable assurance has
been provided by the licensee that the
performance objectives of subpart C of
this part are met;

(3) That any funds for care and
records required by §61.80 (e) and (f)
have been transferred to the disposal
site owner:

(4) That the post-closure monitoring
program is operational for implemen-
tation by the disposal site owner; and

(5) That the Federal or State govern-
ment agency which will assume respon-
sibility for institutional control of the
disposal site is prepared to assume re-
sponsibility and ensure that the insti-
tutional requirements found necessary
under §61.23(g) will be met.

147 FR 57463. Dec. 27, 1982. as amended at 61
FR 24674. May 16. 1996)

§ 61.31 Termination of license.

(a) Following any period of institu-
tional control needed to meet the re-
quirements found necessary under
§61-23. the licensee may apply for an
amendment to terminate the license.

(b) This application must be filed.
and will be reviewed, in accordance
with the provision of §61.20 and of this
section.

(c) A license is terminated only when
the Commission finds:
• (1) That the institutional control re-

quirements found necessary under
§ 6 1.23(g) have been met: and

(2) That any additional requirements
resulting from new information devel-
oped during the institutional control
period have been met, and that perma-
nent monuments or markers warning
against Intrusion have been installed.

(3) That the records required by
§61.80 (e) and (f) have been sent to the
party responsible for institutional con-

10 CFR Ch. I (I-1--04 Edition)

trol of the disposal site and a copy has
been sent to the Commission imme-
diately prior to license termination.

147 FR 57463. Dec. 27. 1982. as amended at 61
FR 24674. May 16. 19961

Subpart C-Performance
Objectives

§61.40 General requirement.
Land disposal facilities must be

sited, designed, operated, closed, and
controlled after closure so that reason-
able assurance exists that exposures to
humans are within the limits estab-
lished in the performance objectives in
§§ 61.41 through 61.44.

§61.41 Protection of the general popu-
lation from releases of radioac-
tivity.

Concentrations of radioactive mate-
rial which may be released to the gen-
eral environment in ground water, sur-
face water, air, soil, plants, or animals
must not result in an annual dose ex-
ceeding an equivalent of 25 millirehns
to the whole body. 75 millirems to the
thyroid. and 25 millirems to any other
organ of any member of the public.
Reasonable effort should be made to
maintain releases of radioactivity in
effluents to the general environment as
low as Is reasonably achievable.
§61.42 Protection of individuals from

inadvertent intrusion.
Design. operation, and closure of the

land disposal facility must ensure pro-
tection of any individual inadvertently
intruding into the disposal site and oc-
cupying the site or contacting the
waste at any time after active institu-
tional controls over the disposal site
are removed.
§61.43 Protection of individuals dur-

ing operations.

Operations at the land disposal facil-
ity must be conducted in compliance
with the standards for radiation pro-
tection set out in part 20 of' this chap-
ter, except for releases of radioactivity
in effluents from the land disposal fa-
cility, which shall be governed by
§61.41 of this part. Every reasonable ef-
fort shall be made to maintain radi-
ation exposures as low as is reasonably
achievable.
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~ 61.30 Transfer of license. 

(a) Following closure and the period 
of post-closure observation and mainte­
nance. the licensee may apply for an 
amendment to transfer the license to 
the disposal site owner. The 'license 
shall be transferred when the Commis­
sion finds: 

(I) That the closure of the disposal 
site has been' made in conformance 
with the licensee's disposal site closure 
plan. as amended and approved as part 
of the license; 

(2) That reasonable assurance has 
been provided by the licensee that the 
performance objectives of subpart C of 
this part are met; 

(3) That any funds for care and 
records required by §61.80 (e) and (I) 
have been transferred to the disposal 
site owner; 

(4) That the post-closure monitoring 
program is operational for implemen­
tation by the disposal site owner; and 

(5) That the Federal or State govern­
ment agency whi~h will assume respon­
sibility for institutional control of the 
disposal site is prepared to assume re­
sponsibility and ensure that the insti­
tutional requirements found necessary 

. under §61.23(g) will be met. 

147 FR 57463, Dec. 27. 1982, as amended at 61 
FR 24674. May 16.19961 

§61.31 Termination of license. 

(a) Following any period of Institu­
tional control needed to meet the re­
quirements found necessary under 
§61.23, the licensee may apply for an 
amendment to terminate the license. 

(b) This application must be filed. 
and will be reviewed. in accordance 
with the provision of §61.20 and of this 
section. 

(e) A license is terminated only when 
the Commission finds: 

(I) That the institutional control re­
quirements found necessary under 
§61.23(g) have been met; and 

(2) That any additional requirements 
resulting from new Information devel­
oped during the institutional control 
period have been met, and that perma­
nent monuments or markers warning 
against intrusion have been installed. 

(3) That the records required by 
§61.80 (e) and CO have been sent to the 
party responsible for institutional con-
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trol of the disposal site and a copy has 
been sent to the Commission imme­
diately prior to license termination. 

147 FR 57463. Dec 27. 1982. as amended at 61 
FR 24674. May 16. I996J 

Subpart C-Performance 
Objectives 

§ 61.40 General requirement. 

Land disposal facilities must be 
sited. designed. operated. closed, and 
controlled after closure so that reason­
able assurance exists that exposures to 
humans are within the limits estab­
lished in the performance objectives in 
§§ 61.41 through 61.44. 

§61.41, Protection of the general popu· 
latlon from releases of radioac­
tivity. 

Concentrations of radioactive mate­
rial which may be released to the gen­
eral environment in ground water, sur­
face water, air, soil. plants. or animals 
must not result in an annual dose ex­
ceeding an equivalent of 25 millirems 
to the whole body, 75 millirems to the 
thyroid, and 25 millirems to any other 
organ of any member of the public. 
Reasonable effort should be made to 
maintain releases of radioactivity in 
effluents to the general environment as 
low as is reasonably achievable. 

§61.42 Protection of individuals from 
inadvertent intrusion. 

Design, operation, and closure of the 
land disposal facility must ensure pro­
tection of any individual inadvertently 
intruding Into the disposal site and oc- <:"'----­
cupylng the site or contacting the 
waste at any time after active institu-
tional controls over the disposal site 
are removed. 

§ 61.43 Protection of individuals dur­
ing operations. 

Operations at the land disposal facil­
ity must be conducted in compliance 
with the standards for radiation pro­
tection set out in part 20 of'this chap­
ter. except for releases of radioactivity 
in effluents from the land disposal fa- .L 
clllty, which shall be governed by -, 
§ 61.41 of this part. Every reasonable ef-
fort shall be made to maintain radi­
ation exposures as low as Is reasonably 
achievable. 
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completed closure and stahi lizar ion
measures.

(11) Only wastLes containing or con-
taminated with radioactive materials
shall be disposed of at the disposal site.

(b) Facility operation and disposal
site closure for land disposal facilities
other than near-surface (reserved).

147 FIR 57463. Dec. 27. 1982, as amended at 56
FIR 23474. May 21. 1991: 56 FIR 61352. Dec. 3.
1991: 58 FIR 67662. Dec. 22. 19931

§ 61.53 Environmental monitoring.

(a) At the time a license application
is submitted, the applicant shall have
conducted a preoperational monitoring
program to provide basic environ-
mental data on the disposal site char-
acteristics. The applicant shall obtain
information about the ecology, meteor-
ology. climate, hydrology, geology.
geochemnistry, and seismology of the
disposal site. For those characteristics
that are subject to seasonal variation.
data must cover at least a twelve
month period.

(b) The licensee must have plans for
taking corrective measures If migra-
tion of radionuclides would indicate
that the performance objectives of sub-
part C may not be met.

(c) During the land disposal facility
site construction and operation, the li-
censee shall maintain a monitoring
program. Measurements and observa-
tions must be made and recorded to
provide data to evaluate the potential
health and environmental impacts dur-
ing both the construction and the oper-
ation of the facility and to enable the
evaluation of long-term effects and the
need for mitigative measures. The
monitoring system must be capable of
providing early warning of releases of
radionuclides from the disposal site be-
fore they leave the site boundary.

(d) After the disposal site is closed,.
the licensee responsible for post-oper-
ational surveillance of the disposal site
shall maintain a monitoring system
based on the operating history and the
closure and stabilization of the dis-
posal site. The monitoring, system
must be capable of providing early
warning of releases of radionuclides
from the disposal site before they leave
the site boundary.

9 61.55

§ 61.54 Alternative requirements for
design and operations.

The Commission may. upon request
or on its own initiative, authorize pro-
visions other than those set forth in
§§61.51 through 61.53 for the segregation
and disposal of waste and for the design
and operation of a land disposal facil-
ity on a specific basis, if it finds rea-
sonable assurance of compliance with
the performance objectives of subpart
C of this part.

§ 61.55 Waste classification.
(a) Classification of waste for near

surface disposal. (1) Considerations. De-
termination of the classification of ra-
dioactive waste involves two consider-
ations. First, consideration must be
given to the concentration of long-
lived radionuclides (and their shorter-
'lived precursors) whose potential haz-
ard will 1 persist long after such pre-
cautions as institutional controls, im-
proved waste form, and deeper disposal
have ceased to be effective. These pre-
cautions delay the. time when long-
lived radionuclides could cause expo-
sures. In addition, the magnitude of
the potential dose is limited by the
concentration and availability of the
radionuclide at the time of exposure.
Second. consideration must be given to
the concentration of shorter-lived
radionuclides for which requirements
on institutional controls, waste form.
and disposal methods are effective.

(2) Classes of waste. (I) Class A waste
is. waste that is usually segregated
from other waste classes at the dis-
posal site. The physical form and char-
acteristics of Class A waste must meet
the minimum requirements set forth in
§61.56(a). If Class A waste also meets
the stability requirements set forth in
§ 61 -56(b), it is not necessary to seg-
regate the waste for disposal.

(ii) Class B waste is waste that must
meet more rigorous requirements on
waste form to ensure stability after
disposal. The physical form and charac-
teristics of Class B waste must meet
both the minimum and stability re-
quirements set forth in §61.56.

(III) Class C waste is waste that not
only must meet more rigorous require-
ments on waste form to ensure sta-
bility but also requires additional
measures at the disposal facility to
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completed closurc and stahilization 
mcasures. 

(11) Only wastes containing or con­
taminated with radioactive materials 
shall be disposed of at the disposal site. 

(b) Facility operation and disposal 
site closure for land disposal facilities 
other than near-surface (reserved). 

[47 FR 57463, Dec. 27, 1982, as amended at 56 
FR 23474, May 21. 1991: 56 FR 61352, Dec. 3. 
1991: 58 FR 67662. Dec. 22. 1993/ 
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conducted a preoperational monitoring 
program to provide basic environ­
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information about the ecology. meteor­
ology. climate. hydrology. geology. 
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disposal site. For those characteristics 
that are subject to seasonal variation, 
data must cover at least a twelve 
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taking corrective measures if migra­
tion of radionuclides would indicate 
that the performance objectives of sub­
part C may not be met. 
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site construction and operation. the li­
censee shall maintain a monitoring 
program. Measurements and observa­
tions must be made and recorded to 
provide data to evaluate the potential 
health and environmental impacts dur­
ing both the construction and the oper­
ation of the facility and to enable the 
evaluation of long-term effects and the 

. need for mitigative measures. The 
monitoring system must be capable of 
providing early warning of releases of 
radionuclides from the disposal site he­
fore they leave the site boundary. 

(d) After the disposal site is closed .. 
the licensee responsible for post-oper­
ational surveillance of the disposal site 
shall maintain a monitoring system 
based on the operating history and the 
closure and stabilization of the dis­
posal site. The monitoring system 
must be capable of providing early 
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the site boundary. 
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§61.55 Waste classification. ~ 
(a) Classification of waste for near 

surface disposal. (l)Considerations. De­
termination of the classification of ra­
dioactive waste involves two consider­
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given to the concentration of long­
lived radionuclides (and their shorter­
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ard will persist long after such pre­
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proved waste form, and deeper disposal 
have ceased to be effective. These pre­
cautions delay the time when long­
lived radionuclides could cause expo­
sures. In addition. the magnitude of 
the potential dose is limited by the 
concentration and availability of the 
radionuclide at the time of exposure. 
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the concentration of shorter-lived 
radionuc1ides for which requirements 
on institutional controls. waste form. 
and disposal methods are effective. 

(2) Classes of waste. (I) Class A waste 
is. waste that is usually segregated 
from other waste classes at the dis­
posal site. The physical form and char­
acteristics of Class A waste must meet 
the minimum requirements set forth in 
§6I.S6(a). If Class A waste also meets 
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(ii) Class B waste is waste that must 
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waste form to ensure stability after 
disposal. The physical form and charac­
teristics of Class B waste must meet 
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only must meet more rigorous require­
ments on waste form to ensuresta­
bility but also requires additional 
measures at {he disposal facility LO 
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protect against inadvertent intrusion.
The physical form and characteristics
of Class C waste must meet both tile
minimum and stability requirements
set forth in §61.56.

(iv) Waste that is not generally ac-
ceptable for near-surface disposal is
waste for which form and disposal
methods must be different, and in gen-
eral more stringent, than those speci-
fied for Class C waste. In the absence of
specific requirements in this part. such
waste must be disposed of in a geologic
repository as defined in part 60 or 63 of
this chapter unless proposals for dis-
posal of such waste in a disposal site li-
censed pursuant to this part are ap-
proved by the Commission.

(3) Classification determined by long-
lived radionuclides. If radioactive
waste contains only radionuclides list-
ed in Table 1. classification shall be de-
termined as follows:

(I) If the concentration does not ex-
ceed 0.1 times, the value in Table I. the
waste is Class A.

(ii) If the concentration exceeds 0.1
times the value in Table I but does not
exceed the value in. Table 1. the waste
is Class C.

(iii) If the concentration exceeds the
value in Table 1, the waste is not gen-
erally acceptable for near-surface dis-
posal.

(iv) For wastes containing mixtures
of radionuclides listed in Table i. the
total concentration shall be deter-
mined by the sum of fractions rule de-
scribed in paragraph (a)(7) of this sec-
tion.

TABLE 1

Concentra-

Radionuclide lion curies
per cub-c

meter

C-14 .............. 8
C-14 in activated metal . ........................... 80
NW-59 in activated metal .. ........................ 220
Nb-94 in activated metal ... ..................... 0.2
T c- 99 . .3................. ........... ............ ............. 3
1-129 ............................................... . . . 0.08
Alpha eritting transuranic nudides with halt-

tile greater than 5 years ............................... '100
Pu-241 .......................... ........................... . ' 3.500
C rn -242 ........................................................... '20.000

'UnIts are nanoojrnes per gram.

(4) Classification determined by
short-lived radionuclides. If radio-
active waste does not contain any of
the radionuclides listed in Table I.

classification shall be determined
based ott the concentrations shown in
Fable 2. However, as specified in para-
graph (a)(6) of this section. if radio-
active waste does not contain any
nuclides listed in either Table-I or 2. it
is Class A.

(I) If the concentration does not ex-
ceed the value in Column 1. the waste
is Class A.

(ii) If the concentration exceeds the
value in Column I. but does not exceed
the value in Column 2, the waste is
Class B.

(iii) If the concentration exceeds the
value in Column 2, but does not exceed
the value in Column 3. the waste is
Class C.

(iv) If the concentration exceeds the
value in Column 3. the waste is not
generally acceptable for near-surface
disposal.

(v) For wastes containing mixtures of
the nuclides listed in Table 2, the total
concentration shall be determined by
the sum of fractions rule described in
paragraph (a) (7) of this section. '

TABLE 2

Concentration. curies
per cubic meter

Radionuclide
Cot. Cot. Cot.

2 3

Total of all nuclides with less than 5
year halt-tile ................................. 700 II (t)

H'-3 .............................. ...................... 40 ) (,

Co-o ..........-........ 700- (' I')
Ni-63 ...........-......... ........................ 3.5 70 700
Ni-63 in activated mnetal................. 35 700 7000
Sr-90 --.......-.......... 0..........O... ............-. 0.04 150 7000
C s-137 .............................................. I 44 4600

There are no liimts established for these radioruclides 7n
Class 8 or C wastes. Practical considerations such as the ef-
fecds of external radiation and internal heal generation on
transportation, handling, and disposal wil SisAl the concentra-
lions for these wastes. These wastes shall te Class B unless
the concentrations of other nuctldes in Table 2 cletefrnine the
waste to be Class C independent of these nucdides.

(5) Classification determined by both
long- and short-lived radionuclides. If
radioactive waste contains a mixture
of radionuclides. some of which are
listed in Table I. and some of which are
listed in Table 2. classification shall be
determined as follows:

(i) If the concentration of a nuclide
listed in Table I does not exceed 0.1
times the value listed in Table 1. the
class shall be that determined by the
concentration of nuclides listed in
Table 2.

/-

172

--7 

§61.55 

protect against inadvertent intrusioll. 
The physical form and characu'risl ics 
of Class C waste must meet both the 
minimum and stability requiremelHs 
set forth in §61.56. 

(Iv) Waste that is not generally al> 
ceptable for near-surface disposal is 
waste for which form and disposal 
methods must be different. and in gen· 
eral more stringent. than those speci· 
fied for Class C waste. In the absence of 
specific requirements in this part. such 
waste must be disposed of in a geologic 
repository as defined in part 60 or 63 of 
this chapter unless proposals for dis­
posal of such waste in a disposal site li­
censed pursuant to this part are ap­
proved by the Commission. 

(3) Classification determined by long· 
lived radionuclides. If radioactive 
waste contains only radionuclides list· 
ed in Table 1. classification shall be de· 
termined as follows: 

(I) If the concentration does not ex· 
ceed 0.1 times. the value in Table 1. the 
waste is Class A. 

(ii) If the concentration exceeds 0.1 
times the value in Table 1 but does not 
exceed the value in. Table 1. the waste 
is Class C. 

(iii) If the concentration exceeds the 
value in Table 1. the waste is not gen­
erally acceptable for near-surface dis­
posal. 

(Iv) For wastes containing mixtures 
of radionuclides listed in Table I. the. 
total concentration shall be deter­
mined by the sum of fractions rule de­
scribed in paragraph (a) (7) of this sec­
tion. 

TABLE 1 

Radionuclide 

e-·14. 
C-14 in ad;valed metal,. .. 
Nt-59 in activated metal . 
Nb-94 in activated melal . 
Tc-99 ... 
H29. 
Alpha emitting transuranic nuclides with I1all· 

Ide greater lIIan 5 years 
Pu-241 ..... . 
Cm-242 ....... . ................... . 

1 Units are nanocuries per gram. 

Concenlra­
fion curies 
per cubic 

meter 

8 
80 

220 
0.2 
3 
0.08 

, 100 
'3.500 

• 20.000 

(4) Classification determined by 
short-lived radionuclides. If radio­
active waste does not contain any of 
the radionucl ides listed in Table I. 

\ 0 CFR Ch. I (\-\--04 Edition) 

clas.~ifjcat ion shall he determined 
based 011 I he concentrations shown in 
Table 2. However. as specified in para­
graph (a)(6) of this section. if radio­
active waste does not contain any 
nuclides listed in either Table 1 or 2. it 
is Class A. 

(I) If the concentration does not ex­
ceed the value in Column I. the waste 
is Class A. 

(ii) If the concentration exceeds the 
value in Column 1. but does not exceed 
the value in Column 2. the waste is 
Class B. 

(iii) If the concentration exceeds the 
value in Column 2. but does not exceed 
the value in Column 3. the waste is 
Class C. 

(iv) If the. concentration exceeds the 
value in Column 3. the waste is not 
generally acceptable for near-surface 
disposal. 

(v) For wastes containing mixtures of 
the nuclides listed in Table 2. the total 
concentration shall be determined by 
the sum of fractions rule described in 
paragraph (a) (7) of this section. ~ 

TABLE 2 

Concentration. curies 
per cubic meter 

Radionuclide 

Col. I Col. COl. 
2 3 

Total of all nuclides with less than 5 
year han·lite . _ ........................ ,. 700 (') (') 

H-3. . .. .............................. . 40 ('j ('j 
~ ....................................... .. 700 ('j ('j 
Ni-03 <. .. ............................ .. 3.5 70 700 
NHiJ in activated meteJ ................... . 3S 700 7000 
5r-90. . ............................... . 0.04 150 7000 
Cs-137 ........................ . 44 4600 

'There are no limits established for these radionuctides in 
Oass Bore wasles. Practical consideration. such as the ef· 
'eelS 0' external radiation and inlernal heal generation on 
Iransportation. handling. and disposal will limiI the concentra­
tions ror thHe wastes_ These wastes shall be Oass 8 unless 
'he concen.rabons 01 OIher nuclides in Table 2 determine lhe 
'4!Y3ste 10 be Class C independent of these nudides. 

(5) Classification determined by both 
long· and short-lived radionuclides. If 
radioactive waste contains a mixture 
of radionuclides. some of which are 
listed in Table I. and some of which are 
listed in Table 2. classification shall be 
determined as follows: 

(I) If the concentration of a nuclide 
listed in Table I does noe exceed 0.1 
times the value listed in Table 1. the 
class shall be that determined by the 
concentration of nuclides listed in 
Table 2. 

112 

<: 



T

APPROVED for Release for
Unlimited .(Release to Public)

CBU-PIT-2005-00141
REV. 0

June 30, 2005

KEYWORDS:
Salt Disposition

Highly Radioactive Nuclide
Sr-90, Cs-137, TRU

DDA, ARP, MCU, SWPF
Removal Efficiency

RETENTION: PERMANENT
CLASSIFICATION: U
Does not contain UCNI

Removal of Highly Radioactive Nuclides
from SRS Salt Waste

S. H. Reboul

Westinghouse Savannah River Company
Closure Business Unit
Planning Integration & Technology Department
Aiken, SC 29808

Prepared for U.S. Department of Energy Under Contract No. DE-AC09-96S

APPROVED for Release for 
Unlimited (Release to Public) 

CBU-PIT -2005-00141 
REV.Q 

June 30, 2005 

KEYWORDS: 
Salt Disposition 

Highly Radioactive Nuclide 
Sr-90, Cs-137, TRU 

DDA, ARP, MCU, SWPF 
Removal Efficiency 

RETENTION: PERMANENT 
CLASSIFICATION: U 
Does not contain UCNI 

Removal of Highly Radioactive Nuclides 
from SRS Salt Waste 

Westinghouse Savannah River Company 
Closure Business Unit 
Planning Integration & Technology Department 
Aiken, SC 29808 

S. H. Reboul 

Prepared for U.S. Department of Energy Under Contract No. DE-AC09-96S , 



i

Approval Page:

Pray9dpby

ý/&/O5-
7 '/

S. H. Reboul, CBU Technical Integration and Process Development Date

Reviewed by:

VVr
J. A. Pike, CBU Technical Integration and Process Development Date

F f iio)aa

flu- fqee~~lL~
T. F. England, General Counsel

Approved by:

Date

Ž/ '0

S. A. Thomas, Manager, CBU Technical Planning Date

Removal of Highly Radioactive Nuclides from SRS Salt Waste CBU-Prr-2005-00141
Rev. 0

6/30/005

2 of 28

\\ 

Approval Page: 

S. H. Reboul, CBU Technical Integration and Process Development 

Reviewed by: 

J. A. Pike, CBU Technical Integration and Process Development 

k1l-, ~ft7 f.£+iI:± 
T. F. England, General Counsel ~ 

Approved by: 

~tJ·~ 
~) .. 

S. A. Thomas, Manager, CBU Technical Planning 

Removal of Highly Radioactlve Nuclides from SAS San Wasle 

2 of 28 

Date 

Date 

Date 

Date 

CBU·PIT·2005-00141 
Rev. 0 

6I3Of2OO5 



i

Table of Contents

Sum m ary of R evisions ...............................................................................................
Executive Sum m ary ..............................................................................................
Introduction ...................................................................... ...........................
Specific O bjectives ..............................................................................................
M ethodology ......................................................................................................

B ackg round. .......................................................................................................
Approach for Determining Highly Radioactive Nuclides .................................... ...........
Radionuclide Inventories in Untreated Salt Waste ......................................................
Calculation of Inventory Limits and Comparisons Against Radionuclide Inventories ........
Calculation of Radionuclide Removal Efficiencies .....................................................

Results and Discussion ................. ...............................
Radionuclide Inventories in Untreated Salt Waste ....................................................
Comparison with Inventory Limits Based on the Class A Risk Measure ....................
Comparison with Inventory Limits Based on the Public Dose Risk Measure .....................
Comparison with Inventory Limits Based on the Intruder Dose Risk Measure ..................
Comparison with Inventory Limits Based on the Worker Dose Risk Measure ...................
Summary of Highly Radioactive Nuclides ................................................... I ......
Planned Treatment Processes and Projected Removal Efficiencies ...............................

C onclusions ...................................................................................................
R eferences .......................................................................................................

4
5
6
7
7
7

.7
9
9

11
12
12
12
13
13
13

14
21
27
27

Removal of Highly Radioactive Nuclides from SRS Salt Waste CBU-PIT-2005-00141
Rev. 0

6/30/2005

3 of 28

· Table of Contents 

Summary of Revisions. . . . . . . . . . . . . . . . . . . . . ... . . . . . .. . . .. . . . . . . .. . . . . . . . . . . . . . .. . . . . . .. . . .. .. .. . .. ..... .............. 4 
Executive Summary.. . . . ... . . .. . .. .. . . . . .. . . . . . . . . .. . . . . .. . . . . . . . . . .. .. . .. . . . . . . . . . . .. . . . . . . .. . . . .. . .. . . . . . .. . . .. 5 
Introduction .............. ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .................. 6 
Specific Objectives......................................................... . . . .. . . . . . ... . .. . . . . . .. . . . . . . . . . . . ... 7 
Methodology. " . . .. . . . ... . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . .. . . . .. .... . . . . . . . . . . . .. . .. .. . . . .. . . . . .. . . . . . . . . .. . . . . . . ... 7 

Background ............ : ............. :.............................................................................. 7 
Approach for Determining Highly Radioactive Nuclides ................................................ 7 
Radionuclide Inventories in Untreated Salt Waste................................................. ..... 9 
Calculation of Inventory Limits and Comparisons Against Radionuclide Inventories........ 9 
Calculation of Radionuclide Removal Efficiencies.................................................. ... 11 

Results and Discussion ............................ ; ...................... '.' . . . ... . . . . . . . . . . .......................... 12 
Radionuclide Inventories in Untreated Salt Waste................................................. ..... 12 
Comparison with Inventory Limits Based on the Class A Risk Measure......... ................ 12 
Comparison with Inventory Limits Based on the Public Dose Risk Measure...... ............ ... 13 
Comparison with Inventory Limits Based on the Intruder Dose Risk Measure.................. 13 
Comparison with Inventory Limits Based on the Worker Dose Risk Measure................... 13 
Summary of Highly Radioactive Nuclides........... ................................................ 14 
Planned Treatment Processes and Projected Removal Efficiencies............................... 21 

Conclusions.. . ... . . ... . . . . .. . .. . . ... . . . .. . . . .... . . . .. .. . . . . . . . . .. ... .. .. . . . . .. .. .. . .. . . . . . . .. . . . .. ................... 27 
References ........ '.' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 

Removal of Highly Radioactive Nuclides from SRS Salt Waste 

30f28 

CBU-PIT -2005-00141 
Rev. 0 

6/30/2005 



Summary of Revisions

6/2005 Revision 0, Initial Issue

Removal of Highly Radioactive Nuclides from SRS Salt Waste CBU-PIT-2005-00141
Rev. 0

6/30/2005

4 of 28

t,) 

.' 

summary of Revisions 

612005 Revision 0, Initial Issue 

Removal of Highly Radioactive Nudides from SRS Salt Waste 

4of28 

CBU-PIT-2005-00141 
Rev. 0 

6/30/2005 



Removal of Highly Radioactive Nuclides from SRS Salt
Waste

Executive Summary

Removal of highly radioactive nuclides from salt waste is required to assure that the waste can be
dispositioned in accordance with all applicable performance objectives of 10 CFR 61 Subpart C, as well
as all applicable state and federal environmental regulations. Highly radioactive nuclides in SRS salt
waste were identified through assessment of risks to the public, SRS workers, and environment.
Specifically, inventories of radionuclides in untreated salt waste (without salt-based nuclide removal
treatments) were compared against inventory limits based on Nuclear Regulatory Commission (NRC)
Class A and 10 CFR 61 Subpart C criteria. Using this approach, Sr-90, Cs-137, and the alpha-emitting
transuranic (TRU) nuclides were determined to be highly radioactive, based on contributing most
significantly to the radiological risks to the workers, the public, and the environment and therefore
requiring treatment for removal to the maximum extent practical as required by Section 3116 (a)(2).
The following four observations were instrumental in identifying these highly radioactive nuclides.
First, Sr-90, Cs-.1 37, and the alpha-emitting TRU nuclides are the only radionuclides in the untreated salt
waste having total inventories exceeding the Saltstone Disposal Facility (SDF) inventory limits based on
NRC Class A criteria (10 CFR 61.55). Second, no radionuclides in untreated salt waste have average
inventories in an SDF vault exceeding 10% of the vault inventory limits based on a maximum annual
public dose rate of 25 mrem (10 CFR 61.41). Third, Cs-137 is the only radionuclide in untreated salt
waste with an average untreated inventory in an SDF vault exceeding 10% of the vault inventory limit
based on a maximum annual intruder dose of 500 mrem (10 CFR 61.42). Fourth, Cs-137 is the only
radionuclide with a total inventory in untreated salt waste exceeding 10% of the SDF inventory limit
based on a maximum annual worker gamma dose of 5.0 rem (CFR 61.43). Additionally, Sr-90, Cs-137,
and the alpha-emitting TRU nuclides are the radionuclides driving worker inhalation dose.

Removal of the highly radioactive nuclides will be accomplished using a combination of the following
five treatment processes: 1) deliquification, dissolution, and adjustment (DDA); 2) actinide removal
process (ARP) without monosodium titanate (MST) sorption; 3) ARP with MST sorption; 4) modular
caustic side solvent extraction unit (MCU); and 5) Salt Waste Processing Facility (SWPF) treatments.
Removal efficiencies for each of the planned treatment processes are identified in the table below.
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Treatment Removal Efficiency, %
Process Sr-90 Cs-137 a-emitting TRU

Nom Low High Nom Low High Nom Low High

DDA 66 46 86 50 30 70 63 43 83
ARP w/o MST 99.6 98.0 99.9 -- 0 -0 -0 78 50 93
ARP w/ MST 99.997 99.4 99.999 -0 -0 -0 98 90 99.9
MCU 0 0 0 91 90 92 0 0 0.
SWPF 99.98 99.4 99.995 99.998 99.99 99.998 96 90 99.5

For strontium removal, the relative treatment efficacies are:
ARP w/MST = SWPF > ARP w/o MST > DDA >> MCU

For cesium removal, the relative treatment efficacies are:
SWPF > MCU > DDA >> ARP

For alpha-emitting TRU removal, the relative treatment efficacies are:
ARP w/MST = SWPF > ARP w/o MST > DDA >> MCU

Introduction

Removal of highly radioactive nuclides from SRS salt waste is required prior to disposition, to ensure
the final waste meets the Nuclear Regulatory Commission (NRC) Class C limits (10 CFR 61.55) and all
performance objectives of 10 CFR 61 Subpart C. These performance objectives include compliance
with public safety and environmental dose limits as defined in 10 CFR 61.41, intruder protection as
defined in 10 CFR 61.42, and worker protection as defined in 10 CFR 61.43. Compliance with the NRC
Class C limits and all performance objective limits will be achieved by processing the waste through a
series of treatments tailored to removal of the highly radioactive nuclides. This document provides the
technical basis for:

a) identifying which nuclides in untreated salt waste are highly radioactive; and

b) quantifying treatment removal efficiencies for the highly radioactive nuclides.

The treatment processes addressed in this document include:

0

S

Deliquification, Dissolution, and Adjustment (DDA)
Actinide Removal Process (ARP) w/o Monosodium Titanate (MST) Sorption
ARP w/ MST Sorption
Modular Caustic Side Solvent Extraction Unit (MCU)
Salt Waste Processing Facility (SWPF)
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Specific Objectives

1) Identify approach for determining highly radioactive nuclides;

2) Identify soluble and insoluble radionuclide inventories in untreated salt waste;

3) Identify nuclides in untreated salt waste that are highly radioactive;

4) Identify bases and assumptions of planned radionuclide treatment processes; and

5) Quantify treatment removal efficiencies for the highly radioactive nuclides.

Methodology

Background

Thirty-six million gallons of radioactive waste are currently stored in 49 underground tanks at the
Savannah River Site (SRS). Most of this material was generated through defense-related reprocessing
of spent nuclear fuel. By volume, approximately 93% of the material is "salt waste" consisting of
supernatant salt solution and solid precipitated salts. Disposition of the salt waste will be accomplished
through a three-step approach. First, the salt waste will be treated to remove highly radioactive nuclides
to the maximum extent practical. Second, the treated salt waste will be stabilized in a grout matrix.
Lastly, the stabilized waste will be disposed in vaults at the SRS Saltstone Disposal Facility (SDF).

This document provides the technical basis for identifying the highly radioactive nuclides in SRS salt
waste and for quantifying the removal efficiencies of the planned treatment processes. Note that in this
document the term "treatment" applies solely to the processes performed for the purpose of removing
highly radioactive nuclides from salt waste. This includes DDA, ARP, MCU, and SWPF treatments. In
this document, "treatment" does not refer to processes performed: a) before waste was received into the
underground storage tanks (i.e., segregation of waste and pH neutralization); b) for the purpose of
maximizing tank space (i.e., evaporation); or c) for the purpose of stabilization at SDF (i.e., grouting).
Consistent with this approach, the term "untreated waste" refers solely to waste that has not undergone
treatments tailored to removing highly radioactive nuclides. Specifically, this means the waste has not
been treated by DDA, ARP, MCU, or SWPF.

Approach for Determining Highly Radioactive Nuclides

From a technical perspective, the approach for identifying highly radioactive nuclides should be based
on quantification of the potential risks impacting public, worker, and environmental health. For
radionuclides, this includes consideration of the potential internal and external radiation doses associated
with near proximity exposure to the waste, as well as remote exposures associated with inhalation and/or.
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Background 

Thirty-six million gallons of radioactive waste are currently stored in 49 underground tanks at the 
Savannah River Site (SRS). Most of this material was generated through defense-related reprocessing 
of spent nuclear fuel. By volume, approximately 93 %of the material is "salt waste" consisting of 
supernatant salt solution and solid precipitated salts. Disposition of the salt waste will be accomplished 
through a three-step approach. First, the salt waste will be treated to remove highly radioactive nuclides 
to the maxiinum extent practical. Second, the treated salt waste will be stabilized in a grout matrix. 
Lastly, the stabilized waste will be disposed in vaults at the SRS Saltstone Disposal Facility (SDF). 

This document provides the technical basis for identifying the highly radioactive nuclides in SRS salt 
waste and {or quantifying the removal efficiencies of the planned treatment processes. Note that in this 
document the tenn "treatment" applies solely to the processes perfonned for the purpose of removing 
highly radioactive nuclides from salt waste. This includes DDA, ARP, MCV, and SWPF treatments. In 
this document, "treatment" does not refer to processes perfonned: a) before waste was received into the 
underground storage tanks (i.e., segregation of waste and pH neutralization); b) for the purpose of 
maximizing tank space (i.e., evaporation); or c) for the purpose of stabilization at SDF (i.e., grouting). 
Consistent with this approach, the tenn ''untreated waste" refers solely to waste that has not undergone 
treatments tailored to removing highly radioactive nuclides. Specifically, this means the waste has not 
been treated by DDA, ARP, MCV, or SWPF. 

Approach for Determining Highly Radioactive Nuclides 

From a technical perspective, the approach for identifying highly radioactive nuclides should be based 
on quantification of the potential risks impacting public, worker, and environmental health. For 

, radionuclides, this includes consideration of the potential internal and external radiation doses associated 
with near proximity exposure to the waste, as well as remote exposures associated with inhalation and/or, 
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ingestion of material transported via environmental media. For final disposition of the treated waste,
NRC Class C limits (10 CFR 61.55) and the performance objectives of 10 CFR 61 Subpart C provide
clear bases for gauging acceptable radiological risks. However, for the purpose of determining highly
radioactive nuclides in the untreated waste, application of these bases is less clear.

For identifying highly radioactive nuclides, an approach was taken that recognizes the disposition
requirements of 10 CFR 61 (sections 55, 41, 42, and 43) and is sufficiently conservative to take
variabilities and uncertainties into account. The approach provides a basis for identifying the
radionuclide removal needs. As such, the approach is based on comparisons of quantities of
radionuclides in untreated waste versus applicable radionuclide limits. An observation that the quantity
of a nuclide exceeds a significant fraction of any one disposal limit is consistent with a conclusion that
the given nuclide is highly radioactive. Correspondingly, an observation that the quantity of a nuclide is
an insignificant fraction of all applicable disposal limits is consistent with a conclusion that the given
radionuclide is not highly radioactive.

For these comparisons, the first measure of radiological risk addresses the need for the final waste form
to meet NRC Class C limits (10 CFR 61.55). In this case, the basis for comparison is set at the NRC
Class A limits, which are significantly lower than the Class C limits. In the case of the long-lived
nuclides, the Class A limits are 10% of the Class C limits. In the case of most of the short-lived nuclides,
the Class A limits are vanishingly small fractions of the Class C limits (from 6E-4% to 5E-1% of the
Class C limits). The rationale for using Class A limits rather than a predefined fraction of the Class C
limits is based on the belief that quantities below Class A limits have minimal disposal requirements and
pose an insignificant risk to the public and to workers.

The second, third, and fourth measures of radiological risk address the need for the final waste form to
meet the performance objectives pertaining to public, environmental, intruder, and worker safety (10
CFR 61.41, 61.42, and 61.43). In these cases, the bases for comparisons are set at 10% of the
performance objectives limits, namely 10% of the public and environmental annual dose limit of 25
mrem; 10% of the intruder annual dose limit of 500 mrem; and 10% of the worker annual dose limit of
5.0 rem.

In this analysis, comparisons were made between the total radionuclide inventories in untreated salt
waste (or some fraction of the total inventories, when applicable) and the inventory limits derived for
each radiological measure identified above. Radionuclides with inventories exceeding the limits based
on any of the four radiological measures (Class A, 10% of the 25 mrem public annual dose, 10% of the
500 mrem intruder annual dose, or 10% of the worker annual dose) were identified as highly radioactive
and assumed to require removal to the maximum extent practical, prior to disposition.

It is recognized that using the total radionuclide inventories as bases for the risk-based decisions
produces conclusions reflective of average waste compositions, rather than the full range of waste
compositions. Although this approach may seem non-conservative, it is assumed appropriate for this
analysis for the following reasons: 1) the uncertainties of the total radionuclide inventories are
significantly lower than the uncertainties of the inventories in individual waste tanks; 2) the'total
radionuclide inventories provide a good indication of the relative impacts of the various radionuclides;
and 3) the risk measures are sufficiently conservative to accommodate most concentration fluctuations.
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The methods for deriving the radionuclide inventory limits for the various measures of radiological risk
are provided in the section entitled Calculation of Inventory Limits.

Radionuclide Inventories in Untreated Salt Waste

Soluble and insoluble radionuclide inventories in untreated salt waste were identified based on the
characterization data reported by Tran (2005). Soluble inventories of C-14, Na-22, and Al-26 were
determined by summing the inventories reported for the precipitated salt phase (referred to by Tran as
the insoluble salt phase) and the total free supernatant phase. Soluble inventories of all other
radionuclides were those reported for the total free supernatant phase.

Insoluble inventories of all radionuclides were calculated based on the assumption that entrained sludge
exists in salt feed at a concentration of 600 mg/L (600 mg/L is the design basis for the various salt
treatment processes). Based on a total projected salt feed volume of 197 Mgal (DOE, 2005) and a total
estimated dry sludge mass of 2.9E+6 kg (WCS1.5, 2005), the entrained sludge represents 8.4% of the
total sludge. Consequently, the insoluble radionuclide inventories in salt were determined by
multiplying 0.084 by the total dry sludge radionuclide inventories.

Soluble and insoluble inventories of alpha-emitting transuranic (TRU) nuclides were calculated by
summing the respective soluble and insoluble phase inventories of Np-237, Pu-238, Pu-239, Pu-240, Pu-
242, Am-241, Am-243, Cm-242, Cm-243, Cm-244, and Cm-245.

Total inventories of radionuclides were computed by the summing the soluble and insoluble inventories.

Note that the radionuclides quantified in this analysis were those radionuclides important from the
perspective of NRC classification and the performance objectives identified in 10 CFR 61 Subpart C
(public and environmental risk, intruder risk, and worker risk).

Calculation of Inventory Limits and Comparisons Against Radionuclide Inventories

For the NRC Class A radiological risk measure, comparisons were made between the total radionuclide
inventories in untreated salt waste and the total curie limits for the SDF under the assumption that NRC
Class A concentration limits applied andradionuclide inventories were evenly distributed across the
total volume of grout at the SDF. Specifically, the total curie limits for the SDF were determined by
multiplying the Class A concentration limits by: a) the total projected grout volume (6.4E+5 cubic
meters (DOE, 2005)) when the Class A concentration limit was given in units of curies per cubic meter;
and b) the product of the total projected grout mass (1.IE+12 g, which assumes a grout density of 1.7
g/mL) and the activity conversion factor (1E-9 Ci/nCi), when the Class A concentration limit was given
in units of nCi/g. Ratios of "the total curies in untreated salt waste" to "the Class A total curie limit"
were then calculated and reported. Ratios exceeding one are indicative of nuclides considered to be
highly radioactive.
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For the public, environmental, and intruder risk measures, comparisons were made between the average
untreated radionuclide inventories in 9.6 Mgal of grout (Vault 4 capacity) and the applicable inventory
limits for Vault 4. This was done under the assumption that the Vault 4 limits would be representative
of the limits of other vaults of the same size and thus would provide a reasonable measure of which
nuclides require treatment to meet public and intruder dose limits. The average untreated inventories in
9.6 Mgal of grout were determined by multiplying the total radionuclide inventories by a factor of 0.057.
This factor represents the proportion of the waste in 9.6 Mgal grout and is computed by dividing the
Vault 4 volume (9.6 Mgal) by the total projected grout volume (168 Mgal, as reported by DOE in 2005).
For the public and environmental risk measures, the inventory limits for a 9.6 Mgal vault were those
values reported by Cook et. al. (2005) under the "all pathways" scenario, which assumes a public dose
rate of 25 mrem/yr. Ratios of the "average radionuclide inventories in 9.6 Mgal grout" to the "Vault 4
public dose inventory limits" were then calculated and reported. Ratios exceeding 0.10 (10%) are.
indicative of nuclides considered to be highly radioactive.

For the intruder risk measure, comparisons were made between the average untreated inventories in 9.6
Mgal of grout and the inventory limits for Vault 4 assuming a 500 mrem annual intruder dose. In the
intruder case, the inventory limits for Vault 4 were computed by multiplying by five the inventory limits
reported by Cook et. al. (2005) under the "intruder" scenario, which assumes an intruder dose rate of
100 mrem/yr. Ratios of the "average radionuclide inventories in 9.6 Mgal grout" to the "Vault 4
intruder dose inventory limits" were then calculated and reported. Ratios exceeding 0.10 (10%) are
indicative of nuclides considered to be highly radioactive.

For the worker dose risk measure, two scenarios were considered, one focusing on worker gamma dose
and the other focusing on radionuclides driving potential inhalation dose. For the worker gamma dose
risk measure, comparisons were made between the total radionuclide inventories in untreated salt waste
(normalized for Cs- 137/Ba- 137m dose) and the SDF Cs- 137/Ba- 137m inventory limit based on a 5.0
rem annual worker gamma dose. Note that the SDF worker gamma limit is defined as 0.2 curies Cs-137
per gallon of salt solution (Howell, 2005), based on a maximum annual worker gamma dose of 1.0
rem/yr. To convert this to an inventory limit representing a 5.0 rem annual worker gamma dose, the
facility concentration limit was multiplied by the total projected volume of salt feed (107 Mgal) and a
factor of five (5.0 rem/1.0 rem). This results in a total facility limit of 1.1E+8 curies Cs-137. For
comparisons against this limit, the inventories of photon-emitting radionuclides in the untreated salt
waste were normalized for Cs-137/Ba-137m dose, by multiplying each radionuclide inventory by the
ratio of the radionuclide's photon dose constant to the Cs-137/Ba-137m photon dose constant (this ratio
is referred to as the dose normalization factor). Photon dose constants used in these calculations were
those reported by Unger and Trubey (1982). In cases where the nuclide had short-lived decay products
(cases such as Ru-106, Sn-126, Sb-125, Ce-144, Np-237), the photon dose contributions of the decay
products were taken into account. For example, in the case of Sn-126, the overall photon dose constant
was the sum of the Sn-126 constant, the Sb-126m dose constant, and 14% of the Sb-126 constant (this
takes into account that 100% of the Sn- 126 disintegrations produce Sb- 126m and 14% of the Sb- 126m
disintegrations produce Sb-126). Ratios of the "normalized radionuclide inventories" to the "worker
gamma dose inventory limit" were then calculated and reported. Ratios exceeding 0.10 (10%) are
indicative of nuclides considered to be highly radioactive.
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For the worker inhalation dose measure, the primary radionuclides contributing to the total potential
inhalation dose were identified. This was accomplished by: a) multiplying the radionuclide inventories
in untreated salt waste by the nuclide-specific inhalation dose factors to identify the total potential
inhalation dose associated with each nuclide; b) summing the contributions of all the total potential
inhalation doses; and c) computing the percentage of the cumulative potential inhalation dose associated
with each nuclide. Radionuclides contributing one percent or more of the cumulative potential
inhalation dose were considered to be the primary drivers of the potential inhalation dose. The
inhalation dose factors used in these calculations were those reported by EPA (1988), converted from
units of Sv/Bq to units of rem/Ci by multiplying the Sv/Bq values by factors of 3.7E+12 rem-Bq/Sv-Ci.
Note that this risk measure does not address the significance of worker inhalation dose, however, it
serves two important functions - it provides a basis for comparison of the nuclides deemed highly
radioactive by the other risk measures and assures that the primary worker inhalation risk drivers are
identified.

Calculation of Radionuclide Removal Efficiencies

Radionuclide removal efficiencies for the planned treatment processes were calculated for all nuclides
deemed highly radioactive. Assumptions regarding removal efficacies of the various processes are
given in the Results and Discussion section, along with flow schemes and process descriptions for each
treatment scheme. In every case, removal efficiencies were calculated by applying the appropriate
treatment assumptions to the expected soluble and insoluble constituent phases. The bases for the
soluble-insoluble distributions are the soluble and insoluble inventories identified for the untreated salt
waste (Table 1).

Nominal removal efficiencies were calculated based on the exact soluble-insoluble distributions given in
Table 1 and the nominal decontamination assumptions. Lower and upper bounds of the removal
efficiencies were calculated based on conditions where the soluble-insoluble distributions increased and
decreased by a factor of four (a total factor of sixteen), and lower and upper bounds of the
decontamination assumptions were applied, when available. In cases where bounding decontamination
assumptions were not available, lower and upper bounding removal efficiencies were calculated based
on nominal decontamination assumptions applied to lower and upper bounding soluble-insoluble
distributions. Note that in several cases, the nominal decontamination factors were chosen
conservatively and actually represent lower bounding decontamination factors.

Removal efficiencies for alpha-emitting TRU were identified based on weighted averages of the
individual removal efficiencies of Pu-238, Am-241, Cm-244, and Pu-239. These four nuclides
contribute approximately 99% of the TRU alpha activity and therefore are considered the primary
nuclides impacting TRU alpha removal.
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Results and Discussion

Radionuclide Inventories in Untreated Salt Waste

Soluble, insoluble, and total radionuclide inventories in untreated salt waste are given in Table 1.
Soluble radionuclides are those radionuclides present as dissolved ions in supernatant solution or as
precipitated salts that will dissolve upon addition of water. Insoluble radionuclides are those
radionuclides present in the form of entrained sludge. Note that for a given radionuclide, the soluble-
insoluble distribution is an important factor determining treatment requirements for effective removal.
Soluble constituents typically require chemically-specific removal technologies tailored to the particular
constituent. Insoluble constituents are typically removed through physical methods such as filtration or
centrifugation.

Based on the information in Table 1, it can be seen that the soluble-insoluble distribution varies
considerably as a function of radionuclide, as would be expected based upon the chemical differences of
the various constituents. About 20% of the radionuclides exist primarily as soluble constituents, 40%
exist primarily as insoluble constituents, and 40% exist with soluble and insoluble contributions of the
same order of magnitude. This suggests about 20% of the isotopes would be relatively unaffected by a
physical separation process (such as filtration), 40% would be highly affected by physical separation,
and 40% would be moderately affected by physical separation.

Based on the total radionuclide inventories, Cs- 137 is clearly the predominant radionuclide from an
activity perspective. (It should be noted that Ba-137m, the short-lived decay product of Cs-137, is also a
predominant radionuclide. Ba-137m is not included in Table 1, but is taken into account when
calculating inventory limits for Cs-137). As seen in the table, activities of all other radionuclides
(except for Ba- 137m) are one or more orders of magnitude below that of Cs- 137.

Also Of note are the primary radionuclides contributing to alpha-emitting TRU activity. Approximately
82% of the alpha-emitting TRU inventory is Pu-238, 11% is Am-241, 4% is Cm-244, and 3% is Pu-239.
All other alpha-emitting TRU nuclides contribute minimally to the TRU inventory.

Comparison with Inventory Limits Based on the Class A Risk Measure

Table 2 gives: a) the radionuclide inventories in untreated salt waste, b) the NRC Class A inventory
limits for the total projected grout volume, and c) the ratios of the inventories to the limits. Based on the
ratios, it is clear that the inventories of Sr-90, Cs-137, and alpha-emitting TRU in untreated salt waste
are significantly greater than the inventory limits. Specifically, the inventory of Sr-90 is 290 times the
limit, the inventory of Cs-137 is 170 times the limit, and.the inventory of alpha-emitting TRU is 25
times the limit. Consequently, Sr-90, Cs-137, and alpha-emitting TRU ate considered to be highly
radioactive nuclides requiring treatment prior to disposition. Because 99% of the TRU alpha activity is
attributed to Pu-238, Am-24 1, Cm-244, and Pu-239, it is these TRU nuclides that are considered to be
highly radioactive and require treatment prior to disposition. Most important is the removal of Pu-238,
since it is responsible for 82 % of the TRU alpha activity.
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Results and Discussion 

Radionuclide Inventories in Untreated Salt Waste 

Soluble, insoluble, and total radionuclide inventories in untreated salt waste are given in Table 1. 
Soluble radionuclides are those radionuclides present as dissolved ions in supernatant solution or as 
precipitated salts that will dissolve upon addition of water. Insoluble radionuclides are those 
radionuclides present in the form of entrained sludge. Note that for a given radionuclide, the soluble­
insoluble distribution is an important factor determining treatment requirements' for effective removal. 
Soluble constituents typically require chemically-specific removal technologies tailored to the particular 
constituent. Insoluble constituents are typically removed through physical methods such as filtration or 
~entrifugation. 

Based on the information in Table 1, it can be seen that the soluble-insoluble distribution varies 
considerably as a function of radionuclide, as would be expected based upon the chemical differences of 
the various constituents. About 20% of the radionuclidesexist primarily as soluble constituents, 40% 
exist primarily as insoluble constituents, and 40% exist with soluble and insoluble contributions of the 
same order of magnitude. This suggests about 20% of the isotopes would be relatively unaffected by a 
physical separation process (such as filtration), 40% would be highly affected by phys.ical separation, 
.and 40% would be moderately affected by physical separation. 

Based on the total radionuclide inventories, Cs-137 is clearly the predominant radionuclide from an 
activity perspective. (It should be noted that Ba-137m, the short-lived decay product ofCs-137, is also a 
predominant radionuclide. Ba-137m is not included in Table 1, but is taken into account when 
calculating inventory limits for Cs-13 7). As seen in the table, activities of all other radionuclides 
(except for Ba-137m) are one or more orders of magnitude below that ofCs-137. 

Also of note are the primary radionuclides contributing to alpha-emitting TRU activity. Approximately 
82% of the alpha-emitting TRU inventory is Pu-238, 11% is Am-241 , 4% is Cm-244, and 3% is Pu-239. 
All other alpha-emitting TRU nuclides contribute minimally to the TRU inventory. 

Comparison with Inventory Limits Based on the Class A Risk Measure 

Table 2 gives: a) the radionuclide inventories in untreated salt waste, b) the NRC Class A inventory 
limits for the total projected grout volume, and c) the ratios of the inventories to the limits. Based on the 
ratios, it is clear that the inventories ofSr-90, Cs-137, and alpha-emitting TRU in untreated salt waste 
are significantly greater than the inventory limits. Specifically, the inventory of Sr-90 is 290 times the 
limit, the inventory ofCs-137 is 170 times the limit, and.the inventory of alpha-emitting TRU is 25 
times the limit. Consequently, Sr-90, Cs-137, and alpha-emitting TRU are considered to be highly 
radioactive nuclides requiring treatment prior to disposition. Because 99% of the TRU alpha activity is 
attributed to Pu-238, Am-241, Cm-244, and Pu-239, it is these TRU nuclides that are considered to be 
highly radioactive and require treatment prior to disposition. Most important is the removal ofPu-238, 
since it is responsible for 82 % of the TRU alpha activity. 
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For all other nuclides compared against the Class A risk measure, the ratios of the inventories to the
limits are clearly less than one (by a factor of three or more), suggesting these nuclides are not highly
radioactive from a Class A perspective.

Comparison with Inventory Limits Based on the Public Dose Risk Measure

Table 3 gives: a) the average radionuclide inventories projected for a 9.6 Mgal volume of grout (the
Vault 4 grout volume); b) the Vault 4 inventory limits based on a 25 mrem/yr public dose limit, and c)
the ratios of the average inventories to the inventory limits. For all nuclides, the ratios of the average
inventories to the inventory limits are significantly less 0.10 (by one or more orders of magnitude),
suggesting no nuclides are highly radioactive from the public dose perspective.

Comparison with Inventory Limits Based on the Intruder Dose Risk Measure

Table 4 gives: a) the average radionuclide inventories projected for a 9.6 Mgal volume of grout (the
Vault 4 grout volume); b) the Vault 4 inventory limits based on a 500 mrem/yr intruder dose limit, and c)
the ratios of the average inventories to the inventory limits. Based on the results, it is clear that Cs-137
is the only nuclide with a ratio greater than 0.10. Specifically, the ratio for Cs-137 is 0.21,
approximately twice the intruder dose risk measure. Although already deemed a highly radioactive
nuclide based on the Class A risk measure, the intruder dose measure confirms the importance of
providing Cs-137 treatment prior to disposition. All other nuclides have ratios significantly less than
0.10 (by two or more orders of magnitude), suggesting these other nuclides are not highly radioactive
from the intrud'er dose perspective.

Comparison with Inventory Limits Based on the Worker Dose Risk Measure

Results of the comparisons based on the gamma exposure and inhalation dose risk measures are given in
Table 5A and 5B, respectively.

Table 5A gives: a) the radionuclide inventories in untreated salt waste, b) the Cs- 137/Ba- 13 7m dose
normalization factors, and c) the ratios of the normalized inventories to the Cs-137/Ba-137m inventory
limit, based on a worker gamma dose rate of 5.0 rem/yr. From the results, it is clear that Cs-137 is the
only nuclide with a ratio greater than 0.10. Specifically, the ratio for Cs-137 is 1.0, tens times the
worker gamma dose risk measure. Although already deemed a highly radioactive nuclide based on the
Class A and intruder dose risk measures, the worker gamma dose risk measure confirms the importance
of providing Cs- 137 treatment prior to disposition. All other nuclides have ratios significantly less than
0.10 (by one or more orders of magnitude), suggesting these other radionuclides are not highly
radioactive from the worker gamma dose perspective.

Table 5B gives: a) the radionuclide inventories in untreated salt waste, b) the inhalation dose factors, and
c) the percentages of the total potential inhalation dose due to each nuclide. From the results, it is clear
that Sr-90, Cs-137, and the four primary alpha-emitting TRU nuclides (Pu-238, Pu-239, Am-241, and
Cm-244) contribute the majority of the potential inhalation dose. Specifically, the percentages of the

Removal of Highly Radioactive Nuclides from SRS Salt Waste CBU-PIT-2005-00141
Rev. 0

6/30/2005

13 of 28

For 'all other nuclides compared against the Class A risk measure, the ratios of the inventories to the 
limits are clearly less than one (by a factor of three or more), suggesting these nuclides are not highly 
radioactive from a Class A perspective. ' 

Comparison with Inventory Limits Based on the Public Dose Risk Measure 

Table 3 gives: a) the average radionuclide inventories projected for a 9.6 Mgal volume of grout (the 
Vault 4 grout volume); b) the Vault 4 inventory limits based on a 25 mrem/yr public dose limit, and c) 
the ratios of the average inventories to the inventory limits. For all nuclides, the ratios of the average 
inventories to the inventory limits are significantly less 0.10 (by one or more orders of magnitude), 
suggesting no nuclides are highly radioactive from the public dose perspective. 

Comparison with Inventory Limits Based on the Intruder Dose Risk Measure 

Table 4 gives: a) the average radionuclide inventories projected for a 9.6 Mgal volume of grout (the 
Vault 4 grout volume); b) the Vault 4 inventory limits based on a 500 mrem/yr intruder dose limit, and c) 
the ratios of the average inventories to the inventory limits. Based on the results, it is clear that Cs-137 
is the only nuclide with a ratio greater than 0.10. Specifically, the ratio for Cs-13 7 is 0.21, 
approximately twice the intruder dose risk measure. Although already deemed a highly radioactive 
nuclide based on the Class A risk measure, the intruder dose measure confirms the importance of 
providing Cs-137 treatment prior to disposition. All other nuclides have ratios significantly less than 
0.10 (by two or more orders of magnitude), suggesting these other nuclides are not highly radioactive 
from the intrudh dose perspective. 

Comparison with Inventory Limits Based on the Worker Dose Risk Measure 

Results of the comparisons based on the gamma exposure and inhalation dose risk measures are given in 
Table 5A and 5B, respectively. 

Table 5A gives: a) the radionuclide inventories in untreated saIt waste, b) the Cs-137IBa-137m dose 
normalization factors, and c) the ratios of the normalized inventories to the Cs-137IBa-137m inventory 
limit, based on a worker gamma dose rate of 5.0'rem/yr. From the results, it is clear that Cs-137 is the 
only nuclide with a ratio greater than 0.10. Specifically, the ratio for Cs-137 is 1.0, tens times the 
worker gamma dose risk measure. Although already deemed a highly radioactive nuclide based on the 
Class A and intruder dose risk measures, the worker gamma dose risk measure confirms the importance 
of providing Cs-137 treatment prior to disposition. All other nuclides have ratios significantly less than 
0.10 (by one or more orders of magnitude), suggesting these other radionuclides are not highly 
radioactive from the worker gamma dose perspective. ' 

Table 5B gives: a) the radionuclide inventories in untreated salt waste, b) the inhalation dose factors, and 
c) the percentages of the total potential inhalation dose due to each nuclide. From the results, it is clear 
that Sr-90, Cs-137, and the four primary alpha-emitting TRU nuclides (Pu-238, Pu-239, Am-241, and 
Cm-244) contribute the majority of the potential inhalation dose. Specifically, the percentages of the 
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inhalation doses contributed by these nuclides are approximately 7, 3, 73, 3, 10, and 2, respectively.
Collectively, these nuclides contribute approximately 98% of the total potential inhalation dose. Each
other nuclide contributes less than one percent of the total potential inhalation dose, with contributions
from most of the nuclides being two or more orders of magnitudes lower than one percent. Clearly, Pu-
238 is the largest potential contributor of inhalation dose (73% of the total potential inhalation dose),
with Am-241 and Sr-90 being the second and third largest contributors (10 and approximately 7%,
respectively), and Cs-137, Pu-239, and Cm-244 being minor contributors (approximately 3, 3, and 2%,
respectively). Based on the results, it is clear that the nuclides most important from a worker inhalation
dose perspective are the same nuclides identified by the other radiological risk measures.

Summary of Highly Radioactive Nuclides

A summary of the nuclides considered to be highly radioactive and the technical bases for their risk-
based determination is given in Table 6. Sr-90 and alpha-emitting TRU nuclides are considered highly
radioactive based on exceeding the NRC Class A limits and being important worker inhalation dose
drivers. Cs-137 is considered highly radioactive based on exceeding the NRC Class A limit, 10% of the
intruder limit, 10% of the worker gamma limit, and being an important worker inhalation dose driver.
Based on the risk measures assessed in this analysis, no other nuclides are considered to be highly
radioactive.
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inhalation doses contributed by these nuclides are approximately 7,3, 73, 3, 10, and 2, respectively. 
Collectively, these nuclides contribute approximately 98% of the total potential inhalation dose. Each 
other nuclide contributes less than one percent of the total potential inhalation dose, with contributions 
from most of the nuclides being two or more· orders of magnitudes lower than one percent. Clearly, Pu-
238 is the largest potential contributor of inhalation dose (73% of the total potential inhalation dose), 
with Am-241 and Sr-90 being the second and third largest contributors (10 and approximately 7%, 
respectively), and Cs-137, Pu-239, and Cm-244 being minor contributors (approximately 3, 3, and 2%, 
respectively). Based on the results, it is clear that the nuclides most important from a worker inhalation 
dose perspective are the same nuclides identified by the other radiological risk measures. 

Summary of Highly Radioactive Nuclides . 

A summary of the nuclides considered to be highly radioactive and the technical bases for their risk­
based determination is given in Table 6. Sr-90 and alpha-emitting TRU nuclides are considered highly 
radioactive based on exceeding the NRC Class A limits and being important worker inhalation dose 
drivers. Cs-137 is considered highly radioactive based on exceeding the NRC Class A limit, 10% of the 
intruder limit, 10% of the worker gamma limit, and being an important worker inhalation dose driver. 
Based on the risk measures assessed in this analysis, no other nuclides are considered to be highly 
radioactive. 
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Table 1
Soluble, Insoluble, and Total Inventories in Untreated Salt Waste

Radionuclide Soluble Curies in Insoluble Curies in Total Curies in Untreated
Untreated Salt Waste Untreated Salt Waste Salt Waste

H-3 9.4E+3 Negligible 9.4E+3
C-14 5.2E+2 2.8E-1 5.2E+2
Na-22 5.1E+3 9.3E-1 5.1E+3
Al-26 2.4E+l 4.9E-1 2.4E+1
Co-60 8.6E+1 2.9E+4 2.9E+4
Ni-59 2.4E0 2.2E+2 2.2E+2
Ni-63 2.1E+2 1.9E+4 1.9E+4
Se-79. 8.9E+1 1.3E+2 2.2E+2
Sr-90 2.8E+4 7.3E+6 7.3E+6
Nb-94 7.0E-4 5.9E-2 6.OE-2
Tc-99 3.3E+4 2.2E+3 3.5E+4
Ru-106 2.3E+3 5.7E+2 2.9E+3
Sn-126 4.5E+2 1.7E+2 6.2E+2
Sb-125 9.2E+3 1.5E+4 2.4E+4
1-129 1.8E+I 9.OE-3 1.8E+1
Cs-134 2.3E+5 8.8E+2 2.3E+5
Cs-135 3.9E+2 1.5E0 3.9E+2
Cs-137 1.1E+8 4.4E+5 1.1E+8
Ce-144 5.9E0 5.OE+2 5.1E+2
Pro-147 3.8E+3 3.2E+5 3.2E+5
Sm-151 4.3E+3 3.6E+5 3.6E+5
Eu-152 2.1E+l 1.7E+3 1.7E+3
Eu-154 9. l E+2 7.6E+4 7.7E+4
Eu-155 2.4E+2 2.OE+4 2.OE+4
Th-232 1.OE-1 2.4E-1 3.4E-1
U-232 2.9E-2 4.7E-2 7.6E-2
U-233 2.7E0 8.3E0 1.1E+1
U-234 4.2E0 3.2E0 7.4E0
U-235 8.4E-2 1.3E-1 2.1E-I
U-236 3.6E-1 5.2E-1 8.8E-1
U-238 6.8E0 5.5E0 1.2E+1
Np-237 4.2E0 8.3E0 1.3E+l
Pu-238 5.7E+4 1.7E+5 2.3E+5
Pu-239 3.4E+3 4.OE+3 7.4E+3
Pu-240 9.1E+2 1.7E+3 2.6E+3
Pu-241 3.8E+4 L.OE+5 1.4E+5
Pu-242 9.4E-1 2.8E0 3.7E0
Am-241 3.6E+2 3.OE+4 3.OE+4
Am-242m 2.1E-1 1.8E+l l.8E+l
Am-243 7.OE-2 5.8E0 5.9E0
Cm-242 1.7E-I l.5E+l 1.5E+l
Cmn-243 4.1 E-2 3.4E0 3.4E0
Cm-244 1.5E+2 1.2E+4 1.2E+4
Cm-245 1.4E-2 1.2E0 1.2E0
a-emitting TRU 6.2E+4 2.2E+5 2.8E+5

Removal of Highly Radioactive Nuclides from SRS Salt Waste CBU-PIT-2005-00141
Rev. 0

6/30/2005

15 of 28

/ 

Tal?le 1 
Soluble, Insoluble, and Total Inventories in Untreated Salt Waste 

Radionuclide Soluble Curies in 
Untreated Salt Waste 

H-3 9.4E+3 
C-14 5.2E+2 
Na-22 5.lE+3 
AI-26 2.4E+l 
Co-60 8.6E+I 
Ni-59 2.4EO 
Ni-63 2.IE+2 
Se-79. 8.9E+I 
Sr-90 . 2.8E+4 
Nb~94 7.0E-4 
Tc-99 3.3E+4 
Ru-106 2.3E+3 
Sn-126 4.5E+2 
Sb-I25 9.2E+3 
1-129 1.8E+l 
Cs-134 2.3E+5 
Cs-135 3.9E+2 
Cs-137 l.lE+8 
Ce-I44 5.9EO 
Pm-I47 3.8E+3 
Sm-I51 4.3E+3 
Eu-I52 2.IE+I 
Eu-I54 9.IE+2 
Eu-I55 2.4E+2 
Th-232 1.0E-I 
U-232 2.9E-2 
U-233 2.7EO 
U-234 4.2EO 
U-235 8.4E-2 
U-236 3.6E-I 
U-238 6.8EO 
Np-237 4.2EO 
Pu-238 5.7E+4 
Pu-239 3.4E+3 
Pu-240 9.lE+2. 
Pu-24 1 3.8E+4 
Pu-242 9.4E-I 
Am-24 1 3.6E+2 
Am-242m 2.lE-I 
Am-243 7.0E-2 
Cm-242 1.7E-I 
Cm-243 4.IE-2 
Cm-244 1.5E+2 
Cm-245 1.4E-2 
a-emitting TRU 6.2E+4 
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Insoluble Curies in ' 
Untreated Salt Waste 

Negligible 
2.8E-I 
9.3E-I 
4.9E-I 
2.9E+4 
2.2E+2 
I.9E+4 
l.3E+2 
7.3E+6 
5.9E-2 
2.2E+3 
5.7E+2 
1.7E+2 
1.5E+4 
9.0E-3 
8.8E+2 
I.5EO 

4.4E+5 
5.0E+2 
3.2E+5 
3.6E+5 
1.7E+3 
7.6E+4 
2.0E+4 
2.4E-I 
4.7E-2 
8.3EO 
3.2EO 
l.3E-I 
5.2E-I 
5.5EO 
8.3EO 
1.7E+5 
4.0E+3 
1.7E+3 
I.OE+5 
2.8EO 

3.OE+4 
1.8E+I 
5.8EO 
l.5E+l 
3.4EO 
1.2E+4 
I.2EO· 

2.2E+5 
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Total Curies in Untreated 
Salt Waste 

9.4E+3 
5.2E+2 
5.IE+3 
2.4E+I 
2.9E+4 
2.2E+2 
1.9E+4 
2.2E+2 
7.3E+6 
6.0E-2 
3.5E+4 
2.9E+3 
6.2E+2 
2.4E+4 
1.8E+l 
2.3E+5 
3.9E+2 
l.lE+8 
5.lE+2 
3.2E+5 
3.6E+5 
1.7E+3 
7.7E+4 
2.0E+4 
3.4E-I 
7.6E-2 
l.lE+1 
7.4EO 
2.IE-I 
8.8E-I 
1.2E+I 
l.3E+l 
2.3E+5 
7.4E+3 
2.6E+3 
I.4E+5 
3.7EO 

3.OE+4 
1.8E+I 
5.9EO 
l.5E+l 
3.4EO 
1.2E+4 
I.2EO 

2.8E+5 
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Table 2
Comparison of Inventories in Untreated Salt Waste with NRC Class A Limits

Radionuclide Total Curies in Class A Limit, Ratio of "Total
Untreated Salt Curies Per Total Curies in Untreated

Waste Projected Grout Salt Waste" to
Volume "Class A Limit"

H-3 9.4E+3 2.5E+7 3.8E-4
C- 14 5.2E+2 5.1E+5 1.OE-3
Co-60. 2.9E+4 4.5E+8 6.4E-5
Ni-63 1.9E+4 2.2E+6 8.6E-3
Sr-90 7.3E+6 2.5E+4 2.9E+2

'Tc-99 3.5E+4 1.9E+5 1.8E-1
1-129 1.8E+l 5.1E+3 3.3E-3
Cs-137 1.1E+8 6.4E+5 1.7E+2
Pu-241 1.4E+5 3.8E+5 3.7E- 1
Cm-242 1.5E+l 2.2E+6 6.8E-6
a-emitting TRU 2.8E+5 1.1 E+4 2.5E+1
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Table 2 
Comparison of Inventories in Untreated Salt Waste with NRC Class A Limits 

Radionuclide Total Curies in Class A Limit, Ratio of "Total 
Untreated Salt Curies Per Total Curies in Untreated 

Waste Projected Grout Salt Waste" to 
Volume "Class A Limit" 

H-3 9.4E+3 2.5E+7 3.8E-4 
C-14 5.2E+2 5.1E+5 1.0E-3 
Co-60 2.9E+4 4.5E+8 6.4E-5 
Ni-63 1.9E+4 2.2E+6 8.6E-3 
Sr-90 7.3E+6 2.5E+4 2.9E+2 

'Tc-99 3.5E+4 1.9E+5 1.8E-l 
1-129 1.8E+1 5.1E+3 3.3E-3 
Cs-137 1.1E+8 6.4E+5 1.7E+2 
Pu-241 1.4E+5 3.8E+5 3.7E-l 
Cm-242 1.5E+l 2.2E+6 6.8E-6 
a-emitting TRU 2.8E+5 1.1E+4 2.SE+1 
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Table 3
Comparison of Inventories in Untreated Salt Waste and Inventory Limits

Based on a Public Dose Rate Limit of 25 mremi/yr

Radionuclide Average Vault 4 Curie Limit Ratio of "Average
Untreated Curies in Based on a Maximum Untreated Curies in 9.6
9.6 Mgal of Grout Public Dose Rate of Mgal Grout" to
(Vault 4 Volume) 25 mrem/yr "Vault 4 Curie Limit'

Based on a 25 mrem/yr
Public Dose Rate"

H-3 5.4E+2 1.3E+12 4.2E-10
C- 14 3.OE+1 1.1E+8 .2.7E-7
AI-26 1.4E0 2.31E+10 6.11E-11
Co-60 1.7E+3,., > 1.OE+20 < 1.7E-17
Ni-59 1.3E+l 1.6E+19 8.IE-19
Se-79 1.3E+l 1.OE+3 1.3E-2
Sr-90 4.2E+5 1.4E+ 17 3.0E-12
Nb-94 3.4E-3 7.OE+17 4.9E-21
Tc-99 2.OE+3 L.IE+17 1.8E-14
Sn-126 3.5E+1 2.9E+19 1.2E-18
Sb-125 1.4E+3 > .OE+20 < 1.4E-17
1-129 1.OEO 4.0E+3 2.5E-4
Cs-134 1.3E+4 > 1.OE+20 < 1.3E-16
Cs-135 2.2E+1 > L.OE+20 < 2.2E-19
Cs-137 6.3E+6 > 1.OE+20 < 6.3E-14
Eu-152 9.7E+1 > I.OE+20 < 9.7E-19
Eu-154 4.4E+3 > L.OE+20 < 4.4E-17
Eu-155 1.1E+3 > I.OE+20 < l.1E-17
Th-232 1.9E-2 > 1.0E+20 < 1.9E-22
U-232 4.3E-3 > 1.OE+20 < 4.3E-23
U-233 6.3E-1 > 1.OE+20 < 6.3E-21
U-234 4.2E-1 > 1.OE+20 < 4.2E-21
U-235 1.2E-2 > 1.OE+20 < 1.2E-22
U-236 5.OE-2 > 1.OE+20 < 5.OE-22
U-238 6.9E-1 > 1.0E+20 < 6.9E-21
Np-237 7.4E- 1 8.9E+ 18 8.3E-20
Pu-238 1.3E+4 > 1.OE+20 < 1.3E-16
Pu-239 4.2E+2 > 1.0E+20 < 4.2E- 18
Pu-240 1.5E+2 > 1.OE+20 < 1.5E-18
Pu-241 8.OE+3 > l.OE+20 < 8.0E-17
Pu-242 2.1E-1 > l.OE+20 < 2.1E-21
Am-241 1.7E+3 > 1.OE+20 < 1.7E-17
Am-242m 1.OEO > I.OE+20 < 1.OEE20
Am-243 3.4E-1 > 1.OE+20 < 3.4E-21
Cm-243 1.9E-1 > l.OE+20 < 1.9E-21
Cm-244 6.9E+2 > 1.OE+20 < 6.9E-18
Cm-245 6.9E-2 > 1.0E+20 < 6.9E-22
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Table 3 
Comparison of Inventories in Untreated Salt Waste and Inventory Limits 

I;\ased on a Public Dose Rate Limit of 25 mrerri/yr 

Radionuclide Av~rage 
Untreated Curies in 
9.6 Mgal of Grout 
(Vault 4 Volume) 

H-3 5.4E+2 
C-14 3.0E+l 
Al-26 I.4EO 
Co-60 1.7E+3 ... 
Ni-59 l.3E+l 
Se-79 l.3E+l 
Sr-90 4.2E+5 
Nb-94 3.4E-3 
Tc-99 2.0E+3 
Sn-126 3.5E+l 
Sb-125 1.4E+3 
1-129 1.0EO 
Cs-134 1.3E+4 
Cs-135 2.2E+l 
Cs-137 6.3E+6 
Eu-152 9.7E+l 
Eu-154 4.4E+3 
Eu-155 l.1E+3 
Th-232 1.9E-2 
U-232 4.3E-3 
U-233 6.3E-l 
U-234 4.2E-I 
U-235 1.2E-2 
U-236 5.0E-2 
U-238 6.9E-l 
Np-237 7.4E-l 
Pu-238 1.3E+4 
Pu-239 4.2E+2 
Pu-240 1.5E+2 
Pu-241 8.0E+3 
Pu-242 2.1E-l 
Am-241 l.7E+3 
Am-242m l.OEO 
Am-243 3.4E-l 
Cm-243 1.9E-l 
Cm-244 6.9E+2 
Cm-245 6.9E-2 

Removal of Highly Radi~ctive Nudides from SRS SaH Waste 

Vault 4 Curie Limit 
Based on a Maximum 
Public Dose Rate of 

25 mrem/yr 

l.3E+12 
l.lE+8 

2.3E+I0 
> l.OE+20 

1.6E+19 
1.0E+3 

1.4E+17 
7.0E+17 
l.lE+l7 
2.9E+l9 

> I.OE+20 
4.0E+3 

> l.OE+20 
> l.OE+20 
> I.OE+20 
> l.OE+20 
> l.OE+20 
> 1.0E+20 
> l.OE+20 
> I.OE+20 
> l.OE+20 
> 1.0E+20 
> 1.0E+20 
> l.OE+20 
> 1.0E+20 
8.9E+l8 

> l.OE+20 
> l.OE+20 
> l.OE+20 
> l.OE+20 . 
> l.OE+20 
> l.OE+20 
> l.OE+20 
> l.OE+20 
> 1.0E+20 
> l.OE+20 
> l.OE+20 
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Ratio of "Average 
Untreated Curies in 9.6 

Mgal Grout" to 
"Vault 4 Curie Limit' 

Based on a 25 mrem/yr 
Public Dose Rate" 

4.2E-1O 
.2.7E-7 
6.1E-ll 

< 1.7E-17 
8.1E-19 
1.3E-2 

3.0E-12 
4.9E-21 
1.8E-14 
1.2E-18 

< 1.4E-17 
2.5E-4 

< 1.3E-16 
< 2.2E-19 
< 6.3E-14 
< 9.7E-19 
<4.4E-17 
< l.1E-17 
< 1.9E-22 
<4.3E-23 
< 6.3E-21 
< 4.2E-21 
< 1.2E-22 
< 5.0E-22 
< 6.9E-21 
8.3E-20 

< 1.3E-16 
< 4.2E-18 
< 1.5E-18 
< 8.0E-17 
< 2.IE-21 
< 1.7E-17 
< I.OE"20 
< 3.4E-21 
< 1.9E-21 
< 6.9E-18 
< 6.9E-22 
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Table 4
Comparison of Inventories in Untreated Salt Waste and Inventory Limits

Based on a Resident Intruder Dose Rate Limit of 500 mrem/yr

Radionuclide Average Vault 4 Curie Limit Ratio of "Average
Untreated Curies in Based on an Intruder Untreated Curies in 9.6
9.6 Mgal of Grout Dose Rate of Mgal Grout" to
(Vault 4 Volume) 500 mrem/yr "Vault 4 Curie Limit

Based on a 500
mrem/yr Intruder Dose

Rate"
H-3 5.4E+2 > 5.OE+20 < .LE-18
C-14 3.OE+1 > 5.OE+20 < 6.OE-20
Al-26 1.4E0 8.OE+2 1.8E-3
Co-60 1.7E+3 2.9E+10 5.9E-8
Ni-59 l.3E+l > 5.OE+20 < 2.6E-20
Se-79 1.3E+l > 5.OE+20 < 2.6E-20
Sr-90 4.2E+5 > 5.OE+20 < 8.4E-16
Nb-94 3.4E-3 5.OE+3 6.8E-7
Tc-99 2.OE+3 1.9E+14 I.1E-11
Sn-126 3.5E+1 6.OE+3 5.8E-3
Sb- 125 1.4E+3 7.OE+17 2.OE-15
1-129 1.OEO > 5.OE+20 < 2.OE-21
Cs-134 1.3E+4 2.1E+20 6.2E-17
Cs- 135 2.2E+1 > 5.OE+20 < 4.4E-20
Cs- 137 6.3E+6 3.OE+7 2.1E-1
Eu-152 9.7E+1 3.2E+7 3.OE-6
Eu-154 4.4E+3 6.OE+8 7.3E-6
Eu-155 1. IE+3 5.5E+19 2.OE-17
Th-232 1.9E-2 8.OE+2 2.4E-5
U-232 4.3E-3 4.5E+4 9.6E-8
U-233 6.3E-1 7.OE+4 9.OE-6
U-234 4.2E-1 2.3E+4 1.8E-5
U-235 1.2E-2 5.OE+5 2.4E-8
U-236 5.OE-2 1.6E+9 3.1E-l11
U-238 6.9E-1 3.3E+5 2.1E-6
Np-237 7.4E-1 3.4E+5 2.2E-6
Pu-238 1.3E+4 6.5E+7 2.OE-4
Pu-239 4.2E+2 7.OE+10 6.OE-9
Pu-240 1.5E+2 1.5E+13 L.OE-I1
Pu-241 8.OE+3 5.OE+10 1.6E-7
Pu-242 2.lE-1 2.5E+l1 8.4E- 13
Am-241 1.7E+3 1.7E+9 L.OE-6
Am-242m 1.OEO 4.9E+7 2.OE-8
Am-243 3.4E-1 1.5E+6 2.3E-7
Cm-243 1.9E-1 3.5E+10 5.4E-12
Cm-244 6.9E+2 5.5E+15 1.3E-13
Cm-245 6.9E-2 4.2E+7 1.6E-9
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Table 4 
Comparison of Inventories in Untreated Salt Waste and Inventory Limits 

Based on a Resident Intruder Dose Rate Limit of 500 rnremlyr 

Radionuclide Average 
Untreated Curies in 
9.6 Mgal of Grout 
(Vault 4 Volume) 

H-3 5AE+2 
C-14 3.0E+I 
AI-26 IAEO 
Co-60 1.7E+3 
Ni-59 I.3E+I 
Se-79 I.3E+I 
Sr-90 4.2E+5 
Nb-94 3AE-3 
Tc-99 2.0E+3 
Sn-126 3.5E+I 
Sb-125 1.4E+3 
1-129 1.0EO 
Cs-134 I.3E+4 
Cs-135 2.2E+I 
Cs-137 6.3E+6 
Eu-152 9.7E+l 
Eu-154 4AE+3 
Eu-155 l.lE+3 
Th-232 1.9E-2 
U-232 4.3E-3 
U-233 6.3E-I 
U-234 4.2E-I 
U-235 1.2E-2 
U-236 5.0E-2 
U-23S 6.9E-I 
Np-237 7AE-I 
PU-23S I.3E+4 
Pu-239 4.2E+2 
Pu-240 I.5E+2 
Pu-24 I S.OE+3 
Pu-242 2.lE-I 
Am-24 I 1.7E+3 
Am-242m 1.0EO 
Am-243 3AE-I 
Cm-243 1.9E-I 
Cm-244 6.9E+2 
Cm-245 6.9E-2 

Removal of Highly Radioactive Nuclides from SRS Salt Waste 

Vault 4 Curie Limit 
Based on an Intruder 

Dose Rate of 
500 rnremlyr 

> 5.0E+20 
> 5.0E+20 
. S.OE+2 
2.9E+IO 

> 5.0E+20 
> 5.0E+20 
> 5.0E+20 

5.0E+3 
1.9E+14 
6.0E+3 

7.0E+l7 
> 5.0E+20 
2.IE+20 

> 5.0E+20 
3.0E+7 
3.2E+7 
6.0E+S 

5.5E+19 
S.OE+2 
4.5E+4 
7.0E+4 
2.3E+4 
5.0E+5 
1.6E+9 
3.3E+5 
3AE+5 
6.5E+7 

7.0E+l0 
1.5E+l3 
5.0E+l0 
2.5E+II 
1.7E+9 
4.9E+7 
1.5E+6 

3.5E+l0 
5.5E+l5 
4.2E+7 
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Ratio of "Average 
Untreated Curies in 9.6 

Mgal Grout" to 
"Vault 4 Curie Limit 

Based on a 500 
rnrem/yr Intruder Dose 

Rate" 
< l.lE-IS 
< 6.0E-20 

I.SE-3 
5.9E-S 

< 2.6E-20 
< 2.6E-20 
< SAE-16 

6.SE-7 
l.lE-ll 
5.SE-3 

2.0E-15 
< 2.0E-21 
6.2E-17 

<4AE-20 
2.1E-l 
3.0E-6 
7.3E-6 

2.0E-17 
2AE-5 
9.6E-S 
9.0E-6 
I.SE-5 
2.4E-S 

3.lE-11 
2.lE-6 
2.2E-6 
2.0E-4 

. 6.0E-9 
1.0E-11 
1.6E-7 

SAE-13 
I.OE-6 
2.0E-S 
2.3E-7 

5AE-12 
I.3E-13 
1.6E-9 

CBU-PIT-2005-00141 
Rev. 0 

6/30/2005 



.a ="g •

Table 5A
Comparison of iniventories in Untreated Salt Waste and Facility Curie Limit

Based on a Worker Gamma Dose Rate of 5.0 rem/yr

Radionuclide Total Curies Cs-137/Ba- Ratio of "Normalized
in Untreated 137m Dose Total Curies in Untreated
Salt Waste Normalization Salt Waste" to '"Cs-137

Factor Curie Limit Based on a
5.0 rem/yr Worker
Gamma Dose Rate"

AI-26 2.4E+1 3.9E0 8.7E-7
Co-60 2.9E+4 3.6E0 9.8E-4
Nb-94 6.OE-2 2.6E0 1.5E-9
Tc-99 3.5E+4 1.2E-6 3.9E- 10
Ru-106 2.9E+3 3.6E-1 9.8E-6
Sn-126 6.2E+2 3.3E-1 1.9E-6
Sb-125 2.4E+4 9.9E-1 2.2E-4
1-129 1.8E+l 3.3E-1 5.6E-8
Cs-134 2.3E+5 2.6E0 5.6E-3
Cs-137 1.1E+8 1.OEO 1.OEO
Ce-144 5.1E+2 6.1E-2 2.9E-7
Pm-147 3.2E+5 7.OE-6 2.1E-8
Sm- 151., 3.6E+5 2.4E-4 8.1E-7
Eu-154 7.7E+4 2.OEO 1.4E-3
Eu-155 2.OE+4 1.7E-1 3.2E-5
Th-232 3.4E-1 1.8E-1 5.7E-10
U-232 7.6E-2 2.3E-1 1.6E-10
U-233 1.1E+1 7.6E-2 7.8E-9
U-234 7.4E0 2.OE-1 1.4E-8
U-235 2.1E-1 8.9E-1 1.7E-9
U-236 8.8E-1 1.9E-1 1.6E-9
U-238 1.2E+1 1.7E-1 1.9E-8
Np-237 1.3E+I 1.2E0 1.5E-7
Pu-238 2.3E+5 2.1E-1 4.5E-4
Pu-239 7.4E+3 7.9E-2 5.5E-6
Pu-240 2.6E+3 2.OE-1 4.9E-6
Pu-242 3.7E0 1.6E-1 5.5E-9
Am-241 3.0E+4 8.2E-1 2.3E-4
Am-242m 1.8E+1 4.8E-1 8.1E-8
Am-243 5.9E0 8.2E-1 4.5E-8
Cm-242 1.5E+1 2.4E-3 3.4E-10
Cm-244 1.2E+4 1.7E-1 1.9E-5
Cm-245 1.2E0 1.2E0 1.3E-8
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· . . . Table ,5A, . 
Comparison ofInveritories in Untreated Salt Waste and Facility Curie Limit 

Based on a Worker Gamma Dose Rate of5.0 remlyr . 

Radionuclide Total Curies Cs-137IBa- Ratio of "Normalized 
in Untreated 137m Dose Total Curies in Untreated 
Salt Waste Normalization Salt Waste" to "Cs-137 

Factor Curie Limit Based on a 
5.0 remlyr Worker 

Gamma Dose Rate" 
AI-26 2.4E+I 3.9EO 8.7E-7 
Co-60 2.9E+4 3.6EO 9.8E-4 
Nb-94 6.0E-2 2.6EO I.5E-9 
Tc-99 3.5E+4 1.2E-6 3.9E-1O 
Ru-106 2.9E+3 3.6E-I 9.8E-6 
Sn-126 6.2E+2 3.3E-1 1.9E-6 
Sb-125 2.4E+4 9.9E-l 2.2E-4 
1-129 1.8E+l 3.3E-l 5.6E-8 
Cs-134 \ 2.3E+5 2.6EO 5.6E-3 
Cs-137 l.lE+8 1.0EO l.OEO 
Ce-l44 5.1E+2 6.1E-2 2.9E-7 
Pm-147 3.2E+5 7.0E-6 2.1E-8 
Sm-15I: 3.6E+5 2.4E-4 8.1E-7 
Eu-154 7.7E+4 2.0EO 1.4E-3 
Eu-155 2.0E+4 1.7E-I 3.2E-5 
Th-232 3.4E-I 1.8E-l 5.7E-1O 
U-232 7.6E-2 2.3E-I 1.6E-1O 
U-233 l.lE+l 7.6E-2 7.8E-9 
U-234 7.4EO 2.0E-l 1.4E-8 
U-235 2.1E-l 8.9E-l 1.7E-9 
U-236 8.8E-l 1.9E-l 1.6E-9 
U-238 1.2E+l 1.7E-1 1.9E-8 
Np-237 1.3E+l 1.2EO 1.5E-7 
Pu-238 2.3E+5 2.1E-l 4.5E-4 
Pu-239 7.4E+3 7.9E-2 5.5E-6 
Pu-240 2.6E+3 2.0E-l 4.9E-6 
Pu-242 3.7EO 1.6E-l 5.5E-9 
Am-241 3.0E+4 8.2E-l 2.3E-4 
Am-242m 1.8E+l 4.8E-I 8.1E-8 
Am-243 5.9EO 8.2E-l 4.5E-8 
Cm-242 . 1.5E+l 2.4E-3 3.4E-1O 
Cm-244 1.2E+4 1.7E-I 1.9E-5 
Cm-245 1.2EO 1.2EO I.3E-8 
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Table 5B
Inhalation Dose Contributions in Untreated Salt Waste

Radionuclide Total Curies in Inhalation Dose % of Total Potential
Untreated Salt Waste Factor, rem/Ci Inhalation Dose in

Untreated Salt Waste
H-3 9.4E+3 6.3E+l 4.6E-7
C-14 5.2E+2 2.4E+! 9.3E-9
Na-22 5.1E+3 7.8E+3 3.1E-5
AI-26 2.4E+1 8.1E+4 1.5E-6
Co-60 2.9E+4 2.2E+5 5.OE-3
Ni-59 2.2E+2 2.7E+3 4.6E-7
Ni-63 1.9E+4 6.3E+3 9.3E-5
Se-79 2.2E+2 I.OE+4 1.7E-6
Sr-90 7.3E+6 1.3E+6 7.4E0
Nb-94 6.OE-2 4.1E+5 1.9E-8
Tc-99 3.5E+4 8.5E+3 2.3E-4
Ru-106 2.9E+3 4.8E+5 1.1E-3
Sn-126 6.2E+2 1.OE+5 4.8E-5
Sb- 125 2.4E+4 1.2E+4 2.2E-4
1-129 1.8E+1 1.7E+5 2.4E-6
Cs-134 2.3E+5 4.8E+4 8.5E-3
Cs-135 3.9E+2 4.4E+3 1.3E-6
Cs-137 1.IE+8 3.2E+4 2.7E0
Ce-144 5.1E+2 3.7E+5 1.5E-4
Pm-147 3.2E+5 4.1E+4 i.OE-2
Smi-151 3.6E+5 3.OE+4 8.5E-3
Eu-152 1.7E+3 2.2E+5 2.9E-4
Eu- 154 7.7E+4 2.8E+5 1.7E-2
Eu-155 2.OE+4 4.1E+4 6.4E-4
Th-232 3.4E-1 1.6E+9 4.2E-4
U-232 7.6E-2 6.7E+8 4.OE-5
U-233 I.1E+I 1.4E+8 1.2E-3
U-234 7.4E0 1.3E+8 7.4E-4
U-235 2.IE-i 1.2E+8 1.9E-5
U-236 8.8E-I 1.2E+8 8.5E-5
U-238 1.2E+1 1.2E+8 1. i E-3
Np-237 l.3E+I 5.6E+8 5.7E-3
Pu-238 2.3E+5 4.1E+8 7.3E+1
Pu-239 7.4E+3 4.4E+8 2.6E0
Pu-240 2.6E+3 4.4E+8 8.5E-1
Pu-241 1.4E+5 8. 1 E+6 8.5E- I
Pu-242 3.7E0 4.1E+8 1.2E-3
Am-241 3.OE+4 4.4E+8 1.OE+1
Am-242m 1.8E+I 4.4E+8 6.1E-3
Am-243 5.9E0 4.4E+8 2.OE-3
Cm-242 .5E+Il 1.7E+7 2.OE-4
Cm-243 3.4E0 3. I E+8 8.5E-4
Cm-244 1.2E+4 2.5E+8 2.3E0
Cm-245 1.2E0 4.4E+8 4.1E-4

Table 6
Highly Radioactive Nuclides in Untreated Salt Waste

Highly Radioactive Technical Basis
Nuclide Exceeds Class A > 10% Intruder Limit > l 01/o Worker Gamma Limit Drives Worker Inhalation Dose

Sr-90 X X
Cs-137 X X X X

Alpha-emitting TRU X X
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Table 5B 
Inhalation Dose Contributions in Untreated Salt Waste 

Radionuclide Total Curies in Inhalation Dose % of Total Potential 
Untreated Salt Waste Factor, remlCi Inhalation Dose in 

Untreated Salt Waste 
H-3 9.4E+3 6.3E+I 4.6E-7 
C-14 5.2E+2 2.4E+I 9.3E-9 
Na-22 5.lE+3 7.8E+3 3.IE-5 
AI-26 2.4E+I 8.IE+4 1.5E-6 
Co-6O 2.9E+4 2.2E+5 5.0E-3 
Ni-59 2.2E+2 2.7E+3 4.6E-7 
Ni-63 1.9E+4 6.3E+3 9.3E-5 
Se-79 2.2E+2 I.OE+4 1.7E-6 
Sr-90 7.3E+6 l.3E+6 7.4EO 
Nb-94 6.0E-2 4.lE+5 1.9E-8 
Tc-99 3.5E+4 8.5E+3 2.3E-4 
Ru-I06 2.9E+3 4.8E+5 l.1E-3 
Sn-126 6.2E+2 I.OE+5 4.8E-5 
Sb-125 2.4E+4 1.2E+4 2.2E-4 
1-129 1.8E+I 1.7E+5 2.4E-6 
Cs-134 2.3E+5 4.8E+4 8.5E-3 
Cs-135 3.9E+2 4.4E+3 I.3E-6 
Cs-137 l.1E+8 3.2E+4 2.7EO 
Ce-l44 5.lE+2 3.7E+5 1.5E-4 
Pm-147 3.2E+5 4.IE+4 I.OE-2 
Sm-151 3.6E+5 .. 3.0E+4 8.5E-3 
Eu-152 1.7E+3 2.2E+5 2.9E-4 
Eu-154 7.7E+4 2.8E+5 1.7E-2 
Eu-155 2.0E+4 4.lE+4 6.4E-4 
Th-232 3.4E-I 1.6E+9 4.2E-4 
U-232 7.6E-2 6.7E+8 4.0E-5 
U-233 l.1E+I 1.4E+8 1.2E-3 
U-234 7.4EO 1.3E+8 7.4E-4 
U-235 2.lE-I 1.2E+8 1.9E-5 
U-236 8.8E-I 1.2E+8 8.5E-5 
U-238 1.2E+I 1.2E+8 l.1E-3 
Np-237 1.3E+I 5.6E+8 5.7E-3 
Pu-238 2.3E+5 4.lE+8 7.3E+1 
Pu-239 7.4E+3 4.4E+8 2.6EO 
Pu-240 2.6E+3 4.4E+8 8.5E-I 
Pu-24 I 1.4E+5 8.IE+6 8.5E-I 
Pu-242 3.7EO 4.lE+8 1.2E-3 
Am-24 I 3.0E+4 4.4E+8 l.OE+1 
Am-242m 1.8E+I 4.4E+8 6.lE-3 
Am-243 5.9EO 4.4E+8 2.0E-3 
Cm-242 1.5E+I 1.7E+7 2.0E-4 
Cm-243 3.4EO 3.lE+8 8.5E-4 
Cm-244 1.2E+4 2.5E+8 2.3EO 
Cm-245 1.2EO 4.4E+8 4.IE-4 

Table 6 
Highly Radioactive Nuclides in Untreated Salt Waste 

Highly Radioactive Technical Basis 
Nuclide Exceeds Class A > 10"10 Intruder Limit > 10"10 Worker Gamma Limit Drives Worker Inhalation Dose 

Sr-90 X X 
Cs-137 X X X X 

Alpha-emitting TRU X X 
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Planned Treatment Processes and Projected Removal Efficiencies

Deliquification, Dissolution, and Adjustment (DDA):

Step 3:
Add dissolution water

Dissolved Clarified
Saltcake Salt Solution Salt Solution (CSS)and •[ Settling

Supernatant

Step 1:

Remove free supernatant
Sludge

Step 2:
Remove interstitial
supematant

DWPF
Removed supernatant will be sent to an
alternate HLW tank and held for future
treatment at SWPF

The DDA process relies on two removal mechanisms, removal of supernatant fluid through
pumping/draining and removal of suspended solids (sludge) through gravity settling/clarification. As
shown in Step 1 of the flow diagram, the DDA process is initiated when free supernatant solution
(supernatant above saltcake) is pumped from the tank. During Step 2, interstitial supernatant fluid is
drained/removed from the saltcake after a well is generated through the saltcake. All fluid removed is
sent to an alternate tank for future treatment at the SWPF. In Step 3, the saltcake is dissolved and
transferred to a settling tank. Following a settling period, the clarified salt solution (CSS) is decanted
out of the tank and dispositioned to SPF. In the future, the settled solids will ultimately be removed
from the tank and'dispositioned to DWPF. Note that early batches of CSS containing elevated Cs-137
concentrations will undergo further treatment via ARP/MCU before being dispositioned to SPF.

In determining the overall removal efficiencies of DDA, the following individual removal efficiencies
are assumed. Deliquification typically removes 50% of the supernatant solution (Shah and Hopkins,
2004), with a lower bound of 30% and an upper bound of 70% (these assumptions incorporate the
lessons learned from Tank 41 salt). For a thirty day period, gravity settling typically removes two-thirds
of the suspended solids (Gillam, 2005), with a lower bound of 50% and an upper bound of 80%. Given
the magnitude of these variabilities, the uncertainty of the overall removal efficiency is typically ± 20%,
regardless of the soluble/insoluble distribution.
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Planned Treatment Processes and Projected Removal Efficiencies 

Deliquification. Dissolution. and Adjustment (DDA): 

Step 3: 
Add dissolution water 

Dissolved 

Saltcake Salt Solution 

and 
Supernatant 

Step 1: 
Remove free supernatant 

Step 2: 
Remove interstitial 
supernatant 

Removed supernatant will be sent to an 
alternate HL W tank and held for future 
treatmentatSWPF 

Clarified 
Salt Solution (CSS) 

Settling 

Sludge 

DWPF 

The DDA process relies on two removal mechanisms, removal of supernatant fluid through 
pumping/draining and removal of suspended solids (sludge) through gravity settling/clarification. As 
shown in Step 1 of the flow diagram; the DDA process is initiated when free supernatant solution 
(supernatant above saltcake) is pumped from the tank. During Step 2, interstitial supernatant fluid is 
drained/removed from the saltcake after a well is generated through the salt~ake. All fluid removed is 
sent to an alternate tank for future treatment at the SWPF. In Step 3, the saltcake is dissolved and 
transferred to a settling tank. Following a settling period, the clarified salt solution (CSS) is decanted 
out of the tank and dispositioned to SPF. In the future, the settled solids will ultimately be removed 
from the tank and·dispositioned to DWPF. Note that early batches ofCSS containing elevated Cs-137 
concentrations will undergo further treatment via ARPIMCU before being dispositioned to SPF. 

In determining the overall removal efficiencies ofDDA, the following individual removal efficiencies 
are assumed. Deliquification typically removes 50% of the supernatant solution (Shah and Hopkins, 
2004), with a lower bound of30% and an upper bound of 70% (these assumptions incorporate the 
lessons learned from Tank 41 salt). For a thirty day period, gravity settling typically removes two-thirds 
of the suspended solids (Gillam, 2005), with a lower bound of 50% and an upper bound of 80%. Given 
the magnitude of these variabilities, the uncertainty of the overall re,noval" efficiency is typically ± 20%, 
regardless of the soluble/insoluble distribution. 

Removal of Highly Radioactive Nudides from SRS Salt Waste 

210f28 

CBU-PIT-2005-00141 
Rev. 0 

6/30/2005 



* A

Removal efficiencies for the highly radioactive nuclides are given in Table 7. Nominal removal
efficiencies range from 50% to 66%, depending on the solubility of the constituent (50% for highly
soluble constituents; 66% for highly insoluble constituents). For Sr-90, the nominal removal efficiency
is 66%, with a lower bound of 46% and an upper bound of 86%. For Cs-137, the nominal removal
efficiency is 50%, with a lower bound of 30% and an upper bound of 70%. For TRU, the nominal
removal efficiency is 63%, with a lower bound of 43% and an upper bound of 83%.

Table 7
Removal of Highly Radioactive Nuclides Using DDA

Radionuclide Projected Removal Efficiency r, %
Nominal Lower Bound Upper Bound

Sr-90 66 46 86
Cs-137 50 30 70
Pu-238 63 43 83

Am-241 66 46 86
Cm-244 66 46 86
Pu-239 59 39 79

a-emitting TRU 63 43 83

Actinide Removal Process (ARP) w/o Monosodium Titanate (MST):

Css
Salt
Solution

Sludge

DWPF

The ARP process (w/o MST sorption) relies on one removal mechanism, removal of suspended solids
(sludge) by cross-flow filtration. Removed solids are dispositioned to DWPF. CSS is dispositioned to
SPF.

Cross-flow filtration is assumed to nominally remove 100% of the suspended solids, although it is
recognized that actual removal will be slightly lower. A lower bound of 99.5% removal is assumed,
based on industrial filtration experience.
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Removal efficiencies for the highly radioactive nuclides are given.in Table 7. Nominal removal 
efficiencies range from 50% to 66%, depending on the solubility of the constituent (50% for highly 
soluble constituents; 66% for highly insoluble constituents). For Sr-90, the nominal removal efficiency 
is 66%, with a lower bound of 46% and an upper bound of 86%. For Cs-13 7, the nominal removal 
efficiency is 50%, with a lower bound of 30% and an upper bound of 70%. For TRU, the nominal 
removal efficiency is 63%, with a lower bound of 43% and an upper bound of 83%. 
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Table 7 
Removal of Highly Radioactive Nuclides Using DDA 

Radionuclide Projected Removal Efficienc , % 
Nominal Lower Bound Upper Bound 

Sr-90 66 46 86 
Cs-137 50 30 70 
Pu-238 63 43 83 
Am-241 66 46 86 
Cm-244 66 46 86 
Pu-239 59 39 79 

a-emitting TRU 63 43 83 

Actinide Removal Process CARP) w/o Monosodium Titanate (MST): 
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Solution 

Cross-flow 
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ess 

The ARP process (w/o MST sorption) relies on one removal mechanism, removal of suspended solids 
(sludge) by cross-flow filtration. Removed solids are dispositioned to DWPF. CSS is dispositioned to 
SPF. 

Cross-flow filtration is assumed to nominally remove 100% of the suspended solids, although it is 
recognized that actual removal will be slightly lower. A lower bound of99.5% removal is assumed, 
based on industrial filtration experience. 
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Removal efficiencies for the highly radioactive nuclides are given in Table 8. For Sr-90, the removal
efficiencies are high (98.0 - 99.9%), due to the low solubility which makes particulate removal
significant. In contrast, for Cs- 137, the removal efficiencies are negligible, due to the high solubility
which makes particulate removal insignificant. For TRU, the range of removal efficiencies is relatively
broad (51 - 93%), reflecting the expectation that appreciable quantities of both soluble and insoluble
phases will be present.

Table 8
Removal of Highly Radioactive Nuclides Using ARP w/o MST

Ridionuclide Pro ected Removal Efficiency, %
Nominal Lower Bound Upper Bound

Sr-90 99.6 98.0 99.9
Cs-137 -0 -0 -0
Pu-238 75 43 92
Am-241 98.8 94.9 99.7
Cm-244 98.8 94.8 99.7
Pu-239 54 23 82

a-emitting TRU 78 50 93

ARP w/MST:

Salt MST Cross-flow
Solution Sorption Filtration

MST/Sludge

DWPF

The ARP process (w/ MST sorption) relies on two removal mechanisms, removal of soluble constituents
by MST sorption and removal of suspended solids (MST and sludge) by cross-flow filtration. Removed
solids are dispositioned to DWPF. CSS is dispositioned to SPF.

Duration of the MST strike is assumed to be 24 hours. Assumed MST decontamination factors (DFs)
are given in the table below. Nominal DFs are those reported by d'Entremont (2005) for a twenty four
hour duration strike. Lower and upper bounding DFs are those reported by Le (2005) under conditions
of four to twenty four hour duration strikes. Assumptions regarding efficiency of the cross-flow filter
are the same as in the previous case (ARP w/o MST).
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Removal efficiencies for the highly radioactive nuclides are given in Table 8. For Sr-90, the removal 
efficiencies are high (98.0 - 99.9%), due to the low solubility which makes particulate removal 
significant. In contrast, for Cs-137, the removal efficiencies are negligible, due to the high solubility 
which makes particulate removal insignificant. For TRU, the range of removal efficiencies is relatively 
broad (51 - 93%), reflecting the expectation that appreciable quantities of both soluble and insoluble 
phases will be present. 

Table 8 
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Radionuclide 

Sr-90 
Cs-137 
Pu-238 
Am-241 
Cm-244 
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Solution ~ 

MST 
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Pro' ected Removal Efficiency, % 
Nominal Lower Bound ' Upper Bound 

99.6 98.0 99.9 
-0 -0 -0 
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98.8 94.9 99.7, 
98.8 94.8 99.7 
54 23 82 
78 50 93 
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The ARP process (wi MST sorption) relies on two removal mechanisms, removal of soluble constituents 
by MST sorption and removal of suspended solids (MST and sludge) by cross-flow filtration. Removed 
solids are dispositioned to DWPF. CSS is dispositioned to SPF. 

Duration of the MST strike is assumed to be 24 hours. Assumed MST decontamination factors (DFs) 
are given in the table below. Nominal DFs are those reported by d'Entremont (2005) for a twenty four 
hour duration strike. Lower and upper bounding DFs are those reported by Le (2005) under conditions 
of four to twenty four hour duration strikes. Assumptions regarding efficiency of the cross-flow filter 
are the same as in the previous case (ARP wlo MST). 
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Constituent ARP MST Soluble Phase Decontamination Factor
Nominal Lower Bound Upper Bound

Strontium 130 20 130
Cesium 0 0 0
Plutonium 13 5.5 13
Americium 1.7 1.0 4.6
Curium 1.7 1.0 1.7

Removal efficiencies for the highly radioactive nuclides are given in Table 9. For Sr-90, the removal
efficiencies are extremely high (99.4 - 99.999%), due to a) the very low solubility of strontium that
makes particulate removal significant and b) the very high removal efficiency of MST for soluble phase
strontium. For Cs-137, the removal efficiencies are negligible due to a) the high solubility of cesium
that makes particulate removal insignificant and b) the inability of MST to sorb soluble phase cesium.
For TRU, the removal efficiencies are relatively high (96 - 99%), due to the combination of low
solubility and reasonably high soluble phase removal. Clearly, the combination of MST and cross-flow
filtration is an effective treatment for Sr-90 and TRU nuclides.

Table 9
Removal of Highly Radioactive Nuclides Using ARP w/ MST

Radionuclide ARP w/ MST Projected Removal Efficiency, %
Nominal Lower Bound Upper Bound

Sr-90 99.997 99.4 99.999
Cs-137 -0 -0 -0
Pu-238 98.1 89.4 99.9
Am-241 99.3 94.9 99.9
Cm-244 99.3 94.8 99.8
Pu-239 96.4 85.8 98.6

a-emitting TRU 98.1 90.1 99.9
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Constituent ARP MST Soluble Phase Decontamination Factor 
Nominal Lower Bound Upper. Bound 
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Americium 1.7 1.0 4.6 
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Removal efficiencies for the highly radioactive nuclides are given in Table 9. For Sr-90, the removal 
efficiencies are extremely high (99;4 - 99.999%), due to a) the very low solubility of strontium that 
makes particulate removal significant and b) the very high removal efficiency ofMST for soluble phase 
strontium. For Cs-13 7, the removal efficiencies are negligible due to a) the high solubility of cesium 
that makes particulate removal insignificant and b) the inability of MST to sorb soluble phase cesium. 
For TRU, the removal efficiencies are relatively high (96 - 99%), due to the combination oflow 
solubility and reasonably high soluble phase removal. Clearly, the combination ofMST and cross-flow 
filtration is an effective treatment for Sr-90 and TRU nuclides. 

Table 9 
Removal of Highly Radioactive Nuclides Using ARP wi MST 

Radionuclide ARP wi MST Proiected Removal Efficiency. % 
Nominal Lower Bound UooerBound 

Sr-90 99.997 99.4 99.999 
Cs-137 -0 -0 -0 
Pu-238 98.1 89.4 99.9 
Am-241 99.3 94.9 99.9 
Cm-244 99.3 94.8 99.8 
Pu-239 96.4 85.8 98.6 

a-emitting TRU 98.1 90.1 99.9 
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Modular Caustic Side Solvent Extraction Unit (MCU'):

DDS

CSS

Cesium

DWPF

The MCU process relies on one removal mechanism, removal of soluble phase cesium by liquid-liquid
extraction utilizing the Caustic Side Solvent Extraction (CSSX) technology. In this process, CSS is the
feed stream and the effluents include a concentrated cesium stream that is dispositioned to DWPF and a
decontaminated salt solution (DSS) that is dispositioned to SPF.

For MCU, a DF of 12 is assumed for soluble phase cesium (d'Entremont, 2005). For Sr-90 and TRU
nuclides, the MCU removal efficiency is assumed to be zero.

The nominal removal efficiency for Cs-137 is 91%, with a lower bound of 90% and an upper bound of
92%.

Salt Waste Processing Facility (SWPF) Treatment:

DSS
Salt
Solution

MST/Sludge Cesium

DWPF DWPF

The SWPF treatment process relies on three removal mechanisms: 1) removal of soluble constituents by
MST sorption; 2) removal of suspended solids by cross-flow filtration; and 3) removal of cesium by
liquid-liquid extraction utilizing CSSX. In this process, salt solution is first treated with MST and then
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The MCU process relies on one removal mechanism, removal of soluble phase cesium by liquid-liquid 
extraction utilizing the Caustic Side Solvent Extraction (CSSX) technology. In this process, CSS is the 
feed stream and the effiuents include a concentrated cesium stream that is dispositioned to DWPF and a 
decontaminated salt.solution (DSS) that is dispositioned to SPF. 

For MCU, a DF of 12 is assumed for soluble phase cesium (d'Entremont, 2005). For Sr-90 and TRU 
nuclides, the MCV removal efficiency is assumed to be zero. 

The nominal removal efficiency for Cs-137 is 91 %, with a lower bound of 90% and an upper bound of 
92%. 
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The SWPF treatment process relies on three removal mechanisms: 1) removal of soluble constituents by 
MST sorption; 2) removal of suspended solids by cross-flow filtration; and 3) removal of cesium by 
liquid-liquid extraction utilizing CSSX. In this process, salt solution is first treated with MST and then 
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filtered to produce a CSS that is subsequently treated with CSSX. The removed solids and the
concentrated cesium streams are dispositioned to DWPF, and the DSS stream is dispositioned to SPF.

Duration of the MST strike is assumed to be 12 hours (Parsons, 2004). Assumed DFs for the MST
treatment are given.in the table below. Nominal MST DFs are those reported by d'Entremont (2005) for
a twelve hour duration strike. Lower and upper bounding MST DFs are those reported by Le (2005)
under conditions of four to twenty four hour duration strikes. Assumptions regarding efficiency of the
cross-flow filter are the same as in the previous ARP cases. For SWPF, the CSSX DF for soluble phase
cesium is assumed to be 40,000 (d'Entremont, 2005).

Constituent SWPF MST Soluble Phase Decontamination Factor
Nominal Lower Bound Upper Bound

Strontium 20 20 130
Cesium 0 0 0
Plutonium 5.5: 5.5 13.
Americium 4.6 1.0 4.6
Curium 1.0 1.0 1.7

Removal efficiencies for the highly radioactive nuclides are given in Table 10. For Sr-90, the removal
efficiencies are very high (99.4 to 99.999%), due to the combination of effective particulate removal and
high soluble phase decontamination. For Cs-137, the removal efficiencies are extremely high (99.990 to
99.998%, respectively), due to the extremely high removal efficiency of CSSX for soluble phase cesium.
For TRU, the removal efficiencies are high (91 to 99%), although lower than those of Sr-90 and Cs-137.
Clearly, the SWPF treatments offer an effective means of removing Sr-90, Cs-137, and TRU nuclides.

Table 10
Removal of Highly Radioactive Nuclides Using SWPF

Radionuclide SWPF Projected Removal Efficiency, %
Nominal Lower Bound Upper Bound

Sr-90 99.98 99.4 99.999
Cs-137 99.998 99.990 99.998
Pu-238. 95.5 89.4 99.4
Am-241 99.7 94.9 99.94
Cm-244 98.8 94.8 99.8
Pu-239 91.6 85.8 98.6

a-emitting TRU 96 90 99.5
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Conclusions

1) Cs-137 in untreated salt waste is considered highly radioactive from the perspective of exceeding
NRC Class A limits and 10% of the public, environmental, and worker dose limits.

2) Sr-90 and alpha-emitting TRU nuclides in untreated salt waste are considered highly radioactive from
the perspective of exceeding NRC Class A limits.

3) Other than Sr-90, Cs-137 and alpha-emitting TRU, no nuclides in untreated salt waste are considered
highly radioactive from the perspective of exceeding NRC Class A limits or public, environmental, and
worker dose limits.

4) For strontium removal, the relative efficacies of the planned treatments are:

ARP w/MST z SWPF > ARP w/o MST > DDA >> MCU

5) For cesium removal, the relative efficacies of the planned treatments are:

SWPF > MCU > DDA >> ARP

6) For alpha-emitting TRU removal, the relative efficacies of the planned treatments are:

ARP w/MST SWPF > ARP w/o MST > DDA >> MCU
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Conclusions 
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2.0 GROUNDWATER ANALYSIS

2.1 Methodology

The groundwater pathway analysis for each radionuclide involves two steps. First a vadose zone
flow and transport simulation, is done to estimate flux to the water table for a disposed
radionuclide parent and any subsequent progeny. Then saturated zone flow and transport
modeling is used to estimate the groundwater concentration(s) at a hypothetical well placed 100
meters down-gradient from the disposal unit.

The vadose zone flow model was developed to reflect the current Z-Area closure concept (Phifer
and Nelson 2003), which calls for a geosynthetic cover system instead of a kaolin cap as assumed
in the 1992 PA. After completion of the institutional control period, infiltration is predicted to
gradually increase over time as the closure system degrades due to phenomena such as intrusion
of deep-rooted plants (e.g., trees) and silting of drainage layers (Phifer 2004). While it is assumed
that tree root penetration will contribute to closure system degradation, tree roots should not
penetrate into the Saltstone, itself, and uptake radionuclides for the following reasons:

" Several layers of the multi-layered cover system above the vault roof are frequently at or near
saturation. Since tree roots are opportunistic and seek sources of water, the roots will
concentrate in these layers above the vault roof, which contain significant water.

* While roots might penetrate to the vault roof, the concrete roof presents a hardened surface
over which roots are more likely to extend along rather than penetrate.

* The pore fluid within Saltstone is essentially a salt solution (brackish water) which the trees
could not utilize.

* It is unlikely that roots would be able to extract water from Saltstone due to the matrix
potential within Saltstone.

The purpose of the deeper roots of pine trees is to seek sources of water. The multi-layered cover
system will produce local zones of saturated water in the drainage layers overlying the barrier
layers. The pine tree roots will tend to follow these layers rather than attempt to penetrate to
deeper levels since it is much easier for the roots to extract water from saturated soil than
unsaturated soil. Therefore, pine tree roots are not expected to penetrate the vault roof.

A potential PA concern is the effects of cracks developing in the Saltstone monolith over time. A
structural analysis (Peregoy 2003) predicts that, cracks will develop and their aperture will
increase with increasing time. However, the analysis shows that the cracks will open either at the
top or at the bottom and will be pinched closed at the opposite end. Therefore, no through-wall
cracks will develop. A separate modeling study (Yu and Cook 2004) concluded that cracks of this
nature have very little effect on contaminant transport rate. Based on this finding cracks are not
considered in this SA.

The conceptual model describes the materials, layout, and dimensions of the SDF. Figure 2-1
depicts the conceptual model used for the Vault No. 4. The Saltstone monolith is approximately
200x600x25 ft. Only half of a vault in the short dimension is modeled, taking advantage of
symmetry. The top of the modeling domain is the bottom of the upper GCL layer. Infiltration
through this layer as a function of time is calculated by the HELP code (USEPA 1994a, 1994b).
The constant infiltration rate is used as a flow boundary condition at the top of the modeling
domain. The bottom of the modeling domain is the water table. Capillary pressure at the water
table is set to zero to simulate 100% water saturation. The vertical boundary through the center of
the vault is modeled as a no-flow boundary due to symmetry. The right boundary is also assumed
to be a no-flow boundary because it is sufficiently far away from the vault and the predominant
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contaminant transport mechanism is downward convection. Figure 2-2 shows the gridding used in
the model.

The vadose zone flow simulation was performed as a sequence of steady-state runs
approximating average conditions during a number of time intervals over 10,000 years based on
the HELP code results. Time zero is when closure operations are' complete. Material properties
were varied for each time interval to represent degradation of the closure system, the Saltstone
waste form, and the vault. These properties are given in Appendix A.

A total of 45 radionuclides were selected for analysis based on a screening study for the SRS Low
Level Waste Facility (Cook and Wilhite 2004). Nitrate was also rim in the analysis because it
occurs in high concentrations and has a relatively low groundwater limit.

The new plutonium chemistry implemented for the trench disposal units in the E-Area Low-Level
Waste Facility (Cook 2002, Kaplan 2004) has been included in the present special analysis. The
Pu (IIIV) oxidation state is far more abundant than Pu (V/VI), but the latter is significantly more
mobile in sediments: a soil-solute distribution coefficient of Kd = 370 mL/g is assumed for Pu
(Ill/IV) versus K4 = 15 mL/g for Pu (V/VI). Although present in trace amounts, the relatively
high mobility of Pu (V/VI) could potentially lead to a significant contribution to the dose at the
100-meter well. The two pairs of oxidation states are tracked separately in the vadose zone
transport simulations to accommodate the difference in mobility.

In addition to the geochemistry modifications described above, some distribution coefficients
were updated to reflect current knowledge. Appendix A provides a complete listing of Kd values
used in the groundwater analysis and other key input data such as, radionuclides analyzed, half-
lives, atomic mass, concentration limits, solubility limits,. and assumed decay chains.

The FACT code model of the General Separations Area (GSA) was recently superseded by an
equivalent model using the PORFLOW code, in order to consolidate PA subsurface flow and
transport modeling to a single software product (Flach 2004). The flow field computed by
GSA/PORFLOW is used in the present study. GSA/PORFLOW is a regional scale model with a
mesh resolution in the horizontal plane of 200 ft, compared to a width of about 200 ft for Vault 4.

Figure 2-3 illustrates locations of the existing Vaults, 1 and 4, and the aquifer model mesh. Figure
2-3 also shows the extent of the aquifer flow and transport model (blue border) and the mesh
resolution in the horizontal plane (light gray dashes). Particle tracking results starting from the
four corners of the combined facility indicate the groundwater flow direction. Time markers (red
dots) are shown every 10 years of travel. Figure 2-3 indicates a possibility of plume overlap,
which is the subject of a sensitivity study presented in Section 7.

2.2 Results

The magnitude and time of maximum concentration, the Maximum Contaminant Level (MCL)
(USEPA 2004) and the Vault 4 inventory limit for the key radionuclides for two time periods of
interest, 1000 years and 10,000 years, are given in Tables 2-1 and 2-2, respectively. These limits
for the groundwater pathway are compared with limits derived for the other pathways and with
the projected Vault 4 inventory in Section 7. For the projected Vault 4 inventory, none of the
radionuclides produces a significantly large fraction of the groundwater limit.

Plots of fractional flux and concentration for each radionuclide modeled with PORFLOW are
presented in Appendix A.
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CROSS-CU1TING ISSUES

NRC staff has observed that licensees have had difficulties in developing DQOs, especially
during the optimization step, and have not taken full advantage of the DQO process. Experience
has shown that the process is often rigidly structured by relying too much on characterization
data and not readily open to the possibility of incorporating new information as it becomt*
available. This rigid approach makes implementing any changes difficult and is an inefficient
use of resources, since it imposes time delays (e.g., the additional time required to determine bow
to implement any changes). Refer to Section 0.2 from Appendix 0 of this volume, for guidance
on lessons learned regarding use of the DQO process related to recently submitted
decommissioning plans.

3.3 INSIGNIFICANT RADIONUCLIDES AND EXPOSURE PATHWAYS

Licensees should note that they are required to comply with the applicable dose criteria;
nothing In this discussion should be interpreted to allow licensees to exceed the citeria.

This section provides guidance on conditions under which radionuclides or exposure pathways
may be considermd Insignificant and may bc eliminated from further consideration. The dose
criteria in 10 CFR Part 20, Subpart E, applyto the total dose from residual radioactivity. Thus,
demonstrations of compliance should generally address the dose from all radionuclides and all
exposure pathways. However, NRC staff recognizes that there may be large uncertainties
associated with survey data and with dose assessment results. In a risk-informed,
performance-based paradigm, NRC staffhas determined It is reasonable that radionuclides or
pathways that are insignificant contributors to dose may be eliminated from further detailed
consideration.

NRC staff considers radionuclides and exposure pathways that contribute no greater than
10 percent of the dose criteria to be insignificant contributors. Because the dose criteria are
perfbrmance criteria, this 10 percent limit for Insignificant contributors is an aggregate limitation
only. That Is, the sum of the dose contributions from all radionuclides and pathways considered
insignificant should be no greater than 10 percent of the dose criteria. No limitation on either
single radionuclides or pathways Is necessary. In cases of rewsricted release, where two dose
criteria apply (one for the possibility of restrictions failing), the 10 percent limitation should be
met for each dose criterion.

Once a licensee has demonstrated that radionuclides or exposure pathways are insignificant, then
(a) the dose from the insignificant radionuclides and pathways must be accounted for in
demonstrating compliance, but (b) the insignificant radlonuclides and pathways may be
eliminated from further detailed evaluations. For example, after sufficient site characterizmton,
suppose a licensee shows that the dose from Sr-90 at the facility is 0.02 mSv/y (2 toremr/y),
which is less than 10 percent of the dose criterion for unrestricted use. In this case, Sr-90 can be
considered insignificant and eliminated from the FSS and from detailed considaration in the dose
modeling. However, the dose from Sr-90 has to be considered In demonstrating compliance with
the dose criterion.
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CROSS-CUlITING ISSUES

It is important that the Licensee documents the radionuclides and pathways that have been
considered insignificant and eliminated from further consideration and that the licensee justifies
the decision to consider them insignificant. However, licensees and NRC staff should be aware
that remediation techniques (or other activities or processes) may increase concentrations above
those previously deemed insignificant. Thus, licensees should also demonstrate that the
concentrations deemed insignificant will not increase from other activities. Refcr to Section 0.1
from Appendix 0 and Questions 1 and 2, all of this volume, for guidance on which rddionuclides
can be considered and deselected from flufther consideration, respectively.

Summary of Determining Insignificant Radionuclides and Exposure Pathways

" Licensees may eliminate Insignificant radionuclides and exposure pathways from further
detailed consideration. However, the dose from the insignificant radionuclides and
pathways must be accounted for in demonstrating compliance with the applicable dose
criteria_

* Insignificant means no greater than 10 percent of applicable dose criterion,

" Ten percent is an aggregate limit; total dose contributions of all radionuclides and all
exposure pathways considered Insignificant should not exceed the 10 percent limitation.

" No additional limit on single radionuclides or pathways.

" Licensees should also address potential for concentrations to Increase during remediation
activities.

3.4 CONSIDERATIONS FOR OTHER CONSTRAINTS ON
ALLOWABLE RESIDUAL RADIOACTIVITY

There can be situations or standards other than the dose criteria and ALARA requirements of
Subpart E that may constrain the final dose below 0.25 mSv/y (25 mrem/y). There arc two main
causes for constraining the Subpart E dose limit: thesc causes are (1) partial site release and
(2) other standards or regulations.

Partial site release is a situation where a licensee releases a portion of its site for unrestricted use
prior to terminating the entire license. While the licensee should demonstrate that the residual
radioactivity at the time of unrestricted release of the specific area meets the Subpart E dose
limit, the residual radioactivity of the area should also be taken into account during final
termination to demonstrate that the entire sitc met the appropriate release criteria. Dose
modeling considerations for partial site release are discussed in Appendix K of ths volume. Tn
general, the comments below are also applicable to partial site releases.

Demonstrating complianno with the Subpart E dose limit does not eliminate the licensee's
requirement for meeting other applicable Federal, State, or local rules and regulations. These
regulations from other governmental agencies may conflict with the requirements of Subpart F,
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REFERENCED DOCUMENT *EXCERPT LOCATION REMARK
Barnes and Flach 2005 Representative excerpt enclosed following Executive Summary enclosed, full

response (WSRC-TR-2005-00085) document has been supplied
Barton 2005 S- 112 Retrieval Progress Presentation

enclosed following response
Churnetski 1981 Representative excerpt enclosed following Summary to document enclosed, full

response (DPST-81-366) document has been supplied
d'Entremont and Drumm 2005 Table A-12, excerpt enclosed following

response (CBU-PIT-2005-00013)
Drumm and Hopkins 2003 Table 13, excerpt enclosed following

response (WSRC-IR-2001-00559)
Drumm and Tran 2004 Table 9, excerpt enclosed following See Average salt composition column__ response (CBU-SPT-2004-00157)

Flach 2003 Figure 7, excerpt enclosed following
response(WSRC-TR-2003-00080)

Flach 2004 Figure 3, excerpt enclosed following
response (WSRC-TR-2003-00533)

Fowler 1980 Table II, excerpt enclosed following Per Table II, Tank 19 Saltcake Insoluble
response (DPST-80-569) Residue was 51 g/L (= 51,000 mg/L).

Concentration in dissolved salt calculated
assuming 3:1 dilution required for salt
dissolution (51,000/3 = 17,000 mg/L).

Fowler 1981a Page 10, excerpt enclosed following (1.52 g/mL) x (1.3wt/o / 100) x (1000)2 =
response 19,800 mng/L. Concentration in dissolved

salt calculated assuming 3:1 dilution
required for salt dissolution (19,800/3 =
6,600 mra/L).
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Fowler 1981c Page 22 left margin, excerpt enclosed Wt. filter unit = wt. unit plus solids.
following response Therefore, no insolubles detected.
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Gilliam 2005 Page 10, excerpt enclosed following % Solids removed is calculated by
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concentration at 18 and 30 days.
Gilliam 2005 Table page 10 included within response
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Pike 2005 Pages 11-15, excerpt enclosed following Lowest residual based on case 5. Residual
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1.1 Mg;d)
Poirer 2000 Reference enclosed following response

(WSRC-TR-2000-00288)
Porier et al. 2001 Reference enclosed following response
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Total Curies
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response (SRT-EDS-970022)
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WSRC-TR-2005-00085, REVISION 0

1.0 EXECUTIVE SUMMARY

SRNL was tasked to simulate the draining of interstitial liquid from Tank 25 saltcake which
is scheduled to take place in 2005. The salt processing plan baselinet'l identifies a target of
135,000 gallons of interstitial liquid to be removed from Tank 25. Due to the uncertainty of
the Tank 25 material properties and conditions, several cases were modeled varying the
saltcake and interstitial liquid properties. The cases present a wide range of performance.
The nominal baseline, case 1, removed the 135,000 gallons in approximately 1,030 hours of
pump operation. The cases with optimal drain characteristics (high intrinsic permeability,
high temp.) drain the 135,000 gallons in less time. Those with less favorable drain
conditions did not approach the 135,000 gallons in a reasonable amount of time. Common to
all cases unable to achieve the target volume was the low temperature at which they were
run, 30°C (the lowest modeled), though there were additional contributing factors. A
summary of the results are shown in Table 1.

Table 1. Summary of Tank 25 Drain Model Results

Case Time Volume Volume Pump Rate (at Time to Drain
(hrs.) Removed (gal.) Remaining (gal.) given time, gpm) 135k gals. (hrs)

1 500 126,816 211,626 1.05
(nominal) 1030 135,535 202,907 intermittent

2 500 103,567 234,875 1.16 NA

1500 120,476 217,967 Intermittent (>1,500)

500 134,391 204,051 0.98 550
836 139,761 198,681 intermittent

450 74,505 263,937 0.98 NA

1530 89,564 248,878 intermittent ())1,530)

5 500 180,963 157,479 1.31 180
6 500 95,273 186,762 1.01 NA ()>500)
7 500 144,107 303,675 1.11 385

I
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Ci DDA ARP/MCU SWPF Total
Sb-126 6.91E-01 8.68E-01 6.15E+01 6.30E+01
Sb-126m 4.93E+00 6.20E+00 4.39E+02 4.50E+02
Sm-1 51 3.OOE+02 5.93E+01 4.19E+03 4.55E+03
Eu-152 1.45E+00 2.87E-01 2.03E+01 2.20E+01
Eu-155 1.70E+01 3.35E+00 2.37E+02 2.57E+02
Ra-226 2.44E-01 2.13E-08 1.27E+01 1.30E+01
Ra-228 6.52E-06 2.80E-07 1.04E-01 1.04E-01
Ac-227 1.40E-06 3.42E-08 1.77E-05 1.91 E-05
Th-229 2.80E-03 2.52E-05 4.70E-03 7.53E-03
Th-230 1.49E-03 2.60E-06 3.38E-02 3.53E-02
Pa-231 3.90E-06 9.49E-08 4.92E-05 5.32E-05
Pu-244 1.16E-05 1.21E-07 7.85E-04 7.96E-04
Am-243 4.85E-03 9.58E-04 1.47E-02 2.05E-02
Cm-242 4.46E-03 2.37E-03 9.85E-02 1.05E-01
Cm-243 2.84E-03 5.61 E-04 2.33E-02 2.67E-02
Cm-247 5.48E-13 1.08E-13 4.49E-12 5.15E-12
Cm-248 5.71E-13 1.13E-13 4.68E-12 5.36E-12
Bk-249 4.17E-20 8.23E-21 5.81E-19 6.31E-19
Cf-249 3.16E-12 6.24E-13 4.41E-11 4.79E-11
Cf-251 1.08E-13 2.14E-14 1.51E-12 1.64E-12
Cf-252 3.51 E-15 6.93E-16 4.90E-14 5.32E-14

Table A- 12: Concentrations Sent to Saltstone

Ci/gal DDA ARP/MCU SWPF Total
H-3 2.33E-04 2.03E-04 6.91 E-05 8.68E-05
C-14 6.94E-06 6.05E-06 4.56E-06 4.80E-06
Co-60 4.96E-06 2.09E-06 6.OOE-07 1.01 E-06
Ni-59 4.78E-08 1.17E-08 2.44E-08 2.61E-08
Ni-63 1.02E-05 5.06E-06 1.47E-06 2.31 E-06
Se-79 1.11E-07 4.32E-07 9.06E-07 8.25E-07
Sr-90 6.14E-04 1.35E-04 1.39E-05 6.88E-05
Y-90 6.14E-04 1.35E-04 1.39E-05 6.88E-05
Nb-94 3.38E-12 3.40E-12 7.12E-12 6.70E-12
Tc-99 3.82E-05 1.60E-04 3.36E-04 3.06E-04
Ru-106 2.71E-06 1.1OE-05 2.32E-05 2.11E-05
Rh-106 2.71E-06 1.1OE-05 2.32E-05 2.11E-05
Sb-125 1.24E-05 4.48E-05 9.39E-05 8.56E-05
Sn-126 5.30E-07 2.18E-06 4.58E-06 4.17E-06
1-129 2.21E-08 6.62E-08 1.81E-07 1.65E-07
Cs-134 2.63E-04 9.20E-05 5.79E-08 2.51E-05
Cs-135 4.53E-07 1.56E-07 9.84E-11 4.33E-08
Cs-137 1.31E-01 4.58E-02 2.89E-05 1.25E-02
Ba-137m 1.24E-01 4.34E-02 2.73E-05 1.1 8E-02
Ce-144 4.44E-08 2.88E-08 6.03E-08 5.81 E-08
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Ci DDA ARP/MCU ·SWPF Total 
Str126 6.91 E-01 8.68E-01 6.1SE+01 6.30E+01 
Sb-126m 4.93E+OO 6.20E+OO 4.39E+02 4.S0E+02 
Sm-1S1 3.00E+02 S.93E+01 4.19E+03 4.SSE+03 
Eu-1S2 1.4SE+OO 2.87E-01 2.03E+01 2.20E+01 
Eu-1SS 1.70E+01 3.3SE+OO 2.37E+02 2.S7E+02 
Ra-226 2.44E-01 2.13E-OB 1.27E+01 1.30E+01 
Ra-228 6.S2E-06 2.80E-07 1.04E-01 1.04E-01 
Ac-227 1.40E-06 3.42E-OB 1.77E-OS 1.91E-OS 
Th-229 2.80E-03 2.S2E-OS 4.70E-03 7.S3E-03 
Th-230 1.49E-03 2.60E-06· 3.38E-02 3.S3E-02 
Pa-231 3.90E-06 9.49E-OB 4.92E-OS S.32E-OS 
Pu-244 1.16E-OS 1.21E-07 7.8SE-04 7.96E-04 
Am-243 4.BSE-03 9.SBE-04 1.47E-D2 2.05E-02 
Cm-242 4.46E-03 2.37E-03 9.85E-02 1.05E-01 
Cm-243 2.84E-03 S.61E-04 2.33E-02 2.67E-02 
Cm-247 S.4BE-13 1.08E-13 4.49E-12 S.15E-12 
Cm-248 S.71E-13 1.13E-13 4.68E-12 5.36E-12 
Bk-249 4.17E-20 8.23E-21 5.81E-19 6.31E-19 
Cf-249 3.16E-12 6.24E-13 4.41E-11 4.79E-11 
Cf-2S1 1.0BE-13 2.14E-14 1.S1E-12 1.64E-12 
Cf-2S2 3.S1E-1S 6.93E-16 4.90E-14 S.32E-14 

Table A- 12: Concentrations Sent to Saltstone 
, 

Ci/gal DDA ARP/MCU SWPF Total 
H-3 2.33E-04 2.03E-04 6.91E-05 8.68E-05 
C-14 6.94E-06 6.0SE-06 4.S6E-06 4.80E-06 
Co-60 4.96E-06 2.09E-06 6.00E-07 1.01E-06 
Ni-S9 4.78E-OB 1.17E-OB 2.44E-OB 2.61E-OB 
Ni-63 1.02E-05 5.06E-06 1.47E-06 2.31E-06 

.... Se-79 1.11E-07 4.32E-07 9.06E-07 8.25E-07 r 

Sr-90 6. 14E-04 1.35E-04 1.39E-05 6.BBE-05 
Y-90 6.14E-04 1.35E-04 1.39E-05. 6.BBE-05 
Nb-94 3.38E-12 3.40E-12 7.12E-12 6.70E-12 ... Tc-99 3.82E-05 1.60E-04 3.36E-04 3.06E-04 

" Ru-106 2.71E-06 1.10E-05 2.32E-05 2.11E-05 
Rh-106 2.71E-06 1.10E-05 2.32E-05 2.11E-05 
Sb-125 1.24E-05 4.48E-05 9.39E-05 B.56E-05 

", Sn-126 S.30E-07 2. 1 BE-06 4.SBE-06 4.17E-06 
_ .... 1-129 2.21E-08 6.62E-OB 1.81E-07 1.65E-07 ,/ 

Cs-134 2.63E-04 9.20E-05 5.79E-OB 2.51E-05 
Cs-135 . 4.53E-07 1.56E-07 9.84E-11 4.33E-OB 
Cs-137 1.31E-01 4.58E-02 2.89E-05 1.25E-02 
Ba-137m 1.24E-01 4. 34E-02 2.73E-05 1.18E-02 
Ce-144 4.44E-08 2;88E-OB 6.03E-OB 5.81 E-08 
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Table 13: Comparison of Real Salt Cake SampleResults with Predicted Compositions
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Table 13: Comparison of Real Salt Cake Sample Results with Predicted Compositions 
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Avt.SIqIe Sample 0Iat1KM Fted~ .. 

MW We\ahl'lo C'.oa£ 1M) MNa(M) MNI(M) 
Nil 22.98977 2.988t01 2.l<IIliOl 6.44BtOO 6.44E~ 
iAlCQH)4 26.1I81~ 2.0MI 1.296-01 3.~ "'01~1 
CXlJ 60.W'J2 - - - I.)E.{)I 
C204 1UI.0196 - - - IAlf'Al 
N01 46.0055 - - .- 1.4SJl.Ql 
1'11» 610049 - - - 2.671lfOO 
OH 17.0013 - - 1.87F.-IOO 
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Table 8: Combined Tank 41 Dry Salt Composition

Compounds wt%
NaNO3  83

Na2CO 3.H 20 11

NaNO2  0.29

NaAIO 2.2H 20 0.72

Na 2C2 0 4  0.19

Na2SO 4  3.7
NaCl 0.0070
NaF 0.26

NaOH 0.76

Na 3PO4 0.61

All the dry salt data that was not considered anomalous was then averaged to give a dry salt
composition to be used for all salt tanks. The current salt compositions 8 in WCS for F and H
Area salt wastes are listed for comparison.

Table 9: Comprehensive Dry Salt Compositions

Sample (wt%) Tank 2 Tank 3 Tank 10 Tank 38 Tank 41 AVG WCS-F WCS-H

NaNO3 88 97 94 85 83 86 66 50
Na2CO3.H20 3.7 2.0 2.4 10 11 5.7 5.7 3.7

NaNO2 -- 1.4 ..--- 0.29 0.82 1.4 11
NaAIO2.2H20 7.4 0.10 --- 0.80 0372 2.2 7.8 10

Na2C204 0.10 ..--- 1.1 0.19 0.45 0.62 0.42

Na2SO4 0.90 --- 3.8 3.7 3.7 2.9 9.5 5.8

NaCI ...... --- ----- 0.0070 0.0068 0.51 0.50

NaF --.. .. 0.10 0.26 0.17 0.62 0.34

NaOH --- ---. --- 0.76 0.73 7.4 16

Na3PO4 .. ... .... 0.61 0.59 0.00040 0.0060

Total Na 27 27 28 29 29 28 30 32

RADIONUCLIDE COMPOSITION FOR DRY SALT CAKE

As with the chemical composition, the sample results are analyzed to determine the radionuclide
composition of the solid and liquid phases. A list of major radionuclides as seen in Table 10 is
chosen from the final reports '10 for Tanks 2F, 3F, 10H, 29H, 38H, and 41H. Except for C-14,
Sr-90, Cs-137, Pu-238, Pu-239/240, and Am-241 that were analyzed by the more accurate
radiochemistry method, the other radionuclei species were obtained from ICP-MS method. Data
shown for the radionuclide constituents analyzed by ICP-MS do not add up to exactly 100% due
to tolerances in the method used. Tables 10 and 1 I present the radionuclide concentrations in
the wet saltcake and interstitial liquid/supemate for samples collected from undrained saltcake of
Tanks 2F, 3F, 10H, 29H, 38H, and 41H (post-dissolution).

(, 

Table 8: Combined Tank 41 Dry Salt Composition 

Compounds wt% 

NaN03 83 

Na2C03,H20 11 

NaN02 0.29 

NaAI02·2H2O 0.72 

Na2C204 0.19 

NaZS04 3.7 
NaCI 0.0070 
NaF 0.26 

NaOH 0.76 

Na3P04 0.61 
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All the dry salt data that was not considered anomalous was then averaged to give a dry salt 
composition to be used for all salt tanks. The current salt compositions8 in WCS for F and H 
Area salt wastes are listed for comparison. 

Table 9: Comprehensive Dry Salt Compositions 

Sample (wt%) Tank 2 ' Tank 3 Tank 10 Tank 38 Tank 41 AVG WCS-F WCS-H 
NaN03 88 97 94 85 83 86 66 50 

Na2C03·H20 3.7 2.0 2.4 10 11 5.7 5.7 3.7 
NaN02 --- 1.4 -- --- 0.29 0.82 1.4 11 

NaA102·2H20 7.4 0.10 --- 0.80 0,72 2.2 7.8 10 
Na2C204 0.10 -- --- 1.1 0.19 0.45 0.62 0.42 
Na2S04 0.90 --- 3.8 3.7 3.7 2.9 9.5 5.8 

NaCI --- --- --- --- 0.0070 0.0068 0.51 0.50 
NaF -- -- -- 0.10 0.26 0.17 0.62 0.34 

NaOH --- --- -- --- 0.76 0.73 7.4 16 
Na3P04 -- --- -- -- 0.61 0.59 0.00040 0.0060 

TotalNa 27 27 28 29 29 28 30 32 

t 
RADIONUCLIDE COMPOSITION FOR DRY SALT CAKE 

As with the chemical composition, the sample results are analyzed to determine the radionucli'de, 
composition of tge solid and ~q~id phases. A list of major radionuclides as seen in Table lOis 
chosen from the final reports I ,I for Tanks 2F, 3F, lOH, 29H, 38H, and 41H. Except for C-14, 
Sr-90,Cs-137, Pu-238, Pu-239/240, and Am-241 that were analyzed by the more accurate 
radiochemistry method, the other radionuclei species were obtained from ICP-MS method. Data 
shown for the radionuclide constituents analyzed by ICP-MS do not add up to exactly 100% due 
to tolerances in the method used. Tables 10 and 11 present the radionuclide concentrations in 
the wet saltcake andinterstitialliquidlsupemate for samples collected from undrained saltcake of C , Tanks 2F, 3F, lOH, 29H, 38H, and 41H (post-dissolution). 
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Additionally, the bulk of the Sr-90 and the actinides in these samples were found to be
associated with dry salt, but this finding can be explained by the presence of insoluble solids
(2.582E-03 weight fraction8 ), which WCS already attributes to salt. Note that the insoluble solid
composition does not account for the C-14, U-235, or U-238. Carbon occurs most dominantly in
the crystalline salt solids as carbonates and less so as oxalates. C-14 should be added to the salt
composition in WCS. Uranium is known to precipitate when saltcake is formed via evaporation,
thus, is present in saltcake as sodium diurinate. '3,' This component is generally considered part
of the insoluble solids in WCS and, therefore, the composition of insoluble solids should be
changed to include U-235 and U-238.

Recommended changes to WCS radionuclide composition are shown in Table 14. Data should
be developed to support a similar determination for 1-129, which is a constituent of interest to the
Integrated Flowsheet Model and the Salt Waste Processing Facility design effort.

Table 12: Major Radionucide Concentrations in Dry Saltcake

Tank 2F 3F 10H 29H 38H 41H Average e WCS

pCi/mL T2F-1-1 T3F-1-1 T3F-1-4 HTF-610 T29H-B6-1 HTF-E-03- HTF-E-03- pCi/mL
114 146

99Tc 1.13E+04 1.02E+05 5.98E+04 E 8.37E+03 5.04E+03 3.72E+04 0
tS3 Cs 5.87E+02 7.76E+02 8.82E+02 YT14 2 62E•02• 5.14E+01 2.35E+02 5.06E+02 0
230

.Th 1.34E+02 2.03E+03 1.31E+039 ' 1.80E+03 1.11E+03 1.28E+03 0
232Th 5.62E-02 1.75E-02 1.07E-02 I"53E,-O9 i•3OELO4K 4.79E-01 5.05E-03 1.14E-01 0
233U 6.44E+01 9.75E+02 6.26E+02 -I.94E+-4 •75E-03 8.64E+02 1.49E+02 5.36E+02 0
234U 4.16E+01 6.29E+02 4.04E+02 •407E•03 •5a'60E•-O 1.23E+04 3.35E+03 o
235U 4.97E-01 3.20E-01 1.48E-01 2F.1E+Q1 4iAOE04 1.38E+01 3.70E+00 0
236U 3.02E+00 6.52E+00 4.18E+00 ,2 ,68E+0;2• 88.O 6.17E+01 1.89E+01 0

J7Np 4.69E+00 7.10E+01 4.56E+01 2E+0. 1139E+02( 6.46E+02 2.29E+01 1.58E+02 0
238U 1.42E+01 1.22E+01 6.73E+00 26.'i+0 999E+02 8.30E+01 0

239pu 1.03E+04 6.26E+03 4.02E+03 1271E+I 6.13E+04 3.42E+03 1E+04 .0
24°pu 1.07E+04 2.30E+04 1.47E+04 7 •:04E+04, -'7'3EO- 5 04E±04 1 .25E+04 2.23E+04 0
241pH 8.52E+05 1.04E+07 6.66E+06 :3'E 3 ....... 9 20E+06 5,67E+06 6.55E+06 0
242pu 2.54E+01 3.85E+02 2.47E+02 1l.8E+03 1.16E+03 2.1OE+02 4.06E+02 0

"C 3.57E+03 7.09E+03 8.18E+03 4.79E.04 2.12E+3 I.09E+04 4,66E+02 6.04E+03 0
90Sr 2.55E+06 3.59E+06 1.64E+06 1A6EO •2j79E+-7 4.48E+06 9.40E+07137Cs39E0 .1+7••i0•i:'¢••::

CS. 3.96E+06 3.91E+07 •3 O- 1,56E+07 2.15E+07 4.20E+06
23 8pu 2.20E+04 1.15E+04 6.17E+03 2.76E•O6 237E+06 7.02E+06 2166E+04 1.42E+06 1.20E+06

239/240°Pu 1.31E+04 4.71E+03 4.14E+03 1 .80E+03 2.97E+04 4.OOE+04
24 1Am 7.28E+03 2.71E+03 2.71E+03 5.ý0'7 4 2 .. E..... _ __ 2 0
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Additionally, the bulk of the Sr-90 and the actinides in these samples were found to be 
associated with dry salt, but this finding can be explained by the presence of insoluble solids 
(2.582E-03 weight fraction8

), which WCS already attributes to salt. Note that the insoluble solid 
composition does not account for the C-14, U-235, or U-238. Carbon occurs most dominantly in 
the crystalline salt solids as carbonates and less so as oxalates. C-14 should be added to the salt 
composition in WCS. Uranium is known to preciBitate when saltcake is formed via evaporation, 
thus, i.s present in saltcake as sodium diurinate. 13

, 4 This component is generally considered part 
of the insoluble solids in WCS and, therefore, the composition of insoluble solids should be 
changed to include U-235 and U-238. 

Recoinmended changes to WCS radionuclide composition are shown in Table 14. Data should 
be developed to support a similar determination for 1-129, which is a constituent of interest to the 
Integrated Flowsheet Model and the Salt Waste Processing Facility design effort. 

Table 12: MaJor Radionuclide Concentrations in Dry Saltcake 
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Interstitial liquid drainage

The prior study included an approximate analytical expression for estimating the time

required to remove a specified volume of interstitial fluid, or equivalently to lower the

average interstitial level from a specified initial height to a specified final elevation (cf.
Flach 2003a, equation (39)). The drain time expression was based on an analytical flow

model that had been calibrated to the well recovery event during downtime between
9/22/02 and 10/11/02 (cf. Flach 2003a, equation (32)). Figure 3 compares predicted

interstitial liquid volume left to be drained, "gallons-to-go", as a function of pump

operating time. The agreement is excellent through nearly 300 hours. After that
intermittent pump operation cause poorer agreement, although still good except near the

end. The analytical solution assumes pseudo steady-state, slow transient conditions,
which was not the case when the. sump pump operated intermittently. The comparison
indicates that the analytical expression, once calibrated to initial drainage data, can be

expected to produce accurate estimates of subsequent drain rates while pump operation is
reasonably continuous.

0

0

Pumnp Operating Hours

Figure 3 Predicted and actual drainage progress for Tank 41 from March through
June 2003.
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Interstitia/liquid drainage 

The prior study. included an approximate analytical expression for estimating the time 
required to remove a specified volume of interstitial fluid, or equivalently to lower the 
average interstitial level from a specified initial height to a specified final elevation (cf. 
Flach 2003a, equation (39)). The drain time expression was based on an analytical flow 
model that had been calibrated to the well recovery event during downtime between 
9/22/02 and 10111102 (cf. Flach 2003a, equation (32)). Figure 3 compares predicted 
interstitial liquid volume left to be drained, "gallons-to-go", as a function of pump 
operating time. The agreement is excellent through nearly 300 hours. After that 
intermittent pump operation cause poorer agreement, although still good except near the 
end. The analytical solution assumes pseudo steady-state, slow transient conditions, 
which was not the case when the sump pump operated intermittently. The comparison 
indicates that the analytical expression, once calibrated to initial drainage data, can be 
expected to produce accurate estimates of subsequent drain rates while pump operation is 
reasonably continuous. 
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ANALYSIS OF TANK 19 SALT CAKE

INTRODUCTION AND SUMMARY

Plans to retire waste tanks from service include several tanks that are presently
used to store salt cake. In support of the tank retirement program, a solid
sample of the salt cake in Tank 19F was obtained for physical, chemical and
radiochemical characterization. Analysis of this and other salt samples will
provide a data base for interim and long-term waste management programs.

DISCUSSION

Based on tests in the Shielded Cell Facility, 90 volume % (96 wt %) of the salt
cake was soluble in water using a 1.3:1 water-to-salt cake volume ratio to
approximate the 1.3-1.4 specific gravity projected for salt dissolution. The
specific gravity of the resulting solution was 1.41. Specific concentrations
of critical anions QNOi, NO!, 0H'1 are shown in Table I.

The chemical composition of the salt cake is listed in Table II, assuming all
anions are present as sodium salts. Based on the water insoluble residue in
the sample, approximately 177 metric tons (dry basis) of sludge solids are
contained in the salt cake representing approximately 93,600 gallons of wet
sludge. This sludge is in addition to the 12,000 gallons already estimated to
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ANALYSIS OF TANK 19 SALT CAKE 

INTRODUCT ION AND SUMMARY 

Plans to retire waste tanks from service include several tanks that are presently 
used to store salt cake. In support of the tank retirement program, a solid 
sample of the salt cake in Tank 19F was obtained for physical, chemical and 
ra~iochemical characterization. Analysis of this and other salt samples will 
provide a data base for interim and long-term waste management programs. 

DISCUSSION 

Based on tests in the Shielded Cell Facility. 90. volume % (,96 wt \) of the salt 
cake was soluble in water using a 1.3:1 water-to-salt cake volume ratio to 
approximate the 1.3-1.4 specific gravity projected for salt diSSOlution. The 
specific gravity of the resulting solution was 1.41. Specific concentrations 
of critical anions (NOi. NOi, OH-l are shown in Table I. 

The chemical composition of the salt cake is listed in Table II, assuming all 
anio~s are present as sodium salts. Based on the water insoluble residue in 
the sample, approximately 177 metric tons (dry basis) of sludge solids are 
contained in the salt cake representing approximately 93,60.0. gallons of wet 
sludge. This sludge is in addition to the 12,0.0.0. gallons aI"ready estimated to 
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be in Tank 19F. Only Cs-137 and Sr-90 were detected in the reconstituted salt
solution (Table III). The insoluble solids in this sample were not analyzed.

Additional salt samples will be obtained from Tank 10H, 24H, iF, 9H, 2F and 3F
during the next six months1 to provide additional information on waste salt.
Solids content and radionuclide content of these samples will provide additional
information for the DWPF flowsheet.

JRF:ln
Attachments

1W. L. West to G. M. Johnson, memo, "Salt Sampling," September 24, 1980.

2 

... 
be in Tank 19F. Only Cs-137 and Sr-90 were detected in the reconstituted salt 
solution (Table III). The insoluble solids in this sample were not analyzed. 

Additional salt samples will be obtained from Tank lOH, 24H, IF, 9H, 2F and 3F 
during the next six months l to provide additional information on waste salt. 
Solids content and radionuclide content of tnese samples will provide additional 
information for the DWPF flowsheet. 

JRF:ln 
Attachments 

lW. L. West to G. M. Johnson, memo, "Salt Sampling,1I September 24, 1980. 



Table I

SOLUTION PROPERTIES OF DISSOLVED SALT FROM TANK 19F

Specific Gravity, 1.41

NO M 4.5
3,

NO 2 0.096

Free OH ,M 0.77

Insoluble Solids 10 vol. t of original salt
cake

Solution Makeup 1.3 liters H2 0/liter of
salt cake

'Table I 

SOLUTION PROPERTIES OF DISSOLVED SALT FROM TANK 19F 

., Specific Gravity. 1.41 

N03 -.M 4.5 

N02-·M 0.096 

Free OH-.M 0.77 

Insoluble Solids 10 vol. % of original salt 
cake 

Solution Makeup 1.3 liters H20/liter of 
salt cake 

\ 



Table II

CHEMICAL ANALYSES OF

Component

NaNO3

NaNO2

NaAl (OH) 4

N a 2 SO4

Na 2 CO 3

NaOH

Na2 C 204

NaF

NaCI

Na 3 PO4

Hb
H20

- Insoluble ResidueC

Total

g/2 of Salt Cake

641

11

186

154

44

52

1

1

Matrix Interferencee

Trace

90

51

1231

TANK 19 SALT C

Wt %a

50.1

0.9

14.5

12.0

3.4

4.1

0.1

0.1

7.0

4.0

96.2

•AKE

Metric Tons in Tankd

2270

41

658

545

156

186

4.5

4.5

3.8

182

4365

a Based on measuredbulk density of 1.28 kg/£ for the salt sample; sodium salts

assumed for all anions identified.

bwt loss on heating air-dried' salt sample to 120 0C.

CInsoluble residue was 10 volume % of original dry sample volume; dissolution

of soluble salts will leave -'s75,000 gallons of additional sludge.

d,Assumes 3.54 x 106 liters (9.36 X 105 gallons) of salt cake in Tank 19 of the
composition shown in'this table.

ePresence of organic anion prevented determination of chloride content of sample,
attempts to identify organic species were unsuccessful.

Table II 

CHEMICAL ANALYSES OF TANK 19 SALT CAKE 

Component g/i of Salt Cake Wt ,a Metric Tons in Tank d 

NaN°3 641 50.1 2270 

NaN°2 11 0.9 41 

NaAl(OH)4 186 14.5 658 

Na2S04 154 12.0 545 

Na2C03 44 3.4 156 

NaOH 52 4.1 186 

Na2C;2°4 1 0.1 4.5 

NaF I 0.1 4.5 

NaCl Matrix Interference e 

Na3P04 Trace 

H Ob 
2 90 7.0 3.8 

~Insolub1e Residuec 51 4.0 182' 

Total 1231 96.2 4365 

aBased on measured ·bulk density of 1. 28 kg/l. for the salt sample; sodium salts 
assumed'for all anions identified. 

bWt loss on heating air-dried' salt sample to 120°C. 

ClnsOluble residue was 10 volume % of original dry sample volume; dissolution 
of soluble salts will leave_"'7S.00~ gallons of additional Sludge. 

di\sswnes 3.54 x 106 liters {9.36 x 105 gallons) of salt cake in Tank 19 of the 
composition shown in "thiS table. 

epresence of organic anion prevented determination of chloride content of sample, 
att.empt.s to ident.ify o.rganic species were unsuccessful. 



I . ý .

Table III

SOLUBLE RADIONUCLIDES IN TANK 19F SALT CAKE

mCi/Liter
•nuclide, of Salt Cake Ci inRadio rank

Cs- 137

Sr-90

45

0.21

1.6 x 105

7.4 x 102

-, 

Table III 

SOLUBLE RADIONUCLIDES IN TANK 19F SALT CAKE 

mCi/Liter 
Radionuclide \ of Salt Cake Ci in Tank 

Cs-137 4S 1.6 x lOS 

Sr-90 0.21 7.4 x'102 
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ANALYSES OF DISSOLVED SALT SOLUTION FROM TANK 24

In support of the demonstration of the precipitatation
decontaminate soluble waste, the requested analysis of
solution from Tank 24 has been completed. Results are
in the attached memorandum.
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ANALYSES OF DISSOLVED 'SALT SOLUTION FROM TANK 24 

In support of the demonstration of the precipitatation process to 
decontaminate soluble waste, the requested analysis of the feed 
solution from Tank 24 has been completed. Results are summarized 
in the attached memorandum. 
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TO: W. V. WRIGHT

FROM: J. R. FOWLER

ANALYSIS OF TANK 24 DISSOLVED SALT SOLUTION
(Sampled 6/82)

Summary

At the request of Waste Management Technology, chemical and
radiochemical analyses of a sample of Tank 24 dissolved salt
solution were obtained. These analyses were requested to support
the demonstration of soluble waste decontamination by the
precipitation process planned for the first quarter of 1983.
Results are shown in the attached Table I.

Details

The sample from Tank 24 was received June 17, 1982. The
sample was prepared for analyses by H. Edwards in High Level Cell
14 according to the procedure shown on page 62 of DPSTN-3302.
The tests in Cell 14 determined the sample density to be 1.30 g/ml,
and that this sample contained 2.1 wt% insoluble solids. These
insoluble solids were removed by vacuum filtration. The filtrate,
containing soluble waste components, was submitted to Analytical
Development Division (ADD) for analyses by their standard
analytical procedures. ADD quality assurance procedures as
outlined in DPST-81-595 were used to qualify the methods for these
analyses.
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TECHNICAL DIVISION 
SAVANNAH RIVER LABORATORY 

TO: w. V. WRIGHT 

FROM: J. R. FOWLER 

DPST-82-87l 
4('£'.1(10, 150~ 

cc: w. B. Stevens 
R. B. Ferguson 
L. M. Lee 
J. B. Piekett 
TIS Fi1e.-cop:y_t2J_ 

September 22, 1982 

'- ._-- . 

ANALYSIS OF TANK 24'DISSOLVED SALT SOLUTION 
(Sampled 6/82) 

Summary 

At the request of Waste Management Technology, chemical' and 
radiochemical analyses of a sample of Tank 24 dissolved salt 
solution were obtained. These analyses were requested to support 
the demonstration of soluble waste decontamination by the 
precipitation process planned for the first quarter of 1983. 
Results are shown in the attached Table I. . 

Details 

The sample from Tank 24 was received June 17, 1982. The 
sample was prepared for analyses by H. Edwards in High Level Cell 
14 according to the procedure shown on page 62 of DPSTN-3302. 
The tests in Cell 14 determined the sample density to be 1.30 g/ml, 
and that this sample contained 2.1 wt' insoluble solids. These 
insoluble solids were removed by vacuum filtration. The filtrate, 
containing soluble waste components, was submitted to Analytical 
Development Division (ADD) for analyses by their standard 
analytical procedures. ADD quality assurance procedures as 
outlined in DPST-8l-595 were used to qualify the methods for these 
analyses. 
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TABLE I

ANALYSES OF TANK 24 DISSOLVED SALT SOLUTION

Physical Properties

Wt% Insoluble Solids 2.1 -

Density, g/ml 1.30

Chemical Analyses
S
Species Moles/liter

Na+

K +

Ca +2

NO3

NO2

Free OH

CO 3

Al(OH) 4

SO4

6.6

6. 1E-3

7.OE-5

3.8

0.40

0.89

0.34

0.45

C1

MO4

CrO4

SiO3=

0.21

0.012

Not Detected

9.6E-4

<0.01

Radiochemical Analyses

Cs-137
Ru-106
Tc-99
Se-79
Sr-90
Pu-238,239

Disc 4

mCi/liter

220
0.59
0.071
0.0024
<background
0.075

A.
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Physical Properties 

Wt' Insoluble Solids 
Density, g/m1 

Chemical Analyses 

Species 

Free OH 

CO)= 

Al<OH) 4 
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C1-

M0
4
=' 

Radiochemical Analyses 

Cs-137 
Ru-l06 
Tc-99 
Se-79 
Sr-90 
Pu-~38,239 
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Moles/liter 
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7.0E-S 

3.8 

0.40 

0.89 

0.34 

0.45 

0.21 

0.012 

Not Detected 

9.6E-4 

<0.01 

mCi/liter 

220 
0.59 
0.071 
0.0024 
<background 
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E. I. DU PONT DE NEMOUR•S & COMPANY

ATOMIC ENERGY DIVISION

SAVANNAH, RIVER LAIORATORY
AIKEN, SCfYH CAROLINA 2801

ITWX: 810-M7-2•7- . TIL: 803-725.6211. WU: AUGUSTA. GA.)

ECORDS ADMINISTRAION]

R0605904 )
DPST-82-8711-TL

CC: J. A. Kelley
W. V. Wright
J. R. Fowler

September 22, 1982

J. T. GRANAGHAN
SAVANNAH RIVER PLANT

ATTN: E.*B. SNELL'
WASTE MANAGEMENT TECHNOLOGY

ANALYSES OF DISSOLVED SALT SOLUTION FROM TANK 24

In support of the demonstration of the precipitatation
decontaminate soluble waste, the requested analysis of
solution from Tank 24 has been completed. Results are
in the attached memorandum.

process to
the feed
summarized

W. R. Stevens, III
Waste Processing Technology
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J. T. GRANAGHAN 
SAVANNAH RIVER PLANT 

ATTN: E.' B. SNELL' 
WASTE MANAGEMENT TECHNOLOGY 

[REliiitdillr)1 
R0605904 - . - ., - ~ 

DPST-82-87l-TL 

CC: J. A. Kelley 
W. V". Wright 
~. R. Fowler 

September 22, 1982 

ANALYSES OF DISSOLVED 'SALT SOLUTION FROM TANK 24 

In support of the demonstration of the precipitatation process to 
decontaminate soluble waste, the requested analysis of the feed 
solution from Tank 24 has been completed. Results are summarized 
in the attached memorandum. 
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FIGURE 1: EXAMPLE SETTLING CALCULATION

1 8 1 C i D
2

F GH I I I J K ,L I, M NI 0 I 0
3 I

4 1 ~ etiina atesper WSRC-TR-95-0249: I..,-
-,. .

R If •r / (1 SIRl L•d.•lv .4: i fr fmfIrI ÷ 417 X

7 t_1If frnct 4fr 0.867 ind"y : -25.95 " frac. settled + 26.30

9 DF Fraction of solids Rate In.1dav Fraction of Rate, In./day
10 grmoved spa 1.194 mgo 1.399 .solids removed Conservatlve ictio__
1 1 0 37.00
12 2 0.500 16 23 0.500 16.00
13 3 0.667 0.0 11 0.667 9.00
14 4 0,750 6.8 8.7 0.750 6.84
15 5 0.800 5.6 6.1 0.800 5.54
16 10 0,900 3.6 3.2 0,900-- 2295
17 15.5 0.935 2.9 2.7 0.935 2.03
18 20 0.950 2.1 1.8 0.950 1.05
19 28 0.964 1.7 1.3 0.964 1.28
20 40 0.975 1.3 1.0 0.975 1.00
21 I - 1 0.35
22 bold defines onservatlve settle rates for both densities
23 1
26 Tank level. In. j 285 84glnnlrg settled heel, in : 2.00 Tank fill factor, *al..n - = 3510

27 initil wnc I.S., mWLt 550 P:umprtet buffer distance, in *. 1 Mnum pumpiret suction level, In- 26.5
28 - Targlet c., mg& - 180.00 BoundinQ level for hindered soi -29 A94e=r M rawe lvdayr 8 .843
30
31 Volume or Elevalion vs. Time for Fixed Targt Concentration Concentration vs Time for a Fixed Elevation
32 Target Applicable Days of settuing rterdace hehtl, Minimum Gal avallaWe for - Concentration. Applicable Dass of Tank Minimum
33 conc, setthng pump/et transfer mg/A. settling setl Elevation, In. pump/
34 mg/- rate. suction level. sucin
35 ind _ _ _ _ in. Inr/d level. in. I .

37 180.00 8.843 3.0 258.47 276.47 29934 550.00 37.000 1.0 10.00 26.00
38 180.00 8.843 6.0 231.94 249.94 .123048 . 37.000 3.0 10.00 28.00
39 180.00 6.843 9.0 205.42 22342 216163 550.00 37.000 6.0 10.00 28.00
40 180.00 8.843 12.0 178.89 196.89 309277 465.61 30.556 9.0 10.00 28.00
41 180.00 8.8431 15.0 152.38 170.36 402391 365.58 22.917 12.0 10.00 28.00
42 180.00 8.843 18.0 125.83 t43.83 495505 305 18.333 15.0 10.00 28.00
43 180.00 8.843 21.0 99.30 '117.30-. 588819 265.9Z 15.278 C0. 10.00 28.00
44 180.00 8.843 24.0 72.77 .77 681733 •25-1- 13.095 -1 .0 10.00 28.00
45 180.00 6.843 27.0 48.25 64.25 774848 215.53 11.458 24.0 10.00 28.00
46 160.00 8.843 30.0 19.72 37.72 887962 198.85 10.185 27.0- 10.00 28.00
47 180.00 8.843 31.5 6.45 26.50 907335 .52- 9.107 (,30.0.., 10.00 28.00
48 180.00 6.843 36.0 6.00 28.50 907335 J W7,01 6.730 .5 10.00 28.00
49 180.00 8843 3.0 6.00 26.50 907335 154.48 7.539 36.0 10.00 28.00
50 180.00 8843 42.0 .00 26.60 907335 142.02 7.051 39.0 10.00 28.0051 180.00 8843 420 6.00 26.50 907335 131.35 8,548 42.0 10.00 2.00

1T

B 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

~ Target 

~ cone, 

~ mgll. 
35 
38 
37 180.00 
38 180.00 
38 180.00 
40 180.00 
41 180.00 
42 180.00 
43 180.00 
44 180.00 
45 180.00 
46 180.00 
47 180.00 
48 180.00 
49 180.00 
50 180.00 
51 180.00 

FIGURE 1: EXAMPLE SETTLING CALCULATION 

C I 0 r E. F G H I I J K l M 
I 
I 1 I 

Settlina 1'81811 DBr WSRe-TR·85-0249: ConservatiYe II8tIIIng rates: 

Iffract <1= 0.667 InldaV = "'2.00 
Iffrect ~I= 0.667 InIdav = ·25.85 

OF Fraction of IIOIlda Rate In./daV" Fractlanof Rata In./dav· 
removed &DO 1.184 lIDO 1.399 solids rernovad ConaervatIve .......tiCtion 

0 37.00 
2 0.500 1. 23 0.500 16.00 
3 0.667 8.0 11 0.867 8.00 
4 0.750 6.8 8.7 0.750 6.84 
5 0.800 5.8 6.1 0.800 5.54 
10 0.800 3.6 3.2 0.900 2.95 

15.5 0.935 2.9 2.7 0.935 2.03 
20 0.950 2.1 1.8 0.950 1.65 , 
28 0.964 1.7 1.3 0.984 1.28 
40 0.915 1.3 1.0 0.975 1.00 

1 0.35 
• bold defInea conservative HIlle rates for boll! densities 

I 
I 
I 

Tank level, In. " 285 IBealnnlng selllad heel, in = 2.00 Tank liD factor, gaI/In· = 3510 
Initial cone 1.8., rii~ • 550 PumP(/8t buffer distance, In " 18 Minumumpum Vltll suction level, In • 26.5 
Tariiilf IXIIIC., mg/l '" 180.00 Bounding level for hIndeAId seIIIinI 6 J 

I II8IIIIna rate In/dav" 8.843 I 1 
I I 

Volume or Elevalion VI. Tlma for Fixed Tan: at COncentration Concentration VII Tima for a Fbced Elevation 
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INTRODUCTION

Waste solutions from the processing of radioactive fuel
elements in two separate areas at the Savannah River Plant (SRP)
are stored.in carbon steel underground tanks of 3/4 to 1-1/3
million gallons capacity. The solutions are alkaline, with a
dissolved solids content of 30-35 wt %. The wastes are of two
general types: "high level waste," which contains sufficient
radioactive fission products to produce decay heat at 0.5 to 5

.Btu/(hr)(gal); and "low level waste," with fission product con-
tent 1/1000 to 1/100,000 that of the high level waste, but still
too high to discard to a seepage pond of to streams and rivers.
The low level waste contains principally sodium aluminate from
the caustic dissolution of the aluminum jacket on the irradiated
fuel elements. The high level waste, principally sodium nitrate
with some sulfate and carbonate, contains nearly all of the
radioactive fission products from the processing of irradiated
fuel elements. Both wastes separate into a layer of sludge and
a layer of relatively clear supernatant liquid.

Costs are reduced in the long-term storage of radioactive
waste solutions at SRP by transferring the waste supernate, after
sufficient time for decay of highly active fission products, from
storage tanks with cooling coils (Fig. 1) to less expensive un-
cooled tanks (Fig. 2). The tanks with coils are then reused for
fresh waste. Further economy is obtained by evaporative reduc-
tion of volume of the aged wastes during the transfer to the
uncooled tanks.

A tank farm evaporator, shown in Fig. 3, was installed in
both waste storage areas at SRP (1960 in F Area and 1963 in H
Area). Each evaporator, central to four large uncooled storage
tanks, has operated satisfactorily since installation. The
present evaporators are designed to concentrate the supernatant
solution from tanks (which contain either aged high activity
waste or low level waste) from -35 to -70 wt % solids (total
solute plus solid phase) and to discharge the concentrated waste
by steam lift and gravity drain or a pumped recirculating loop to
the storage tanks. These radioactive slurries were transported
from one location to another in tests at the Savannah River
Laboratory.'

To keep storage costs at a minimum and to ensure an operable
concentration system, it was necessary to determine the charac-
teristics of waste solutions during concentration and to deter-
mine the distribution of radioisotopes between solid and liquid
phases as the salts crystallize during cooling. The distribution
of radioisotopes, particularly 137CS, could affect the cooling
requirements for the evaporated waste, and require additional
shielding around the evaporator during the latter concentrations.
Also of interest are changes in the solid residues as the tem-
perature increases because of fission product decay heat.
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FIG. 1 COOLED STORAGE TANK

FIG. 2 UNCOOLED STORAGE TANK
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In some types of waste, large crystalline masses collect on
the walls and cooling coils in the waste tanks. Following
removal of the liquid phase (predominantly sodium aluminate de-
canning solution), crystals 8 feet deep on the bottom of the tank,
and large deposits of crystals on the walls, thermocouple wells,
and dip tubes have been noted. In October 1964, a crystal forma-
tion was obserVed around the center thermowell in Tank 20 that
was estimated to be S-1/2 to 7 feet in diameter and to weigh 30
to 40 tons; a crystal deposit 8 to 12 feet in diameter was on the
instrument pipes in this tank (Fig. 4). Without the high-density
liquid phase to help support these large crystals, their weight
could pull the cooling coils from the tank roof, or collapse the
roof. Consequently, the rate of dissolution of synthetic waste
crystals was determined to provide basic data for removal of.the
crystals from the tanks, should this step be necessary.

FIG. 4 TWELVE-FOOT-DIAMETER MASS OF CRYSTALS ON 0.8-INCH PIPES

SUMMARY.

Tests with both synthetic and actual plant waste showed that
all of the radioactive waste stored in the separations areas'can
be reduced to -1/3 of its original volume and immobilized by suc-
cessive evaporation of the decantable liquid. The concentration
of 1 3 7 Cs in the liquid phase of plant waste evaporations increased
as much as 17-fold. No vigorous reactions were observed when the
solid residues were heated to 700°C.

The measured rates of dissolution for synthetic crystalline
wastes indicate that solidified separations wastes from both
natural and enriched uranium processing can be dissolved in water
in a reasonable time (rates exceeding 0:1 ft/hr).
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SUMMARY

I. Permeabilities measured with synthetic salt cake in glass columns

were about 20 darcies. These permeabilities are higher than data

obtained with Hassler sleeves at Atlantic Richfield Hanford. The

difference can best be resolved by in situ measurements.

2. Sludge permeabilities were estimated to be less than 10 md.

3. Steady state and pseudo steady state flow equations have been derived

for salt cake In cylindrical tanks. They can be used to predict

drainage rates; or, from flow rates and liquid levels, to calculate

in situ permeabilities. If the permeability is assumed to be

20 darcies, maximum flow rates will be 200 to 300 gals per hour,

depending on liquid levels.

4. Minimum drainage times have been calculated for representative salt

cake and storage tank properties-. The times are approximately

proportional to the difference in reciprocals of the final and initial

liquid levels at the periphery of the tank. An example calculation

showed that 140 days would be required to drain an initial 20 feet

of heel to 2 feet of remaining liquid for a 20 darcy salt.cake in a

75 foot tank.
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Besides providing temporary data for thirteen tanks, the recent studies provide a basis for
constructing algorithms to estimate the concentrations of radionuclides in supernate
where sample data is lacking or rendered inapplicable because of changed conditions.

Further, these studies provide a glimpse into the effect of filtering supernate and of the
difference between free supemate and interstitial salt liquid. Comparing free supernate
with interstitial salt liquid results indicates whether separate algorithms are needed for
these two forms. Whereas, comparing filtered versus unfiltered results indicates whether
a constituent is present in dissolved form or as suspended solids, which distinction is
important to the construction of algorithms for dissolved constituents.

The following section discusses the results and recommended supemate concentration
algorithms for the key radionuclides. The algorithms are of three kinds:

" Constant values for low-level constituents, such as C-14
" Ratio to Cs-137 (i.e., gross gamma) for Sr-90 and Tc-99
" Partition factors for actinides, according to their abundance in associated sludge.

Sample Analysis Results and Algorithms for Individual Radionuclides

Attachments B and C consist of extracts of results from the referenced reports for
fission/activation products and for actinides, respectively.

Some samples were diluted prior to analysis (Attachment B and C, Dilution Factor
column). In these cases the results are multiplied by the appropriate dilution correction to
estimate as-received concentrations. This procedure is conservative and may
overestimate as-received concentrations of constituents that fall below detectable limits
(i.e., "less than" results).

H-3

H-3 is a low-yield activation product created in the reactors. Its presence in the form of
tritiated water is expected at low concentration in all the waste tanks. Tritiated water is
soluble in all proportions, so no filtering effect is possible. Supernate blending during
future processing should tend to average the tritium concentration over time.

H-3 analyses of free supernate samples from seven tanks yielded six results over the
detection limit, ranging from 8.45E+03 to 1.14E+05 pCi/mL (Attachment B, H-3
column). A seventh sample was found to contain less than 2.38E+04 pCi/mL Counting
the "less than" result, these values average 4.27E+04 pCi/mL, with a standard deviation
of 4.64E+04 pCi/mL.

A constant value of 1.00E+05 pCi/mL is recommended as a reasonable algorithm for
supernate H-3 concentrations.
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Besides providing temporary data for thirteen tanks, the recent studies provide a basis for 
constructing algorithms to estimate the concentrations of radionuclides in supernate 
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Further, these studies provide a glimpse into the effect of filtering supemate and of the 
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Attachments B and C consist of extracts of results from the referenced reports for 
fission/activation products and for actinides, respectively. 

Some samples were diluted prior to analysis (Attachment B and C, Dilution Factor 
column). In. these cases the results are multiplied by the appropriate dilution correction to 
estimate as~received concentrations. This procedure is conservative and may 
overestimate as-received concentrations of constituents that fall below detectable limits 
(i.e., "less than" results). 

B-3 

H-3 is a low-yield activation product created in the reactors. Its presence in the form of 
tritiated water is expected at low concentration in aU the waste tanks. Tritiated water is 
soluble in all proportions, so no filtering effect is possible. Supernate blending during 
future processing should tend to average the tritium concentration over time. 

H-3 analyses of free supernate samples from seven tanks yielded six results over the 
detection limit, ranging from 8.45E+03 to L14E;+-OS pCilmL (Attachment B, H-3 
column). A seventh sample was found to contain less than 2.38E+04 PCilmL. Counting 
the "less than" result, these values average 4.27E+04 pCilmL, with a standard deviation· 
of 4.64E+04 pCilmL. 

A constant value of l.OOE+05 pCilmL is recommended as a reasonable algorithm for 
supernate B-3 concentrations. 
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C-14

C-14 is a minor activation product created in the reactors. It also occurs in nature and is
deposited in waste tanks as the liquid takes up COz from the environment. Carbon is
mildly soluble (-24 percent) in alkaline media, so C-14 replenishment is expected if fresh
liquid is added to a tank. This "buffering" effect should tend to stabilize the C-14
concentration in supernate.

C-14 analyses of free supemate or salt interstitial liquid samples from eight tanks yielded
two results (2.69E+02 and 1.71 E+03 pCi/mL) above the detection limit (Attachment B,
C-14 column). The other analyses indicated "less than" results ranging from 3.43E+02 to
7.11E+03 pCi/mL. Combined, the eight samples averaged 1.76E+03 pCi/mL, with a
standard deviation of 2.27E+03 pCi/mL.

A constant value of 1.76E+03 pCi/mL is recommended as a reasonable algorithm for
supernate C-14 concentrations.

Co-60

Co-60 is a minor activation product created in the reactors. Cobalt is sparingly soluble
(A-0.02 percent) in alkaline media; therefore, its concentration in supernate should be low.

Co-60 analyses were performed on free supernate samples from seven tanks, yielding two
results (1.90E+03 and 2.74E+03 pCi/mL) above the detection limit (Attachment B, Co-60
column). The other six analyses indicated "less than" concentrations from 3.60E+01 to
1.17E+03 pCi/mL. The average was 1.03E+03 with a standard deviation of 1.02E+03
pCi/mL.

A constant value of 1.03E+03 pCi/mL is recommended as a reasonable algorithm for
supernate Co-60 concentrations.

NI-63

Ni-63 is a minor activation product created in the reactors. Nickel is sparingly soluble
(-0.02 percent) in alkaline media; therefore, its concentration in supernate is expected to'
be low.

Ni-63 analyses were performed on free supernate samples from seven tanks with no
results above the detection limit (Attachment B, Ni-63 column). The analyses indicated
concentrations of less than 1.14E+02 to 5.72E+03 pCi/mL with an average of 2.50E+03
pCi/mL and a standard deviation of 2.40E+03 pCi/mL.

A constant value of 2.50E+03 pCi/mL is recommended as a reasonable algorithm for
supernate Ni-63 concentrations.

C-14 
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Ni-63 is a minor activation product created in the reactors. Nickel is sparingly soluble 
(-0.02 percent) in alkaline media; therefore, its concentration in supernate is expected to . 
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Ni-63 analyses were perfonned on free supernate samples from seven tanks with no 
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Sr-901Y-90

Sr-90 is a major fission product created in the reactors. The radiological impact of Sr-90
is doubled by its daughter, Y-90, which is in secular equilibrium with it. Because the
radiological impacts of Sr-90 are more pronounced than those of other, less prominent,
radionuclides, greater care is needed in selecting an algorithm for it.

Strontium is sparingly soluble in alkaline media (-0.025 percent); therefore, Sr-90 is
expected in low concentration in supemate and salt interstitial liquid. Strontium
combines with CO2 to form SrCO3, which may become suspended in the liquid as finely
divided solids. In this case, the fines would contribute to the Sr-90 concentration in the
liquid, and filtering should affect the results of analyses.

Sr-90 analyses were performed on supemate samples from twelve tanks. All samples
yielded results above the detection limit. 'Some samples were analyzed unfiltered and
after being filtered through 0.451L, 0.1I., or 0.02g filters. There is no apparent filtration
trend among the results (Attachment B, Sr-90 filter-size columns). Nor is there an
apparent trend between free and interstitial liquid samples.

The sample results for each tank were averaged, yielding an overall average Sr-90
concentration of 5.37E+05 pCi/mL with a standard deviation of 8.72E+05 pCi/mL
(Attachment B, Sr-90 Tank Average column). Figure 1 is a histogram of the tank
averages, which indicates skewness to the right. The most frequent value, 1.07E+06
pCi/mL, over estimates the overall average considerably, so it is not an ideal algorithm.

As an alternative, the Sr-90 averages for each tank were divided by the corresponding Cs-
137 values to obtain Sr-90/Cs-137 ratios (Attachment B, Sr-90/Cs-137 column). These
ratios averaged 2.36E-04. Figure 2 is a histogram of the Sr-90/Cs-137 ratios. The most
frequent value of 2.75E-04 is reasonably close to the average value. Taking an
intermediate value of 2.60E-04 is reasonable.

Multiplying the Cs-137 (gross gamma) concentration by 2.60E-04 is recommended as a
reasonable algorithm for deriving Sr-90 concentrations in supemate.

TC-99

Tc-99 is a long-lived decay product of the minor short-lived fission product Mo-99,
which was created in the reactors. It is fairly soluble (-57 percent) in alkaline media;
therefore, it is expected to be prevalent in supernate.

Tc-99 analyses were performed on free supernate from seven tanks, yielding results above
the detection limit for all. The indicated concentrations ranged from 1.70E+05 to
1.56E+06 pCi/mL with average, 6.64E+05 pCi/mL, and standard deviation, 5.04E+05
pCi/mL (Attachment B, Tc-99 column).

Sr-901Y-90 
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is doubled by its daughter, Y -90, which is in secular equilibrium with it. Because the 
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Sr-90 analyses were performed on supernate samples from twelve tanks. All samples 
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after being filtered through 0,45j.L. 0.1~ or 0.021! filters. There is no apparent filtration 
trend among the results (Attachment B. Sr·90 filter-size columns). Nor is there an 
apparent trend between free and interstitial liquid samples. 

The sample results for each tank were averaged, yielding an overall average Sr-90 
concentration of 5.37E+05 pCilmL with a standard deviation of 8.72E+OS pCilmL 
(Attachment B, Sr-90 Tank Average column)_ Figure 1 is a histogram of the tank 
averages, which indicates skewness to the right. The most frequent value, 1.07E+06 
pCilmL, over estimates the overall average considerably, so it is not an ideal algorithm. 

As an alternative, the Sr-90averages for each tank: were divided by the corresponding Cs-
137 values to obtain Sr-90/Cs-137 ratios (Attachment a, Sr-90/Cs-137 column). These 
ratios averaged 2.36E-04. Figure 2 is a histogram of the Sr-90/Cs-137 ratios_ The most 
frequent value of 2_75E~04 is reasonably close to the average value. Taking an 
intennediate value of 2.60E-04 is reasonable. 

Multiplying the Cs-137 (gross gamma) concentration by 2.60E-04 is recommended as a' 
reasonable algorithm for deriving Sr-90 concentrations in supernate. 

Tc-99 

Tc-99 is a long-lived decay product of the minor short-lived fission product Mo-99. 
which was created in the reactors_ It is fairly soluble (-S7 percent) in alkaline media; 
therefore, it is expected to be prevalent in supernate. 

Tc-99 analyses were performed on free supernate from seven tanks, yielding results above 
the detection limit for all. The indicated concentrations ranged from 1.70E+05 to 
1.56E+06 pCilmL with average, 6.64E+05 pCilmL. and standard deviation, 5.04E+OS 
pCilmL (Attachment B. Tc-99 column). 



X-ESR-G-00004
Revision A

Page 5 of II

Figure 3 is a histogram of the Tc-99 results, which is decidedly non-symmetric. The most
frequent value of 8.66E+05 pCi/mL is a fair approximation only of the average value.

Tc-99/Cs-137 ratios averaged 4.85E-04 with a standard deviation of 7.23E-04
(Attachment B, Tc-99/Cs-137 column). Figure 4 is a histogram of the Tc-99/Cs-137
ratios, which is symmetric, but the most frequent value, 1.12E-03 overestimates the
average value by more than 2X.

Neither the straight-value rendering nor the Tc-99/Cs-137 ratio treatment is clearly
preferable; however, the symmetry and conservatism of the ratio recommends it as the
better of the two. Therefore, multiplying the Cs-137 (gross gamma) concentration by
1.122E-03 is recommended as a reasonable algorithm for deriving Tc-99 concentrations in
supernate.

1-129

Iodine is a low-yield fission product created in the reactors; therefore, it is present in low
concentration in all tanks. Iodine is completely soluble, and, like tritium, supemate
blending during future processing will tend to average out its concentration.

1-129 analyses were performed on free supemate samples from six tanks, yielding two
results (3.78E+02 and 5.36E+02 pCi/mL) above the detection limit of (Attachment B, I-
129 column). The other five analyses indicated "less than" concentrations from
8.78E+01 to 1.03E+03 pCi/mL. The average was 4.49E+02 with a standard deviation of
3.22E+02 pCi/mL.

A constant value of 4.49E+02 pCi/mL is recommended as a reasonable algorithm for
supernate 1-129 concentrations.

Cs-137/Ba-137m

Cs-137 is a major fission product created in the reactors. It is in secular equilibrium with
its daughter, Ba-137m, which emits the hard gamma normally associated with Cs-137.
Cesium is highly soluble and is expected to be the dominant radionuclide in supernate.

Gross gamma (commonly referred to as Cs-137) determinations are performed on
virtually all supernate samples submitted for analysis from the tank farms. WCS uses
these results to infer Cs-137/Ba-137m concentrations because this pair is the
overwhelmingly dominant gamma source in current, aged waste. Therefore, no algorithm
is needed for Cs-137/Ba-137m.

Actinldes

Most of the actinide inventory in the waste tanks was created from reactor fuel elements,
containing U-235 and U-236, and from target elements, containing U-238 or Np-237.

X·ESR-G-00004 
Revision A 

Page 5 of 11 
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Actinides are sparingly soluble in alkaline media. They are major radiological
constituents of sludge, but, barring the presence of suspended sludge particles, actinide
concentrations in supemate are expected to be low.

Actinide analyses were performed on thirteen tanks as listed in Attaclmuent C. (Cm-245
was not included in the analyses.) Attachment C contains the results of the analyses and
useful derived quantities. When multiple results were available, average values are cited.

No filtration trend for actinides was discernable in the analyses, and the measured values
for plutonium and uranium were below their predicted solubility [8]. The absence of a
filtration trend and low concentrations imply that the samples contained little or no
suspended sludge, which would otherwise mask the dissolved constituent concentrations.

The individual actinide results in each row of Attachment C are in general agreement
with expectations (e.g., Pu-238 is dominant). The 7.47E+05 pCi/mL Pu-238 result for
Tank 39H is an exception. This value is more than 800 times higher than expected.
Analysis of Tank 39H supernate in November 2003 indicated a Pu-238 concentration of
2.OOE+06 dpinL (9.01E+02 pCi/mL) [9). The high Pu-238 coupled with high Pu-
239/240 and Pu-241 values seem to imply sludge in the Tank 39H sample, the lack of a
filtration effect notwithstanding.

The current WCS methodology for determining supernate actinide concentrations
involves partitioning constant total (gross) alpha values according to tank type and
associated sludge [10]. A gross alpha value of 1.88E+06 pCi/mL (7.1E-03 Ci/gal) is used
for Type lIIIA tanks, and a value of 5.55E+04 pCi/mL (2.1E-04 Ci/gal) is used for
Type I, U1, and IV tanks.

Even with the Tank 39H results included, the gross alpha values (Attachment C, Gross,
Alpha column) are lower on average than the WCS assumed value for Type IWIIIA tanks
(1.09E+05 pCi/mL versusý1.88E+06 pCi./mL). Omitting the Tank 39H values drops the
average to less than the WCS lower value (3.19E+04 pCi/mL versus 5.55E+04 pCi/mL).

Based on the information at hand, the current WCS methodology should be retained, but
a constant value of 1.09E+05 pCi/mL should be used in lieu of the current values. This
approach will lower the dissolved actinide concentrations in Type JII/IIIA tank supernate
and raise those in other tank types. Average actinide concentrations may be used for
tanks with no associated sludge.

CONCLUSIONS

Recent analyses of supernate and saltcake liquids from thirteen waste tanks provide a
good basis for expanding and improving WCS algorithms for supemate radionuclide
concentrations. Table I is a list of recommended algorithms for the key radionuclides
listed in Attachment A.
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Table I
Recommended Algorithms

Radionuclide Value Application Notes
H-3 1.OOE+05 pCi/mL Constant
C-14 1.76E+03 pCi/mL Constant
Co-60 1.03E+03 pCi/mL Constant
Ni-63 2.50E+03 pCi/mL Constant
Sr-901Y-90 2.60E-04 Ratio to measured Cs- 137 (gross gamma)
Tc-99 1.12E-03 Ratio to measured Cs-137 (gross gamma)
1-129 4.49E+02 pCi/mL Constant
Cs-137/Ba-137m N/A Use current WCS methodology
Actinides 1.09E+05 pCi/mIL Constant used with WCS sludge partitioning
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Figure 2
Sr-901Cs-137 Ratio Histogram
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Figure 1 
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Figure 3
Tc-99 Concentration Histogram
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Attachment A

Key Radionuclides for Material Balance and Fiowsheet Modeling

Radionuclide Basis
H-3 NRC Class A
C-14 NRC Class A

Ni-63 NRC Class A
Co-60 NRC Class A

Sr-90 NRC Class A
Tc-99 NRC Class A
1-129 NRC Class A -
Cs-137 NRC Class A

U-232 DSA Source Term
U-233 Fissile and likely present in residual

sludge
U-235 Fissile and likely present in residual

sludge
Np-237 Contributes to total alpha
Pu-238 Contributes to total alpha

Pu-239 Contributes to total alpha
Pu-240 Contributes to total alpha
Pu-241 NRC Class A
Am-241 Contributes to total alpha

Am-242m " DSA Source Term

Cm-242 NRC Class A
Cm-245 DSA Source Term
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Attachment B

Sample Analysis Results for Fission/Activation Products

H-3 C-14 Ca-GO NM 590
(IJrRIred)

Tak pCiAnL pCdff pOAt p• i t

2FL 7 1.2&03 ? "7
21L 7 7 7 7
3:1. ? ? 7 ?
31L ? 2 20E+3 ? 7

101L ? ? ? 7
13FL 1,05 4.SIE.+0 4.67.01 W& 31M02
29kL ? ? ? ?

291 7 7 7, 7
inFL 2., 4 ,•fEN 360 1.9,E#43 -0.3
37FL SMEo3 ZLIE.02 174E-42 :ZEO2.
38L. ? ? ?
3K 7 7 7 7
390. 1.14E145 1.711EM ±64E.Ct 5."49.3
45FL qtI*6( 7 

7
fl704 A

1
2650.3

49F1 L9s43 -343F.02 .ms~~c

0.101*44
7
7

1.44E+04
7
7
7
7

±9514+04
7
7
7

Tam.,•.•Ci T'9<•Crr -l•J C U- 137TSr-O 5*690 Sr-0 SO A Cs TC-99 Tc-991 C& 1-2 CZAR Tan
(0.45p) (0.1p) O.021. Aj Tr'a 137 T 17

Awtagq Average

pn)mL C •L i tnt p•dL Lp~nL 7CIML pO pmtPCWML i)CirrL

7,40E+01 3,74•-•3 1.44E.05 0.9-05 ? ? ? .64EN09 1.64.09
7 7 ? ? 7 ? I -

5.99.05 ? ' 5.24E105 2.90-04 7 ? 1,74E109 I 610.,0
4.5E0.05 7 ? . ? 1.88E09 .
2.40E+04 ? 7 2.40E.04 231E-05 7 ? 7 3,791.E0 8.79%48
6.099•05.5 &V9*0 4.33E+05 5.BE004 1.64E-04 6.30E.03 1.78E-04 &36E-02 3.54••0 3 54E09
1.59E+05 1.21E-0 ? 4.94E0,5 3.07E-04 ? ? ? 7,15E,04 1.61E.9
1.61E+0i ? ? ? ? ? 2,5,E06 -
.72E+05 1.71+4 8.85E+05 9.42E041 4.07E414 6I.&05 4.24-04 7LTE+02 232E.01 2320.09

3.4ASE+06 1OE+.0• 231E+06 3.SE+0,6 7.73E-04 0,114E05 l.M-04 tO0*403 4180b 4.000.09
&20&04 ? 7 3.14E.04 1.93E.04 7 7 7 1130+08 1,83•0•.
f.471E,"4 ? ? .? ? 17.79f03 -
I.30+@05 321E-05 3.760.0 2.96E+05 3.99E-04 1.91.03 ZlIE-03,ATME& TAOE+0 7.40E,08
8L,1E+0 M32E104 5•9400 7.05E4-• 6.28E-05 1.0O1.05 1.36E04 7 1251.0 1.25E.0
4111.24 ±57#4 3L45,H6 3.94,04 2.66-05 .771.,5 I.A0-04 '29" 1.,4IEA 1.470-.
1ASE405 1.20E+05 1.25E+05 1.30E.0 9M4E-05 2.11E+05 1.61E-04j 2&%+02 1190#0 135.9

5.5414S 6.6SE5. 6.W&05 5.37E005 231-04 6.64E.05 4,85E-04 4.49E+02 1.54E*09 1+74E.M
9.23E05 t.88E0 1.1E146 867210 ±7.-4 $.0404E 7-.2-04 ±m22.,•2 1.14E109 1.1;0-E.
3.4E146 6IQE+06 211.0E6 &15E406 7.73E.04 1.SE.0, 2.AiO-3 M .030.4) 4030.9 400.09*

Told
Avg 47E044 1.76E043 1.031E403 2.504. 3.16•+04
SO 4.64E-04 271*03 1.02E403 2.40E-3 134E.04
Ma 1.140-05 11.03 2-74E403 572E.03 5.10E+04

1W, ? - nQ FOUM

nmnE4.. - posWS r"=k
wgr1f lha k" #M vow

Attachment C

Sample Analysis Results for Actinides

T Uk U-232 U-233 U-235 NP-237 Pu-238 Pu-239/240 Pu-241
(pCQMLL) (PC~L) (pCah .(Cint) W(ApCML) (pWoCn) (pC•hL)

2 ? t

13 E6.15-81 2.14E41 4.14E+04 8AGE402
29 SE 25-01 IMM 1.13E+04 3.15EO3

30 ? V68.01 303E401 3A1604 1.13E#43
37 5.6501 2.570E1 1.15-04 1.96E+03
38 _?_UE VrE-l IM 144E+04 127E+,O

39 ? 4.39E00 IJK42ý ý 4.51E504 7.33405
41 7 ? ? ? •.4SEr03 1•SE+03 ?
45 ? IA4OE-01 1ML 258NE+03 1.SE+03

4687 6.?7B02 BOL 5A2E+03 1.35bE03
49 &.0W41 3.18-01 224E402 1.06.E+04 s.--

Am-241 Am-242m Cm-242
(ponL} (pCnt) (pCImL)

7 ? 7
7 ? 7

A081

?pii
7
7

DewlsI 0IU0on
(g)nO Far
1.500 1

1.405 1
1.437 1

? 2.3
1.480 1

? 2.8
? 24

1.440 1
7 1.1

U.D 1
? 3.6
? 2.9
? 1.7

Avg 8ZE42
Max 1.0BE3
Iax 5,082.03

7.55E42
4.95E.2
1.46•.03

Gaol 76.801 7.01E.04 4.89E543 3.48E46 16.-04 1,48604 1,795E02 1.09E64
1.18E-2 6.39•41 2.04E45 1.21E.4 6.70E+06 30.0- 721.,04 4.04E4 2.18.E05
4.3SE*0 224E02 7.47E*5 4.51E44 2.0AE47 9.7M-04 1.82E5 1.006.03 6.47E64

? - so rsuft
rnnEn =pWM•v realt

• 

H·3 c.u 

Tank pCiIml. pCMot. 

2FL 7 1.~03 
211. 7 
3fL ? 
lit ? 2.2DE+D3 

1011. ? 7 
13Fl l.KE+05 4.5If+DZ 
2!Ifl 7 7 
290. 7 7 
30Ft 2.4GE+04 .!6IIE+DZ 
J7fl. U3E+03 2.59E.02 
38R. ? ? 
3811. ? ? 
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Sample Analysis Results for Fission/Activation Products 

5<·90 5'·go 5<·90 5<·90 5<-90 
Sr·90/ C. Tc-991 Co-

C .. 131 
Co-6O Ni-61 T .... Te·gg .,zq es.m Tn 

(lJnIilered) (O.45~1 (O.l~) (0.021'1 A_ 
m 117 A ... ,ago 

~ pCihIIL pC~l pCilml pC~rnl. pCiImL pCilml 
pC~mll 

pC~ot.. 
~mll pCiml pCi'm!. pC"mt 

pCilml pC"ot. 
7 S.IO£+04 7.4OE+Ol UCE+G' I.44E.05 8.7Se-DS • U41:tOt t.~<09 
7 ? ? ? ? ? 
? ? UIE+OS • S.24E.05 2.90E~ 1.74EtOt 1.81Eoll5I 
7 4.5OE+05 ? 1.81E.0I 

? ? 2.40£+04 ? ? 2.4OE-004 2.7JE-05 ? ? 7 '.79E'08 8.79E-<l8 
4.8.re.Ol 483f>02 UtEtOS &oS9E.H 4.l3E+05 5.1OE+05 1.64E-04 6.3OE-OS 1.78E~ 5.36E+02 3.54Eoll5I l54E-09 

? 7 U41:+04 I.StE'OS· 1.21E+05 ? 4.94E+05 J.01E~ ? ? ? 1.1SE+OI 161E-09 
7. 7 ? UIE+OI ? ? ?? 7 2.5GEtOt 

1.90£+03 108E+03 7 UZE.OS U7I:.+06 U5E+05 9.oUE.05 4.01E~ 9.ut.OS 4.24E~ 171£+02 UZE+09 2.321:+09 
2.74E+03 )~02 ? 3.4IE+06 :l.IOE+06 2.I1E+06 3.15£+06 7.73E~ '.11E+OS U!IE~ ;'03E'03 4.GIEtOt 4.08E.o!I 

? ? ? 6.ZGE+1II ? ? 3.54E-004 1.93E-04 1 1 l.1lEtOI t.83E+OI 
7 ? 2.t5£+04 U7E+04 ? ? ? ? ? l.netOl 

3'lFL t_t4E+05 t.71E+03 2.Ooff~ 5.~~!!3 7 1.I0E.05 UOE+05 USE+OS 2.9OE.05 3.99E-04 1.56EtOI 2.11E-03. & 7BE<Cf 7ME+OI 7.~+OI 
45Ft ~IU" 7 "1.t7Ef ~'5.12a03' 7 1.2aE+04 U2E+III 5.t4E+04 7.8SE-004 6.28E-05 UOE+05 t.36E-04 ? l.2SEtOt l.25E.o!I 
~FL' t.:r:JE<lI4 "Wt>b3£fJ6EfIifI";:~ ? 4.1tE+IN U7I:.+G4 145£+04 3.94E+IN 2.6BE-05 2.77E+l1! 1.IIIE~· 3.~ U7E+Ol l.oI7Eoll5I 
49FL 1..2003 rl43f+02 ·3.~..9hf..t~. 7 1.45£+05 1.20E+05 1.25E+OI 1.3OE+05 9ME-05 2.18E+05 ;.61e~. ~~ USEtOt 1.3SE+09 

TIIIaI 
AIrg 4.27Eoj).\ 1.76E+03 1.03E+03 2.5OE+03 3.16E-004 S.54E+05 6.65£+05 6.92£+05 5.37E+05 2.36E-04 6.64E+05 4.85E~ 4.4!IE+02 1.54E+09 1.7E+09 
so 4.ME-<G4 2.Z1E+03 1.02E+Ol 2.4OE+03 1.84E-004 9.23£+OS 9,88E+05 l.o1E4 B.72E+05 2.11E-04 $.04E+05 7.23E-04 3.22£+02 U4E<09 1.12E.09 

MIx 1.14E<Q5 1.11E+03 2.7CE+03 5.72E+03 S.lOE-004 3.4IE+06 1111:+06 2.1!8E4 11i5E+1l11 7.73E-04 1.56E+OII ,2,11E-03 I.Q3E+Ol tGae+09 4,Q8E+09 

K.y. ? ·no.....tl 
"""Etnn • poIIIM ...... 
~'IaIIhan""" 
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Sample Analysis Results for Actinides 

U-232 lJ;.233 U-235 N~237 f'II-238 Pu-2391240 Pu-241 Am-241 Am-242m Tank 
(pCiIm~ (pCIfm~ (JlCiImLl (pCi/I"IQ (pCMnL) (pCl/rIt) (pCihnL) (pCiImL) (pCiIml) 

2 ? 
3 
10 1.92£+04 
13 U5~1 4..14E+04 
29 2.35~1 I/IIEIJIl.13E+04 
30 6.78£.01 103Ef01 1.41E+04 
37 ~1 2.7OEf01 1.15£+04 
38 S.78&01~ 
39 .cI!IE+OO uo£.a U1E+04 
41 " ? tA8Et03 lA8E+03 
45 UO~1 BDl 2.58E+OJ 1.II9E+03 
46 8.87E-02 00l 5A2E+03 U5EiG3 
49 111£041 2.24E402 1.1l&E+04 3.13E+OZ 

Avg 8.29E<02 7.55E.02 6.86E.Q1 7.51!1E-001 7.01E-+04 4.B9E+03 3.46E..o& 1.S15E<04 3.46E-+04 
SO 1.02E<03 4.95[.02 1.1flE-tOO 6.3!lE<01 2.04E.05 1.21E-+04 6.7CE..o& ~ 7.21E-+04 
Max l~ 1.46E+03 4.39800 2.241:<02 7.47E.05 4.51E<04 2.05E-t07 g.72E-+04 1.1l2E<05 

J 
Key. ? • no I8SIdI 

MftEicln = posiM reauII .= IBss Ihan valle c questionable result 
BDL = below de1IldiDn Irril 

Cm-242 Gross OensItv C1lulian 
Alpha 

(pCMnL) 
(pCiIml) 

(ghnQ Faccor 

? I,SOO I 
? lAS I 
? 1.437 I 

2.8OEf04 ? 2.3 
? 1.480 I 

4.82Ef04 " 2.8 
5.83E404 ? 2.4 

? 1.440 1 
WEo05 ? 1.1 

1.427 1 
? 3.6 
? 2.9 
? 1.7 

1.7SE«)2 1.09E.05 
4.D4E<02 .2.18E.05 
1.0CE+03 6.47E~ 
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For the Piase 1. waste removal program, salt will be removed from waste tank:
to be .Tie:tired by, batchin. in fresh water as a layer above the salt cake.
S 'Fitatlonlets are t1e be' mined Lnto the' salt cake :and willI -ecicuIa:e
the '-•~at- o& di~solve the salt. ste-, 5sedto .power the agitaeion jets,
"ill add condensate to the ýu=e,.azc and heat the contents of the zank.: After
rour volue turnovefs of the supernate and a cool do~i per-od, the supccrate will
be j.ettcd to an evapoTator feed tank. The pirocess will be repeated until most
of the salt is dissolsved. The ZajCT disa&.,antag~e ith.this =ethod is the long
cool down periods .(totadliig !.:p :o 10, months/tank for Type I and 24 r-onrii-tank
for Type' IV)requirad for liquid trznsfcr- Jue to clva-tc-I temperature in the
tank.

TWO alternate salt dissolution cuncep~t have beeCI investigsted on a bench-scale.
The density driven concrŽt appears Ito have about zhe sxane dissoluzion rate as a
steam agitation jet without the elevated temprrature concdit:.on. Mechanica!
agitation is superior to the dersitY driven ccrcept in both dissolution rate an'-
fresh water r;quirements. Both the density driven concept and mechanical alitation
are proposed tu be tested in the Phase I program, to confirm rhe bench scale test
resuits. witih radioactivc waste salt.
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1 Summary

Previously, soluble Se-79, Tc-99, and Sn-126 inventories were not tracked in WCS. In 2004, an
algorithm for modeling Tc-99 was developed for the Integrated Flowsheet model6. This algorithm
conservatively overestimates the Tc-99 concentrations. However, a revised estimation method based on
analytical data and process history that would project more reliable supernatant inventories is required to
support salt solution disposition planning efforts. The purpose of this memorandum is to provide the
basis to identify the soluble curie inventory for Se-79, Tc-99, and Sn-126. Using these bases, the
projected curie inventories in the supernatant phase for Se-79, Tc-99, and Sn-126 are 8.9E+1 curies, 3.3
E+4 curies, and 4.5E+2 curies respectively.

2 Selenium-79
In 1995, Georgeton and Hester1 estimated that only 5% of the Se-79 received into the tank farms would
be soluble. At the time, only the sludge phase constituents were of concern, and therefore, the soluble
portion was not incorporated into WCS. The insoluble portion of the Se-79 (95%) was incorporated into
WCS for tracking. As of 5/1/05, the Se-79 sludge phase inventory was 1.6E+3 curies, and the total Se-
79 transferred in sludge to DWPF has been 1.1E+2 curies2. This is a total WCS tracked sludge
inventory of 1.7E+3 curies. Multiplying this by the soluble to insoluble ratio of 0.05 (5% / 95%) yields
a supernatant inventory of 8.9E+1 curies. A review of recent supernatant sample results contained in
WSRC-TR-2004-00386 indicates that all Se-79 sample analyses reported less than minimum detectable
concentrations of Se-79. The lowest detection limit for each tank is shown in Table 1. The average of the
lowest detection limit from each tank was 2.3E+3 pCi/mi. If this average concentration is applied to the
tank farm inventory of 24M gallons of supernatant (free and interstitial), a total supernatant Se-79
inventory of <2. 1E+2 curies is obtained. Since this is in reasonable agreement with the theoretical
fission yield total of 8.9E+ I curies, the value of 8.9E+ 1 curies is recommended for use during salt
solution disposal planning.

Table 1 Se-79 Minimum Detection Limits in WSRC-TR-2004-00386, R1
Lowest Se-79

Detection Dilution Actual Se-79Tank Limit 3 (cCi/ml) Factor6 (DCi/Ml)

13 2.OE+2 2.3 <4.6E+2
30 9.1 E+2 2.8 <2.5E+3
37 2.1E+3 2.4 <5.OE+3
39 4.4E+3 1.1 <4.8E+3
45 1 2.5E+2 1 3.6 1 <9.OE+2
46 3.4E+2 2.9 <9.9E+2
49 8.5E+2 1.7 <1.4E+3
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3 Technetium-99

Two methods will be used to calculate the soluble Tc-99 inventory. The first will use theoretical fission
yield relationships and solubility expectations to determine a predicted inventory. The second will
review available sample results to derive a calculated inventory. In 1995, Georgeton and Hester'
calculated predicted canyon waste stream compositions based on theoretical fission yield relationships,
and these compositions were used as the basis for constituent inventories tracked in the Waste
Characterization System (WCS). The report also determined that 53% of the Tc-99 received by the
Tank Farms was soluble. At the time, only the sludge phase constituents were of concern, and therefore,
the soluble portion was not incorporated into WCS. The insoluble portion of the Tc-99 (47%) was
incorporated into WCS for tracking. As of 5/1/05, the Tc-99 sludge phase inventory was 2.7E+4 curies,
and the total Tc-99 transferred in sludge to DWPF has been 1.8E+3 curies 2. This is a total WCS tracked
sludge inventory of 2.9E+4 curies. Multiplying this by the soluble to insoluble ratio (53% / 47%) yields
a soluble inventory of 3.3E+4 curies. This inventory includes Tc-99 that has precipitated into saltcake.

A search of available sample data has identified 22 supernatant sample results for Tc-99. These results
are shown along with the Cs-137 concentrations in Table 2. A statistical evaluation was performed to
determine if a correlation exists between Tc-99 concentration and Cs-137 concentration in supernatant.
Cs-137 was chosen for comparison because the Cs-137 supernatant concentrations have been well
characterized by sampling. Figure 1 shows the regression plot and equation for this analysis.
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Table 2. Tc-99 Su ernatant Sample Results
Date Tank Cs-137 (pCi/ml) Tc-99 (pCi/ml) Ratio (Tc-99/Cs-137) Source
7/2/2004 13 3.5E+9 6.3E+ 5 1.8E-4
712/2004 30 2.3E+9 9.8E45 4.2E-4
7/2/2004 37 4.1E+9 8.1E+5 2.OE-4 XESRG,00004
7/2/2004 45 1.3E+9 1.7E+5 1.4E-4
7/2/2004 49 1.4E+9 2.2E+5 1.6E-4
7/2/2004 46 1.5E÷9 2.8E+5 1.9E-4
7/2/2004 39 7.4E+8 1.6E+6 2.1 E-3
05/01/87 20 2.7E+7 8.1E+3 3.OE-4
10/09/86 21 2.4E+7 3.9E+3 1.6E-4
09/24/86 21 1 .1E+8 1.6E+4 1.5E-4
09/22/86 21 1.9E+8 3.2E+4 1.7E-4
05/21/86 22 3.OE+7 3.8E+3 1.3E-4
08/14/92 26 1.4E+9 1.8E+5 1.3E-4
07/21/92 27 9.9E+8 1.4E+5 14E-4 Ntank files
07/21/92 28 1.2E+9 1.8E+5 1.5E-4
11/28/92 29 2.9E+9 5.2E+5 1.8E-4
11/29/92 30 2.2E+9 2.6E+5 1.2E-4
04/10/92 30 2.5E+9 3.4E+5 1.4E-4
11/29/92 32 9.9E+8 1.9E+5 2.OE-4
04130/92 34 5.OE+8 1.4E+5 2.8E-4
11/24/92 38 9.9E+8 2.OE+5 2.OE-4
11/24/92 43 6.8E+8 1.4E+5 2.1E-4_

Figure 1. Tc-99 vs Cs-137 Regression Plot

Regression Plot
Log(10)Tc=-3.71004 + 1.00104 Log(10) Cs
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The R-Sq (adj) value is a measure of what percentage of the change in Tc-99 concentration can be
attributed to the change in Cs-137 concentration. The R-Sq (adj) value of 86.3% shows that there is a
very strong correlation between the supernatant Tc-99 concentration and the Cs-137 concentration, and
that this correlation can be described by the equation at the top of the plot. Converting from Log0o, this
equation becomes Tc-99 = (1.95E-4) x (Cs-137). It should be noted that, in X-ESR-G-00004, Hester
calculated an average Tc-99 to Cs- 137 ratio of 4.85E-4, but his ratio was based on more limited data
(only 7 sample results). With the inclusion of the additional Ntank data (15 sample results), the number
of sample results is tripled, and therefore, the value derived in this report is believed to be more
representative. As of 5/1/05, the total supernatant Cs-137 inventory in the Tank Farms was 1.13E+8
curies2. Inserting this into the equation calculates a Tc-99 supernatant inventory of 2.2E+4 curies.

The theoretical method and the analytical method for estimating total supernatant inventory are in
reasonable agreement. For the purposes of salt solution disposal planning, the more conservative
inventory of 3.3E+4 curies should be used.

4 Tin-126
In 1995, Georgeton and Hester1 estimated that only 5% of the Sn-126 received into the tank farms would
be soluble. At the time, only the sludge phase constituents were of concern, and therefore, the soluble
portion was not incorporated into WCS. The insoluble portion of the Sn-126 (95%) was incorporated
into WCS for tracking. As of 5/1/05, the Sn-126 sludge phase inventory was 2.OE+3 curies, and the total
Sn-126 transferred in sludge to DWPF has been 1.4E+2 curies 2. This is a total WCS tracked sludge
inventory of 2.1E+3 curies. Dividing this by the insoluble ratio of 0.95 (95%) yields a total Sn-126
inventory received into the tank farm of 2.2E+3 curies (decayed from receipt date to 5/1/05).
Multiplying this by the 0.05 (5%) yields a soluble inventory of 1. lE+2 curies. This inventory includes
Sn-126 that has precipitated into saltcake.

Since Georgeton and Hester estimated the solubility fraction in 1995, a number of supernatant and
saltcake samples have been analyzed for Sn-126. The supernatant results are displayed in Table 3.
When multiple results were listed, the value that was above detection limits was used. The average
concentration for the listed sample results is 2.6E+3 pCi/ml. If this concentration is applied to the total
tank farm supematant inventory of 24M gallons (free and interstitial), a total supernatant inventory of
2.4E+2 curies is obtained.

A value of 2.4 nCi/g for Sn-126 in dry saltcake is reported in WSRC-TR-94-0574 . Unfortunately, the
recent salt samples for tanks 2, 3, 10, 29, 38 and 41 were not analyzed for Sn-126. Multiplying the
single sample point value of 2.4 nCi/g times the tank farm inventory of 8.9E+7 kg of salt yields a salt
inventory of 2.1 E+2 curies. Combining this value with the calculated supernatant inventory of 2.4E+2
curies results in a total soluble Sn-126 inventory of 4.5E+2 curies. Since this number is higher than the
value obtained from the theoretical fission yield method, the conservative value of 4.5E+2 curies should
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,
be used for Saltstone disposal planning. It is also noted that the Sn- 126 solubility fraction is closer to
20% rather than the estimated 5%.

Table 3 Sn-126 Supernatant Sample Results
Measured Sn- Dilution Sn-126 Actual

Tank 126 (pCi/ml) Factor6  (pCi) Source
13 1.5E+3 2.3 3.4E+3
30 2.OE+3 2.8 5.5E+3
37 2.2E+3 2.4 5.2E+3 WSRC-TR-2004 00386 R13
45 5.3E+2 3.6 1.9E+3
46 9.OE+2 2.9 2.6E+3
49 6.2E+2 1.7 1.OE+3
25 2.6E+3 NA 2.6E+3
26 2.7E+3 NA 2.7E+3
27 2.2E+3 NA 2.2E+3
28 2.8E+3 NA 2.8E+3
29 4.5E+3 NA 4.5E+3 WSRC-RP-93-1009 5

30 2.OE+3 NA 2.OE+3
32 1.8E+3 NA 1.8E+3
38 7.7E+2 NA 7.7E+2
43 7.2E+2 NA 7.2E+2

5 Conclusion and Recommendation

The supernatant phase Se-79, Tc-99, and Sn-126 inventories, not currently tracked in WCS, are
established in this document. Theoretical fission yield and solubility expectations were used to calculate
these inventories, and sample results were used to confirm the calculations when available. For Se-79,
the fission yield method and the sample data were in reasonable agreement, and, since the sample data
were all less than detectable, the theoretical value of 8.9E+1 should be used. For Tc-99, the theoretical
fission yield and solubility method yielded the more conservative value of 3.3E+4 curies. For Sn-126,
available sample data indicate the solubility fraction of 5% is probably low by a factor of 4, and
therefore, the soluble inventory for Sn-126 is calculated to be 4.5E+2 curies.
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" 2S 2.6E+3 NA 2.6E+3 
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5 Conclusion and Recommendation 

The supernatant phase Se-79, Tc-99, and Sn-126 inventories, not c~rrently tracked in WCS, are 
established in this document. Theoretical fission yield and solubility expectations were used to calculate 
these inventories, and sample results were used to confirm the calculations when available. For Se-79, 
the fission yield method and the sample data were in reasonable agreement, and, since the sample data 
were all less than detectable, the theoretical value of8.9E+ I should be used. For Tc-99, the theoretical 
fission yield and solubility method yielded the more conservative value of3.3E+4 curies. For Sn-126, 
available sample data indicate the solubility fraction of 5% is probably low by a factor of 4, and 
therefore, the soluble inventory for Sn-126 is calculated to be 4.5E+2 curies. 
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ABST RACT

I

Ia-arc;eters wthich determine the pumpability and drainability of the

inierstitial liquid (IL) contained in the 500,000 to 1,000,000 gallon
sing¾! si-f.11 wa:te tanks located at Hanford are presented. The comple-
t-*n poir-: of jet pumping is defined and the total quantity of drainable

Iterstitial li4,:jid in single shell tanks is calculated.

I NT RODUCT 1 ON

T.-c 2•- evaporator and the In-Tank Solidification (ITS) Unit I and
-TS 2 fa.:ilities produced a salt cake that was deposited in single shell
".znks in the 19(•0's. The 242-S and 242-A evaporator-crystallizers produced
i;ion- sal. cake rnaterial in the 1970's. A study was begun to determine the
flow prozerties of the liquid contained in the intersticies of this salt

rakz 4- 1975. "'athematical formulae for modeling the inflow process of
.interstitial liquid (IL) to a centralized salt well were developed . Alow
f4owrate jet pwup prototype was then developed that could remove the IL

at the flow rates predicted by the equations.

The Griginal flow studies relied bn salt cake property data based on
laborato:y work with synthetic material and engineering:judgement. Actual
'umping data have now been obtained from the two jet pump prototypes

241-BY-107 and 241-S-I1l. Data have also been obtained from the 241-S-104,
241-S-106, 241-SO110 and 241-S-112 jet pump production units. These data
t.ave been used to determine the salt cake properties that control the
inflow process to the salt well.

~ ---.~~----:. 
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~"'ai''!Geters "thic" determine the pumpability and drainability of the 

1~ierstitial liquid (Il) contained in the 500,000 to 1,000,000 gallon 
c;~n9~t! 5-i~(·l1 wa: te tanks located at Hanford are presented. The comple­

l'?n poin~ of j~t pumping is d~fined and the total quantity of drainable 
l"~erStitial 1icJid in ~ingle shell tanks is calculated. 

I NT ROOUCTi ON 

.~e 2~2·~ evaporator and the In-Tank Solidification (ITS) Unit 1 and 
~TS 2 fa~ilitie5 produced a salt cake that was deposited in single shell 
',,::0"':; 'jn the 19(0'5. The 242-5 and 242-A evaporator-crystalli.zers produced 

t::()"~ sal: cake naterial in the 1970's. A study was begun to determine the 

f1~w pro:erties Ilf th~ liquid contained in the intersticies of this salt 

(,ak!! ~:'! !975. :~athematical formulae for modeling the inf10\'/ process of 
in:ersti!.ia1 lh~'Jid (Il) to a centralized salt well were developed, A10w 

r:owrate jet pUlap prototype was then developed that could remove the Il 
~t the f10w rates predicted by the equations. 

The orisinal flow studies relied on salt.cake property data based on 

1aborato:y \-IOrl< with synthetic material and engineering judgement. Actual 
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241-~-lOt., 241-S0110 and 241-5-112 jet pump production units. These data 
'.:a'le been used tov deterwine the salt cake properties that control the 

1fiflow pr~cess to the salt well. 
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Material that existed before the evaporatiof :r.':.•t.!:z3't.In praces-.ýs

has been historically identified as sludge. rr'; ; iL'flnw standc.oint

this material would be undrainable because of car.il'ýry oc•c'.,. wi.trin th;

material. In actuality some of these sludges *ii •-.h•ve r .

salt cake.

All drainable liquid is not necessarily pun•!-. T7-- - i-y drain

at such a low rate no pumping svstc. ?,fil•.i:: ': ..}:,., t) -" :i.

Therefore, a limit has to be defined to diff-:-:i- "t;,een pun:F3•le

and drainable liquid. The limit of pmpabilit- n.-s -:-efined :s a

pumpout rate from the low flowrate jet pump , ' T-, .:,t .te is

based on the equipment available and the IL , -1.a,.::.,t irxm thiý

waste material.

SUINIPARY

Current estimates of salt cake interstitial li I'll-'! (I) fiew pron,.rties

have changed somewhat from original predictions. Permeb-lity vatues of

10-20 Darcies were initially estimated for salt cakc. Calculations have

shown permeability in Tank 241-BY-107 varied fro'. 10-14 )arcies. Calcula-

tions based on other tank.data suggest that a r,.ýie c7 5-20 Darcies will

probably be encountered in pumping the waste tanks. Por.osity est1r.ates

of 30%-35% were used initially. Jet pumpinc . Ir•!•ihate that i:;e range

of 30%-35% is too low and should be 40%-4S. Czpillary heights of salt

cake have been predicted to vary from 0.5 to 2.0 ee.. A capillary

height of one foot should be used for waste vciu-v p'..-,jections. ;wse of

one foot capillary height will result in a bulk %olurie of 33,UOO r,yIllons

of salt cake per tank being undrainable.

Sludge properties have been harder to obtain sin.:-i -ost hiuLmplng eY:.erien,:e

has been in pumping salt cake. A true sludo2 :,tr .a -"-ould be ti,:ur.!pabl)2.

Pumrping of tanks containing sludge has shov-!n t',t s•lt; :•!cterial d.fined

as sludge will have IL flow properties simile-- to s.!!t cake.(,., 
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The only method now available to determine whether a material. classified

as sludse is pumpable is to install a jet pump and attempt pumping. In

an effort to quantify the amount of sludge that will behave similar to

selt cz!:e, a value of about 25 percent of the sludge volume was used.

The Q.615 gpm value of inflow rate to a salt well should continue to be

d to define the com~pletion of jet pumping. There will be 1 to 2 feet

.. inrers'i't al 'i-uid. rt;nai;iing in. .i salt cont-ini•:g ta.nk

at thE completion of jet pumping. This is equivalent to 15,000 to 30,000

calllron- of driinable interstitial liquid or an average of 22,500 gallons

Per tF'1k.

PERMEABILITY, POROSITY AND CAPILLARITY

K
Data collected from the jet pump prototypes and jet pump production units

w2l E-i analyzed for permeability, porosity, and capillarity in this
•ectinh. Eaci of these properties will be covered.for both salt cake and

sludge. Analysis of the production jet pump data has shown that more

reliab~e data need to be taken: data from 241-S-1O5, 241-S-108, and

241-S-109 wer! not useable and some of the data from the other pumps had

to be discarded because of inaccuracy. It is a relatively simple matter

to correct this problem since most of thejdata collection is adequate except

for "before and after pumping" interstitial liquid (IL).level readings from

the lilquid level control well. The liquid level in the salt well should

be accurately taken before starting jet pumping and then again at shutdown

when ti'e liquid level in the well has equilibrated with the tank liquid level.

Better determinations of porosities and permeabilities will result. Better

estimates for liquid addition through dip tubes will need to be made in the

future At the present pumping rates, steam condensate additions are small

percentages of the total liquid pumped; however, as the liquid inflow rate

arops, they will become a greater percentage. Liquid additions will have

to be factored into permeability and porosity calculations.

----- •.• -.-----~ .•• -' __ . __ ~ ___ -_. _'C .. -------~ 
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PURPOSE
The purpose of this document is to propose filtration methods to treat dissolved Tank 41 salt solution.

BACKGROUND
Tank 41 was identified as a Low Curie tank. Interstitial supernate was drained and pumped away to Tank
49 and 39. What remained in Tank 41 was a salt cake with some percentage of residual supernate and
sludge. The intent of the process is to pump the dissolved salt cake to Tank 50 where it would be sent on
to Saltstone for final processing into grout.

Analysis performed on dip samples taken from Tank 41 following the salt cake dissolution indicate that
Pu238 concentrations are above the Saltstone WAC limits'. On the expectation that further analysis of the
samples will show that a significant portion of the Pu 238 is filterable as an insoluble (in caustic solution)
solid, a request has been made for filtration methods that would bring the Pu 238 concentration within the
Saltstone WAC limit.

Key Basis:
* Pu238 concentration must be reduced to meet Saltstone WAC limits (1.88E+5 pCi/mL)
* Pu 238 is an insoluble solid in the dissolved salt supemate.
* The target filtrate, rate is 20 gpm.
* The maximum case volume of supemate to be processed is 400,000 gallons.
. Short lead-in period is required to begin operation (approximately one month).

REVISION SUMMARY
Revision 0 included three proposals for filtration methods, key basis, and identified risks.

REFERENCES:
1. SRT-LWP-2003-0006 1, Rev 0, "Initial Results of Tank 41 H Saltstone WAC Analyses"
2. USC-FRED-PSP-RPT-09-B-0 15, "Final Report on the Crossflow Filter Optimization

with 5.6 M Sodium Salt Solution"

ATTACHMENTS:
1. Option Diagrams

Design Authority: Date:

Concurrence: Date:
Design Authority Engineer Manager: Michael R. Norton
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REFERENCES: 
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Options #1
ITP Demonstration Filter:

OVERVIEW:
A proof of concept filter test was performed for ITP circa 1982-83. That test involved a crossflow filter
unit (four filters in series) mounted in a Tank 48 riser. The filter unit's performance was supported by
various equipment in other Tank 48 risers that included pumps, filtrate hold vessels, chemical cleaning and
backpulsing capacity.

SCOPE
* Build and install a filter assembly based on the design of the ITP demonstration equipment:

* Four crossflow filters in series
• Pump, diaphragm or centrifugal
* Backpulse reservoir

* Ancillary equipment:
* Minimum three pressure transmitters
* High pressure air source for backpulse (- 150 psig)
* Two flowmeters.
* Three control valves

* Filter back-pressure valve
• Filtrate flow control valve
* Air pressure to backpulse reservoir control valve

KEY ASSUMPTIONS:
* Filtration of dissolved Tank 41 salt through a nominal 0.5 micron filter will be sufficient treatment for

it to meet the Saltstone WAC.
* The flux rate for a crossflow sintered metal filter of nominally 0.5 micron pore size is .05 gpm/ft2 when

processing supernate w/entrained sludge and MST.2 The flux rate will be similar for a feed stream of
dissolved salt with entrained sludge without MST.

* The filter assembly used for the demonstration has been disposed of.

RISKS:
* The demonstration filter design ran filtrate outside of the tank. A portion of filtrate was contained in a

backpulse vessel. That demonstration included MST and STPB treatment of the waste which produced
a low activity decontaminated filtrate. Filtrate produced from Tank 41 dissolved salt will not have
gone through that same treatment.

" Significant design and construction time.
* This is a temporary application. The duration is limited by that of Tank 41 Low Curie operations.

Significant costs may be put into the development of this filter assembly that does not see an
equivalent return of product to justify the effort. The design and hardware developed for this may not
be transferable to other tanks that may require similar treatment.

* The test in which this design demonstrated a filtrate rate meeting the 20 gpm target of this proposal
was performed with a MST and STPB treated feed. Feeds without STPB but with MST and/or
entrained sludge typically have much lower flux rates.

COSTS:
* The filter assembly is a unique piece of equipment requiring it to be fabricated.
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" Though some vessels like the filtrate hold tanks and backpulse reservoir may be supplied from surplus
tanks, significant reworking would be required to use them in this design.

* Structural supports for the vessels and any required additional shielding.
* Control software and electronics would be required.
* Total design and construction rough estimate: $900,000

SCHEDULE:
a Six to eight months due to the significant levels of design and construction required.
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Options #2
Cleanable Sintered Metal Tube Filter:

OVERVIEW:
The concept of this proposal is to install a vendor built filtration unit to be mounted in a Tank 41 riser. The
filter would incorporate sintered metal tubes similar to those in the 512-S filter unit with the tubes bundled
and mounted in an outer shell.
The flow of waste will be into the tubes of the filter. Filtrate is forced through the capped sintered metal
tubes out to the shell. The outlet of the shell side will connect to the existing transfer line from Tank 41 to
50 allowing the filtrate to be collected in Tank 50. Concentrated solids are collected inside tubes. At some
level of accumulation the solids would be back-flushed out and back into Tank 41.
The filter unit will be mounted vertically within the C3 riser of Tank 41. Flush water would be used to
discharge the accumulated solids back into Tank 41.
To accommodate the filter, the existing pump assembly will be removed and rebuilt. Otherwise the filter
assembly'may be designed for another riser. That would require two above ground transfer routes. One to
connect the pump's riser to the filter and a second to return the filtrate to the appropriate nozzle located in
C3.

SCOPE:
" Riser modification:

* Mounting for the filter assembly

* Inlet/outlet ports
* Addition of a flush line.
* Five manually operated (reach rod operated) valves will be built.
* Rebuild the Tank 41 pump assembly

KEY ASSUMPTIONS:
* The period between filter flushes will be long relative to the periods of filtrate production.
* The means of recovering filter operation, lowering the pressure delta across the media due to fouling,

are limited to backflushing and chemical cleaning.
* The flux rate for a crossflow sintered metal filter of nominally 0.5 micron pore size is .05 gpm/IV when

processing supernate w/entrained sludge and MST.2 The flux rate will be similar for a feed stream of
dissolved salt with entrained sludge without MST.

* The filter will be of fine enough porosity to produce filtrate that meets the Saltstone WAC
requirements.

* The filter will be capable of processing 400,000 gallons of filtrate before requiring replacement,.
* The pumping mechanism can supply sufficient pressure to overcome the filter's pressure differential

and push the filtrate on to Tank 50.

RISKS:
* Space constraints may limit the surface area of the filter such that the target of 20 gpm would not be

maintainable.
• Final disposal of the filter will require special decontamination and or storage.

COST ESTIMATES:
" Engineering: $50, 000
* Material and construction: $100,000

* Vendor supplied filter assembly: $25,000
* Pump assembly, valve modifications, piping modifications: $75,000

SCHEDULE:
Estimated at six to eight weeks for design and construction.
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Options #3
Disposable Cartridge Filters:

OVERVIEW:
The concept of this proposal is to install a vendor built filtration unit. The unit would consist of a bank of
disposable cartridge type filters arranged in parallel in a filter housing. The filter housing with filters will
be replaceable. Dissolved Tank 41 salt solution would flow into the bank and through the filters.
Entrained solids will be captured on and in the filter media while filtrate passes through to Tank 50.
To accommodate the filter, the existing pump assembly will be removed and rebuilt. Otherwise the filter
assembly may be designed for another riser. That would require two above ground transfer routes. One to
connect the pump's riser to the filter and a second to return the filtrate to the appropriate nozzle located in
C3.

SCOPE:
* Riser modification:

* Mounting for the filter assembly
* Inlet/outlet ports

. Addition of a flush line.
* Five manually operated (reach rod operated) valves will be built
* Rebuild the Tank 41 pump assembly

KEY ASSUMPTIONS:
* The pumping mechanism can supply sufficient pressure to overcome the filter's pressure differential

and push the filtrate on to Tank 50.
" The filter will be of fine enough porosity to produce filtrate that meets the Saltstone WAC

requirements.
* The frequency of filter change-out will be low relative to the duration of the filters' operational

duration.

RISKS:
" In the absence of a particle size distribution for Tank 41 dissolved salt, the duration of the cartridge

filters' operation before full loading is unknown.
" Backflushing and/or chemical cleaning as means of filter recovery are not compatible with this design.

Once the pressure delta limit is reached, the filters will require removal and replacement.
* The filter media of the cartridges is non-metallic. This will present special disposal challenges

following filter removal.

COSTS:
" Engineering: $50, 000
* Material of construction: $95,000

* Vendor supplied filter assembly (Two, one initial and one spare): $20,000 ($10,000 each)
* Pump assembly, valve modifications, piping modifications: $75,000

SCHEDULE:
Estimated at six to eight weeks for design and construction.
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OPTION COMPARISON:

Schedule:
Option #1 is expected to be the longest of the three due to the extensive engineering and construction of
unique equipment required. It falls far outside the one-month target. Options #2 and #3 have similar
schedule requirements.

Risk:
Relative to the other two Option #1 has the least technical risk. It incorporates technology that has been
demonstrated to perform the filtration required. It also has the best flux recovery options since it would
have a built in backpulse option and have a chemical cleaning capacity.

Option #2 uses similar technology, sintered metal tubes, but in a different way. Where Option #1 would
cycle the concentrate stream from the tank through the filter and back to the tank where solids are collected,
Option #2 is a single pass filter that collects the solids inside the filter itself. Option #2 would not have the
same flux recovery options as #1. It can be backflushed but not backpulsed.

There are two primary technical risks for Option #3. First, the filter media is untested in this application.
How it will hold up under a radiation field and in a caustic solution is unknown. Additionally, it is
unknown how long the filters will take to reach their maximum solids load. Second there is no flux
recovery option for this design. Once the filters reach their maximum solids load the filter housing must be
replaced.

Cost:
The estimated cost associated with Option #1 far exceeds that of Options #2 and #3. Options #2 and #3
will have the same initial cost. Option #3 has the potential to be more expensive over the life of the project
should the filters and housing require frequent replacement.

RECOMMENDATION:
Comparing the three options based on the criteria of schedule, risk, and cost leads the conclusion that
Option #2 is preferable over the others. It has only marginally more technical risk than Option #1 and
much less risk than Option #3. Option #2 falls much closer to the schedule target than #1. Option #2 has
significantly less cost than #1 and based on the capacity for flux recovery may cost less than #3.
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Option #2: Cleanable Sintered Metal Tube Filter
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CBU-PED-2004-00027 Interim Salt Processing Strategy
Planning Baseline

1. Summary
The Interim Salt Processing Strategy Planning Baseline contained in this document
describes the planning basis for processing salt solutions through the Liquid Waste and
Waste Solidification System until the start-up of the Salt Waste Processing Facility
(SWPF) in April 2009. The purpose of the document is to provide a basis for planning
salt processing activities during this period. The Planning Baseline is based on the Salt
Processing Strategy, which has the following objectives:
" Maintain sufficient space in the Tank Farms to allow continued Defense Waste

Processing Facility (DWPF) Operations at a rate of 250 canisters per year
" Support Sludge Batch preparation for DWPF
" Provide tank space to support staging of salt solution adequate to feed 5 Mgal of salt

solution to SWPF during the initial year of operation starting in April 2009
* Ensure that the curies to Saltstone during the Interim Salt program are acceptably low

(less than 5 MCi total).
* Meet DOE Contract Minimum Gate of 500 kgal of salt solution dispositioned at

Saltstone

Preliminary modeling showed that meeting all these objectives requires dispositioning the
tetraphenylborate waste in Tank 48 so that the 1.3 Mgal of space in this tank can be used
for Tank Farm service in staging salt solution for processing. Thus, Tank 48 must be
dispositioned in some manner for the strategy to be successful. The two possible methods
are 1) aggregate Tank 48 waste with other wastes going to Saltstone in such a manner
that all Waste Acceptance Criteria (WAC) limits are met, or 2) chemically and thermally
degrade the tetraphenylborate so that the Tank 48 waste can be processed with other Tank
Farm wastes.

Four cases were examined with different methods and degrees of difficulty in
dispositioningthe material in Tank 48:
1. Aggregate Tank 48 waste with negligible issues
2. Aggregate Tank 48 with modest modifications and technical issues (recommended

planning case)
3. Aggregate Tank 48 waste with more extensive modifications and technical issues
4. Thermally and chemically degrade the tetraphenylborate so that this waste can be sent

to the Tank Farm.

Case 2 is the recommended case for the Planning Baseline. This case allows a reasonable
amount of time to begin dispositioning the waste in Tank 48, considering the risks and
technical uncertainties involved.

This case has the following attributes:
* Processes salt solutions originating from Tanks 25, 28, 38, 41 and 48
• Assumes that Tank 48 can be dispositioned through aggregation to Saltstone
" Processes about 12 Mgal of salt solution to Saltstone containing less than 5 MCi (total

of all radionuclides)

5.
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Planning Baseline

" Requires the start-up of Modular Caustic Side Solvent Extraction (CSSX) Unit
(MCU) and Actinide Removal Process (ARP) by August 2007

" Includes disposition to Saltstone of 400 kgal of Low-Level Waste from processing
unirradiated Highly Enriched Uranium (HEU) fuel, which reduces the amount of
waste that must be managed in the Tank Farm

* Assumes regulatory issues and permits are completed per the schedule described in
this document

" Accommodates current sludge batching plans, SWPF startup schedule, and Tank
Farm minimum space requirements

" Feeds salt solution to Saltstone at a planned maximum activity of 0.2 Ci/gal of Cs-
.137.

" Assumes the use of Tank 24 to store concentrated recycle that is within limits for
Type IV tank storage.

Case 4 is the backup case for the Planning Baseline. The main difference between this
case and Case 2 are that Case 4 assumes the Tank 48 tetraphenylborate waste is thermally
and chemically degraded, then sent to the Tank Farm, whereas Case 2 assumes the Tank
waste is aggregated with the wastes going to Saltstone. Case 4 has a high technical risk-
at this time, conditions required to adequately degrade the tetraphenylborate so that it can
be managed as normal Tank Farm waste have not been identified.

These cases, their bases (including technical bases and assumptions), associated risks,
and opportunities for improvement are described in, the sections that follow. The
opportunities for improvement identified in this document include continuing to pursue
Tank 48 disposition by thermal and chemical degradation (the backup case) to minimize
the amount of material requiring aggregation, acceleration of MCU operational start-up,
increasing the Saltstone processing rate, and Slurry Mix Evaporator Condensate Tank
(SMECT) stream processing. The Planning Baseline described in this document will be
used in the Contract Execution development for all of the associated facilities.

This document will be revised when significant changes occur in the planning bases that
impact successful implementation of the Planning Baseline. The document and any
subsequent revisions will be incorporated into future HLW System Plan revisions. It will
be maintained as a controlled document.
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Table I
Soluble, Insoluble, and Total Inventories in Untreated Salt Waste

Radionuclide Soluble Curies in Insoluble Curies in Total Curies in Untreated
Untreated Salt Waste Untreated Salt Waste Salt Waste

H-3 9.4E+3 Negligible 9.4E+3
C-14 5.2E+2 2.8E-1 5.2E+2.
Na-22 5. I E+3 9.3 E- 1 5.1E+3
AI-26 2.4E+1 4.9E-1 2.4E+1
Co-60 8.6E+1 2.9E+4 2.9E+4
Ni-59 2.4E0 2.2E+2 2.2E+2
Ni-63 2.1E+2 I.9E+4 1.9E+4
Se-79 8.9E+1 1.3E+2 2.2E+2
Sr-90 2.8E+4 7.3E+6 7.3E+6
Nb-94 7.OE-4 5.9E-2 6.OE-2
Tc-99 3.3E+4 2.2E+3 3.5E+4
Ru-106 2.3E+3 5.7E+2 2.9E+3
Sn- 126 4.5E+2 1.7E+2 6.2E+2
Sb- 125 9.2E+3 1.5E+4 2.4E+4
1-129 L8E+i 9.0E-3 1.8E+I
Cs-134 2.3E+5 8.8E+2 2.3E+5
Cs-135 3.9E+2 1.5E0 3.9E+2
Cs-137 1._1_E+8 4.4E+5 1.I1_E+8
Ce- 144 5.9E0 5,0E+2 5._1 E+2
Pm-147 3.8E+3 3.2E+5 3.2E+5
Sm- 151 4.3E+3 3.6E+5 3.6E+5
Eu- 152 2.113+_ 1 1.7E+3 1.7E+3
Eu-154 9.1 E+2 7.6E+4 7.7E+4
Eu-155 2.4E+2 2.OE+4 2.OE+4
Th-232 .E-I 2.4E-1 3.4E-1
U-232 2.9E-2 4.7E-2 7.6E-2
U-233 2.7E0 8.3E0_1.1 E+ 1
U-234 4.2E0 3.2E 7.4E0
U-235 8_4E-2 1.3E-1 2,_IE-I
U-236 3.6E-1 5.2E-1 8.8E-1
U-238 6.8E0 5.5E0 1,2E+I
Np-237 4.2E0 8.3E0 I.3E+I
Pu-238 5.7E+4 I.7E+5 2.3E+5
Pu-239 3.4E+3 4.OE÷3 7.4E+3
Pu-240 9.1E+2 I.7E+3 2.6E+3
Pu-241 3.8E+4 I.OE+5 1.4E+5
Pu-242 9.4E-1 2.8E0 3.7E0
Am-241 3.6E+2 3.OE+4 3.OE+4
An-242m 2.IE-I I.8E+l 1.8E+I
Am-243 7.OE-2 5.8E0 5.9E0
Cm-242 1,7E-I I.5E+l 1.5E+_
Cm-243 4.1E-2 3.4E0 3.4E0
Cm-244 1.5E+2 1.2E+4 1.2E+4
Cm-245 I.4E-2 1.2E0 I_2E0
a-emitting TRU 6.2E+4 2.2E+5 2.8E+5
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Insoluble Curies in 
Untreated Salt Waste 

Negligible 
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9.3E-I 
4.9E-l 
2.9E+4 
2.2E+2 
1.9E+4 
1.3E+2 
7.3E+6 
5.9E-2 
2.2E+3 
5.7E+2 
1.7E+2 
1.5E+4 
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l.5EO 
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5.0E+2 
3.2E+5 
3.6E+5 
1.7E+3 
7.6E+4 
2.0E+4 
2.4E-l 
4.7E-2 
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Total Curies in Untreated 
Salt Waste 

9.4E+3 
5.2E+2. 
5.IE+3 
2.4E+l 

. 2.9E+4 
2.2E+2 
1.9E+4 
2.2E+2 
7.3E+6 
6.0E-2 
3.5E+4 
2.9E+3 
6.2E+2\ 
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5.lE+2 
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2.1E-l 
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1.2E+l 
l.3E+I 
2.3E+5 
7.4E+3 
2.6E+3 
l.4E+5 
3.7EO 

3.0E+4 
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APPROVED for Release for CBU-SPT-2003-00157Rev. 0
Unlimited (Release to Public) Rdention: Until dismantlement or disposal

of facility. equipmcut systuo or proess
Disposal Auth.: DOE 14-1.c (1)
Traciing #: ASD 100067

September 24, 2003

To: Renee H. Spires, Manager Salt Program Engineering, 766-H

From: E. Edward Seufert, Salt Program Design Authority Engineer, 766-H

Michael R. Norton, Salt Program Design Authority Manager, 766-H

Evaluation of Tank 41 In-Riser Filter for Tank 41 to Tank 50 Transfer Path

This memorandum documents the evaluation of a proposal to install a filter in a Tank 41 Riser. The
filter would be used to filter out insoluble actinides contained in a salt slurry being pumped from
Tank 41 to Tank 50. The goal of this filtration process is to reduce the actinide content of the
filtrate to a level that meets the Saltstone WAC (Waste Acceptance Criteria).

Summary and Conclusion:
Although it is technically possible to filter out the insoluble actinides from the transfer stream of salt
slurry using a "dead end" type filter, the necessity to frequently backwash the filter with flush water
to restore filtering capability makes the operation of the filter unacceptable. Depending on the
solids loading (assumed to range from 300 ppm to 3000 ppm) the filter will have to be backwashed
on a frequency ranging from 2 times/hour to 2 times/24 hour day. Each backwash cycle will
introduce 200 to 300 gallons of flush water into Tank 41. In order to position the valving for
backwashing, an operator will have to "dress out" in protective clothing and enter an enclosed hut.
The necessity to backwash the filter frequently is operationally unacceptable.

Backeround:
The following background information was partially gleaned from Reference 1:

Tank 41 was identified as a Low Curie tank. Interstitial supernate was drained and pumped to Tank
49 and 39. What remained in Tank 41 was a salt cake with some percentage of residual supernate
and sludge. The original intent of the Low Curie Process was to pump the dissived salt cake to
Tank 50 where it would be sent to Saltstone for final processing into grout.

An Analysis performed on a dip sample taken from Tank 41 following the salt cake dissolution
indicated that PU235 concentrations are above the Saltstone WAC limits. (Note:- Pu2s is the primary
actinide in Tank 41.) The sample contained insoluble solids at a concentration of approximately
3000 ppm.
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A portion of the sample taken of the salt slurry in Tank 41 was run through a 0.45 micron absolute
filter. An analysis showed that 83% of the Pu238 was filtered out (See Page 11 of Reference 2).
This is enough to meet the Saltstone WAC (Waste Acceptance Criteria). Based on this result it was
proposed to install a "dead end" filter in a riser in Tank 41 to filter out Pu 238. (Note: A "dead end"
filter passes the entire stream through the filter, retaining the solids on the filter elements and
passing the liquids.)

Proposed Filter Specifications:
Based on the Tank 41 sample analysis and studies done of actual SRS Sludge (See Reference 3), a
filter specification was developed for filtering a 20 gpm salt slurry containing up to 3000 ppm
solids (See Reference 4) and sent to Pall Filter and Mott Filter (See Attachment 1).

Note: Actual SRS Sludge samples show that sludge is present in the hard salt at levels of from 300
to 600 ppm (Reference 3).

Vendor Response:

Mort Filter did not respond to our specification.

Pall Filter responded with a Proposal for a "Backwashable Filter" (See Attachment 2).

The proposed Pall Filter consists of a vertically mounted, nominal 12" OD by 85" long Filter
Assembly consisting of 76 nominal ¾" sintered metal filter tubes. One end of the tubes would be
welded into a tube sheet at the top end of the vessel. The other end of the tubes would be closed or
"dead-ended".

The Filter Operation is as follows:
Salt Slurry flows around the outside of the tubes and is filtered through the tubes. Retained solids
build up as cake on the outside of the tubes. Filtered liquid flows inside the tubes to the tube sheet
and exits the vessel. A solid cake builds up on the outside of the tubes until the filter pressure drop
is around 30 psig. At that time, Flush Water is used to "backwash" the filter by reversing flow
through the filter tubes. A backwash flow rate of at least 100 gpm for 1 to 3 minutes (total flow of
100 to 300 gallons) is needed to clean the filter. This has the effect of knocking the filter cake off
of the outside of the tubes. The dislodged filter cake falls to the bottom of the vessel and is drained
out of the vessel through the normal "Inlet" nozzle. The total filter area is approximately 70 ft2. A
20 gpm feedrate to the filter produces a filter flux rate of 0.29 gpm/ft2.

The budget cost of this filter is $25,000 with a carbon steel outer shell and 316 stainless steel tubes.
If SRS proceeds with this proposal, the filter will be rebid with a 304 or 316 stainless steel shell.
The cost would be less than $5,000 more than the carbon steel vessel. It is assumed that SRS will
purchase at least 2 filters. This will provide an option to replace the entire filter assembly if
frequent backwashing results in a plugged filter unit.

Other Filter Designs Considered:
Pall Filter considered other filter designs and rejected them as follows:
(See Attachment 2, Sheet 2 of 3)

1. "Disposable filtration system is not recommended due to the high media viscosity and no
way to backwash the system."
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A portion of the sample taken ofthe salt slurry in Tank 41 was run through a 0.45 micron absolute 
filter. An analysis showed that 83% of the PU238 was filtered out (See Page 11 of Reference 2). 
This is enough to meet the Saltstone WAC (Waste Acceptance Criteria). Based on this result it was 
proposed to install a "dead end" filter in a riser in Tank 41 to filter out pU238

. (Note: A "dead end" 
filter passes the entire stream through the filter, retaining the solids on the filter elements and 
passing the liquids.) 

Proposed Filter Specifications: 
Based on the Tank 41 sample analysis and studies done of actual SRS Sludge (See Reference 3), a 
filter specification was developed for filtering a 20 gpm salt slurry containing up to 3000 ppm 
solids (See Reference 4) and sent to Pall Filter and Mott Filter (See Attachment 1). 

Note: Actual SRS Sludge samples show that sludge is present in the hard salt at levels of from 300 
to 600 ppm (Reference 3). . 

Vendor Response: 
Mott Filter did not respond to our specification. 

Pall Filter responded with a Proposal for a "Backwashable Filter" (See Attachment 2). 

The proposed Pall Filter consists of a vertically mounted, nominal 12" OD by 85" long Filter 
Assembly consisting of76 nominal W' sintered metal filter tubes. One end of the tubes would be 
welded into a tube sheet at the top end of the vessel. The other end of the tubes would be closed or 
"dead-ended". 

The Filter Operation is as follows: 
Salt Slurry flows around the outside of the tubes and is filtered through the tubes. Retained solids 
build up as cake on the outside of the tubes. Filtered liquid flows inside the tubes to the tube sheet 
and exits the vessel. A solid cake builds up on the outside of the tubes until the filter pressure drop 
is around 30 psig. At that time, Flush Water is used to "backwash" the filter by reversing flow 
through the filter tubes. A backwash flow rate of at least 100 gpm for 1 to 3 minutes (total flow of 
100 to 300 gallons) is needed to clean the filter. This has the effect of knocking the filter cake off 
of the outside of the tubes. The dislodged filter cake falls to the bottom of the vessel and is drained 
out of the vessel through the normal "Inlet" nozzle. The total filter area is approximately 70 ft2. A 
20 gpm feedrate to the filter produces a filter flux rate of 0.29 gpm/rt2., 

The budget cost of this filter is $25,000 with a carbon steel outer shell and 316 stainless steel tubes. 
If SRS proceeds with this proposal, the filter will be rebid with a 304 or 316 stainless steel shell. 
The cost would be less than $5,000 more than the carbon steel vessel. It is assumed that SRS will 
purchase at least 2 filters. This will provide an option to replace the entire filter assembly if 
frequent backwashing results in a plugged filter unit. 

Other Filter Designs Considered: 
Pall Filter considered other filter designs and rejected them as follows: 
(See Attachment 2, Sheet 2 of 3) 

1. "Disposable filtration system is not recommended due to the high media viscosity and no 
way to backwash the system." 
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2. "Crossflow filtration system is not recommended due to much lower flux rate and the
requirement for a larger recirculation pump. The overall system would be much more
complex."

Proposed Design:
The proposed Filter System Design is illustrated in Attachment 3 as follows:

1. The existing "Six Pumps on a Stick" Assembly originally designed to be installed in Tank
41 Riser C-3 will be installed in Tank 41 Riser C-I after the existing "Interstitial Pump
Assembly" is removed.

2. The proposed "Backwashable Filter" will be installed in Tank 41 Riser C-3. An above
ground transfer line (hose in a hose) will be used to connect the discharge line from the
"Pumps on a Stick" to the Inlet Nozzle on the Filter. The filtrate will be routed to the
existing GDL (Gravity Drain Line) connection in Riser C-3. There is an existing defined
Transfer Path to Tank 50 via the GDL in Tank 41 to the 2H Evaporator, through a new
Jumper between Evaporator Nozzles 9 and 6, and then down the GDL to Tank 50.

3. The Filter will be backwashed using the existing Flush Water at Tank 41. The backwashed
solids and the flush water will be drained into Tank 41.

Evaluation:
The major limitation of the proposed Filter System is the necessity to backwash the Filter to restore
filter effectiveness after a period of filtering. As the Filter is used, solids will build up as a cake on
*the outside of the filter tubes. Assuming 20 gpm of 1.5 S.G. salt slurry at a insoluble solids loading
of 3000 ppm (or 0.3 weight percent), after one hour the filter will have removed 40.5 lbs of
insoluble solids assuming a.90% filtration rate:

Solids = .90 x 20 gal/min x ft3/7.48 gal x 62.4 lbs/gal x 1.5 (S.G.) x 60 min/hr x 0.003 = 40.5 lbs.

Pall Filter was asked to estimate the backwash frequency assuming filter cake thicknesses (before
backwashing) ranging from 0.094 inch thick to 0.160 inches thick at a solids loading of 3000 ppm.
Their estimates were based on determining the time it would take to build up a specific filter cake'
thickness on the filter tubes. The results (See Attachment 4) show that the Filter would have to be
backwashed from once every 47 minutes to once every 79 minutes depending on the assumed filter
cake thickness. This is approximately once/hour. In a 24 hour period (assuming 5 minutes per
backwash cycle including 2 minutes of actual backwash flow at 100 gpm) 26,400 gallons of waste
would be filtered (and removed from Tank 41), but 4800 gallons of flush water would be added to
Tank 41.

Even assuming an order of magnitude lower solids concentration of around 300 ppm (0.03 weight
percent), the filter will have to be backwashed 2 to 3 times per 24 hour day.

The manual backwashing system will require an operator to "dress out" and enter a hut on the Tank
Top to operate the valves. This is unacceptable at a frequency of 2 to 3 times/24 hour for a lower
solids (300 ppm) concentration period. It is even more unacceptable at a solids concentration of
3000 ppm which will require backwashing at a frequency of once/hour or 24 times in a 24 hour
period.
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2. "Crossflow filtration system is not recommended due to much lower flux rate and the· 
requirement for a larger recirculation pump. The overall system would be much more 
complex." 

Proposed Design: 
The proposed Filter System Design is illustrated in Attachment 3 as follows: 

1. The existing "Six Pumps on a Stick" Assembly originally designed to be installed in Tank 
41 Riser C-3 will be installed in Tank 41 Riser C-l after the existing "Interstitial Pump 
Assembly" is removed. 

2. The proposed "Backwashable Filter" will be installed in Tank 41 Riser C-3. An above 
ground transfer line (hose in a hose) will be used to connect the discharge line from the 
"Pumps on a Stick" to the Inlet Nozzle on the Filter. The filtrate will be routed to the 
existing GDL (Gravity Drain Line) connection in Riser C-3. There is an existing defined 
Transfer Path to Tank 50 via the GDL in Tank 41 to the 2H Evaporator, through a new 
Jumper between Evaporator Nozzles 9 and 6, and then down the GDL to Tank 50. 

3. The Filter will be backwashed using the existing Flush Water at Tank 41. The backwashed 
solids and the flush water will be drained into Tank 41. 

Evaluation: 
The major limitation of the proposed Filter System is the necessity to backwash the Filter to restore 
filter effectiveness after a period of filtering. As the Filter is used, solids will build up as a cake on 
·the outside of the filter tubes. Assuming 20 gpm of 1.5 S.G. salt slurry at a insoluble solids loading 
of 3000 ppm (or 0.3 weight percent), after one hour the filter will have removed 40.5 lbs of 
insoluble solids assuming a.90% filtration rate: 
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Pall Filter was asked to estimate the backwash frequency assuming filter cake thicknesses (before 
backwashing) ranging from 0.094 inch thick to 0.160 inches thick at a solids loading of 3000 ppm. 

\ . 
Their estimates were based on determining the time it would take to build up a specific filter cake' 
thickness on the filter tubes. The results (See Attachment 4) show that the Filter would have to be 
backwashed from once every 47 minutes to once every 79 minutes depending on the assumed filter 
cake thickness. This is approximately oncelhour. In a 24 hour period (assuming 5 minutes per 
backwash cycle including 2 minutes of actual backwash flow at 100 gpm) 26,400 gallons of waste 
would be filtered (and removed from Tank 41), but 4800 gallons of flush water would be added to 
Tank 41. . 

Even assuming an order of magnitude lower solids concentration of around 300 ppm (0.03 ~eight 
percent), the filter will have to be backwashed 2 to 3 times per 24 hour day. 

The manual backwashing system will require an operator to "dress out" and enter a hut on the Tank 
Top to operate the valves. This is unacceptable at a frequency of 2 to 3 times/24 hour for a lower 
solids (300 ppm) concentration period. It is even more unacceptable at a solids concentration of 
3000 ppm which will require backwashing at a frequency of oncelhour or 24 times in a 24 hour 
period. 
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Attachment 1: LIQUID FILTER APPLICATION DATA SHEET

Completed By:E. Edward Seufert Date:_8-28-03__

Customer: Savannah River Site Contact Name: E. Edward Seufert

Address: Title: Design Authority Engineer

WSRC Phone: 803-208-0310
766-H; Room 2032
Aiken, SC 29808 Fax: 803-208-8234

E-mail: e.seufert@srs.gov

PROCESS DESCRIPTION: Filter Radioactive Salt Slurry with entrained .sludge particles

REQUIRED FILTRATION PERFORMANCE: REMOVE 900/0 OF SLUDGE PARTICLES

Mn f3ROETIES~ ~ SO-616S #R`0P!WI1E'RTIES

Composition: Radioactive Salt Slurry Composition: Insoluble sludge containing
radioactive actinides

Flow Rate: 20 gpm Content (ppm or wtO/o): Sample max
at 3000 ppm (average 300 to 600
ppm)

Specific Gravity or Density: 1.4 to 1.5 Particle Size: 90% > 1.0 micron
absolute; Would like to use a 0.5
micron absolute as the filter opening
size.

Viscosity: 6.1 cP @ _ F or _25°C Preferred Disposition of Solids:

Operating Temperature: OF or 29 OC 0 Recovery
X Disposal

Operating Pressure: <100 psig LMA " i L O• • NST "CION .....

Maximum AP: 30 to 40 psig Filter Porous Media: 304 or 316 stainless
steel

QUINFEMENTS Filter Element Hardware: 304 or 316
~ ~Z1j'I~->stainless steel

Design Temperature (Min): 29 deg C Vessel (Wetted): 304 or 316 stainless

Design Temperature (Max): 35 deg C Vessel (Non-wetted): 304 or 316
stainless

Design Pressure (Min): Atmospheric - Housing Gasket: radiation resistant

Design Pressure (Max): Less than 150 psig Element Seal Type: radiation resistant

Element Seal Material: radiation resistant

Attachment 1: LIQUID FILTER APPLICATION DATA SHEET 

Completed By:E. Edward Seufert __ Date:_8-28-03 __ ' 

Customer: Savannah River Site Contact Name: E. Edward Seufert 

Address: Title: Design Authority Engineer 

WSRC Phone: 803-208-0310 
766-H· Room 2032 

ken, SC 29808 Fax: 803-208-8234 

E-mail: e.seufert@srs.gov 

PROCESS DESCRIPTION: Filter Radioactive Salt Slurry with entrained sludge particles 

REQUIRED FILTRATION PERFORMANCE: REMOVE 900/0 OF SLUDGE PARTICLES 

Flow Rate: 20 gpm 

SpeCific Gravity or Density: 1.4 to 1. 5 Particle Size: 900/0 > 1.0 micron 
absolute; Would like to use a O.S 
micron absolute as the filter opening 
size. 

Viscosity: 6.1 cP @__ or _25°C Preferred Disposition of Solids: 
f-o-p-er-a-t-in-g-T-=-e-m-p-e-ra-t-u-re-:--'-o-F-o-r-2-9:--oC::-----i 0 Recovery 

X Di I 
Operating Pressure: <100 psig ~==~~ 
Maximum ~P: 30 to 40 psig 

Design Temperature (Min): 29 deg C 

Design Temperature (Max): 35 deg C 

Design Pressure (Min): Atmospheric 

Design Pressure (Max): Less than 150psig 

Filter Porous Media: 
steel 
Filter Element Hardware: 304 or 316 
stainless steel 
Vessel (Wetted): 304 or 316 stainless 

Vessel (Non-wetted): 304 or 316 
stainless 
Housing Gasket: radiation resistant 

Element Seal : radiation resistant 

Element Seal Material: radiation resistant 
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1ATRA ION

QUOTATION

Page: I1I
Date: 9"23/0309/155/03
Quote No.: GD(391503

Plen.,c! address order to:

IFLUII) FLO W OF THE CAROLINAS. INC.

Wesinghouse Savannah River Co.
Attn.: Sam Newton & Ed Scuferi
WNR C
Aikvii. SC 29808
Ref.: TANK RISER FILTERS

Ite Otv
I

Description
Pall Backwash Filtration System

Unit Price
$25,000.00

Exten.ion

Housing:
All welded Carbon Steel housing to ASME code. Design
drawing will not be submitted for customer review and
approval, due to delivery constraints. Please review attach
drawing.

Filter elements:
76 AccuSep 316 L Stainless Steel elements rated at 2 um
Absolute liquid particle removal rating at 99.9%
efficiency. Total filter area 70 ft2, at 20 gpm the 70 ft2
system will be at 0.29 gpm / fQ2. This flux rate is within
the1C lane ol'utliel CXpericliccs with backwash aipplikeations.

5990-C Unity Drive
Norcross, GA 30071

770/446-5747
Fax 770/1446-0386

Fluid Flow of
Georgia, Inc.
800-849-.947

2108 Crown View Drive
Charlotte, NC 28227

7041847-4464
Fax 7041847-2377

Fluid Flow of
Carolinas, inc.

800-222-2229

6701 Baum Dr. Suite 245
Knoxville, TN 37919

865/588-1012
Fax 8651588-1094

Fluid Flow of
Tennessee, Inc.

800-275-0140

PROVUCTS, /I';C, 
MFA,( :'·tM!NTICONT~OL 

';1 TRM/ON 

Pag!:: 11 
Date: 9'23/03091 15/03 
QUl)\c' No,: GD091503 

PI"n~..: address order to: 

FLUII) FLOW OF THECAROLlNAS.INC. 

W<!slinghouse Savannah River Co. 
Altn: Sam Newton & Ed Seuferi 
WSRC 
Ail-,n, SC 29808 
Rei. TANK RISER FILTERS 

QUOTATION 

QU: Description 
1 Pall Backwash Filtration System 

Housing: 
All welded Carbon Steel housing to ASMI:. code. Design 
drawing will not be submitted for customer review and 
approval. due to delivery constraints. Please review attach 
drawing .. 

Filter elements: 
76 ACl:uSep j 16 L Stainless Steel clements rated at 2 urn 
Absolute liquid particle removal rating at 99.9% 
efficiency. Total filter area=: 70 fll, at20grm the 70 ft2 
system will he at 0.29 gpm / ft2. This flux rate is within 
the: 1i1llg.e ur ulher experi"llcc~ w ilh bacl\'wa~h applil;atiullS, 

5990-C Unity Drive 
Norcross, GA 30071 

7701446-5747 
FIIN 7701446·0386 

Fluid Flow of 
Georgia, Inc. 

800-849-'947 

2108 Crown VI.w Drlv. 
Charlotte, Ne 28227 

7041847-4464 
Fax 7041847·2377 

Fluid Flow of 
Carolinas, Inc. 

800-222-2229 

A+t-ae-hv'i\U\-t 2 
<;h \ of 3 

Unit Price 
$25.000.00 

Extension . 

6701 Baum Dr. Suite 24$ 
Knoxville, TN 37919 

865/588-1012 
FalC B6515BB·10fU 

Fluid Flow of 
Tennessee, Inc. 

(100-27:1-0140 
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QUOTATION

Pave: I I
IDnle: 9/`2310309/11,/03

(o)LOck No.: _1,0. 1503

]1.;w' address order to;

FLUID FLOW O-THE CAROLINAS, INC.

Westinghouse Savannah River Co.
Attn.: Sam Newton & Ed Scufcrt
W ]) -c

Aikcn. SC 29808
Reof: TANK RISER FILTERS

I- Disposable filtration system is not recommended due
high media viscosity and no way to backwash the
system

2- Crossflow filtration system is not recommended due
to much lower flux rate and require a larger
recirculation pump. Overall system would be more
complex.

3- Backwash with water will have to be optimized during
testing and start with 100 gpmn flush for 1-2 minutes to
clear all solids from the vessel.

TerMS & Conditions Attached
Quote valid for 30 days
Terms: Net 30 days
F.O.B.: DESTINATION
I)eliLry: R WEEKS ARO

NO* i9Ai~rtWV, delivery.
Norcross, GA 30071

770/446-5747
Fax 7701446-0385

2108 Crown View DriveGREG DOUGLAS@8 kO• -%. Suite 245
Charlotte, NC 2 7 Knoxville, TN 37919

7041847-4464 865/588-1012
Fax 704/847-2377 Fax 865/588-1094

Fluid Flow of
Georgia, Inc.

800-849-5947

Fluid Flow of
Carolinas, Inc.

800-222-2229

Fluid Flow of
Tennessee, Inc.

00-27r5-0140

P~OL'UCT5, INC. 
M[ A S;.:':!MENT/CONT~OL 

litTRATlO."l 

Pagl:: II 
I)ale: 9/2.1 III 3 O'J/ 1)/03 
()UO!l' No.: liUU~150J 

Plcas,- address order to; 

FLUID FLOW OF THE CAROLINAS, INC. 

Westinghouse Savannah River Co. 
Alln.: Sam Newton & Ed Seufert 
WS){C 

Aik~l1. SC 29808 
Rd .. TANK RISER FILTERS 

NOTES; 

QUOTATION 

1- Disposable IiIlralion system is not recommended due 
high media viscosity and no way to backwash the 
system 

2· Cmssfiow filtration system is not recommended due 
to much lower flux rate and require a lurger 
recirculation pump. Overall system would be more 
complex. . 

3· Rackwash with water. will have to be optimized during 
testing and start with 100 gpm flush for 1·2 minutes to 
clear all solids from the vessel. 

T enTl~ & Conditions Attached 
QlJllt~ valid for 30 dap 
Terms: Net 30 days 
F.O.B.: DESTINATION 
Deliv.:ry: R WEEKS ARO 

At+~c h V\''\ ~\t '2.. 
~h t of.3 

NO~iB~if9rdf1w,deJivery. 2108 Crown View DrlveGREG DOUGLAS@8~1o¥~~. Suite 245 
Norcross, GA 30071 

770/446-5747 
FIJ>t 7701""6-0386 

Fluid Flow of 
Georgia, Inc. 
BOO'B49-~947 

Charlotte, Ne 2~ . Knoxvllfe, TN 37919 
7041847-4464 8651588·1012 

Fax 7041847-2377 

Fluid Flow of 
,) CarOlinas, Inc. 

B00-222·2229 

FGJt 8651588-1094 

Fluid Flow of 
Tennessee, Inc. 

(J00-2T~14Q 
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Attachment 3: Proposed Filter System Design
(Pumps and Filter in Risers for Tank 41 to Tank 50 Transfer Path via 2H Evaporator.)

1-1/2" Gates "Renegade" •
Internal Hose

Flush Water F

-3" Gates "Renegade" External Hose

Flush Water for
Backwashing Filter

:-1 V 3-Way
Ball Valve;

1 '/2" Ball Valve

1-1/2" Gates --

"Renegade" HoseC-1 Riser

/I
Drain Line I Tank 41

Discharge Lines from
"'Pumps on a Stick" Si

Bz

Fi
"Pump on a Stick";

I Typical 6 Places at
Fai Various tank elevations.

ntered Metal
ack-Washable
Iter

1-1/2" Gates
"Renegade" Hose

"Air Vent

C-3 Riser

LGravity Drain
Line to 2H
Evaporator;
Route to Tank 50

Filter Operation; Flow is
From Outside the tubes to
Inside the Tubes;
76 Nominal %" Tubes;
Filter Area = 70 sq ft.; Flux
Rate = 0.29 gpm/sq ft at
20 gpm flowrate.

9-24-03
Revised: Z Robinson

Backwash Drain

Existing Caissons

Attachment 3: Proposed Filter System Design 
(Pumps and Filter in Risers for Tank 41 to Tank 50 Transfer Path via 2H Evaporator.) 

1-1/2" Gates "Renegade" 
Internal Hose 

Drain Line 

Flush Water for 
Backwashing Filter 

1 %" Ball Valve 

1-1/2" Gates 
C-1 Riser 

Tank 41 

Discharge Lines from 
"'Pumps on a Stick" Sintered Metal 

Back-Washable 
Filter 

"Pump on a Stick"; 
Typical 6 Places at 
Various tank elevations. 

Backwash Drain 

3" Gates "Renegade" External Hose 

1 %" 3-Way 
Ball Valve; 

1-1/2" Gates 
"Renegade" Hose 

C-3 Riser 

Gravity Drain 
Line to 2H 
Evaporator; 
Route to Tank 50 

Filter Operation; Flow is 
. From Outside the tubes to 

Inside the Tubes; 
76 Nominal 3~" Tubes; 
Filter Area = 70 sq ft.; Flux 
Rate = 0.29 gpm/sq ft at 
20 gpm flowrate. 

sting Caissons ----------a 
9-24-03 

Revised: Z Robinson 
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(Executive Summary

This letter report describes the formulation of a simplified model for finding the moisture
Sin a safteake wast profle tat has been s9talized by pumping out the drainable interstitial

liquid Ut mode is based on assuming tamt cqapilaiy maimnly gaverns the distrbution of moisture in
the porous saktcake waste. A steay upward flow of moisture driven by evaporatio frm the waste
surfac is muetaie to occur for isothemal condifions To, obtain hydraulfic pmersfor
um a 2ume conditions, the model is calirated or mated to the relative saration distribtion as
measured by neutron probe scans. The model is demonstrated on Tanks 104-BY and 105-TX as
examples. A value of the model is that it identifies the key physical parameters that control the
sufac moisture content in a waste profile- Moreover, the model can be used to estimat the brine
aratica rae at the waste surfce that would raise the monture content thee to a safe level. Thus,

fte model can be applied to help desigz a strategy for correcting the- moistue conditions in a sabmcke
waste tank.
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1 Introduction

Background

The Savannah River Site (SRS) currently has 51 tanks that contain high- level
radioactive waste created from fuel reprocessing activities. These tanks hold
approximately 30 million gal' of waste that must be converted into more stable
waste forms for long term storage. Each tank contains varying volumes of
sludge, saltcake, and salt solution. In tanks with predominantly saltcake, the
radioneuclide present in the highest concentration is Cesium-137. Because
Cesium's daughter product, Barium-137m, is a strong emitter of gamma radi-
ation, pipelines containing solutions of dissolved saltcake emit high radiation
rates. Such pipelines require heavy shielding, usually several inches of lead or
several feet of soil or concrete, to reduce the radiation rates. Due to the porous
nature of the saltcake, it has been suggested the Cesium-137 could be removed
from the saltcake by displacing the interstitial fluid with uncontaminated water.
If the preferential removal of Cesium with fluid displacement methods is fea-
sible, the material remaining in the tank after Cesium-137 removal could be
transported through pipelines with much less shielding, making its removal, pro-
cessing, and handling much less expensive.

Objective

The purpose of this study was to determine the feasibility of using interstitial
fluid displacement (IFD) methods for preferential Cesium-137 recovery. This
was determined by performing numerical analyses using a three-dimensional
finite element computer model for simulating flow and transport, FEMWATER
(Lin and Richards 1997).2 The finite element mesh that was developed to model
the system was created on the Department of Defense (DoD) Groundwater

A table of factors for converting non-SI units of measurement to SI units is found on page vi.

2 Lin, Hsin-Chi J., and Richards, David R. (1997). "FEMWATER: A three-dimensional finite

element computer model for simulating density dependent flow and transport," Technical Report
CHL-97- 12, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
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Modeling System (GMS). Details on the GMS system can be found in the DoD
GMS reference manual (1996).'

Scope and Approach

The goal of this study was to determine the feasibility of reducing the amount
of Cesium-contaminated interstitial pore fluid in the saltcake media. It was
hoped that by reducing the mass of Cesium-137 in the tank by pumping or
draining the pore fluid, the gamma radiation emitted by the saltcake media could
be lowered to allow transportation of the saltcake in unshielded transfer lines.
Experience at the SRS tank farm shows that pipelines transporting waste with
Cesium contamination levels less than 0.05 Ci/gal generally do not require
shielding. For the purpose of this study, a contamination level of 0.05 Ci/gal
was used as the pipeline shielding limit.

Due to the high levels of contamination in the tanks, substantial constraints
exist in the process by which the removal of Cesium can take place. These
constraints include limited access to the tanks and a restricted pumping location
not central to the saltcake media. These restrictions hinder the recovery process.
Additionally, each tank contains a series of cooling coils, which will interrupt
the flow of fluid toward the pumping location. Further, the physical properties of
the saltcake media are unknown due to the complications associated with
collecting and testing samples from the tank. Therefore, it was necessary to
make assumptions pertaining to the material properties and to run a series of
simulations establishing reasonable limits on the results.

The salt forms around the cooling coils more quickly than in the areas
between coils leading to a nonuniform salt structure. In addition, large volumes
of waste are added to the 'tanks periodically, causing dissolving of the existing
saltcake and crystallization of new saltcake. From viewing photographs of the
inside of the tanks, it was evident that the saltcake around the cooling coils had
different material properties than the material between the coils. It was assumed,
therefore, that the salItcake in the tanks possessed a high level of heterogeneity
which is known to lead to more localized flow paths than those expected in
homogeneous media. Because the success of the Cesium removal depends on
uniform movement of interstitial fluid, variability in saltcake permeability was
considered as important as its mean value. Accordingly, two types of saltcake
media were examined in this study: homogeneous media and heterogeneous
media.

Two different homogeneous media simulations were performed to establish
the sensitivity of the Cesium removal to the permeability of the media. The first
was assigned the best estimate of the media average of permeability, based on a
comparison in size and porosity to sand. The second simulation was assigned a
media average with an optimistically low permeability. Although the perme-
ability of the saltcake material in the tanks was presumed to be lower than the

Department of Defense. (1996). Groundwater Modeling System Reference Manual Vol 2.
Brigham Young University.
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permeability assigned in this simulation, the results form a basis for determining
the sensitivity of the results to variation in permeabilities.

Two heterogeneous media simulations were performed to establish the sen-
sitivity of the system to the degree of heterogeneity. A preliminary simulation
was performed on a simple mesh to determine the effects of the heterogeneous
salt forming process by assigning lower permeability properties around simu-
lated cooling coils. This simulation resulted in discontinuities in the mesh
resulting in numerical difficulties. These results of the preliminary simulation
were found to be very similar to a simulation where material properties were
randomly distributed through the saltcake matrix. In the random distribution,
preferential flow paths were established that were similar to the simulation with
the cooling coils; however, ihe mathematical discontinuities were not observed.
Based on the results of these preliminary simulations, the heterogeneous media
was developed by randomly assigning material properties to the saltcake media.

In the first simulation, the heterogeneous media contained nine materials with
varying permeabilities and that ranged over four orders of magnitude (from 10 a
to 10' cm/sec). These materials were distributed randomly in the model. The
second heterogeneous simulation also had nine materials with varying
permeabilities; however, the, assigned permeabilities were varied over a smaller
range (from 10"2 to 1W• cm/sec).

The simulations with homogeneous media were designed to determine the
"best case" scenario with uniform flow and drainage paths. In addition, these
simulations would establish a baseline for comparison of results of simulations
where heterogeneity was introduced.

The purpose of the heterogeneous simulations was to evaluate the sensitivity
of the Cesium recovery to heterogeneity that is undoubtably caused by the cool-
ing coils. In both types of simulationsi a uniform Cesium concentration was
assumed throughout the tank. Details on the material properties are provided
later in this report.

Summary of Results

In the drained method, Cesium removal was limited by the residual saturation
of the media. In both the drained and pumping methods, removal was limited by
the nonuniform flow paterns that caused a significant amount of the saltcake
media to be by-passed. Both methods were found to be highly susceptible to
heterogeneity because of the increased tendency for flow to become localized,
thus by-passing an even greater volume of media. For both methods, continued
pumping contributed little additional Cesium recovery but produced
considerably more contaminated water.

The draining method removed a larger percentage of Cesium from the system
compared with continuous pumping and recharge. In addition, the volume of
waste produced during the draining removal process was substantially lower than
the volume generated in the pump and recharge case. While the Cesium level in
the tanks was reduced significantly by both methods of removal, concentrations
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were not reduced to the low levels required for transportation without shielding.
This was largely due to zones of little or no flow through the salt media.

The problem of moving the water from dead zones is one of changing the
flow patterns. The pump location cannot be altered without incurring large
operational costs; however, it is possible to insert recharge wells with reasonable
operational costs. Simulations showed that the recharge wells were very
efficient at moving water from the dead zones.

Due to the complexity of the intermittent removal, it is recommended that a
Cesium recovery method be designed based on draining the tank and displacing
Cesium left in dead zones with a controlled flood through recharge wells. Fin-
ally, the tank could be cleaned with a controlled, top-down dissolution and
selective removal of water. This combined method has the advantage of being
least sensitive to media properties and provides the greatest control of the
Cesium recovery.
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2 Development of the Model

Finite Element Mesh

A finite element mesh was designed to represent the saltcake contained
within a Type HIA tank. The mesh consisted of 3,021 nodes and 2,030 elements.
Figure 1 displays the finite element mesh used in this analysis. The volume of a
Type lIlA tank is 1.3 million gal (4,925 in3). The volume of the saltcake media
was assumed to be 4,099 m3 with an interstitial fluid volume of 902 m'
(22 percent). No-flow boundary conditions were established on the walls and
bottom of the mesh, representing the tank walls. For the drain simulations, a
fixed-pressure boundary condition was set at seven nodes located at the bottom
of the mesh, representing an area of zero pressure head. For the pumping
simulations, one node was assigned a source/sink boundary condition with a
constant flow rate and concentration. For all simulations, the initial conditions
consisted of a constant total head, which represented hydrostatic conditions with
the fluid level at the top surface of the saltcake media.

Material Properties

The first series of model siudies was performed assuming the tank was filled
with a completely homogeneous media representing the salt matrix. The poros-
ity of the material was assumed to be 22 percent. Based on this assumption, the
permeability of the material was assumed to be 5 x 10" cm/sec (0.018 m/hr) and
was equal in the x-, y-, and z-directions. The bulk density of the material was
assigned a value of 95 lb/ft3 (1524 kg/m3).

The relationship between moisture content and pressure head in the saltcake
was established using the correlations developed by van Genuchten (1980)' for a
typical sand with a residual saturation of 17 percent. The moisture content curve
is shown in Figure 2. This curve defines the relationship between moisture
content and pressure head in the unsaturated zones created in the media as the
water level is lowered. For the saltcake media, the value of moisture content
ranged between 0.22 for the saturated moisture content and 0.0374 for the
residual moisture content.

van Genuchten, M. T. (1980). "A closed-form equation for predicting the hydraulic
conductivity of unsaturated soil," Soil Sciences Society of America Journal 44, 892-898.
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After the first drain cycle, 29 percent of the Cesium was retained in the tank,
compared with 52 percent in the heterogeneous media with a broader range of
permeabilities. The amount of Cesium remaining in the tank with the lower
range of permeabilities is similar to the homogeneous material with a narrow
range of permeabilities except there is no reduction in the Cesium after the
second drain. The difference in the amount of Cesium retained in the two
heterogeneous simulations is not substantial considering the material properties
were randomly distributed in the media. However, the development of prefer-
ential flow paths is evident in this simulation as no additional Cesium is removed
during the third or fourth drain cycle. This simulation clearly shows that
heterogeneity will have an enormous impact on the amount of Cesium that can
be recovered from the system.

Overview of Drain Simulations

Table 8 shows the results of the drain simulations in the four different salt-
cake media. As expected, after four complete drains, generating 2,450 m3

(646,680 gal) of high-level waste, the lowest contamination levels were seen in
the tanks with homogeneous media. When heterogeneity was introduced to the
system, the development of preferential flow paths was evident as very small
amounts of Cesium were removed after the second drain cycle.

Table 8
Cesium Retained in Tank (Percent Original Mass), Overview of All
Drain Simulations

Heterogeneous Heterogeneous
Homogeneous Homogeneous Permeability, Permeability,Number of Permeability, Permteability, I0V to I0+ or"0 to I0W

Drain Cycles 5 x 10 cm/sac I x 10 Cnjsec cmsesec

11  32 29 52 29

2 17 20 39 l18

3 13.4 18 36 18

4 12.8 17 35 18

During the drain simulations, the highest level of Cesium recovery was found
to be 87.2 percent, after four complete drains of the completely homogeneous
media system. The mass of the Cesium remaining in the tank was 12.8 percent
of the original mass. It is hoped that after the completion of the four drain
cycles, the saltcake can be dissolved and removed from the tanks by mixing the
media at a 2:1 ratio of water to saltcake and the contamination levels will be
below the pipeline shielding limit (0.05 Ci/gal). The volume of the saltcake
media is 4099 m3 ; therefore, the dissolved saltcake and water has the volume of
12,297 m3 . The maximum allowable concentration of Cesium is 0.00015 kg/m3.
To remain below the pipeline shielding limit, the maximum mass of Cesium
contained in the tank after the fourth drain is 1.845 kg. Since the volume in the
tank represents 12.8 percent of the original mass of Cesium, the maximum
original mass of Cesium per tank is 14.41 kg, equivalent to a concentration of

16
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1 Summary

A previous supernatant 1-129 inventory was estimated based on a constant 1-129 concentration in all
waste tanks.' However, a revised estimation method based on analytical data and process history would
project a more reliable supernatant 1-129 inventory. The purpose of this memorandum is to provide the
basis to determine the soluble Curie inventory for 1-129. Using this basis, the projected 1-129 curie
inventory in the supernatant phase is 17.4 Ci.

2 Introduction

Projections of the total inventory of 1-129 in the SRS Tank Farm were reported in CBU-PIT-2005-
00033, Rev. 0.1 These projections were based on theoretical fission yield data and on the assumption
that the 1-129 supernatant phase concentration was constant in all waste tanks. Although there were
clear uncertainties associated with these bases, the projection approach offered a relatively simple means
of estimating total 1-129 based on very limited data.

Since the CBU-PIT-2005-00033 document was issued, additional 1-129 data were identified and a
request for honing in on the supernatant phase 1-129 inventory was received. Available analytical
supernatant 1-129 data are utilized to determine an average 1-129 /Cs- 137 activity ratio for the
supernatant phase. 1-129 supernatant inventories are estimated for each waste tank based on the activity
ratio and knowledge of the supernatant Cs-137 inventories. Because supernatant Cs-137 concentrations
in waste tanks are measured on a regular basis, this projection method is very well suited for estimating
1-129.

3 Inputs andAssumptions

Reference date for WCS information: 2/1/2005
Interstitial supernatant volumes accounted for in total supernatant volume, Ref. 2
Volumes of Tanks 26 and 39, the currently H & F Area-Canyon receipt tanks, were updated through
11/2004, Ref. 3
1-129 Half life = 1.57E+07 yr, Ref. 4
1-129 Specific Activity = 1.77E-04 Ci/g, Ref. 4
The interstitial liquid fraction is assumed to be 0.3
Tank 12H is adjusted to be a wet tank

4 Computational Methods

Analytical data listed in Table I is utilized to estimate the 1- 129 inventory in the supernatant phase. The
supernatant phase includes the free supernatant liquid, interstitial liquid in saltcake, and interstitial liquid
in sludge.
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Table 1: Iodine-129 and Cesium-137 Analytical Concentrations

pCi/mL 1-129 Cs-137

13H* 5.36E+02 3.54E+09
30H* 3.78E+02 2.32E+09

Average 4.57E+02 2.93E+09
Supernatant sample analysis, Ref. 5

4.1 Estimates based on 1-129 reported concentration

Reported 1-129 concentrations of 7.66 pCi/mL (Ref. 6, 100" sample) and 2.15 pCi/mL (Ref. 7, average
of sample 1 and sample 2 results) are utilized for the Tank 24H and 50H supernatant phase inventory
estimates, respectively. The Tank 23H reported 1-129 concentration of <0.658 pCi/mL (Ref. 6, 100"
sample) is applied to this tank and other Type IV tanks (21H, 22H). The 1-129 inventories for these
tanks are estimated by multiplying the analytical concentrations by the appropriate total supernatant
volumes, and data can be found in Table 2.

Table 2:1-129 Inventory in the Supernatant Phase

Tank Total Supernatant Volume (gal) 1-129 (pCi/mL) 1-129 (Ci)

21H 696,261 <6.58E-01 <1.73E-03
22H 819,701 <6.58E-01 <2.04E-03
23H 1,294,029 <6.58E-01 <3.22E-03
24H 1,217,760 7.66E+00 3.53E-02
50H 347,841 2.15E+00 2.83E-03

Total N/A N/A <4.51E-02

1.2 Estimates based on 1-129 to Cs-137 ratio

The 1-129 to Cs- 137 activity ratio is established based on reported concentrations for Tanks 13H and
30H as listed in Table 1. The average analytical activity ratio is 1.57E-07 and is utilized to estimate the
1-129 inventory for each waste tank not already quantified in section 4.1. A previous study established a
bounding ratio of 3.23E-07, based on data of reactor assemblies that H-canyon processes to generate the
HM waste8 . The analytical ratio (1.57E-07) is about 50% of the bounding ratio (3.23E-07), which seems
reasonable when uncertainties surrounding iodine processing losses are taken into account.

Cesium-137 inventory in the supernatant phase is reported in WCS. 2 Projected 1-129 inventory is then
established for each waste tank by multiplying the I-129/Cs-137 activity ratio by the appropriate Cs-137
inventory. Results of the calculations are given in Table 3. Based on the results, the total 1-129
inventory in the supernatant phase is estimated to be 17.4 curies.
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Table 3: Supernatant Phase Cs-137 and 1-129
Tank Reported Cs-137 Projected 1-129

Inventory(CiO) Inventory (Ci)
I 3.33E+06 5.23E-01
2 1.21E+06 1.89E-01
3 1.22E+06 1.92E-01
4 3.52E+06 5.54E-01
5 4.93E+04 7.75E-03
6 9.98E+03 1.57E-03
7 2.40E+05 3.78E-02
8 7.06E+03 1. 11 E-03
9 1.22E+06 1.92E-01
10 8.22E+04 1.29E-02
11 2.61E+03 4.1OE-04
12 4.16E+05 6.54E-02
13 1.18E+07 1.85E+00
14 1.25E+06 1.97E-01
15 NS NS
16 NS NS
17 CLOSED CLOSED
18 1.38E+02 2.16E-05
19 2.12E+02 3.33E-05
20 CLOSED CLOSED
25 1.74E+06 2.74E-01
26 5.59E+06 8.78E-01
27 5.10OE+06 8.02E-01
28 2.22E+06 3.48E-01
29 4.73E+05 7.43E-02
30 1.06E+07 1.67E+00
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5 Conclusion and Recommendation

The supernatant phase 1-129 inventory, not currently tracked in WCS, is established in this document.
Analytical data were utilized to establish an 1-129 to Cs- 137 activity ratio, and this ratio was multiplied
by the reported Cs-137 inventories to yield the estimated 1-129 inventories. Using this approach, the
total projected 1- 129 inventory for the SRS Tank Farm is 17.4 Ci. It is recommended that the results of
this analysis be incorporated into the Waste Characterization System.

To reduce the uncertainty of 1-129 projections in the future, it is recommended that additional
supernatant 1-129 analytical data be obtained.
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SUMMARY

A full scale demonstration of in-tank salt processing was completed
by the Savannah River Plant (SRP) in April 1983. In this test,
427,000 gallons of radioactive salt solution were decontaminated by
a combination of precipitation, adsorption, and filtration. At
each stage of the demonstration, samples of the salt solution and
slurry were processed in the High Level Cells (HLC) and then ana-
lyzed by Analytical Development Division (ADD) of the Savannah
River Laboratory (SRL). The results of these analyses are reported
in this document. It is intended to be a complete listing of ana-
lytical information for future interpretive reports.

INTRODUCTION

Between February and April of 1983, a major achievement in high
level waste processing was accomplished at the Savannah River
Plant. A full scale demonstration of in-tank processing of salt
solution was successfully completed. More than 99.9% of the radio-
activity in 427,000 gallons of high level waste salt solution was
removed by precipitation and adsorption. Salt solution from Tank
24H was transferred to Tank 48B (a new, unused Type IV waste stor-
age tank) for processing. Radioactive cesium was removed by pre-
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TABLE I.A

PHYSICAL PROPERTIES OF THE INITIAL SALT SOLUTION

_ 2 Sample

lAP lAD BP IBD4

1.28 1.30 1.31 1.26+.01 1.

Property

Density

LCV
5

26+.01
(g/ml)

Insoluble Solids 59
(ppm)

Soluble Solids
(wt%)

ill 67

33+1

1 Tank 24H supernate pump sample.

2 Tank 24H dip sample.

3 Tank 24H peristaltic pump sample taken during transfer.

4 Tank 48 dip sample after transfer (cold chemical heel solution
included).

5 Tank 48 dip sample after transfer completed.

6 Insoluble solids not measured due to presence of cold chemical
heel solution.
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An Investigation of Density Driven Salt Dissolution Techniques (U)

1.0 Swuma&

Laboratory experiments were performed to support the salt dissolution demonstration in
Tank 41H. This demonstration is sponsored by the Office of Science and Technology.
The tests were designed to investigate three techniques of density gradient type
dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3)
Continuous Salt Mining. Removal of saltcake left attached to equipment after the
solution was removed (i.e., perched saltcake) with a water jet was also simulated. The
desire was to improve upon past salt dissolution operations and develop a safe, efficient
and cost effective means for future operations. The experiments were performed on
simulated Tank 41H saltcake that was formed in a three foot long rectangular trough.

The primary safety issue is whether or not the dissolved salt solutions that are produced
will cause significant corrosion degradation of the tank walls or cooling coils. The-.,
parameter investigated during the tests to answer this question was the concentration of
corrosion inhibitors in the dissolution water added to the simulated saltcake. It was
observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions
that were within the current corrosion technical standards for fresh waste storage. This
result was independent of the density gradient technique. However, if inhibited water
(0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions
were frequently outside the technical standards. In the early stages of dissolution, the
interstitial liquid which has high concentrations of corrosion inhibitors maintained the salt
solution within corrosion standards. The Drain-Add-Sit-Remove technique was the most
effective means for maintaining the interstitial liquid. Interstitial liquid entrapped by the
surface tension between crystals, mixes with the salt solution as it flows through the
saltcake matrix. The other two techniques, modified density gradient and continuous salt
mining tend to displace the interstitial liquid. However, even with the Drain-Add-Sit-
Remove technique as more salt was dissolved, the chemistry of the resulting salt
solutions became outside the corrosion technical standards.

The corrosion technical standards are being evaluated for their application to waste
removal. The current standards apply primarily to storage of fresh waste. The
temperatures during waste removal are expected to be much lower than the maximum
temperatures allowed during waste storage. The saturated salt solutions which form
during waste removal have very high nitrate concentrations (> 4 M) and usually have a
very high pH (12-13). Stress corrosion cracking may be a concern at these chemistries
and at high temperatures (> 75 °C). Pitting is usually a concern in dilute solutions (nitrate
concentrations < IM) and at lower pH (9.5-10).

The lower temperatures may require less corrosion inhibitors to prevent stress corrosion
cracking. Corrosion tests are in progress to investigate the potential for stress corrosion
cracking in salt solutions similar to those removed during tests with inhibited water as the
dissolution water. Therefore these solutions will have lower levels of corrosion inhibitors
than are specified in the corrosion technical standards. If these tests show that carbon
steel is, not susceptible to corrosion damage, recommendations for a corrosion technical
standard applicable to waste removal will be made.

A comparison between the three dissolution techniques and several key observations of
the dissolution process that impact the efficiency and cost of operations are summarized
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in Table 1. The primary parameters investigated during the tests to address these issues
were the dissolution water addition rates, the salt solution removal rates, and the depth at
which the outlet line was located. Salt dissolution was observed to be a very rapid
process as salt solutions with densities between 1.38-1.4 were frequently removed. Given
the fast dissolution rate, the techniques needed to be performed in a manner that ensured
good contact between the unsaturated salt solution and the saltcake (i.e., no channeling or
short-circuiting). Slower addition and removal rates and locating the outlet line at deeper
levels below the top of the saltcake provided better contact between the dissolution water
and the saltcake. Near the bottom of the trough, salt solutions with lower densities were
removed (1.15-1.25). It is likely that the removal rate was too fast, given the shallow
depth of the outlet line, to provide adequate contact time between the dissolution water
and the salitcake. Slower removal rates than those tested are recommended in order to
achieve a higher salt solution strength for salt near the bottom of a tank.

2.0 Introduction

Radioactive waste is stored in 44 carbon steel tanks at the Savannah River Site. To
economize on waste tank space, evaporators are utilized to reduce the volume of waste.
After the hot waste is returned from the evaporator to the waste tank, soluble salts .;
precipitate as the waste cools. The mixture of soluble salts, insoluble metal oxides, and
soluble fission products and insoluble fissile material is commonly referred to as saltcake.
Twenty of the waste tanks are currently utilized for salt storage.

The In-Tank Precipitation (ITP) process precipitates the soluble fission products in order
to prepare feed for the Defense Waste Processing Facility. The feed for ITP is the
saltcake and its interstitial liquid. The saltcake must be dissolved in order to provide the
feed. SRS is currently evaluating safe, efficient and cost effective means for salt
dissolution and waste removal. Given the schedule for waste processing, the rate at
which the saltcake is removed is not a determining factor.

As part of this evaluation, the Office of Science and Technology (OST) is sponsoring a
demonstration of salt removal from Tank 41H. The salt dissolution techniques which
will be demonstrated are: (i) single slurry pump method, (ii) modified density gradient
method, and (iii) a yet to be determined technique for removal of insoluble solids.

Removal of saltcake was performed in Type IV tanks and Tank 10H, a Type I tank,
during the late 1970's and early 1980's. The techniques utilized then were steam jet
circulation, density gradient and slurry pump agitation [1]. This demonstration is
designed to test improvements to these processes. For example one of the concerns from
the earlier salt removal operations was non-homogeneous vertical saltcake dissolution
resulting in mounds of inaccessible salt at the edges of the tank [2]. It is desirable to
develop a method in which the saltcake profile remained horizontal. Another problem
that occurred was perched saltcake [3]. This phenomenon occured when the liquid did
not completely cover the salt. An upper crust of saltcake dries and remained clinging to
the cooling coils, while the salt below continued to dissolve. To dissolve a crust similar
to this in Tank 10H, the tank was refilled with additional dissolution water.

One of the primary concerns during salt removal is that the salt solutions produced are
potentially corrosive [4]. The soluble salts which precipitated have a high concentration
of nitrate anion (an aggressive corrosion species) and relatively low concentrations of
hydroxide and nitrite anions (corrosion inhibitor species). Therefore, corrosion inhibitors
must be added to the dissolution water to ensure that the salt solutions produced are not
corrosive towards the tank walls or cooling coils. The options being considered are
inhibiting the dissolution water so that the sodium hydroxide concentration is between
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inhibiting the dissolution water so that the sodium hydroxide concentration is between 
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BACKGROUND

Introduction

The only previous salt dissolution in the plant was done in Tank 22. The
best results from Tank 22 dissolution became the basis for the Phase I waste
removal program. Because of problems (extra funding uncertainty and waste
tank temnperatuTe elevation) with the steam agitation jet-method proposed for
Phase I, the Waste Management group of SRL was asked by Separations Technology
to investigate alternate concepts.

Phase I Method as Proposed by the Engineering Department

Tank 22 experiments revealed that mining a steam agitation jet into the salt cake
-using small liquid batches gave the best dissolution with a rate during
circulation of about 0.01 ft/hr..-. For Phase I, two steam agitation jets in each
tank are to be mined into the salt'cake to a depth of about 8 feet initially.
Approximately 90,000 gallons of water and steam will be added to each batch,
and each jet will circulate the liquid at 75 gpm until four volume turnovers
or less are completed. The objective is to dissolve 30,000 gallons of salt
cake. After a cool-down period, a transfer jet, already installed in the tank,
will be used to remove the concentrated supernate to the evaporator feed tank.

SIMULATED SALT CAKE EXPERIMIENTS

Preparation of Salt Cake

Salt cake was prepared by mixing chemicals together in a beaker to form a
concentrated synthetic waste of composition given below. The solution temperature
was raised to the boiling point and the mixture boiled until about 20% of the
original volume evaporated. The solution was then cooled slowly to room
temprature, resulting in the nitrate, nitrite, and aluminate salts crytallizing
to form a solid salt, cake.

Component Molar Concentration

NO3- 3.0

NO 2  2.9

OH 9.0

CO• 0.1

Na 11.6

Al 1.0

Cl1 0.05

SO44 0.01

';',i . Q .... ' .... 
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The only previotls salt dissolution in the plant ... las done in Tank 22. The 
best results from Tank 22 dissolution became the basis for the Phase I \.,raste 
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Mechnnismns Affecting lissolut ion Pate in Waste Tanks

Previopus work with simmlated salt cake suggesýted issolution Tates iin the range7
of 0,1 to 6 ft/hr. R-siults of Tank 22 salt dissolution showed clearly that
the salt dissolution rate was much higher for salt cake in2a vertical plane
than for salt cake in a horizontal plane. 13ench.-scale salt dissolution tests
wore conducted in a 6-ipch diameter beaker to deter.nnine separate salt dissolution
rites for horizontal and vertical silt surfaces, Figure 1 and 2 show the
Oxperimental set up, In. Figure 1, salt wa5s cry~stalized in the bottom of the beaker.
In Figure 2, an ja.1)qu!r ring of salt. was formed on the beaker wall. For the

xpepriment shown in Figure 1, tap water was added as batch. After a 20-30
minu.te lag time for initial dissolution, supernatýe was continuously pumped
fr•m the beaker until dry, Then another b-atch 1of water was addeda nd the cycle
ropgtped, In Figure 2, tap water was added as a batch just filling the center
ofthe 5salt anpnulus, Water was then continuous!y added and supernate continuously
riA•oved from the bottom at the same -rate a§ the §alt cake dissolved.

DCea4o di§0olution in the was tanks using the 5team agitation jet will be at
Clovated tgmperature (80-909C)7 a dissolution experiment was performed in a
6=inch diam-eter beaker with hot tap water (Figure 3). In Figure 3, a vertical
hole was. m.agdo in the .alt cake for 5upernate removal. Water and supernate were
continupusly added and'removed, re•pectively, The dissolution rate was increasedabout 17% with the 200C incra in temperature. Water vapor lo~ses from the

gla§s ve§sel at 409C were considered large enough 5o as to preclude meaningful
§alt di•solution experiments at a higher temperature with the open system.

The 14st mehanism to be investigated was mechanical agitation. In a 6-inch
diameter b er, all the tap water wa.s added a5 a batch and the liquid was
agitated with a labortitory 5tirrter (Figure 4). The stirrer wa- a 2-blade propeller,
2 inehes in diameter. The supernate waf monitored for specific gravity, and
agitation was tqerminatod •'hen a specific gravity of 1.3 was reached.

Donsity Driven Concept

The density driven concept involvev mining a vertical well into the salt cake
like that preposed for the 5team agitation jet method. Higher density supernate
flow. into the well by the force of gravity and is removed by pumping or jetting
from the bottom of the well. In Tank 22, a 'mined well proved to be the significant--,
factor in reaching an acceptable dissolution rate in the horizontal plane. With .
a • t•.vm agitation jet, dissolution rates in Tank 22 without the vertical wcll wet K
'0,05 to 0.006 ft/hr compared to 0,013 ft/hr with the well. With the density
driven concept, water may he continuously added while the concentrated supcrntetc
fronm thie bottom of the well may be continuously removed, The concept utilizes P-
primarily equipment already installed in waste tanks. Since steam is not
required for the donslty driven concept, long cool down pcriods** and additional
ventilation sybtomn roquirements for salt di:;solution arc eliminated.

Reiult5 of a comparative tent of the density driven concept with simulation of the
circulation pattern of a 9teom agitation jet are givc.n in Table 1. For the test,
balt cake was formed In 12" nominal dimneter jar to a depth of 3" (Figure 5).
A roll-flox tubing pump was used to remove or circulate the liquid. To create
a well, a hole was jetted into the salt cake with water using a stainless stcel
rod attached to the pump tubing. Operating and structural conditions were scaled
in proportion to a full si:e waste tank as much as possible. For the circulation

. PP-135S, C. B. Goodlett, Concentration of Radioactive Wastes
totaling up to 10 month -fi-iiW- -or-TyptFld--2T'i •tut-nk-for Type IV

MG~h:lnisfilS Affecting Dissolution Rate in Waste Tanks 
... --- -, -.--" 

--...------~ ---.-- .. - ._._.-
'/ 
J, 

~T~Y.iolJS work ~j th .s,imlJJ;lted ;;aJ,L, '. ;lkc ,~Ueg~ste~ dis,.so.~u.tion r,atcs in ~hc ranze} 'r~" 
c! O. J to 6 ftl/n'. R~;5UHs of rank 2t- ;5;lH. d}..;5;Solut}..on ,sho\\'cd clcany tha't ( 
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'l1w 11H,t m~~hllni~!l\ to b~ inv(l~tif!ated Wil~ mechanical agi tat ion. In a 6-inch 
diwmet~r b~&~~1'. nll the tap wnter wo~ ~dded O~ a batch and the liquid was 
flgHtlt~d with 11 laborotQ1-', Hi rr~r (Figure Ii). The 5t irrel' was a 2-blade propeller.', 
2 in~n~~ ~,n diWl~t:e1', The supernate WU5 monitored for specific gravity, and 
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Th~ den~ity dl"l.vtln concl;'pt involvelil mining 11 vertical well into the salt cake 
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jet concept, dischare of the pump circulation with the withdrawal point was
proportioned relative to that of a steam agitation jet planned for Phase I.
As a ternminating point in the dissolution, a specific gravity target 'of 1.3
was selected. The specific gravity of 1.3 was the best achievable in Tank 22
at a satisfactory dissolution rate in the horizontal plane. The dissolution
rates achieved indicate the circulation jet has no advantage over density
driven flow at room temperature. If the circulation jet dissolution rate was
adjusted for the temperature elevation expected in salt tank from the steam
agitation jets, a dissolution rate of 0.015 would be anticipated. The change
in the rate is calculated based on the previous temperature effect work.. (see
"Mechanism Affecting Dissolution Rate in Waste Tanks") and salt solubility data.

Mechanical Agitation

Table I also includescomparative tests with mechanical agitation. For these
tests, three laboratory stirrers were placed in the 12" nominal diameter jar
at scaled positions of Type IV tank risers (Figure 5). The 2-blade impellers
were positioned at 1/4" to 1/2"'above the initial surface of the salt cake.
Blade diameter (1") were scaled in proportion to 1/12 scale model that was
tested at the Engineering Test Center.

Specific gravity was used to monitor the agitation time. Tests were run with
the agitation terminated at 1.3 and 1.4 specific gravity. Results tabulated
in Table I show that at 1.3 s.g., the dissolution rate was about 4 times higher
than the dissolution rate for the density driven method. By extending the
agitation period to get 1.4 s.g., the rate was reduced to about 2 times the
density driven method, but in addition the water requirements were cut in half.

CONCLUSIONS AND RECO\1ENDATIONS

Dissolution rate with the density driven concept is about the same as withl a
steam agitation jet. Due to the advantages of the density driven concept over tho

7 steam agitation jet method, the density driven concept should be tested in a waste
tank at the beginning of the Phase I waste removal program.

Mechanical agitation has shown considerable promise in both increasing the
dissolution rate and reducing water consumption. In addition' vigorous agitation
in a salt tank may be required to remove sludge which may settle out of the salt
and blanket the salt surface, thus significantly reducing the dissolution rate.
It is recommended that testing the mechanical agitation concept be included as
part of Phase I salt removal. A test could be conducted with a spare Tank 16
Bingham pump suspended above a salt heel in a Type IV salt tank.

aa
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TABLE 1

RESULTS OF THREE DIFFERENT SALT 1)ISSOLUTI]ON CONCEPTS

Cake Dissolution Rate
(ft/hr)

Supernate Removed
sp.gr. Target (+0.01)

Supernate Removal Rate
(ml/min)

Water Added to Salt Cake
Dissolved Ratio
(gram: gram)

DensitY
Driven

0.0100

1.30

11*

1.1

Circulation

Jet

Mechanical
Agitation

Mechanical
Ag:i tation

0.01]

1.30

0.042

.1.30

0.019

1.40

35**

1.2 1.1 0.6

* Continuous, equivalent to 23 gpm on an 8S-foot diar.-eter waste tank.
** Recirculated, equivalent to 75 gpm on an 85-foot diameter waste tank.
* Pumped at termination as a batch.
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Figure 1: H1ORIZONT'AL, PLANE DISSOLUTION
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Figure 2: VERTICAL PLANE DISSOLUTION
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Figure 5: WASTE TANK SALT DISSOLUTION CONCEPTS
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SUMMARY

Proposed treatment processes for High Level Waste at Hanford
and Oak Ridge National Laboratory (ORNL) include pretreatment
to separate insoluble solids from the aqueous waste,.
Crossflow filtration, dead-end filtration, and settling are
methods applicable to these separations. Testing is needed
for selection of the appropriate technique for each
application. Crossflow filtratiop is most applicable to the
ORNL Radiochemical Engineering Development Center (REDC)
waste and the ORNL Newly Generated Low Level Liquid Waste
(NGLLLW) treatment. In addition, the Hanford Tank Waste
Remediation System (TWRS), ORNL Melton Valley Storage Tank
(MVST) TRU Processing Facility, and the ORNL Gunite Tank
program may require crossflow filtration. Backflushable
cartridge filters are probably the best treatment method for
the MVST supernate cesium removal program and part of the
NGLLLW treatment process. Some of the streams require a
combination of methods, such as a coarse settling and a
polishing filtration stage.

Solid/liquid separation work conducted at the Savannah River
Site (SRS), ORNL, Hanford, and West Valley is summarized and
the applicability'to current needs discussed. General
information about crossflow filtration and design of
filtration experiments is also included.
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DAS w/F&B process requires the following steps:

1. Create a well in the saltcake to the bottom of the tank.
2. Place pump suction at or near the bottom of the well.
3. Remove the free liquid above the saltcake.
4. Drain the interstitial liquid from the saltcake to the mi imum extent practical.
5. Refill the pores by adding water/inhibited water in location opposite the well until

liquid level reaches the top of saltcake.
6. Add enough liquid over the saltcake to creat in layer of liquid, what ever depth is

practical, but thinner is better.
7. Simultaneously add water and remove i solved salt solution.
8. Adjust the water addition rate and di olved salt solution removal rate such that liquid

level remains at the same level ab e the saltcake, and that the highest saturation levels
are maintained.

9. Stop water addition when de s ed saltcake is dissolved.
10. Drain free liquid.

The continuous feed and re val creates flow over the surface of the saltcake without increasing
the surface area contacted y the dissolution water beyond the top of the saltcake. The pump out
rate is maintained low ough so that most of the liquid flow into the well is primarily from flow
through the saltcake. /Accounting for some variability in actual volume production, the DAS
with F&B process ould readily achieve about 30 to 50 gpm pump out rate. Hydraulic flow
calculations wo d provide a more detailed estimation of flow through the saltcake.5

This proc s limits the interaction between the undrained layer of interstitial liquid and the
created alt solution by directing the majority of the flow across the top or through the upper
layer f the saltcake. If the liquid is allowed to sit in the tank an extended period of time, greater
than two weeks, the risk of the high activity interstitial liquid mixing with the lower activity salt

/o/lution becomes higher.

2.4 Tank 25 Saltcake Deliquification Simulation Summary

Savannah River National Laboratory (SRNL) created a deliquification simulation of the Tank 25
saltcake deliquification operation. The physical properties of the saltcake were assumed the
same as those found for Tank 41. The liquid properties were estimated based on current
supernate composition data. In addition to the nominal case of the best-estimated property
values, a few select cases were simulated that represent known variability in the properties. Five
properties were varied, but the cases selected represent the largest expected change to the results
rather than run all 243 possible variations. These case runs provide an indication of what could
reasonably be expected from, variability already known to exist. Table 5 shows what each case
run represents relative to the nominal base case. Table 6 shows the actual values used in each
case.7
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Table 5: Available Drain Simulation Runs

Case Temperatur Intrinsic Porosity Well Liquid
Run e Permeabilit Height Retention

y

1 Nominal Nominal Nominal Nominal Nominal

2 Low Nominal Nominal Nominal Nominal

3 High Nominal Nominal Nominal Nominal

4 Low Low Nominal High Nominal

5 High High Nominal Low Nominal

6 Low Nominal Low Nominal Low

7 High Nominal High Nominal High

8 Low Nominal Low Nominal High

9 1 High Nominal High Nominal Low
* Additional runs created for this summary.

Table 6 Drain Simulation Conditions for each Case

Case Temperature Intrinsic Porosity Well Liquid
(0C) Permeability Height Retention

(Mi) (ft) Curve

1 50 3.51x10"- 0.30 2 Sandy Loam
(nominal)

2 30 3.51x10"- 0.30 2 Sandy Loam

3 60 3.51x10"- 0.30 2 Sandy Loam

4 30 2.5x101" 0.30 5 Sandy Loam

5 60 5.0x10" 0.30 1 Sandy Loam

6 30 3.51x10t1  0.25 2 Loamy Sand

7 60 3.51x10l" 0.40 2 Loam

8" 30 3.51x101" 0.25 2 Loam

9 60 3.51x10l" 0.40 2 Loamy Sand

* Additional runs created for this summary.

The simulations were run such that the well pump operated continuously until approximately 1
gpm interstitial drain rate is reached. The well pump was cycled to continue draining until a
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minimum volume is drained. The simulation results show a wide range of times to reach Ithis
volume depending on how the drain properties vary relative to the nominal properties and,
possibly, never reach the desired volume. Alternatively, draining can continue until reaching a
hydraulically equivalent endpoint, i.e., equivalent hydraulic pressure. Hydraulically equivalent
endpoint occurs at equivalent interstitial flow rates. The completed simulations provide data to
readily compare an end point of 1 gpm.

Figure 3 and Figure 4 provide some structure of the relationship between each possible variation
and the choice of case runs. These figures also show the key results of each case. The cases
were split into two groups that varied three parameters in order to simplify interpretation. The
cube represents the three parameters varied between each set of cases. The axis for each
dimension of the cube represents the range of variation expected or known for each parameter.
The orientation of the range of values, i.e., high to low, was arranged such that the bottom front
left corner represents the least aggressive, least favorable property combination. This
combination would be expected. to be the least well drained, the slowest rate, and, perhaps, the
least volume drained. The upper back right comner represents the most aggressive, most
favorable property combination.

The results depicted in Figure 3 and Figure 4 show comparable hydraulically equivalent
endpoints, i.e., equivalent hydraulic pressure. The results depicted in the figures were pulled
from the case runs when approximately 1 gpm. interstitial liquid flow rate is achieved.
Continuing to drain in any case will produce a better-drained saltcake, but this part of the drain
curve also represents the least productive portion of the operation. Considering that the best
process outcome is the lowest amount of residual liquid, not necessarily the most removed
liquid, the figures show both values along with estimated time to reach the end state..

Figure 3 shows that the time to reach the end state changes relatively little compared to the
dramatic variation in drained and residual volumes. Two of the three axis parameters, well
height and temperature, can be controlled to some degree by the design of the operation. The
variation in intrinsic permeability results in the most variation. Notice that the case with the
least residual will take longer and produce more drained liquid volume even though the same
stopping point is achieved.

Figure 4 shows the variation caused by properties that change the initial liquid volume and
volume of retained residual. The cases I - 7 were chosen as most physically likely. The analyst
considered the combination represented by case 8 and 9 as unlikely combinations that could not
readily exist. Cases 8 and 9 were run to make this summary more. complete. This figure shows
that there is considerab 'ly more variability inherent in saltcake physical properties than in
controlled properties.
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SUMMARY

The author conducted a review of solid-liquid separation technologies as possible replacements
for the MOTT crossflow filters in the crystalline silicotitanate (CST) ion exchange and solvent
extraction flowsheets. The review used the Tanks Focus Area (TFA) funded solid-liquid
separation study conducted in 1995 reviewing the technical literature as a starting point. The
review also included discussions with vendors, as well as soliciting guidance from researchers at
the Savannah River Technology Center (SRTC) and within the DOE complex who possess
extensive experience in solid-liquid separation. Finally, the author coordinated a workshop with
representatives from SRTC, Savannah River Site (SRS) High Level Waste, SRS Solid Waste,
and the academic community on the specific application of interest.

Based on the findings, SRTC recommends the following work to evaluate alternative solid-liquid
separation processes for removing sludge and MST from high level waste salt solution.
* Focus on identifying flocculants and additives that will improve the performance of the

crossflow filters.
" Investigate settling and decanting followed by polishing filtration (both crossflow and dead-

end). This testing needs to use a large volume of continuous fresh feed.. It should also
examine improvements that could be achieved by the addition of flocculants and additives.

* If flocculation with crossflow filtration proves ineffective, investigate high shear filtration
(using a centrifugal filter or VSEP filter).

" If flocculation and crossflow filtration proves ineffective, investigate flocculation in
combination with centrifugation.

INTRODUCTION

The Salt Disposition Systems Engineering Team selected three cesium removal technologies for
further development to replace the In Tank Precipitation (ITP) process: small tank tetraphenyl-
borate (TPB) precipitation, crystalline silicotitanate (CST) ion exchange, and caustic solvent
extraction.

As a pretreatment step for the CST and solvent extraction flowsheets, the incoming salt solution
that contains entrained sludge is contacted with monosodium titanate (MST) to adsorb strontium
and plutonium. The resulting slurry is filtered to remove the sludge and MST. The filtrate is
either contacted with CST in an ion exchange column or processed through a solvent extraction
system to remove cesium.

The high level waste salt solution that feeds this process is approximately 5.6 M sodium and
contains small levels of insoluble sludge (up to 600 mg/L). 1 The sludge particles are
micron/submicron sized. The mean particle size in a sludge sample from Tank 41 H was 15 It.
The mean particle size in samples of simulated sludge have varied from 3 - 14 gt. The MST
concentration in the filter feed will be - 0.55 g/L and its mean particle size is - 10 gt. The
specification for MST is < 1% less than 1 .t and < 1% greater than 35 A.

2 The expected viscosity
of the supernate is 2.3 - 2.7 cp. at 30' C. 3 The goal of this solid-liquid separation is to remove
insoluble solids from the waste stream in order to meet the Z-area waste acceptance criteria for
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SUMMARY 
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alpha contamination, to prevent the. insoluble solids from plugging the ion exchange columns,
and to prevent insoluble particles from reducing the solvent extraction process efficiency.

Testing performed by SRTC and the University of South Carolina showed the filtration rates
were less than desired for simulated salt solution containing various concentrations of MST and
sludge solids (0.02 - 0.08 gpmn/ft2 versus a target of 0.25 gpM/ft 2).4' 5' 6 To achieve the desired
production rates, the current design has a 3000 ft2 crossflow filter and a 5000 gpm filter feed
pump. The large filter and pump needed for the process will significantly increase the size of the
shielded cell needed.

HLW-PE requested SRTC to investigate methods to improve the separation of sludge and MST
solids from high level waste salt solution. 7 This work includes investigating flocculants and
additives, changing filter operating parameters, and investigating alternate solid-liquid separation
technologies. This report describes the evaluation of alternate solid -liquid separation
technologies.. The other tasks will be described in separate reports.

SRTC conducted a meeting on June 29, 2000 with Professor Baki Yarar (Colorado School of
Mines), Professor Vince Van Brunt (University of South Carolina), and representatives from the
SRS High Level Waste Division, the SRS Solid Waste Division, and SRTC to discuss alternative
solid-liquid separation technologies to replace for the Mott crossflow filters which are used in the
current design bases for the ion exchange and solvent extraction flowsheets. 8

The recommendations from the meeting were the following:
" One should not filter without prior settling and decanting.
" Without flocculation, solid-liquid separation options are limited.
" The filtration rate can be improved by making the solid particles hydrophobic.
* If these recommendations are followed, other solid-liquid separation technologies are viable.
" If these recommendations are not followed, solid-liquid separation is limited to membrane

filtration.

The remainder of this report discusses alternative solid-liquid separation technologies that could
be employed to separate MST and sludge from SRS high level waste salt solution. The
technologies are grouped into the following categories:
* Crossflow filtration
* Dead-end filtration
" Gravity settling
* Centrifugal methods
* Other methods

APPROACH

The evaluation was conducted in the following manner: Previous SRTC studies of solid-liquid
separation processes were reviewed. The author conducted a literature search, and contacted
vendors and colleagues at DOE sites to identify plausible solid-liquid separation processes.

3 WSRC-TR-2000-00288 

alpha contamination, to prevent the. insoluble solids from plugging the ion exchange columns, 
and to prevent insoluble particles from reducing the solvent extraction process efficiency. 

Testing performed by SRTC and the University of South Carolina showed the filtration rates 
were less than desired for simulated salt solution containing various concentrations of MST and 
sludge solids (0.02 - 0.08 gpmlft2 versus a target of 0.25 gpmlft2).4,5,6 To achieve the desired 
production rates, the current design has a 3000 ft2 crcissflow filter and a 5000 gpm filter feed 
pump. The large filter and pump needed for the process will significantly increase the size of the 
shielded cell needed. i 

HL W -PE requested SR TC to investigate methods to improve the separation of sludge and MS T 
solids from high level waste salt solution. 7 This work includes investigating flocculants and 

. additives, changing filter operating· parameters, and investigating alternate solid-liquid separation 
technologies. This report describes the evaluation of alternate solid -liquid separation 
technologies .. The other tasks will be described in separate reports. 

SRTC conducted a meeting on June 29, 2000 with Professor Baki Yarar (Colorado School of 
. Mines), Professor Vince Van Brunt (University of Smith Carolina), and representatives from the 

SRS High Level Waste Division, the SRS Solid Waste Division, and SRTC to discuss alternative 
solid-liquid separation technologies to replace for the Mott crossflow filters which are used in the 
current design bases for the ion exchange and solvent extraction flowsheets. 8 

The recommendations from the meeting were the following: 
• One should not filter without prior settling and decanting. 
• Without flocculation, solid-liquid separation options are limited. 
• The filtration rate can be improved by making the solid particles hydrophobic. 
• If these recommendations are followed, other solid-liquid separation technologies are viable. 
• If these recommendations are not followed, solid-liquid separation is limited to membrane 

filtration. 

The remainder of this report discusses alternative solid-liquid separation technologies that could 
be employed to separate MST and sludge from SRS high level waste salt solution. The 
technologies are grouped into the following categories: 
• Crossflow filtration 
• Dead-end filtration 
• Gravity settling 
• Centrifugal methods 
• Other methods 

APPROACH 

The evaluation was conducted in the follo~ing manner: Previous SRTC studies of solid-liquid 
separation processes were reviewed. The author conducted a literature search, and contacted 
vendors and colleagues at DOE sites to identify plausible solid-liquid separation processes. 



4 WSRC-TR-2000-00288

The Tanks Focus Area (TFA) funded an investigation of solid-liquid separation technologies to
recommend the ones that would be most applicable to separating solids from DOE Site high
level waste streams. 9 The study found that although many solid-liquid separation techniques are
available (i.e., centrifuges, settling, dead-end filters, depth filters, etc.), crossflow filtration has a
number of advantages over these technologies for use in solid-liquid separations in DOE Site
waste:
" Crossflow filters have minimal maintenance requirements compared with centrifuges.
* Crossflow filters generally do not require additives that increase waste volume and change

process chemistry. Dead-end filters and depth filters generally require additives.
" Crossflow filters can rapidly concentrate slurries to high insoluble solids levels. Settling and

clarification typically require long times.
* Crossflow filters can be employed for continuous washing of slurries.
* Crossflow filtration space requirements are typically less than other solid-liquid separation

technologies.

The study reviewed a number of solid-liquid separation tests conducted by the DOE complex
with simulated and actual DOE site waste. The results from those studies will be discussed later.

DISCUSSION

During the review and literature search, SRTC identified the following potential alternatives to
the 0.5 gt Mott crossflow filter for removing insoluble solids from SRS high level waste:

* Other crossflow filters
- Smaller pore size Mott filters
- Graver filter
- Centrifugal filter
- Vibratory Shear Enhanced Processing (VSEP) Filter
- Vacco filter

* Dead-end filtration
* Settling and decanting

- No polishing step
- Dead-end filtration polishing step
- Crossflow filtration polishing step

* Centrifugal methods
* Other solid-liquid separation technologies

- Magnetic filter

Crossflow Filtration

Filters separate solids from liquid with a semi-permeable barrier. The barrier contains pores
which allow liquids and dissolved solids to pass, but which, block insoluble solids that are larger
than the pore. As the filter rejects particles, they can accumulate on the surface forming a filter
cake. The filter cake provides an additional layer that can remove insoluble particles and
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increases the removal efficiency of the filter. The filter cakealso increases the resistance of the
filter. The filter flux can be described by equation [1]

J = AP/Rf [1]

where J is flux, AP is the pressure differential or driving force, and Rf is the filter resistance.
With a filter cake, the flux is described by equation [2]

J = AP/(Rf + Rc) [2]

where Rc is the filter cake resistance. The filter cake can be removed and the cake resistance
reduced by periodic backpulsing. 10 If the filter cake thickness can be reduced, the filter flux will
increase. The shear generated by crossflow filtration sweeps particles away from the filter,
reduces the cake thickness, and increases filter flux.

Fine particles that are smaller than the pore opening can become trapped in the filter pores.
These particles would decrease the porosity of the filter and filter flux. Pore fouling is generally
not alleviated by backpulsing. Filter flux can be increased by reducing the number of particles
that become trapped in the filter pores.

Smaller Pore Size Mott Filter

In addition to the 0.5 g porous metal, crossflow filter, Mott manufactures 0.1 g and 0.2 p. porous
metal, crossflow filters. By having a smaller pore size filter, small particles are less likely to
become trapped within the filter pores. If filter fouling by particles becoming trapped within the
filter pores could be reduced, the overall filter flux might be increased. Charles Nash, a
researcher associated with the River Protection Program research effort for treating Hanford
waste, indicates that a 0.1 p. Mott porous metal crossflow filter is the baseline solid-liquid
separation technology for BNFL's program to treat high level waste at the DOE's Hanford Site.

The smaller pore size would increase the membrane resistance and could reduce filter flux. The
effect of pore size on filter flux can be modeled with a modified Hagen Poiseuille equation

J -dAP [3]

32ptl

where J is filter flux, E is porosity, d is pore diameter, AP is differential pressure, p. is viscosity,
and I is pore length.' 0 If all solid particles are stopped by the filter, filter flux should decrease
with pore size.

SRTC tested 0.2, 0.5, and 2.0 g porous metal Mott filters for the ITP process. The 0.5 g filter
gave adequate decontamination and had a higher flux than the 0.2 g filter. 9 However, the ITP
feed is different from the feed for this process in that it contains tetraphenylborate solids known
to improve filter performance relative to that observed for slurries of sludge and MST. Previous
filter testing for the SRS Effluent Treatment Facility found 100,000 nominal molecular weight
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cutoff (NMWC) ultrafilters (- 0.05 gi) performed better than 0.2 gi ceramic microfilters."1 That
feed was different from the feed in this process (50 mg/L insoluble solids, 1500 mg/L dissolved
solids). If the pore fouling can be reduced, the smaller pore size Mott filter may still produce
high filter flow rates. Based on previous SRTC testing of a 0.1 gi Graver filter that is discussed
below, no testing of the 0.1 g Mott filter is recommended.

Graver Filter

The Graver Separation Systems produces a combination ceramic/stainless-steel filter. The
ceramic is composed of titania and is bonded to the stainless-steel substrate by sintering. A pore
size of 0.1 It is available. The filter has a very fine pore at the filter surface to block small
particles, but has a more open structure within the filter to reduce its resistance. The smaller
pore size will reduce pore fouling. The more open structure will reduce filter resistance and the
decrease in filter flux from the smaller pores at the surface. Since some forms of titania extract
strontium and actinides from alkaline solutions, this phenomenon would need to be evaluated
before placing the filters in radioactive service.

SRTC tested the 0.1 t Graver filter and the 0.5 g. Mott filter with Hanford and Oak Ridge
simulated sludge.9"12"1 3  The mean particle size was 1.9 - 6.5 gt. With the Mott filter, the axial
velocity varied from 2 - 12 ft/sec, and the transmembrane pressure varied from 5- 45 psi. With
the Graver filter, the axial velocity varied from 2 - 9 ft/sec, and the transmembrane pressure
varied.from 10 - 65 psi. The measured filter flux varied as a function of axial velocity,
transmembrane pressure, and insoluble solids concentration. The Graver filter performed
slightly better (- 20%) with 0.1 wt.% sludge, while the 0.5 gt Mott filter performed better
(-100%) with 5 wt.% sludge.

The 20% improvement in filter flux observed is much less than what is needed for this process.
Similar filtration results would be expected with the 0.1 gt Mott crossflow filter. No tesing is
recommended.

Centrifugal Filter

The centrifugal system combines centrifugation with membrane filtration. Solids are removed
from the liquid at the membrane surface, and the centrifugal force acts to keep the surface clean,
minimizing the formation of a polarization layer. The centrifugal force is used to slough off any
buildup on the surface, rather than to separate the solids from the liquid.

The centrifugal filter could be combined with most commercially available filter media (i.e., it
could be equipped with 0.1, 0.2, or 0.5 g. porous metal filter sheets that are similar to the Mott
crossflow filters in the current design bases). The centrifugal motion increases shear at the filter
surface and reduces cake buildup. The effect is the same as increasing the axial velocity without
increasing system pressure requirements.

SRTC tested a centrifugal filter as a replacement to the ceramic microfilters at the Effluent
Treatment Facility." The filter ran for over 10 hours and showed no significant fouling. That
feed stream was different than the feed stream for this process, and it contained a low
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concentration (43 mg/L) of small, colloidal particles. Centrifugal filters are commercially
available (Spintek, Pall) and have been used in radioactive service'at LANL.

The manufacturer's experience with commercial units shows they require regular maintenance to
balance the rotor. Frequent maintenance is undesirable for solid-liquid separation equipment in
the Alternative Salt Disposition Process.

The centrifugal filter should be considered as a backup to flocculation combined with crossflow
filtration and settling/decanting combined with polishing filtration. This filter is likely to
achieve the desired filter flux rates. Issues of maintenance and reliability need to be addressed if
further development is warranted.

Vibratory Shear Enhanced Processing (VSEP) Filter

The VSEP filter, manufactured by New Logic, is similar to a plate and frame or disk stack filter.
It could be fitted with a variety of filter elements. The filter pack consists of parallel disks. The
feed moves slowly between the disks. A pressure differential forces fluid through the filters.
The filter elements vibrate vigorously to create shear. The shear is equivalent to 200 Gs.

A VSEP filter vibrating at 1 inch peak-to-peak displacement and 60 Hz produces a shear rate of
150,000 s1 which is about four times the shear rate attainable with crossflow filters.14 The
system is suitable for concentrating submicron particles and colloids.

The VSEP filter is commercially available, but has not been demonstrated in radioactive service.
The manufacturer recently sold a unit for use in low level radioactive service. If one of these
systems were to be used in high level radioactive service, SRS would need to evaluate the system
parts for radioactive service and minimize the maintenance needed.

The vendor could test this filter on SRS simulated waste at their facility for approximately
$1200. SRS could rent a pilot unit for approximately $6000/month or procure a pilot unit for
$90,000.

The VSEP filter should be considered as a backup to flocculation combined with crossflow
filtration and settling/decanting combined with polishing filtration. This filter is likely to achieve
the desired filter flux rates. Issues of maintenance, reliability, and use in radioactive service need
to be addressed if further development is warranted.

VA CCO Filter

The VACCO filter is another crossflow filter. It is composed of a series of stacked disks. The
disks contain micro-channels or pores. As the fluid flows through the disks, a differential
pressure drives liquid and soluble solids through the pores. It has a more structured packing than
the Mott or Graver filters, but the smallest pore size available is 3 lA. It was previously tested by
SRTC with 3 wt.% ORNL Radiochemical Engineering Development Center (REDC) simulant
and fouled very rapidly.'5 The filter flux was about an order of magnitude less than the filter
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flux with a 0.5 4t Mott crossflow filter using the same simulant. No testing is recommended
unless he manufacturer can produce a filter with a smaller pore size.

Dead-End Filtration

Another plausible technology for removing sludge and MST from high level waste is dead-end
porous metal filters (e.g., such as those manufactured by Fundabac or Pall). The filter surface
would be similar to the filter surface of the Mott crossflow filters, but it would be the outside
surface of a cylinder approximately 2 inches in diameter and 10 - 50 inches long. The fluid
would flow from the outside to the inside of the filter at a constant flow rate. As the solids are
rejected by the filter, they form a filter cake and increase the pressure drop across the filter.
When the pressure drop reaches a certain value, the filter is back washed. If the time between
back washes is long, this filter is a viable option. If the time between backwashes is short, the
dead-end filter is not desirable.

Previous SRTC testing evaluated a Pall porous metal filter as a replacement for the ceramic
crossflow filters at the ETF.' 1 During testing, the filter fouled vary rapidly and the time between
back-washes was typically 5-6 minutes and about 50% of the filtrate was needed to back-wash
the filter. The filter had a pore size of 5 gt and was fouled by small, colloidal particles. If a filter
with smaller pore size could be found, it might operate longer between back-washes.

The performance of the dead-end filter might be improved with the addition of a filter aid.9

Diatomaceous earth is commonly used, but would not be suitable for this waste stream. Any
filter aid would need to be evaluated for compatibility with high pH, high ionic strength,
radioactive stream, as well as compatibility with down stream processes (e.g., DWPF).

In the previous TFA investigation of solid-liquid separation technologies, the author found dead-
end filtration to work best with low concentrations of large particles. In a study to treat Hanford
Cladding Removal Waste, the authors investigated crossflow and dead-end filtration. The
simulated waste contained 1000 - 2100 ppm solids with a mean particle size of 1.2 pt. The 0.5 gt
Mott crossflow filter performed better than the 0.5 gt dead-end filter tested.

This type of filter should be examined in combination with settling and decanting.

Settling and Decanting

No Polishing Step

With this technique, the insoluble solids would settle, and the supernate would be decanted and
processed through the ion exchange or. solvent extraction systems without any additional
treatment.

In theory, the sludge solids in this waste stream settle Very slowly (i.e., they did not settle out in
the waste tanks and were carried forward with the salt solution). Very long settling times could
be required to achieve the solids removal required. Every day of settling time required adds
25,000 gallons of storage capacity to the facility, which will increase the footprint and cost of the
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building dramatically. SRTC measured settling rates of insoluble solids in an actual Tank 41H
sample. 6 Tank 41H was to feed the ITP process, so it should be similar to the feed for the this
process. Table 1 shows the particle size measured and Table 2 shows the settling rate measured.
The mean particle size is - 15 microns. The measured settling rates for the smallest particles (<
4 gI) are less than 4 in/day. If the particles in the feed to this process have similar settling rates,
settling and decanting is unlikely to be effective at removing a significant fraction of particles.
The settling rates could be improved by the addition of flocculants and additives.

Table 1. Particle Size of Particles in Tank 41H Sam ple
Size (gI) Volume % Cumulative Size (g.) Volume % Cumulative

Volume % Volume %
0.97 0.29 0.29 31.11 7.61 66.0
1.38 1.51 1.80 44.00 7.47 73.5
1.94 2.42 4.23 62.23 7.23 80.7
2.75 4.54 8.76 88.00 6.61 87.4
3.89 6.05 14.8 124.4 5.86 93.2
5.50 8.80 23.6 176.0 3.65 96.9
7.78 8.54 32.2 248.0 3.14 100

11.00 9.73 41.9 352.0 0 100
15.56 8.97 50.9 497.8 0 100
22.00 7.58 58.4 704.0 0 100

Table 2. Measured Settling Rate for Tank 41H Particles
PSD % Value Settling Rate (in/day) Settling Rate (in/day)

p=1.194 g/ml p=1.399 g/ml
50% 15.13 15 25
90% 2 .98p. 3.6 3.2
95% 2.08p. 2,1 1.7
98% 1.40jt 1.3 1.1

The Colorado Mineral Research Institute evaluated a counter-current de-cantation system for use
in SRS high level waste sludge processing.' 7 They performed settling studies on simulated
Purex and Hanford sludge. Without the addition of flocculants, the settling rates were very low
(0.17 - 2.2 in/h). With the addition of flocculants (e.g., Alcar W23, Alcar 662, Alcar 600, and
Percol 600), the settling rates increased dramatically (to as high as 92 in/h).

The settling tank size is related to particle settling velocity by equation [4]

A = Q/vsFb [4]

where A is the tank cross section area, Q is the desired processing rate, v, is the particle settling
rate, and Fb is a fraction of the bulk settling rate (0.5 is commonly used with circular clarifiers of
good design).18"' 9 Equation 4 can be solved for v, to determine the required settling rate as a
function of tank diameter. Table 3 shows the estimated required settling velocity as a function of
tank diameter.

9 WSRC-TR-2000-00288 

building dramatically. SRTC measured settling rates of insoluble solids in an actual Tank 41 H 
sample. 16 Tank 41H was to feed the lTP process, so it should be similar to the feed for the this 
process. Table 1 shows the particle size measured and Table 2 shows the settling rate measured. 
The mean particle size is ~ 15 microns. The measured settling rates for the smallest particles « 
4 Il) are less than 4 in/day. lfthe particles in the feed to this process have similar settling rates, 

. settling and decanting is unlikely to be effective at removing a significant fraction of particles. 
The settling rates could be improved by the addition of flocculants and additives. 

T bi t p . I S· f P . I . T k 4tH S I a e . artic e lZeo artic es ID an ample 
Size (Il) Volume % Cumulative Size (Il) Volume % Cumulative 

Volume % Volume % 
0.97 0.29 0.29 31.11 7.61 66.0 
1.38 1.51 1.80 44.00 7.47 73.5 
1.94 2.42 4.23 62.23 7.23 80.7 
2.75 4.54 8.76 88.00 6.61 87.4 
3.89 6.05 14.8 124.4 5.86 93.2 
5.50 8.80 23.6 176.0 3.65 96.9 
T.78 8.54 32.2 248.0 3.14 100 

11.00 9.73 41.9 352.0 0 100 
15.56 8.97 . 50.9 497.8 0 100 
22.00 7.58 58.4 704.0 0 100 

T bi 2 M a e . easure d S ttIi R t fi T k 4tH P rti I e ng a e or an a c es 
PSD % Value Settling Rate (in/day) Settling Rate (in/day) 

p=I.194 glml p=1.399 glml 
5.0% ~ 15.13 Il 15 25 
90% ~ 2.981l 3.6 3.2 

95% ~ 2.081l 2.1 1.7 
98% ~ 1.40 Il 1.3 1.1 

The Colorado Mineral Research Institute evaluated a counter-current de-cantation system for use 
in SRS high level waste sludge processing. 17 They performed settling studies on simulated 
Purex and Hanford sludge. Without the addition of flocculants, the settling rates were very low 
(0.17 - 2.2 inlh). With the addition of flocculants (e.g., Alcar W23, Alcar 662, Alcar 600, and 
Percol 600), the settling rates increased dramatically (to as high as 92 inlh). 

The settling tank size is related to particle settling velocity by equation [4] 

[4] 

where A is the tank cross section area, Q is the desired processing rate, Vs is the particle settling 
rate, and Fb is a fraction of the bulk settling rate (0.5 is commonly used with circular clarifiers of 
good design).18,19 Equation 4 can be solved for Vs to determine the required settling rate as a 
function of tank diameter. Table 3 shows the ~stimated required settling velocity as a function of 
tank diameter. 
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Table 3. Required Settling Rate
Tank Diameter (ft) Cross Section Area (ft') Required Settling Rate (in/day)

14 154 630
16 201 484
18 254 382
20 314 308
22 380 256
24 452 214
26 531 182
28 616 158

The tank diameter values in Table 3 approximate the expected values for the facility. The table
shows that even with the addition of flocculants, settling and decanting without a polishing step
is unlikely to perform the solids removal needed for this process.

Crossflow Filter Polishing Step

In this technique, the insoluble solids (sludge and MST) would settle and the supernate would be
decanted and filtered. This technique was tested at the University of South Carolina's Filtration
Research Engineering Demonstration (FRED) in 1998.6 After settling for two days and
decanting, the filter flux with the decanted supernate was 1.3 - 2.1 gpm/ft2 depending on
operating conditions and approached the clean water flux (2.25 gpm/ft2 ). When settling and
decanting was not used as a pretreatment, filter flux varied between 0.02 - 0.12 gpm/ft.
Because of the small batch size, the decanted supernate may not have had enough solids to
significantly foul the filter. In a full-scale process, the decanted supemate could contain more
very fine particles that could foul the filter more severely than the simulated sludge feeds.
Additionally, the process would need to be designed so the settled solids could be re-suspended.
Testing performed by ORNL in 1999 to evaluate re-suspension of settled sludge and MST
showed this could be difficult.20

SRTC should investigate settling and decanting, followed by polishing with a crossflow filter to
treat this waste stream. This technique needs to be evaluated at the pilot-scale with a large
volume of continuous fresh feed. This work should also include flocculation/additive addition to
improve the settling step.

Dead-End Filtration Polishing Step

In this technique, the insoluble solids would settle and the supemate would be decanted and
filtered. By using settling and decantation as a pretreatment step to the dead-end filter, the solids
loading on the filter will be decreased which should lead to a longer operating time between
back-pulses. If 90% of the solid particles could be removed by settling, the improvement in
operating time could be as much as lOX. If 99% of the solid particles could be removed by
settling, the operating time between back-pulses could be as much as 1 OX. Additionally, the
process would need to be designed so the settled solids could be re-suspended.
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SRTC should investigate settling and decanting, followed by polishing with a dead-end filter to
treat this waste stream. This technique needs to be evaluated at the pilot-scale with a large
volume of continuous fresh feed. This work should also include flocculation/additive addition to
improve the settling step.

Centrifugal Methods

The centrifuge relies on centrifugal force to exaggerate the density difference between the
particles in a liquid, so the solids will "settle" more quickly. Thus, the centrifuge can
theoretically be expected to completely remove even small, colloidal solids, given a long enough
period of operation. There is no separation by a barrier, and therefore, no place for solids to
become trapped. Centrifuges work best with fast settling solids.

The particle settling velocity can be estimated from the following equation

V"rŽ ~d 2 Qb2Rb

where V. is the settling velocity, Ap is the density difference between the particle and the fluid, g
is viscosity, g is the gravitational constant, d is particle diameter, Qb is the rotational speed of the
centrifuge bowl, and Rb is the bowl radius. The required settling rate is described by

lhQ

Vsreq - 2 L A

where Vs,req is the required settling rate, h is the distance between internal surfaces of the
centrifuge, L is the centrifuge length, Q is flow rate, and A is cross-sectional area of the
centrifuge. Combining these equations gives the following expression for centrifuge flow rate

9 h)) Q = 2vsog)/-RW L

where V•(Ig) is settling rate under gravity settling, and Rv is the average radius of the bowl and'
the pool.

21

Using the above equations, the throughput of a centrifuge can be estimated. Table 4 shows the
results.

Hobbs measured the settling rate of the insoluble solids in Tank 411H salt cake. 16 The measured
settling rates varied between 1 in/day and 25 in/day. The facility design requires a minimum
flow rate, on average, of 21 gpm.. If the settling rate is 1 in/day, a centrifuge would likely be
impractical for this solid-liquid separation need.

Hanford evaluated centrifuges for separating solids in Purex sludge, Redox sludge, Cladding
removal waste, and Neutralized Current Acid Waste streams. In simulant testing performed, the
centrifuge was ineffective unless polymeric flocculants were added to the waste. In a test
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performed with actual NCAW, large volumes of water were required to removed the separated
solids from the centrifuge bowl.9

Table 4. Estimated Centrifu e Throughput
Vylg) 10 in/day 1 in/h 1 in/min

i _b 500 rpm 500 rpm 500 rpm
Rav I ft I Ift
G 9.8 m/s2 9.8 rn/s 2  9.8 m/s2

L loft loft loft
A 3.14 ft2  3.14 ft2  3.14 ft2
H I I fit Ift
Flow Rate 0.56 gpm 1.34 gpm 80.6gpm

Professor Yarar advised SRS against using centrifuges without flocculants. 8

Centrifuges have been used successfully in the SRS Separations canyons. The centrifuges used
there are standard milk centrifuges. The motors are remoted from the bowls so they can receive
periodic maintenance. The bowls have not required replacement.

A centrifuge is the baseline technology for separating insoluble solids in Hanford K-basin.
However, that design uses a centrifuge in combination with a polishing filter.

Centrifuge manufacturers have small portable centrifuges that can perform quick scoping tests.
SRTC should coordinate one of these tests. If that test shows promising results, a centrifuge
could be rented (- $7500/3 weeks) to perform laboratory-scale tests with simulated salt solution.
For centrifuges to be effective in this application, they will most likely need to be used in
combination with flocculants and/or polishing filters.

Centrifugation should be considered as a backup technology if the desired processing rates
cannot be achieved with flocculation combined with filtration or settling/decanting combined
with polishing filtration. Centrifugation will likely require a flocculant to work effectively.

Other Solid-Liquid Separation Technologies

Magnetic Filter

High gradient magnetic separation (HGMS) removes magnetic particles that cannot be separated
by other traditional magnetic separation processes because of their lower paramagnetic
properties and smaller size. The process consists of a fine ferromagnetic wire matrix inserted in
the bore of a magnet, which is energized by an externally applied magnetic field. The external
magnetic field creates large magnetic field gradients around the wires, thereby improving the
removal efficiency of small and weakly magnetic particles. As the wires become loaded with
particles, the magnet can be turned off and the particles drop off of the wires.

HGMS can only remove magnetic particles. Non-magnetic particles (e.g., MST) would need to
be adsorbed onto magnetic particles in order to be removed by this process.
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The process has been tested with simulated SRS high level waste sludge by Professor James
Ritter at the University of South Carolina. In those tests, the removal efficiency was very good,
but the solids loading was less than desirable. The system was only able to concentrate solids to
16 g/L insoluble solids.22 HLW-PE has stated a goal to concentrate this stream to 5 wt.%
insoluble solids.

Additional testing would be needed to more thoroughly evaluate this technology, including

testing with MST. No testing is recommended.

RECOMMENDATIONS

SRTC recommends the following work to further evaluate alternative solid-liquid separation
processes for removing sludge and MST from high level waste salt solution:
* Focus on identifying flocculants and additives that will improve the performance of the

crossflow filters.
" Investigate settling and decanting followed by polishing filtration (bothcrossflow and dead-

end). This testing needs to use a large volume of continuous fresh feed. It should also
examine improvements that could be achieved by the addition of flocculants and additives.

• If flocculation with crossflow filtration proves ineffective, investigate high shear filtration
(using a centrifugal filter or VSEP filter).

" If flocculation and crossflow filtration proves ineffective, investigate flocculation in
combination with centrifugation.
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SUMMARY

As a pretreatment step for the caustic side solvent extraction (CSSX) flowsheet, the incoming
salt solution that contains entrained sludge is contacted with monosodium titanate (MST) to
adsorb strontium and actinides. The resulting slurry is filtered to remove the sludge and MST.
Testing performed by the Savannah River Technology Center (SRTC) and the University of
South Carolina showed cross-flow filtration rates lower than desired for simulated salt solution
containing various concentrations of MST and sludge solids (i.e., 0.02 - 0.08 gpm/ft2). Because
of the low filtration rates measured during simulant and real waste testing, the authors
investigated centrifugation as potential replacement for the cross-flow filters.

These tests used a pilot-scale decanter centrifuge. The centrifuge generated approximately
4100 Gs during the tests. The feed solutions for the test consisted of 5.6M sodium, average salt
solution with insoluble solids. The insoluble solids in the tests included the following:
(1) simulated Tank 8F sludge, (2) simulated Tank 8F sludge and MST, (3) simulated Tank 8F
sludge, strontium nitrate, and sodium permanganate, and (4) simulated Tank 8F sludge, MST,
and Cytec HX-400 flocculant. The insoluble solids concentration for the tests measured
0.06 wt %, 0.29 wt %, 1.29 wt %, and 6.0 wt % (measured values < 0.5 wt % to 6.5 wt %).

The conclusions from this work follow.
" The decanter centrifuge did not remove sufficient insoluble solids to meet the target clarified

liquid turbidity of 5 - 10 NTU.
• The product from the tests with Tank 8F simulated sludge had a turbidity of 91 ± 41NTU.
" The product from the tests with Tank 8F simulated sludge plus MST had a turbidity of 271 ±

105 NTU.
" The product from the tests with Tank 8F simulated sludge plus strontium nitrate and sodium

permanganate had a turbidity of 267 t 130 NTU.
* The product from the tests with Tank 8F simulated sludge plus MST and a polymeric

flocculant had a turbidity of 50 ± 18 NTU.

The testing does suggest that a centrifuge could be employed for solid-liquid separation under
the following options.
* Using a combination of a centrifuge and polishing filter. Previous testing suggests

centrifugation as a pretreatment could increase filter flux to 0.25 gpm/ft2, but more thorough
testing is needed to quantify the improvement.

• Insoluble solids removal could improve with a two-stage centrifugation system. The first
stage would use a decanter type centrifuge, such as the one used in this testing. The second
stage would use a disk centrifuge, which proves more effective at removing small, slow
settling particles.

* A third option would allow the treated liquid with low solids content to pass directly to the
solvent extraction process. The authors recommend a set of scouting tests be performed to
examine whether the solids collect in the contactors.
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INTRODUCTION

The Department of Energy selected Caustic Side Solvent Extraction (CSSX) as the preferred
cesium removal technology for Savannah River Site waste.

As a pretreatment step for the CSSX flowsheet, the process contacts the incoming salt solution
that contains entrained sludge with monosodium titanate (MST) to adsorb strontium and
actinides. The resulting slurry is filtered to remove the sludge and MST with the filtrate
processed through the solvent extraction system. Testing performed by SRTC and the University
of South Carolina with simulated and real waste showed filtration rates of 0.02 -. 0.08
gpm/ft2. 1,2,3,4,5 Because of the low filtration rates measured during simulant and real waste
testing, SRTC identified alternative solids-liquid separation technologies as potential
replacement for the crossflow filters. 6 One technology identified as a possible replacement is the
centrifuge.

7

The centrifuge relies on centrifugal force to exaggerate the density difference between the
particles in a liquid, so the solids will "settle" more quickly. Thus, the centrifuge can,
theoretically, completely remove even small, colloidal solids, given a long enough period of
operation. Separation occurs without a physical barrier, and therefore, no place exists for
trapping of the solids. Centrifuges work best with fast settling solids.

The particle settling velocity can be estimated from the following equation

.18ýt) 9, g

where V, is the settling velocity, Ap is the density difference between the particle and the fluid, g
is viscosity, g is the gravitational constant, d is particle diameter, Qb is the rotational speed of the
centrifuge bowl, and Rb is the bowl radius. 8 The required settling rate is described by

Vs1req -IhQ
e 2LA

where Vs,req is the required settling rate, h is the distance between internal surfaces of the
centrifuge, L is the centrifuge length, Q is flow rate, and A is cross-sectional area of the
centrifuge. Combining these equations gives the following expression for centrifuge flow rate

Q =2Vs(Ig) g LAkv

where Vs(lg) is settling rate under gravity settling, and Ra, is the average radius of the bowl and
the pool.8

As the equation shows, centrifuges work best with fast settling solid particles. We expect slow
settling sludge particles in the feed to the Salt Processing Facility since the waste comes
primarily from evaporator operations that allowed settling and removal of the larger sludge
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particles. Hobbs measured settling rates of solid particles in a such a sample from Tank 41H as
1 - 25 in/day.9

Centrifuges successfully treat streams in the SRS Separations canyons. They have operated
since 1953. The bowls rotate at 1740 rpm and produce 1730 Gs.1'01 The canyon centrifuges
have a residence time of 3 - 6 minutes10 versus 7 minutes in this test. The centrifuges separate
MnO2, which precipitates to remove fission products, and silicates, which are flocculated with a
gelatin strike. The feed for the centrifuges is acid rather than basic, which could affect the
particle morphology. The centrifuges used there are standard milk centrifuges with the motors
remoted from the bowls for ease of periodic maintenance. The bowls have not required
replacement.

Jacobs estimated the required target removal efficiency for this test as 99.5% (see Attachment 1
for details).12 Since the baseline feed solution contains 1.15 g/L insoluble solids, the clarified
product stream should contain less than 0.006 g/L insoluble solids. An insoluble solids
concentration of 0.006 g/L corresponds to a turbidity of 5 - 10 NTU.' 3

EXPERIMENTAL

Apparatus

The Pilot Centrifuge Test Facility centered on an Alfa-Laval Sharples P600 series decanter
centrifuge. The facility included a 100-gallon polypropylene slurry feed tank with a Lightnin'®
Model EV5P50M /2 HP mixer. Clarified liquid product collected in a 150-gallon polypropylene
tank, and the solids product collected in a modified 25-L polypropylene carboy. Figure 1
contains a photograph of the pilot test facility. Test slurry was fed to the centrifuge by way of a
3 HP Teel centrifugal pump with variable recycle back to the feed tank. Flow of the feed slurry
was controlled manually by a 3/8" metering valve and monitored by a Fischer-Porter 3/8"
magnetic flow meter. Data were logged by a computerized data acquisition system (DAS) that
consisted of a Dell Dimension XPS T700r desktop computer running LabView version 5.1.

The operating principle behind the decanter centrifuge (see Figure 2) is that denser solids
sediment against the rotating bowl wall. The less dense liquid phase forms a concentric inner
layer. Personnel can vary the liquid or "pond" depth, with a maximum pond depth preferred for
maximum liquid clarification.

The sedimented solid particles continuously exit from the centrifuge bowl by virtue of the action
of a helical screw conveyor or "scroll". The scroll rotates at a slower speed than the bowl. The
gearbox establishes the differential speed between the scroll and bowl. The solids are pushed out
of the pond by the scroll and up the conical "beach". The centrifugal force generated by the
rotating centrifuge compacts the solids and expels excess liquid. The concentrated solids
discharge from the feed end of the centrifuge and the clarified liquid discharges from the
opposite end.
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FIGURE 1- Pilot Centrifuge Test Facility

FIGURE 2 - Schematic of Decanter Centrifuge
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Feed Slurries

All slurries fed to the centrifuge were made from a stock 5.6 M sodium simulated average SRS
High-Level Waste (see Table 1). We omitted sodium chloride and sodium fluoride from thefeed
at the vendor's request, to prevent corrosion. Personnel added insoluble solids to the solution in
varying amounts. The insoluble solids for the various tests consisted of the following: (1) sim-
ulated Tank 8F sludge, (2) simulated Tank 8F sludge and MST, (3) simulated Tank 8F sludge,
strontium nitrate and sodium permanganate, and (4) simulated Tank 8F sludge, MST, and Cytec
HX-400 flocculant. Table 2 shows the insoluble solids concentration for each test. In the tests
with sodium permanganate, researchers added sodium formate as the reducing agent (4.5 moles
of formate per mole of manganese). In the flocculant tests, personnel added the flocculant at
15 mg of flocculant per gram of insoluble solids (i.e., 1.5 wt % solids basis).

Previously, SRTC found that the addition of strontium nitrate and sodium permanganate
improved strontium and actinide removal from Hanford High Level Waste solutions.14 In
addition, they found strontium nitrate and sodium permanganate addition improved cross-flow
filtration rates. The researchers performed tests with those additives to evaluate the solid-liquid
separation by centrifuge for this alternate process chemistry.

In other testing, SRTC found the addition of flocculants, such as Cytec HX-400, improved
particle settling and filtration. 3,15 Tests included this additive to evaluate its impact on
centrifugation.

Table 1. Centrifuge Test Supernate Composition
Species Concentration
Na 5.6 (M)
K 0.015 (M)
Cs 0.00014 (M)
OH 1.93 (M)
NO3  2.16 (M)
NO2  0.53 (M) -

A10 2  0.31 (M)
CO 3  0.16 (M)
SO4  0.15 (M)
P0 4  0.01 (M)

C 2 0 4  0.004 (M)
Si0 3  0.004 (M)
MoO 4  0.0002 (M)
Tri-n-butyl phosphate 0.5 mg/L
Di-n-butyl phosphate 25 mg/L
Mono-n-butyl phosphate 25 mg/L
n-butanol 2 mg/L
Formate 1500 mg/L (0.033 M)
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Table 2. Insoluble Solids Concentration for Centrifuge Tests
Sludge + MST Sludge Only Sludge + MnO4 Sludge + MST + Flocculant

0.031 wt % sludge 0.06 wt % sludge 0.031 wt % 0.031 wt % sludge
0.029 wt % MST sludge 0.029 wt % MST

0.0065 M MnO4  HX-400
0.0065 M Sr

0.15 wt % sludge 0.29 wt % sludge 0.15 wt % sludge 0.15 wt % sludge
0.14 wt % MST 0.031 MMnO 4  0.14 wt % MST

0.031 M Sr HX-400

0.67 wt % sludge 1.29 wt % sludge 0.67 wt % sludge 0.67 wt % sludge
0.62 wt % MST 0.14 MMnO4  0.62 wt % MST

0.14 M Sr HX-400

3.1 wt % sludge 6.0 wt % sludge 3.13 wt % sludge
2.9 wt % MST 2.87 wt % MST

HX-400

Experimental Operations

Each experiment began by combining simulated supernate solution and the appropriate amount
of solids in the feed tank and agitating the mixture for a minimum of 15 minutes. Then,
personnel collected a sample (- 50 mL) of the feed for later turbidity measurement. Operators
started the centrifuge in accordance with EDS Field Procedure FP-904. To achieve maximum
liquid clarification, we operated the centrifuge at a maximum differential speed between the
bowl and scroll by running the scroll at its minimum speed (approximately 1670 rpm) and
running the bowl at its maximum safe operating speed of approximately 5000 rpm
(approximately 4100 Gs). According to the following equation, with a gear ratio of 98:1, this
condition yields a differential of approximately 34.

A(differential) = [Bowl speed - Scroll speed]/Gear ratio

Once the centrifuge reached the appropriate speed, personnel activated the DAS and then
introduced feed. The initial tests used a slurry feed rate of approximately 0.5 gpm, but we later
reduced the rate to 0.1 gpm to increase residence time in the centrifuge. Slurry feed to the
centrifuge continued for two hours, during which time personnel collected samples of the
clarified liquid product (-50 mL) every 15 minutes and analyzed them for turbidity. When the
feed was consumed operators closed the feed valve, and stopped the Teel pump.

At the end of each test, personnel collected a concentrated solids product sample. Operators then
rinsed the centrifuge with process water until the liquid product stream discharge appeared clear.
Personnel shut down tlhe centrifuge according to Field Procedure FP- 904.
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Table 2. Insoluble Solids Concentration for Centrifuge Tests· 
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0.15 wt % sludge 0.29 wt % sludge 0.15 wt % sludge 0.15 wt % sludge 
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0.62wt%MST 0.14 MMn04 0.62wt% MST 

0.14 M Sr HX-400 

3.1 wt % sludge 6.0 wt % sludge 3.13 wt % sludge 
2.9wt%MST 2.87wt% MST 

HX-400 
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of solids in the feed tank and agitating the mixture for a minimum of 15 minutes. Then, 
personnel collected a sample (- 50 mL) of the feed for later turbidity measurement. Operators 
started the centrifuge in accordance with EDS Field Procedure FP-904. To achieve maximum 
liquid clarification, we operated the centrifuge at a maximum differential speed between the 
bowl and scroll by running the scroll at its minimum speed (approximately 1670 rpm) and 
running the bowl at its maximum safe operating speed of approximately 5000 rpm 
(approximately 4100 Gs). According to the following equation, with a gear ratio of98:1, this 
condition yields a differential of approximately 34. 

~(differential) = [Bowl speed - Scroll speed]/Gear ratio 

Once the centrifuge reached the appropriate speed, personnel activated the DAS and then 
introduced feed. The initial tests used a slurry feed rate of approximately 0.5 gpm, but we later 
reduced the rate to 0.1 gpm to increase residence time in the centrifuge. Slurry feed to the 
centrifuge continued for two hours, during which time personnel collected samples of the 
clarified liquid product (-50 mL) every 15 minutes and analyzed them for turbidity. When the 
feed was consumed operators closed the feed valve, and stopped the Teel pump. 

At the end of each test, personnel collected a concentrated solids product sample. Operators then 
rinsed the centrifuge with process water until the liquid product stream discharge appeared clear. 
Personnel shut down the centrifuge according to Field Procedure FP- 904. 



8 WSRC-TR-2001-00555, Rev. 0

RESULTS

Table 3 shows the turbidity of the clarified liquid stream and the estimated insoluble solids
concentration calculated from the equation developed by Martino et. al. 13 The results show the
product turbidity significantly exceeds the target of 5 - 10 NTU. The product from the tests with
Tank 8F simulated sludge had a turbidity of 91 ± 41 NTU.

Table 3. Centrifuge Product Turbidity
Feed Solids Clarified Liquid

Sludge
(wt%)

MST Floc Sr(N0 3) 2  MnO4  Insol. Solids
(wI%) (wt%) (M) (M) meas. (wt%/)

Turbidity
(NTU)

Samples
W#)

Insol. Solids
(mz/L)

0.06 - - - - < 0.5 101.5 ±21.8 9 28
0.29 - - - - < 0.5 68.7 ± 26.3 8 41
1.29 - - - - < 0.5 103.6 ± 68.0 6 42
6.0 - - - - Not measured
0.031 - - 0.0065 0.0065 < 0.5 227.3 ± 74.5 15 92
0.15 - - 0.031 0.031 0.54 154.8 ± 24.1 9 63
0.67 - - 0.14 0.14 .5.5 445.1 ± 68.6 9 180
SAn 1 n W)Q -- <-N 14A 4 _L I a r07

0.15
0.67
0.031
0.15
0.67
3.1

0.14
0.62
0.029
0.14
0.62
2.9

0.0009
0.0044
0.019
0.09

<0.5
<0.5
<0.5
<0.5

0.80
3.3

1u'-rI.u -L 1•7.u

392.4 ± 71.1
255.0 ± 29.5
32.2 ± 6.9
67.3 ± 10.4
48.1 ± 21.0
51.9 ± 12.5

9
9
9
9
99

159
103

13

27
19
21

The product from the tests with Tank 8F simulated sludge plus MST had a turbidity of 271 ± 105
NTU. The product turbidity with only sludge feed proved lower than the product turbidity with
sludge and MST feed.

The product from the tests with Tank 8F simulated sludge plus strontium nitrate and sodium
permanganate had a turbidity of 267 ± 130 NTU. The addition of strontium and permanganate
led to higher product turbidity.

The product from the tests with Tank 8F simulated sludge plus MST and a polymeric flocculant
had a turbidity of 50 ± 18 NTU. The addition of the flocculant improved product quality, but not
to the level desired. In previous testing, flocculants showed significant improvement in particle
settling rate. 13' 15 However, in this test, shear from the recirculation pump and agitator probably
tended to break down the flocculated solids as also observed in previous cross-flow filter tests.

According to the vendor (Alfa Laval), a 20 gpm decanter centrifuge (model CHNX-418) would
be 3.5 m x 1.0 m x 2 m high. A 20 gpm disk centrifuge (model CHPX-513) would be 1.3 m x
1.5 m x 2 m high. The vendor provided a list of 62 units in nuclear service in Europe (see
Attachment 2). The units are in research laboratories, power plants, and waste. disposal facilities.

Even though it did not achieve the target solids removal, the testing does suggest that a
centrifuge could be employed for solid-liquid separation under the following options: a

:\ 
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RESULTS 

Table 3 shows the turbidity of the clarified liquid stream and the estimated insoluble solids 
concentration calculated from the equation developed by Martino et. al. 13 The results show the 
product turbidity significantly exceeds the target of 5 - 10 NTU. The product from the tests with 
Tank 8F simulated sludge had a turbidity of 91 ± 41 NTU. 

I 

Table 3. Centrifuge Product Turbidity 
Feed Solids Clarified Liquid 

Sludge MST Floc Sr(N03)2 Mn04 Insol. Solids Turbidity Samples Insol. Solids 
{wt%2 {wt%2 {wt%2 {M2 {M2 meas. {wt%2 (NTU} {#} {m~L} 
0.06 < 0.5 101.5±2L8 9 28 
0.29 < 0.5 68.7 ± 26.3 8 41 
1.29 <0.5 103.6 ± 68.0 6 42 
6.0 Not measured 
0.031 0.0065 0.0065 <0.5 227.3 ± 74.5 15 92 
0.15 0.031 0.031 0.54 154.8 ± 24.1 9 63 
0.67 0.14 0.14 .5.5 445.1 + 68.6 9 180 
0.031 0.029 <0.5 164.6 ± 19.6 9 67 
0.15 0.14 <0.5 392.4 ± 71.1 9 159 
0.67 0.62 <0.5 255.0 ± 29.5 9 103 
0.031 0.029 0.0009 <0.5 32.2 ± 6.9 9 13 
0.15 0.14 0.0044 <0.5 67.3 ± 10.4 9 27 
0.67 0.62 0.019 0.80 48.1±21.0 9 19 
3.1 2.9 0.09 3.3 51.9±12.5 9 21 

The product from the tests with Tank8F simulated sludge plus MST had a turbidity of271 ± 105 
NTU. The product turbidity with only sludge feed proved lower than the product turbidity with 
sludge and MST feed. 

The product from the tests with Tank 8F simulated sludge plus strontium nitrate and sodium 
permanganate had a turbidity of 267 ± 130 NTU. The addition of strontium and permanganate 
led to higher product turbidity. 

The product from the tests with Tank 8F simulated sludge plus MST and a polymeric flocculant 
had a turbidity of 50 ± 18 NTU. The addition of the flocculant improved product quality, but not 
to the level desired. In previous testing, flocculants showed significant improvement in particle 
settling rate. 13,15 However, in this test, shear from the recirculation pump and agitator probably , 
tended to break down the flocculated solids as also observed in previous cross-flow filter tests. 

According to, the vendor (Alfa Laval), a 20 gpm decanter centrifuge (model CHNX-418) would 
be 3.5 m x 1.0 m x 2 m high. A 20 gpm disk centrifuge (model CHPX-5l3) would be 1.3 m x 
1.5 m x 2 m high. The vendor provided a list of 62 units in nuclear service in Europe (see 
Attachment 2). The units are in research laboratories, power plants, and waste disposal facilities. 

Even though it did not achieve the target solids removal, the testing does suggest that a 
centrifuge could be employed for solid-liquid separation under the following options: a 
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combination of a centrifuge and polishing filter, a two-stage centrifugation system, or no
additional treatment following the centrifuge.

The centrifuge reduced the insoluble solids level in the feed stream to 13 - 180 mg/L. This
reduction in insoluble solids would slow cake buildup in a cross-flow filter and could increase
filter flux. Previous SRTC testing investigated settling and decanting followed by polishing
filtration, The tests showed that reducing the insoluble solids in the filter feed could increase
cross-flow filter flux significantly.'1 3 Based on the settling study and the results from these tests,
we estimate centrifugation as a pretreatment could increase filter flux to 0.25 gpm/ft2. However,
a firm estimate requires more thorough testing to quantify the improvement.

Insoluble solids removal could improve with a two-stage centrifugation system. The first stage
would use a decanter type centrifuge, such as the one used in this testing. The second stage
would use a disk centrifuge, which is more effective at removing small, slow settling particles.
To evaluate this option, we could supply product samples from these tests to the vendor to
evaluate the feasibility of the two-stage centrifugation process. The vendor recommended this
approach.

The level at which insoluble solids adversely impact the centrifugal contactors has not been
determined. Hence, another option would feed product samples from these tests to the 2 cm
centrifugal contactors to determine whether the solids levels observed in these tests adversely
impact them. The authors recommend a set of scouting tests to examine whether the solids
collect in the contactors.

CONCLUSIONS

The conclusions from this work follow.
" The decanter centrifuge did not remove sufficient insoluble solids to meet the target clarified

liquid turbidity of 5 - 10 NTU.
* The product from the tests with Tank 8F simulated sludge had a turbidity of 91 ± 41 NTU.
" The product from the tests with Tank 8F simulated sludge plus MST had a turbidity of 271 ±

105 NTU.
* The product from the tests with Tank 8F simulated sludge plus strontium nitrate and sodium

permanganate had a turbidity of 267 ± 130 NTU.
* The product from the tests with Tank 8F simulated sludge plus MST and a polymeric

flocculant had a turbidity of 50 + 18 NTU.

OPTIONS

The testing does suggest that a centrifuge could be employed for solid-liquid separation under
the following options:
" Use a combination of a centrifuge and polishing filter. Previous testing suggests

centrifugation as a pretreatment could increase filter flux to 0.25 gpm/ft2, but more thorough
testing is needed to quantify the improvement.

* Insoluble solids removal could improve with a two-stage centrifugation system. The first
stage would use a decanter type centrifuge, such as the one used in this testing. The second
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combination of a centrifuge and polishing filter, a two-stage centrifugation system, or no 
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determined. Hence, another option would feed product samples from these tests to the 2 cm 
centrifugal contactors to determine whether the solids levels observed in these tests adversely 
impact them. The authors recommend a set of scouting tests to examine whether the solids 
collect in the contactors. 

CONCLUSIONS 

The conclusions from this work follow. 
• The decanter centrifuge did not remove sufficient insoluble solids to meet the target clarified 

liquid turbidity of 5 - 10 NTU. 
• The product from the tests with Tank 8F simulated sludge had a turbidity of9l ± 41 NTU. 
• The product from the tests with Tank 8F simulated sludge plus MST had a turbidity of27l ± 
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• The product from the tests with Tank 8F simulated sludge plus strontium nitrate and sodium 
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OPTIONS 

The testing does suggest that a centrifuge could be employed for solid-liquid separation under 
the following options: 
• Use a combination of a centrifuge and polishing filter. Previous testing suggests 

centrifugation as a pretreatment could increase filter flux to 0.25 gpmlft2, but more thorough 
testing is needed to quantify the improvement. 

• Insoluble solids removal could improve with a two-stage centrifugation system. The first 
stage would use a decanter type centrifuge, such as the one used in this testing: The second 
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stage would use a disk centrifuge, which is more effective at removing small, slow settling
particles.
A third option would allow the treated liquid with low solids content to pass directly to the
solvent extraction process. The authors recommend a set of scouting tests be performed to
examine whether the solids collect in the contactors.
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stage would use a disk centrifuge, which is more effective at removing small, slow settling 
particles. 

• A third option would allow the treated liquid with low solids content to pass directly to the 
solvent extraction process. The authors recommend a set of scouting tests be performed to 
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REFERENCES 

1. H. H. Saito, M. R. Poirier, S. W. Rosencrance, and J. L. Siler, "Improving Filtration Rates of 
Mono-Sodium Titanate (MST)-Treated Sludge Slurry with Chemical Additives", WSRC-TR-
99-00343, September 15, 1999. 

2 .. H. H. Saito, M. R. Poirier, and 1. L. Siler, "Effect of Sludge Solids to Mono-Sodium Titanate 
(MST) Ratio on MST-Treated Sludge Slurry Cross-Flow Filtration Rates", WSRC-TR-99-

·00342, September 15, 1999. 
3. Ralph Haggard, Travis Deal, Carol Stork, and Vince Van Brunt, "Final Report on the 

Crossflow Filter Testing for the Salt Disposition Alternative", USC-FRED-PSP-RPT-09-0-
010, Rev. 0, December 4, 1998. 

4. M. R. :poirier, "FY2000 FRED Test Report,"WSRC-TR-2001-00035, Rev. 0, January 11, 
2001 and included report "Final Report on the Crossflow Filter Optimization with 5.6 M 
Sodium Salt Solution" (V. Van Brunt, C. Stork, T. Deal, and R. Haggard, USC-FRED-PSP­
RPT-09-0-015,December 20,2000). 

5. M. R. Poirier, F. F. Fondeur, T. L. Fellinger, and S. D. Fink, "Cross-Flow Filtration 
Demonstration for Slurries Containing High Level Waste Sludge and Monosodium Titanate", 
WSRC-TR-200 1-00212, April 11 , 2001. 

6. S. Subosits, Task Technical Request, HLW-SDT-TTR-2000-00013, October 11,2000. 
7. M. R. Poirier, "Evaluation of Solid-Liquid Separation Technologies to Remove Sludge and 

Monosodium Titanate from SRS High Level Waste", WSRC-TR-2000-00288, August 16, 
2000. 

8. B. C. Bershad, R. M. Chaffiotte, and W. F. Leung, "Making Centrifugation Work for You", 
Chemical Engineering, vol. 97, no. 8, pp. 84-89, 1990. 

9 .. D. T. Hobbs, "Particle Size and Settling Velocity of Tank 41H Insoluble Solids", WSRC-TR-
95-0249, May 30, 1995. 

10. M. L. Hyder, W. C. Perkins, M. C. Thompson, G. A. Burny, E. R. Russell, H.·P. Holcomb, 
and L. F. Landon, "Processing ofIrradiated Enriched Uranium Fuels at the Savannah River 
PIant",DP-1500, April 1979. 

11. H. 1. Groh, "Removal of Silica from Solutions of Nuclear Fuels", DP-293, June 1958. 
12. M. R. Poirier and M. A. Norato, "Task Technical and Quality Assurance Plan for Salt 

Processing Plant Centrifuge Test", WSRC-RP-2001-00737, June 29, 2001. 
13. C. 1. Martino, M. R. Poirier, F. F. Fondeur, and S. D. Fink, "Flocculating, Settling, and 

Decanting for the Removal of Monosodium Titanate and Simulated High-Level Waste 
Sludge from Simulated Salt Supernate", WSRC-TR-200I-00413, October 16,2001. 

14. C. A. Nash, S. W. Rosencrance, and W. R. Wilmarth, "Entrained Solids, Strontium­
Transuranic Precipitation and Crossflow Filtration of AN 102 Small C", WSRC-TR-2000-
00341, August 2000. 

15. M. R. Poirier, "Improving .the Filtration of SludgelMonosodium Titanate Slurries by the 
Addition of Flocculants", WSRC-TR-200I-00I75, Rev. 0, March 27,2001. 



IlI WSRC-TR-2001-00555, Rev. 0

ATTACHMENT 1
DETERMINATION OF REQUIRED INSOLUBLE SOLIDS REMOVAL

Roy Jacobs To: Steve Subosits, Herbert Elder, Joe Carter. Samuel Fink/WSRC/Srs.
Michael Poirier/WSRC/Srs

cc:
Subject: Estimate of required sludge removal efficiency

01/17/01 08:13 AM

Gentlemen (and I mean that sincerely),

,While considering alternatives to crosaflow filtiation (like floculation
followed by settle/decant or centrifuging),. I again asked the question nwhat
removal efficiency in required to prevent busting the Saltstone alpha lizmit?
Since I've never heard an answer to that question, I decided to have a go at
it myself. (See attached Bicel file).

Assuming 600 mg sludge/L salt solution and alloting 25% of the alpha limit for
sludge particles (5 nCi out of 20), I get a required efficiency of 99.5%. John
Fowler suggested that a dead-end polishing filter might be needed downstream
of a centrifuge or a settler.

Cautions This is all based on nominal conditions and the calc has not been
reviewed. On the other hand, I did not include dilution from 6.4 to 5.6 K.

Roy

I LDG -D.L
Estimate of Nominal Sludge Removal Efficiency

Bases:
Ci alpha/gal @13 wt% sluge solids in slurry

U232 1.20E-05
U234 3.00E-05
Np237 1.00E-05
Pu238 1.3

1.95 lbs sludge/gal slurry @ 19 wt% solids
600 mg sludge/L salt soln
density of 6.4 M salt soln = 1300 g/L

}From BDR 138"

*average 5 year old sludge
feed to DWPF

Calculations:
13/19 x 1.95 lbs sludge/gal slurry x 453.6 g/lb = 605 g sludge/gal slurry

1.3 Ci/gal x 1E9 nCi/Ci / (1000 mg/g x 605 g/gal) = 2148 nCi alpha/mg sludge

600 mg sludge/L salt soln x 2148 nCi alpha/mg sludge 11300 g soln/L = 991 nCi alpha/g salt solution

Saltstone limit is 20 nCi/g. Assume that 25% of that can be alloted to alpha from sludge.
Then the required removal efficiency is

(991 - 5) / 991 - 100 = 99.5 % efficiency
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density of 6.4 M salt soln = 1300 giL 

From BDR 138· 

"average 5 year old sludge 
feed to DWPF 

Calculations: 
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ATTACHMENT 2
ALFA LAVAL CENTRIFUGES IN EUROPEAN NUCLEAR FACILITIES

Customer
Euroatom
RCN, Petten
Toshiba
Coarso
EIR
Mifhlenberg
Benznau
Toshiba
Toshiba
Toshiba
Toshiba
Toshiba
KKW Isar 1
KKW Brunsbuttel
Nersa
KKW Phillipsburg 1
KKW Phillipsburg 1
KKW Phillipsburg 1
KKW Phillipsburg 2
KKW Phillipsburg 2
Toshiba
KKW Isar 2
KKW Isar 2
Idreco
KKW Neckarwestheim
KKW Neckarwestheim
KKW Brockdorf
KKW Brockdorf
KKW Emsland
KKW Emsland
KKW Obrigheim
KKW.Obrigheim
KKW Worgassen
KKW Karlstein
KKW Grohnde
KKW Grohnde
KKW Phillipsburg 1
KKW Phillipsburg 1
KKW Karlstein
KKW Isar I
ABB Atom
KKW Rheinsberg
Teollisuuden Voima Oy
Teollisuuden Voima Oy
Sage Bmo (Temelin)
Sage Bmo (Temelin)
Teollisuuden Voima Oy
Teollisuuden Voima Oy
Zwilag Wurenlingen
Yonggwang 5
Yonggwang 5
Yonggwang 6
Yonggwang 6

Key to location:

Country Contractor Machine

Italy CRPX 207 SGV
Netherlands BRPX 213 SFD
Japan BRPX 213 SGV
Italy CRPX 207 SGP
Switzerland BRPX 213 SGV
Switzerland BRPX 207 SGV
Switzerland BRPX 207 SGV
Japan BRPX 213 SGV
Japan BRPX 417 SGV
Japan BRPX 213 SGV
Japan BRPX 417 SGV
Japan BRPX 417 SGV
Germany Siemens BRPX 213 SGV-34
Germany Siemens BRPX 213 SGV-34
France BRPX 213 SGV
Germany Siemens BRPX 207 SGV-34
Germany Siemens BRPX 213 SGV-34
Germany Siemens KWNX 416 S-31G
Germany Siemens BRPX 213 SGV-34
Germany Siemens KWNX 416 S-31G
Japan BRPX 413 SGD
Germany Siemens BRPX 213 SGV-34
Germany Siemens KWNX 416 S-31G
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Germany Siemens BRPX 213 SGV-34
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Germany Siemens BRPX 213 SGV-34
Germany Siemens KWNX 416 S-31G
Germany Siemens BRPX 213 SGV-34
Germany Siemens KWNX 416 S-31G
Germany BRPX 213 SGV-34
Germany KWNX 416 S-31G
Germany BRPX 213 SGV-34
Germany NX 309
Germany CHPX 510 SGD-34 CG
Germany KWNX 416 S-31G
Germany Siemens CHPX 510 SGD-34 CG
Germany Siemens KWNX 416 S-31G
Germany KWNX 409 S-31 G
Germany BRPX 213 SGV-34 CG
Sweden KWNX 416
Germany Siemens KWNX 416
Finnland KWNX 416
Finnland CHPX 510
Czech Rep. KWNX 418
Czech Rep. CHPX 513
Finnland KWNX 416
Finnland CHPX 510
Switzerland BWB BTPX 205 SGD-34 CDP
Korea HPA CHPX 517 SGV-34 CGF
Korea HPA KWNX 418 S-31
Korea HPA CHPX 517 SGV-34 CGI
Korea HPA KWNX 418 S-31

Qty. Year Location Type
1 1966 RL Disk

1971 WD Disk
2 1975 PP Disk
2 1978 PP Disk
1 1978 RL Disk
2 1978 PP Disk
1 1.978 PP Disk
2 1980 PP Disk
2 1980 PP Disk
2 1981 PP Disk
2 1981 PP Disk
1 1981 PP Disk
1 1981 PP- Disk
1 1982 PP Disk
1 1983 PP Disk
1 1983 PP Disk
1 1983 PP Disk
1 1983 PP Decanter
1 . 1983 PP Decanter
1 1983 PP Decanter
2 1983 PP Disk
1 1985 PP . Disk
1 1985 PP Decanter
3 1985 PP Disk
1 1985 PP Disk
1 1985 PP Decanter
1 1985 PP Disk
1 1985 PP Decanter
1 1985 PP Disk
1 1985 PP Decanter
1 1986 PP Disk
1 1986 PP Decanter
2 1987 PP Disk
1 1987 RL Decanter
1 1990 PP Disk
1 1990 PP Decanter
1 1990 PP Disk
1 1990 PP Decanter
1 1992 RL Decanter
1 1992 PP Disk
1 1994 PP Decanter
1 1995 PP Decanter
1 1995 PP Decanter
1 1995 PP Disk
1 1996 PP Decanter
1 1996 PP Disk
1 1996 PP Decanter
1 1996 PP Disk
1 1997 WD Disk
1 1997 PP Disk
1 1997 PP Decanter
1 1997 PP Disk
1 1997 PP Decanter
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WD

Research lab
Power Plant
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ATTACHMENT 2 
ALFA LAVAL CENTRIFUGES IN EUROPEAN NUCLEAR FACILITIES 

Customer Count~ Contractor Machine 2~' Year Location T~e 
Euroatom Italy CRPX 207 SGV I 1966 RL Disk 
RCN, Petten Netherlands BRPX 213 SFD 1971 WD Disk 
Toshiba Japan BRPX 213 SGV 2 1975 PP Disk 
Coarso Italy CRPX 207 SGP 2 1978 PP Disk 
EIR Switzerland BRPX213 SGV I 1978 RL Disk 
Muhlenberg Switzerland BRPX207 SGV 2 1978 PP Disk 
Benznau Switzerland BRPX207 SGV I 1978 PP Disk 
Toshiba Japan BRPX 213 SGV 2 1980 PP Disk 
Toshiba Japan BRPX417 SGV 2 1980 PP Disk 
Toshiba Japan BRPX 213 SGV 2 1981 PP Disk 
Toshiba Japan BRPX417 SGV 2 1981 PP Disk 
Toshiba Japan BRPX417 SGV I 1981 PP Disk 
KKW Isar I Germany Siemens BRPX 213 SGV-34 1 1981 PP Disk 
KKW Brunsbuttel Germany Siemens BRPX 213 SGV-34 1 1982 PP Disk 
Nersa France BRPX213 SGV 1 1983 PP Disk 
KKW Phillipsburg 1 Germany Siemens BRPX 207 SGV-34 1 1983 PP Disk 
KKW Phillipsburg 1 Germany Siemens BRPX 213 SGV -34 1 1983 PP Disk 
KKW Phillipsburg 1 Germany Siemens KWNX416S-31G 1 1983 PP Decanter 
KKW Phillipsburg 2 . Germany Siemens BRPX 213 SGV-34 1 1983 pp' Decanter 
KKW Phillipsburg 2 Germany Siemens KWNX416S-31G 1 1983 PP Decanter 
Toshiba Japan BRPX413 SGD 2 1983 PP Disk 
KKW Isar2 Germany Siemens BRPX 213 SGV-34 1 ,1985 PP . Disk 
KKW Isar2 Germany Siemens KWNX 416 S-31G 1 1985 PP Decanter 
Idreco Italy BRPX213 SGV 3 1985 PP Disk 
KKW Neckarwestheim Germany Siemens BRPX 213 SGV-34 1 1985 PP Disk 
KKW Neckarwestheim Germany Siemens KWNX416S-31G 1 1985 PP Decanter 
KKW Brockdorf Germany Siemens BRPX 213 SGV-34 1 1985 PP Disk 
KKW Brockdorf Germany Siemens KWNX 416 S-3IG I 1985 PP Decanter 
KKWEmsland Germany Siemens BRPX 213 SGV-34 1 1985 PP Disk 
KKWEmsland Germany Siemens KWNX416S-31G 1 1985 PP Decanter 
KKW Obrigheim Germany BRPX 213 SGV-34 I 1986 PP Disk 
KKW.Obrigheim Germany KWNX 416 S-3lG I 1986 PP Decanter 
KKW Wiirgassen Germany BRPX 213 SGV-34 2 1987 PP Disk 
KKW Karlstein Germany NX309 1 1987 RL Decanter 
KKWGrohnde Germany CHPX 510 SGD-34 CG 1 1990 PP Disk 
KKWGrohnde Germany KWNX 416 S-31G 1 1990 PP Decanter 
KKW Phillipsburg 1 Germany Siemens CHPX 510 SGD-34 CG I 1990 PP Disk 
KKW Phillipsburg I Germany Siemens KWNX 416 S-31G 1 1990 PP Decanter 
KKW Karlstein Germany KWNX 409 S-31G 1 1992 RL Decanter 
KKWIsar 1 Germany BRPX 213 SGV-34 CG 1 1992 PP Disk 
ABBAtom Sweden KWNX416 1 1994 PP Decanter 
KKW Rheinsberg Germany Siemens KWNX416 1995 PP Decanter 
Teollisuuden Voima Oy Finnland KWNX416 1995 PP Decanter 
Teollisuuden Voima Oy Finnland CHPX 510 1995 PP Disk 
Sage Bmo (Temelin) Czech Rep. KWNX418 1996 PP Decanter 
Sage Bmo (Temelin) Czech Rep. CHPX 513 1996 PP Disk 
Teollisuuden Voima Oy Finnland KWNX416 1996 PP Decanter 

. Teollisuuden Voima Oy Finnland CHPX 510 1996 PP Disk 
Zwilag Wiirenlingen Switzerland BWB BTPX 205 SGD-34 CDP 1997 WD Disk 
Yonggwang 5 Korea HPA CHPX 517 SGV -34 CGR 1997 PP Disk 
Yonggwang 5 Korea HPA KWNX 418 S-31 1 1997 PP Decanter 
Yonggwang 6 Korea HPA CHPX 517 SGV-34 CGR 1 1997 PP Disk 
Yonggwang6 Korea HPA KWNX 418 S-31 1 1997 PP Decanter 
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Key to location: RL Research lab 

PP Power Plant 
WD Waste disposal 
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WESTINGHOUSE SAVANNAH RIVER SITE SRT-EDS-970022
INTEROFFICE MEMORANDUM { ..&

April 2, 1997
APPROVED for Release for

CC: M. A. Ebra, 773-42A Unlimited (Release to Public)
D. R. Muhlbaier, 786-5A

TO B. L. Lewis, 703ýH, 8-1638

FROM: R. A. Dimenna, 773-42A, 5-8203
G. A. Taylor, 703-1, 8-8934

SUBJECT: Flow Pattern Calculations for Eductor Flow in Tank 43

Summary

An analysis has been completed to determine the liquid region in Tank 43 which is rinfluenced by
flow through the eductor intake while transferingliquid to the evaporator. The purposeof the
analysis was to find how high the Tank 43 eductor inlet should be: so that excess solids are not
entrained to the evaporator. The results are based on an assumption that a reference level in the
tank can be established, either by the observation of a "clear" liquid interface or by a turbidity
measurement indicating a tank elevation at which the solids concentration is acceptably low to
allow transfer to the evaporator. The analysis'shows that if the eductor inlet is 12 inches above
this reference level, then there will be no appreciable entrainmnent of solids into the evaporator.

Introduction

Tank 43 is the feed tank for the 2H evaporator, and as such is in a continually active state. There
is feed coming into the tank from the H-canyon, DWPF. and Tank 38. The recycle flow from
Tank 38 comes into the tank from a high, side wall penetration, while the canyon and DWPF
feeds enter through a downcomer. Because of the continual activity in the tank, no settling of
recent flows can be assumed. Nevertheless, the operation of Tank 43 as the evaporator feed tank
since the early 1980's has resulted in a settled sludge layer building up over the years. This
settled sludge layer occupies the bottom region of the tank, above which there is, a region of
suspended solids. Slow settling of the solids will result in a Solids concentration gradient upward
through the liquidregion, such that at some point above this suspended solids region there will
be a region in which the liquid is relatively free of solids. It is in this region that it is desired to
place the eductor inlet.

The eductor inlet is currently set at 65 inches above the tank bottom, and well away from both
the center of the tank and the tank outer wall. The settled sludge "interface" is at about 60
inches, but the downcomer extends to 44 inches. The downcomer is located well away from the
eductor suction. Injecting new waste into the settled sludge region will cause a portion of this
region- to remain in an agitated state. Because of the agitated state and the very slow settling rate,
it is reasonable to assume that there will be no clear interface between the sludge and a "clear"
liquid region. Because of the lack of both characterization data of the sludge and analytical
tools. the height of the suspended sludge region must be determined is by an in situ measurement.
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WSRC contracted with Dr. Baki Yarar of the Colorado School of Mines to consult on
solid-liquid separation techniques potentially applicable to sludge/monosodium titanate
(MST) slurries. Dr. Yarar attended a working meeting on this topic at SRS on June 29,
2000. Attendees included representatives from SRTC, Solid Waste, and High Level
Waste (Salt Disposition Engineering).

Pursuant to his visit, Dr. Yarar supplied the attached letter report, which provides both
supplemental information regarding the June 29 meeting key points and requested
literature references. The key points from both Dr. Yarar's visit and his letter are:

" Filtration should be preceded by sedimentation whenever possible.
* Compositionally consistentrfeed slurries is key to optimum solid-liquid separation

performance.
* Clear solids removal requirements must be well defined to select the appropriate

removal technique.
" Without flocculation, solids removal options become very limited.
* Flocculation would be more effective in slurries with >1% solids loading.
* Flocculation/sedimentation followed by a polishing filter should be considered.
" Flotation may be another viable technique to consider.
• Hydrophobization of solids will enhance filtration and likely explains why slurries

with tetraphenyborate (TPB) have higher filtration fluxes than those without TPB.
* Another additive in place of the TPB may restore the hydrophobic quality to the

slurry and thereby improve filtration rates over the sludge/MST slurry alone.

APPROVALS

Author:
W.B. Van Pelt, Waste Processing Technology Date

Management:
S.D. Fink, TFA System Lead Date

Customer:

J.T. Carter, HLW-PE Manager Date

K.J. Rueter, HLW-Eng Manager Date

2 WSRC-TR-2000-00287 

WSRC contracted with Dr. Baki Yarar of the Colorado School of Mines to consult on 
solid-liquid separation techniques potentially applicable to sludge/monosodium titanate 
(MST) slurries. Dr. Yarar attended a working meeting on this topic at SRS on June 29, 
2000. Attendees included representatives from SRTC, Solid Waste, and High Level 
Waste (Salt Disposition Engineering). 

Pursuant to his visit, Dr. Yarar supplied the attached letter report, which provides both 
suppl¥mental information regarding the June 29 meeting key points and requested 
literature references. The key points from both Dr. Yarar's visit and his letter are: 

• Filtration should be preceded by sedimentation whenever possible. 
• Compositionally consistent;;feed slurries is key to optimum solid-liquid separation 

performance. 
• Clear solids removal requirements must be well defined to select the appropriate 

removal technique. 
• Without flocculation, solids removal options become very limited. 
• Flocculation would be more effective in slurries with> 1 % solids loading. 
• Flocculation/sedimentation followed by a polishing filter should be considered. 
• Flotation may be another viable technique to consider. 
• Hydrophobization of solids will enhance filtration and likely explains why slurries 

with tetraphenyborate (TPB) have higher filtration fluxes than those without TPB. 
• Another additive in place of the TPB may restore the hydrophobic quality to the 

slurry and thereby improve filtration rates over the sludgelMST slurry alone. 

APPROVALS 

Author: 
W.B. Van Pelt, Waste Processing Technology Date 

Management: 
S.D. Fink, TFA System Lead Date 

Customer: 
IT. Carter, HL\\:,-PE Manager Date 

K.1. Rueter, HLW-Eng Manager Date 



3 WSRC-TR-2000-00287

Prof. B. Yarar
PH: (303) 273-3768
FX: (303) 273-3719
E-Mail: byarar@mines.edu

Dr. William B. Van Pelt
Research Manager,
Waste Handling and Mechanical
Westinghouse Savannah River Company
Building 773-42 A
Aiken, SC 29808

Jul. 19, 2000

Re: MEETING REPORT: 6-29-2000 AT WSRC

Dear Dr. Van Pelt:

Based on our mebting at your facilities and in response to your e-letter dated 7-6-2000
I am pleased to present the following report regarding the solid/liquid separation
procedures of the slurries under discussion.

First of all, allow me to note that the statements in the "key points list" we have generated
during the meeting, are perfectly valid as we have discussed them in detail; and the
material below is a supplement to this list.

Needs:

1) The first need is that the processing plant which may have the flowsheet steps of
flocculation =* sedimentation = decantation =* filtration =* etc , should be
assured to receive feed with a uniform composition. Solids content, pH, ionic-
composition etc., should always be the same, within the limits of design
tolerances. This can be accomplished by continuously or batchwise blending of
the feed material from various storage tanks. The blending should follow an exact
recipe in perpetuity.

2) The above is true for whatever process is chosen among your candidate
solid/liquid separation procedures, i.e.: Solvent extraction or flocculation/filtration
or ion exchange etc.

3) Among the process options presented, by Dr. Poirier my perception is that the one
entitled "TBP Precipitation" is the most likely to succeed in such a system as
yours, though, it needs to be slightly modified or perhaps the figure presented
should be expanded to include more detail. I would be happy to work with you on
a modified version of this flowsheet for the process.

Dr. William B. Van Pelt 
Research Manager, 
Waste Handling and Mechanical 
Westinghouse Savannah River Company 
Building 773-42 A 
Aiken, SC 29808 

JuI. 19,2000 

3 

Re: MEETING REPORT: 6-29-2000 AT WSRC 

Dear Dr. Van Pelt: 

WSRC-TR-2000-00287 

Prof. B. Yarar 
PH: (303) 273-3768 
FX: (303) 273-3719 
E-Mail: byarar@mines.edu 

Based on our meeting at your facilities and in response to your e-Ietter dated 7-6-2000 
I am pleased to present the following report regarding the solid/liquid separation 
procedures of the slurries under discussion. 

First of all, allow me to note that the statements in the "key points list" we have generated 
during the meeting, are perfectly valid as we have discussed them in detail; and the 
material below is a supplementto this list. 

Needs: 

1) The first need is that the processing plant which may have the flowsheet steps of 
flocculation ~ sedimentation ~ decantation ~ filtration ~ etc , should be 
assured to receive feed with a uniform composition. Solids content, pH, ionic­
composition etc., should always be the same, within the limits of design 
tolerances. This can be accomplished by continuously or batchwise blending of 
the feed material from various storage tanks. The blending should follow an exact 
recipe in perpetuity . 

. 2) The above is true for whatever process is chosen among your candidate 
solid/liquid separation procedures, i.e.: Solvent extraction or flocculation/filtration 
or ion exchange etc. 

3) Among the process options presented, by Dr. Poirier my perception is that the one 
entitle9. "TBP Precipitation" is the most likely to succeed in such a system as 
yours, thoug~, it needs to be slightly modified or perhaps the figure presented 
should be expanded to include more detail. I would be happy to work with you on 
a modified version of this flowsheet for the process. 



4 WSRC-TR-2000-00287

4) Since the solids content of the original feedstock is low, flocculation would be
more efficient if its solids content is raised to 1 % or more. I note from the report
by Dr. P. A. Taylor that such a slurry has been taken in model studies. This is a
correct type of slurry that can flocculate better.

5) For the choice of applicable filtration technology my feeling is that one should
use regular drum or belt filtration to remove the flocculated solids which have
gone through a sedimentation/decantation procedure, followed by a polishing
filtration step applied to the clarified thickener overflow.

6) The polishing step could possibly use a high-capacity-small pore size filter such
as the "Mott Filter" cited during our meeting. Naturally, testing should define the
ultimate choice.

7) We have noted That a hydrophobic filter-cake will likely be much easier to
dewater. Most likely NaTBP would render the cake with monosodium titanate
quite hydrophobic. Your researchers will know the true answer to this from their
own experience. Hydrophobic particles will also aggregate in water as if they
were treated with a low molecular weight flocculant solution. The phenomenon is
known as 'hydrophobic bonding" or "hydrophobic aggregation".

8) The advantage of an aggregated-solids-containing slurry is what we know as
"blanketing effect" where the aggregates drag all other solids down to the bottom
of the sedimentation tank.

There is good chance that hydrophobic aggregates with the help of entrapped air-
bubbles will partly float to the top of the sedimentation tank. In that case I wonder
if "flotation" has ever been considered by your team as a solid/liquid separation
approach. "Dissolved air flotation" or "micro-bubble flotation" are off-the-shelf
technologies used by water treatment technologists for the preparation of potable
water. Such systems work exceptionally-well with slurries that contain only small
concentrations of solids. The following reference might be a worthwhile source
for an introductory preview of this widespread technology. [ F. N. Kemmer
(editor) "The NALCO Water Handbook, second edition, McGraw-Hill, New
York, 1987, p. 9.18)

I would be happy to deliver a lecture or brief a group on flotation technology, if/when
you choose. Modesty notwithstanding, I am internationally known in the areas of
flotation and flocculation. Similarly in the ultimate, I would be happy to consider running
hydrophobization and flotation tests in my laboratory at CSM (Colorado School of
Mines), if yourjdecisions lead to it.

9) In response to your question on "research needs" I propose the following
approach prior to undertaking a new research program:

a) Form a small committee consisting of two or maximum three persons,
from your own research team together with Dr. Taylor and myself if you
like.

b) The committee should generate questions and sift the information
available on your shelves, in a short period like a few days.
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c) The questions should be seeking what is available for the your TBP
Precipitation process and remain strictly germane to it. Then if necessary
undertake a research program to fill in the gaps of information that will
serve this model ( hypothetical flowsheet).

10) A special note on flocculation and flocculants:

I remember that I participated in the early stages of a research project that was
commissioned by WSRC to a company named Colorado Minerals Research Institute,
in Golden, Colorado. Its manager is still Bob Cutriss. I think they produced a report
which must be in your records. If it is not confidential ( I was part of the team, and I
can sign a confidentiality agreement if needed) I would like to look at this report.
As part of my contribution, I produced a chapter (if they included it in the submittal)
where I briefly explained how flocculant molecules would behave in such a high pH
and high ionic strength aqueous medium. In outline I explained two potential events
that flocculant molecules would experience, viz.,:

a) Flocculant molecules will be screened away from adsorption sites due to high
ionic concentrations and

b) They will likely coil up and exhibit a reduced effective molecular weight.

My suggestion is: let me look at this report, then make a few phone calls to flocculant
vendors and write you a few pages on the likely approach you can adopt for the
choice of a flocculant/surfactant system to render the flocs hydrophobic.

11) Note on Hydrophobicity and filtration ( your question-2 in e-letter)

Filtration is a process of fluid (water) motion in capillary media. Thus a filter-cake is a
network Of capillaries. The following references for example provide an insight into the
relationship of hydrophobic solids and the flow of water in a single capillary made of
such solids. (see appendix-I for full reference and photocopies of relevant pages)

Reference-l: Adamson, Physical Chemistry of Surfaces; particularly p. 435 and equation
XIII-3.

Reference-2: Ross, on p. 110 has equation A-82, which is the same of Adamson's. The
accompanying quotation is: "The pressure, ziP, required to blow a liquid out of a
capillary tube of radius (r) is also a result of the curvature of the liquid surface".

AP=(2 a cos 0)/r

Since 0 is the contact angle (se Reference-1 Adamson for concept) and in aqueous media
0 = 0 indicates a hydrophilic solid and 0 > 0 indicates a hydrophobic solid, it follows
from inserting values into this equation that AP will get smaller for increased
hydrophobicity of the solid, i.e.: easier filtration..
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Reference-3: Klimpel, which is the proceedings of a conference, on p. 213 has a paper by
S.K.Mishra. On p.215 of this paper, equation (9) is given as follows:

Sr a constant (1/log y cos 0)

Here, y is the surface tension of the aqueous phase.
This expression, again, is in agreement with the one cited above (Adamson and Ross).
This expression integrates the expressions cited with the filtration equation (Darcy)
which is more familiar to chemical engineers.

As Mishra points out elsewhere in the paper, and references he quotes, surfactants and
oils are used to make the solid hydrophobic and they need to be compatible with the
solids filtered, since filtration systems are'subject to the combined influence(s) of
numerous variables.
We also know that in many applications hydrophobic solids are commercially available
to be used as filtration aids (slurry additives). Similarly, some patents disclose the use of
fiber-like additives as filtration aids. Such additives, create micro-channels (capillaries)
between their wall and the solid being filtered, thus enhancing the overall filtration
process.

Overall, therefore, we have fundamental and practical evidence that hydrophobicity aids

filtration.

Please let me know if I can assist your efforts in any other way.

With kind regards.

Yours sincerely.

Baki Yarar

addition: Appendix- 1
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August 30, 1982

APPROVED for Release for
TO: J. H. H-ERSHEY, 704-F Unlimited (Release to Public)

FROM: W. L. WEST' f704-3F

Recent SRL corrosion inhibitor tests indicated the previous
corrosion inhibitor limits in TA 2-970A for tank 20 salt
removal are inadequate.1 SRL has recommended that dissolved
salt solutions up to 5.5M nitrate be kept within existing
DSTS 241-5.9.1 Technical Standard (TS) corrosion inhibitor
limits. Limits for salt solutions above 5.5M nitrate are
being evaluated by SRL.

Continued salt removal in tank 20 would require substantial
addition of corrosion inhibitors to keep the salt solution
within Technical Standard limits. Existing tank 20 facilities
cannot provide the mixing required to ensure that dissolved
salt solutions are maintained inside TS limits.

The demonstration of density driven salt removal in tank 20
should be considered complete. The salt remaining in tank
20 can be removed by mechanical agitation with the slurry
pumps provided by Project 9S-2081. Pumps and chemical
addition facilities provided by the Project will permit
adequate control of solution chemistry during the remainder
cf tank 20 salt removal.

DISCUSSION

The tank 20 density driven salt removal demonstration
began in June 1980 and has removed about 714,000 gallons
cf salt (66.2% of original salt) in 1,557,000 gallons of
solution at an average specific gravity of 1.4.
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Corrosion inhibitors (N02 and OH-) in the dissolved salt
solutions were permitted to be outside TS corrosion inhibitor
limits under TA 2-970A (see Table i).

The TA inhibitor limits for salt removal were based on 2
electropotential measurements made by SRL on unstressed steel.
Recent SRL corrosion results from slow strain rate and
fracture mechanics tests on steel in high nitrate (>5.5M) salt
solutions indicate the TA corrosion inhibitor limits were not
as conservative as originally thought.]1 Based on these recent
test results, SRL has recommended conducting sgIt removal
within existing TS corrosion inhibitor limits.3 SRL is
evaluating the inhibitor limits required for dissolved salt
solutions above 5.5H (NO3]. Presently, tank 20 solution is
within TS limits.

During salt removal from tank 20, about 30% of the dissolved
saLt solution was outside TS corrosion inhibitor limits.
La'rge volumes of inhibitors (up to 10,000 gallons per batch)
could be required to maintain tank 20 chemistry within Technical
Standard limits. Thorough mixing of inhibitors with the salt
solution would.be necessary to control solution chemistry.
No facilities are currently available to agitate and mix the
tank 20 solution. Use of slurry pumps for final salt removal
had already been planned. Project 9S-2081 will provide slurry
pwpse and inhibitor addition facilities to remove the remaining
66,000 gallons of salt in tank 20.

Di scontinuing density-gradient driven salt removal in tank
20 means that removal of an additional 100,000 gallons of
salt in tank 20 containing about 280,000 Ci (about 6% of
the total activity currently in type IV tanks) will be delayed
about 4 years until completion of Project 9S-2081 in 1986.
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G. M. Johnson, 704-8F
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R. A. Scaggs, 704-8H
J. E. Owen, 704-2H
E. B. Snell, 704-2H
D. J. Coon, 704-1H
A. Q. Goslen, 704-2H
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TABLE

CORKOSION INHIBITOR LIMITS
TA 2-970A VERSUS TECHNICAL STANDARDS
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For all 1O0
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[OHW] > 0.50M

Technical

Nitrate Range

Above 5.5M NO3
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Alternative #/Title Disposition Comments
ML6 - KBI centrifugal bioreactor technology (CBR) - Reject-Science 4b, Theoretical application only and no

micro-organisms identified for Cs.
Reject-Safety lb, Does not meet final disposal form.

ML7 - Grout disposal of salt solution containing Cs 137 in Reject-Safety lb, Does not meet final disposal form. Hybrid to address waste form,
Saltstone renumber as ML7.1

ML7. i - Disposal of salt solution containing Cs 137. ACCEPT including requirements to meet Class C
Cs loading if saltstone is used

ML8 - Interstitial fluid displacement for preferential Reject-Safety Ib, Does not meet final disposal form.
recovery of Cs from saltcake Reject-Science 4b, Inadequate basis.

Reject-Process 5d, Inadequate eng basis.

ML9 - Salt dehydration and encapsulation. Reject-Safety lb, Does not meet final disposal form. Hybrid to add TRU to WIPP,
renumber as ML9.1

ML9. I - Salt dehydration and encapsulation with TRU ACCEPT
going to WIPP

ML 10 - In situ grouting of salt within the HLW tanks Reject-Schedule 2b, Need for additional tanks to support Need-to check volume reduction /increase
current missions from grouting. Hybrid disposition
Reject-Process 5al, Space availability included under ML7.1

MLI 1 - Bio-denitrification in large tanks Reject-Science 4b, Availability of biological agent Hybrid rejected based on no benefit from
Reject-Process 5d, Engineering maturity for Process scale this denitrification approach even
& material considered with other technology

MLI2 - Direct processing of interstitial liquid from ACCEPT No restriction from DF requirement
crystallized salt solutions

ML) 3 - Grout the salt solution in a purpose built facility ACCEPT
without worrying about separating the Cs-137, etc.

4215-98
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Barriers to Implementation of HLW Salt Processing Options

The focus of this concluding chapter is on the third charge of the committee's statement of task (see
Chapter I): "Are there significant barriers to the implementation of any of the preferred alternatives, taking into
account their state of development and their ability to be integrated into the existing Savannah River Site (SRS)
high-level waste (HLW) system?" Many of the research and development (R&D) barriers to implementation of
salt processing alternatives were addressed in Chapter 3, Chapter 4, Chapter 5, Chapter 6, Chapter 7, and will not
be repeated here. Instead, this chapter focuses on what the committee considers to be two "global" challenges for
selecting and implementing a salt processing alternative: (1) systems integration, and (2) program management.

SYSTEMS INTEGRATION

HLW salt processing is a single but key component of a much larger HLW processing system (see
Figure 1.2), and the option(s) selected for processing the HLW salts must be fully compatible with the other
system components. The U.S. Department of Energy (DOE) recognized the importance of systems engineering'

to the success of the salt processing program when it asked the committee to comment on systems integration in
this thirdcharge. Given the abbreviated schedule for this project, the committee did not have an opportunity to
perform a detailed analysis of the HLW system at SRS or the potential for integration of the candidate processing
options into that system. The committee did, however, gather much information on this issue through its oral and
written communications with SRS staff throughout the course of this study. Much of this information is
presented in Chapter 3, Chapter 4, Chapter 5, Chapter 6, Chapter 7, of this report. Based on this information,
the committee concludes that

See Systems Analysis and Systems Engineering in Environmental Remediation Programs at the
Department of Energy Hanford Site (National Research Council, 1998) for a good discussion of systems
engineering concepts.

Copyright © National Academy of Sciences. All rights reserved.
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I See Systems Analysis and Sy.Hems Engineering in 'Environmental Remediation Programs at the 
Department of Energy Hanford Site (National Research Council, 1998) for a good discussion of systems 
engineering concepts. 
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systems integration is not adequately implemented in the HLW saltprocessing options program at SRS.
The committee observed that cesium, strontium, and actinide processing are being treated as individual

issues rather than as components of a fully integrated engineered system. The committee did see some evidence
that systems engineering approaches are being used at SRS-for example, SRS is considering the potential

impacts of waste stream feeds to the Defense Waste Processing Facility (DWPF) in its evaluation of processing
5! • options. However, other essential aspects of a systems engineering approach were lacking, especially the
Z d)integrated consideration of alternative flowsheets for processing the HLW salt solutions.

The following example perhaps best illustrates the committee's conclusion on this point: As the committee
became better acquainted with the HLW system at SRS, the members realized that the tank wastes were more
variable in chemical and radionuclide compositions than they had been led to believe initially. The compositional

o C differences are caused by differing inputs to the tanks from reprocessing operations (see Chapter I) over the
-• years and by subsequent tank transfers and processing operations. In fact, the tanks contain variable quantities of

EE.9 sludge, saltcake, and supernate, and radionuclide concentrations can vary from tank to tank by several orders of

L• -• magnitude. This variability is illustrated for some key radionuclides in.Figure 8. 1, Figure 8.2, Figure 8.3.
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FIGURE 8.1 Histogram showing the variation of strontium-90 activity in soluble radionuclides in the high-level
E waste tanks at Savannah River. SOURCE:, Data from Fowler (2000); see Table 1.2 of this report.
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These observed intertank variabilities led the committee to pose the following questions about
imnplementation of each salt processing option:

1) Should all tanks be subject to the same processing operations? Although the average concentrations
of soluble radionuclides in the tank waste appear to be above saltstone limits (see Table 7.1), the
concentrations of soluble radionuclides in some of the tanks (see Table 1.2) fall below the supernate
waste stream, limits for the saltstone facility-suggesting that the contents of some tanks could be

•>lo sent directly to grout with little or no radio-nuclide removal. Thus, instead of blending tank wastes
to produce a feed that might allow all tank contents to be treated by a single process, as is now
planned, would it be advantageous to tailor processing based on chemical and radionuclide contents

0 of individual tanks? For example, could tank wastes with little or no cesium be processed only to

2J remove strontium and actinides---essentially, the direct grout option discussed in Chapter 7?E a
2• Alternatively, could tank wastes with low strontium and actinide concentrations be processed only

t; to remove cesium? Indeed, could tank wastes with low actinide, strontium, and cesium
concentrations be sent directly to the saltstone facility after minor waste conditioning (e.g., filtration)?

0 2 Although this tailored approach might require additional regulatory approval and perhaps some

facility modifications (e.g., the construction of additional waste transfer lines), it might allow the
0z tank wastes to be processed on a faster schedule, thereby reducing costs and freeing up tank storage

space for ongoing HLW processing operations. Indeed, using this approach, SRS might be able to
process some tank wastes before a cesium processing option is selected and implemented, because
the saltstone facility already exists. Once a cesium processing option is implemented, SRS could

-Z -, focus its processing efforts on the high-cesium tanks, which would produce the cesium feed stream
that may be used later this decade to immobilize excess weapons plutonium.

- 2) Should the actinide and strontium processing step be performed prior to cesium removal? Only for
the tetraphenylborate (TPB) process have advantages been presented by SRS for the MST operation
as a front-end step (see Chapter 3). For other process options, the committee sees no advantages in
removing these radionuclides in a front-end operation and believes that there may, in fact, be a

-•i 0 significant disadvantage: shielding requirements are higher, thereby increasing the hazard, cost, and
× ýtime of processing. The removal of cesium in a front-end step could result in much reduced radiation
, fields, allowing strontium and actinides to be removed in a smaller, less expensive facility. As noted

previously, the MST processing step might be skipped altogether for tank wastes with low strontium
0 •and cesium concentrations.

Z3

w Recommendation: SRS should implement a more fully inte grated systems engineering approach for
. .processing HLW salt solu

2

- • >.(

'-.

2 Dilution of the supernate during salt processing operations could further reduce the radionuclide concentrations
shown in Table 1.2, thereby allowing more tank waste-to be sent to the saltstone facility without the need for

0- .C_ E extensive radionuclide separations.
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tions. To this end, SRS should consider (1) tailoring the processing op erations to tank waste contents,
with the goal of reducing processingtime and costs and freeing up tank space, and (2) changing the order
of processing to remove radionuclides from the HLW salt solutions, withthe goal of reducing processing

hazards, costs, and time.

PROGRAM MANAGEMENT

1 As noted in several chapters of this report, the committee has concluded that SRS generally appears to have
a good understanding of the technical uncertainties that must be resolved before a HLW salt processing option

.Z •can be implemented, and the committee has recommended approaches to and conduct of R&D work to resolve
0 E these uncertainties. Assuming that this R&D work is adequately funded and the appropriate people are identified

- 2 to perform this work, the main barrier to the successful implementation of a salt processing option then involves
0 utwo management issues: (I) ensuring that the R&D work stays properly focused on the right problems; and (2)
0 -L ensuring that the salt processing program uses the information gathered by the R&D program to make
Z a, appropriate selection and implementation decisions. The remainder of this chapter addresses these issues.
0 .

0 The experience with in-tank precipitation (see Chapter 4) illustrates how unanticipated technical "surprises"
- can upset even seemingly well-planned projects. Given the large volume and the chemical complexity of tank

.•waste at SRS, such unexpected problems are possible and perhaps even likely in the future. Consequently, a
-• •primary objective of the R&D program on alternatives should be to bound performance over the range of waste

and operating conditions likely to be encountered during future processing operations. This will enable engineers
02 •to design and implement a process that can accommodate such future surprises without major upsets to the high-

-S -level waste system.

o a) The R&D program will likely be conducted at several sites across the country, and competent technical
leadership will be required to ensure that this program is properly focused and coordinated. The committee does
not believe that the R&D program management should reside solely at SRS, because that site does not
have the full range of technical capabilities required to direct and evaluate the required R&D work. The

122 •committee had contact with many technical staff at SRS during the course of this review and found them, on the

whole, to be a capable and dedicated group. Nevertheless, considerable experience is present at several other
k. DOE sites (e.g., experience with cesium removal at Hanford Site and Oak Ridge National Laboratory). SRS
0 should take greater advantage of this knowledge and experience. This Work has been and will most likely

continue to be carried out at a number of companies, universities, and national laboratories. The committee
n0 believes that the personnel who oversee and evaluate this work should have the similar range of technical

E •:expertise as the experts who actually perform the R&D. DOE Order 435.1 'specifies that leadership and
2 responsibility for

.2

m o
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0 ~35 kgal waste remaining.

* 100 % retrieved based on
beginning inventory.

e Solid monolith of salt 75 ft
diameter and ~ 20 inches thick.

* Pump screen is blinding.
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•LSurpriises1  ....... ..

* We did not anticipate the length of time
to dissolve the salt.

- Dissolution is controlled by surface area,
temperature, degree of saturation at
interface

* Degree of density stratification in brine
* Impact of endothermic reaction
* Hard nonporous salt layers and their

impact on progress
* Plugging of pump screen

CHG0503-13.20
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- Use the hottest water the system
. -j •can tolerate.

• Some method of stirring is
essential, especially near the end.

* Screens on pump suction may
cause more problems than they

&protect against.

* Train and retrain the operating
staff.
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, essential, especially near the end. 
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Lessons L-earnedý

* Design equipment and processes
for relatively long use.

" Most of the mobile radionuclides
wash out of the salt early in the
process.

-Treat software with the same rigor
as hardware during design,
installation, and operation

* If it works don't fix it.
CHG0503-13.22
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