B 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits

BASES	
BACKGROUND	These Bases address requirements for maintaining RCS pressure, temperature, and flow rate within the limits assumed in the safety analyses. The safety analyses (Ref. 1) of normal operating conditions and anticipated operational occurrences assume initial conditions within the normal steady state envelope of operating conditions. The limits placed on RCS pressure, temperature, and flow rate ensure that the minimum departure from nucleate boiling ratio (DNBR) will be met for each of the transients analyzed.
	The RCS pressure limit is consistent with operation within the nominal operational envelope. Pressurizer pressure indications are averaged to come up with a value for comparison to the limit. A lower pressure will cause the reactor core to approach DNBR limits.
	The RCS coolant average temperature limit is consistent with full power operation within the nominal operational envelope. Indications of temperature are averaged to determine a value for comparison to the limit. A higher average temperature will cause the core to approach DNB limits.
	The RCS flow rate normally remains constant during an operational fuel cycle with all pumps running. The minimum RCS flow limit corresponds to that assumed for DNB analyses. At the beginning of the first fuel cycle, precision (calorimetric) flow measurements, augmented by hydraulic measurements in the reactor coolant loop and pump performance, provide a value for comparison to the limit. The reactor coolant flow rate channels are normalized to these test measurements for 100-percent indication and are frequently monitored to determine flow degradation. A lower RCS flow will cause the core to approach DNB limits.
	Operation for significant periods of time outside these DNB limits increases the likelihood of a fuel cladding failure in a DNB limited event.
APPLICABLE SAFETY ANALYSES	The requirements of this LCO represent the initial conditions for DNB limited transients analyzed in the plant safety analyses (Ref. 1). The safety analyses have shown transients initiated within the requirements of this LCO will result in meeting the DNBR criterion. This is the acceptance limit for the RCS DNB parameters. Changes to the unit which could impact these parameters must be assessed for their impact on the DNBR criterion. The transients analyzed include loss of coolant flow events and

LCO

APPLICABLE SAFETY ANALYSES (continued)

dropped or stuck rod events. An assumption for the analysis of these events is that the core power distribution is within the limits of LCO 3.1.6, "Control Bank Insertion Limits"; LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)"; and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)."

The pressurizer pressure limit and the RCS average temperature limit specified in the COLR correspond to analytical limits, with an allowance for steady state fluctuations and measurement errors. The RCS average temperature limit corresponds to the analytical limit with allowance for controller deadband and measurement uncertainty.

The RCS DNB parameters satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

This LCO specifies limits on the monitored process variables, pressurizer pressure, RCS average temperature, and RCS total flow rate to ensure the core operates within the limits assumed in the safety analyses. These variables are contained in the COLR to provide operating and analysis flexibility from cycle to cycle. However, the minimum RCS flow, usually based on maximum analyzed steam generator tube plugging, is retained in the TS LCO. Operating within these limits will result in meeting DNBR criterion in the event of a DNB limited transient.

RCS total flow rate contains a measurement error based on performing precision flow measurements and using the result to normalize the RCS flow rate indicators.

The numerical values for pressure, temperature, and flow rate specified in the COLR are given for the measurement location but have been adjusted for instrument error.

APPLICABILITY In MODE 1, the limits on pressurizer pressure, RCS coolant average temperature, and RCS flow rate must be maintained during steady state plant operation in order to ensure DNBR criterion will be met in the event of an unplanned loss of forced coolant flow or other DNB-limiting transient. In all other MODES, the power level is low enough that DNB is not a concern.

A Note has been added to indicate the limit on pressurizer pressure is not applicable during short term operational transients such as a THERMAL POWER ramp increase > 5% RTP per minute or a THERMAL POWER step increase > 10% RTP. These conditions represent short term perturbations where actions to control pressure variations might be

APPLICABILITY (continued)

counterproductive. Also, since they represent transients initiated from power levels < 100% RTP, an increased DNBR margin exists to offset the temporary pressure variations.

The DNBR limit is provided in SL 2.1.1, "Reactor Core SLs." The conditions which define the DNBR limit are less restrictive than the limits of this LCO, but violation of a Safety Limit (SL) merits a stricter, more severe Required Action. Should a violation of this LCO occur, the operator must check whether an SL may have been exceeded.

ACTIONS

RCS pressure and RCS average temperature are controllable and measurable parameters. With one or both of these parameters not within LCO limits, action must be taken to restore parameter(s).

RCS total flow rate is not a controllable parameter and is not expected to vary during steady state operation. If the indicated RCS total flow rate is below the LCO limit, power must be reduced, as required by Required Action B.1, to restore DNB margin and eliminate the potential for violation of the accident analysis bounds.

The 2 hour Completion Time for restoration of the parameters provides sufficient time to adjust plant parameters, to determine the cause for the off normal condition, and to restore the readings within limits, and is based on plant operating experience.

<u>B.1</u>

A.1

If Required Action A.1 is not met within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 2 within 6 hours. In MODE 2, the reduced power condition eliminates the potential for violation of the accident analysis bounds. The Completion Time of 6 hours is reasonable to reach the required plant conditions in an orderly manner.

SURVEILLANCE <u>SR 3.4.1.1</u> REQUIREMENTS

Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency of pressurizer pressure is sufficient to ensure the pressure can be

SURVEILLANCE REQUIREMENTS (continued)

restored to a normal operation, steady state condition following loadchanges and other expected transient operations. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions.

SR 3.4.1.2

Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency for RCS average temperature is sufficient to ensure the temperature can be restored to a normal operation, steady state condition following load changes and other expected transient operations. The 12 hour Frequency has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions.

SR 3.4.1.3

The 12 hour Surveillance Frequency for RCS total flow rate is performed using the installed flow instrumentation. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess potential degradation and to verify operation within safety analysis assumptions.

<u>SR 3.4.1.4</u>

Measurement of RCS total flow rate by performance of precision test measurements once every 24 months, at the beginning of each fuel cycle, allows the installed RCS flow instrumentation to be normalized and verifies the actual RCS flow is greater than or equal to the minimum required RCS flow rate. These test measurements may be based on a precision heat balance, or by differential pressure measurements of static elements in the RCS piping (such as elbows) that have been calibrated by previous precision tests, or by a combination of those two methods. In all cases, the measured flow, less allowance for error, must exceed the value used in the safety analysis and specified in the COLR.

The Frequency of 24 months reflects the importance of verifying flow after a refueling outage when the core has been altered, which may have caused an alteration of flow resistance.

SURVEILLANCE REQUIREMENTS (continued)

This SR is modified by a Note that allows entry into MODE 1, without having performed the SR, and placement of the unit in the best condition for performing the SR. The Note states that the SR is not required to be performed until after 24 hours after \geq 90% RTP. This exception is appropriate since the heat balance requires the plant to be at a minimum of 90% RTP to obtain the stated RCS flow accuracies. The Surveillance shall be performed within 24 hours after reaching 90% RTP.

REFERENCES 1. Chapter 15, "Accident Analyses."

B 3.4.2 RCS Minimum Temperature for Criticality

BASES

BACKGROUND This LCO is based upon meeting several major considerations before the reactor can be made critical and while the reactor is critical. The first consideration is moderator temperature coefficient (MTC), LCO 3.1.3, "Moderator Temperature Coefficient (MTC)." In the transient and accident analyses, the MTC is assumed to be in a range from zero to negative and the operating temperature is assumed to be within the nominal operating envelope while the reactor is critical. The LCO on minimum temperature for criticality helps ensure the plant is operated consistent with these assumptions. The second consideration is the protective instrumentation. Because certain protective instrumentation (e.g., excore neutron detectors) can be affected by moderator temperature, a temperature value within the nominal operating envelope is chosen to ensure proper indication and response while the reactor is critical. The third consideration is the pressurizer operating characteristics. The transient and accident analyses assume that the pressurizer is within its normal startup and operating range (i.e., saturated conditions and steam bubble present). It is also assumed that the RCS temperature is within its normal expected range for startup and power operation. Since the density of the water, and hence the response of the pressurizer to transients, depends upon the initial temperature of the moderator, a minimum value for moderator temperature within the nominal operating envelope is chosen. The fourth consideration is that the reactor vessel is above its minimum nil-ductility reference temperature when the reactor is critical. APPLICABLE Although the RCS minimum temperature for criticality is not itself an initial condition assumed in Design Basis Accidents (DBAs), the closely aligned SAFETY temperature for hot zero power (HZP) is a process variable that is an ANALYSES initial condition of DBAs, such as the rod cluster control assembly (RCCA) withdrawal, RCCA ejection, and main steam line break accidents performed at zero power that either assume the failure of, or presents a challenge to, the integrity of a fission product barrier.

APPLICABLE SAFETY ANALYSES (continued)

All low power safety analyses assume initial RCS loop temperatures ≥ the HZP temperature of 557°F (Ref. 1). The minimum temperature for criticality limitation provides a small band, 6°F, for critical operation below HZP. This band allows critical operation below HZP during plant startup and does not adversely affect any safety analyses since the MTC is not significantly affected by the small temperature difference between HZP and the minimum temperature for criticality.

The RCS minimum temperature for criticality parameter satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO Compliance with the LCO ensures that the reactor will not be made or maintained critical ($k_{eff} \ge 1.0$) at a temperature less than a small band below the HZP temperature, which is assumed in the safety analysis. Failure to meet the requirements of this LCO may produce initial conditions inconsistent with the initial conditions assumed in the safety analysis.

APPLICABILITY In MODE 1 and MODE 2 with $k_{eff} \ge 1.0$, LCO 3.4.2 is applicable since the reactor can only be critical ($k_{eff} \ge 1.0$) in these MODES.

The special test exception of LCO 3.1.8, "MODE 2 PHYSICS TEST Exceptions," permits PHYSICS TESTS to be performed at \leq 5.0% RTP with RCS loop average temperatures slightly lower than normally allowed so that fundamental nuclear characteristics of the core can be verified. In order for nuclear characteristics to be accurately measured, it may be necessary to operate outside the normal restrictions of this LCO. For example, to measure the MTC at beginning of cycle, it is necessary to allow RCS loop average temperatures to fall below T_{no load}, which may cause RCS loop average temperatures to fall below the temperature limit of this LCO.

ACTIONS <u>A.1</u>

If the parameters that are outside the limit cannot be restored, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 2 with $k_{eff} < 1.0$ within 30 minutes. Rapid reactor shutdown can be readily and practically achieved within a 30 minute period. The allowed time is reasonable, based on operating experience, to reach MODE 2 with $k_{eff} < 1.0$ in an orderly manner and without challenging plant systems.

BASES	
SURVEILLANCE REQUIREMENTS	<u>SR 3.4.2.1</u>
	RCS loop average temperature is required to be verified at or above 551°F every 12 hours. The SR to verify RCS loop average temperatures every 12 hours takes into account indications and alarms that are continuously available to the operator in the control room and is consistent with other routine Surveillances which are typically performed once per shift. In addition, operators are trained to be sensitive to RCS temperature during approach to criticality and will ensure that the minimum temperature for criticality is met as criticality is approached.
REFERENCES	1. Chapter 15, "Accident Analyses."

B 3.4.3 RCS Pressure and Temperature (P/T) Limits

BASES

BACKGROUND	All components of the RCS are designed to withstand effects of cyclic loads due to system pressure and temperature changes. These loads are introduced by startup (heatup) and shutdown (cooldown) operations, power transients, and reactor trips. This LCO limits the pressure and temperature changes during RCS heatup and cooldown, within the design assumptions and the stress limits for cyclic operation.
	The PTLR contains P/T limit curves for heatup, cooldown, inservice leak and hydrostatic (ISLH) testing, and data for the maximum rate of change of reactor coolant temperature.
	Each P/T limit curve defines an acceptable region for normal operation. The usual use of the curves is operational guidance during heatup or cooldown maneuvering, when pressure and temperature indications are monitored and compared to the applicable curve to determine that operation is within the allowable region.
	The LCO establishes operating limits that provide a margin to brittle failure of the reactor vessel and piping of the reactor coolant pressure boundary (RCPB). The vessel is the component most subject to brittle failure, and the LCO limits apply mainly to the vessel. The limits do not apply to the pressurizer, which has different design characteristics and operating functions.
	10 CFR 50, Appendix G (Ref. 1) requires the establishment of P/T limits for specific material fracture toughness requirements of the RCPB materials. An adequate margin to brittle failure must be provided during normal operation, anticipated operational occurrences, and system hydrostatic tests. Reference 1 mandates the use of the ASME Code, Section III, Appendix G (Ref. 2).
	The neutron embrittlement effect on the material toughness is reflected by increasing the nil ductility reference temperature (RT_{NDT}) as exposure to neutron fluence increases.
	The actual shift in the RT_{NDT} of the vessel material will be established periodically by removing and evaluating the irradiated reactor vessel material specimens, in accordance with ASTM E 185 (Ref. 3) and Appendix H of 10 CFR 50 (Ref. 4). The operating P/T limit curves will be adjusted, as necessary, based on the evaluation findings and the recommendations of Regulatory Guide 1.99 (Ref. 5).

BACKGROUND (continued)

The P/T limit curves are composite curves established by superimposing limits derived from stress analyses of those portions of the reactor vessel and head that are the most restrictive. At any specific pressure, temperature, and temperature rate of change, one location within the reactor vessel will dictate the most restrictive limit. Across the P/T span of the limit curves, different locations are more restrictive, and, thus, the curves are composites of the most restrictive regions.

The heatup curve represents a different set of restrictions than the cooldown curve because the directions of the thermal gradients through the vessel wall are reversed. The thermal gradient reversal alters the location of the tensile stress between the outer and inner walls.

The criticality limit curve includes the Reference 1 requirement that it be $\geq 40^{\circ}$ F above the heatup curve or the cooldown curve, and not less than the minimum permissible temperature for ISLH Testing. However, the criticality curve is not operationally limiting; a more restrictive limit exists in LCO 3.4.2, "RCS Minimum Temperature for Criticality."

The consequence of violating the LCO limits is that the RCS has been operated under conditions that can result in brittle failure of the RCPB, possibly leading to a nonisolable leak or loss of coolant accident. In the event these limits are exceeded, an evaluation must be performed to determine the effect on the structural integrity of the RCPB components. ASME Code, Section XI, Appendix E (Ref. 6) provides a recommended methodology for evaluating an operating event that causes an excursion outside the limits.

APPLICABLE SAFETY ANALYSES The P/T limits are not derived from Design Basis Accident (DBA) analyses. They are prescribed during normal operation to avoid encountering pressure, temperature, and temperature rate of change conditions that might cause undetected flaws to propagate and cause nonductile failure of the RCPB, an unanalyzed condition. Reference 7 establishes the methodology for determining the P/T limits. Although the P/T limits are not derived from any DBA, the P/T limits are acceptance limits since they preclude operation in an unanalyzed condition.

RCS P/T limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii).

 The limit curves for heatup, cooldown, ISLH testing and criticality; and Limits on the rate of change of temperature. These limits define allowable operating regions and permit a arge number of operating cycles while providing a wide margin to onductile failure. The limits for the rate of change of temperature control the thermal radient through the vessel wall and are used as inputs for calculating the eatup, cooldown, and ISLH testing P/T limit curves. Thus, the LCO for the rate of change of temperature stresses caused by thermal radients and also ensures the validity of the P/T limit curves.
and . Limits on the rate of change of temperature. The LCO limits apply to all components of the RCS, except the ressurizer. These limits define allowable operating regions and permit a arge number of operating cycles while providing a wide margin to onductile failure. The limits for the rate of change of temperature control the thermal radient through the vessel wall and are used as inputs for calculating the eatup, cooldown, and ISLH testing P/T limit curves. Thus, the LCO for the rate of change of temperature restricts stresses caused by thermal radients and also ensures the validity of the P/T limit curves. Fiolating the LCO limits places the reactor vessel outside of the bounds of the stress analyses and can increase stresses in other RCPB
The LCO limits apply to all components of the RCS, except the ressurizer. These limits define allowable operating regions and permit a arge number of operating cycles while providing a wide margin to onductile failure. The limits for the rate of change of temperature control the thermal radient through the vessel wall and are used as inputs for calculating the eatup, cooldown, and ISLH testing P/T limit curves. Thus, the LCO for he rate of change of temperature restricts stresses caused by thermal radients and also ensures the validity of the P/T limit curves.
ressurizer. These limits define allowable operating regions and permit a arge number of operating cycles while providing a wide margin to onductile failure. The limits for the rate of change of temperature control the thermal radient through the vessel wall and are used as inputs for calculating the eatup, cooldown, and ISLH testing P/T limit curves. Thus, the LCO for he rate of change of temperature restricts stresses caused by thermal radients and also ensures the validity of the P/T limit curves.
radient through the vessel wall and are used as inputs for calculating the eatup, cooldown, and ISLH testing P/T limit curves. Thus, the LCO for he rate of change of temperature restricts stresses caused by thermal radients and also ensures the validity of the P/T limit curves.
ne stress analyses and can increase stresses in other RCPB
. The severity of the departure from the allowable operating P/T regime or the severity of the rate of change of temperature;
. The length of time the limits were violated (longer violations allow the temperature gradient in the thick vessel walls to become more pronounced); and
. The existences, sizes, and orientations of flaws in the vessel material.
The RCS P/T limits LCO provides a definition of acceptable operation for revention of nonductile (brittle) failure in accordance with 10 CFR 50, appendix G (Ref. 1). Although the P/T limits were developed to provide uidance for operation during heatup or cooldown (MODES 3, 4, and 5) r ISLH testing, they are applicable at all times in keeping with the oncern for nonductile failure. The limits do not apply to the pressurizer. During MODES 1 and 2, other Technical Specifications provide limits for peration that can be more restrictive than or can supplement these P/T mits. LCO 3.4.1, "RCS Pressure, Temperature, and Flow Departure for Nucleate Boiling (DNB) Limits"; LCO 3.4.2, "RCS Minimum

AP1000

APPLICABILITY (continued)

maximum pressure. Furthermore, MODES 1 and 2 are above the temperature range of concern for nonductile failure, and stress analyses have been performed for normal maneuvering profiles, such as power ascension or descent.

ACTIONS The actions of this LCO consider the premise that a violation of the limits occurred during normal plant maneuvering. Severe violations caused by abnormal transients, at times accompanied by equipment failures, may also require additional actions from emergency operating procedures.

A.1 and A.2

Operation outside the P/T limits must be restored to within the limits. The RCPB must be returned to a condition that has been verified by stress analyses. Restoration is in the proper direction to reduce RCPB stress.

The 30 minute Completion Time reflects the urgency of restoring the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner.

Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify the RCPB integrity remains acceptable and must be completed before continuing operation. Several methods may be used, including comparison with preanalyzed transients in the stress analyses, new analyses, or inspection of the components.

ASME Code, Section XI, Appendix E (Ref. 6) may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline.

The 72 hour Completion Time is reasonable to accomplish the evaluation. The evaluation for a mild violation is possible within this time, but more severe violations may require special, event specific stress analyses or inspections. A favorable evaluation must be completed before continuing to operate.

Condition A is modified by a Note requiring Required Action A.2 be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration per Required Action A.1 alone is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity.

ACTIONS (continued)

B.1 and B.2

If a Required Action and associated Completion Time of Condition A are not met, the plant must be placed in a lower MODE because either the RCS remained in an unacceptable P/T region for an extended period of increased stress, or a sufficiently severe event caused entry into an unacceptable region. Either possibility indicates a need for more careful examination of the event, best accomplished with the RCS at reduced pressure and temperature. In reduced pressure and temperature conditions, the possibility of propagation with undetected flaws is decreased.

If the required restoration activity cannot be accomplished in 30 minutes, Required Action B.1 and Required Action B.2 must be implemented to reduce pressure and temperature.

If the required evaluation for continued operation cannot be accomplished within 72 hours or the results are indeterminate or unfavorable, action must proceed to reduce pressure and temperature as specified in Required Action B.1 and Required Action B.2. A favorable evaluation must be completed and documented before returning to operate pressure and temperature conditions.

Pressure and temperature are reduced by bringing the plant to MODE 3 within 6 hours and to MODE 4 within 24 hours, with RCS pressure < 500 psig.

The allowed Completion Times are reasonable based on operating experience, to reach the required plant conditions from full power condition in an orderly manner without challenging plant systems.

C.1 and C.2

Actions must be initiated immediately to correct operation outside of the P/T limits at times other than when in MODE 1, 2, 3, or 4, so that the RCPB is returned to a condition that has been verified by stress analysis.

The immediate Completion Time reflects the urgency of initiating action to restore the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner.

Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify that the RCPB integrity remains acceptable and must be completed prior to

ACTIONS (continued)

entry into MODE 4. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, or inspection of the components.

ASME Code, Section XI, Appendix E (Ref. 6), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline.

Condition C is modified by a Note requiring Required Action C.2 to be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration alone per Required Action C.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity.

SURVEILLANCE <u>SR 3.4.3.1</u> REQUIREMENTS

Verification that operation is within PTLR limits is required every 30 minutes when RCS P/T conditions are undergoing planned changes. This Frequency is considered reasonable in view of the control room indication available to monitor RCS status. Also, since temperature rate of change limits are specified in hourly increments, 30 minutes permits assessment and correction for minor deviations within a reasonable time.

Surveillance for heatup, cooldown, or ISLH testing may be discontinued when the definition given in the relevant plant procedure for ending the activity is satisfied.

This SR is modified by a NOTE that only requires this surveillance to be performed during system heatup, cooldown, and ISLH testing. No SR is given for criticality operations because LCO 3.4.2, "RCS Minimum Temperature for Criticality," contains a more restrictive requirement.

REFERENCES 1. 10 CFR 50, Appendix G, "Fracture Toughness Requirements."

- 2. ASME Boiler and Pressure Vessel Code, Section III, Appendix G, "Protection Against Non-Ductile Failure."
- ASTM E 185-82, "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels," July 1982.

REFERENCES (continued)

- 4. 10 CFR 50, Appendix H, "Reactor Vessel Material Surveillance Program Requirements."
- 5. "Embrittlement of Reactor Vessel Materials," May 1988.
- 6. ASME Boiler and Pressure Vessel Code, Section XI, Appendix E, "Evaluation of Unanticipated Operating Events."
- 7. WCAP-7924-A, "Basis for Heatup and Cooldown Limit Curves," April 1975.

B 3.4.4 RCS Loops

BASES

BACKGROUND	The primary function of the RCS is removal of the heat generated in the fuel due to the fission process, and transfer of this heat, via the steam generators (SGs) to the secondary plant.
	The secondary functions of the RCS include:
	a. Moderating the neutron energy level to the thermal state, to increase the probability of fission;
	b. Improving the neutron economy by acting as a reflector;
	c. Carrying the soluble neutron poison, boric acid;
	 Providing a second barrier against fission-product release to the environment; and
	e. Removal of the heat generated in the fuel due to fission-product decay following a unit shutdown.
	The reactor coolant is circulated through two loops connected in parallel to the reactor vessel, each containing a SG, two reactor coolant pumps (RCPs), and appropriate flow and temperature instrumentation for both control and protection. The reactor vessel contains the fuel. The SGs provide the heat sink to the isolated secondary coolant. The RCPs circulate the primary coolant through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and prevent fuel damage. This forced circulation of the reactor coolant ensures mixing of the coolant for proper boration and chemistry control.
	The RCPs must be started using the variable speed controller with the reactor trip breakers open. The controller shall be bypassed prior to closure of the reactor trip breakers.
APPLICABLE	MODES 1 and 2
SAFETY ANALYSES	Safety analyses contain various assumptions for the design bases accident initial conditions including RCS pressure, RCS temperature, reactor power level, core parameters, and safety system setpoints. The important aspect for this LCO is the reactor coolant forced flow rate, which is represented by the number of RCS loops and RCPs in service.

APPLICABLE SAFETY ANALYSES (continued)

Both transient and steady state analyses have been performed to establish the effect of flow on the departure from nucleate boiling (DNB). The transient and accident analyses for the plant have been performed assuming two RCS loops are initially in operation. The majority of the plant safety analyses are based on initial conditions at high core power or zero power. The accident analyses, where RCP operation is most important are the four pump coastdown, single pump locked rotor, single pump broken shaft or coastdown, and rod withdrawal events (Ref. 1).

Steady state DNB analysis has been performed for the two RCS loop operation. For two RCS loop operation, the steady state DNB analysis, which generates the pressure and temperature Safety Limit (SL) (i.e., the departure from nucleate boiling ratio (DNBR) limit) assumes a maximum power level of 100% RATED THERMAL POWER (RTP). This is the design overpower condition for two RCS loop operation. The value for the accident analysis setpoint of the nuclear overpower (high flux) trip is 118% and is based on an analysis assumption that bounds possible instrumentation errors. The DNBR limit defines a locus of pressure and temperature points which result in a minimum DNBR greater than or equal to the critical heat flux correlation limit.

The plant is designed to operate with both RCS loops in operation to maintain DNBR above the SL, during all normal operations and anticipated transients. By ensuring heat transfer in the nucleate boiling region, adequate heat transfer is provided between the fuel cladding and the reactor coolant.

MODES 3, 4, and 5

Whenever the reactor trip breakers are in the closed position and the control rod drive mechanisms (CRDMs) are energized, there is the possibility of an inadvertent rod withdrawal from subcritical, resulting in a power excursion in the area of the withdrawn rod. Such a transient could be caused by a malfunction of the Plant Control System (PLS). In addition, the possibility of a power excursion due to the ejection of an inserted control rod is possible with the breakers closed or open. Such a transient could be caused by the mechanical failure of a CRDM. The initial power rise is terminated by doppler broadening in the fuel pins, followed by rod insertion. During this event, if there is not adequate coolant flow along the clad surface of the fuel, there is a potential to exceed the departure from nucleate boiling ratio (DNBR) limit. Therefore, the required coolant flow is an initial condition of a design basis event that presents a challenge to the integrity of a fission product barrier.

APPLICABLE SAFETY ANALYSES (continued)

Therefore, in MODE 3, 4 or 5 with the RTBs in the closed position and the PLS capable of rod withdrawal, accidental control rod withdrawal from subcritical is postulated and requires the RCPs to be OPERABLE and in operation to ensure that the accident analysis limits are met.

In MODES 3, 4 and 5 with the RTBs open, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. This is addressed in LCO 3.4.8, "Minimum RCS Flow."

RCS Loops satisfy Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).

The purpose of this LCO is to require an adequate forced flow rate for core heat removal. Flow is represented by the number of RCPs in operation for removal of heat by the SGs. To meet safety analysis acceptance criteria for DNB, four pumps are required in MODES 1 and 2. The requirement that at least four RCPs must be operating in MODES 3. 4 and 5 when the RTBs are closed provides assurance that, in the event of a rod withdrawal accident, there will be adequate flow in the core to avoid exceeding the DNBR limit. Bypass of the RCP variable speed control ensures that the pumps are operating at full flow.

> With the RTBs in the open position, the PLS is not capable of rod withdrawal; therefore only a minimum RCS flow of 3,000 gpm is necessary to ensure removal of decay heat from the core in accordance with LCO 3.4.8, Minimum RCS Flow.

Note 1 prohibits startup of a RCP when the reactor trip breakers are closed. This requirement prevents startup of a RCP and the resulting circulation of cold and/or unborated water from an inactive loop into the core, precluding reactivity excursion events which are unanalyzed.

Note 2 prohibits startup of an RCP when the RCS temperature is $\geq 200^{\circ}$ F unless pressurizer level is < 92%. This restraint is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started.

Note 3 requires that the secondary side water temperature of each SG be \leq 50°F above each of the RCS cold leg temperatures before the start of an RCP with any RCS cold leg temperature $\leq 200^{\circ}$ F. This restraint is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started.

LCO (continued)

Note 4 permits all RCPS to be de-energized in MODE 3, 4, or 5 for \leq 1 hour per 8 hour period. The purpose of the NOTE is to permit tests that are designed to validate various accident analysis values. One of these tests is for the validation of the pump coastdown curve, used as input to a number of accident analyses including a loss of flow accident.

This test is generally performed in MODE 3 during the initial startup testing program, and as such should only be performed once. If, however, changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values of the coastdown curve may need to be revalidated by conducting the test again.

Another test performed during the startup testing program is the validation of the rod drop times during cold conditions, both with and without flow.

The no-flow tests may be performed in MODE 3, 4, or 5, and require that the pumps be stopped for a short period of time. The Note permits the de-energizing of the pumps in order to perform this test and validate the assumed analysis values. As with the validation of the pump coastdown curve, this test should only be performed once, unless the flow characteristics of the RCS are changed. The 1 hour time period specified is adequate to perform the desired tests and experience has shown that boron stratification is not a problem during this short period with no forced flow.

Utilization of the NOTE is permitted provided the following conditions are met along with any other conditions imposed by initial startup test procedures:

- a. No operations are permitted that would dilute the RCS boron concentration with coolant at boron concentrations less than required to assure the SDM of LCO 3.1.1, thereby maintaining the margin to criticality. Boron reduction with coolant at boron concentrations less than required to assure SDM is maintained is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation and
- b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause natural circulation flow obstruction.

An OPERABLE RCS loop is composed of two OPERABLE RCPs in operation providing forced flow for heat transport and an OPERABLE SG.

APPLICABILITY In MODES 1 and 2, the reactor is critical and thus has the potential to produce maximum THERMAL POWER. Thus, to ensure that the assumptions of the accident analyses remain valid, both RCS loops are required to be OPERABLE and in operation in these MODES to prevent DNB and core damage.

In MODES 3, 4 and 5, this LCO ensures forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. For these purposes and because the reactor trip breakers are closed, there is the possibility of an inadvertent rod withdrawal event. Four RCPs are required to be operating in MODES 3, 4 and 5, whenever the reactor trip breakers are closed.

ACTIONS

If the requirements of the LCO are not met while in MODE 1 or 2, the Required Action is to reduce power and bring the plant to MODE 3 with the reactor trip breakers open. This lowers power level and thus reduces the core heat removal needs and minimizes the possibility of violating DNB limits.

Condition A is modified by a Note which requires completion of Required Action A.1 whenever the Condition is entered. This ensures that no attempt is made to restart a pump with the reactor trip breakers closed, thus precluding events which are unanalyzed.

When all four reactor coolant pumps are operating, a loss of a single reactor coolant pump above power level P-10 will result in an automatic reactor trip.

The Completion Time of 6 hours is reasonable to allow for an orderly transition to MODE 3. The applicable safety analyses described above bound Design Basis Accidents (DBA) initiated with three reactor coolant pumps operating at power levels below P-10.

<u>B.1</u>

A.1

If the requirements of the LCO are not met while in MODE 3, 4 or 5, the Required Action is to remain in MODE 3, 4 or 5 and open the reactor trip breakers. This action eliminates the possibility of a rod withdrawal event with one or more pumps not operating and thus minimizing the possibility of violating DNB limits.

attempt is made to restart a pump with the reactor trip breakers closed, thus precluding events which are unanalyzed.

REQUIREMENTS

ACTIONS (continued)

BASES

The Completion Time of 1 hour is reasonable to allow for planned opening of the reactor trip breakers, since plant cool-down is not required.

Condition B is modified by a Note which requires completion of Required Action B.1 whenever the Condition is entered. This ensures that no

SURVEILLANCE SR 3.4.4.1

This SR requires verification every 12 hours that each RCS loop is in operation with the pump variable speed control bypassed. Verification includes flow rate and temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal while maintaining the margin to DNB. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the main control room to monitor RCS loop performance.

REFERENCES 1. Chapter 15, "Accident Analysis."

B 3.4.5 Pressurizer

BASES	
BACKGROUND	The pressurizer provides a point in the RCS where liquid and vapor are maintained in equilibrium under saturated conditions for pressure control purposes to prevent bulk boiling in the remainder of the RCS. Key functions include maintaining required primary system pressure during steady state operation, and limiting the pressure changes caused by reactor coolant thermal expansion and contraction during normal load transients.
	The normal level and pressure control components addressed by this LCO include the pressurizer water level, the heaters, their controls, and power supplies. Pressurizer safety valves and automatic depressurization valves are addressed by LCO 3.4.6, "Pressurizer Safety Valves," and LCO 3.4.11, "Automatic Depressurization System (ADS) – Operating," respectively.
	The intent of the LCO is to ensure that a steam bubble exists in the pressurizer prior to power operation to minimize the consequences of potential overpressure transients. The presence of a steam bubble is consistent with analytical assumptions. Relatively small amounts of noncondensible gases can inhibit the condensation heat transfer between the pressurizer spray and the steam, and diminish the spray effectiveness for pressure control.
	Electrical immersion heaters, located in the lower section of the pressurizer vessel, keep the water in the pressurizer at saturation temperature and maintain a constant operating pressure.
APPLICABLE SAFETY ANALYSES	In MODES 1, 2, and 3, the LCO requirement for a steam bubble is reflected implicitly in the accident analyses. Safety analyses performed for lower MODES are not limiting. All analyses performed from a critical reactor condition assume the existence of a steam bubble and saturated conditions in the pressurizer. In making this assumption, the analyses neglect the small fraction of noncondensible gases normally present.
	Safety analyses presented in Chapter 15 (Ref. 1) do not take credit for pressurizer heater operation, however, an implicit initial condition assumption of the safety analyses is that the RCS is operating at normal pressure.

APPLICABLE SAFETY ANALYSES (continued)

The maximum pressurizer water level limit satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO The LCO requirement for the pressurizer water volume ≤ 92% of span, ensures that an adequate steam bubble exists. Limiting the LCO maximum operating water level preserves the steam space for pressure control. The LCO has been established to ensure the capability to establish and maintain pressure control for steady state operation and to minimize the consequences of potential overpressure transients. Requiring the presence of a steam bubble is also consistent with analytical assumptions.

APPLICABILITY The need for pressure control is most pertinent when core heat can cause the greatest effect on RCS temperature, resulting in the greatest effect on pressurizer level and RCS pressure control. Thus, applicability has been designated for MODES 1 and 2. The applicability is also provided for MODE 3. The purpose is to prevent solid water RCS operation during heatup and cooldown to avoid rapid pressure rises caused by normal operational perturbation, such as reactor coolant pump startup.

ACTIONS <u>A.1 and A.2</u>

Pressurizer water level control malfunctions or other plant evolutions may result in a pressurizer water level above the nominal upper limit, even with the plant at steady state conditions.

If the pressurizer water level is above the limit, action must be taken to restore the plant to operation within the bounds of the safety analyses. This is done by restoring the level to within limit, within 6 hours, or by placing the unit in MODE 3 with the reactor trip breakers open within 6 hours, and placing the unit in MODE 4 within 12 hours. This takes the unit out of the applicable MODES and restores the unit to operation within the bounds of the safety analyses.

The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner without challenging plant systems.

SURVEILLANCE REQUIREMENTS	<u>SR 3.4.5.1</u>		
	This SR requires that during steady state operation, pressurizer level is maintained below the nominal upper limit to provide a minimum space for a steam bubble. The Surveillance is performed by observing the indicated level. The Frequency of 12 hours corresponds to verifying the parameter each shift. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess the level for any deviation and verify that operation is within safety analyses assumptions. Alarms are also available for early detection of abnormal level indications.		
REFERENCES	1. Chapter 15, "Accident Analysis."		

B 3.4.6 Pressurizer Safety Valves

BASES

BACKGROUND	The two pressurizer safety valves provide, in conjunction with the Protection and Safety Monitoring System (PMS), overpressure protection for the RCS. The pressurizer safety valves are totally enclosed, spring loaded, self actuated valves with backpressure compensation. The safety valves are designed to prevent the system pressure from exceeding the system Safety Limit (SL), 2733.5 psig, which is 110% of the design pressure.
	Because the safety valves are totally enclosed and self actuating, they are considered independent components. The minimum relief capacity for each valve, 750,000 lb/hr, is based on postulated overpressure transient conditions resulting from a complete loss of steam flow to the turbine. This event results in the maximum surge rate into the pressurizer, which specifies the minimum relief capacity for the safety valves. The pressurizer safety valves discharge into the containment atmosphere. This discharge flow is indicated by an increase in temperature downstream of the pressurizer safety valves.
	Overpressure protection is required in MODES 1, 2, 3, 4, 5, and 6 when the reactor vessel head is on; however, in MODE 4 with the RNS aligned, MODE 5, and MODE 6 with the reactor vessel head on, overpressure protection is provided by operating procedures and by meeting the requirements of LCO 3.4.14, "Low Temperature Overpressure Protection (LTOP) System."
	The upper and lower pressure limits are based on the \pm 1% tolerance requirement (Ref. 1) for lifting pressures above 1000 psig. The lift setting is for the ambient conditions associated with MODES 1, 2, and 3. This requires either that the valves be set hot or that a correlation between hot and cold settings be established.
	The pressurizer safety valves are part of the primary success path and mitigate the effects of postulated accidents. OPERABILITY of the safety valves ensures that the RCS pressure will be limited to 110% of design pressure.
	The consequences of exceeding the ASME Code, Section III pressure limit (Ref. 1) could include damage to RCS components, increased LEAKAGE, or a requirement to perform additional stress analyses prior to resumption of reactor operation.

APPLICABLE SAFETY ANALYSES	All accident and safety analyses in Chapter 15 (Ref. 3) that require safety valve actuation assume operation of two pressurizer safety valves to limit increases in the RCS pressure. The overpressure protection analysis (Ref. 2) is also based on operation of the two safety valves. Accidents that could result in overpressurization if not properly terminated include:
	a. Uncontrolled rod withdrawal from full power;
	b. Loss of reactor coolant flow;
	c. Loss of external electrical load;
	d. Locked rotor; and
	e. Loss of AC power/loss of normal feedwater
	Detailed analyses of the above transients are contained in Reference 3. Compliance with this LCO is consistent with the design bases and accident analyses assumptions.
	Pressurizer Safety Valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The two pressurizer safety valves are set to open at the RCS design pressure (2500 psia), and within the ASME specified tolerance, to avoid exceeding the maximum design pressure SL, to maintain accident analyses assumptions, and to comply with ASME requirements. The upper and lower pressure tolerance limits are based on the \pm 1% tolerance requirements (Ref. 1) for lifting pressures above 1000 psig.
	The limit protected by this specification is the Reactor Coolant Pressure Boundary (RCPB) SL of 110% of design pressure. Inoperability of one or more valves could result in exceeding the SL if a transient were to occur. The consequences of exceeding the ASME pressure limit could include damage to one or more RCS components, increased leakage, or additional stress analysis being required prior to resumption of reactor operation.
APPLICABILITY	In MODES 1, 2, and 3, and portions of MODE 4 with the RNS isolated or with the RCS temperature $\geq 275^{\circ}$ F, OPERABILITY of two valves is required because the combined capacity is required to keep reactor coolant pressure below 110% of its design value during certain accidents. MODE 3 and portions of MODE 4 are conservatively included although the listed accidents may not require the safety valves for protection.

APPLICABILITY (continued)

The LCO is not applicable in MODE 4 with RNS open and in MODE 5, because LTOP is provided. Overpressure protection is not required in MODE 6 with reactor vessel head detensioned.

The Note allows entry into MODES 3 and 4 with the lift setpoints outside the LCO limits. This permits testing and examination of the safety valves at high pressure and temperature near their normal operating range, but only after the valves have had a preliminary cold setting. The cold setting gives assurance that the valves are OPERABLE near their design condition. Only one valve at a time will be removed from service for testing. The 36 hour exception is based on 18 hour outage time for each of the two valves. The 18 hour period is derived from operating experience that hot testing can be performed in this time frame.

ACTIONS

With one pressurizer safety valve inoperable, restoration must take place within 15 minutes. The Completion Time of 15 minutes reflects the importance of maintaining the RCS Overpressure Protection System. An inoperable safety valve coincident with an RCS overpressure event could challenge the integrity of the pressure boundary.

B.1 and B.2

A.1

If the Required Action of A.1 cannot be met within the required Completion Time or if two pressurizer safety valves are inoperable, the plant must be placed in a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 with the RNS aligned to the RCS and RCS temperature < 275°F within 24 hours.

The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. With the RNS aligned to the RCS, overpressure protection is provided by the LTOP System. The change from MODE 1, 2, or 3 to MODE 4 reduces the RCS energy (core power and pressure), lowers the potential for large pressurizer insurges, and thereby removes the need for overpressure protection by two pressurizer safety valves.

SURVEILLANCE SR 3.4.6.1 REQUIREMENTS SRs are specified in the Inservice Testing Program. Pressurizer safety valves are to be tested one at a time and in accordance with the requirements of ASME OM Code (Ref. 4), which provides the activities and Frequency necessary to satisfy the SRs. No additional requirements are specified. The pressurizer safety valve setpoint is ± 3% for OPERABILITY; however, the values are reset to ± 1% during the Surveillance to allow for drift. REFERENCES ASME Boiler and Pressure Vessel Code, Section III, NB 7614.3. 1. 2. WCAP-16779, "AP1000 Overpressure Protection Report, April 2007." 3. Chapter 15, "Accident Analyses." 4. ASME OM Code, "Code for Operation and Maintenance of Nuclear Power Plants."

BASES

B 3.4.7 RCS Operational LEAKAGE

BASES

BACKGROUND	Components that contain or transport the coolant to or from the reactor core comprise the RCS. Component joints are made by welding, bolting, rolling, or pressure loading, and valves isolate connecting systems from the RCS.
	During plant life, the joint and valve interfaces can produce varying amounts of reactor coolant LEAKAGE, through either normal operational wear or mechanical deterioration. The purpose of the RCS Operational LEAKAGE LCO is to limit system operation in the presence of LEAKAGE from these sources to amounts that do not compromise safety. This LCO specifies the types and amounts of LEAKAGE.
	10 CFR 50, Appendix A, GDC 30 (Ref. 1), requires means for detecting and, to the extent practical, identifying the source of reactor coolant LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems.
	The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring RCS LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE is necessary to provide quantitative information to the operators, allowing them to take corrective action should a leak occur that is detrimental to the safety of the facility and the public.
	A limited amount of LEAKAGE inside containment is expected from auxiliary systems that cannot be made 100% leaktight. LEAKAGE from these systems should be detected, located, and isolated from the containment atmosphere, if possible, to not interfere with RCS LEAKAGE detection.
	This LCO deals with protection of the reactor coolant pressure boundary (RCPB) from degradation and the core from inadequate cooling, in addition to preventing the accident analyses radiation release assumptions from being exceeded. The consequences of violating this LCO include the possibility of a loss of coolant accident (LOCA).

BASES	
APPLICABLE SAFETY ANALYSES	Except for primary to secondary LEAKAGE, the safety analyses do not address operational LEAKAGE. However, other operational LEAKAGE is related to the safety analyses for LOCA. The amount of LEAKAGE can affect the probability of such an event. The safety analysis for an event resulting in steam discharge to the atmosphere assumes a 300 gpd primary to secondary LEAKAGE as the initial condition.
	Primary to secondary LEAKAGE is a factor in the dose releases outside containment resulting from a steam line break (SLB) accident. To a lesser extent, other accidents or transients involve secondary steam release to the atmosphere, such as a steam generator tube rupture (SGTR). The leak contaminates the secondary fluid.
	The Chapter 15 (Ref. 3) analyses for the accidents involving secondary side releases assume 150 gpd primary to secondary LEAKAGE in each generator as an initial condition. The design basis radiological consequences resulting from a postulated SLB accident and SGTR are provided in Sections 15.1.5 and 15.6.3 of Chapter 15, respectively.
	The RCS operational LEAKAGE satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	RCS operation LEAKAGE shall be limited to:
	a. Pressure Boundary LEAKAGE
	No pressure boundary LEAKAGE is allowed, being indicative of material deterioration. LEAKAGE of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher LEAKAGE. Violation of this LCO could result in continued degradation of the RCPB. LEAKAGE past seals and gaskets are not pressure boundary LEAKAGE.
	b. Unidentified LEAKAGE
	0.5 gpm of unidentified LEAKAGE is allowed as a reasonable minimum detectable amount that the containment air N13/F18

minimum detectable amount that the containment air N13/F18 radioactivity monitoring and containment sump level monitoring equipment, can detect within a reasonable time period. This leak rate supports leak before break (LBB) criteria. Violation of this LCO could result in continued degradation of the RCPB, if the LEAKAGE is from the pressure boundary. LCO (continued)

c. Identified LEAKAGE

Up to 10 gpm of identified LEAKAGE is considered allowable because LEAKAGE is from known sources that do not interfere with detection of unidentified LEAKAGE and is well within the capability of the RCS Makeup System. Identified LEAKAGE includes LEAKAGE to the containment from specifically known and located sources, but does not include pressure boundary LEAKAGE. Violation of this LCO could result in continued degradation of a component or system.

d. Primary to Secondary LEAKAGE through One SG

The limit of 150 gallons per day per SG is based on the operational LEAKAGE performance criterion in NEI 97-06, Steam Generator Program Guidelines (Ref. 4). The Steam Generator Program operational LEAKAGE performance criterion in NEI 97-06 states, "The RCS operational primary to secondary leakage through any one SG shall be limited to 150 gallons per day." The limit is based on operating experience with SG tube degradation mechanisms that result in tube leakage. The operational leakage rate criterion in conjunction with the implementation of the Steam Generator Program is an effective measure for minimizing the frequency of steam generator tube ruptures.

e. <u>Primary to IRWST LEAKAGE through the PRHR Heat</u> Exchanger (HX)

The 500 gpd limit from the PRHR HX is based on the assumption that a single crack leaking this amount would not lead to a PRHR HX tube rupture under the stress condition of an RCS pressure increase event. If leaked through many cracks, the cracks are very small, and the above assumption is conservative. This is conservative because the thickness of the PRHR HX tubes is approximately 60% greater than the thickness of the SG tubes. Furthermore, a PRHR HX tube rupture would result in an isolable leak and would not lead to a direct release of radioactivity to the atmosphere. APPLICABILITY In MODES 1, 2, 3, and 4, the potential for RCPB LEAKAGE is greatest when the RCS is pressurized. In MODES 5 and 6, LEAKAGE limits are not required because the reactor coolant pressure is far lower, resulting in lower stresses and reduced

ACTIONS

Unidentified LEAKAGE or identified LEAKAGE in excess of the LCO limits must be reduced to within limits within 4 hours. This Completion Time allows time to verify leakage rates and either identify unidentified LEAKAGE or reduce LEAKAGE to within limits before the reactor must be shut down. This action is necessary to prevent further deterioration of the RCPB.

B.1 and B.2

A.1

potentials for LEAKAGE.

If any pressure boundary LEAKAGE exists, or primary to secondary LEAKAGE is not within limits, or if unidentified or identified LEAKAGE cannot be reduced to within limits within 4 hours, the reactor must be brought to lower pressure conditions to reduce the severity of the LEAKAGE and its potential consequences. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. The reactor must be brought to MODE 3 within 6 hours and to MODE 5 within 36 hours. This action reduces the LEAKAGE and also reduces the factors which tend to degrade the pressure boundary.

The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without ACTIONS challenging plant systems. In MODE 5, the pressure stresses acting on the RCPB are much lower, and further deterioration is much less likely.

SURVEILLANCE REQUIREMENTS

SR 3.4.7.1

Verifying RCS LEAKAGE within the LCO limits ensures the integrity of the RCPB is maintained. Pressure boundary LEAKAGE would at first appear as unidentified LEAKAGE and can only be positively identified by inspection.

Unidentified LEAKAGE and identified LEAKAGE are determined by performance of a RCS water inventory balance.

SURVEILLANCE REQUIREMENTS (continued)

The RCS water inventory balance must be met with the reactor at steady state operating conditions. The Surveillance is modified by two Notes. Note 1 states that this SR is not required to be performed until 12 hours after establishing steady state operation. The 12 hour allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established.

Steady state operation is required to perform a proper inventory balance since calculations during maneuvering are not useful. For RCS operational LEAKAGE determination by inventory balance, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, and with no makeup or letdown.

An early warning of pressure boundary LEAKAGE or unidentified LEAKAGE is provided by the automatic systems that monitor the containment atmosphere N13/F18 radioactivity and the containment sump level. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. These LEAKAGE detection systems are specified in LCO 3.4.9, "RCS LEAKAGE Detection Instrumentation."

Note 2 states that this SR is not applicable to primary to secondary LEAKAGE because LEAKAGE of 150 gallons per day cannot be measured accurately by an RCS water inventory balance.

The containment atmosphere N13/F18 radioactivity LEAKAGE measurement is valid only for plant power > 20% RTP.

The containment atmosphere N13/F18 radioactivity LEAKAGE measurement during MODE 1 is not valid while containment purge occurs or within 2 hours after the end of containment purge.

The containment sump level change method of detecting leaks during MODES 1, 2, 3, and 4 is not valid while containment purge occurs or within 2 hours after the end of containment purge.

The containment sump level change method of detecting leaks during MODES 1, 2, 3, and 4 is not valid during extremely cold outside ambient conditions when frost is forming in the interior of the containment vessel.

The 72-hour Frequency is a reasonable interval to trend LEAKAGE and recognizes the importance of early leakage detection in the prevention of accidents.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.7.2

This SR verifies that primary to secondary LEAKAGE is less or equal to
150 gallons per day through any one SG. Satisfying the primary to
secondary LEAKAGE limit ensures that the operational LEAKAGE
performance criterion in the Steam Generator Program is met. If this SR
is not met, compliance with LCO 3.4.18, "Steam Generator Tube
Integrity," should be evaluated. The 150 gallons per day limit is measured
at room temperature as described in Reference 5. The operational
LEAKAGE rate limit applies to LEAKAGE through any one SG. If it is not
practical to assign the LEAKAGE to an individual SG, all the primary to
secondary LEAKAGE should be conservatively assumed to be from one
SG.

The Surveillance is modified by a Note which states that the Surveillance is not required to be performed until 12 hours after establishment of steady state operation. For RCS primary to secondary LEAKAGE determination, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and RCP seal injection and return flows.

The Surveillance Frequency of 72 hours is a reasonable interval to trend primary to secondary LEAKAGE and recognizes the importance of early leakage detection in the prevention of accidents. The primary to secondary LEAKAGE is determined using continuous process radiation monitors or radiochemical grab sampling in accordance with the EPRI guidelines (Ref. 5).

- REFERENCES 1. 10 CFR 50, Appendix A GDC 30.
 - 2. Regulatory Guide 1.45, May 1973.
 - 3. Chapter 15, "Accident Analysis."
 - 4. NEI-97-06 "Steam Generator Program Guidelines."
 - 5. EPRI, "Pressurized Water Reactor Primary-to-Secondary Leak Guidelines."

B 3.4.8 Minimum RCS Flow

BASES	
BACKGROUND	The AP1000 RCS consists of the reactor vessel and two heat transfer loops, each containing a steam generator (SG), two reactor coolant pumps (RCPs), a single hot leg and two cold legs for circulating reactor coolant. Loop 1 also contains connections to the pressurizer and passive residual heat removal (PRHR).
	The primary function of the reactor coolant is removal of decay heat and the transfer of this heat, via the SGs to the secondary plant fluid. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid.
	Within the RCS, coolant loop flow can be provided by the reactor coolant pumps, the Normal Residual Heat Removal System (RNS), and to a lesser degree when in the passive mode of operation, natural circulation.
APPLICABLE SAFETY ANALYSES	An initial condition in the Design Basis Accident (DBA) analysis of a possible Boron Dilution Event (BDE) in MODE 3, 4, or 5 is the assumption of a minimum mixing flow in the RCS. In this scenario, dilute water is inadvertently introduced into the RCS, is uniformly mixed with the primary coolant, and flows to the core. The increase in reactivity is detected by the source range instrumentation which provides a signal to terminate the inadvertent dilution before the available SDM is lost. If there is inadequate mixing in the RCS, the dilute water may stratify in the primary system, and there will be no indication by the source range instrumentation is too late to prevent the loss of SDM.
	Thus, a minimum mixing flow in the RCS is a process variable which is an initial condition in a DBA analysis.
	Minimum RCS Flow satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	The requirement that a minimum RCS flow be maintained provides assurance that in the event of an inadvertent BDE, the diluted water will be properly mixed with the primary system coolant, and the increase in core reactivity will be detected by the source range instrumentation.

LCO (continued)

Note 1 permits all RCPS to be de-energized for \leq 1 hour per 8 hour period. The purpose of the Note is to permit tests that are designed to validate various accident analysis values. One of these tests is for the validation of the pump coastdown curve, used as input to a number of accident analyses including a loss of flow accident. This test is generally performed in MODE 3 during the initial startup testing program, and as such should only be performed once. If, however, changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values of the coastdown curve may need to be revalidated by conducting the test again.

Another test performed during the startup testing program is the validation of the rod drop times during cold conditions, both with and without flow.

The no-flow tests may be performed in MODE 3, 4, or 5, and require that the pumps be stopped for a short period of time. The Note permits the de-energizing of the pumps in order to perform this test and validate the assumed analysis values. As with the validation of the pump coastdown curve, this test should only be performed once, unless the flow characteristics of the RCS are changed. The 1 hour time period specified is adequate to perform the desired tests and experience has shown that boron stratification is not a problem during this short period with no forced flow.

Utilization of the Note is permitted provided the following conditions are met along with any other conditions imposed by initial startup test procedures:

- a. No operations are permitted that would dilute the RCS boron concentration with coolant at boron concentrations less than required to assure the SDM of LCO 3.1.1, thereby maintaining the margin to criticality. Boron reduction with coolant at boron concentrations less than required to assure SDM is maintained is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation and
- b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause natural circulation flow obstruction.

Note 2 prohibits startup of an RCP when the RCS temperature is $\geq 200^{\circ}$ F unless pressurizer level is < 92%. This restraint is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started.

LCO (continued)	
	Note 3 requires that the secondary side water temperature of each SG be $\leq 50^{\circ}$ F above each of the RCS cold leg temperatures before the start of an RCP with any RCS cold leg temperature $\leq 200^{\circ}$ F. This restraint is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started.
APPLICABILITY	Minimum RCS flow is required in MODES 3, 4, and 5 with the reactor trip breakers (RTBs) open and with unborated water sources not isolated from the RCS because an inadvertent BDE is considered possible in these MODES.
	In MODES 1 and 2, and in MODES 3, 4, and 5 with the RTBs closed, LCO 3.4.4 requires all four RCPs to be in operation. Thus, in the event of an inadvertent boron dilution, adequate mixing will occur.
	A minimum mixing flow is not required in MODE 6 because LCO 3.9.2 requires that all valves used to isolate unborated water sources shall be secured in the closed position. In this situation, an inadvertent BDE is not considered credible.
ACTIONS	<u>A.1</u>
	If no RCP is in operation, all sources of unborated water must be isolated within 1 hour. This action assures that no unborated water will be introduced into the RCS when proper mixing cannot be assured. The allowed Completion Time requires that prompt action be taken, and is based on the low probability of a DBA occurring during this time.
	<u>A.2</u>
	The Requirement to perform SR 3.1.1.1 (SDM verification) within 1 hour assures that if the boron concentration in the RCS has been reduced and not detected by the source range instrumentation, prompt action may be taken to restore the required SDM. The allowed Completion Time is consistent with that required of Action A.1 because the conditions and consequences are the same.

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE <u>SR 3.4.8.1</u> REQUIREMENTS

This Surveillance requires verification every 12 hours that a minimum mixing flow is present in the RCS. A Frequency of 12 hours is adequate considering the low probability of an inadvertent BDE during this time, and the ease of verifying the required RCS flow.

REFERENCES None.

B 3.4.9 RCS Leakage Detection Instrumentation

BASES	
BACKGROUND	GDC 30 of Appendix A to 10CFR50 (Ref. 1) requires means for detecting, and, to the extent practical, identifying the source of RCS LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting LEAKAGE detection systems.
	LEAKAGE detection systems must have the capability to detect significant reactor coolant pressure boundary (RCPB) degradation as soon after occurrence as practical to minimize the potential for propagation to a gross failure. Thus, an early indication or warning signal is necessary to permit proper evaluation of all unidentified LEAKAGE.
	Industry practice has shown that water flow changes of 0.5 gpm can be readily detected in contained volumes by monitoring changes in water level, in flow rate, or in the operating frequency of a pump. The containment sump used to collect unidentified LEAKAGE, is instrumented to alarm for increases of 0.5 gpm in the normal flow rates. This sensitivity is acceptable for detecting increases in unidentified LEAKAGE. Note that the containment sump level instruments are also used to identify leakage from the main steam lines inside containment. Since there is not another method to identify steam line leakage in a short time frame, two sump level sensors are required to be operable. The containment water level sensors (LCO 3.3.3) provide a diverse backup method that can detect a 0.5 gpm leak within 3.5 days.
	The reactor coolant contains radioactivity that, when released to the containment, can be detected by radiation monitoring instrumentation. Reactor coolant radioactivity used for leak detection is the decay of N13/F18. The production of N13 and F18 is proportional to the reactor power level. N13 has a short half life and comes to equilibrium quickly. F18 has a longer half life and is the dominant source used for leak detection. Instrument sensitivities for gaseous monitoring are practical for these LEAKAGE detection systems. The Radiation Monitoring System includes monitoring N13/F18 gaseous activities to provide leak detection.
APPLICABLE SAFETY ANALYSES	The need to evaluate the severity of an alarm or an indication is important to the operators, and the ability to compare and verify with indications from other systems is necessary. The system response times and sensitivities are described in Chapter 15 (Ref. 3).

APPLICABLE SAFETY ANALYSES (continued)

The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring RCS LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE provides quantitative information to the operators, allowing them to take corrective action should a leak occur.

RCS LEAKAGE detection instrumentation satisfies Criterion 1 of 10 CFR 50.36(c)(2)(ii).

LCO One method of protecting against large RCS LEAKAGE derives from the ability of instruments to rapidly detect extremely small leaks. This LCO requires instruments of diverse monitoring principles to be OPERABLE to provide a high degree of confidence that small leaks are detected in time to allow actions to place the plant in a safe condition, when RCS LEAKAGE indicates possible RCPB degradation.

The LCO is satisfied when monitors of diverse measurement means are available. Thus, the containment sump level monitor, in combination with an N13/F18 gaseous activity monitor, provides an acceptable minimum. Containment sump level monitoring is performed by three redundant, seismically qualified level instruments. The LCO note clarifies that if LEAKAGE is prevented from draining to the sump, its level change measurements made by OPERABLE sump level instruments will not be valid for quantifying the LEAKAGE.

APPLICABILITY Because of elevated RCS temperature and pressure in MODES 1, 2, 3, and 4, RCS LEAKAGE detection instrumentation is required to be OPERABLE.

> In MODE 5 or 6, the temperature is $\leq 200^{\circ}$ F and pressure is maintained low or at atmospheric pressure. Since the temperatures and pressures are lower than those for MODES 1, 2, 3, and 4, the likelihood of LEAKAGE and crack propagation are much smaller. Therefore, the requirements of this LCO are not applicable in MODES 5 and 6.

Containment sump level monitoring is a valid method for detecting LEAKAGE in MODES 1, 2, 3, and 4. The containment atmosphere N13/F18 radioactivity LEAKAGE measurement during MODE 1 is valid only for reactor power > 20% RTP. RCS inventory monitoring via the pressurizer level changes is valid in MODES 1, 2, 3, and 4 only when RCS conditions are stable, i.e., temperature is constant, pressure is constant, no makeup and no letdown.

APPLICABILITY (continued)

The containment sump level change method of detecting leaks during MODES 1, 2, 3, and 4 is not valid while containment purge occurs or within 2 hours after the end of containment purge.

The containment atmosphere N13/F18 radioactivity LEAKAGE measurement during MODE 1 is not valid while containment purge occurs or within 2 hours after the end of containment purge.

The containment sump level change method of detecting leaks during MODES 1, 2, 3, and 4 is not valid during extremely cold outside ambient conditions when frost is forming on the interior of the containment vessel.

ACTIONS

The actions are modified by a Note that indicates that the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when leakage detection channels are inoperable. This allowance is provided because in each condition other instrumentation is available to monitor for RCS LEAKAGE.

A.1 and A.2

With one of the two required containment sump level channels inoperable, the one remaining operable channel is sufficient for RCS leakage monitoring since the containment radiation provides a method to monitor RCS leakage. However, that is not the case for the steam line leakage monitoring. The remaining operable sump level monitor is adequate as long as it continues to operate properly. Continuing plant operation is expected to result in containment sump level indication increases and in periodic operation of the containment sump pump. Therefore, proper operation of the one remaining sump level sensor is verified by the operators checking the volume input to the sump (as determined by the sump level changes and discharges from the containment) to determine that it does not change significantly. A significant change is considered to be ±10 gallons per day or 33% (whichever is greater) of the volume input for the first 24 hours after this Condition is entered. The containment sump level instruments are capable of detecting a volume change of less than 2 gallons. The containment water level sensors also provide a diverse backup that can detect a 0.5 gpm leak within 3.5 davs.

Restoration of two sump channels to OPERABLE status is required to regain the function in a Completion Time of 14 days after the monitor's failure. This time is acceptable, considering the frequency and adequacy of the monitoring of the change in integrated sump discharge required by Action A.1.

ACTIONS (continued)

B.1 and B.2

With two of the two required containment sump level channels inoperable, no other form of sampling can provide the equivalent information; however, the containment atmosphere N13/F18 radioactivity monitor will provide indications of changes in LEAKAGE. Together with the atmosphere monitor, the periodic surveillance for RCS inventory balance, SR 3.4.7.1, must be performed at an increased frequency of 24 hours to provide information that is adequate to detect LEAKAGE. A Note is added allowing that SR 3.4.7.1 is not required to be performed until 12 hours after establishing steady state operation (stable temperature, power level, pressurizer and makeup tank levels, makeup and letdown). The 12 hour allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established.

Restoration of one sump channel to OPERABLE status is required to regain the function in a Completion Time of 72 hours after the monitor's failure. This time is acceptable, considering the frequency and adequacy of the RCS inventory balance required by Action A.1.

C.1.1, C.1.2, and C.2

With one gaseous N13/F18 containment atmosphere radioactivitymonitoring instrumentation channel inoperable, alternative action is required. Either grab samples of the containment atmosphere must be taken and analyzed or RCS inventory balanced, in accordance with SR 3.4.7.1, to provide alternate periodic information.

With a sample obtained and analyzed or an RCS inventory balance performed every 24 hours, the reactor may be operated for up to 30 days to allow restoration of the radioactivity monitor.

The 24 hours interval for grab samples or RCS inventory balance provides periodic information that is adequate to detect LEAKAGE. A Note is added allowing that SR 3.4.7.1 is not required to be performed until 12 hours after establishing steady state operation (stable temperature, power level, pressurizer and makeup tank levels, and makeup and letdown). The 12 hour allowance provides sufficient time to collect and process all necessary data after stable plant conditions are established. The 30 day Completion Time recognizes at least one other form of leak detection is available.

ACTIONS (continued)

D.1 and D.2

If a Required Action of Condition A, B or C cannot be met within the required Completion Time, the reactor must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner without challenging plant systems.

<u>E.1</u>

With all required monitors inoperable, no automatic means of monitoring leakage is available and plant shutdown in accordance with LCO 3.0.3 is required.

SURVEILLANCE <u>SR 3.4.9.1</u> REQUIREMENTS

SR 3.4.9.1 requires the performance of a CHANNEL CHECK of the containment atmosphere N13/F18 radioactivity monitor. The check gives reasonable confidence that the channel is operating properly. The Frequency of 12 hours is based on instrument reliability and risk and is reasonable for detecting off normal conditions.

SR 3.4.9.2

SR 3.4.9.2 requires the performance of a CHANNEL OPERATIONAL TEST (COT) on the atmosphere N13/F18 radioactivity monitor. The test ensures that the monitor can perform its function in the desired manner. The test verifies the alarm setpoint and relative accuracy of the instrument string. The Frequency of 92 days considers risks and instrument reliability, and operating experience has shown that it is proper for detecting degradation.

SR 3.4.9.3 and SR 3.4.9.4

These SRs require the performance of a CHANNEL CALIBRATION for each of the RCS Leakage detection instrumentation channels. The calibration verifies the accuracy of the instrument string, including the instruments located inside containment. The Frequency of 24 months is a typical refueling cycle and considers channel reliability. Again, operating experience has proven that this Frequency is acceptable.

	REFERENCES	1.	10 CFR 50, Appendix A	, Section IV, GDC 30
--	------------	----	-----------------------	----------------------

- 2. Regulatory Guide 1.45, "Reactor Coolant Pressure Boundary LEAKAGE Detection Systems," U.S. Nuclear Regulatory Commission.
- 3. Chapter 15, "Accident Analysis."

B 3.4.10 RCS Specific Activity

BASES	
BACKGROUND	The limits on RCS specific activity ensure that the doses due to postulated accidents are within the doses reported in Chapter 15.
	The RCS specific activity LCO limits the allowable concentration of iodines and noble gases in the reactor coolant. The LCO limits are established to be consistent with a fuel defect level of 0.25 percent and to ensure that plant operation remains within the conditions assumed for shielding and Design Basis Accident (DBA) release analyses.
	The LCO contains specific activity limits for both DOSE EQUIVALENT I-131 and DOSE EQUIVALENT XE-133. The allowable levels are intended to limit the doses due to postulated accidents to within the values calculated in the radiological consequences analyses (as reported in Chapter 15).
APPLICABLE SAFETY ANALYSES	The LCO limits on the reactor coolant specific activity are a factor in accident analyses that assume a release of primary coolant to the environment either directly as in a Steam Generator Tube Rupture (SGTR) or indirectly by way of LEAKAGE to the secondary coolant system and then to the environment (the Steam Line Break).
	The events which incorporate the LCO values for primary coolant specific activity in the radiological consequence analysis include the following:
	Steam generator tube rupture (SGTR) Steam line break (SLB) Locked RCP rotor Rod ejection Small line break outside containment Loss of coolant accident (LOCA) (early stages)
	The limiting event for release of primary coolant activity is the SLB. The SLB dose analysis considers the possibility of a pre-existing iodine spike (in which case the maximum LCO of 60 μ Ci/gm DOSE EQUIVALENT I-131 is assumed) as well as the more likely initiation of an iodine spike due to the reactor trip and depressurization. In the latter case, the LCO of 1.0 μ Ci/gm DOSE EQUIVALENT I-131 is assumed at the initiation of the accident, but the primary coolant specific activity is assumed to increase with time due to the elevated iodine appearance rate in the coolant. The reactor coolant noble gas specific activity for both cases is

APPLICABLE SAFETY ANALYSES (continued)

assumed to be the LCO of 280 μ Ci/gm DOSE EQUIVALENT XE-133. The safety analysis assumes the specific activity of the secondary coolant at its limit of 0.1 μ Ci/gm DOSE EQUIVALENT I-131 from LCO 3.7.4, "Secondary Specific Activity."

The LCO limits ensure that, in either case, the doses reported in Chapter 15 remain bounding.

The RCS specific activity satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO The specific iodine activity is limited to 1.0 μ Ci/gm DOSE EQUIVALENT I-131, and the specific noble gas activity is limited to 280 μ Ci/gm DOSE EQUIVALENT XE-133. These limits ensure that the doses resulting from a DBA will be within the values reported in Chapter 15. Secondary coolant activities are addressed by LCO 3.7.4, "Secondary Specific Activity."

The SLB and SGTR accident analyses (Refs. 1 and 2) show that the offsite doses are within acceptance limits. Violation of the LCO may result in reactor coolant radioactivity levels that could, in the event of an SLB or SGTR accident, lead to doses that exceed those reported Chapter 15.

APPLICABILITY In MODES 1 and 2, and in MODE 3 with RCS average temperature ≥ 500°F, operation within the LCO limits for DOSE EQUIVALENT I-131 and DOSE EQUIVALENT XE-133 specific activity are necessary to contain the potential consequences of a SGTR to within the calculated site boundary dose values.

For operation in MODE 3 with RCS average temperature < 500°F and in MODES 4 and 5, the release of radioactivity in the event of a SGTR is unlikely since the saturation pressure of the reactor coolant is below the lift pressure settings of the main steam safety valves.

ACTIONS <u>A.1 and A.2</u>

With the DOSE EQUIVALENT I-131 greater than the LCO limit, samples at intervals of 4 hours must be taken to verify that DOSE EQUIVALENT I-131 is \leq 60 µCi/gm. The Completion Time of 4 hours is required to obtain and analyze a sample. Sampling is to continue to provide a trend.

ACTIONS (continued)

The DOSE EQUIVALENT I-131 must be restored to normal within 48 hours. If the concentration cannot be restored to within the LCO limit in 48 hours, it is assumed that the LCO violation is not the result of normal iodine spiking.

A Note to the Required Action of Condition A excludes the MODE change restriction of LCO 3.0.4. This exception allows entry into the applicable MODE(S) while relying on the ACTIONS even though the ACTIONS may eventually require plant shutdown. This exception is acceptable due to the significant conservatism incorporated into the specific activity limit, the low probability of an event which is limiting due to exceeding this limit, and the ability to restore transient specific activity excursions while the plant remains at, or proceeds to power operation.

B.1 and B.2

With DOSE EQUIVALENT XE-133 in excess of the allowed limit, an analysis must be performed within 4 hours to determine DOSE EQUIVALENT I-131. The allowed Completion Time of 4 hours is required to obtain and analyze a sample.

The change to MODE 3 and RCS average temperature < 500°F lowers the saturation pressure of the reactor coolant below the set points of the main steam safety valves, and prevents venting the SG to the environment in a SGTR event. The allowed Completion Time of 6 hours is reasonable, based on operating experience to reach MODE 3 from full power conditions in an orderly manner, without challenging plant systems.

<u>C.1</u>

If a Required Action and the associated Completion Time of Condition A is not met or if the DOSE EQUIVALENT I-131 is > 60 μ Ci/gm., the reactor must be brought to MODE 3 with RCS average temperature < 500°F within 6 hours. The Completion Time of 6 hours is reasonable, based on operation experience, to reach MODE 3 below 500°F from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE SR 3.4.10.1 REQUIREMENTS SR 3.4.10.1 re activity of the r

SR 3.4.10.1 requires performing a measure of the noble gas specific activity of the reactor coolant at least once every 7 days. This is a quantitative measure of radionuclides with half lives longer than

SURVEILLANCE REQUIREMENTS (continued)

15 minutes. This Surveillance provides an indication of any increase in the release of noble gas activity from fuel rods containing cladding defects.

Trending the results of this Surveillance allows proper remedial action to be taken before reaching the LCO limit under normal operating conditions. The 7 day Frequency considers the unlikelihood of a significant increase in fuel defect level during the time.

<u>SR 3.4.10.2</u>

This Surveillance is performed in MODE 1 only to ensure iodine remains within limit during normal operation and following fast power changes when increased releases of iodine from the fuel (iodine spiking) is apt to occur. The 14 day Frequency is adequate to trend changes in the iodine activity level. The Frequency, between 2 and 6 hours after a power change of \geq 15% RTP within a 1 hour period, is established because the iodine levels peak during this time following fuel failures; samples at other times would provide inaccurate results.

- REFERENCES 1. Section 15.1.5, "Steam System Piping Failure."
 - 2. Section 15.6.3, "Steam Generator Tube Rupture."

B 3.4.11 Automatic Depressurization System (ADS) – Operating

BASES	
BACKGROUND	The ADS is designed to assure that core cooling and injection can be achieved for Design Basis Accidents (DBA). The four stages of ADS valves are sequenced in coordination with the passive core cooling system injection performance characteristics.
	The ADS consists of 10 flow paths arranged in four different stages that open sequentially (Ref. 1). Stages 1, 2, and 3 each include 2 flow paths. Each of the stage 1, 2, 3 flow paths has a common inlet header connected to the top of the pressurizer. The outlets of the stage 1, 2, 3 flow paths combine into one of the two common discharge lines to the spargers located in the incontainment refueling water storage tank (IRWST). The first stage valves are 4 inch valves with DC motor operators. The second and third stage valves are 8 inch valves with DC motor operators. An OPERABLE stage 1, 2, or 3 automatic depressurization flow path consists of two OPERABLE normally closed motor operated valves, in series.
	Stage 4 includes 4 flow paths. The fourth stage ADS valves are squib valves. The four fourth stage flow paths connect directly to the top of the reactor coolant hot legs and vent directly into the associated steam generator compartment. An OPERABLE stage 4 flow path consists of a open motor operated valve and an OPERABLE closed squib valve. These motor operated valves are not required to be OPERABLE because they are open.
	The automatic depressurization valves are designed to open automatically when actuated, and to remain open for the duration of any automatic depressurization event. The valves are actuated sequentially. The stage 1 valves are actuated on a low core makeup tank (CMT) level. Stages 2 and 3 are actuated on the stage 1 signal plus time delays. Stage 4 is actuated on a Low 2 CMT level signal with a minimum time delay after stage 3. Stage 4 is blocked from actuating at normal RCS pressure.
	In order to perform a controlled, manual depressurization of the RCS, the valves are opened starting with the first stage. The first stage valves can also be modulated to perform a partial RCS depressurization if required. ADS stage 1, 2, 3 valves may be manually operated under controlled conditions for testing purposes.

BACKGROUND (continued)

	ADS stages 1, 2 and 3 valves are designed to open relatively slowly, from approximately 40 seconds for the first stage valves, to approximately 100 seconds for the second and third stage valves.
	The ADS valves are powered by batteries. In the unlikely event that offsite and onsite AC power is lost for an extended period of time, a timer will actuate ADS within 24 hours of the time at which AC power is lost, before battery power has been degraded to the point where the valves cannot be opened.
	The number and capacity of the ADS flow paths are selected so that adequate safety injection is provided from the accumulators, IRWST and containment recirculation for the limiting DBA loss of coolant accident (LOCA). For small break LOCAs the limiting single failure is the loss of one fourth stage flow path (Ref. 2). The PRA (Ref. 3) shows that adequate core cooling can be provided with the failure of up to seven (all ADS stage 1 to 3 and one ADS stage 4) flow paths. The ADS PRA success criteria following a LOCA or non-LOCA with failure of other decay heat removal features is for 3 of 4 ADS stage 4 valves to open. All of the ADS stage 1, 2, 3 valves can fail to open. This ADS capacity is sufficient to support PXS gravity injection and containment recirculation operation.
APPLICABLE SAFETY ANALYSES	For non-LOCA events, use of the ADS is not required and is not anticipated. For these events, injection of borated water into the core from the CMTs may be required for makeup or boration. However, the amount of water necessary will not reduce the level in the CMTs to the point of ADS actuation.
	For events which involve a loss of primary coolant inventory, such as a LOCA, the ADS will be actuated, allowing for injection from the accumulators, the IRWST, and the containment recirculation (Ref. 2).
	The ADS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The requirement that the 16 ADS valves be OPERABLE ensures that upon actuation, the depressurization of the RCS will proceed smoothly and completely, as assumed in the DBA safety analyses.
	For the ADS to be considered OPERABLE, the 16 ADS valves must be closed and OPERABLE (capable of opening on an actuation signal). In addition, the stage 4 motor operated isolation valves must be open. These stage 4 motor operated isolation valves are not required to be OPERABLE because they are maintained open per SR 3.4.11.1.

APPLICABILITY In MODES 1, 2, 3 and 4 the ADS must be OPERABLE to mitigate the potential consequences of any event which causes a reduction in the RCS inventory, such as a LOCA.

The requirements for the ADS in MODES 5 and 6 are specified in LCO 3.4.12, "Automatic Depressurization System (ADS) – Shutdown, RCS Intact," and LCO 3.4.13, "Automatic Depressurization System – Shutdown, RCS Open."

ACTIONS

<u>A.1</u>

If any one flow path is determined to be inoperable, the remaining OPERABLE ADS flow paths are adequate to perform the required safety function as long as a single failure does not also occur. A flow path is inoperable if one or two of the ADS valves in the flow path are determined to be inoperable. A Completion Time of 72 hours is reasonable based on the capability of the remaining ADS valves to perform the required safety functions assumed in the safety analyses and the low probability of a DBA during this time period. This Completion Time is the same as is used for two train ECCS systems which are capable of performing their safety function without a single failure.

<u>B.1</u>

If two flow paths, consisting of one stage 1 and either one stage 2 or 3, are determined to be inoperable, the remaining OPERABLE ADS flow paths are adequate to perform the required safety function as long as a single failure does not also occur. A flow path is inoperable if one or two of the ADS valves in the flow path are determined to be inoperable. A Completion Time of 72 hours is reasonable based on the capability of the remaining ADS valves to perform the required safety functions assumed in the safety analyses and the low probability of a DBA during this time period. This Completion Time is the same as is used for two train ECCS systems which are capable of performing their safety function without a single failure.

C.1 and C.2

If the Required Actions and associated Completion Times are not met or the requirements of LCO 3.4.11 are not met for reasons other than Condition A or B, the plant must be brought to MODE 5 where the probability and consequences on an event are minimized. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner, without challenging plant systems. I

SURVEILLANCE REQUIREMENTS	<u>SR 3.4.11.1</u>		
	Each stage 4 ADS isolation motor operated valve must be verified to be open every 12 hours. Note that these valves receive confirmatory open signals. The Surveillance Frequency is acceptable considering valve position is manually monitored in the control room.		
	<u>SR 3.4.11.2</u>		
	This Surveillance requires verification that each ADS stage 1, 2, 3 valve strokes to its fully open position. Note that this surveillance is performed during shutdown conditions.		
	The Surveillance Frequency for demonstrating valve OPERABILITY references the Inservice Testing Program.		
	<u>SR 3.4.11.3</u>		
	This Surveillance requires verification that each ADS stage 4 squib valve is OPERABLE in accordance with the Inservice Testing Program. The Surveillance Frequency for verifying valve OPERABILITY references the Inservice Testing Program.		
	The squib valves will be tested in accordance with the ASME OM Code. The applicable ASME OM Code squib valve requirements are specified in paragraph 4.6, Inservice Tests for Category D Explosively Actuated Valves. The requirements include actuation of a sample of the installed valves each 2 years and periodic replacement of charges.		
REFERENCES	1. Section 6.3, "Passive Core Cooling System."		
	2. Section 15.6, "Decrease in Reactor Coolant Inventory."		
	3. AP1000 Probabilistic Risk Assessment, Appendix A.		
	4. Section 3.9.6, "Inservice Testing of Pumps and Valves."		

B 3.4.12 Automatic Depressurization System (ADS) – Shutdown, RCS Intact

BASES	
BACKGROUND	A description of the ADS is provided in the Bases for LCO 3.4.11, "Automatic Depressurization System (ADS) – Operating."
APPLICABLE SAFETY ANALYSES	For postulated events in MODE 5 with the RCS pressure boundary intact, the primary protection is the Passive Residual Heat Removal Heat Exchanger (PRHR HX). Use of the ADS is not required and is not anticipated. For these events, injection of borated water into the core from the core makeup tanks (CMTs) may be required for makeup or boration. However, the amount of water necessary will not reduce the level in the CMTs to the point of ADS actuation.
	No LOCAs are postulated during plant operation in MODE 5, however loss of primary coolant through LEAKAGE or inadvertent draining may occur. For such shutdown events occurring in MODE 5 it is anticipated that the ADS will be actuated, allowing injection from the in-containment refueling water storage tank (IRWST) and the containment recirculation if containment flooding occurs (Ref. 2). The ADS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The requirement that 9 ADS flow paths be OPERABLE assures that upon actuation, the depressurization of the RCS will proceed smoothly and completely, as assumed in the DBA safety analyses. An ADS stage 1, 2, or 3 flow path is considered OPERABLE if both valves in the line are closed and OPERABLE (capable of opening on an actuation signal). In addition, an ADS stage 4 flow path is OPERABLE if the motor operated isolation valve is open and the squib valve is closed and OPERABLE (capable of opening on an actuation signal).
APPLICABILITY	In MODE 5 with the reactor coolant pressure boundary (RCPB) intact, 9 flow paths of the ADS must be OPERABLE to mitigate the potential consequences of any event which causes a reduction in the RCS inventory, such as a LOCA.

APPLICABILITY (continued)

The requirements for the ADS in MODES 1 through 4 are specified in LCO 3.4.11, "Automatic Depressurization System (ADS) – Operating;" and in MODE 5 with the RCS pressure boundary open and MODE 6 in LCO 3.4.13, "Automatic Depressurization System (ADS) – Shutdown, RCS Open."

ACTIONS

If any one flow path is determined to be inoperable, the remaining OPERABLE ADS flow paths are adequate to perform the required safety function. A flow path is inoperable if one or two of the ADS valves in the flow path are determined to be inoperable. A Completion Time of 72 hours is acceptable since the OPERABLE ADS paths can mitigate shutdown events without a single failure.

<u>B.1</u>

A.1

If two flow paths, consisting of one stage 1 and either one stage 2 or 3, are determined to be inoperable, the remaining OPERABLE ADS flow paths are adequate to perform the required safety function. A flow path is inoperable if one or two of the ADS valves in the flow path are determined to be inoperable. A Completion Time of 72 hours is acceptable since the OPERABLE ADS paths can mitigate shutdown events without a single failure.

<u>C.1</u>

If the Required Actions and associated Completion Times are not met or the requirements of LCO 3.4.12 are not met for reasons other than Condition A, the plant must be placed in a MODE in which this LCO does not apply. Action must be initiated, immediately, to place the plant in MODE 5 with the RCS pressure boundary open and \geq 20% pressurizer level.

SURVEILLANCE <u>SR :</u> REQUIREMENTS

<u>SR 3.4.12.1</u>

The LCO 3.4.11 Surveillance Requirements are applicable to the ADS valves required to be OPERABLE. The Frequencies associated with each specified SR are applicable. Refer to the corresponding Bases for LCO 3.4.11 for a discussion of each SR.

REFERENCES 1. AP1000 Probabilistic Risk Assessment, Appendix A.

2. Section 19E.4, "Safety Analyses and Evaluations."

B 3.4.13 Automatic Depressurization System (ADS) – Shutdown, RCS Open

BASES	
BACKGROUND	A description of the ADS is provided in the Bases for LCO 3.4.11, "Automatic Depressurization System (ADS) – Operating."
APPLICABLE SAFETY ANALYSES	When the plant is shutdown with the RCS depressurized, the core makeup tanks (CMTs) are isolated to prevent CMT injection. Since the ADS is actuated by low CMT level, automatic actuation of the ADS is not available. The required ADS stage 1, 2, and 3 vent paths are opened and two ADS stage 4 flow paths are OPERABLE to ensure that in-containment refueling water storage tank (IRWST) injection and containment recirculation can occur, if needed to mitigate events requiring RCS makeup, boration or core cooling (Ref. 1).
	The ADS vent path must be maintained until the upper internals are removed, providing an adequate vent path for IRWST injection.
	The ADS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The requirement that ADS stage 1, 2, and 3 flow paths be open, from the pressurizer through the spargers into the IRWST, and that two ADS stage 4 flow paths be OPERABLE assures that sufficient vent area is available to support IRWST injection.
	The Note allows closure of the RCS pressure boundary when the pressurizer level is < 20% to facilitate vacuum refill following mid-loop operations to establish a pressurizer water level \ge 20%. Prior to closure of the ADS valves, compliance with LCO 3.4.12, ADS – Shutdown, RCS Intact, should be verified.
APPLICABILITY	In MODE 5 with the reactor coolant system pressure boundary (RCPB) open or pressurizer level < 20% and in MODE 6 with the upper internals in place, the stage 1, 2, and 3 ADS vent paths must be open and two ADS stage 4 flow paths be OPERABLE.
	The requirements for the ADS in MODES 1 through 4 are specified in LCO 3.4.11, "Automatic Depressurization System (ADS) – Operating;" and in MODE 5 with the RCPB intact in LCO 3.4.12, "Automatic Depressurization System (ADS) – Shutdown, RCS Intact."

ACTIONS <u>A.1 and A.2</u>

If one required ADS stage 1, 2, or 3 flow path is closed, action must be taken to open the affected path or establish an alternative flow path within 72 hours. In this Condition the remaining open ADS stage 1, 2, and 3 flow paths and the OPERABLE ADS stage 4 flow paths are adequate to perform the required safety function without an additional single failure. The stage 4 valves would have to be opened by the operator in case of an event in this MODE. The required vent area may be restored by opening the affected ADS flow path or an alternate vent path with an equivalent area. Considering that the required function is available in this Condition a Completion Time of 72 hours is acceptable.

B.1 and B.2

If one required ADS stage 4 flow path is closed and inoperable, action must be taken to establish an alternative flow path, or restore at least two stage 4 flow paths to OPERABLE status within 36 hours. In this Condition the remaining open ADS stage 1, 2, and 3 flow paths and the one OPERABLE ADS stage 4 flow path are adequate to perform the required safety function without an additional single failure. The required vent area may be restored by opening an alternate vent path with an equivalent area. Alternatively, two stage 4 flow paths may be restored to OPERABLE status. Therefore a Completion Time of 36 hours is considered acceptable.

C.1 and C.2

If the Required Actions and associated Completion Times are not met or the requirements of LCO 3.4.13 are not met for reasons other than Conditions A or B while in MODE 5, the plant must be placed in a condition which minimizes the potential for requiring ADS venting and IRWST injection. The time to RCS boiling is maximized by increasing RCS inventory to \geq 20% pressurizer level and maintaining RCS temperature as low as practical.

Additionally, action to suspend positive reactivity additions is required to ensure that the SDM is maintained. Sources of positive reactivity addition include boron dilution, withdrawal of reactivity control assemblies, and excessive cooling of the RCS.

D.1 and D.2

If the Required Actions and associated Completion Times are not met or the requirements of LCO 3.4.13 are not met for reasons other than Conditions A or B while in MODE 6, the plant must be placed in a

ACTIONS (continued)

condition which precludes the need for the ADS vent paths. Action must be initiated, immediately, to remove the upper internals, providing the required vent path. The time to RCS boiling is maximized by increasing RCS inventory and maintaining RCS temperature as low as practical. Additionally, action to suspend positive reactivity additions is required to ensure that the SDM is maintained. Sources of positive reactivity addition include boron dilution, withdrawal of reactivity control assemblies, and excessive cooling of the RCS.

SURVEILLANCE REQUIREMENTS	<u>SR 3.4.13.1</u> Each required ADS flow path is verified to be open by verifying that the stage 1, 2, and 3 valves are in their fully open position every 12 hours, as indicated in the control room. This Surveillance Frequency is acceptable
	based on administrative controls which preclude repositioning the valves. <u>SR 3.4.13.2</u> The LCO 2.4.11 Curveillance Dequirements (SD 2.4.11.1 and
	The LCO 3.4.11 Surveillance Requirements (SR 3.4.11.1 and SR 3.4.11.3) are applicable to the stage 4 ADS valves required to be OPERABLE. The Frequencies associated with each specified SR are applicable. Refer to the corresponding Bases for LCO 3.4.11 for a discussion of each SR.
REFERENCES	1. Section 19E.4, "Safety Analyses and Evaluations."

B 3.4.14 Low Temperature Overpressure Protection (LTOP) System

BASES

BACKGROUND	The LTOP System limits RCS pressure at low temperatures so that the integrity of the reactor coolant pressure boundary (RCPB) is not compromised by violating the pressure and temperature (P/T) limits of 10 CFR 50, Appendix G (Ref. 1). The reactor vessel is the limiting RCPB component for demonstrating such protection. The PTLR provides the limits which set the maximum allowable setpoints for the Normal Residual Heat Removal System (RNS) suction relief valve. LCO 3.4.3 provides the maximum RCS pressure for the existing RCS cold leg temperature during cooldown, shutdown, and heatup to meet the Reference 1 requirements during the LTOP MODES.
	The reactor vessel material is less tough at low temperatures than at normal operating temperature. As the vessel neutron exposure accumulates, the material toughness decreases and becomes less resistant to pressure stress at low temperatures (Ref. 2). RCS pressure, therefore, is maintained low at low temperatures and is increased only as temperature is increased.
	The potential for vessel overpressurization is most acute when the RCS is water solid, occurring only while shutdown; a pressure fluctuation can occur more quickly than an operator can react to relieve the condition. Exceeding the RCS P/T limits by a significant amount could cause brittle cracking of the reactor vessel. LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits," requires administrative control of RCS pressure and temperature during heatup and cooldown to prevent exceeding the PTLR limits.
	This LCO provides RCS overpressure protection by having a maximum coolant input capability and having adequate pressure relief capacity. Limiting coolant input capability requires isolating the accumulators. The pressure relief capacity requires the RNS suction relief valve or a depressurized RCS and an RCS vent of sufficient size. The RNS suction relief valve or the open RCS vent is the overpressure protection device that acts to terminate an increasing pressure event.
	RNS Suction Relief Valve Requirements
	During the LTOP MODES, the RNS system is operated for decay heat removal. Therefore, the RNS suction isolation valves are open in the

BACKGROUND (continued)

piping from the RCS hot legs to the inlet of the RNS system. While these valves are open, the RNS suction relief valve is exposed to the RCS and able to relieve pressure transients in the RCS.

The RNS suction relief valve is a spring loaded, water relief valve with a pressure tolerance and an accumulation limit established by Section III of the American Society of Mechanical Engineers (ASME) Code (Ref. 3) for Class 2 relief valves.

The RNS suction isolation valves must be open to make the RNS suction relief valves OPERABLE for RCS overpressure mitigation.

RCS Vent Requirements

Once the RCS is depressurized, a vent exposed to the containment atmosphere will maintain the RCS at containment ambient pressure in an RCS overpressure transient, if the relieving requirements of the transient do not exceed the capabilities of the vent. Thus, the vent path must be capable of relieving the flow resulting from the limiting LTOP mass or heat input transient, and maintaining pressure below the P/T limits. The required vent capacity may be provided by one or more vent paths.

For an RCS vent to meet the flow capacity requirement, it may require removing one or more pressurizer safety valves or manually opening one or more Automatic Depressurization System (ADS) valves. The vent path(s) must be above the level of reactor coolant, so as not to drain the RCS when open.

APPLICABLE Safety analyses (Ref. 4) demonstrate that the reactor vessel is adequately protected against exceeding the Reference 1 P/T limits. In ANALYSES MODES 1, 2, and 3, and in MODE 4 with the RCS temperature above 275°F, the pressurizer safety valves will prevent RCS pressure from exceeding the Reference 1 limits. When the RNS is aligned and open to the RCS, overpressure protection is provided by the RNS suction relief valve, or a depressurized RCS and a sufficiently sized open RCS vent.

> The actual temperature at which the pressure in the P/T limit curve falls below the suction relief setpoint increases as the reactor vessel material toughness decreases due to neutron embrittlement. Each time the PTLR curves are revised, the LTOP System must be re-evaluated to ensure its functional requirements can still be met using the RNS suction relief valve, or the depressurized and vented RCS condition.

APPLICABLE SAFETY ANALYSES (continued)

The PTLR contains the acceptance limits that define the LTOP requirements. Any change to the RCS must be evaluated against the Reference 4 analyses to determine the impact of the change on the LTOP acceptance limits.

Transients that are capable of overpressurizing the RCS are categorized as either mass or heat input transients. The events listed below were used in the analysis to size the RNS suction relief valve. Therefore, any events with a mass or heat input greater than the listed events cannot be accommodated and must be prevented.

Mass Input

a. Makeup water flow rate to the RCS assuming both CVS makeup pumps are in operation and letdown is isolated.

Heat Input

a. Restart of one reactor coolant pump (RCP) with water in the steam generator secondary side 50°F hotter than the primary side water, and the RCS water solid.

RNS Suction Relief Valve Performance

Since the RNS suction relief valve does not have a variable P/T lift setpoint, the analysis must show that with chosen setpoint, the relief valve will pass flow greater than that required for the limiting LTOP transient while maintaining RCS pressure less than the minimum of either the P/T limit curve or 110 percent of the design pressure of the normal residual heat removal system. The current analysis shows that up to a temperature of 70°F, the mass input transient is limiting, and above this temperature the heat input transient is limiting.

To prevent the possibility of a heat input transient, and thereby limit the required flow rate of the RNS suction relief valve, an administrative requirement has been imposed that does not allow an RCP to be started with the pressurizer water level above 92% and the RCS temperature above 200°F. Under these imposed conditions, the transient created by the startup of an RCP when the RCS temperature is above 200°F can be accommodated without additional pressure relief.

APPLICABLE SAFETY ANALYSES (continued)

RCS Vent Performance

With the RCS depressurized, a vent size of 4.15 square inches is capable of mitigating a limiting overpressure transient. The area of the vent is equivalent to the area of the inlet pipe to the RNS suction relief valve so the capacity of the vent is greater than the flow possible with either the mass or heat input transient, while maintaining the RCS pressure less than the minimum of either the maximum pressure on the P/T limit curve or 110 percent of the design pressure of the normal residual heat removal system.

The required vent area may be obtained by opening one ADS Stage 2, 3, or 4 flow path.

The RCS vent size will be reevaluated for compliance each time the P/T limit curves are revised based on the results of the vessel material surveillance.

The RCS vent is passive and is not subject to active failure.

The LTOP System satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO This LCO requires that the LTOP System is OPERABLE. The LTOP System is OPERABLE when the maximum coolant input and minimum pressure relief capabilities are OPERABLE. Violation of this LCO could lead to the loss of low temperature overpressure mitigation and violation of the Reference 1 limits as a result of an operational transient.

To limit the coolant input capability, the LCO requires all accumulator discharge isolation valves closed and immobilized, when accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS temperature allowed in the PTLR.

The elements of the LCO that provide low temperature overpressure mitigation through pressure relief are:

a. One OPERABLE RNS suction relief valve; or

An RNS suction relief valve is OPERABLE for LTOP when both RNS suction isolation valves in one flow path are open, its setpoint is within limits, and testing has proven its ability to open at this setpoint.

LCO (continued)	
	b. A depressurized RCS and an RCS vent.
	An RCS vent is OPERABLE when open with an area of \geq 4.15 square inches.
	Each of these methods of overpressure prevention is capable of mitigating the limiting LTOP transient.
APPLICABILITY	This LCO is applicable in MODE 4 when any cold leg temperature is below 275°F, MODE 5, and in MODE 6 when the reactor vessel head is on. The pressurizer safety valves provide overpressure protection that meets the Reference 1 P/T limits above 275°F. In MODE 6, the reactor vessel head is off, and overpressurization cannot occur.
	LCO 3.4.3 provides the operational P/T limits for all MODES. LCO 3.4.6, "Pressurizer Safety Valves," requires the OPERABILITY of the pressurizer safety valves that provide overpressure protection during MODES 1, 2, and 3, and MODE 4 with the RNS isolated or RCS temperature \geq 275°F.
	Low temperature overpressure prevention is most critical during shutdown when the RCS is water solid, and a mass or heat input transient can cause a very rapid increase in RCS pressure with little or no time for operator action to mitigate the event.
	The Applicability is modified by a Note stating that accumulator isolation is only required when the accumulator pressure is more than or at the maximum RCS pressure for the existing temperature, as allowed by the P/T limit curves.
	This Note permits the accumulator discharge isolation valve Surveillance to be performed only under these pressure and temperature conditions.
ACTIONS	A.1, B.1, and B.2
	An unisolated accumulator requires isolation within 1 hour. This is only required when the accumulator pressure is at or more than the maximum RCS pressure for the existing temperature allowed by the P/T limit curves.
	If isolation is needed and cannot be accomplished in 1 hour, Required Action B.1 and Required Action B.2 provide two options, either of which must be performed in the next 12 hours. By increasing the RCS

ACTIONS (continued)

temperature to > 275° F, the accumulator pressure cannot exceed the LTOP limits if the accumulators are fully injected. Depressurizing the accumulators below the LTOP limit from the PTLR also gives this protection.

The Completion Times are based on operating experience that these activities can be accomplished in these time periods and on engineering evaluations indicating that an event requiring LTOP is not likely in the allowed times.

C.1 and C.2

If the RNS suction relief valve is inoperable and the RCS is not depressurized, there is a potential to overpressurize the RCS and exceed the limits allowed in LCO 3.4.3. The suction relief valve is considered inoperable if the RNS isolation valves have isolated the RNS from the RCS in such a way that the suction relief valve cannot perform its intended safety function, or if the valve itself will not operate to perform its intended safety function.

Under these conditions, Required Actions C.1 or C.2 provide two options, either of which must be accomplished in 12 hours. If the RNS suction relief valve cannot be restored to OPERABLE status, the RCS must be depressurized and vented with a RCS vent which provides a flow area sufficient to mitigate any of the design low temperature overpressure events.

The 12 hour Completion Time represents a reasonable time to repair the relief valve, open the RNS isolation valves or otherwise restore the system to OPERABLE status, or depressurize and vent the RCS, without imposing a lengthy period when the LTOP system is not able to mitigate a low temperature overpressure event.

SURVEILLANCE <u>SR 3.4.14.1</u> REQUIREMENTS

To minimize the potential for a low temperature overpressure event by limiting the mass input capability, the accumulator discharge isolation valves are verified closed and locked out. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the main control room to verify the required status of the equipment.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.14.2

The RNS suction relief valve shall be demonstrated OPERABLE by verifying two RNS suction isolation valves in one flow path are open. This Surveillance is only performed if the RNS suction relief valve is being used to satisfy this LCO.

The RNS suction isolation valves are verified to be opened every 12 hours. The Frequency is considered adequate in view of other administrative controls such as valve status indications available to the operator in the control room that verify the RNS suction isolation valves remain open.

<u>SR 3.4.14.3</u>

The RCS vent of \geq 4.15 square inches is proven OPERABLE by verifying its open condition either:

- a. Once every 12 hours for a valve that is not locked (valves that are sealed or secured in the open position are considered "locked" in this context) or
- b. Once every 31 days for other vent path(s) (e.g., a vent valve that is locked, sealed, or secured in position or a removed pressurizer safety valve or open manway also fits this category).

The passive vent arrangement must only be open to be OPERABLE. This Surveillance is required to be performed if the vent is being used to satisfy the pressure relief requirements of the LCO 3.4.14b.

SR 3.4.14.4

The RNS suction relief valve shall be demonstrated OPERABLE by verifying that two RNS suction isolation valves in one flow path are open and by testing it in accordance with the Inservice Testing Program. (Refer to SR 3.4.14.2 for the RNS suction isolation valve Surveillance.) This Surveillance is only required to be performed if the RNS suction relief valve is being used to meet this LCO. The ASME OM Code (Ref. 5) test per Inservice Testing Program verifies OPERABILITY by proving proper relief valve mechanical motion and by measuring and, if required, adjusting the lift setpoint.

REFERENCES	1.	Title 10, Code of Federal Regulations, Part 50, Appendix G, "Fracture Toughness Requirements."
	2.	Generic Letter 88-11, "NRC Position on Radiation Embrittlement of Reactor Vessel Materials and Its Impact on Plant Operation."
	3.	ASME Boiler and Pressure Vessel Code, Section III.
	4.	Section 5.2.2, "Overpressure Protection."
	5.	ASME OM Code, "Code for Operation and Maintenance of Nuclear Power Plants."

B 3.4.15 RCS Pressure Isolation Valve (PIV) Integrity

BASES

BACKGROUND	10 CFR 50.2, 10 CFR 50.55a(c), and GDC 55 of 10 CFR 50, Appendix A (Refs. 1, 2, and 3), define the RCS pressure boundary as all those pressure containing components such as pressure vessels, piping, pumps, and valves which are connected to the reactor coolant system, up to and including the outermost containment isolation valve in system piping which penetrates primary reactor containment, the second of two valves normally closed during normal reactor operation in system piping which does not penetrate primary reactor containment, and the reactor coolant system safety and relief valves. This includes any two normally closed valves in series within the reactor coolant pressure boundary (RCPB), which separate the high pressure RCS from an attached low pressure system. During their lives, these valves can experience varying amounts of reactor coolant leakage through either normal operational wear or mechanical deterioration. The AP1000 PIVs are listed in Chapter 3, Table 3.9-18. The RCS PIV Leakage LCO allows RCS high pressure operation when PIV leakage has been verified.		
	The purpose of this specification is to prevent overpressure failure or degradation of low pressure portions of connecting systems. The following criteria was used in identifying PIVs for inclusion in the specification. A valve was included in this specification if its failure may result in:		
	1.	Failure of low pressure portions of connected systems, such as a Loss of Coolant Accident (LOCA) outside of containment, which could place the plant in an unanalyzed condition.	
	2.	Degradation of low pressure portions of connected systems, such as damage to a core cooling system, which could degrade a safety related function that mitigates a DBA.	
	Valves considered for inclusion in this specification are used to isolate the RCS from the following connected systems:		
	a.	Passive Core Cooling System (PXS) Accumulators;	
	b.	Normal Residual Heat Removal System (RNS); and	
	C.	Chemical and Volume Control System (CVS).	

BACKGROUND (continued)

The RNS pressure boundary isolation valves are considered to meet the first criterion for inclusion in this specification. The PXS accumulator check valves were determined to meet the second PIV criteria for inclusion in this specification. It is determined that the CVS PIVs do <u>not</u> meet either criteria for inclusion in this specification.

The PIVs that are addressed by this specification are listed in Chapter 3, Table 3.9-18.

The CVS pressure isolation valves were not included in this specification based on the defined criteria. The justification for excluding the CVS PIVs is discussed in the following paragraph.

The CVS contains four high pressure/low pressure connections with the RCS. Since the portion of the CVS which is located inside reactor containment is designed to full RCS pressure, the high pressure/low pressure interfaces with the RCS are the lines that penetrate the reactor containment. The CVS lines that penetrate containment include the makeup line, the letdown line to the Liquid Radwaste System, the hydrogen supply line, and the demineralizer resin sluice line used to transfer spent resins from the demineralizers to the Solid Radwaste System. These lines each contain two safety related containment isolation Specification (LCO 3.6.3). In addition to the containment isolation valves in each of the CVS lines that interface with the RCS, there are additional valves in each line that provide diverse isolation capability. Since more restrictive requirements are imposed by LCO 3.6.3, the CVS isolation valves are not included in this LCO.

Since the purpose of this LCO is to verify that the PIVs have not suffered gross failures, the valve leakage test in conjunction with tests specified in the IST program provide an acceptable method of determining valve integrity. The ability of the valves to transition from open to closed provides assurance that the valve can perform its pressure isolation function as required. A small amount leakage through these valves is allowed, provided that the integrity of the valve was demonstrated.

Violation of this LCO could result in continued degradation of a PIV, which could lead to overpressurization of a low pressure system or the failure of a safety related function to mitigate a DBA.

APPLICABLE SAFETY ANALYSES	Pressure isolation valve integrity is not considered in any design basis accident analyses. This specification provides for monitoring the condition of the reactor coolant pressure boundary to detect degradation which could lead to accidents or which could impair a connected system's ability to mitigate DBAs.
	RCS PIV integrity satisfies, Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	RCS PIV leakage is identified LEAKAGE into closed systems connected to the RCS. Isolation valve leakage is usually small. Leakage that increases significantly suggests that something is operationally wrong and corrective action must be taken.
	The LCO PIV leakage limit is 0.5 gpm per inch nominal valve size up to a maximum of 5 gpm per valve. This limit is well within the makeup capability of the CVS makeup pumps. This leak rate will not result in the overpressure of a connected low pressure system. Reference 5 permits leakage testing at a lower pressure differential than between the specified maximum RCS pressure and the normal pressure of the connected system during RCS operation (the maximum pressure differential) in those types of valves in which the higher service pressure will tend to diminish the overall leakage of the valve. In such cases, the observed leakage rate at lower differential pressures can be assumed to be the leakage at the maximum pressure differential. Verification that the valve leakage diminishes with increasing pressure differential is sufficient to verify that the valve characteristics are such that higher service pressure results in a decrease in overall leakage.
APPLICABILITY	In MODES 1, 2, and 3 and MODE 4, with RCS not being cooled by the RNS, this LCO applies when the RCS is pressurized.
	In MODE 4, with RNS in operation, and MODES 5 and 6, the RCS pressure is reduced and is not sufficient to overpressurize the connected low pressure systems.
ACTIONS	The ACTIONS are modified by two Notes. Note 1 provides clarification that each flow path allows separate entry into a Condition. This is allowed based upon the functional independence of the flow path. Note 2 requires an evaluation of affected systems if a PIV is inoperable. The pressurization may have affected system OPERABILITY, or isolation of an affected flow path with an alternate valve may have degraded the ability of the interconnected system to perform its safety function.

ACTIONS (continued)

<u>A.1</u>

With one or more PIVs inoperable, the affected flow path(s) must be isolated. Required Action A.1 is modified by a Note that the valves used for isolation must meet the same integrity requirements as the PIVs and must be within the RCPB or the high pressure portion of the system.

Required Action A.1 requires that the isolation with one valve must be performed within 8 hours. Eight hours provides time to verify IST compliance for the alternate isolation valve and isolate the flow path. The 8 hour Completion Time allows the actions and restricts the operation with inoperable isolation valves.

<u>A.2</u>

Required Action A.2 specifies verification that a second OPERABLE PIV can meet the leakage limits. This valve is required to be a check valve, or a closed valve, if it isolates a line that penetrates containment. For the accumulator valves, the normally open accumulator isolation valve is a suitable replacement PIV, but can remain open because leakage into the accumulator is continuously monitored. If leakage into the accumulators increased to the allowable operational leakage limit, then the valve could be used to isolate the accumulators from the RCS.

The 72 hour Completion Time allows the actions and restricts the operation with inoperable isolation valves.

B.1 and B.2

If PIV integrity cannot be restored, the system isolated, or the other Required Actions accomplished, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. This Action may reduce the leakage and reduces the potential for a LOCA outside containment.

SURVEILLANCE <u>SR 3.4.15.1</u> REQUIREMENTS

Performance of leakage testing on each RCS PIV or isolation valve used to satisfy Required Action A.1 and Required Action A.2 is required to verify that leakage is below the specified limit and to identify each leaking

SURVEILLANCE REQUIREMENTS (continued)

valve. The leakage limit of 0.5 gpm per inch nominal valve size up to a minimum of 5 gpm applies to each valve. Leakage testing requires a stable pressure condition.

For the two PIVs in series, the leakage requirement applies to each valve individually and not to the combined leakage across both valves. If the PIVs are not individually leakage tested, one valve may have failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be lost.

Testing shall be performed every 24 months, a typical refueling cycle. The 24 month Frequency is consistent with 10 CFR 50.55a(g) (Ref. 4) as contained in the Inservice Testing Program and is within frequency allowed by the American Society of Mechanical Engineers (ASME) OM Code (Ref. 5).

REFERENCES 1. 10 CFR 50.2.

- 2. 10 CFR 50.55a(c).
- 3. 10 CFR 50, Appendix A, Section V, GDC 55.
- 4. 10 CFR 50.55a(g).
- 5. ASME OM Code, "Code for Operation and Maintenance of Nuclear Power Plants."

B 3.4.16 Reactor Vessel Head Vent (RVHV)

BASES	
BACKGROUND	The reactor vessel head vent (RVHV) is designed to assure that long-term operation of the Core Makeup Tanks (CMTs) does not result in overfilling of the pressurizer during Condition II Design Basis Accidents (DBAs). The RVHV can be manually actuated by the operators in the main control room to reduce the pressurizer water level during long-term operation of the CMTs.
	The RVHV consists of two parallel flow paths each containing two RVHV isolation valves in series. The RVHV valves are connected to the reactor vessel head via a common line. The outlets of the RVHV flow paths combine into one common discharge line which connects to a single ADS discharge header that discharges to spargers located in the incontainment refueling water storage tank (IRWST). The RVHV valves are 1 inch valves with DC solenoid operators.
	The RVHV valves are designed to open when actuated by the operator, and to reclose when actuated by the operator from the main control room.
	The number and capacity of the RVHV flow paths are selected so that letdown flow from the RCS is sufficient to prevent pressurizer overfill for events where extended operation of the CMTs causes the pressurizer water level to increase. Although realistic evaluations of the Condition II non-LOCA events does not result in pressurizer overfill, conservative analyses of some of these events can result in pressurizer overfill if no operator actions are assumed.
APPLICABLE SAFETY ANALYSES	For Condition II non-LOCA events, such as inadvertent passive core cooling system operation and chemical and volume control system malfunction, the use of the RVHV may be required to prevent long-term pressurizer overfill (Ref. 1).
	For LOCA events, the RVHV is not required.
	The RVHV satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The requirement that all four RVHV valves be OPERABLE ensures that upon actuation, the RVHV can reduce the pressurizer water level as assumed in the DBA safety analyses.

LCO (continued)	
	For the RVHV to be considered OPERABLE, all four valves must be closed and OPERABLE (capable of opening from the main control room).
APPLICABILITY	In MODES 1, 2, 3, and 4 with the RCS not being cooled by the RNS, the RVHV must be OPERABLE to mitigate the potential consequences of any event which causes an increase in the pressurizer water level that could otherwise result in overfilling of the pressurizer.
	In MODE 4, with the RCS being cooled by the RNS, and in MODES 5 and 6, operation of the CMTs or CVS will not result in a pressurizer overfill event.
ACTIONS	<u>A.1</u>
	If one or two RVHV valves in a single flow path are determined to be inoperable, the flow path is inoperable. The remaining OPERABLE RVHV flow path is adequate to perform the required safety function. A Completion Time of 72 hours is acceptable since the OPERABLE RVHV paths can mitigate DBAs without a single failure.
	<u>B.1</u>
	If both flow paths are determined to be inoperable, the RVHV is degraded such that the system is not available for some DBA non-LOCA analyses for which it may be required. A Completion Time of 6 hours is permitted to restore at least one flow path. This Completion Time is acceptable considering that the realistic analysis of these non-LOCA events do not result in pressurizer overfill.
	C.1 and C.2
	If the Required Actions and associated Completion Times are not met or the requirements of LCO 3.4.16 are not met for reasons other than Conditions A or B, the plant must be brought to MODE 4 where the probability and consequences of an event are minimized. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner, without challenging plant systems.

SURVEILLANCE REQUIREMENTS	<u>SR 3.4.16.1</u>		
	The dedicated component level remote manual valve switches in the main control room shall be used to stroke each RVHV valve to demonstrate OPERABILITY of the controls.		
	This Surveillance requires verification that each RVHV valve strokes to its fully open position. The Surveillance Frequency for demonstrating valve OPERABILITY references the Inservice Testing Program.		
REFERENCES	1. Section 15.5, "Increase in Reactor Coolant System Inventory."		

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.17 Chemical and Volume Control System (CVS) Makeup Isolation Valves

BASES	
BACKGROUND	One of the principle functions of the CVS system is to maintain the reactor coolant inventory by providing water makeup for reactor coolant system (RCS) LEAKAGE, shrinkage of the reactor coolant during cooldowns, and RCS boron concentration changes. In the automatic makeup mode of operation, the pressurizer water level starts and stops CVS makeup to the RCS.
	Although the CVS is not considered a safety related system, certain isolation functions of the system are considered safety related functions. The appropriate isolation valves have been classified and designed as safety related. One of the safety related functions provided by the CVS is the termination of RCS makeup to prevent overfilling of the pressurizer during non-LOCA transients or to prevent steam generator overfilling during a steam generator tube rupture. The CVS makeup line containment isolation valves provide this RCS makeup isolation function.
APPLICABLE SAFETY ANALYSES	One of the initial assumptions in the analysis of several non-LOCA events and during a steam generator tube rupture accident is that excessive CVS makeup to the RCS may aggravate the consequences of the accident. The need to isolate the CVS makeup to the RCS is detected by the pressurizer level instruments or the steam generator narrow range level instruments. These instruments will supply a signal to the makeup line containment isolation valves in the CVS causing these valves to close and terminate RCS makeup. Thus the CVS makeup isolation valves are components which function to mitigate an accident. CVS isolation valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The requirement that at least two CVS makeup isolation valves be OPERABLE assures that there will be redundant means available to terminate CVS makeup to the RCS during a non-LOCA event or a steam generator tube rupture accident should that become necessary.
APPLICABILITY	The requirement that at least two CVS makeup isolation valves be OPERABLE is applicable in MODES 1, 2, 3, and 4 with the normal residual heat removal system (RNS) suction to the RCS not open

APPLICABILITY (continued)

because a pressurizer overfill event or steam generator tube rupture accident is considered possible in these MODES, and the automatic closure of these valves is assumed in the safety analysis.

In the applicable MODES, the need to isolate the CVS makeup to the RCS is detected by the pressurizer level instruments (high 1 setpoint coincident with safeguards actuation or high 2 setpoint) or the steam generator narrow range level instruments (high 2 setpoint).

This isolation function is not required in MODE 4 with the RNS suction open to the RCS or in lower MODES. In such MODES, pressurizer or steam generator overfill is prevented by the RNS suction relief valve.

ACTIONS

If only one CVS makeup isolation valve is OPERABLE, the second valve must be restored to OPERABLE status in 72 hours. The allowed Completion Time assures expeditious action will be taken, and is acceptable because the safety function of automatically isolating RCS makeup can be accomplished by the redundant isolation valve.

<u>B.1</u>

<u>A.1</u>

If the Required Actions and associated Completion Time of Condition A are not met, or if both CVS makeup isolation valves are not OPERABLE (i.e., not able to be closed automatically), then the makeup flow path to the RCS must be isolated. Isolation can be accomplished by manually closing the CVS makeup isolation MOVs or alternatively, manual valve(s) in the makeup line between the makeup pumps and the RCS.

The Action is modified by a Note allowing the flow path to be unisolated intermittently under administrative controls. These administrative controls consist of stationing a dedicated operator at the valve controls, who is in continuous communication with the main control room. In this way, the flow path can be rapidly isolated when a need for isolation is indicated.

SURVEILLANCE <u>SR</u> REQUIREMENTS

<u>SR 3.4.17.1</u>

Verification that the RCS makeup isolation valves are OPERABLE, by stroking each valve closed, demonstrates that the valves can perform their safety related function. The Frequency is in accordance with the Inservice Testing Program.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.4.17.2

Verification that the RCS makeup isolation valves closure times are less than that assumed in the safety analysis, is performed by measuring the time required for each valve to close. The Frequency is in accordance with the Inservice Testing Program.

REFERENCES 1. Chapter 15, "Accident Analysis."

B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.18 Steam Generator (SG) Tube Integrity

BASES

BACKGROUND Steam generator (SG) tubes are small diameter, thin walled tubes that carry primary coolant through the primary to secondary heat exchangers. The SG tubes have a number of important safety functions. Steam generator tubes are an integral part of the reactor coolant pressure boundary (RCPB) and, as such, are relied on to maintain the primary system's pressure and inventory. The SG tubes isolate the radioactive fission products in the primary coolant from the secondary system. In addition, as part of the RCPB, the SG tubes are unique in that they act as the heat transfer surface between the primary and secondary systems to remove heat from the primary system. This Specification addresses only the RCPB integrity function of the SG. The SG heat removal function is addressed by LCO 3.4.4, "RCS Loops." SG tube integrity means that the tubes are capable of performing their intended RCPB safety function consistent with the licensing basis, including applicable regulatory requirements. Steam generator tubing is subject to a variety of degradation mechanisms. Steam generator tubes may experience tube degradation related to corrosion phenomena, such as wastage, pitting, intergranular

related to corrosion phenomena, such as wastage, pitting, intergranular attack, and stress corrosion cracking, along with other mechanically induced phenomena such as denting and wear. These degradation mechanisms can impair tube integrity if they are not managed effectively. The SG performance criteria are used to manage SG tube degradation.

Specification 5.5.4, "Steam Generator (SG) Program," requires that a program be established and implemented to ensure that SG tube integrity is maintained. Pursuant to Specification 5.5.4, tube integrity is maintained when the SG performance criteria are met. There are three SG performance criteria: structural integrity, accident induced leakage, and operational LEAKAGE. The SG performance criteria are described in Specification 5.5.4. Meeting the SG performance criteria provides reasonable assurance of maintaining tube integrity at normal and accident conditions.

The processes used to meet the SG performance criteria are defined by the Steam Generator Program Guidelines (Ref. 1).

APPLICABLE SAFETY ANALYSES	The steam generator tube rupture (SGTR) accident is the limiting design basis event for SG tubes and avoiding an SGTR is the basis for this Specification. The analysis of a SGTR event assumes a bounding primary to secondary LEAKAGE rate equal to the operational LEAKAGE rate limits in LCO 3.4.7, "RCS Operational LEAKAGE," plus the leakage rate associated with a double-ended rupture of a single tube. The accident analysis for a SGTR assumes the contaminated secondary fluid is only briefly released to the atmosphere via safety valves and the majority is discharged to the main condenser.
	The analysis for design basis accidents and transients other than a SGTR assume the SG tubes retain their structural integrity (i.e., they are assumed not to rupture.) In these analyses, the steam discharge to the atmosphere includes primary to secondary SG tube LEAKAGE equivalent to the operational leakage limit of 150 gpd per SG. For accidents that do not involve fuel damage, the primary coolant activity level of DOSE EQUIVALENT I-131 is assumed to be equal to the LCO 3.4.10, "RCS Specific Activity," limits. For accidents that assume fuel damage, the primary coolant activity is a function of the amount of activity released from the damaged fuel. The dose consequences of these events are within the limits of GDC 19 (Ref. 2), 10 CFR 50.34 (Ref. 3) or the NRC approved licensing basis (e.g., a small fraction of these limits).
	Steam generator tube integrity satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	The LCO requires that SG tube integrity be maintained. The LCO also requires that all SG tubes that satisfy the repair criteria be plugged in accordance with the Steam Generator Program.
	During an SG inspection, any inspected tube that satisfies the Steam Generator Program repair criteria is removed from service by plugging. If a tube was determined to satisfy the repair criteria but was not plugged, the tube may still have tube integrity.
	In the context of this Specification, a SG tube is defined as the entire length of the tube, including the tube wall, between the tube-to-tubesheet weld at the tube inlet and the tube-to-tubesheet weld at the tube outlet. The tube-to-tubesheet weld is not considered part of the tube.
	A SG tube has tube integrity when it satisfies the SG performance criteria. The SG performance criteria are defined in Specification 5.5.4, "Steam Generator Program," and describe acceptable SG tube performance. The Steam Generator Program also provides the evaluation process for determining conformance with the SG performance criteria.

LCO (continued)

There are three SG performance criteria: structural integrity, accident induced leakage, and operational LEAKAGE. Failure to meet any one of these criteria is considered failure to meet the LCO.

The structural integrity performance criterion provides a margin of safety against tube burst or collapse under normal and accident conditions, and ensures structural integrity of the SG tubes under all anticipated transients included in the design specification. Tube burst is defined as, "The gross structural failure of the tube wall. The condition typically corresponds to an unstable opening displacement (e.g., opening area increased in response to constant pressure) accompanied by ductile (plastic) tearing of the tube material at the ends of the degradation." Tube collapse is defined as. "For the load displacement curve for a given structure, collapse occurs at the top of the load versus displacement curve where the slope of the curve becomes zero." The structural integrity performance criterion provides guidance on assessing loads that have a significant effect on burst or collapse. In that context, the term "significant" is defined as "An accident loading condition other than differential pressure is considered significant when the addition of such loads in the assessment of the structural integrity performance criterion could cause a lower structural limit or limiting burst/collapse condition to be established." For tube integrity evaluations, except for circumferential degradation, axial thermal loads are classified as secondary loads. For circumferential degradation, the classification of axial thermal loads as primary or secondary loads will be evaluated on a case-by-case basis. The division between primary and secondary classifications will be based on detailed analysis and/or testing.

Structural integrity requires that the primary membrane stress intensity in a tube not exceed the yield strength for all ASME Code, Section III, Service Level A (normal operating conditions) and Service Level B (upset or abnormal conditions) transients included in the design specification. This includes safety factors and applicable design basis loads based on ASME Code, Section III, Subsection NB (Ref. 4) and Draft Regulatory Guide 1.121 (Ref. 5).

The accident induced leakage performance criterion ensures that the primary to secondary LEAKAGE caused by a design basis accident, other than a SGTR, is within the accident analysis assumptions. The accident analysis assumes that accident induced leakage does not exceed 150 gpd per SG. The accident induced leakage rate includes any primary to secondary LEAKAGE existing prior to the accident in addition to primary to secondary LEAKAGE induced during the accident.

LCO (continued)	
	The operational LEAKAGE performance criterion provides an observable indication of SG tube conditions during plant operation. The limit on operational LEAKAGE is contained in LCO 3.4.7, "RCS Operational LEAKAGE," and limits primary to secondary LEAKAGE through any one SG to 150 gallons per day. This limit is based on the assumption that a single crack leaking this amount would not propagate to a SGTR under the stress conditions of a LOCA or a main steam line break. If this amount of LEAKAGE is due to more than one crack, the cracks are very small, and the above assumption is conservative.
APPLICABILITY	Steam generator tube integrity is challenged when the pressure differential across the tubes is large. Large differential pressures across SG tubes can only be experienced in MODE 1, 2, 3, or 4.
	RCS conditions are far less challenging in MODES 5 and 6 than during MODES 1, 2, 3, and 4. In MODES 5 and 6, primary to secondary differential pressure is low, resulting in lower stresses and reduced potential for LEAKAGE.
ACTIONS	The ACTIONS are modified by a Note clarifying that the Conditions may be entered independently for each SG tube. This is acceptable because the Required Actions provide appropriate compensatory actions for each affected SG tube. Complying with the Required Actions may allow for continued operation, and subsequent affected SG tubes are governed by subsequent Condition entry and application of associated Required Actions.
	A.1 and A.2
	Condition A applies if it is discovered that one or more SG tubes examined in an inservice inspection satisfy the tube repair criteria but were not plugged in accordance with the Steam Generator Program as required by SR 3.4.18.2. An evaluation of SG tube integrity of the affected tube(s) must be made. Steam generator tube integrity is based on meeting the SG performance criteria described in the Steam Generator Program. The SG repair criteria define limits on SG tube degradation that allow for flaw growth between inspections while still providing assurance that the SG performance criteria will continue to be met. In order to determine if a SG tube that should have been plugged has tube integrity, an evaluation must be completed that demonstrates that the SG performance criteria will continue to be met until the next refueling outage or SG tube inspection. The tube integrity determination

LCO (continued)

is based on the estimated condition of the tube at the time the situation is discovered and the estimated growth of the degradation prior to the next SG tube inspection. If it is determined that tube integrity is not being maintained, Condition B applies.

A Completion Time of 7 days is sufficient to complete the evaluation while minimizing the risk of plant operation with a SG tube that may not have tube integrity.

If the evaluation determines that the affected tube(s) have tube integrity, Required Action A.2 allows plant operation to continue until the next refueling outage or SG inspection provided the inspection interval continues to be supported by an operational assessment that reflects the affected tubes. However, the affected tube(s) must be plugged prior to entering MODE 4 following the next refueling outage or SG inspection. This Completion Time is acceptable since operation until the next inspection is supported by the operational assessment.

B.1 and B.2

If the Required Actions and associated Completion Times of Condition A are not met or if SG tube integrity is not being maintained, the reactor must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours.

The allowed Completion Times are reasonable, based on operating experience, to reach the desired plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.4.18.1

During shutdown periods the SGs are inspected as required by this SR and the Steam Generator Program. NEI 97-06, Steam Generator Program Guidelines (Ref. 1), and its referenced EPRI Guidelines, establish the content of the Steam Generator Program. Use of the Steam Generator Program ensures that the inspection is appropriate and consistent with accepted industry practices.

During SG inspections a condition monitoring assessment of the SG tubes is performed. The condition monitoring assessment determines the "as found" condition of the SG tubes. The purpose of the condition monitoring assessment is to ensure that the SG performance criteria have been met for the previous operating period.

SURVEILLANCE REQUIREMENTS (continued)

The Steam Generator Program determines the scope of the inspection and the methods used to determine whether the tubes contain flaws satisfying the tube repair criteria. Inspection scope (i.e., which tubes or areas of tubing within the SG are to be inspected) is a function of existing and potential degradation locations. The Steam Generator Program also specifies the inspection methods to be used to find potential degradation. Inspection methods are a function of degradation morphology, nondestructive examination (NDE) technique capabilities, and inspection locations.

The Steam Generator Program defines the Frequency of SR 3.4.18.1. The Frequency is determined by the operational assessment and other limits in the SG examination guidelines (Ref. 6). The Steam Generator Program uses information on existing degradations and growth rates to determine an inspection Frequency that provides reasonable assurance that the tubing will meet the SG performance criteria at the next scheduled inspection. In addition, Specification 5.5.4 contains prescriptive requirements concerning inspection intervals to provide added assurance that the SG performance criteria will be met between scheduled inspections.

SR 3.4.18.2

During an SG inspection, any inspected tube that satisfies the Steam Generator Program repair criteria is removed from service by plugging. The tube repair criteria delineated in Specification 5.5.4 are intended to ensure that tubes accepted for continued service satisfy the SG performance criteria with allowance for error in the flaw size measurement and for future flaw growth. In addition, the tube repair criteria, in conjunction with other elements of the Steam Generator Program, ensure that the SG performance criteria will continue to be met until the next inspection of the subject tube(s). Reference 1 provides guidance for performing operational assessments to verify that the tubes remaining in service will continue to meet the SG performance criteria.

The Frequency of prior to entering MODE 4 following a SG inspection ensures that the Surveillance has been completed and all tubes meeting the repair criteria are plugged prior to subjecting the SG tubes to significant primary to secondary pressure differential.

1.	NEI 97-06, "Steam Generator Program Guidelines."
2.	10 CFR 50 Appendix A, GDC 19.
3.	10 CFR 50.34.
4.	ASME Boiler and Pressure Vessel Code, Section III, Subsection NB.
5.	Draft Regulatory Guide 1.121, "Basis for Plugging Degraded Steam Generator Tubes," August 1976.
6.	EPRI, "Pressurized Water Reactor Steam Generator Examination Guidelines."
	2. 3. 4. 5.

B 3.5 PASSIVE CORE COOLING SYSTEM (PXS)

B 3.5.1 Accumulators

BASES	
BACKGROUND	The functions of the PXS accumulators are to supply water to the reactor vessel during the blowdown phase of a large-break loss-of-coolant accident (LOCA), to provide inventory to help accomplish the refill phase that follows thereafter, to provide Reactor Coolant System (RCS) makeup for a small-break LOCA, and to provide RCS boration for steam line breaks (Ref. 2).
	The blowdown phase of a large break LOCA is the initial period of the transient during which the RCS departs from equilibrium conditions, and heat from fission product decay, hot internals, and the vessel continues to be transferred to the reactor coolant. The blowdown phase of the transient ends when the RCS pressure falls to a value approaching that of the containment atmosphere.
	In the refill phase of a LOCA, which immediately follows the blowdown phase, reactor coolant inventory has vacated the core through steam flashing and ejection out through the break. The core is essentially in adiabatic heatup. The accumulator inventory is available to help fill voids in the lower plenum and reactor vessel downcomer so as to establish a recovery level at the bottom of the core and ongoing reflood of the core.
	The accumulators are pressure vessels, partially filled with borated water and pressurized with nitrogen gas. The accumulators are passive components, since no operator or control actions are required for them to perform their function. Internal accumulator pressure is sufficient to discharge the accumulator contents to the RCS, if RCS pressure decreases below the static accumulator pressure.
	Each accumulator is piped into the reactor vessel via an accumulator line and is isolated from the RCS by two check valves in series.
	A normally open motor operated valve is arranged in series with the check valves. Upon initiation of a safeguards actuation signal, the normally open valves receive a confirmatory open signal.
	Power lockout and position alarms ensure that the valves meet the requirements of the Institute of Electrical and Electronic Engineers (IEEE) Standard 603-1991 (Ref. 1) for "operating bypasses" and that the accumulators will be available for injection without being subject to a single failure.

BACKGROUND (continued)

The accumulator size, water volume, and nitrogen cover pressure are selected so that both of the accumulators are sufficient to recover the core cooling before significant clad melting or zirconium water reaction can occur following a large break LOCA. One accumulator is adequate during a small break LOCA where the entire contents of one accumulator can possibly be lost via the pipe break. This accumulator performance is based on design basis accident (DBA) assumptions and models (Ref. 3). The Probabilistic Risk Assessment (PRA) (Ref. 4) shows that one of the two accumulators is sufficient for a large break LOCA caused by spurious ADS actuation and that none of the accumulators are required for small break LOCAs, assuming that at least one core makeup tank (CMT) is available. In addition, both accumulators are required for a large break LOCA caused by the break of a cold leg pipe; the probability of this break has been significantly reduced by incorporation of leak-before-break.

APPLICABLE The accumulators are assumed to be OPERABLE in both the large and small break LOCA analyses at full power (Ref. 3) that establish the acceptance limits for the accumulators. Reference to the analyses for these DBAs is used to assess changes in the accumulators as they relate to the acceptance limits.

For a small break LOCA, a large range of break sizes and locations were analyzed to verify the adequacy of the design. The cases analyzed include the rupture of one 8 inch direct vessel injection line and several smaller break sizes. Acceptable PXS performance was demonstrated.

For a larger LOCA, including a double ended RCS piping rupture, the PXS can provide a sufficiently large flow rate, assuming both accumulators are OPERABLE, to quickly fill the reactor vessel lower plenum and downcomer. Both accumulators, in conjunction with the CMTs, ensure rapid reflooding of the core. For a large LOCA, both lines are available since an 8 inch line break would be a small LOCA.

Following a non-LOCA event such as a steamline break, the RCS experiences a decrease in temperature and pressure due to an increase in energy removal by the secondary system. The cooldown results in a reduction of the core SHUTDOWN MARGIN with a potential for return to power. During such an event the accumulators provide injection of borated water to assist the CMT's boration to mitigate the reactivity transient and ensure the core remains shut down.

The accumulators satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

BASES			
LCO	This LCO establishes the minimum conditions necessary to ensure that sufficient accumulator flow will be available to meet the necessary acceptance criteria established for core cooling by 10 CFR 50.46 (Ref. 5). These conditions are:		
	a. Maximum fuel element cladding temperature is \leq 2200°F;		
	 Maximum cladding oxidation is ≤ 0.17 times the total cladding thickness before oxidation; 		
	 c. Maximum hydrogen generation from a zirconium-water reaction is ≤ 0.01 times the hypothetical amount that would be generated if all of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react; and 		
	d. The core is maintained in a coolable geometry.		
	Since the accumulators discharge during the blowdown phase of a LOCA, they do not contribute to the long term cooling requirements of 10 CFR 50.46.		
	For an accumulator to be OPERABLE, the isolation valve must be fully open with power removed, and the limits established in the Surveillance Requirements for contained water, boron concentration, and nitrogen cover pressure must be met.		
APPLICABILITY	In MODES 1 and 2, and in MODES 3 and 4 with RCS pressure > 1000 psig, the accumulator OPERABILITY requirements are based on full power operation. Although cooling requirements decrease as power decreases, the accumulators are still required to provide core cooling as long as elevated RCS pressures and temperatures exist.		
	This LCO is only applicable at pressures > 1000 psig. At pressures \leq 1000 psig, the rate of RCS blowdown is such that adequate injection flow from other sources exists to retain peak clad temperatures below the 10 CFR 50.46 limit of 2200°F.		
	In MODES 3 and 4 with RCS pressure ≤ 1000 psig, and in MODES 5 and 6, the accumulator motor operated isolation valves are closed to isolate the accumulators from the RCS. This allows the RCS cooldown and depressurization without discharging the accumulators into the RCS or requiring depressurization of the accumulators.		

ACTIONS <u>A.1</u>

If the boron concentration of one accumulator is not within limits, action must be taken to restore the parameter.

Deviations in boron concentration are expected to be slight, considering that the pressure and volume are verified once per 12 hours. For one accumulator, boron concentration not within limits will have an insignificant effect on the ability of the accumulators to perform their safety function. Therefore, a Completion Time of 72 hours is considered to be acceptable.

<u>B.1</u>

If one accumulator is inoperable for a reason other than boron concentration, the accumulator must be returned to OPERABLE status within 8 hours. With one accumulator inoperable, the remaining accumulator is capable of providing the required safety function, except for one low probability event (large cold leg LOCA) discussed in the background section. The effectiveness of one accumulator is demonstrated in analysis performed to justify PRA success criteria (Ref. 4). The analysis contained in this reference shows that for a range of other events including small LOCAs and large hot leg LOCAs that with one accumulator unavailable the core is adequately cooled. The incremental conditional core damage probability with this AOT is more than an order of magnitude less than the value indicated to have a small impact on plant risk (Ref. 7).

The 8 hour Completion Time to open the valve, remove power to the valve, or restore the proper water volume or nitrogen cover pressure ensures that prompt action will be taken to return the inoperable accumulator to OPERABLE status. The Completion Time is reasonable since the CMTs are required to be available to provide small break LOCA mitigation (i.e., entry into Condition C or E of LCO 3.5.2 has not occurred). The effectiveness of backup CMT injection is demonstrated in analysis performed to justify PRA success criteria (Ref. 3). The analysis contained in this reference shows that for a small LOCA, the injection from one CMT without any accumulator injection supports adequate core cooling. This analysis provides a high confidence that with the unavailability of one accumulator, the core can be cooled following design bases accidents.

The 1 hour Completion Time, in the case with simultaneous entry into Condition C or E of LCO 3.5.2, requires very prompt actions to restore either the accumulator or the CMT to OPERABLE status. This Completion Time is considered reasonable because of the low probability of simultaneously entering these multiple PXS Conditions and the very small likelihood of a LOCA occurring at the same time.

ACTIONS (continued)

C.1 and C.2

If the Required Action and associated Completion Time of Conditions A or B are not met, the plant must be placed in a MODE or condition in which the LCO does not apply. This is done by placing the plant in MODE 3 within 6 hours and with pressurizer pressure to \leq 1000 psig within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

<u>D.1</u>

If more than one accumulator is inoperable, the plant is in a condition outside the accident analyses; therefore, LCO 3.0.3 must be entered immediately.

SURVEILLANCE <u>SR 3.5.1.1</u> REQUIREMENTS

Each accumulator valve should be verified to be fully open every 12 hours. This verification ensures each accumulator isolation valve is fully open, as indicated in the control room, and timely discovery if a valve should be less than fully open. If an isolation valve is not fully open, the rate of injection to the RCS would be reduced. Although a motor operated valve position should not change with power removed, a partially closed valve could result in not meeting DBA analyses assumptions (Ref. 3). A 12 hour Frequency is considered reasonable in view of the other administrative controls which ensure that a mispositioned isolation valve is unlikely.

SR 3.5.1.2 and 3.5.1.3

Verification every 12 hours of the borated water volume and nitrogen cover pressure in each accumulator is sufficient to ensure adequate injection during a LOCA. Because of the static design of the accumulator, a 12 hour Frequency usually allows the operator to identify changes before limits are reached. Considering that control room alarms are provided for both parameters these limits are effectively subject to continuous monitoring. The 12 hour Frequency is considered reasonable considering the availability of the control room alarms and the likelihood that, with any deviation which may occur, the accumulators will perform their safety function with slight deviations in these parameters.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.5.1.4</u>

The boron concentration should be verified to be within required limits for each accumulator every 31 days, since the static design of the accumulators limits the ways in which the concentration can be changed. The 31 day Frequency is adequate to identify changes that could occur from mechanisms such as in-leakage. Sampling the affected accumulator within 6 hours after a 3% volume increase will promptly identify whether the volume change has caused a reduction of boron concentration to below the required limit. It is not necessary to verify boron concentration if the added water inventory is from the in-containment refueling water storage tank (IRWST), because the water contained in the IRWST is within the accumulator boron concentration requirements. This is consistent with the recommendation of NUREG-1366 (Ref. 6).

SR 3.5.1.5

Verification every 31 days that power is removed from each accumulator isolation valve operator when the pressurizer pressure is \geq 2000 psig ensures that an active failure could not result in the undetected closure of an accumulator motor operated isolation valve. If this were to occur, reduced accumulator capacity might be available for injection following a DBA that required operation of the accumulators. Since power is removed under administrative control, the 31 day Frequency will provide adequate assurance that power is removed.

This SR allows power to be supplied to the motor operated isolation valves when pressurizer pressure is < 2000 psig, thus allowing operational flexibility by avoiding unnecessary delays to manipulate the breakers during unit startup or shutdowns.

Should closure of a valve occur, the safeguard actuation signal provided to the valve would open a closed valve, if required.

<u>SR 3.5.1.6</u>

This SR requires performance of a system performance test of each accumulator to verify flow capabilities. The system performance test demonstrates that the accumulator injection line resistance assumed in accident analyses is maintained. Although the likelihood that system performance would degrade with time is low, it is considered prudent to periodically verify system performance. The System Level Operability Testing Program provides specific test requirements and acceptance criteria.

REFERENCES	1.	IEEE Standard 603-1991, "Criteria for Safety Systems for Nuclear Power Generating Stations."
	2.	Section 6.3 "Passive Core Cooling System."
	3.	Section 15.6 "Decrease in Reactor Coolant Inventory."
	4.	AP1000 PRA.
	5.	10 CFR 50.46.
	6.	NUREG-1366, February 1990.
	7.	Regulatory Guide 1.177, 8/98, "An Approach for Plant-Specific, Risk-Informed Decisionmaking: Technical Specifications."

B 3.5 PASSIVE CORE COOLING SYSTEM (PXS)

B 3.5.2 Core Makeup Tanks (CMTs) – Operating

BASES

BACKGROUND	Two redundant CMTs provide sufficient borated water to assure Reactor Coolant System (RCS) reactivity and inventory control for all design basis accidents (DBAs), including both loss of coolant accident (LOCA) events and non-LOCA events (Ref. 1).
	The CMTs are cylindrical tanks with hemispherical upper and lower heads. They are made of carbon steel and clad on the internal surfaces with stainless steel. They are located in containment at an elevation slightly above the reactor coolant loops. Each tank is full of borated water at > 3400 ppm. During normal operation, the CMTs are maintained at RCS pressure through a normally open pressure balance line from the cold leg.
	The outlet line from each CMT is connected to one of two direct vessel injection lines, which provides an injection path for the water supplied by the CMT. The outlet line from each CMT is isolated by parallel, normally closed, fail open valves. Upon receipt of a safeguards actuation signal, these four valves open to align the CMTs to the RCS.
	The CMTs will inject to the RCS as inventory is lost and steam or reactor coolant is supplied to the CMT to displace the water that is injected. Steam or reactor coolant is provided to the CMT through the cold leg balance line, depending upon the specific event that has occurred. The inlet line from the cold leg is sized for LOCA events, where the cold legs become voided and higher CMT injection flows are required.
	The injection line from each CMT contains a flow tuning orifice that is used to provide a mechanism for the field adjustment of the injection line resistance. The orifice is used to establish the required flow rates for the associated plant conditions assumed in the CMT design. The CMT flow is based on providing injection for a minimum of 20 minutes after CMT actuation.
	The CMT size and injection capability are selected to provide adequate RCS boration and safety injection for the limiting DBA. One CMT is adequate for this function during a small break LOCA where one CMT completely spills via the pipe break (Ref. 2). The Probabilistic Risk Assessment (PRA) (Ref. 3) shows that none of the CMTs are required for small LOCAs, assuming that at least one accumulator is available.

APPLICABLE SAFETY ANALYSES	The CMTs are assumed to be OPERABLE to provide emergency boration and core makeup when the Chemical and Volume Control System (CVS) is inoperable, and to mitigate the consequences of any DBA which requires the safety injection of borated water (Ref. 2).
	Following a non-LOCA event such as a steamline break, the RCS experiences a decrease in temperature and pressure due to an increase in energy removal by the secondary system. The cooldown results in a reduction of the core SHUTDOWN MARGIN due to the negative moderator temperature coefficient, with a potential for return to power. The actuation of the CMTs following this event provides injection of borated water to mitigate the reactivity transient and ensure the core remains shut down.
	In the case of a steam generator tube rupture (SGTR), CMT injection provides borated water to compensate for RCS LEAKAGE.
	In the case of an RCS leak of 10 gallons per minute, the CMTs can delay depressurization for at least 10 hours, providing makeup to the RCS and remain able to provide the borated water to compensate for RCS shrinkage and to assure the RCS boration for a safe shutdown.
	In the case of a LOCA, the CMTs provide a relatively large makeup flow rate for approximately 20 minutes, in conjunction with the accumulators to provide the initial core cooling.
	CMTs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	This LCO establishes the minimum conditions necessary to ensure that sufficient CMT flow will be available to meet the initial conditions assumed in the safety analyses. The volume of each CMT represents 100% of the total injected flow assumed in LOCA analysis. If the injection line from a single CMT to the vessel breaks, no single active failure on the other CMT will prevent the injection of borated water into the vessel. Thus the assumptions of the LOCA analysis will be satisfied.
	For non-LOCA analysis, two CMTs are assumed. Note that for non-LOCA analysis, the accident cannot disable a CMT.

APPLICABILITY	In MODES 1, 2, 3, and 4 when the RCS is not being cooled by the Normal Residual Heat Removal System (RNS) the CMTs are required to be OPERABLE to provide borated water for RCS inventory makeup and reactivity control following a design basis event and subsequent cooldown.		
	The CMT requirements in MODE 5 with the RCS pressure boundary intact are specified in LCO 3.5.3, "Core Makeup Tanks (CMTs) – Shutdown, RCS Intact."		
	The CMTs are not required to be OPERABLE while in MODE 5 with the RCS pressure boundary open or in MODE 6 because the RCS is depressurized and borated water can be supplied from the In-containment Refueling Water Storage Tank (IRWST), if needed.		
	In the unlikely event of a total loss of AC power sources, coupled with an inoperable Passive Residual Heat Removal Heat Exchanger (PRHR HX) (beyond DBA), the CMTs may be used in a feed and bleed sequence to remove heat from the RCS.		
ACTIONS	<u>A.1</u>		

With one outlet isolation valve inoperable on one CMT, action must be taken to restore the valve. In this Condition, the CMT is capable of performing its safety function, provided a single failure of the remaining parallel isolation valve does not occur. A Completion Time of 72 hours is acceptable for two train ECCS systems which are capable of performing their safety function without a single failure.

<u>B.1</u>

If the water temperature or boron concentration of one CMT is not within limits, it must be returned to within limits within 72 hours. The deviations in these parameters are expected to be slight, considering the frequent surveillances and control room monitors. With the temperature above the limit, the full core cooling capability assumed in the safety analysis may not be available. With the boron concentration not within limits, the ability to maintain subcriticality following a DBA may be degraded. However, because only one of two CMTs is inoperable, and the deviations of these parameters are expected to be slight, it is probable that more than a required amount of boron and cooling capability will be available to meet the conditions assumed in the safety analysis.

ACTIONS (continued)

Since the CMTs are redundant, safety class components, the 72 hour Completion Time is consistent with the times normally allowed for this type of component.

<u>C.1</u>

With two CMTs inoperable due to water temperature or boron concentration, at least one CMT must be restored to within limits in 8 hours. The deviations in these parameters are expected to be slight, considering the frequent surveillances and control room monitors. A Completion Time of 8 hours is considered reasonable since the CMTs are expected to be capable of performing their safety function with slight deviations in these parameters and the accumulators are required to be available for LOCA mitigation (i.e., entry into Condition B of LCO 3.5.1 has not occurred). The effectiveness of accumulator injection is demonstrated in analysis performed to justify PRA success criteria (Ref. 3). The analysis contained in this reference shows that for a small LOCA, the injection from one accumulator without any CMT injection supports adequate core cooling. This analysis provides a high confidence that with the unavailability of two CMTs due to water temperature or boron concentration deviations, the core can be cooled following design bases accidents.

The 1 hour Completion Time, in the case with simultaneous entry into Condition B of LCO 3.5.1, requires very prompt actions to restore either the CMT or the accumulator to OPERABLE status. This Completion Time is considered reasonable because of the low probability of simultaneously entering these multiple PXS Conditions and the very small likelihood of a LOCA occurring at the same time.

<u>D.1</u>

Excessive amounts of noncondensible gases in a CMT inlet line may interfere with the natural circulation flow (hot water from the RCS through the balance line into the CMT and cold water from the CMT through the direct vessel injection line into the vessel) assumed in the safety analyses for some transients. For CMT injection following a LOCA (steam will enter the CMT through the balance line, displacing the CMT water), gases in the CMT inlet line are <u>not</u> detrimental to the CMT function. The presence of some noncondensible gases does not mean that the CMT natural circulation capability is immediately inoperable, but that gases are collecting and should be vented. The venting of these gases requires containment entry to manually operate the vent valves. A Completion Time of 24 hours is permitted for venting noncondensible gases and is

ACTIONS (continued)

acceptable, since, for the transients, the natural circulation capability of one CMT is adequate to ensure mitigation assuming less conservative analysis assumptions regarding stuck rods and core characteristics.

<u>E.1</u>

With one CMT inoperable for reasons other than Condition A, B, C, D, operation of the CMT may not be available. Action must be taken to restore the inoperable CMT to OPERABLE status within 8 hours. The remaining CMT is sufficient for DBAs except for LOCA in the OPERABLE CMTs DVI line. The 8 hour Completion Time is based on the required availability of injection from the accumulators (provided that entry into Condition B of LCO 3.5.1 has not occurred) to provide SI injection. The effectiveness of accumulator injection is demonstrated in analysis performed to justify PRA success criteria (Ref. 3). The analysis contained in this reference shows that for a small LOCA, the injection from one accumulator without any CMT supports adequate core cooling. This analysis provides a high confidence that with the unavailability of one CMT, the core can be cooled following design bases accidents.

The 1 hour Completion Time, in the case with simultaneous entry into Condition B of LCO 3.5.1, requires very prompt actions to restore either the CMT or the accumulator to OPERABLE status. This Completion Time is considered reasonable because of the low probability of simultaneously entering these multiple PXS Conditions and the very small likelihood of a LOCA occurring at the same time.

F.1 and F.2

If the Required Action or associated Completion Time of Condition A, B, C, D, or E are not met or the LCO is not met for reasons other than Conditions A through E, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE REQUIREMENTS

SR 3.5.2.1 and SR 3.5.2.2

Verification every 24 hours and 7 days that the temperature and the volume, respectively, of the borated water in each CMT is within limits ensures that when a CMT is needed to inject water into the RCS, the injected water temperature and volume will be within the limits assumed

SURVEILLANCE REQUIREMENTS (continued)

in the accident analysis. The 24 hour Frequency is adequate, based on the fact that no mechanism exists to rapidly change the temperature of a large tank of water such as a CMT. These parameters are normally monitored in the control room by indication and alarms. Also, there are provisions for monitoring the temperature of the inlet and outlet lines to detect in-leakage which may affect the CMT water temperature.

SR 3.5.2.3

Each CMT inlet isolation valve must be verified to be fully open each 12 hours. Frequent verification is considered to be important, since a CMT can not perform its safety function, if the valve is closed. Control room instrumentation is normally available for this verification.

<u>SR 3.5.2.4</u>

Verification that excessive amounts of noncondensible gases are not present in the inlet line is required every 24 hours. The inlet line of each CMT has a vertical section of pipe which serves as a high point collection point for noncondensible gases. Control room indication of the water level in the high point collection point is available to verify that noncondensible gases have collected to the extent that the water level is depressed below the allowable level. The 24 hour Frequency is based on the expected low rate of gas accumulation and the availability of control room indication.

SR 3.5.2.5

Verification every 7 days that the boron concentration in each CMT is within the required limits ensures that the reactivity control from each CMT, assumed in the safety analysis, will be available as required. The 7 day Frequency is adequate to promptly identify changes which could occur from mechanisms such as in-leakage.

<u>SR 3.5.2.6</u>

Verification that the redundant outlet isolation valves are OPERABLE by stroking the valves open ensures that each CMT will function as designed when these valves are actuated. Prior to opening the outlet isolation valves, the inlet isolation valve should be closed temporarily. Closing the inlet isolation valve ensures that the CMT contents will not be diluted or heated by flow from the RCS. Upon completion of the test, the inlet isolation valves must be opened. The Surveillance Frequency references the inservice testing requirements.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.5.2.7</u>

This SR requires performance of a system performance test of each CMT to verify flow capabilities. The system performance test demonstrates that the CMT injection line resistance assumed in DBA analyses is maintained. Although the likelihood that system performance would degrade with time is low, it is considered prudent to periodically verify system performance. The System Level Operability Testing Program provides specific test requirements and acceptance criteria.

REFERENCES	1.	Section 6.3,	"Passive	Core	Cooling	System."

- 2. Chapter 15, "Accident Analysis."
- 3. AP1000 PRA.

B 3.5 PASSIVE CORE COOLING SYSTEM (PXS)

B 3.5.3 Core Makeup Tanks (CMTs) – Shutdown, RCS Intact

BASES		
BACKGROUND	A description of the CMTs is provided in the Bases for LCO 3.5.2, "Core Makeup Tanks – Operating."	
APPLICABLE SAFETY ANALYSES	When the plant is shutdown with the Reactor Coolant System (RCS) pressure boundary intact, the CMT and Passive Residual Heat Removal (PRHR) are the preferred methods for mitigation of postulated events such as loss of normal decay heat removal capability (either loss of Startup Feedwater or loss of normal residual heat removal system). The CMT and PRHR are preferred because the RCS pressure boundary can remain intact, thus preserving one of the barriers to fission product release. For these events, the PRHR provides the safety related heat removal path. And the CMT maintains RCS inventory control. These events can also be mitigated by In-containment Refueling Water Storage Tank (IRWST) injection; however, the RCS must be depressurized (vented) in order to facilitate IRWST injection.	
	Since no loss of coolant accidents (LOCAs) are postulated during MODES 5 and 6, the possibility of a break in the direct vessel injection line is not considered. As a result, only one CMT is required to be available to provide core cooling in response to postulated events. The two parallel CMT outlet isolation valves ensure that injection from one CMT occurs in the event of a single active failure.	
	CMTs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).	
LCO	This LCO establishes the minimum conditions necessary to ensure that one CMT will be available for RCS inventory control in the event of the loss of normal decay heat removal capability. The two CMT outlet isolation valves must be OPERABLE to ensure that at least one valve will operate, assuming that the other valve is disabled by a single active failure.	
APPLICABILITY	In MODE 4 without steam generator heat removal and in MODE 5 with the RCS pressure boundary intact, one CMT is required to provide borated water to the RCS in the event the nonsafety related chemical and volume control system makeup pumps are not available to provide RCS inventory control.	

APPLICABILITY (continued)

The CMT requirements in MODES 1, 2, 3, and 4 are specified in LCO 3.5.2, "Core Makeup Tanks (CMTs) – Operating."

The CMTs are not required to be OPERABLE while in MODE 5 with the RCS open or in MODE 6 because the RCS is depressurized and borated water can be supplied from the IRWST, if needed.

ACTIONS

With one outlet isolation valve inoperable action must be taken to restore the valve. In this Condition the CMT is capable of performing its safety function, provided a single failure of the remaining parallel isolation valve does not occur. A Completion Time of 72 hours is consistent with times normally applied to an ECCS system which is capable of performing its safety function without a single failure.

<u>B.1</u>

A.1

If the water temperature or boron concentration in the CMT is not within limits, it must be returned to within limits within 72 hours. With the temperature above the limit the makeup capability assumed in the safety analysis may not be available. With the boron concentration not within limits, the ability to maintain subcriticality may be degraded.

Because the mechanisms for significantly altering these parameters in the CMT are limited, it is probable that more than the required amount of boron and cooling capacity will be available to meet the conditions assumed in the safety analysis. Therefore, the 72 hour Completion Time is acceptable.

<u>C.1</u>

With the required CMT inoperable for reasons other than Condition A or B operation of the CMT may not be available. Action must be taken to restore the inoperable CMT to OPERABLE status within 8 hours. LOCAs are not postulated during the MODEs when this LCO is applicable. The only safety function is to provide LEAKAGE makeup in case normal RCS makeup is unavailable. The 8 hour Completion Time is based on the availability of injection from the IRWST to provide RCS makeup. The ability of the IRWST to provide RCS injection is demonstrated by analysis performed to show that IRWST injection together with ADS venting provides adequate core cooling. Such analysis was performed for the loss of RNS cooling during midloop operations. The analysis was performed in support of the AP1000 PRA (Ref. 2).

ACTIONS (continued)

<u>D.1</u>

	If the Required Action or associated Completion Time of Conditions A, B, or C are not met or the LCO is not met for reasons other than Conditions A through C, action must be initiated, immediately, to place the plant in a MODE where this LCO does not apply. Action must be initiated, immediately, to place the plant in MODE 5 with RCS pressure boundary open and ≥ 20% pressurizer level. In this condition, core cooling and RCS makeup are provided by IRWST injection and sump recirculation. Opening of the ADS valves ensures that IRWST injection can occur.
SURVEILLANCE REQUIREMENTS	SR 3.5.3.1 The LCO 3.5.2 Surveillance Requirements (SR 3.5.2.1 through 3.5.2.7) are applicable to the CMT required to be OPERABLE. The Frequencies associated with each specified SR are applicable. Refer to the corresponding Bases for LCO 3.5.2 for a discussion of each SR.
REFERENCES	 Section 6.3, "Passive Core Cooling System." AP1000 PRA.

B 3.5 PASSIVE CORE COOLING SYSTEM (PXS)

B 3.5.4 Passive Residual Heat Removal Heat Exchanger (PRHR HX) – Operating

BASES BACKGROUND The normal heat removal mechanism is the steam generators, which are supplied by the startup feedwater system. However, this path utilizes non-safety related components and systems, so its failure must be considered. In the event the steam generators are not available to remove decay heat for any reason, including loss of startup feedwater, the heat removal path is the PRHR HX (Ref. 1). The principle component of the PRHR HX is a 100% capacity heat exchanger mounted in the In-containment Refueling Water Storage Tank (IRWST). The heat exchanger is connected to the Reactor Coolant System (RCS) by a inlet line from one RCS hot leg, and an outlet line to the associated steam generator cold leg channel head. The inlet line to the passive heat exchanger contains a normally open, motor operated isolation valve. The outlet line is isolated by two parallel, normally closed air operated valves, which fail open on loss of air pressure or control signal. There is a vertical collection point at the top of the common inlet piping high point which serves as a gas collector. It is provided with level detectors that indicate when noncondensible gases have collected in this area. There are provisions to manually vent these gases to the IRWST. In order to preserve the IRWST water for long term PRHR HX operation, a gutter is provided to collect and return water to the IRWST that has condensed on the inside surface of the containment shell. During normal plant operation any water collected by the gutter is directed to the normal containment sump. During PRHR HX operation, redundant series air operated valves are actuated to block the draining of condensate to the normal sump and to force the condensate into the IRWST. These valves fail closed on loss of air pressure or control signal. The PRHR HX size and heat removal capability is selected to provide adequate core cooling for the limiting non-LOCA heatup Design Basis Accidents (DBAs) (Ref. 2). The Probability Risk Assessment (PRA) (Ref. 3) shows that PRHR HX is not required assuming that passive feed and bleed is available. Passive feed and bleed uses the Automatic Depressurization System (ADS) for bleed and the CMTs/accumulators/ IRWST for feed.

BASES	
APPLICABLE SAFETY ANALYSES	In the event of a non-LOCA DBA during normal operation, the PRHR HX is automatically actuated to provide decay heat removal path in the event the normal path through the steam generators is not available (Ref. 2).
	The non-LOCA events which establish the PRHR HX parameters are those involving a decrease in heat removal by the secondary system, such as loss of main feedwater or other failure in the feedwater system. Since the PRHR HX is passive, it will mitigate the consequences of these events with a complete loss of all AC power sources. The PRHR HX actuates when the CMTs are actuated during LOCA events.
	The PRHR HX satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	This LCO requires that the PRHR HX be OPERABLE so that it can respond appropriately to the DBAs which may require its operation. Since this is a passive component, it does not require the actuation of active components such as pumps for its OPERABILITY and will be OPERABLE if the inlet valves are in their normally open position, and the normally closed, fail open outlet valves open on receipt of an actuation signal.
	In addition to the appropriate valve configuration, OPERABILITY may be impaired by flow blockage caused by noncondensible gases collecting in the system. Thus the absence of noncondensible gases in the high point is necessary for system OPERABILITY.
	The note requires a reactor coolant pump (RCP) to be operating in the loop with the PRHR HX, Loop 1, if any RCPs are operating. If RCPs are only operating in Loop 2 and no RCPs are operating in Loop 1, there is a possibility there may be reverse flow in the PRHR HX.
APPLICABILITY	The PRHR HX must be OPERABLE in MODES 1, 2, 3, and 4 with the RCS not cooled by the Normal Residual Heat Removal System (RNS) if a plant cooldown is required and the normal cooldown path is not available. Under these conditions, the PRHR HX may be actuated to provide core cooling and to mitigate the consequences of a DBA.
	The PRHR HX requirements in MODE 4 with RCS cooling provided by the RNS and in MODE 5 with the RCS pressure boundary intact are specified in LCO 3.5.5, "Passive Residual Heat Removal Heat Exchanger (PRHR HX) – Shutdown, RCS Intact."
	The PRHR HX is not capable of natural circulation cooling of the RCS in MODE 5 with the RCS pressure boundary open or in MODE 6.

ACTIONS <u>A.1</u>

The outlet line from the PRHR HX is controlled by a pair of normally closed, fail open, air operated valves, arranged in parallel. Thus they are redundant and, if either valve is OPERABLE, the system can function at 100% capacity, assuming other OPERABILITY conditions are met.

If one valve is inoperable, a Completion Time of 72 hours has been allowed to restore the inoperable valve(s) to OPERABLE status. This Completion Time is consistent with the Completion Times specified for other parallel redundant safety related systems.

<u>B.1</u>

With one air operated IRWST gutter isolation valve inoperable, the remaining isolation valve can function to drain the gutter to the IRWST. Action must be taken to restore the inoperable gutter isolation valve to OPERABLE status within 72 hours. The 72 hour Completion Time is acceptable based on the capability of the remaining valve to perform 100% of the required safety function assumed in the safety analyses.

<u>C.1</u>

Excessive amounts of noncondensible gases in the PRHR HX inlet line may interfere with the natural circulation flow of reactor coolant through the PRHR HX. The presence of some noncondensible gases does not mean that the PRHR HX is immediately inoperable, but that gases are collecting and should be vented. The venting of these gases requires containment entry to manually operate the appropriate vent valves. A Completion Time of 24 hours is acceptable considering that passive feed and bleed cooling is available to remove heat from the RCS.

D.1 and D.2

If any of the above Required Actions have not been accomplished in the required Completion Time or the LCO is not met for reasons other than Conditions A, B, or C, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4, with the RCS cooled by the RNS, within 24 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

ACTIONS (continued)

<u>E.1</u>

With the LCO not met for reasons other than Condition A, B, or C, the PRHR HX must be restored within 8 hours. The 8 hour Completion Time is based on the availability of passive feed and bleed cooling to provide RCS heat removal. The effectiveness of feed and bleed cooling has been demonstrated in analysis and evaluations performed to justify PRA success criteria (Ref. 3). The analysis contained in this reference shows that for a range of events including loss of main feedwater, SGTR, and small LOCA (as small as 1/2") that feed and bleed cooling provides adequate core cooling.

These analyses and evaluations provide a high confidence that with the unavailability of the PRHR HX the core can be cooled following design bases accidents.

F.1 and F.2

If the PRHR HX is not restored in accordance with Action E.1 within 8 hours, the plant must be placed in a MODE in which the LCO does not apply. This is accomplished by placing the plant in MODE 3 within 6 hours and in MODE 5 within 36 hours.

Action F.1 is modified by a Note which requires that prior to initiating cooldown of the plant to MODE 3, redundant means of providing SG feedwater be verified as OPERABLE. Possible means include main feedwater and startup feedwater pumps. With the PRHR HX and redundant means of feeding the SGs INOPERABLE, the unit is in a seriously degraded condition with no means for conducting a controlled cooldown. In such a condition, the unit should not be perturbed by any action, including a power change, that might result in a trip. If redundant means of feeding the SGs are not available, the plant should be maintained in the current MODE until redundant means are restored. LCO 3.0.3 and all other Required Actions shall be suspended until the redundant means are restored, because they could force the unit into a less safe condition.

Action F.2 is modified by a Note which requires that prior to stopping SG feedwater, redundant means of cooling the RCS to cold shutdown conditions must be verified as OPERABLE. One redundant means of cooling the RCS to cold shutdown includes the normal residual heat removal system (RNS) and its necessary support system (both component cooling system pumps and heat exchangers, and both service water system pumps and fans). Without availability of these redundant

ACTIONS (continued)

cooling means, the unit is in a seriously degraded condition with no means for continuing the controlled cooldown. Until the redundant cooling means are restored, heat removal using SG feedwater should be maintained. LCO 3.0.3 and all other Required Actions shall be suspended until the systems and equipment required for further cooldown are restored, because they could force the unit into a less safe condition.

SURVEILLANCE <u>SR 3.5.4.1</u> REQUIREMENTS

Verification, using remote indication, that the common outlet manual isolation valve is fully open ensures that the flow path from the heat exchangers to the RCS is available. Misalignment of this valve could render the heat exchanger inoperable. A 12 hour Frequency is reasonable considering that the valve is manually positioned and has

control room position indication and alarm.

<u>SR 3.5.4.2</u>

Verification that the motor operated inlet valve is fully open, as indicated in the main control room, ensures timely discovery if the valve is not fully open. The 12 hour Frequency is consistent with the ease of verification, confirmatory open signals, and redundant series valve controls that prevent spurious closure.

<u>SR 3.5.4.3</u>

Verification that excessive amounts of noncondensible gases are not present in the inlet line is required every 24 hours. The inlet line of the PRHR HX has a vertical section of pipe which serves as a high point collection point for noncondensible gases. Control room indication of the water level in this high point collection point is available to verify that noncondensible gases have not collected to the extent that the water level is depressed below the allowable level. The 24 hour Frequency is based on the expected low rate of gas accumulation and the availability of control room indication.

<u>SR 3.5.4.4</u>

Verification is required to confirm that power is removed from the motor operated inlet isolation valve every 31 days. Removal of power from this valve reduces the likelihood that the valve will be inadvertently closed as a result of a fire. The 31 day Frequency is acceptable considering the frequent surveillance of valve position and that the valve has a confirmatory open signal.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.5.4.5</u>

Verification that both air operated outlet valves and both IRWST gutter isolation valves are OPERABLE ensures that the PRHR HX will actuate on command, with return flow from the gutter to the IRWST, since all other components of the system are normally in the OPERABLE configuration. Since these valves are redundant, if one valve is inoperable, the system can function at 100% capacity. Verification requires the actual operation of each valve through a full cycle to demonstrate OPERABILITY. The Surveillance Frequency is provided in the Inservice Testing Program.

SR 3.5.4.6

This SR requires performance of a system performance test of the PRHR HX to verify system heat transfer capabilities. The system performance test demonstrates that the PRHR HX heat transfer assumed in accident analyses is maintained. Although the likelihood that system performance would degrade with time is low, it is considered prudent to periodically verify system performance. The System Level Operability Testing Program provides specific test requirements and acceptance criteria.

<u>SR 3.5.4.7</u>

This surveillance requires visual inspection of the IRWST gutters to verify that the return flow to the IRWST will not be restricted by debris. A Frequency of 24 months is adequate, since there are no known sources of debris with which the gutters could become restricted.

- REFERENCES 1. Section 6.3, "Passive Core Cooling System."
 - 2. Chapter 15, "Safety Analysis."
 - 3. AP1000 PRA.

B 3.5 PASSIVE CORE COOLING SYSTEM (PXS)

B 3.5.5 Passive Residual Heat Removal Heat Exchanger (PRHR HX) – Shutdown, RCS Intact

BASES	
BACKGROUND	A description of the PRHR HX is provided in the Bases for LCO 3.5.4, "Passive Residual Heat Removal Heat Exchanger (PRHR HX) – Operating."
APPLICABLE SAFETY ANALYSES	In the event of a loss of normal decay heat removal capability during shutdown with the Reactor Coolant System (RCS) pressure boundary intact, the PRHR HX provides the preferred safety related heat removal path. When required, the PRHR HX is manually actuated and can maintain the RCS < 420°F. Alternatively, the heat removal function can be provided by depressurizing the RCS with the Automatic Depressurization System (ADS) and injection of the In-containment Refueling Water Storage Tank (IRWST) with containment closure capability provided. The PRHR HX is preferred because the RCS pressure boundary remains intact, thus preserving a barrier to fission product release.
	The PRHR HX satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	This LCO requires the PRHR HX to be OPERABLE so that it can be placed in service in the event normal decay heat removal capability is lost. Since this a passive component, it does not require the actuation of active components such as pumps for its OPERABILITY and will be OPERABLE if the inlet valves are in their normally open position, and the normally closed, fail open outlet valves open on receipt of an actuation signal.
	In addition to the appropriate valve configuration, OPERABILITY may be impaired by flow blockage caused by noncondensible gases collecting in the system. Thus the absence of non-condensible gases in the high point is necessary for system OPERABILITY.
	The note requires a reactor coolant pump (RCP) to be operating in the loop with the PRHR HX, Loop 1, if any RCPs are operating. If RCPs are only operating in loop 2 and no RCPs are operating in loop 1, there is a possibility there may be reverse flow in the PRHR HX.

APPLICABILITY	The PRHR HX must be OPERABLE in MODE 4 with RCS cooling provided by the RNS and in MODE 5 with the RCS pressure boundary intact and pressurizer level \geq 20% to provide decay heat removal in the event the normal residual heat removal system is not available.
	The PRHR HX requirements in MODES 1, 2, 3, and 4 with RCS cooling not provided by the RNS are specified in LCO 3.5.4, "Passive Residual Heat Removal Heat Exchanger (PRHR HX) – Operating."
	The PRHR HX is not capable of natural circulation cooling of the RCS in MODE 5 with either the RCS pressure boundary open or with the RCS intact when pressurizer level \leq 20%, or in MODE 6.
ACTIONS	<u>A.1</u>

The outlet line from the PRHR HX is isolated by a pair of normally closed, fail open, air operated valves, arranged in parallel. They are redundant, and if either valve is OPERABLE the system can function at 100% capacity, assuming other OPERABILITY conditions are met.

Since these valves are redundant, if one valve is inoperable, a Completion Time of 72 hours has been allowed to restore the inoperable valve to OPERABLE status. This Completion Time is consistent with the Completion Times specified for other parallel redundant safety related systems.

<u>B.1</u>

With one air operated IRWST gutter isolation valve inoperable, the remaining isolation valve can function to drain the gutter to the IRWST. Action must be taken to restore the inoperable gutter isolation valve to OPERABLE status within 72 hours. The 72 hour Completion Time is acceptable based on the capability of the remaining valve to perform 100% of the required safety function assumed in the safety analyses.

<u>C.1</u>

At the inlet piping high point there is a vertical chamber which serves as a collection point for noncondensible gases. This collection point is provided with detectors which alarm to indicate when gases have collected in this area. The presence of an alarm does not mean that PRHR HX is immediately inoperable, but that gases are collecting and should be vented. A Completion Time of 24 hours is acceptable, considering that passive feed and bleed cooling is available to revise heat from the RCS.

ACTIONS (continued)

<u>D.1</u>

With the LCO not met for reasons other than Condition A, B, or C, the PRHR HX must be restored within 8 hours. The 8 hour Completion Time is acceptable based on the availability of passive feed and bleed cooling to provide RCS heat removal. The effectiveness of feed and bleed cooling is discussed in the bases for LCO 3.5.4, Action E.1.

<u>E.1</u>

If any of the above Required Actions have not been accomplished in the required Completion Time, or the LCO is not met for reasons other than Conditions A, B, C, or D, action must be initiated, immediately, to be in MODE 5 with the RCS pressure boundary open and pressurizer level ≥ 20%. The time to RCS boiling is maximized in the event of loss of normal decay heat removal capability, by maintaining a visible level in the pressurizer. Additionally, in this MODE the RCS must be opened, such that safety related decay heat removal can be immediately initiated by actuation of the IRWST injection valve(s).

SURVEILLANCE <u>SR 3.5.5.1</u> REQUIREMENTS

The LCO 3.5.4 Surveillance Requirements are applicable to the PRHR HX required to be OPERABLE. The Frequencies associated with each specified SR are applicable. Refer to the corresponding Bases for LCO 3.5.4 for a discussion of each SR.

REFERENCES None.

B 3.5 PASSIVE CORE COOLING SYSTEM (PXS)

B 3.5.6 In-containment Refueling Water Storage Tank (IRWST) – Operating

BASES	
BACKGROUND	The IRWST is a large stainless steel lined tank filled with borated water (Ref. 1). It is located below the operating deck in containment. The tank is designed to meet seismic Category 1 requirements. The floor of the IRWST is elevated above the reactor coolant loop so that borated water can drain by gravity into the Reactor Coolant System (RCS). The IRWST is maintained at ambient containment pressure.
	The IRWST has two injection flow paths. The injection paths are connected to the reactor vessel through two direct vessel injection lines which are also used by the accumulators and the core makeup tanks. Each path includes an injection flow path and a containment recirculation flow path. Each injection path includes a normally open motor operated isolation valve and two parallel actuation lines each isolated by one check valve and one squib valve in series.
	The IRWST has two containment recirculation flow paths. Each containment recirculation path contains two parallel actuation flow paths, one path is isolated by a normally open motor operated valve in series with a squib valve and one path is isolated by a check valve in series with a squib valve.
	During refueling operations, the IRWST is used to flood the refueling cavity. During abnormal events, the IRWST serves as a heat sink for the passive residual heat removal heat exchangers, as a heat sink for the depressurization spargers, and as a source of low head (ambient containment pressure) safety injection during loss of coolant accidents (LOCAs) and loss of decay heat removal in MODE 5 (loops not filled). The IRWST can be cooled by the Normal Residual Heat Removal System (RNS) system.
	The IRWST size and injection capability is selected to provide adequate core cooling for the limiting Design Basis Accidents (DBAs) (Ref. 2).
APPLICABLE SAFETY ANALYSES	During non-LOCA events, the IRWST serves as the initial heat sink for the PRHR Heat Exchanger (PRHR HX) if used during reactor cooldown to MODE 4. If RNS is available, it will be actuated in MODE 4 and used to continue the plant cooldown to MODE 5. If RNS is not available, cooldown can continue on PRHR. Continued PRHR HX operation will result in the water in the IRWST heating up to saturation conditions and

APPLICABLE SAFETY ANALYSES (continued)

boiling. The steam generated in the IRWST enters the containment through the IRWST vents. Most of the steam generated in the IRWST condenses on the inside of the containment vessel and drains back to the IRWST.

For events which involve a loss of primary coolant inventory, such as a large break LOCA, or other events involving automatic depressurization, the IRWST provides low pressure safety injection (Ref. 2). The IRWST drain down time is dependent on several factors, including break size, location, and the return of steam condensate from the passive containment cooling system. During drain down, when the water in the IRWST reaches the Low 5 level, the containment sump will be sufficiently flooded, to initiate containment sump recirculation. This permits continued cooling of the core by recirculation of the spilled water in the containment sumps via the sump recirculation flow paths. In this situation, core cooling can continue indefinitely.

When the plant is in midloop operation, the pressurizer Automatic Depressurization System (ADS) valves are open, and the RNS is used to cool the RCS. The RNS is not a safety related system, so its failure must be considered. In this situation, with the RCS drained and the pressure boundary open, the PRHR HX cannot be used. In such a case, core cooling is provided by gravity injection from the IRWST, venting the RCS through the ADS. Injection from the IRWST provides core cooling until the tank empties and gravity recirculation from the containment starts. With the containment closed, the recirculation can continue indefinitely, with the decay heat generated steam condensing on the containment vessel and draining back into the IRWST.

The IRWST satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).

LCO The IRWST requirements ensure that an adequate supply of borated water is available to act as a heat sink for PRHR and to supply the required volume of borated water as safety injection for core cooling and reactivity control.

To be considered OPERABLE, the IRWST must meet the water volume, boron concentration, and temperature limits defined in the surveillance requirements. The motor operated injection isolation valves must be open with power removed, and the motor operated sump recirculation isolation valves must be open.

APPLICABILITY In MODES 1, 2, 3, and 4, a safety related function of the IRWST is to provide a heat sink for PRHR. In MODES 1, 2, 3, 4, and 5, a second safety related function is the low head safety injection of borated water following a LOCA for core cooling and reactivity control. Both of these functions must be available to meet the initial assumptions of the safety analyses. These assumptions require the specified boron concentration, the minimum water volume, and the maximum water temperature.

The requirements for the IRWST in MODES 5 and 6 are specified in LCO 3.5.7, In-containment Refueling Water Storage Tank (IRWST) – Shutdown, MODE 5 and LCO 3.5.8, In-containment Refueling Water Storage Tank (IRWST) – Shutdown, MODE 6.

ACTIONS

If an IRWST injection line actuation valve flow path or a containment recirculation line actuation valve flow path is inoperable, then the valve actuation flow path must be restored to OPERABLE status within 72 hours. In this condition, three other IRWST injection or containment sump recirculation flow paths are available and can provide 100% of the required flow assuming a break in the direct vessel injection line associated with the other injection train, but with no single failure of the actuation valve flow path in the same injection or sump recirculation flow path. The 72 hour Completion Time is consistent with times normally applied to degraded two train ECCS systems which can provide 100% of the required flow without a single failure.

<u>B.1</u>

A.1

If the IRWST water volume, boron concentration, or temperature are not within limits, the core cooling capability from injection or PRHR HX heat transfer and the reactivity benefit of injection assumed in safety analyses may not be available. Due to the large volume of the IRWST, online monitoring of volume and temperature, and frequent surveillances, the deviation of these parameters is expected to be minor. The allowable deviation of the water volume is limited to 3%. This limit prevents a significant change in boron concentration and is consistent with the long-term cooling analysis performed to justify PRA success criteria (Ref. 3), which assumed multiple failures with as many as 3 CMTs/Accum not injecting. This analysis shows that there is significant margin with respect to the water supplies that support containment recirculation operation. The 8-hour Completion Time is acceptable, considering that the IRWST will be fully capable of performing its assumed safety function in response to DBAs with slight deviations in these parameters.

ACTIONS (continued)

<u>C.1</u>

If the motor operated IRWST isolation valves are not fully open or valve power is not removed, injection flow from the IRWST may be less than assumed in the safety analysis. In this situation, the valves must be restored to fully open with valve power removed in 1 hour. This Completion Time is acceptable based on risk considerations.

D.1 and D.2

If the IRWST cannot be returned to OPERABLE status within the associated Completion Times or the LCO is not met for reasons other than Conditions A, B, or C, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.5.6.1</u> REQUIREMENTS

The IRWST borated water temperature must be verified every 24 hours to ensure that the temperature is within the limit assumed in the accident analysis. This Frequency is sufficient to identify a temperature change that would approach the limit and has been shown to be acceptable through operating experience.

SR 3.5.6.2

Verification every 24 hours that the IRWST borated water volume is above the required minimum level will ensure that a sufficient initial supply is available for safety injection and floodup volume for recirculation and as the heat sink for PRHR. During shutdown with the refueling cavity flooded with water from the IRWST, this Surveillance requires that the combined volume of borated water in the IRWST and refueling cavity meet the specified limit. Since the IRWST volume is normally stable, and is monitored by redundant main control indication and alarm, a 24 hour Frequency is appropriate.

SR 3.5.6.3

Verification every 31 days that the boron concentration of the IRWST is greater than the required limit, ensures that the reactor will remain subcritical following a LOCA. Since the IRWST volume is large and

SURVEILLANCE REQUIREMENTS (continued)

normally stable, the 31 day Frequency is acceptable, considering additional verifications are required within 6 hours after each solution volume increase of 15,000 gal. In addition, the relatively frequent surveillance of the IRWST water volume provides assurance that the IRWST boron concentration is not changed.

<u>SR 3.5.6.4</u>

This surveillance requires verification that each motor operated isolation valve is fully open. This surveillance may be performed with available remote position indication instrumentation. The 12 hour Frequency is acceptable, considering the redundant remote indication and alarms and that power is removed from the valve operator.

<u>SR 3.5.6.5</u>

Verification is required to confirm that power is removed from each motor operated IRWST isolation valve each 31 days. Removal of power from these valves reduces the likelihood that the valves will be inadvertently closed. The 31 day Frequency is acceptable considering frequent surveillance of valve position and that the valve has a confirmatory open signal.

<u>SR 3.5.6.6</u>

Each motor operated containment recirculation isolation valve must be verified to be fully open. This valve is required to be open to improve containment recirculation reliability. The 31 day Frequency is acceptable considering the valve has a confirmatory open signal. This surveillance may be performed with available remote position indication instrumentation.

<u>SR 3.5.6.7</u>

This Surveillance requires verification that each IRWST injection and each containment recirculation squib valve is OPERABLE in accordance with the Inservice Testing Program. The Surveillance Frequency for verifying valve OPERABILITY references the Inservice Testing Program.

The squib valves will be tested in accordance with the ASME OM Code. The applicable ASME OM Code squib valve requirements are specified in paragraph 4.6, Inservice Tests for Category D Explosively Actuated Valves. The requirements include actuation of a sample of the installed valves each 2 years and periodic replacement of charges.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.5.6.8

Visual inspection is required each 24 months to verify that the IRWST screens and the containment recirculation screens are not restricted by debris. A Frequency of 24 months is adequate, since there are no known sources of debris with which the gutters could become restricted.

SR 3.5.6.9

This SR requires performance of a system inspection and performance test of the IRWST injection and recirculation flow paths to verify system flow capabilities. The system inspection and performance test demonstrates that the IRWST injection and recirculation capabilities assumed in accident analyses is maintained. Although the likelihood that system performance would degrade with time is low, it is considered prudent to periodically verify system performance. The System Level Operability Testing Program provides specific test requirements and acceptance criteria.

REFERENCES 1.		Section 6.3,	"Passive	Core	Cooling."
---------------	--	--------------	----------	------	-----------

- 2. Section 15.6, "Decrease in Reactor Coolant Inventory."
- 3. AP1000 PRA.

B 3.5 PASSIVE CORE COOLING SYSTEM (PXS)

B 3.5.7 In-containment Refueling Water Storage Tank (IRWST) – Shutdown, MODE 5

BASES	
BACKGROUND	A description of the IRWST is provided in LCO 3.5.6, "In-containment Refueling Water Storage Tank – Operating."
APPLICABLE SAFETY ANALYSES	For postulated shutdown events in MODE 5 with the Reactor Coolant System (RCS) pressure boundary intact, the primary protection is Passive Residual Heat Removal (PRHR), where the IRWST serves as the initial heat sink for the PRHR heat exchanger (PRHR HX). For events in MODE 5 with the RCS pressure boundary open, PRHR is not available and RCS heat removal is provided by IRWST injection and containment sump recirculation.
	IRWST injection could be required to mitigate some events by providing RCS inventory makeup.
	No loss of coolant accidents (LOCAs) are postulated during plant operation in MODE 5; therefore, the rupture of the direct vessel injection line (DVI) is not assumed. Since the DVI rupture is not assumed, only one train of IRWST injection and recirculation flow paths is required to mitigation postulated events, assuming a single failure.
	The IRWST satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The IRWST requirements ensure that an adequate supply of borated water is available to act as a heat sink for PRHR and to supply the required volume of borated water as safety injection for core cooling and reactivity control.
	To be considered OPERABLE, the IRWST must meet the water volume, boron concentration, and temperature limits defined in the Surveillance Requirements, and one path of injection and recirculation must be OPERABLE (the motor operated injection isolation valve must be open with power removed, and the motor operated sump recirculation isolation valves must be open).
APPLICABILITY	In MODE 5 with the RCS pressure boundary intact or with the RCS open with pressurizer level \geq 20%, the IRWST is an RCS injection source of borated water for core cooling and reactivity control. Additionally, in MODE 5 with the RCS pressure boundary intact, the IRWST provides the heat sink for PRHR.

APPLICABILITY (continued)

The requirements for the IRWST in MODES 1, 2, 3, and 4 are specified in LCO 3.5.6, In-containment Refueling Water Storage Tank (IRWST) – Operating. The requirements for the IRWST in MODE 6 are specified in LCO 3.5.8, In-containment Refueling Water Storage Tank (IRWST) – Shutdown, MODE 6.

ACTIONS

If a motor operated containment sump isolation valve in one sump recirculation flow path is not fully open, the valve must be fully opened within 72 hours. The 72 hour Completion Time is consistent with times normally applied to degraded two train ECCS systems which can provide 100% of the required flow without a single failure.

<u>B.1</u>

A.1

If the IRWST water volume, boron concentration, or temperature are not within limits, the core cooling capability from injection or PRHR heat transfer and the reactivity benefit of injection assumed in safety analyses may not be available. Due to the large volume of the IRWST, online monitoring of volume and temperature, and frequent surveillances, the deviation of these parameters is expected to be minor. The allowable deviation of the water volume is limited to 3%. This limit prevents a significant change in boron concentration and is consistent with the long-term cooling analysis performed to justify PRA success criteria (Ref. 3), which assumed multiple failures with as many as 3 CMTs/Accum not injecting. This analysis shows that there is significant margin with respect to the water supplies that support containment recirculation operation. The 8-hour Completion Time is acceptable, considering that the IRWST will be fully capable of performing its assumed safety function in response to DBAs with slight deviations in these parameters.

<u>C.1</u>

If the motor operated IRWST isolation valves are not fully open or valve power is not removed, injection flow from the IRWST may be less than assumed in the safety analysis. In this situation, the valves must be restored to fully open with valve power removed in 1 hour. This Completion Time is acceptable based on risk considerations.

D.1 and D.2

If the IRWST cannot be returned to OPERABLE status within the associated Completion Times or the LCO is not met for reasons other than Conditions A, B, or C, the plant must be placed in a condition in which the probability and consequences of an event are minimized to the

ACTIONS (continued)

extent possible. This is done by immediately initiating action to place the plant in MODE 5 with the RCS intact with $\ge 20\%$ pressurizer level. The time to RCS boiling is maximized by maintaining RCS inventory at $\ge 20\%$ pressurizer level and maintaining RCS temperature as low as practical. With the RCS intact, the availability of the PRHR HX is maintained. Additionally, action to suspend positive reactivity additions is required to ensure that the SDM is maintained. Sources of positive reactivity addition include boron dilution, withdrawal of reactivity control assemblies, and excessive cooling of the RCS.

SURVEILLANCE <u>SR 3.5.7.1</u> REQUIREMENTS

The LCO 3.5.6 Surveillance Requirements and Frequencies (SR 3.5.6.1 through 3.5.6.7) are applicable to the IRWST and the flow paths required to be OPERABLE. Refer to the corresponding Bases for LCO 3.5.6 for a discussion of each SR.

REFERENCES None.

B 3.5 PASSIVE CORE COOLING SYSTEM (PXS)

B 3.5.8 In-containment Refueling Water Storage Tank (IRWST) – Shutdown, MODE 6

BASES	
BACKGROUND	A description of the IRWST is provided in LCO 3.5.6, "In-containment Refueling Water Storage Tank (IRWST) – Operating."
APPLICABLE SAFETY ANALYSES	For MODE 6, heat removal is provided by IRWST injection and containment sump recirculation.
	IRWST injection could be required to mitigate some events by providing RCS inventory makeup.
	One line with redundant, parallel valves is required to accommodate a single failure (to open) of an isolation valve.
	The IRWST satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The IRWST requirements ensure that an adequate supply of borated water is available to supply the required volume of borated water as safety injection for core cooling and reactivity control.
	To be considered OPERABLE, the IRWST in combination with the refueling cavity must meet the water volume, boron concentration, and temperature limits defined in the Surveillance Requirements, and one path of injection and recirculation must be OPERABLE. The motor operated injection isolation valve must be open and power removed, and the motor operated sump recirculation isolation valves must be closed and OPERABLE. Any cavity leakage should be estimated and made up with borated water such that the volume in the IRWST plus the refueling cavity will meet the IRWST volume requirement.
APPLICABILITY	In MODE 6, the IRWST is an RCS injection source of borated water for core cooling and reactivity control.
	The requirements for the IRWST in MODES 1, 2, 3, and 4 are specified in LCO 3.5.6, In-containment Refueling Water Storage Tank (IRWST) – Operating. The requirements for the IRWST in MODE 5 are specified in LCO 3.5.7, In-containment Refueling Water Storage Tank (IRWST) – Shutdown, MODE 5.

ACTIONS

With one motor operated containment sump isolation valve not fully open, the valve must be fully opened within 72 hours. The 72 hour Completion Time is consistent with times normally applied to degraded two train ECCS systems which can provide 100% of the required flow without a single failure.

<u>B.1</u>

A.1

If the IRWST and refueling cavity water volume, boron concentration, or temperature are not within limits, the core cooling capability from injection or PRHR HX heat transfer and the reactivity benefit of injection assumed in safety analyses may not be available. Due to the large volume of the IRWST, online monitoring of volume and temperature, and frequent surveillances, the deviation of these parameters is expected to be minor. The allowable deviation of the water volume is limited to 3%. This limit prevents a significant change in boron concentration and is consistent with the long-term cooling analysis performed to justify PRA success criteria (Ref. 3), which assumed multiple failures with as many as 3 CMTs/Accum not injecting. This analysis shows that there is significant margin with respect to the water supplies that support containment recirculation operation. The 8-hour Completion Time is acceptable, considering that the IRWST will be fully capable of performing its assumed safety function in response to DBAs with slight deviations in these parameters.

<u>C.1</u>

If the motor operated IRWST isolation valves are not fully open or valve power is not removed, injection flow from the IRWST may be less than assumed in the safety analysis. In this situation, the valves must be restored to fully open with valve power removed in 1 hour. This Completion Time is acceptable based on risk considerations.

D.1 and D.2

If the IRWST cannot be returned to OPERABLE status within the associated Completion Times or the LCO is not met for reasons other than Conditions A, B, C, or D, the plant must be placed in a Condition in which the probability and consequences of an event are minimized to the extent possible. In MODE 6, action must be immediately initiated to be in MODE 6 with the cavity water level \geq 23 feet above the top of the reactor vessel flange.

The time to RCS boiling is maximized by maximizing the RCS inventory and maintaining RCS temperature as low as practical. With the RCS intact, another means of removing decay heat is available (the PRHR HX). Additionally, action to suspend positive reactivity additions is required to ensure that the SDM is maintained. Sources of positive

ACTIONS (continued)

reactivity addition include boron dilution, withdrawal of reactivity control assemblies, and excessive cooling of the RCS. These Actions place the plant in a condition which maximizes the time to IRWST injection, thus providing time for repairs or application of alternative cooling capabilities.

SURVEILLANCE <u>SR 3.5.8.1</u> REQUIREMENTS

The IRWST and refueling cavity borated water temperature must be verified every 24 hours to ensure that the temperature is within the limit assumed in accident analysis. This Frequency is sufficient to identify a temperature change that would approach the limit and has been shown to be acceptable through operating experience.

SR 3.5.8.2

Verification every 24 hours that the IRWST and refueling cavity borated water volume is above the required minimum level will ensure that a sufficient initial supply is available for safety injection and floodup volume for recirculation and as the heat sink for PRHR. During shutdown with the refueling cavity flooded with water from the IRWST, this Surveillance requires that the combined volume of borated water in the IRWST and refueling cavity meet the specified limit. Since the IRWST volume is normally stable, and is monitored by redundant main control indication and alarm, a 24 hour Frequency is appropriate.

SR 3.5.8.3

Verification every 31 days that the boron concentration of the IRWST and refueling cavity is greater than the required limit ensures that the reactor will remain subcritical following shutdown events. Since the IRWST volume is large and normally stable, the 31 day Frequency is acceptable, considering additional verifications are required within 6 hours after each solution volume increase of 15,000 gal.

<u>SR 3.5.8.4</u>

LCO 3.5.6 Surveillance Requirements and Frequencies SR 3.5.6.4 through 3.5.6.8 are applicable to the IRWST and the flow paths required to be OPERABLE. Refer to the corresponding Bases for LCO 3.5.6 for a discussion of each SR.

REFERENCES None.

B 3.6 CONTAINMENT SYSTEMS

B 3.6.1 Containment

BASES

BACKGROUND The containment is a free standing steel pressure vessel surrounded by a reinforced concrete shield building. The containment vessel, including all its penetrations, is a low-leakage steel vessel designed to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA) such that offsite radiation exposures are maintained within limits. The containment and shield building provide shielding from the fission products that may be present in the containment atmosphere following accident conditions.

The containment vessel is a vertical cylindrical steel pressure vessel with elliptical upper and lower heads, completely enclosed by a seismic Category I reinforced concrete shield building. A 4.5 foot wide annular space exists between the walls and domes of the steel containment vessel and the concrete shield building to permit inservice inspection and air flow over the steel dome for containment cooling. The containment utilizes the outer concrete building for shielding and a missile barrier, and the inner steel containment for leak tightness and passive containment cooling.

Containment piping penetration assemblies provide for the passage of process, service and sampling pipelines into the containment vessel while maintaining containment integrity. The shield building provides biological shielding and environmental missile protection for the containment vessel and the Nuclear Steam Supply System.

The inner steel containment and its penetrations establish the leakage limiting boundary of the containment. Maintaining the containment OPERABLE limits the leakage of fission product radioactivity from the containment to the environment. SR 3.6.1.1 leakage rate Surveillance Requirements conform with 10 CFR 50, Appendix J (Ref. 1), as modified by approved exemptions.

The isolation devices for the penetrations in the containment boundary are a part of the containment leak tight barrier. To maintain this leak tight barrier:

- a. All penetrations required to be closed during accident conditions are either:
 - 1. capable of being closed by an OPERABLE automatic containment isolation system, or

BACKGROUND	(continued)
	 closed by manual valves, blind flanges, or de-activated automatic valves secured in their closed positions, except as provided in LCO 3.6.3, "Containment Isolation Valves";
	 Each air lock is OPERABLE, except as provided in LCO 3.6.2, "Containment Air Locks"; and
	c. All equipment hatches are closed.
APPLICABLE SAFETY ANALYSES	The safety design basis for the containment is that the containment must withstand the pressures and temperatures of the limiting DBA without exceeding the design leakage rates.
	The DBAs that result in a challenge to containment OPERABILITY from high pressures and temperatures are a loss of coolant accident (LOCA), a steam line break, and a rod ejection accident (REA) (Ref. 2). In addition, release of significant fission product radioactivity within containment can occur from a LOCA or REA. The DBA analyses assume that the containment is OPERABLE such that, for the DBAs involving release of fission product radioactivity, release to the environment is controlled by the rate of containment leakage. The containment air designed with an allowable leakage rate of 0.10% of containment air weight of the original content of containment air after a DBA per day (Ref. 3). This leakage rate, used in the evaluation of offsite doses resulting from accidents, is defined in 10 CFR 50, Appendix J (Ref. 1), as L _a : the maximum allowable containment leakage rate at the calculated peak containment internal pressure (P _a) resulting from the limiting DBA. The allowable leakage rate represented by L _a forms the basis for the acceptance criteria imposed on containment leakage rate testing. L _a is assumed to be 0.10% per day in the safety analysis. Satisfactory leakage rate test results is a requirement for the establishment of containment OPERABILITY.
	The containment satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	Containment OPERABILITY is maintained by limiting leakage to $\leq 1.0 L_a$, except prior to the first startup after performing a required Containment Leakage Rate Testing Program Leakage Test. At this time, the applicable leakage limits must be met.

LCO (continued)	
	Compliance with this LCO will ensure a containment configuration, including equipment hatches, that is structurally sound and that will limit leakage to those leakage rates assumed in the safety analysis.
	Individual leakage rates specified for the containment air lock (LCO 3.6.2) are not specifically part of the acceptance criteria of 10 CFR 50, Appendix J, Option B. Therefore, leakage rates exceeding these individual limits only result in the containment being inoperable when the leakage results in exceeding the overall acceptance criteria of 1.0 L_a .
APPLICABILITY	In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material into containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. The MODES 5 and 6 requirements are specified in LCO 3.6.8, "Containment Penetrations".
ACTIONS	<u>A.1</u>
	In the event containment is inoperable, containment must be restored to OPERABLE status within 1 hour. The 1 hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining containment OPERABLE during MODES 1, 2, 3, and 4. This time period also ensures that the probability of an accident (requiring containment OPERABILITY) occurring during periods when containment is inoperable is minimal.
	B.1 and B.2
	If containment cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.6.1.1</u> REQUIREMENTS Maintaining the containment OPERABLE requires compliance with the visual examinations and leakage rate test requirements of the Containment Leakage Rate Testing Program. Failure to meet air lock leakage limits specified in LCO 3.6.2 does not invalidate the acceptability of these overall leakage determinations unless their contribution to overall Type A, B, and C leakage causes that to exceed limits. As left leakage prior to the first startup after performing a required leakage test is required to be < 0.6 L_a for combined Type B and C leakage, and < 0.75 L_a for overall Type A leakage. At all other times between required leakage rate tests, the acceptance criteria is based on an overall Type A leakage limit of $\leq 1.0 L_a$. At $\leq 1.0 L_a$ the offsite dose consequences are bounded by the assumptions of the safety analysis. SR Frequencies are as required by the Containment Leakage Rate Testing Program. These periodic testing requirements verify that the containment leakage rate does not exceed the leakage rate assumed in the safety analysis. REFERENCES 10 CFR 50, Appendix J, "Primary Reactor Containment Leakage 1. Testing for Water-Cooled Power Reactors." 2. Chapter 15, "Accident Analysis." 3. Section 6.2, "Containment Systems."

B 3.6 CONTAINMENT SYSTEMS

B 3.6.2 Containment Air Locks

BASES	
BACKGROUND	Containment air locks form part of the containment pressure boundary and provide a means for personnel access during all MODES of operation.
	Each air lock is nominally a right circular cylinder, 10 feet in diameter, with a door at each end. The doors are interlocked to prevent simultaneous opening. During periods when containment is not required to be OPERABLE, the door interlock mechanism may be disabled, allowing both doors of an air lock to remain open for extended periods when frequent containment entry is necessary. Each air lock door has been designed and tested to certify its ability to withstand a pressure in excess of the maximum expected pressure following a Design Basis Accident (DBA) in containment. As such, closure of a single door supports containment OPERABILITY. Each of the doors contains double gasketed seals and local leakage rate testing capability to ensure pressure integrity. To effect a leak tight seal, the air lock design uses pressure seated doors (i.e., an increase in containment internal pressure results in increased sealing force on each door).
	The containment air locks form part of the containment pressure boundary. As such, air lock integrity and leak tightness are essential for maintaining the containment leakage rate within limit in the event of a DBA. Not maintaining air lock integrity or leak tightness may result in a leakage rate in excess of that assumed in the unit safety analyses.
APPLICABLE SAFETY ANALYSES	The DBA that results in the largest release of radioactive material within containment is a loss of coolant accident (LOCA) (Ref. 3). In the analyses of DBAs, it is assumed that containment is OPERABLE, such that release of fission products to the environment is controlled by the rate of containment leakage. The containment is designed with an allowable leakage rate of 0.10% of containment air weight of the original content of containment air per day after a DBA (Ref. 2). This leakage rate is defined in 10 CFR 50, Appendix J (Ref. 1), as L _a , the maximum allowable containment leakage rate at the calculated peak containment internal pressure P_a following a DBA. This allowable leakage rate forms the basis for the acceptance criteria imposed on the SRs associated with the air locks.

BASES	
LCO	Each containment air lock forms part of the containment pressure boundary. As part of containment, the air lock safety function is related to control of offsite radiation exposures resulting from a DBA. Thus, each air lock's structural integrity and leak tightness are essential to the successful mitigation of such an event.
	Each air lock is required to be OPERABLE. For the air lock to be considered OPERABLE, the air lock interlock mechanism must be OPERABLE, the air lock must be in compliance with the Type B air lock leakage test, and both air lock doors must be OPERABLE. The interlock allows only one air lock door of an air lock to be opened at one time. This provision ensures that a gross breach of containment does not exist when containment is required to be OPERABLE. Closure of a single door in each air lock is necessary to support containment OPERABILITY following postulated events. Nevertheless, both doors are kept closed when the air lock is not being used for normal entry and exit from containment.
APPLICABILITY	In MODES 1, 2, 3, and 4 a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES and large inventory of coolant. Therefore, containment air locks are not required to be OPERABLE in MODES 5 and 6 to prevent leakage of radioactive material from containment. However, containment closure capability is required within MODES 5 and 6 as specified in LCO 3.6.8.
ACTIONS	The ACTIONS are modified by a Note that allows entry and exit to perform repairs on the affected air lock component. If the outer door is inoperable, then it may be easily accessed to repair without interrupting containment integrity. If containment entry is required, it is preferred that the air lock be accessed from inside primary containment by entering through the other OPERABLE air lock. However, if this is not practicable, or if repairs on either door must be performed from the barrel side of the door then it is permissible to enter the air lock through the OPERABLE door, which means there is a short time during which the containment boundary is not intact (during access through the OPERABLE door). The ability to open the OPERABLE door, even if it means the containment boundary is temporarily not intact, is acceptable due to the low probability of an event that could pressurize the containment during the short time in which the OPERABLE door is expected to be open. After each entry and exit, the OPERABLE door must be immediately closed. If ALARA conditions permit, entry and exit should be via an OPERABLE air lock.

ACTIONS (continued)

A second Note has been added to provide clarification that, for this LCO, separate Condition entry is allowed for each air lock. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable air lock. Complying with the Required Actions may allow for continued operation, and a subsequent inoperable air lock is governed by subsequent Condition entry and application of associated Required Actions.

In the event that air lock leakage results in exceeding the overall containment leakage rate, Note 3 directs entry into the applicable Conditions and Required Actions of LCO 3.6.1, "Containment."

A.1, A.2, and A.3

With one air lock door in one or more containment air locks inoperable, the OPERABLE door must be verified closed (Required Action A.1) in each affected containment air lock. This ensures a leak tight containment barrier is maintained by the use of an OPERABLE air lock door. This action must be completed within 1 hour. This specified time period is consistent with the ACTIONS of LCO 3.6.1, "Containment," which requires containment be restored to OPERABLE status within 1 hour.

In addition, the affected air lock penetration must be isolated by locking closed the OPERABLE air lock door within the 24 hour Completion Time. The 24 hour Completion Time is reasonable for locking the OPERABLE air lock door, considering the OPERABLE door of the affected air lock is being maintained closed.

Required Action A.3 verifies that an air lock with an inoperable door has been isolated by the use of a locked and closed OPERABLE air lock door. This ensures that an acceptable containment leakage boundary is maintained. The Completion Time of once per 31 days is reasonable based on engineering judgement and is considered adequate in view of the low likelihood of a locked door being mispositioned and other administrative controls. Required Action A.3 is modified by a Note that applies to air lock doors located in high radiation areas and allows these doors to be verified to be locked closed by administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of the door, once it has been verified to be in the proper position, is small.

ACTIONS (continued)

The Required Actions are modified by two Notes. Note 1 ensures that only the Required Actions and associated Completion Times of Condition C are required if both doors in the airlock are inoperable. With both doors in the same airlock inoperable, an OPERABLE door is not available to be closed. Required Actions C.1 and C.2 are the appropriate remedial actions. The exception of Note 1 does not affect tracking the Completion Time from the initial entry into Condition A; only the requirement to comply with the Required Actions. Note 2 allows use of an airlock for entry and exit for 7 days, under administrative controls if both airlocks have an inoperable door. This 7 day restriction begins when the second air lock is discovered inoperable. Containment entry may be required on a periodic basis to perform Technical Specification (TS) Surveillances and Required Actions, as well as other activities on equipment inside containment that are required by TS or activities on equipment that support TS-required equipment. This Note is not intended to preclude performing other activities (non-TS-related activities) if the containment is entered, using the inoperable airlock, to perform an allowed activity listed above. This allowance is acceptable due to the low probability of an event that could pressurize the containment during the short time in which the OPERABLE door is expected to be open.

B.1, B.2, and B.3

With an air lock door interlock mechanism inoperable in one or more air locks, the Required Actions and associated Completion Times are consistent with Condition A.

The Required Actions have been modified by two Notes. Note 1 ensures that only the Required Actions and associated Completion Times of Condition C are required if both doors in the same airlock are inoperable. With both doors in the same airlock inoperable, an OPERABLE door is not available to be closed. Required Actions C.1 and C.2 are the appropriate remedial actions. Note 2 allows entry into and exit from containment under the control of a dedicated individual stationed at the airlock to ensure that only one door is opened at a time (the individual performs the function of the interlock).

Required Action B.3 is modified by a Note that applies to airlock doors located in high radiation areas that allows these doors to be verified locked closed by administrative means. Allowing verification by administrative means is considered acceptable since access to these areas is typically restricted. Therefore, the probability of misalignment of the door, once it has been verified to be in the proper position is small.

ACTIONS (continued)

C.1, C.2, and C.3

With one or more air locks inoperable for reasons other than those described in Condition A or B, Required Action C.1 requires action to be initiated immediately to evaluate previous combined leakage rates using current air lock test results. An evaluation is acceptable, since it is overly conservative to immediately declare the containment inoperable if both doors in an air lock have failed a seal test or if the overall air lock leakage is not within limits. In many instances (e.g., only one seal per door has failed), containment remains OPERABLE, yet only 1 hour (per LCO 3.6.1) would be provided to restore the air lock door to OPERABLE status prior to requiring a plant shutdown. In addition, even with both doors failing the seal test, the overall containment leakage rate can still be within limits.

Required Action C.2 requires that one door in the affected containment air lock must be verified to be closed within the 1 hour Completion Time. This specified time period is consistent with the ACTIONS of LCO 3.6.1, which requires that containment be restored to OPERABLE status within 1 hour.

Additionally, the affected air lock(s) must be restored to OPERABLE status within the 24 hour Completion Time. The specified time period is considered reasonable for restoring an inoperable air lock to OPERABLE status, assuming that at least one door is maintained closed in each affected air lock.

D.1 and D.2

If the inoperable containment air lock cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.6.2.1</u> REQUIREMENTS

Maintaining containment air locks OPERABLE requires compliance with the leakage rate test requirements of the Containment Leakage Rate Testing Program. This SR reflects the leakage rate testing requirements with respect to air lock leakage (Type B leakage tests). The acceptance

SURVEILLANCE REQUIREMENTS (continued)

criteria were established during initial air lock and containment OPERABILITY testing. The periodic testing requirements verify that the air lock leakage does not exceed the allowed fraction of the overall containment leakage rate. The Frequency is as required by the Containment Leakage Rate Testing Program.

The SR has been modified by two Notes. Note 1 states that an inoperable air lock door does not invalidate the previous successful performance of the overall air lock leakage test. This is considered reasonable since either air lock door is capable of providing a fission product barrier in the event of a DBA. Note 2 has been added to this SR requiring the results to be evaluated against the acceptance criteria applicable to SR 3.6.1.1. This ensures that air lock leakage is properly accounted for in determining the combined Type B and C containment leakage rate.

SR 3.6.2.2

The air lock door interlock is designed to prevent simultaneous opening of both doors in a single air lock. Since both the inner and outer doors of an air lock are designed to withstand the maximum expected post accident containment pressure, closure of either door will support containment OPERABILITY. Thus, the door interlock feature supports containment OPERABILITY while the air lock is being used for personnel transit in and out of the containment. Periodic testing of this interlock demonstrates that the interlock will function as designed and that simultaneous inner and outer door opening will not inadvertently occur. Due to the purely mechanical nature of this interlock, and given that the interlock mechanism is not normally challenged when the containment air lock door is used for entry and exit (procedures require strict adherence to single door opening), this test is only required to be performed every 24 months. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage, and the potential for loss of containment OPERABILITY if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at 24 month Frequency. The 24 month Frequency is based on engineering judgment and is considered adequate given that the interlock is not challenged during the use of the airlock.

BASES				
REFERENCES	1.	10 CFR 50, Appendix J, Option B "Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors, Performance-Based Requirements."		
	2.	Section 6.2, "Containment Systems."		
	3.	Chapter 15, "Accident Analysis."		

B 3.6 CONTAINMENT SYSTEMS

B 3.6.3 Containment Isolation Valves

BASES

BACKGROUND

The containment isolation valves form part of the containment pressure boundary and provide a means for fluid penetrations not serving accident consequence limiting systems to be provided with two isolation barriers. These isolation devices are either passive or active (automatic). Manual valves, de-activated automatic valves secured in their closed position (including check valves with flow through the valve secured), blind flanges, and closed systems are considered passive devices. Check valves, or other automatic valves designed to close without operator action following an accident, are considered active devices. Two barriers in series are provided for each penetration so that no single credible failure or malfunction of an active component can result in a loss of isolation or leakage that exceeds limits assumed in the safety analyses. One of these barriers may be a closed system. These barriers (typically containment isolation valves) make up the Containment Isolation System.

Automatic isolation signals are produced during accident conditions. Section 6.2 (Ref. 1) identifies parameters which initiate isolation signal generation for containment isolation valves. The containment isolation valves (and blind flanges) help ensure that the containment atmosphere will be isolated from the environment in the event of a release of fission product radioactivity to the containment atmosphere as a result of a Design Basis Accident (DBA).

The OPERABILITY requirements for containment isolation valves help ensure that containment is isolated within the time limits assumed in the safety analysis. Therefore, the OPERABILITY requirements provide assurance that containment function assumed in the safety analysis will be maintained.

Containment Air Filtration System 16-inch purge valves

The Containment Air Filtration System operates to:

- a. Supply outside air into the containment for ventilation and cooling or heating,
- b. Reduce the concentration of noble gases within containment prior to and during personnel access, and
- c. Equalize internal and external pressures.

BACKGROUND (continued)

	Since the valves used in the Containment Air Filtration System are designed to meet the requirements for automatic containment isolation valves, these valves may be opened as needed in MODES 1, 2, 3 and 4.			
APPLICABLE SAFETY ANALYSES	The containment isolation valve LCO was derived from the assumptions related to minimizing the loss of reactor coolant inventory and establishing the containment boundary during major accidents. As part of the containment boundary, containment isolation valve OPERABILITY supports leak tightness of the containment. Therefore, the safety analysis of any event requiring isolation of containment is applicable to this LCO.			
	The DBAs that result in a release of radioactive material within containment are a loss of coolant accident (LOCA) and a rod ejection accident (Ref. 2). In the analyses for each of the accidents, it is assumed that containment isolation valves are either closed or function to close within the required isolation time following event initiation. This ensures that potential paths to the environment through containment isolation valves (including containment purge valves) are minimized.			
	The DBA dose analysis assumes that, following containment isolation signal generation, the containment purge isolation valves are closed within 10 seconds. The remainder of the automatic isolation valves are assumed closed and the containment leakage is terminated except for the design leakage rate, L_a . Since the containment isolation valves are powered from the 1E division batteries no diesel generator startup time is applied.			
	The single failure criterion required to be imposed in the conduct of plant safety analyses was considered in the design of the containment purge isolation valves. Two valves in series on each purge line provide assurance that both the supply and exhaust lines could be isolated even if a single failure occurred. The inboard and outboard isolation valves on each line are pneumatically operated, spring closed valves that fail in the closed position and are provided with power via independent sources.			
	The containment isolation valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).			
LCO	Containment isolation valves form a part of the containment boundary. The containment isolation valves' safety function is related to minimizing the loss of reactor coolant inventory and establishing the containment boundary during a DBA.			

LCO (continued)	
	The automatic power operated isolation valves are required to have isolation times within limits and to actuate on an automatic isolation signal. The valves covered by this LCO are listed along with their associated stroke times in the Section 6.2 (Ref. 1).
	The normally closed isolation valves are considered OPERABLE when manual valves are closed, automatic valves are de-activated and secured in their closed position, or blind flanges are in place and closed systems are intact. These passive isolation valves/devices are those listed in Reference 1.
	This LCO provides assurance that the containment isolation valves and purge valves will perform their designed safety functions to minimize the loss of reactor coolant inventory and establish the containment boundary during accidents.
APPLICABILITY	In MODES 1, 2, 3, and 4 a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, containment isolation valves are not required to be OPERABLE in MODES 5 and 6 to prevent leakage of radioactive material from containment. However, containment closure capability is required in MODES 5 and 6. The requirements for containment isolation valves during MODES 5 and 6 are addressed in LCO 3.6.8, "Containment Penetrations."
ACTIONS	The ACTIONS are modified by a Note allowing containment penetration flow paths to be unisolated intermittently under administrative control. These administrative controls consist of stationing a dedicated operator at the valve controls, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for containment isolation is indicated.
	A second Note has been added to provide clarification that, for this LCO, separate Condition entry is allowed for each penetration flow path. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable containment isolation valve. Complying with the Required Actions may allow for continued operation, and subsequent inoperable containment isolation valves are governed by subsequent Condition entry and application of associated Required Actions.

ACTIONS (continued)

The ACTIONS are further modified by a third Note, which ensures appropriate remedial actions are taken, if necessary, if the affected systems are rendered inoperable by an inoperable containment isolation valve.

In the event that the containment isolation valve leakage results in exceeding the overall containment leakage rate, Note 4 directs entry into the applicable Conditions and Required Actions of LCO 3.6.1.

A.1 and A.2

In the event one containment isolation valve in one or more penetration flow paths is inoperable the affected penetration flow path must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic containment isolation valve, a closed manual valve, a blind flange, or a check valve with flow through the valve secured. For a penetration flow path isolated in accordance with Required Action A.1, the device used to isolate the penetration should be the closest available one to containment. Required Action A.1 must be completed within 4 hours. The 4 hour Completion Time is reasonable considering the time required to isolate the penetration, the relative importance of supporting containment OPERABILITY during MODES 1, 2, 3, and 4, and the availability of a second barrier.

For affected penetrations that cannot be restored to OPERABLE status within the 4 hour Completion Time and have been isolated in accordance with Required Action A.1, the affected penetrations must be verified to be isolated on a periodic basis. This is necessary to ensure that containment penetrations that are required to be isolated following an accident and that are no longer capable of being automatically isolated, will be in the isolation position should an event occur. This Required Action does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those isolation devices outside containment and capable of potentially being mispositioned are in the correct position. The Completion Time of "once per 31 days for isolation devices outside containment" is appropriate considering the fact that the devices are operated under administrative controls and the probability of their misalignment is low. For the isolation devices inside containment, the time period specified as "prior to entering MODE 4 from MODE 5, if not performed within the previous 92 days," is based on engineering judgment and is considered reasonable in view of

ACTIONS (continued)

the inaccessibility of the isolation devices and other administrative controls that will ensure that isolation device misalignment is an unlikely possibility.

Condition A has been modified by a Note indicating that this Condition is only applicable to those penetration flow paths with two containment isolation valves. For penetration flow paths with one containment isolation valve and a closed system, Condition C provides the appropriate actions.

Required Action A.2 is modified by two Notes. Note 1 applies to isolation devices located in high-radiation areas, and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Note 2 applies to isolation devices that are locked, sealed, or otherwise secured in position and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since the function of locking, sealing, or securing components is to ensure that these devices are not inadvertently repositioned. Therefore, the probability of misalignment of these valves once they have been verified to be in the proper position, is small.

<u>B.1</u>

With two containment isolation valves in one or more penetration flow paths inoperable, the affected penetration flow path must be isolated within 1 hour. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and deactivated automatic valve, a closed manual valve and a blind flange. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1. In the event the affected penetration is isolated in accordance with Required Action B.1, the affected penetration must be verified to be isolated on a periodic basis per Required Action A.2 which remains in effect. This periodic verification is necessary to ensure leak tightness of containment and that penetrations requiring isolation following an accident are isolated. The Completion Time of once per 31 days for verifying each affected penetration flow path is isolated is appropriate considering the fact that the valves are operated under administrative control and the probability of their misalignment is low.

ACTIONS (continued)

Condition B is modified by a Note indicating this Condition is only applicable to penetration flow paths with two isolation valves. Condition A of this LCO addresses the condition of one containment isolation valve inoperable in this type of penetration flow path.

C.1 and C.2

With one or more penetration flow paths with one containment isolation valve inoperable, the inoperable valve flow path must be restored to OPERABLE status or the affected penetration must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and deactivated automatic valve, a closed manual valve, and a blind flange. A check valve may not be used to isolate the affected penetration flow path. Required Action C.1 must be completed within the 72 hour Completion Time. The specified time period is reasonable considering the relative stability of the closed system (hence, reliability) to act as a penetration isolation boundary and the relative importance of maintaining containment integrity during MODES 1, 2, 3, and 4. In the event that the affected penetration is isolated in accordance with Required Action C.1, the affected penetration must be verified to be isolated on a periodic basis. This periodic verification is necessary to assure leak tightness of containment and that containment penetrations requiring isolation following an accident are isolated. The Completion Time of once per 31 days for verifying that each affected penetration flow path is isolated is appropriate because the valves are operated under administrative controls and the probability of their misalignment is low.

Condition C is modified by a Note indicating that this Condition is only applicable to penetration flow paths with only one containment isolation valve and a closed system. The closed system must meet the requirements of Ref. 4. This Note is necessary since this Condition is written to specifically address those penetration flow paths in a closed system.

Required Action C.2 is modified by two Notes. Note 1 applies to valves and blind flanges located in high radiation areas, and allows these devices to be verified closed by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted. Note 2 applies to isolation devices that are locked, sealed, or otherwise secured in position and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered

ACTIONS (continued)

acceptable, since the function of locking, sealing, or securing components is to ensure that these devices are not inadvertently repositioned. Therefore, the probability of misalignment of these valves, once they have been verified to be in the proper position, is small.

D.1 and D.2

If the Required Actions and associated Completion Times are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.6.3.1</u> REQUIREMENTS

This SR ensures that the 16 inch purge valves are closed as required or, if open, open for an allowable reason. If a purge valve is open in violation of this SR, the valve is considered inoperable. If the inoperable valve is not otherwise known to have excessive leakage when closed, it is not considered to have leakage outside of limits. The SR is not required to be met when the 16 inch purge valves are open for the reasons stated. The valves may be opened for pressure control, ALARA or air quality considerations for personnel entry, or for Surveillances that require the valves to be open. The 16 inch purge valves are capable of closing in the environment following a LOCA. Therefore, these valves are allowed to be open for limited periods of time. The 31 day Frequency is consistent with other containment isolation valve requirements discussed in SR 3.6.3.2.

SR 3.6.3.2

This SR requires verification that each containment isolation manual valve and blind flange located outside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the containment boundary is within design limits. This SR does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those valves outside containment and capable of being mispositioned are in the correct position. Since verification of valve position for valves outside containment is relatively easy, the 31 day Frequency is based on

SURVEILLANCE REQUIREMENTS (continued)

engineering judgment and was chosen to provide added assurance of the correct positions. The SR specifies that containment isolation valves that are open under administrative controls are not required to meet the SR during the time the valves are open. This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

The Note applies to valves and blind flanges located in high radiation areas and allows these devices to be verified closed by administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, 3, and 4 for ALARA reasons. Therefore, the probability of misalignment of these containment isolation valves, once they have been verified to be in the proper position, is small.

SR 3.6.3.3

This SR requires verification that each containment isolation manual valve and blind flange located inside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the containment boundary is within design limits. For containment isolation valves inside containment, the Frequency specified as "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is appropriate since these containment isolation valves are operated under administrative control and the probability of their misalignment is low. The SR specifies that containment isolation valves that are open under administrative controls are not required to meet the SR during the time they are open. This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing.

This Note allows valves and blind flanges located in high radiation areas to be verified closed by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, 3, and 4 for ALARA reasons. Therefore, the probability of misalignment of these containment isolation valves, once they have been verified to be in the proper position, is small.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.6.3.4</u>

Verifying that the isolation time of each automatic power operated containment isolation valve is within limits is required to demonstrate OPERABILITY. The isolation time test ensures that the valve will isolate in a time period less than or equal to that assumed in the safety analysis. The isolation times are specified in Section 6.2.3 (Ref. 1) and Frequency of this SR is in accordance with the Inservice Testing Program.

<u>SR 3.6.3.5</u>

Automatic containment isolation valves close on isolation signal to prevent leakage of radioactive material from containment following a DBA. This SR ensures that each automatic containment isolation valve will actuate to its isolation position on a containment isolation signal. This surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass this Surveillance when performed at the 24 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

- REFERENCES 1. Section 6.2, "Containment Systems."
 - 2. Chapter 15, "Accident Analysis."
 - 3. NUREG-1449, "Shutdown and Low Power Operation at Commercial Nuclear Power Plants in the United States."
 - 4. Standard Review Plan 6.2.4.

B 3.6 CONTAINMENT SYSTEMS

B 3.6.4 Containment Pressure

BASES	
BACKGROUND	The containment pressure is limited during normal operation to preserve the initial conditions assumed in the accident analyses for a loss of coolant accident (LOCA) or steam line break (SLB). These limits also prevent the containment pressure from exceeding the containment design negative pressure differential with respect to the outside atmosphere in the event of transients which result in a negative pressure.
	Containment pressure is a process variable that is monitored and controlled. The containment pressure limits are derived from the operating band of conditions used in the containment pressure analyses for the Design Basis Events which result in internal or external pressure loads on the containment vessel. Should operation occur outside these limits, the initial containment pressure would be outside the range used for containment pressure analyses.
APPLICABLE SAFETY ANALYSES	Containment internal pressure is an initial condition used in the DBA analyses to establish the maximum peak containment internal pressure. The limiting DBAs considered, relative to containment pressure, are the LOCA and SLB, which are analyzed using computer pressure transients (Ref. 1).
	The initial pressure condition used in the containment analysis was 15.7 psia (1.0 psig). This resulted in a maximum peak pressure from a LOCA, P_a , of 57.8 psig. The containment analysis (Ref. 1) shows that the maximum peak calculated containment pressure results from the SLB. The maximum containment pressure resulting from the SLB, 57.3 psig, does not exceed the containment design pressure, 59 psig.
	The containment was also designed for an external pressure load equivalent to 2.9 psig. The limiting negative pressure transient is a loss of all AC power sources coincident with extreme cold weather conditions which cool the external surface of the containment vessel. The initial pressure condition used in this analysis was -0.2 psig. This resulted in a minimum pressure inside containment, as illustrated in Reference 1, which is less than the design load. Other external pressure load events evaluated include:
	Failed fan cooler control
	Malfunction of containment purge system

APPLICABLE SAFETY ANALYSES (continued)		
	Inadvertent Incontainment Refueling Water Storage Tank (IRWST) drain	
	Inadvertent Passive Containment Cooling System (PCS) actuation	
	Since the containment external pressure design limits can be met by ensuring compliance with the initial pressure condition, NUREG-1431 LCO 3.6.12, Vacuum Relief System is not applicable to the AP1000 containment.	
	Containment pressure satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).	
LCO	Maintaining containment pressure at less than or equal to the LCO upper pressure limit ensures that, in the event of a DBA, the resultant peak containment accident pressure will remain below the containment design pressure. Maintaining containment pressure at greater than or equal to the LCO lower pressure limit ensures that the containment will not exceed the design negative differential pressure following negative pressure transients.	
APPLICABILITY	In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. Since maintaining containment pressure within limits is essential to ensure initial conditions assumed in the accident analyses are maintained, the LCO is applicable in MODES 1, 2, 3, and 4. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining containment pressure within the limits of the LCO is not required in MODE 5 or 6.	
ACTIONS	<u>A.1</u> When containment pressure is not within the limits of the LCO, it must be restored within 1 hour. The Required Action is necessary to return operation to within the bounds of the containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1, "Containment," which requires that containment be restored to OPERABLE status within 1 hour.	

ACTIONS (continued)

B.1 and B.2

If containment pressure cannot be restored to within limits within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.6.4.1</u> REQUIREMENTS

Verifying that containment pressure is within limits ensures that unit operation remains within the limits assumed in the containment analysis. The 12 hour Frequency of this SR was developed based on operating experience related to trending of both containment pressure variations during the applicable MODES. Furthermore, the 12 hour Frequency is considered adequate in view of other indications available in the main control room, including alarms, to alert the operator to an abnormal containment pressure condition.

REFERENCES 1. Section 6.2, "Containment Analysis."

B 3.6 CONTAINMENT SYSTEMS

B 3.6.5 Containment Air Temperature

BASES	
BACKGROUND	The containment structure serves to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). The containment average air temperature is limited during normal operation to preserve the initial conditions assumed in the accident analyses for a loss of coolant accident (LOCA) or steam line break (SLB).
	The containment average air temperature limit is derived from the input conditions used in the containment functional analyses and the containment structure external pressure analyses. This LCO ensures that initial conditions assumed in the analysis of containment response to a DBA are not violated during plant operations. The total amount of energy to be removed from containment by the passive containment cooling system during post accident conditions is dependent upon the energy released to the containment due to the event, as well as the initial containment temperature and pressure. The higher the initial temperature, the more energy that must be removed, resulting in higher peak containment pressure and temperature. Exceeding containment design pressure may result in leakage greater than that assumed in the accident analysis. Operation with containment temperature in excess of the LCO limit violates an initial condition assumed in the accident analysis.
APPLICABLE SAFETY ANALYSES	Containment average air temperature is an initial condition used in the DBA analyses that establishes the containment environmental qualification operating envelope for both pressure and temperature. The limit for containment average air temperature ensures that operation is maintained within the assumptions used in the DBA analyses for containment (Ref. 1).
	The limiting DBAs considered relative to containment OPERABILITY are the LOCA and SLB. The DBA LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure transients. No two DBAs are assumed to occur simultaneously or consecutively. The postulated DBAs are analyzed with regard to containment Engineered Safety Feature (ESF) systems, assuming the loss of one Class 1E Engineered Safety Features Actuation Cabinet (ESFAC) Division, which is the worst case single active failure, resulting in one Passive Containment Cooling System flow path being rendered inoperable.

APPLICABLE SAFETY ANALYSES (continued)

	The limiting DBA for the maximum peak containment air temperature is a LOCA or SLB. The initial containment average air temperature assumed in the design basis analyses (Ref. 1) is 120°F.
	The DBA temperature transients are used to establish the environmental qualification operating envelope for containment. The basis of the containment environmental qualification temperature envelope is to ensure the performance of safety related equipment inside containment (Ref. 2). The containment vessel design temperature is 300°F. The containment vessel temperature remains below 300°F for DBAs. Therefore, it is concluded that the calculated transient containment air temperature is acceptable for the DBAs.
	The temperature limit is also used in the depressurization analyses to ensure that the minimum pressure limit is maintained following an inadvertent actuation of the Passive Containment Cooling System (Ref. 1).
	The containment pressure transient is sensitive to the initial air mass in containment and, therefore, to the initial containment air temperature. The limiting DBA for establishing the maximum peak containment internal pressure is an SLB or LOCA. The temperature limit is used in the DBA analyses to ensure that in the event of an accident the maximum containment internal pressure will not be exceeded.
	Containment average air temperature satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	During a DBA, with an initial containment average air temperature less than or equal to the LCO temperature limit, the resultant peak accident temperature is computed to remain within acceptable limits. As a result, the ability of containment to perform its design function is ensured.
APPLICABILITY	In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining containment average air temperature within the limit is not required in MODE 5 or 6.

ACTIONS <u>A.1</u>

When containment average air temperature is not within the limit of the LCO, it must be restored to within its limit within 8 hours. This Required Action is necessary to return operation to within the bounds of the containment analysis. The 8 hour Completion Time is acceptable considering the sensitivity of the conservative analysis to variations in this parameter, and provides sufficient time to correct minor problems.

B.1 and B.2

If the containment average air temperature cannot be restored to within its limit within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.6.5.1</u> REQUIREMENTS

Verifying that the containment average air temperature is within the LCO limit ensures that containment operation remains within the limits assumed for the containment analyses. In order to determine the containment average air temperature, a weighted average is calculated using measurements taken at locations within the containment selected to provide a representative sample of the associated containment atmosphere. The 24 hour Frequency of this Surveillance Requirement is considered acceptable based on observed slow rates of temperature increase within containment as a result of environmental heat sources (due to the large volume of containment). Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the main control room, including alarms, to alert the operator to an abnormal containment temperature condition.

REFERENCES 1. Section 6.2, "Containment Systems."

2. 10 CFR 50.49, "Environmental Qualification of Electric Equipment Important to Safety for Nuclear Power Plants."

B 3.6 CONTAINMENT SYSTEMS

B 3.6.6 Passive Containment Cooling System (PCS) – Operating

BASES

BACKGROUND The PCS provides containment cooling to limit post accident pressure and temperature in containment to less than the design values. Reduction of containment pressure reduces the release of fission product radioactivity from containment to the environment, in the event of a Design Basis Accident (DBA). The Passive Containment Cooling System is designed to meet the requirements of 10 CFR 50 Appendix A GDC 38 "Containment Heat Removal" and GDC 40 "Testing of Containment Heat Removal Systems" (Ref. 1).

The PCS consists of a 800,000 gal (nominal) cooling water tank, four headered tank discharge lines with flow restricting orifices, and two separate full capacity discharge flow paths to the containment vessel with 3 sets of isolation valves, each capable of meeting the design bases. Algae growth is not expected within the PCCWST: however, to assure water clarity is maintained, a prevailing concentration of hydrogen peroxide is maintained at 50 ppm. The recirculation pumps and heater provide freeze protection for the passive containment cooling water storage tank. However, OPERABILITY of the tank is assured by compliance with the temperature limits specified in SR 3.6.6.1 and not by the recirculation pumps and heater. In addition to the recirculation pumps and heater, the PCS water storage tank temperature can be maintained within limits by the ambient temperature, the large thermal inertia of the tank, or heat from other sources. The PCS valve room temperature must not be below freezing for an extended period to assure the water flow path to the containment shell is available. The isolation valves on each flow path are powered from a separate Division.

Upon actuation of the isolation valves, gravity flow of water from the cooling water tank (contained in the shield building structure above the containment) onto the upper portion of the containment shell reduces the containment pressure and temperature following a DBA. The flow of water to the containment shell surface is initially established to assure that the required short term containment cooling requirements following the postulated worst case LOCA are achieved. As the decay heat from the core becomes less with time, the water flow to the containment shell is reduced in three steps. The change in flow rate is attained without active components in the system and is dependent only on the decreasing water level in the elevated storage tank. In order to ensure the containment surface is adequately and effectively wetted, the water is introduced at the center of the containment dome and flows outward. Weirs are placed on the dome surface to distribute the water and ensure

BACKGROUND (continued)

effective wetting of the dome and vertical sides of the containment shell. The monitoring of the containment surface through the Reliability Assurance Program (RAP) and the Inservice Testing Program assures containment surface does not unacceptably degrade containment heat removal performance. During the initial test program, the containment coverage will be measured at the base of the upper annulus in addition to the coverage at the spring line for the full flow case and a lower flow case with PCS recirculation pumps delivering to the containment shell. These benchmark values at the base of the upper annulus will be used to develop acceptance criteria for technical specifications. Contamination can be removed by PCS actuation and by using coating vendor cleaning procedures.

The path for the natural circulation of air is from the air intakes in the shield building, down the outside of the baffle, up along the containment shell to the top, center exit in the shield building and is always open. The drains in the upper annulus region must be clear to prevent water from blocking the air flow path. Heat is removed from within the containment utilizing the steel containment shell as the heat transfer surface combining conductive heat transfer to the water film, convective heat transfer from the water film to the air, radiative heat transfer from the film to the air baffle, and mass transfer (evaporation) of the water film into the air. As the air heats up and water evaporates into the air, it becomes less dense than the cooler air in the air inlet annulus. This differential causes an increase in the natural circulation of the air upward along the containment surface, with heated air/water vapor exiting the top/center of the shield building. Additional system design details are provided in Reference 3.

The PCS is actuated either automatically, by a containment High-2 pressure signal, or manually. Automatic actuation opens the cooling water tank discharge valves, allowing gravity flow of the cooling water onto the containment shell. The manual containment cooling actuation consists of four momentary controls, if two associated controls are operated simultaneously actuation will occur in all divisions. The discharge continues for at least three days.

The PCS is designed to limit post-accident pressure and temperature in containment to less than the design values. Reduction of containment pressure reduces the release of fission product radioactivity from containment to the environment, in the event of a DBA.

The PCS is an ESF system and is designed to ensure that the heat removal capability required during the post accident period can be attained.

APPLICABLE SAFETY ANALYSES	The Passive Containment Cooling System limits the temperature and pressure that could be experienced following a DBA. The limiting DBAs considered are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. No DBAs are assumed to occur simultaneously or consecutively. The postulated DBAs are analyzed with regard to containment ESF system, assuming the loss of one Class 1E Engineered Safety Features Actuation Cabinet (ESFAC) Division, which is the worst case single active failure and results in one PCS flow path being inoperable.
	The analyses and evaluations assume a unit specific power level of 3400 MWt, one passive containment cooling train operating, and initial (pre-accident) containment conditions of 120°F and 1.0 psig. The analyses also assume a response time delayed initiation to provide conservative peak calculated containment pressure and temperature responses.
	For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the effectiveness of the Passive Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment pressures in accordance with 10 CFR 50, Appendix K (Ref. 2).
	Containment cooling system performance for post accident conditions is given in Reference 3. The result of the analysis is that each train can provide 100% of the required peak cooling capacity during the post accident condition.
	The modeled Passive Containment Cooling System actuation response time from the containment analysis is based upon a response time associated with exceeding the containment High-2 pressure setpoint to opening of isolation valves.
	The Passive Containment Cooling System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	During a DBA, one passive containment cooling water flow path is required to maintain the containment peak pressure and temperature below the design limits (Ref. 3). To ensure that this requirement is met, two passive containment cooling water flow paths are provided.

LCO ((continued)
200	

Therefore, in the event of an accident, at least one flow path operates, assuming the worst case single active failure occurs. A third PCS flow path is provided for protection against multiple failure scenarios modeled in the PRA. To ensure that these requirements are met, three PCS water flow paths must be OPERABLE.

The PCS includes a cooling water tank, valves, piping, instruments and controls to ensure an OPERABLE flow path capable of delivering water from the cooling water tank upon an actuation signal. An OPERABLE flow path consists of a normally closed valve capable of automatically opening in series with a normally open valve. For the two flow paths containing air-operated valves, it is preferred because of PRA insights that these valves be normally closed.

The PCS cooling water storage tank ensures that an adequate supply of water is available to cool and depressurize the containment in the event of a Design Basis Accident (DBA). To be considered OPERABLE, the PCS cooling water storage tank must meet the water volume and temperature limits established in the SRs. To be considered OPERABLE, the air flow path from the shield building annulus inlet to the exit must be unobstructed, with unobstructed upper annulus safety-related drains providing a path for containment cooling water runoff to preclude blockage of the air flow path.

APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment and an increase in containment pressure and temperature requiring the operation of the PCS.

During shutdown the PCS may be required to remove heat from containment. The requirements in MODES 5 and 6 are specified in LCO 3.6.7, Passive Containment Cooling System (PCS) – Shutdown.

ACTIONS

A.1

With one passive containment cooling water flow path inoperable, the affected flow path must be restored within 7 days. In this degraded condition, the remaining flow paths are capable of providing greater than 100% of the heat removal needs after an accident, even considering the worst single failure. The 7 day Completion Time was chosen in light of the remaining heat removal capability and the low probability of a DBA occurring during this period.

ACTIONS (continued)

<u>B.1</u>

With two passive containment cooling water flow paths inoperable, at least one affected flow path must be restored to OPERABLE status within 72 hours. In this degraded condition, the remaining flow path is capable of providing greater than 100% of the heat removal needs after an accident. The 72 hour Completion Time was chosen in light of the remaining heat removal capability and the low probability of DBA occurring during this period.

<u>C.1</u>

If the cooling water tank is inoperable, it must be restored to OPERABLE status within 8 hours. The tank may be declared inoperable due to low water level or temperature out of limits. The 8 hour Completion Time is reasonable based on the remaining heat removal capability of the system and the availability of cooling water from alternate sources.

D.1 and D.2

If any of the Required Actions and associated Completion Times are not met, or if the LCO is not met for reasons other than Condition A, B, or C, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 84 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. The extended interval to reach MODE 5 allows additional time and is reasonable when considering that the driving force for a release of radioactive material from the Reactor Coolant System is reduced in MODE 3.

SURVEILLANCE <u>SR 3.6.6.1</u> REQUIREMENTS

This surveillance requires verification that the cooling water temperature is within the limits assumed in the accident analyses. The 7-day Frequency is adequate to identify a temperature change that would approach the temperature limits since the tank is large and temperature variations are slow.

The surveillance Frequency is increased to 24 hours in the event that the tank temperature approaches its limits; i.e., once temperature increases

SURVEILLANCE REQUIREMENTS (continued)

either to $\geq 100^{\circ}$ F, or decreases to $\leq 50^{\circ}$ F. Since the maximum tank temperature variation during the normal surveillance Frequency of 7 days is only about 1°F, the tank temperature cannot exceed its limits before the increased surveillance Frequency takes effect.

SR 3.6.6.2

Verification that the cooling water volume is above the required minimum ensures that a sufficient supply is available for containment cooling. Since the cooling water volume is normally stable and low level is indicated by a main control room alarm, a 7 day Frequency is appropriate and has been shown to be acceptable in similar applications.

SR 3.6.6.3

Verifying the correct alignment of power operated, and automatic valves, excluding check valves, in the Passive Containment Cooling System provides assurance that the proper flow paths exist for system operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position since these were verified to be in the correct positions prior to being secured. This SR does not require any testing or valve manipulation. Rather, it involves verification, through control room instrumentation or a system walkdown, that valves capable of potentially being mispositioned are in the correct position. The 31 day Frequency is appropriate because the valves are operated under administrative control, and an improper valve position would only affect a single flow path. This Frequency has been shown to be acceptable through operating experience.

SR 3.6.6.4

This SR requires verification that each automatic isolation valve actuates to its correct position upon receipt of an actual or simulated actuation signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The 24 month Frequency is based on the need to perform these Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillances were performed with the reactor at power. The 24 month Frequency is also acceptable based on consideration of the design reliability (and confirmed by operating experience) of the equipment. Operating experience has shown that these components usually pass the Surveillances when performed at the 24 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.6.5

Periodic inspections of the PCS air flow path from the shield building annulus inlet to the exit ensure that it is unobstructed, the baffle plates are properly installed, and the upper annulus safety-related drains are unobstructed. Although there are no anticipated mechanisms which would cause air flow path or annulus drain obstruction and the effect of a missing air baffle section is small, it is considered prudent to verify this capability every 24 months. Additionally, the 24 month Frequency is based on the desire to perform this Surveillance under conditions that apply during a plant outage, on the need to have access to the locations, and because of the potential for an unplanned transient if the Surveillance were performed with the reactor at power. This Frequency has been found to be sufficient to detect abnormal degradation in similar situations.

SR 3.6.6.6

This SR requires performance of a Passive Containment Cooling System test to verify system flow and water coverage capabilities. The system performance test demonstrates that the containment cooling capability assumed in accident analyses is maintained by verifying the flow rates via each standpipe and measurement of containment wetting coverage. The System Level Operability Testing Program provides specific test requirements and acceptance criteria. Although the likelihood that system performance would degrade with time is low, it is considered prudent to periodically verify system performance. The first refueling and 10 year Frequency is based on the ability of the more frequent surveillances to verify the OPERABILITY of the active components and features which could degrade with time.

- REFERENCES 1. 10 CFR 50, Appendix A, "General Design Criteria for Nuclear Power Plants."
 - 2. 10 CFR 50, Appendix K, "ECCS Evaluation Models."
 - 3. Chapter 6.2, "Containment Systems."

B 3.6 CONTAINMENT SYSTEMS

B 3.6.7 Passive Containment Cooling System (PCS) – Shutdown

BASES	
BACKGROUND	A description of the PCS is provided in the Bases for LCO 3.6.6, "Passive Containment Cooling System – Operating."
APPLICABLE SAFETY	The PCS limits the temperature and pressure that could be experienced during shutdown following a loss of decay heat removal.
ANALYSES	For shutdown events, the Reactor Coolant System (RCS) sensible and decay heat removal requirements are reduced as compared to heat removal requirements for MODE 1, 2, 3, or 4 events. Therefore, the shutdown containment heat removal requirements are bounded by analyses of MODES 1, 2, 3, and 4 events. A discussion of MODES 1, 2, 3, and 4 DBAs is provided in the Bases for LCO 3.6.6, "Passive Containment Cooling System (PCS) – Operating."
	The PCS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	For postulated shutdown events, one passive containment cooling water flow path is required to provide the required containment heat removal capability (Ref. 1). To ensure that this requirement is met, two passive containment cooling water flow paths are provided. Therefore, in the event of an accident, at least one flow path operates, assuming the worst case single active failure occurs. A third PCS flow path is provided for protection against multiple failure scenarios modeled in the PRA. To ensure that these requirements are met, three PCS water flow paths must be OPERABLE.
	The PCS includes a cooling water tank, valves, piping, instruments and controls to ensure an OPERABLE flow path capable of delivering water from the cooling water tank upon an actuation signal.
	The PCS cooling water storage tank ensures that an adequate supply of water is available to cool and depressurize the containment in the event of a loss of decay heat removal. To be considered OPERABLE, the PCS cooling water storage tank must meet the water volume and temperature limits established in the SRs. To be considered OPERABLE, the air flow path from the shield building annulus inlet to the exit must be unobstructed, with unobstructed upper annulus safety-related drains providing a path for containment cooling water runoff to preclude blockage of the air flow path.

APPLICABILITY OPERABILITY of the PCS is required in either MODE 5 or 6 with the calculated reactor decay heat greater than 9 MWt for heat removal in the event of a loss of nonsafety decay heat removal capabilities.

With the decay heat less than 9 MWt, the decay heat can be easily removed from containment with air cooling alone. Confirmation of decay heat levels may be determined consistent with the assumptions and analysis basis of ANS 1979 plus 2 sigma or via an energy balance of the reactor coolant system.

The PCS requirements in MODES 1, 2, 3, and 4 are specified in LCO 3.6.6, "Passive Containment Cooling System (PCS) – Operating."

ACTIONS

With one passive containment cooling water flow path inoperable, the affected flow path must be restored within 7 days. In this degraded condition, the remaining flow paths are capable of providing greater than 100% of the heat removal needs after an accident, even considering the worst single failure. The 7 day Completion Time was chosen in light of the remaining heat removal capability and the low probability of a DBA occurring during this period.

<u>B.1</u>

A.1

With two passive containment cooling water flow paths inoperable, at least one affected flow path must be restored to OPERABLE status within 72 hours. In this degraded condition, the remaining flow path is capable of providing greater than 100% of the heat removal needs after an accident. The 72 hour Completion Time was chosen in light of the remaining heat removal capability and the low probability of an event occurring during this period.

<u>C.1</u>

If the cooling water tank is inoperable, it must be restored to OPERABLE status within 8 hours. The tank may be declared inoperable due to low water volume or temperature out of limits. The 8 hour Completion Time is reasonable based on the remaining heat removal capability of the system and the availability of cooling water from alternate sources.

D.1.1, D.1.2, and D.2

Action must be initiated if any of the Required Actions and associated Completion Times are not met, or if the LCO is not met for reasons other than Condition A, B, or C. If in MODE 5 with the RCS pressure boundary

ACTIONS (continued)

open and/or pressurizer level < 20%, action must be initiated, immediately, to increase the RCS level to a pressurizer level≥20% and to close the RCS so that the PRHR HX operation is available. If in MODE 6, action must be initiated, immediately, to increase the refueling cavity water level≥23 feet above the top of the reactor vessel flange. In both cases, the time to RCS boiling is maximized by maximizing the RCS inventory and maintaining RCS temperature as low as practical. Additionally, action to suspend positive reactivity additions is required to ensure that the SDM is maintained. Sources of positive reactivity addition include boron dilution, withdrawal of reactivity control assemblies, and excessive cooling of the RCS.

These Actions place the plant in a condition which maximize the time to actuation of the Passive Containment Cooling System, thus providing time for repairs or application of alternative cooling capabilities.

 SURVEILLANCE
REQUIREMENTS
 SR 3.6.7.1
The LCO 3.6.6 Surveillance Requirements (SR 3.6.6.1 through 3.6.6.6)
are applicable. The Frequencies associated with each specified SR are
applicable. Refer to the corresponding Bases for LCO 3.6.6 for a
discussion of each SR.

 REFERENCES
 1. Section 6.2, "Containment Systems."

B 3.6 CONTAINMENT SYSTEMS

B 3.6.8 Containment Penetrations

BASES

BACKGROUND Containment closure capability is required during shutdown operations when there is fuel inside containment. Containment closure is required to maintain within containment the cooling water inventory. Due to the large volume of the IRWST and the reduced sensible heat during shutdown, the loss of some of the water inventory can be accepted. Further, accident analyses have shown that containment closure capability is <u>not</u> required to meet offsite dose requirements. Therefore, containment does not need to be leak tight as required for MODES 1 through 4.

In MODES 5 and 6, the LCO requirements are referred to as "containment closure" rather than "containment OPERABILITY." Containment closure means that all potential escape paths are closed or capable of being closed. Since there is no requirement for containment leak tightness, compliance with the Appendix J leakage criteria and tests are not required.

In MODES 5 and 6, there is no potential for steam release into the containment immediately following a accident. Pressurization of the containment could only occur after heatup of the IRWST due to PRHR HX operation (MODE 5 with RCS intact) or after heatup of the RCS with direct venting to the containment (MODE 5 with reduced RCS inventory or MODE 6 with the refueling cavity not fully flooded) or after heatup of the RCS and refueling cavity (MODE 6 with refueling cavity fully flooded). The time from loss of normal cooling until steam release to the containment for four representative sets of plant conditions is shown in Figure B 3.6.8-1 as a function of time after shutdown. Because local manual action may be required to achieve containment closure it is assumed that the containment hatches, air locks and penetrations must be closed prior to steaming into containment.

Figure B 3.6.8-1 provides allowable closure times for four representative sets of plant conditions. The time to steaming is dependent on various plant parameters (RCS temperature, IRWST temperature, etc.) and plant configuration (RCS Pressure Boundary Intact, RCS Open, etc.). Therefore, the actual representation of the time to steaming may be different than that provided in Figure B 3.6.8-1. In determining the minimum time to steaming, conservative assumptions regarding core decay heat, RCS configuration, and initial RCS inventory are used to minimize the calculated time to steaming. The curves are based on the core decay heat prior to refueling so that closure times are longer following the core reload.

BACKGROUND (continued)

As presented in Tables 54-1 and 54-4 of Reference 2, the most risk significant events during shutdown are events that lead to a loss of RNS cooling. Of these, the limiting events that lead to steaming to containment are the loss of shutdown cooling events, specifically:

- Loss of decay heat removal during drained conditions due to a failure of component cooling water or service water system;
- Loss-of-offsite power during drained conditions; and
- Loss of decay heat removal during drained conditions due to failure of the normal residual heat removal system.

These events are further discussed in Section 19.59.5 of Reference 1. Time to steaming is dependent on the postulated RCS configuration (intact versus open), and is based on the response of the plant considering features such as the operation of the 4th stage ADS valves if necessary, status of the upper internals, status of refueling cavity, etc. Conservative assumptions regarding these features are made in the determination of the minimum time to steaming. The time assumed in the PRA to close the penetrations before steaming to containment included 15 minutes for the diagnosis and decision-making time, in addition to the time required to physically complete the closure action.

The risk of overdraining the RCS has been significantly reduced in the AP1000 due to the automatic protection features associated with the hot leg level instruments which isolate letdown on low hot leg water level. Overdraining the RCS is no longer a significant contributor to core damage, as shown in Table 54-4 of Reference 2.

The assumptions used in determining the required closure time for the various containment openings should be conservative, and should be consistent with the plant operating procedures, staffing levels, and status of the containment openings. The evaluation should consider the ability to close the containment for the limiting loss of shutdown cooling event, and considering the possibility of a station blackout. In determining if containment can be closed within the time permitted to containment closure specified in Figure B 3.6.8 -1, the time to close containment penetrations must include both the diagnosis and decision-making time and the time required to physically complete the closure action.

Containment should be closed during the initial mid-loop period for a refueling since the time permitted to containment closure is shorter than the time to diagnose and make a decision that closure is needed

BACKGROUND (continued)

following an event. The need to close containment for the mid-loop period following a refueling must be evaluated since decay heat varies with the time after shutdown and the impact of the partial core replacement with new fuel. It is expected that containment will be closed for activities where drain-down is planned, such as the RCS drain-down from no-load pressurizer level for the initial mid-loop period during a refueling. Containment is not expected to be closed for minor, unplanned RCS volume transients, such as a short-term inventory where the pressurizer level may be reduced, but not emptied, and where recovery actions are within the time to containment closure.

The containment equipment hatches, which are part of the containment pressure boundary, provide a means for moving large equipment and components into and out of containment. If closed, the equipment hatch must be held in place by at least four bolts. Good engineering practice dictates that bolts required by this LCO be approximately equally spaced. Alternatively, if open, each equipment hatch can be installed using a dedicated set of hardware, tools and equipment. A self-contained power source is provided to drive each hoist while lowering the hatch into position. Large equipment and components may be moved through the hatches as long as they can be removed and the hatch closed prior to steaming into the containment.

The design of the equipment hatch is such that the four bolts would only be needed to support the hatch in place and provide adequate strength to support the hatch dead weight and associated loads. The hatch is installed on the inside containment and is held in place against a matching flange surface with mating bolt pattern by the bolts. Once the dead weight is supported, any pressure (greater than atmospheric) within containment will serve to exert closure force on the hatch toward the mating flange surface serving to reduce stresses on bolts. Therefore the determination of the number of bolts is limited to the quantity required to support the hatch itself and not related to any potential containment pressure.

The containment air locks, which are also part of the containment pressure boundary, provide a means for personnel access during MODES 1, 2, 3, and 4 unit operation in accordance with LCO 3.6.2, "Containment Air Locks." Each air lock has a door at both ends. The doors are normally interlocked to prevent simultaneous opening when containment OPERABILITY is required. During periods of unit shutdown when containment closure is required, the door interlock mechanism may be disabled, allowing both doors of an air lock to remain open for

BACKGROUND (continued)

extended periods when frequent containment entry is necessary. Temporary equipment connections (e.g., power or communications cables) are permitted as long as they can be removed to allow containment closure prior to steaming into the containment.

Containment spare penetrations which also provide a part of the containment boundary provide for temporary support services (electrical, I&C, air, and water supplies) during MODES 5 and 6. Each penetration is flanged and normally closed. During periods of plant shutdown, temporary support systems may be routed through the penetrations; temporary equipment connections (e.g., power or communications cables) are permitted as long as they can be removed to allow containment closure prior to steaming into the containment. The spare penetrations must be closed or, if open, capable of closure prior to steaming to containment.

Containment penetrations, including purge system flow paths, that provide direct access from containment atmosphere to outside atmosphere must be isolated or capable of being isolated on at least one side. Isolation may be achieved by an OPERABLE automatic isolation valve, or by a manual isolation valve, blind flange, or equivalent. Equivalent isolation methods must be approved and may include use of a material that can provide a temporary barrier for the containment penetrations. The equivalent isolation barrier must be capable of maintaining containment isolation at the containment design pressure of 59 psig (Ref. 1).

APPLICABLE SAFETY ANALYSES	For postulated shutdown events in MODES 5 and 6, RCS heat removal is provided by either passive residual heat removal (PRHR) or IRWST injection and containment sump recirculation. To support RCS heat removal, containment closure is required to limit the loss of the cooling water inventory from containment (Ref. 1).
	Containment penetrations satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO This LCO limits the loss of cooling water inventory in containment to assure continued coolant inventory by limiting the potential escape paths for water released within containment. Penetrations closed in accordance with these requirements are not required to be leak tight.

LCO (continued)

The LCO requires any penetration providing direct access from the containment atmosphere to the outside atmosphere to be closed or capable of being closed prior to steaming into the containment. The equipment hatches may be open; however, the hatches shall be clear of obstructions such that capability to close the hatch within the indicated time period is maintained. The hardware, tools, equipment and power sources necessary to install the hatches shall be available when the hatch is open. Both doors in each containment air lock may be open; however, the air locks shall be clear of obstructions such that the capability to close at least one door within the indicated time period is maintained. Alternatively, one door in an air lock may be closed. Containment spare penetrations may be open; however, the penetrations shall be capable of being closed within the indicated time period. Direct access penetrations shall be closed by at least one manual or automatic isolation valve, blind flange or equivalent, or capable of being closed by at least one valve actuated by a containment isolation signal. If direct access penetrations are open, OPERABILITY of the containment isolation instrumentation is required for the open penetrations by LCO 3.3.2, Function 3.a. Containment Isolation, Manual Initiation, An OPERABLE Containment Isolation Function includes LCO 3.3.2, Function 19.b, Containment Air Filtration System Isolation, Containment Isolation. Figure B 3.6.8-1 provides the acceptable required closure times for various representative MODES and conditions.

APPLICABILITY The containment penetration requirements are applicable during conditions for which the primary safety related core cooling and boration capabilities are provided by IRWST or injection or PRHR – MODES 5 and 6. The capability to close containment is required to ensure that the cooling water inventory is not lost in the event of an accident.

In MODES 1, 2, 3, and 4, containment penetration requirements are addressed by LCO 3.6.1.

ACTIONS <u>A.1</u>

If the containment equipment hatches, air locks, or any containment penetration that provides direct access from the containment atmosphere to the outside atmosphere is not in the required status, including the containment isolation function not capable of actuation when automatic isolation valves are open, the penetration(s) must be restored to the required status within 1 hour.

ACTIONS (continued)

B.1.1, B.1.2, and B.2

If Required Action A.1 is not completed within 1 hour or the LCO is not met for reasons other than Condition A, action must be taken to minimize the probability and consequences of an accident.

In MODE 5, action must be initiated, immediately, to be in MODE 5 with a pressurizer level \geq 20% and to close the RCS so that the PRHR HX operation is available. In MODE 6, action must be initiated, immediately, to be in MODE 6 with the refueling cavity water level \geq 23 feet above the top of the reactor vessel flange. The time to RCS steaming to containment is maximized by maximizing RCS inventory, and allowing PRHR HX operation. Additionally, action to suspend positive reactivity additions is required to ensure that the SDM is maintained. Sources of positive reactivity addition include boron dilution, withdrawal of reactivity control assemblies, and excessive cooling of the RCS.

SURVEILLANCE <u>SR 3.6.8.1</u> REQUIREMENTS

This Surveillance demonstrates that each of the containment penetrations required to be in its closed position is in that position. The Surveillance on the open purge and exhaust valves will demonstrate that the valves are not blocked from closing. Also the Surveillance will demonstrate that each valve operator has motive power, which will ensure that each valve is capable of being closed by an OPERABLE automatic containment purge and exhaust isolation signal. Open containment spare penetrations shall be verified capable of being closed prior to steaming to containment by removal of obstructions and installation of the flange or by other closure means which will limit loss of the cooling water inventory from containment.

The Surveillance is performed every 7 days. The Surveillance interval is selected to ensure that the required penetration status is maintained during shutdown inspections, testing, and maintenance.

SR 3.6.8.2

Each of the two equipment hatches is provided with a set of hardware, tools, equipment, and self-contained power source for moving the hatch from its storage location and installing it in the opening. The required set of hardware and tools shall be visually inspected to ensure that they can perform the required functions. The equipment and power source shall

SURVEILLANCE REQUIREMENTS (continued)

be inspected and/or operated as necessary to verify that the hatch can be installed. The power source shall be verified as containing sufficient energy to install the hatch from the storage location.

The 7 day Frequency is adequate considering that the hardware, tools, equipment, and power sources are dedicated to the associated equipment hatch and not used for any other functions.

The SR is modified by a Note which only requires that the surveillance be met for an open equipment hatch. If the equipment hatch is installed in position, then the availability of the means to install the hatch is not required.

SR 3.6.8.3

This Surveillance demonstrates that at least one valve in each open penetration actuates to its isolation position on manual initiation or on an actual or simulated containment isolation signal. The 24 month Frequency maintains consistency with other similar valve testing requirements. The OPERABILITY requirements for the Containment Isolation function are specified in LCO 3.3.2.

The SR is modified by a Note stating that this Surveillance is not required to be met for valves in isolated penetrations. The LCO provides the option to close penetrations in lieu of requiring automatic actuation capability.

REFERENCES 1. DCD Chapter 19.

2. AP1000 Probabilistic Risk Assessment.

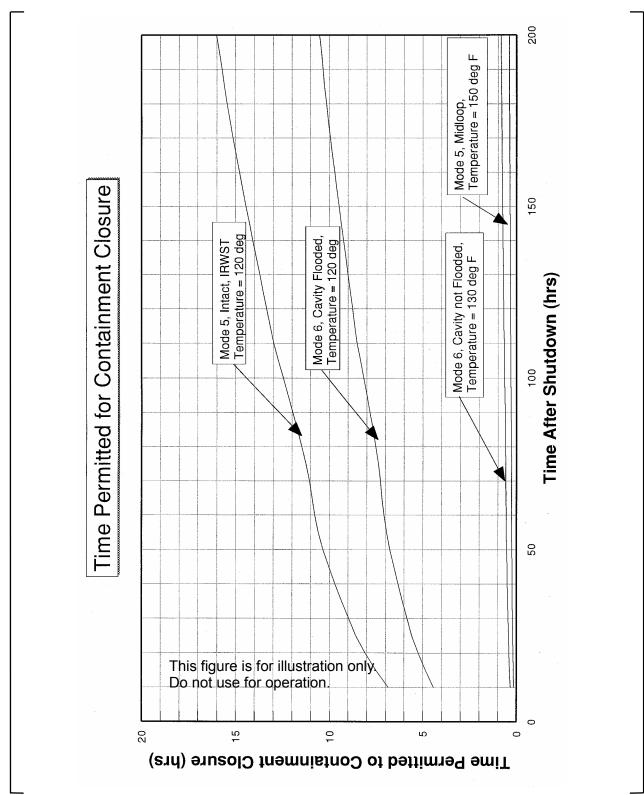


Figure B 3.6.8-1 (page 1 of 1) Time Prior to Coolant Inventory Boiling

B 3.6 CONTAINMENT SYSTEMS

B 3.6.9 pH Adjustment

BASES	
BACKGROUND	The Passive Core Cooling System (PXS) includes two pH adjustment baskets which provide adjustment of the pH of the water in the containment following an accident where the containment floods.
	Following an accident with a large release of radioactivity, the containment pH is automatically adjusted to greater than or equal to 7.0, to enhance iodine retention in the containment water. Chemical addition is necessary to counter the affects of the boric acid contained in the safety injection supplies and acids produced in the post-LOCA environment (nitric acid from the irradiation of water and air and hydrochloric acid from irradiation and pyrolysis of electric cable insulation). The desired pH values significantly reduce formation of elemental iodine in the containment water, which reduces the production of organic iodine and the total airborne iodine in the containment. This pH adjustment is also provided to prevent stress corrosion cracking of safety related containment components during long-term cooling.
	Dodecahydrate trisodium phosphate (TSP) contained in baskets provides a passive means of pH control for such accidents. The baskets are made of stainless steel with a mesh front that readily permits contact with water. These baskets are located inside containment at an elevation that is below the minimum floodup level. The baskets are placed at least a foot above the floor to reduce the chance that water spills will dissolve the TSP. Natural recirculation of water inside the containment, following a LOCA, is driven by the core decay heat and provides mixing to achieve a uniform pH. The dodecahydrate form of TSP (Na ₃ PO ₄ -12H ₂ O) is initially loaded into the baskets because it is hydrated and will undergo less physical and chemical change than would anhydrous TSP as a result of the humidity inside containment. (Refs. 1 and 2)
APPLICABLE SAFETY ANALYSES	In the event of a Design Basis Accident (DBA), iodine may be released from the fuel to containment. To limit this iodine release from containment, the pH of the water in the containment sump is adjusted by the addition of TSP. Adjusting the sump water to neutral or alkaline pH (pH \ge 7.0) will augment the retention of the iodine, and thus reduce the iodine available to leak to the environment.
	pH adjustment satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii).

BASES	
LCO	The requirement to maintain the pH adjustment baskets with \ge 560 ft ³ of TSP assures that for DBA releases of iodine into containment, the pH of the containment sump will be adjusted to enhance the retention of the iodine.
	A required volume is specified instead of mass because it is not feasible to weigh the TSP in the containment. The minimum required volume is based on the manufactured density of TSP. This is conservative because the density of TSP may increase after installation due to compaction.
APPLICABILITY	In MODES 1, 2, 3, and 4 a DBA could cause release of radioactive iodine to containment requiring pH adjustment. The pH adjustment baskets assist in reducing the airborne iodine fission product inventory available for release to the environment.
	In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Thus, pH adjustment is not required to be OPERABLE in MODES 5 and 6.
ACTIONS	<u>A.1</u>
	If the TSP volume in the baskets is not within limits, the iodine retention may be less than that assumed in the accident analysis for the limiting

may be less than that assumed in the accident analysis for the limiting DBA. Due to the very low probability that the volume of TSP may change, the variations are expected to be minor such that the required capability is substantially available. The 72 hour Completion Time for restoration to within limits is consistent with times applied to minor degradations of ECCS parameters.

B.1 and B.2

If the Required Actions and associated Completion Times are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 84 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.6.9.1</u> REQUIREMENTS

The minimum amount of TSP is 560 ft³. A volume is specified since it is not feasible to weigh the TSP contained in the pH adjustment baskets. This volume is based on providing sufficient TSP to buffer the post accident containment water to a minimum pH of 7.0. Additionally, the TSP volume is based on treating the maximum volume of post accident water (908,000 gallons) containing the maximum amount of boron (2990 ppm) as well as other sources of acid. The minimum required

The minimum required volume of TSP is based on this minimum required mass of TSP, the minimum density of TSP plus margin to account for degradation of TSP during plant operation. The minimum TSP density is based on the manufactured density, since the density may increase and the volume decrease, during plant operation, due to agglomeration from humidity inside the containment. The minimum required TSP volume also has about 10% margin to account for degradation of TSP during plant operation.

The periodic verification is required every 24 months, since access to the TSP baskets is only feasible during outages, and normal fuel cycles are scheduled for 24 months. Operating experience has shown this Surveillance Frequency acceptable due to the margin in the volume of TSP placed in the containment building.

SR 3.6.9.2

mass of TSP is 26,460 pounds.

Testing must be performed to ensure the solubility and buffering ability of the TSP after exposure to the containment environment. A representative sample of 2.39 grams of TSP from one of the baskets in containment is submerged in ≥ 1 liter of water at a boron concentration of 2990 ppm and at the standard temperature of $25 \pm 5^{\circ}$ C. Without agitation, the solution pH should be raised to ≥ 7.0 within 4 hours.

The minimum required amount of TSP is sufficient to buffer the maximum amount of boron 2990 ppm, the maximum amount of other acids, and the maximum amount of water 908,000 gallons that can exist in the containment following an accident and achieve a minimum pH of 7.0.

Agitation of the test solution is prohibited, since an adequate standard for the agitation intensity cannot be specified. The test time of 4 hours is necessary to allow time for the dissolved TSP to naturally diffuse through the sample solution. In the post LOCA sump area, rapid mixing would occur due to liquid flow, significantly decreasing the actual amount of time

SURVEILLANCE REQUIREMENTS (continued)

before the required pH is achieved. This would ensure compliance with the Standard Review Plan requirement of a pH \ge 7.0 by the onset of recirculation after a LOCA.

- REFERENCES 1. Section 6.3.2.1.4, "Containment pH Control."
 - 2. Section 6.3.2.2.4, "pH Adjustment Baskets."
 - 3. Section 15.6.5.3.1, "Identification of Cause and Accident Description."

B 3.7 PLANT SYSTEMS

B 3.7.1 Main Steam Safety Valves (MSSVs)

BASES

BACKGROUND	The primary purpose of the MSSVs is to provide overpressure protection for the secondary system. The MSSVs also provide protection against overpressurizing the reactor coolant pressure boundary (RCPB) by providing a heat sink for the removal of energy from the Reactor Coolant System (RCS) if the preferred heat sink, provided by the Condenser and Circulating Water System, is not available.			
	Six MSSVs are located on each main steam header, outside containment, upstream of the main steam isolation valves, as described in Reference 1. The MSSVs must have sufficient capacity to limit the secondary system pressure to $\leq 110\%$ of the steam generator design pressure in order to meet the requirements of the ASME Code, Section III (Ref. 2). The MSSV design includes staggered setpoints, as shown in Table 3.7.1-2 of the specification, so that only the needed valves actuate. Staggered setpoints reduce the potential for valve chattering that is due to steam pressure insufficient to fully open the valves following a turbine-reactor trip.			
APPLICABLE SAFETY ANALYSES	The design basis for the MSSVs comes from Reference 2 and its purpose is to limit the secondary system pressure to \leq 110% of design pressure for any anticipated operating occurrence (AOO) or accident considered in the Design Basis Accident (DBA) and transient analysis.			
	The events that challenge the relieving capacity of the MSSVs, are those characterized as decreased heat removal events, which are presented in Section 15.2 (Ref. 3). Of these, the full power turbine trip without turbine bypass is the limiting AOO. This event also terminates normal feedwater flow to the steam generators.			
	The safety analysis demonstrates that the transient response for turbine trip without a direct reactor trip presents no hazard to the integrity of the RCS or the Main Steam System. One turbine trip analysis is performed assuming primary system pressure control via operation of the pressurizer spray. This analysis demonstrates that the DNB design basis is met. Another analysis is performed assuming no primary system pressure control, but crediting reactor trip on high pressurizer pressure and operation of the pressurizer safety valves. This analysis demonstrates that RCS integrity is maintained by showing that the maximum RCS pressure does not exceed 110% of the design pressure.			

APPLICABLE SAFETY ANALYSES (continued)

All cases analyzed demonstrate that the MSSVs maintain Main Steam System integrity by limiting the maximum steam pressure to less than 110% of the steam generator design pressure.

In addition to the decreased heat removal events, reactivity insertion events may also challenge the relieving capacity of the MSSVs. The uncontrolled rod cluster control assembly (RCCA) bank withdrawal at power event is characterized by an increase in core power and steam generation rate until reactor trip occurs when either the Overtemperature ΔT or Power Range Neutron Flux-High setpoint is reached. Steam flow to the turbine will not increase from its initial value for this event. The increased heat transfer to the secondary side causes an increase in steam pressure and may result in opening of the MSSVs prior to reactor trip, assuming no credit for operation of the atmospheric or condenser steam dump valves. The DCD Section 15.4.2 safety analysis of the RCCA bank withdrawal at power event for a range of initial core power levels demonstrates that the MSSVs are capable of preventing secondary side overpressurization for this AOO.

The DCD safety analyses discussed above assume that all of the MSSVs for each steam generator are OPERABLE. If there are inoperable MSSV(s), it is necessary to limit the primary system power during steady-state operation and AOOs to a value that does not result in exceeding the combined steam flow capacity of the turbine (if available) and the remaining OPERABLE MSSVs. The required limitation on primary system power necessary to prevent secondary system overpressurization may be determined by system transient analyses or conservatively arrived at by a simple heat balance calculation. In some circumstances it is necessary to limit the primary side heat generation that can be achieved during an AOO by reducing the setpoint of the Power Range Neutron Flux-High reactor trip function. For example, if more than one MSSV on a single steam generator is inoperable, an uncontrolled RCCA bank withdrawal at power event occurring from a partial power level may result in an increase in reactor power that exceeds the combined steam flow capacity of the turbine and the remaining OPERABLE MSSVs. Thus, for multiple inoperable MSSVs on the same steam generator it is necessary to prevent this power increase by lowering the Power Range Neutron Flux-High setpoint to an appropriate value.

The MSSVs are assumed to have two active and one passive failure modes. The active failure modes are spurious opening, and failure to reclose once opened. The passive failure mode is failure to open upon demand.

APPLICABLE SAFETY ANALYSES (continued)

The MSSVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO The accident analysis requires six MSSVs per steam generator to provide overpressure protection for design basis transients occurring at 102% of RTP. A MSSV will be considered inoperable if it fails to open in the event of a pressure excursion in excess of the setpoint. The LCO requires that six MSSVs be OPERABLE in compliance with Reference 2. Operation with less than the full number of MSSVs requires limitations on allowable THERMAL POWER (to meet ASME Code requirements). These limitations are according to Table 3.7.1-1 of the specification and Required Action A.1.

> The OPERABILITY of the MSSVs is defined as the ability to open within the setpoint tolerances, relieve steam generator overpressure, and reseat when pressure has been reduced. The OPERABILITY of the MSSVs is determined by periodic surveillance testing in accordance with the Inservice Testing Program.

The lift settings specified in Table 3.7.1-2 in the accompanying LCO, correspond to ambient conditions of the valve at nominal operating temperature and pressure.

This LCO provides assurance that the MSSVs will perform their designed safety functions to mitigate the consequences of accidents that could result in a challenge to the RCPB or Main Steam System integrity.

APPLICABILITY In MODE 1, 2, 3, or 4 (without the normal residual heat removal system in service), six MSSVs per steam generator are required to be OPERABLE.

In MODES 4 (with the normal residual heat removal system in service) and 5, there are no credible transients requiring the MSSVs. The steam generators are not normally used for heat removal in MODES 5 and 6, and thus cannot be overpressurized. There is no requirement for the MSSVs to be OPERABLE in these MODES.

ACTIONS The ACTIONS table is modified by a Note indicating that separate Condition entry is allowed for each MSSV.

A.1 and A.2

With one or more MSSVs inoperable, reduce power so that the available MSSV relieving capacity meets Reference 2 requirements for the applicable THERMAL POWER.

Operation with less than all six MSSVs OPERABLE for each steam generator is permissible, if THERMAL POWER is proportionally limited to the relief capacity of the remaining MSSVs. This is accomplished by restricting THERMAL POWER so that the energy transfer to the most limiting steam generator is not greater than the available relief capacity in that steam generator. The maximum THERMAL POWER corresponding to the heat removal capacity of the remaining OPERABLE MSSVs is determined via a conservative heat balance calculation as described in the attachment to Reference 6, with an appropriate allowance for calorimetric power uncertainty.

To determine the maximum THERMAL POWER corresponding to the heat removal capacity of the remaining OPERABLE MSSVs, the governing heat transfer relationship is the equation $q = \dot{m} \Delta h$, where q is the heat input from the primary side, \dot{m} is the mass flow rate of the steam, and Δh is the increase in enthalpy that occurs in converting the secondary side water to steam. If it is conservatively assumed that the secondary side water is all saturated liquid (i.e., no subcooled feedwater), then the Δh is the heat of vaporization (h_{fg}) at the steam relief pressure. The following equation is used to determine the maximum allowable power level for continued operation with inoperable MSSVs.

Maximum NSSS Power \leq (100/Q) (W_s h_{fg} N) / K

where:

- Q = Nominal NSSS power rating of the plant (including reactor coolant pump heat), MWt
- K = Conversion factor, 947.82 (Btu/sec)/MWt
- w_s = Minimum total steam flow rate capability of the OPERABLE MSSVs on any one steam generator at the highest OPERABLE MSSV opening pressure, including tolerance and accumulation as appropriate, lbm/sec

ACTIONS (continued)

- h_{fg} = Heat of vaporization at the highest MSSV opening pressure, including tolerance and accumulation as appropriate, Btu/lbm
- N = Number of steam generators in the plant

To determine the Table 3.7.1-1 Maximum Allowable Power, the Maximum NSSS Power calculated using the equation above is reduced by 9% RTP to account for Nuclear Instrument System trip channel uncertainties.

The allowed Completion Times are reasonable based on operating experience to accomplish the Required Actions in an orderly manner without challenging unit systems.

B.1 and B.2

If the MSSVs cannot be restored to OPERABLE status within the associated Completion Time, or if one or more steam generators have less than two MSSVs OPERABLE, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the plant must be placed in at least MODE 3 within 6 hours, and in MODE 4, with RCS cooling provided by the RNS, within 24 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.7.1.1</u> REQUIREMENTS

This SR verifies the OPERABILITY of the MSSVs by the verification of each MSSV lift setpoint in accordance with the Inservice Testing Program. The safety and relief valve tests are required to be performed in accordance with ASME OM Code (Ref. 5). According to Reference 5, the following tests are required:

- a. Visual examination;
- b. Seat tightness determination;
- c. Set pressure determination (lift setting);
- d. Compliance with owner's seat tightness criteria; and
- e. Verification of the balancing device integrity on balanced valves.

SURVEILLANCE REQUIREMENTS (continued)

The ANSI/ASME standard requires that all valves be tested every 5 years and a minimum of 20% of the valves be tested every 24 months. The ASME Code specifies the activities and frequencies necessary to satisfy the requirements. Table 3.7.1-2 allows a \pm 3% setpoint tolerance

for OPERABILITY; however, the valves are reset to $\pm 1\%$ during the Surveillance to allow for drift. The lift settings, according to Table 3.7.1-2, correspond to ambient conditions of the valve at nominal operating temperature and pressure.

This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. The MSSVs may be either bench tested or tested in situ at hot conditions using an assist device to simulate lift pressure. If the MSSVs are not tested at hot conditions, the lift setting pressure shall be corrected to ambient conditions of the valve at operating temperature and pressure.

REFERENCES	1.	Chapter 10,	"Steam and Power	Conversion S	ystems Description."
------------	----	-------------	------------------	--------------	----------------------

- 2. ASME Boiler and Pressure Vessel Code, Section III, Article NC-7000, "Overpressure Protection," Class 2 Components.
- 3. Section 15.2, "Decreased Heat Removal by Secondary System."
- 4. ASME Boiler and Pressure Vessel Code, Section XI, Article IV-3500, "Inservice Test: Category C Valves."
- 5. ASME OM Code-1995 and Addenda through the 1996 Addenda, "Code for Operation and Maintenance of Nuclear Power Plants."
- 6. NRC Information Notice 94-60, "Potential Overpressurization of the Main Steam System," August 22, 1994.

B 3.7 PLANT SYSTEMS

B 3.7.2 Main Steam Isolation Valves (MSIVs)

BASES BACKGROUND Each main steamline has one safety related MSIV to isolate steam flow from the secondary side of the steam generators following a high energy line break. MSIV closure terminates flow from the unaffected (intact) steam generator. One MSIV is located in each main steam line outside containment. The MSIVs are downstream from the main steam safety valves (MSSVs). Downstream from the MSIVs, main steam enters the high pressure turbine through four stop valves and four governing control valves. Closing the MSIVs isolates each steam generator from the other and isolates the turbine bypass system, and other steam supplies from the steam generator. The MSIVs, turbine stop and control valves, turbine bypass valves, and moisture separator reheater 2nd stage steam isolation valves close on a main steam isolation signal generated by either low steam line pressure, high containment pressure, Low T_{cold}, or high negative steam pressure rate. The MSIVs fail closed on loss of control air or actuation signal from either of two 1E power divisions. Each MSIV has an MSIV bypass valve. Although these bypass valves are normally closed, they receive the same emergency closure signal as do their associated MSIVs. The MSIVs may also be actuated manually. A description of the MSIVs is found in the Section 10.3 (Ref. 1). Descriptions for the turbine bypass valves, and moisture separator reheater 2nd stage steam isolation valves are found in the Section 10.4 (Ref. 6). APPLICABLE The design basis of the MSIVs is established by the containment analysis SAFETY for the large steam line break (SLB) inside containment, discussed in the ANALYSES Section 6.2 (Ref. 2). It is also affected by the accident analysis of the SLB events presented in the Section 15.1 (Ref. 3). The design precludes the blowdown of more than one steam generator, assuming a single active component failure (e.g., the failure of one MSIV to close on demand). Design basis events of concern for containment analysis are SLB inside containment with the failure of the associated MSIV to close, or a main feedline break with the associated failure of a feedline isolation or control

APPLICABLE SAFETY ANALYSES (continued)

valve to close. At lower powers, the steam generator inventory and temperature are at their maximum, maximizing the analyzed mass and energy release to the containment. Due to reverse flow and failure of the MSIV to close, the additional mass and energy in the steam headers, downstream from the other MSIV, contribute to the total release. With the most reactive rod cluster control assembly assumed stuck in the fully withdrawn position, there is an increased possibility that the core will become critical and return to power. The core is ultimately shut down by the boric acid injection delivered by the Core Makeup Tanks (CMTs).

The accident analysis compares several different SLB events against different acceptance criteria. The large SLB outside containment upstream of the MSIV is limiting for offsite dose, although a break in this short section of main steam header has a very low probability. The large SLB inside containment at hot zero power is the limiting case for a post trip return to power. The analysis includes consideration of scenarios with offsite power available, and with a loss of offsite power. With offsite power available, the reactor coolant pumps continue to circulate coolant for a longer period through the steam generators, maximizing the Reactor Coolant System cooldown. The reactor protection system includes a safety related signal that initiates the coastdown of the reactor coolant pumps early in the large SLB transient. Therefore, there is very little difference in the predicted departure from nucleate boiling ratio between cases with and without offsite power. Significant single failures considered include failure of an MSIV to close.

The non-safety related turbine stop or control valves, in combination with the turbine bypass, and moisture separator reheater 2nd stage steam isolation valves, are assumed as a backup to isolate the steam flow path given a single failure of an MSIV. The safety analyses do not differentiate between the availability of the turbine stop valve or its series control valve. Either the turbine stop valves or its associated turbine control valve are required by this LCO to be OPERABLE. These valves, along with the turbine bypass, and moisture separator reheater 2nd stage steam isolation valves are considered as alternate downstream valves.

The MSIVs serve a safety related function and remain open during power operation. These valves operate under the following situations:

a. High energy line break inside containment. In order to maximize the mass and energy release into containment, the analysis assumes that the MSIV in the affected steam generator remains open. For this accident scenario, steam is discharged into containment from both steam generators until the unaffected loop MSIV closes. After

APPLICABLE SAFETY ANALYSES (continued)

MSIV closure, steam is discharged into containment only from the affected steam generator and from the residual steam in the main steam header downstream of the closed MSIV in the unaffected loop. Closure of the MSIV isolates the break from the unaffected steam generator.

- b. A break outside of containment, and upstream or downstream from the MSIVs, is not a containment pressurization concern. The uncontrolled blowdown of more than one steam generator must be prevented to limit the potential for uncontrolled RCS cooldown and positive reactivity addition. Closure of the MSIVs or alternate downstream valves isolates the break, and limits the blowdown to a single steam generator.
- c. Following a steam generator tube rupture, closure of the MSIVs isolates the ruptured steam generator to minimize radiological releases.
- d. The MSIVs are also utilized during other events such as a feedwater line break; however, these events are less limiting so far as MSIV OPERABILITY is concerned.

The MSIVs and the alternate downstream valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Following an SLB and main steam isolation signal, the analyses assume continued steam loss through the steamline condensate drain lines, turbine gland seal system, and the main steam to auxiliary steam header which supplies the auxiliary steam line to the deaerator. Since these valves are not assumed for steam isolation, they do not satisfy the 10 CFR 50.36(c)(2)(ii) criteria.

LCO This LCO requires that one MSIV in each of the two steam lines be OPERABLE. The MSIVs are considered OPERABLE when their isolation times are within limits, and they close on an isolation actuation signal.

This LCO requires that four turbine stop valves or their associated turbine control valve, six turbine bypass valves, and two moisture separator reheater 2nd stage steam isolation valves be OPERABLE. A valve is considered OPERABLE when its isolation time is within the safety analysis isolation time limit of 5 seconds and it closes on an MSIV

1

1

LCO (continued)	
	actuation signal. The turbine bypass valves are alternatively considered OPERABLE when closed and administratively maintained closed with automatic actuation blocked as appropriate.
	This LCO provides assurance that the MSIVs will perform their design safety function to mitigate the consequences of accidents that could result in offsite exposures comparable to the 10 CFR 50.34 limits or the NRC staff approved licensing basis.
	This LCO provides assurance that the design and performance of the alternate downstream valves are compatible with the accident conditions for which they are called upon to function (Ref. 5).
APPLICABILITY	The MSIVs, turbine stop or associated turbine control valves, turbine bypass valves, and moisture separator reheater 2nd stage steam isolation valves must be OPERABLE in MODE 1 and MODES 2, 3, and 4, except when steam flow is isolated when there is significant mass and energy in the RCS and steam generators. Therefore, these valves must be OPERABLE or closed. When these valves are closed, they are already performing their required function.
	In MODE 5 or 6, the steam generators do not contain much energy because their temperature is below the boiling point of water; therefore, the MSIVs and alternate downstream valves are not required for isolation of potential high energy secondary system pipe breaks in these MODES.
ACTIONS	<u>A.1</u>
	With one MSIV inoperable in MODE 1, action must be taken to restore OPERABLE status within 8 hours. Some repairs to the valves can be made with the plant hot. The 8 hour Completion Time is reasonable considering the low probability of an accident occurring during this time period that would require a closure of these valves. With a single MSIV inoperable, the safety function, isolation of the steam flow path, is provided by the OPERABLE alternate downstream valves, but cannot accommodate a single failure. The assumptions and criteria of the accident analyses are preserved by the ability to automatically isolate the steam flow path.
	The 8 hour Completion Time is greater than that normally allowed for containment isolation valves because the MSIVs are valves that isolate a

ACTIONS (continued)

closed system penetrating containment. These valves differ from other containment isolation valves in that the closed system provides a positive means for containment isolation.

<u>B.1</u>

With any number of the turbine stop valves and the associated turbine control valve, turbine bypass, or moisture separator reheater 2nd stage steam isolation valves inoperable in MODE 1, action must be taken to restore OPERABLE status within 72 hours. Some repairs to the valves can be made with the plant hot. The 72 hour Completion Time is reasonable considering the low probability of an accident occurring during this time period that would require a closure of these valves. With the backup isolation valves inoperable, the safety function, isolation of the steam flow path, is provided by the remaining OPERABLE valves, but cannot accommodate a single failure. The assumptions and criteria of the accident analyses are preserved by the ability to automatically isolate the steam flow path.

<u>C.1</u>

With two MSIVs inoperable in MODE 1 or one MSIV and an alternate downstream valve inoperable or if the valves cannot be restored to OPERABLE status in accordance with Required Action A.1 or B.1, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in MODE 2 within 6 hours and Condition D would be entered. The Completion Time is reasonable, based on operating experience, to reach MODE 2 in an orderly manner and without challenging unit systems.

D.1 and D.2

Condition D is modified by a Note indicating that a separate Condition entry is allowed for each MSIV.

Since the MSIVs are required to be OPERABLE in MODES 2, 3, and 4, the inoperable MSIVs may either be restored to OPERABLE status or closed. When closed, the MSIVs are already in the position required by the assumptions in the safety analysis.

The 8 hour Completion Time is consistent with that allowed in Condition A, and conservative considering the reduced energy in the steam generators in MODES 2, 3, and 4.

ACTIONS (continued)

For inoperable MSIVs that cannot be restored to OPERABLE status within the specified Completion Time but were closed, these inoperable valves must be verified to be continually closed on a periodic basis. This is necessary to ensure that the assumptions in the safety analyses remain valid. The 7 day Completion Time is based on engineering judgment, and is considered reasonable in view of MSIV status indications available in the control room and other administrative controls which ensure that these valves will continue to be closed.

E.1 and E.2

If the MSIVs cannot be restored to OPERABLE status or closed within the associated Completion Times of Condition D, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the plant must be placed in at least MODE 3 within 6 hours, and in MODE 4 with normal residual heat removal system in service within 24 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from MODE 2 conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3</u> REQUIREMENTS

<u>SR 3.7.2.1</u>

This SR verifies that MSIV closure time is ≤ 5.0 seconds, on an actual or simulated actuation signal. The MSIV isolation time is assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. The MSIVs should not be tested at power, since even a part stroke exercise increases the risk of a valve closure when the unit is generating power. As the MSIVs are not tested at power, they are exempt from the ASME OM Code (Ref. 7) requirements during operation in MODE 1 or 2.

The Frequency is in accordance with the Inservice Testing Program.

This test is conducted in MODE 3 with the unit at operating temperature and pressure. This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.7.2.2

This SR verifies that the turbine stop, turbine control, turbine bypass, and moisture separator reheater 2nd stage steam isolation valves' closure time is ≤ 5.0 seconds, on an actual or simulated actuation signal. These alternate downstream isolation valves must meet the MSIV isolation time assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. The alternate downstream valves should not be tested at power, since even a part stroke exercise increases the risk of a valve closure when the unit is generating power. As the alternate downstream valves are not tested at power, they are exempt from the ASME OM Code (Ref. 7) requirements during operation in MODE 1 or 2.

The Frequency is in accordance with the Inservice Testing Program.

This test is conducted in MODE 3 with the unit at operating temperature and pressure. This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated.

REFERENCES 1.	S	ection 1	10.3,	"Main	Steam	System	۱."
---------------	---	----------	-------	-------	-------	--------	-----

- 2. Section 6.2.1, "Containment Functional Design."
- 3. Section 15.1, "Increase in Heat Removal by Secondary System."
- 4. Section 10.2, "Turbine Generator."
- 5. NUREG-138, Issue 1, "Staff Discussion of Fifteen Technical Issues Listed in Attachment to November 3, 1976 Memorandum from Director NRR to NRR Staff."
- 6. Section 10.4, "Other Features of Steam and Power Conversion Systems."
- 7. ASME OM Code, "Code for Operation and Maintenance of Nuclear Power Plants."

B 3.7.3 Main Feedwater Isolation and Control Valves (MFIVs and MFCVs)

BASES

BACKGROUND The MFIVs isolate main feedwater (MFW) flow to the secondary side of the steam generators following a high energy line break. The safety related function of the MFCVs is to provide the second isolation of MFW flow to the secondary side of the steam generators following a high energy line break. Closure of the MFIVs or MFCVs terminates flow to the steam generators, terminating the event for feedwater line breaks occurring upstream of the MFIVs or MFCVs. The consequences of events occurring in the main steam lines or in the MFW lines downstream from the MFIVs will be mitigated by their closure. Closure of the MFIVs or MFCVs, effectively terminates the addition of main feedwater to an affected steam generator, limiting the mass and energy release for steam or feedwater line breaks inside containment, and reducing the cooldown effects for steam line breaks (SLBs).

The MFIVs or MFCVs isolate the nonsafety related portions from the safety related portions of the system. In the event of a secondary side pipe rupture inside containment, the valves limit the quantity of high energy fluid that enters containment through the break, and provide a pressure boundary for the controlled addition of startup feedwater (SFW) to the intact loops of the steam generator.

One MFIV and one MFCV are located on each MFW line, outside but close to containment. The MFIVs and MFCVs are located in the MFW line and are independent of the delivery of the MFW or SFW via the SFW line which is separately connected and isolated from the steam generator. This configuration permits MFW or SFW to be supplied to the steam generators following MFIV or MFCV closure. The piping volume from these valves to the steam generators must be accounted for in calculating mass and energy releases following either an SLB or FWLB.

The MFIVs and MFCVs close on receipt of engineered safeguards feedwater isolation signal generated from any of the following conditions:

- Automatic or manual safeguards actuation "S" signal
- High steam generator level
- Low-2 T_{avg} signal coincident with reactor trip (P-4)
- Manual actuation

BACKGROUND (co	ontinued)
	Additionally, the MFIVs close automatically on a Low-1 T_{avg} coincident with reactor trip (P-4). Each valve may be actuated manually. In addition to the MFIVs and the MFCVs, a check valve is available outside containment to isolate the feedwater line penetrating containment. In the event of feedwater line depressurization due to pump trip on line break, the check valve provides rapid backup isolation of the steam generators limiting the inventory loss. A description of the MFIVs and MFCVs is found in Reference 1.
APPLICABLE SAFETY ANALYSES	The design basis of the MFIVs and MFCVs is established by the analyses for the large SLB. It is also influenced by the accident analysis for the large Feedwater Line Break (FWLB). Closure of the MFIVs (or MFCVs) may also be relied on to mitigate an SLB for core response analysis and excess feedwater event upon the receipt of a steam generator water level – High 2 signal.
	Failure of an MFIV (or MFCV), to close following an SLB or FWLB, can result in additional mass and energy being delivered to the steam generators, contributing to cooldown. This failure also results in additional mass and energy releases following an SLB or FWLB event.
	The MFIVs and MFCVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	This LCO ensures that the MFIVs and the MFCVs will isolate the main feedwater system.
	This LCO requires that the one isolation valve and one control valve on each feedwater line be OPERABLE. These valves are considered OPERABLE when their isolation times are within limits and they close on an isolation actuation signal.
	Failure to meet the LCO requirements can result in additional mass and energy being released to containment following an SLB or FWLB inside containment. A main feedwater isolation signal on high steam generator level is relied on to terminate an excess feedwater flow event, and therefore failure to meet the LCO may result in the introduction of water into the main steam lines.
APPLICABILITY	The MFIVs and MFCVs must be OPERABLE whenever there is significant mass and energy in the Reactor Coolant System and the steam generators. This ensures that, in the event of a high energy line

APPLICABILITY (continued)

break, a single failure cannot result in the blowdown of more than one steam generator. In MODE 1, 2, 3, or 4, these valves are required to be OPERABLE to limit the amount of available fluid that could be added to the containment in the case of a secondary system pipe break inside containment. When the valves are closed and deactivated or isolated by a closed manual valve, they are already performing their safety function.

In MODES 5 and 6 steam generator energy is low. Therefore, the MFIVs and the MFCVs are normally closed since MFW is not required.

ACTIONS The ACTIONS table is modified by a Note indicating that separate condition entry is allowed for each valve.

A.1, A.2, B.1, and B.2

With one or two MFIVs, or one or two MFCVs inoperable, close or isolate inoperable affected flow path in 72 hours. When these flow paths are isolated, they are performing their required safety function.

The 72 hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves, and the low probability of an event that would require isolation of the main feedwater flow paths occurring during this period.

For inoperable MFIVs and MFCVs valves that cannot be restored to OPERABLE status within the specified Completion Time but are closed or isolated, the flow paths must be verified on a periodic basis to be closed or isolated. This is necessary to ensure that the assumptions in the safety analyses remain valid. The 7 day Completion Time is reasonable based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls, to ensure that these valves are closed or isolated.

<u>C.1</u>

With two inoperable valves in the same flow path there may be no redundant system to operate automatically and perform the required safety function. Under these conditions, one valve in the affected flow path must be restored to OPERABLE status, or the affected flow path isolated within 8 hours. This action returns the system to the situation in which at least one valve in the affected flow path is performing the required safety function. The 8 hour Completion Time is a reasonable amount of time to complete the actions required to close the MFIV, or

ACTIONS (continued)

MFCV, which includes performing a controlled plant shutdown. The Completion Time is reasonable based on operating experience to reach MODE 2 with the MFIV or MFCV closed, from full-power conditions in an orderly manner and without challenging plant systems.

D.1, D.2, and D.3

If the MFIVs and MFCVs cannot be restored to OPERABLE status, or closed, or isolated within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the plant must be placed in at least MODE 3 within 6 hours, in MODE 4 with the normal residual heat removal system in service within 24 hours, and the affected flow path isolated within 36 hours or in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.7.3.1</u> REQUIREMENTS

This SR verifies that the closure time of each MFIV and MFCV is ≤ 5.0 seconds, on an actual or simulated actuation signal. The MFIV and MFCV isolation times are assumed in the accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. These valves should not be tested at power, since even a part stroke exercise increases the risk of a valve closure when the unit is generating power. This is consistent with the ASME OM Code (Ref. 2) quarterly stroke requirements during operation in MODE 1 or 2.

The Frequency is in accordance with the Inservice Testing Program.

The test is conducted in MODE 3 with the unit at operating temperature and pressure. This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated.

REFERENCES 1. Section 10.4.7, "Condensate and Feedwater System."

2. ASME OM Code, "Code for Operation and Maintenance of Nuclear Power Plants."

B 3.7.4 Secondary Specific Activity

BASES

BACKGROUND	Activity in the secondary coolant results from steam generator tube LEAKAGE from the Reactor Coolant System (RCS). Other fission product isotopes, as well as activated corrosion products in lesser amounts, may also be found in the secondary coolant. While fission products present in the primary coolant, as well as activated corrosion products, enter the secondary coolant system due to the primary to secondary LEAKAGE, only the iodines are of a significant concern relative to airborne release of activity in the event of an accident or abnormal occurrence (radioactive noble gases that enter the secondary side are not retained in the coolant but are released to the environment via the condenser air removal system throughout normal operation). The limit on secondary coolant radioactive iodines minimizes releases to the environment due to anticipated operational occurrences or postulated accidents.
APPLICABLE SAFETY ANALYSES	The accident analysis of the main steam line break (SLB) as discussed in Chapter 15 (Ref. 1) assumes the initial secondary coolant specific activity to have a radioactive isotope concentration of 0.1 μ Ci/gm DOSE EQUIVALENT I-131. This assumption is used in the analysis for determining the radiological consequences of the postulated accident. The accident analysis, based on this and other assumptions, shows that the radiological consequences of a postulated SLB are within the acceptance criteria in SRP Section 15.0.1, and within the exposure guideline values of 10 CFR Part 50.34. Secondary specific activity satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	As indicated in the Applicable Safety Analyses, the specific activity limit of the secondary coolant is required to be $\leq 0.1 \ \mu$ Ci/gm DOSE EQUIVALENT I-131 to maintain the validity of the analyses reported in Chapter 15 (Ref. 1). Monitoring the specific activity of the secondary coolant ensures that when secondary specific activity limits are exceeded, appropriate actions are taken in a timely manner to place the unit in an operational MODE that would minimize the radiological consequences of a DBA.

BASES	
APPLICABILITY	In MODES 1, 2, 3, and 4 the limits on secondary specific activity apply due to the potential for secondary steam releases to the atmosphere.
	In MODES 5 and 6, the steam generators are not being used for heat removal. Both the RCS and steam generators are depressurized, and primary to secondary LEAKAGE is minimal. Therefore, monitoring of secondary specific activity is not required.
ACTIONS	A.1 and A.2
	DOSE EQUIVALENT I-131 exceeding the allowable value in the secondary coolant, is an indication of a problem in the RCS and contributes to increased post accident doses. If the secondary specific activity cannot be restored to within limits within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems.
SURVEILLANCE REQUIREMENTS	<u>SR 3.7.4.1</u>
	This SR verifies that the secondary specific activity is within the limits of the accident analysis. A gamma isotopic analysis of the secondary coolant, which determines DOSE EQUIVALENT I-131, confirms the validity of the safety analysis assumptions as to the source terms in post accident releases. It also serves to identify and trend any unusual isotopic concentrations that might indicate changes in reactor coolant activity or leakage. The 31 day Frequency is based on the detection of increasing trends of the level of DOSE EQUIVALENT I-131, and allows for appropriate action to be taken to maintain levels below the LCO limit.
REFERENCES	1. Chapter 15, "Accident Analyses."

B 3.7.5 Spent Fuel Pool Water Level

BASES	
BACKGROUND	The minimum water level in the spent fuel pool meets the assumptions of iodine decontamination factors following a fuel handling accident. The specified water level shields and minimizes the general area dose when the storage racks are at their maximum capacity. The water also provides shielding during the movement of spent fuel, and a large capacity heat sink in the event the spent fuel pool cooling system is inoperable. A general description of the spent fuel pool design is given in
	Section 9.1.2 (Ref. 1). A description of the Spent Fuel Pool Cooling System is given in Section 9.1.3 (Ref. 2). The assumptions of the fuel handling accident are given in Section 15.7.4 (Ref. 3).
APPLICABLE SAFETY ANALYSES	The minimum water level in the spent fuel pool meets the assumptions of the fuel handling accident described in Regulatory Guide 1.183 (Ref. 4). The design basis radiological consequences resulting from a postulated fuel handling accident are within the dose values provided in Section 15.7.4 (Ref. 3).
	According to Reference 3 there is 23 ft of water between the damaged fuel bundle and the fuel pool surface during a fuel handling accident. In the case of a single bundle dropped and lying horizontally on top of the spent fuel racks, however, there may be < 23 ft of water above the top of the fuel bundle and the surface, indicated by the width of the bundle. This slight reduction in water depth does not adversely affect the margin of conservatism associated with the assumed pool scrubbing factor of 500 for elemental iodine.
	In addition to mitigation of the effects of a fuel handling accident, the required minimum water level in the spent fuel pool provides a large capacity heat sink for spent fuel pool cooling in the event the spent fuel pool cooling system is inoperable.
	The Spent Fuel Pool Water Level satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The spent fuel pool water level is required to be \geq 23 ft over the top of irradiated fuel assemblies seated in the storage racks. The specified water level preserves the assumptions of the fuel handling accident

LCO (continued)	
	analysis (Ref. 3) and loss of spent fuel pool cooling. As such, it is the minimum required for fuel storage and movement within the spent fuel pool.
APPLICABILITY	This LCO applies at all times since the loss of spent fuel pool cooling is not MODE dependent.
ACTIONS	LCO 3.0.3 is applicable while in MODE 1, 2, 3, or 4. Since spent fuel pool cooling requirements apply at all times, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. Spent fuel pool cooling requirements are independent of reactor operations. Entering LCO 3.0.3 while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.
	LCO 3.0.8 is applicable while in MODE 5 or 6. Since spent fuel pool cooling requirements apply at all times, the ACTIONS have been modified by a Note stating that LCO 3.0.8 is not applicable. Spent fuel pool cooling requirements are independent of shutdown reactor operations. Entering LCO 3.0.8 while in MODE 5 or 6 would require the optimization of plant safety, unnecessarily.
	<u>A.1</u>
	When the initial conditions for prevention of an accident cannot be met, steps should be taken to preclude the accident from occurring. When the spent fuel pool water level is lower than the required level, the movement of irradiated fuel assemblies shall be suspended. This action effectively precludes the occurrence of a fuel handling accident. This does not preclude movement of a fuel assembly to a safe position.
	If moving irradiated fuel assemblies while in MODE 4, 5, or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODES 1, 2 and 3, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of irradiated fuel assemblies is not a sufficient reason to require a reactor shutdown.
	<u>A.2</u>
	If the water level in the spent fuel pool is < 23 ft, the heat capacity of the spent fuel pool will be less than that assumed in the event of a loss of spent fuel pool cooling. In this case, action must be initiated within 1 hour

ACTIONS (continued)				
	to restore the water level in the spent fuel pool to ≥ 23 ft above the top of the irradiated fuel assemblies. Initiation of this action requires that the action be continued until a water level of ≥ 23 ft is attained.			
	The Completion Time of 1 hour assures prompt action to compensate for a degraded condition.			
SURVEILLANCE REQUIREMENTS	<u>SR 3.7.5.1</u> This SR verifies sufficient spent fuel pool water is available in the event of a fuel handling accident or loss of spent fuel pool cooling. The water level in the spent fuel pool must be checked periodically. The 7 day Frequency is appropriate because the volume in the pool is normally			
	stable. Water level changes are controlled by plant procedures and are acceptable based on operating experience.			
	During refueling operations, the level in the spent fuel pool is in equilibrium with the refueling canal, and the level in the refueling canal is checked daily in accordance with SR 3.9.4.1.			
REFERENCES	1. Section 9.1.2, "Spent Fuel Storage."			
	2. Section 9.1.3, "Spent Fuel Pool Cooling System."			
	3. Section 15.7.4, "Fuel Handling Accident."			
	 Regulatory Guide 1.183 Rev. 0, "Alternate Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors." 			

B 3.7.6 Main Control Room Emergency Habitability System (VES)

BASES

BACKGROUND The Main Control Room Habitability System (VES) provides a protected environment from which operators can control the plant following an uncontrolled release of radioactivity. The system is designed to operate following a Design Basis Accident (DBA) which requires protection from the release of radioactivity. In these events, the Nuclear Island Non-Radioactive Ventilation System (VBS) would continue to function if AC power is available. If AC power is lost or a High-2 main control room (MCR) radiation signal is received, the VES is actuated. The major functions of the VES are: 1) to provide forced ventilation to deliver an adequate supply of breathable air (Ref. 4) for the MCR occupants; 2) to provide forced ventilation to maintain the MCR at a 1/8 inch water gauge positive pressure with respect to the surrounding areas; and 3) to limit the temperature increase of the MCR equipment and facilities that must remain functional during an accident, via the heat absorption of passive heat sinks.

The VES consists of compressed air storage tanks, two air delivery flow paths, associated valves, piping, and instrumentation. The tanks contain enough breathable air to supply the required air flow to the MCR for at least 72 hours. The VES system is designed to maintain CO_2 concentration less than 0.5% for up to 11 MCR occupants.

Sufficient thermal mass exists in the surrounding concrete structure (including walls, ceiling and floors) to absorb the heat generated inside the MCR, which is initially at or below 75°F. Heat sources inside the MCR include operator workstations, emergency lighting and occupants. Sufficient insulation is provided surrounding the MCR pressure boundary to preserve the minimum required thermal capacity of the heat sink. The insulation also limits the heat gain from the adjoining areas following the loss of VBS cooling.

In the unlikely event that power to the VBS is unavailable for more than 72 hours, MCR envelope habitability is maintained by operating one of the two MCR ancillary fans to supply outside air to the MCR envelope.

The compressed air storage tanks are initially pressurized to 3400 psig. During operation of the VES, a self contained pressure regulating valve maintains a constant downstream pressure regardless of the upstream pressure. An orifice downstream of the regulating valve is used to control the air flow rate into the MCR. The MCR is maintained at a 1/8 inch water gauge positive pressure to minimize the infiltration of airborne contaminants from the surrounding areas.

BASES	
APPLICABLE SAFETY ANALYSES	The compressed air storage tanks are sized such that the set of tanks has a combined capacity that provides at least 72 hours of VES operation.
	Operation of the VES is automatically initiated by the following safety related signals: 1) high-2 particulate or iodine radioactivity or 2) low pressurizer pressure.
	In the event of a loss of all AC power, the VES functions to provide ventilation, pressurization, and cooling of the MCR pressure boundary.
	In the event of a high level of gaseous radioactivity outside of the MCR, the VBS continues to operate to provide pressurization and filtration functions. The MCR air supply downstream of the filtration units is monitored by a safety related radiation detector. Upon high-2 particulate or iodine radioactivity setpoint, or low pressurizer pressure, a safety related signal is generated to isolate the MCR from the VBS and to initiate air flow from the VES storage tanks. Isolation of the VBS consists of closing safety related valves in the supply and exhaust ducts that penetrate the MCR pressure boundary. VES air flow is initiated by a safety related signal which opens the isolation valves in the VES supply lines.
	The VES functions to mitigate a DBA or transient that either assumes the failure of or challenges the integrity of the fission product barrier.
	The VES satisfies the requirements of Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	The VES limits the MCR temperature rise and maintains the MCR at a positive pressure relative to the surrounding environment.
	Two air delivery flow paths are required to be OPERABLE to ensure that at least one is available, assuming a single failure.
	The VES is considered OPERABLE when the individual components necessary to deliver a supply of breathable air to the MCR are OPERABLE. This includes components listed in SR 3.7.6.2 through 3.7.6.8. In addition, the MCR pressure boundary must be maintained, including the integrity of the walls, floors, ceilings, electrical and mechanical penetrations, and access doors.

In addition, the control room boundary must be maintained, including the integrity of the walls, floors, ceilings, ductwork, and access doors.

BASES

LCO (continued)	
	The LCO is modified by a Note allowing the control room boundary to be opened intermittently under administrative controls. For entry and exit through doors, the administrative control of the opening is performed by the person(s) entering or exiting the area. For other openings, these controls consist of stationing a dedicated individual at the opening who is in continuous communication with the control room. This individual will have a method to rapidly close the opening when a need for control room isolation is indicated.
APPLICABILITY	The VES is required to be OPERABLE in MODES 1, 2, 3, and 4 and during movement of irradiated fuel because of the potential for a fission product release following a DBA.
	The VES is not required to be OPERABLE in MODES 5 and 6 when irradiated fuel is not being moved because accidents resulting in fission product release are not postulated.
ACTIONS	LCO 3.0.8 is applicable while in MODE 5 or 6. Since irradiated fuel assembly movement can occur in MODE 5 or 6, the ACTIONS have been modified by a Note stating that LCO 3.0.8 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, the fuel movement is independent of shutdown reactor operations. Entering LCO 3.0.8 while in MODE 5 or 6 would require the optimization of plant safety, unnecessarily.
	<u>A.1</u>
	When a VES valve or damper is inoperable, action is required to restore the component to OPERABLE status. A Completion Time of 7 days is permitted to restore the valve or damper to OPERABLE status before action must be taken to reduce power. The Completion Time of 7 days is based on engineering judgment, considering the low probability of an accident that would result in a significant radiation release from the fuel, the low probability of not containing the radiation, and that the remaining components can provide the required capability.
	<u>B.1</u>
	When the main control room air temperature is outside the acceptable range during VBS operation, action is required to restore it to an acceptable range. A Completion Time of 24 hours is permitted based

ACTIONS (continued)

upon the availability of temperature indication in the MCR. It is judged to be a sufficient amount of time allotted to correct the deficiency in the nonsafety ventilation system before shutting down.

<u>C.1</u>

If the MCR pressure boundary is damaged or otherwise degraded, action is required to restore the integrity of the pressure boundary and restore it to OPERABLE status within 24 hours. A Completion Time of 24 hours is permitted based upon operating experience. It is judged to be a sufficient amount of time allotted to correct the deficiency in the pressure boundary.

D.1 and D.2

In MODE 1, 2, 3, or 4 if Conditions A, B, or C cannot be restored to OPERABLE status within the required Completion Time, the plant must be placed in a MODE that minimizes accident risk. This is done by entering MODE 3 within 6 hours and MODE 5 within 36 hours.

<u>E.1</u>

During movement of irradiated fuel assemblies, if the Required Action A.1, B.1, or C.1 cannot be completed within the required Completion Time, the movement of fuel must be suspended. Performance of Required Action E.1 shall not preclude completion of actions to establish a safe condition.

F.1, F.2, and F.3

If the VES is inoperable in MODE 1, 2, 3, or 4, the VES may not be capable of performing the intended function, and the plant must be brought to MODE 4, where the probability and consequences of an event are minimized, and the VES must be restored to OPERABLE status within 36 hours. This is accomplished by placing the plant in MODE 3 within 6 hours and in MODE 4 within 12 hours.

<u>G.1</u>

During movement of irradiated fuel assemblies with the VES inoperable, the Required Action is to immediately suspend activities that present a potential for releasing radioactivity that might enter the MCR. This places the plant in a condition that minimizes risk. This does not preclude the movement of fuel to a safe position.

SURVEILLANCE REQUIREMENTS

SR 3.7.6.1

The MCR air temperature is checked at a frequency of 24 hours to verify that the VBS is performing as required to maintain the initial condition temperature assumed in the safety analysis, and to ensure that the MCR temperature will not exceed the required conditions after loss of VBS cooling. The surveillance limit of 75°F is the initial heat sink temperature assumed in the VES thermal analysis. The 24 hour Frequency is acceptable based on the availability of temperature indication in the MCR.

SR 3.7.6.2

Verification every 24 hours that compressed air storage tanks are pressurized to \geq 3400 psig is sufficient to ensure that there will be an adequate supply of breathable air to maintain MCR habitability for a period of 72 hours. The Frequency of 24 hours is based on the availability of pressure indication in the MCR.

SR 3.7.6.3

VES air delivery isolation valves are required to be verified as OPERABLE. The Frequency required is in accordance with the Inservice Testing Program.

SR 3.7.6.4

VES air header isolation valves are required to be verified open at 31 day intervals. This SR is designed to ensure that the pathways for supplying breathable air to the MCR are available should loss of VBS occur. These valves should be closed only during required testing or maintenance of downstream components, or to preclude complete depressurization of the system should the VES isolation valves in the air delivery line open inadvertently or begin to leak.

SR 3.7.6.5

Verification that the air guality of the air storage tanks meets the requirements of Appendix C, Table C-1 of ASHRAE Standard 62 is required every 92 days. If air has not been added to the air storage tanks since the previous verification, verification may be accomplished by confirmation of the acceptability of the previous surveillance results along with examination of the documented record of air makeup. The purpose of ASHRAE Standard 62 states: "This standard specifies minimum ventilation rates and indoor air quality that will be acceptable to human occupants and are intended to minimize the potential for adverse health

SURVEILLANCE REQUIREMENTS (continued)

effects." Verification of the initial air quality (in combination with the other surveillances) ensures that breathable air is available for 11 MCR occupants for at least 72 hours.

SR 3.7.6.6

Verification that all VBS isolation valves are OPERABLE and will actuate upon demand is required every 24 months to ensure that the MCR can be isolated upon loss of VBS operation.

<u>SR 3.7.6.7</u>

Verification that each VES pressure relief isolation valve within the MCR pressure boundary is OPERABLE is required in accordance with the Inservice Testing Program. The SR is used in combination with SR 3.7.6.7 to ensure that adequate vent area is available to mitigate MCR overpressurization.

<u>SR 3.7.6.8</u>

Verification that the VES pressure relief damper is OPERABLE is required at 24 month intervals. The SR is used in combination with SR 3.7.6.6 to ensure that adequate vent area is available to mitigate MCR overpressurization.

SR 3.7.6.9

Verification of the OPERABILITY of the self-contained pressure regulating valve in each VES air delivery flow path is required in accordance with the Inservice Testing Program. This is done to ensure that a sufficient supply of air is provided as required, and that uncontrolled air flow into the MCR will not occur.

<u>SR 3.7.6.10</u>

Per Reference 1, a functional test is required to establish that one VES air delivery flow path, using the safety related compressed air storage tanks, pressurizes the MCR envelope to at least a positive 1/8 inch water gauge pressure relative to the surrounding spaces at the required air addition flow rate of 65 ± 5 scfm (Ref. 3). The test need not last 72 hours, only long enough to demonstrate the ability to achieve the required differential pressure. The MCR envelope leakage rate must be within the design capacity of the VES to pressurize the MCR for 72 hours. One air

SURVEILLANCE REQUIREMENTS (continued)

delivery flow path is tested on an alternating basis. The system performance test demonstrates that the MCR pressurization assumed in dose analysis is maintained.

- REFERENCES 1. Section 6.4, "Main Control Room Habitability Systems."
 - 2. Section 9.4.1, "Nuclear Island Non-Radioactive Ventilation System."
 - 3. SECY-95-132, "Policy and Technical Issues Associated With The Regulatory Treatment of Non-Safety Systems (RTNSS) In Passive Plant Designs (SECY-94-084)," May 22, 1995.
 - 4. ASHRAE Standard 62-1989, "Ventilation for Acceptable Indoor Air Quality."
 - 5. Regulatory Guide 1.78, "Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release," Revision 1, December 2001.

B 3.7.7 Startup Feedwater Isolation and Control Valves

BASES	
BACKGROUND	The startup feedwater system supplies feedwater to the steam generators during plant startup, hot standby and cooldown, and in the event of main feedwater unavailability.
	The startup feedwater system serves no safety related function and has no safety related design basis, except to isolate feedwater in the event of a feedwater, steam line break, a steam generator tube rupture or other secondary side event.
	The startup feedwater system consists of a flow path to each of the steam generators. Each flow path consists of two series startup feedwater valves to provide feedwater control for low feedwater demand conditions. Feedwater can be supplied to the startup feedwater line via either the main or startup feedwater pumps. The feedwater is delivered directly to the SG independent of the main feedwater line. Each startup feedwater line contains one control valve and one isolation valve (Ref. 1).
APPLICABLE SAFETY ANALYSES	The basis for the requirement to isolate the startup feedwater system is established by the analysis for large Steam Line Break (SLB) inside containment. It is also based on the analysis for a large Feedline Break (FLB) and a steam generator tube rupture.
	Failure to isolate the startup feedwater system following a SLB or FLB can lead to additional mass and energy being delivered to the steam generators, resulting in excessive cooldown and additional mass and energy release in containment. Failure to isolate the startup feedwater following a steam generator tube rupture may result in overfilling the steam generator.
	Low T_{cold} or high steam generator level signals close the startup feedwater control and isolation valves and trips the startup feedwater pumps.
	The startup feedwater isolation and control valves are components which actuate to mitigate a Design Basis Accident, and as such meet Criterion 3 of 10 CFR 50.36(c)(2)(ii).

BASES	
LCO	This LCO ensures that the startup feedwater isolation and control valves will actuate on command, following a SLB, FLB or SGTR, and isolate startup feedwater flow to the steam generators.
	The startup feedwater isolation and control valves are considered OPERABLE when they automatically close on an isolation actuation signal, and their isolation times are within the required limits.
APPLICABILITY	The startup feedwater isolation and control valves must be OPERABLE whenever there is significant mass and energy in the Reactor Coolant System and the steam generators. In MODES 1, 2, 3 and 4, the startup feedwater isolation and control valves are required to be OPERABLE in order to limit the amount of mass and energy that could be added to containment in the event of a SLB or FLB and prevent steam generator overfill in the event of an SGTR. When the valves are closed, they are already performing their safety function.
	isolation of the startup feedwater system is not required.
ACTIONS	The ACTIONS are modified by a Note allowing flow paths to be unisolated intermittently under administrative controls. These controls consist of stationing a dedicated operator at the valve controls, who is in continuous communication with the control room. In this way, the flow paths can be rapidly isolated.
	The second Note allows separate Condition entry for each flow path. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable flow path.
	A.1 and A.2
	With only one isolation or control valve OPERABLE in one or more flow paths, there is no redundant capability to isolate the flow paths. In this case, both an isolation and a control valve in each flow path must be restored to OPERABLE status with 72 hours, or the flow path must be isolated. A Completion Time of 72 hours is acceptable since, with one valve in a flow path inoperable, there is a second valve available in the flow path to isolate the line.

ACTIONS (continued)

If the inoperable valve in the flow path can not be restored to OPERABLE status, then the flow path must be isolated within a Completion Time of 72 hours. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure.

For flow paths isolated in accordance with Required Action A.2.1, the affected flow paths must be verified to be isolated on a periodic basis. This is necessary to ensure that flow paths required to be isolated following an accident will be in the isolation position should an event occur. This Required Action does not require any testing or device manipulation. Rather, it involves verification, through a system walkdown, that the isolation devices are in the correct position. The Completion Time of "once per 7 days" is appropriate considering the fact that the devices are operated under administrative controls, valve status indications in the main control room and the probability of their misalignment is low.

<u>B.1</u>

With both the isolation and control valves inoperable in one flow path, the affected flow path must be restored to OPERABLE status or isolated within a Completion Time of 8 hours. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure.

C.1, C.2, and C.3

If the isolation and control valves cannot be restored to OPERABLE status, closed, or isolated within the associated Completion Times, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the plant must be placed in least MODE 3 within 6 hours, and in MODE 4 with RCS cooling provided by the normal residual heat removal system within 24 hours, and the affected flow path isolated within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

BASES	
SURVEILLANCE REQUIREMENTS	<u>SR 3.7.7.1</u>
	This surveillance requires verification in accordance with the Inservice Testing Program to assure that both startup feedwater isolation and control valves are OPERABLE. The Surveillance Frequency is provided in the Inservice Testing Program.
REFERENCES	1. Section 10.4.9, "Startup Feedwater System."

B 3.7.8 Main Steam Line Leakage

BASES	
BACKGROUND	A limit on leakage from the main steam line inside containment is required to limit system operation in the presence of excessive leakage. Leakage is limited to an amount which would not compromise safety consistent with the Leak-Before-Break (LBB) analysis discussed in Chapter 3 (Ref. 1). This leakage limit ensures appropriate action can be taken before the integrity of the lines is impaired.
	LBB is an argument which allows elimination of design for dynamic load effects of postulated pipe breaks. The fundamental premise of LBB is that the materials used in nuclear plant piping are strong enough that even a large throughwall crack leaking well in excess of rates detectable by present leak detection systems would remain stable, and would not result in a double-ended guillotine break under maximum loading conditions. The benefit of LBB is the elimination of pipe whip restraints, jet impingement effects, subcompartment pressurization, and internal system blowdown loads.
	As described in Section 3.6 (Ref. 1), LBB has been applied to the main steam line pipe runs inside containment. Hence, the potential safety significance of secondary side leaks inside containment requires detection and monitoring of leakage inside containment. This LCO protects the main steam lines inside containment against degradation, and helps assure that serious leaks will not develop. The consequences of violating this LCO include the possibility of further degradation of the main steam lines, which may lead to pipe break.
APPLICABLE SAFETY ANALYSES	The safety significance of plant leakage inside containment varies depending on its source, rate, and duration. Therefore, detection and monitoring of plant leakage inside containment are necessary. This is accomplished via the instrumentation required by LCO 3.4.9, "RCS Leakage Detection Instrumentation," and the RCS water inventory balance (SR 3.4.7.1). Subtracting RCS leakage as well as any other identified non-RCS leakage into the containment area from the total plant leakage inside containment provides qualitative information to the operators regarding possible main steam line leakage. This allows the operators to take corrective action should leakage occur which is detrimental to the safety of the facility and/or the public.

APPLICABLE SAFETY ANALYSES (continued)

Although the main steam line leakage limit is not required by the 10 CFR 50.36(c)(2)(ii) criteria, this specification has been included in Technical Specifications in accordance with NRC direction (Ref. 2).

LCO Main steam line leakage is defined as leakage inside containment in any portion of the two (2) main steam line pipe walls. Up to 0.5 gpm of leakage is allowable because it is below the leak rate for LBB analyzed cases of a main steam line crack twice as long as a crack leaking at ten (10) times the detectable leak rate under normal operating load conditions. Violation of this LCO could result in continued degradation of the main steam line.

APPLICABILITY Because of elevated main steam system temperatures and pressures, the potential for main steam line leakage is greatest in MODES 1, 2, 3, and 4.

In MODES 5 and 6, a main steam line leakage limit is not provided because the main steam system pressure is far lower, resulting in lower stresses and a reduced potential for leakage. In addition, the steam generators are not the primary method of RCS heat removal in MODES 5 and 6.

ACTIONS <u>A.1 and A.2</u>

With main steam line leakage in excess of the LCO limit, the unit must be brought to lower pressure conditions to reduce the severity of the leakage and its potential consequences. The reactor must be placed in MODE 3 with 6 hours and MODE 5 within 36 hours. This action reduces the main steam line pressure and leakage, and also reduces the factors which tend to degrade the main steam lines. The Completion Time of 6 hours to reach MODE 3 from full power without challenging plant systems is reasonable based on operating experience. Similarly, the Completion Time of 36 hours to reach MODE 5 without challenging plant systems is also reasonable based on operating experience. In MODE 5, the pressure stresses acting on the main steam line are much lower, and further deterioration of the main steam line is less likely.

SURVEILLANCE REQUIREMENTS	<u>SR 3.7.8.1</u>			
	Verifying that main steam line leakage is within the LCO limit assures the integrity of those lines inside containment is maintained. An early warning of main steam line leakage is provided by the automatic system which monitor the containment sump level. Main steam line leakage would appear as unidentified leakage inside containment via this system, and can only be positively identified by inspection. However, by performance of an RCS water inventory balance (SR 3.4.7.1) and evaluation of the cooling and chilled water systems inside containment, determination of whether the main steam line is a potential source of unidentified leakage inside containment is possible.			
REFERENCES	1.	Section 3.6, "Protection Against the Dynamic Effects Associated with the Postulated Rupture of Piping."		
	2.	NRC letter, Diane T. Jackson to Westinghouse (Nicholas J. Liparulo), dated September 5, 1996, "Staff Update to Draft Safety Evaluation Report (DSER) Open Items (OIs) Regarding the Westinghouse AP600 Advanced Reactor Design," Open Item #365.		

B 3.7.9 Fuel Storage Pool Makeup Water Sources

BASES

BACKGROUND The spent fuel storage pool is normally cooled by the nonsafety spent fuel pool cooling system. In the event the normal cooling system is unavailable, the spent fuel storage pool can be cooled by the normal residual heat removal system. Alternatively, the spent fuel storage pool contains sufficient water inventory for decay heat removal by boiling. To support extended periods of loss of normal pool cooling, makeup water is required to provide additional cooling by boiling. Both safety and non-safety makeup water sources are available on-site.

Two safety-related, gravity fed sources of makeup water are provided to the spent fuel storage pool. These makeup water sources contain sufficient water to maintain spent fuel storage pool cooling for 72 hours. The containment cooling system water storage tank provides makeup water when pool decay heat is > 5.4 MWt and the decay heat in the reactor is less than 9.0 MWt. The cask washdown pit provides makeup water when decay heat in the pool is \geq 4.6 MWt and \leq 5.4 MWt. Additional on-site makeup water sources are available to provide fuel pool cooling between 3 and 7 days.

The containment cooling system water storage tank is isolated by two normally closed valves. The normally closed valves will be opened only to provide emergency makeup to the spent fuel storage pool. A third downstream valve permits the operator to regulate addition of water to the spent fuel storage pool as required to maintain the cooling water inventory.

Once decay heat in the fuel pool is reduced to below 4.6 MWt, the spent fuel storage pool water inventory is sufficient, without makeup, to maintain spent fuel storage pool for 72 hours. When the spent fuel storage pool decay heat load is reduced below 4.6 MWt, the cask washdown pit may be drained and returned to use for shipping cask cleaning operations.

A general description of the fuel storage pool design is given in Section 9.1.2 (Ref. 1). A description of the Spent Fuel Pool Cooling and Cleanup System is given in Section 9.1.3 (Ref. 2).

BASES	
APPLICABLE SAFETY ANALYSES	In the event the normal spent fuel storage pool cooling system is unavailable, the spent fuel cooling is provided by the heat capacity of the water in the pool. The worst case decay heat load (decay heat > 5.4 MWt) is produced by an emergency full core off-load following a refueling plus ten years of spent fuel. For this case the spent fuel storage pool inventory provided by the water over the stored fuel and below the pump suction connection is capable of cooling the spent fuel storage pool without boiling for at least 2.5 hours, following a loss of normal spent fuel storage pool cooling. After boiling starts, makeup water may be required to replace water lost by boiling and is available, without offsite support, via the passive containment cooling water storage tank.
	The requirements of LCO 3.6.6, "Passive Containment Cooling System – Operating," are applicable in MODES 1, 2, 3, and 4 and LCO 3.6.7, "Passive Containment Cooling System – Shutdown," are applicable in MODES 5 and 6 with decay heat > 9.0 MWt. LCOs 3.6.6 and 3.6.7 require availability of the containment cooling water tank for containment heat removal. Below 9.0 MWt decay heat, containment air cooling is adequate. Since there are no design conditions which result in both reactor decay heat > 9.0 MWt and spent fuel storage pool decay heat > 5.4 MWt, the applicability for LCOs 3.6.6/3.6.7 and for LCO 3.7.9 are mutually exclusive.
	Since none of the Chapter 15 Design Basis Accident analyses assume availability of the containment cooling water tank or the cask washdown pit for spent fuel storage pool makeup, the fuel storage pool makeup water sources specification does not satisfy any of the 10 CFR 50.36(c)(2)(ii) criteria. This LCO is included in accordance with NRC guidance provided in an NRC letter (Reference 3).
LCO	The fuel storage pool makeup water sources, the cask washdown pit, and the containment cooling water tank are required to contain 13.75 ft and 400,000 gallons of water, respectively. An OPERABLE flow path from the required makeup source assures spent fuel cooling for at least 72 hours. Several additional makeup sources are available, including the ground level containment cooling ancillary water storage tank. These makeup sources assure spent fuel cooling for at least 7 days.
	Note 1 specifies that either the cask washdown pit or the passive containment cooling water storage tank is required to be OPERABLE when the spent fuel storage pool decay heat \geq 4.6 MWt and \leq 5.4 MWt. Note 2 specifies that the passive containment cooling water storage tank source is required to be OPERABLE when the spent fuel storage pool decay heat is > 5.4 MWt, which is normal following a full core off load. The larger makeup source is necessary for the higher decay heat load.

BASES	
LCO (continued)	
	When a portion of the fuel is returned to the reactor vessel in preparation for startup, the pool decay heat is reduced to \leq 5.4 MWt and makeup from the cask washdown pit is sufficient.
APPLICABILITY	This LCO applies during storage of fuel in the fuel storage pool with a calculated decay heat \geq 4.6 MWt. With decay heat < 4.6 MWt, the assumed spent fuel storage pool water inventory (i.e., level below the pump suction connection to the pool) provides for 3 days of cooling without makeup.
ACTIONS	LCO 3.0.3 is applicable while in MODE 1, 2, 3, or 4. Since spent fuel pool cooling requirements apply at all times, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. Spent fuel pool cooling requirements are independent of reactor operations. Entering LCO 3.0.3 while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.
	LCO 3.0.8 is applicable while in MODE 5 or 6. Since spent fuel pool cooling requirements apply at all times, the ACTIONS have been modified by a Note stating that LCO 3.0.8 is not applicable. Spent fuel pool cooling requirements are independent of shutdown reactor operations. Entering LCO 3.0.8 while in MODE 5 or 6 would require the optimization of plant safety, unnecessarily.
	<u>A.1</u>
	If the passive containment cooling water storage tank (with decay heat > 5.4 MWt) and/or the cask washdown pit (with decay heat \ge 4.6 and \le 5.4 MWt) is inoperable, Action must be initiated immediately to restore the makeup source or its associated flow path to OPERABLE status.
	Additionally, in order to provide the maximum cooling capability, the spent fuel pool should be filled to its maximum level. Nonsafety related makeup sources can be used to fill the pool. This action is not specified in the specification, since the benefit of adding approximately 6 inches of water to the pool is less than a 5% improvement in cooling capability.

BASES			
SURVEILLANCE REQUIREMENTS	<u>SR 3.7.9.1</u>		
	This SR verifies sufficient passive containment cooling system water storage tank volume is available in the event of a loss of spent fuel cooling.		
	The 7 day Frequency is appropriate because the volume in the passive containment cooling system water storage tank is normally stable and water level changes are controlled by plant procedures.		
	<u>SR 3.7.9.2</u>		
	This SR verifies sufficient cask washdown pit water volume is available in the event of a loss of spent fuel cooling. The 13.75 ft level specified provides makeup water for stored fuel with decay heat \geq 4.6 and \leq 5.4 MWt.		
	The 30 day Frequency is appropriate because the cask washdown pit has only one drain line which is isolated by series manual valves which are only operated in accordance with plant procedures, thus providing assurance that inadvertent level reduction is not likely.		
	<u>SR 3.7.9.3</u>		
	This SR requires verification of the OPERABILITY of the manual makeup water source isolation valves in accordance with the requirements and Frequency specified in the Inservice Testing Program. Manual valves PCS-PL-V009, PCS-PL-V045, PCS-PL-V051, isolate the makeup flow path from the passive containment cooling system water storage tank. Manual valves SFS-PL-V042, SFS-PL-V045, SFS-PL-V049, SFS-PL-V066, and SFS-PL-V068 isolate the makeup flow path from the cask washdown pit.		
REFERENCES	1. Section 9.1.2, "Spent Fuel Storage."		
	2. Section 9.1.3, "Spent Fuel Pool Cooling System."		
	 NRC letter, William C. Huffman to Westinghouse Electric Corporation, "Summary of Telephone Conference with Westinghouse to Discuss Proposed Design Changes to the AP600 Main Control Room Habitability System," dated September 11, 1997. 		

B 3.7.10 Steam Generator Isolation Valves

BASES

BACKGROUND	The steam generator isolation valves consist of the power operated relief valve (PORV) block valves (SGS-PL-V027A & B), PORVs (SGS-PL-V233A & B), and blowdown isolation valves (SGS-PL-V074A & B and SGS-PL-V075A & B). The PORV flow paths must be isolated following a Steam Generator Tube Rupture (SGTR) to minimize radiological releases. The blowdown flow path must be isolated following Loss of Feedwater and Feedwater Line Break events to retain the steam generator water inventory for Reactor Coolant System (RCS) heat removal.
	A PORV is installed in a 6 inch branch line off of the main steam line piping from each steam generator, to provide for controlled removal of reactor decay heat during normal reactor cooldown when the main steam isolation valves are closed or the turbine bypass system is not available. A normally-open block valve is provided in each PORV line to provide backup isolation capability. Both the PORV and the block valve receive a Protection and Safety Monitoring System (PMS) isolation signal on low steam line pressure. The block valve is also a containment isolation valve.
	The blowdown line from each steam generator is provided with two series isolation valves, both located outside, but close to, containment. The blowdown valves receive a PMS isolation signal on low SG level and on PRHR actuation. The first blowdown isolation valve outside of containment is also a containment isolation valve.
	The steam generator PORVs and the blowdown isolation valves fail closed on loss of control or actuation power. The steam generator PORV block valves fail as-is on loss of control or actuation power. The steam generator isolation valves may also be actuated manually.
	Descriptions of the PORVs and SG blowdown isolation are found in Section 10.3.2.2.3 and Section 10.4.8 (Refs. 1 & 2).
APPLICABLE SAFETY ANALYSES	The PORV flow paths must be isolated following an SGTR to minimize radiological releases from the ruptured steam generator into the atmosphere. The PORV flow path is assumed to open due to high secondary side pressure, during the SGTR. Dose analyses take credit for subsequent isolation of the PORV flow path by the PORV and/or the block valve which receive a close signal on low steam line pressure.

APPLICABLE SAFETY ANALYSES (continued)

The blowdown flow path on each SG must be isolated following Loss of Feedwater and Feedwater Line Break events to retain the steam generator water inventory for use in Reactor Coolant System (RCS) heat removal via the SGs. RCS heat removal for these events is, primarily, provided by the Passive Residual Heat Removal Heat Exchanger (PRHR HX); however, the SG heat removal is assumed. The SG blowdown isolation valves receive an isolation signal on low SG level or PRHR actuation. These events take credit for steam generator heat removal using the water inventory retained after blowdown isolation. If the blowdown line were not isolated, much of the inventory would drain from the SG rather than cool the RCS.

The steam generator isolation valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO This LCO requires that the steam generator isolation valves consisting of the PORV, PORV block valve, and blowdown isolation valves on each steam generator to be OPERABLE. These isolation valves are considered OPERABLE when the valves are capable of closing on a PMS actuation signal.

This LCO provides assurance that the PORV and PORV block valve will perform their design safety function to mitigate the consequences of an SGTR that could result in offsite exposures.

Additionally, this LCO provides assurance that the steam generator blowdown isolation valves will perform their design safety function to mitigate the consequences of Loss of Feedwater and Feedwater Line Break events by retaining the steam generator water inventory for Reactor Coolant System (RCS) heat removal.

APPLICABILITY The steam generator isolation valves must be OPERABLE in MODES 1, 2, and 3, and in MODE 4 with the RCS cooling not being provided by the Normal Residual Heat Removal System (RNS).

In MODE 4 with the RCS cooling being provided by the RNS and in MODES 5 and 6, the steam generators are not needed for RCS cooling and the potential for an SGTR or Loss of Feedwater and Feedwater Line Break events is minimized due to the reduced mass and energy in the RCS and steam generators.

ACTIONS The ACTIONS are modified by a Note allowing the blowdown isolation flow paths to be unisolated intermittently under administrative controls. These administrative controls consist of stationing a dedicated operator at the valve controls, who is in continuous communication with the control room. In this way, the flow path can be rapidly isolated when a need for blowdown isolation is indicated.

The second Note allows separate Condition entry for each steam generator isolation flow path. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable flow path.

<u>A.1</u>

With one valve in one or more PORV flow paths inoperable, action must be taken to isolate the flow path with a closed and deactivated valve. The valve must be deactivated to assure that the flow path will not be opened by a high pressure signal during the course of an SGTR event. This action places the flow path in a condition which assures the safety function is performed. A Completion Time of 72 hours is based on the availability of one OPERABLE PORV flow path isolation valve which is fully capable of performing the required isolation function.

B.1 and B.2

With one valve in one or more blowdown flow paths inoperable, action must be taken to isolate the flow path with a closed valve. This action places the flow path in a condition which assures the safety function is performed. A Completion Time of 72 hours to isolate the flow path is based on the availability of one OPERABLE blowdown flow path isolation valve which is fully capable of performing the required isolation function.

Since the blowdown isolation valve is not deactivated, periodic verification is required to assure that the flow path remains isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of status indications available in the control room, and other administrative controls, to ensure that the valve remains in the closed position.

<u>C.1</u>

With both valves in one or more PORV flow paths inoperable, action must be taken to isolate the flow path with a closed and deactivated valve. The valve must be deactivated to assure that the flow path will not be opened by a high pressure signal during the course of an SGTR event. This

ACTIONS (continued)

action places the flow path in a condition which assures the safety function is performed. The 8 hour Completion Time is reasonable, considering the low probability of an accident occurring during this time period that would require a closure of the SG isolation valves. The incremental conditional core damage probability with this AOT is more than an order of magnitude less than the value indicated to have a small impact on plant risk in Reference 6.

D.1 and D.2

With two valves in one or more blowdown flow paths inoperable, action must be taken to isolate the flow path with a closed valve. This action places the flow path in a condition which assures the safety function is performed. The 8 hour Completion Time is reasonable, considering the low probability of an accident occurring during this time period that would require a closure of the SG isolation valves. The incremental conditional core damage probability with this AOT is more than an order of magnitude less than the value indicated to have a small impact on plant risk in Reference 3.

Since the blowdown isolation valve is not deactivated, periodic verification is required to assure that the flow path remains isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of status indications available in the control room, and other administrative controls, to ensure that the valve remains in the closed position.

E.1 and E.2

If the SG isolation valves cannot be restored to OPERABLE status or are not closed within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed at least in MODE 3 within 6 hours, and in MODE 4 with the RCS cooling provided by the RNS within 24 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions in an orderly manner and without challenging unit systems.

BASES		
SURVEILLANCE REQUIREMENTS	<u>SR</u>	<u>3.7.10.1</u>
	V02 (SC ger Bre per	e function of the SG isolation valves (PORV block valves (SGS-PL- 27A & B), PORVs (SGS-PL-V233A & B) and blowdown isolation valves SS-PL-V074A & B and SGS-PL-V075A & B)) is to isolate the steam nerators in the event of SGTR, Loss of Feedwater or Feedwater Line eak. Stroking the valves closed demonstrates their capability to form the isolation function. The Frequency for this SR is in cordance with the Inservice Testing Program.
REFERENCES	1.	Section 10.3.2.2.3, "Power-Operated Atmospheric Relief Valves."
	2.	Section 10.4.8, "Steam Generator Blowdown System."
	3.	Regulatory Guide 1.177, 8/98, "An Approach for Plant-Specific, Risk-Informed Decisionmaking: Technical Specifications."

B 3.7.11 Fuel Storage Pool Boron Concentration

BASES

BACKGROUND	The water in the spent fuel storage pool normally contains soluble boron, which would result in large subcriticality margins under actual operating conditions. For storage of fuel in the spent fuel racks, the design basis for preventing criticality outside the reactor is that there is a 95 percent probability at a 95 percent confidence level, without soluble boron, that the effective multiplication factor (k _{eff}) of the fuel assembly array will be less than 0.995, including uncertainties and tolerances. The NRC guidelines specify a limiting k _{eff} of 1.0 for normal storage in the absence of soluble boron. Hence, the design is based on the use of unborated water, which maintains a subcritical condition for the allowed loading patterns (Ref. 1). The double contingency principle discussed in ANSI N-16.1-1975 and the April 1978 NRC letter (Ref. 2) allows credit for soluble boron under other abnormal or accident conditions, since only a single independent accident need be considered at one time. For example, the only accident scenario that has a potential for more than negligible positive reactivity effect is an inadvertent misplacement of a new fuel assembly. This accident has the potential for exceeding the limiting reactivity, should there be a concurrent and independent accident condition resulting in the loss of all soluble poison. To mitigate these postulated criticality related accidents, boron is dissolved in the pool water. Safe operation with unborated water and no movement of assemblies may, therefore, be achieved by controlling the location of each assembly in accordance with LCO 3.7.12, "Spent Fuel Pool Storage." Prior to movement of an assembly, it is necessary to perform SR 3.7.12.1.
APPLICABLE SAFETY ANALYSES	Although credit for the soluble boron normally present in the spent fuel pool water is permitted under abnormal or accident conditions, most abnormal or accident conditions will not result in exceeding the limiting reactivity even in the absence of soluble boron. The effects on reactivity of credible abnormal and accident conditions due to temperature increase, boiling, assembly dropped on top of a rack, lateral rack module movement and misplacement of a fuel assembly have been analyzed. The spent fuel pool k_{eff} storage limit of 0.95 is maintained during these events by a minimum boron concentration of 758 ppm established by critically analysis (Ref. 3). Compliance with the LCO minimum boron concentration limit of 2300 ppm ensures that the credited concentration is always available.

BASES	
LCO	The fuel storage pool boron concentration is required to be \geq 2300 ppm. The specified concentration of dissolved boron in the fuel storage pool preserves the assumptions used in the analyses of the potential critical accident scenarios as described in References 1 and 3. This concentration of dissolved boron is the minimum required concentration for fuel assembly storage and movement within the fuel storage pool.
APPLICABILITY	This LCO applies whenever fuel assemblies are stored in the spent fuel storage pool and a fuel storage pool verification has not been performed since the last movement of fuel assemblies in the fuel storage pool.
ACTIONS	LCO 3.0.3 is applicable while in MODE 1, 2, 3, or 4. Since spent fuel pool cooling requirements apply in all MODES when fuel is stored in the spent fuel storage pool, the ACTIONS have been modified by the Note stating that LCO 3.0.3 is not applicable. Spent fuel pool boron concentration requirements are independent of reactor operations. Entering LCO 3.0.3 while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.
	LCO 3.0.8 is applicable while in MODE 5 or 6. Since spent fuel pool cooling requirements in all MODES when fuel is stored in the spent fuel storage pool, the ACTIONS have been modified by a Note stating that LCO 3.0.8 is not applicable. Spent fuel pool boron concentration requirements are independent of shutdown reactor operations. Entering LCO 3.0.8 while in MODE 5 or 6 would require the optimization of plant safety, unnecessarily.
	A.1, A.2.1, and A.2.2
	When the concentration of boron in the fuel storage pool is less than required, immediate action must be taken to preclude the occurrence of an accident or to mitigate the consequences of an accident in progress. This is most efficiently achieved by immediately suspending the movement of fuel assemblies. The concentration of boron is restored simultaneously with suspending movement of fuel assemblies. An acceptable alternative is to verify by administrative means that the fuel storage pool verification has been performed since the last movement of fuel assemblies in the fuel storage pool. However, prior to resuming movement of fuel assemblies, the concentration of boron must be restored. This does not preclude movement of a fuel assembly to a safe position.

BASES		
SURVEILLANCE REQUIREMENTS	<u>SR</u>	<u>3.7.11.1</u>
	with acc bec	s SR verifies that the concentration of boron in the fuel storage pool is nin the required limit. As long as this SR is met, the analyzed cidents are fully addressed. The 7 day Frequency is appropriate cause no major replenishment of pool water is expected to take place or such a short period of time.
REFERENCES	1.	AP1000 Design Control Document, Rev. 15, Sections 9.1.2, "Spent Fuel Storage" and 15.7.4, "Fuel Handling Accident."
	2.	Double contingency principle of ANSI N16.1-1975, as specified in the April 14, 1978 NRC letter (Section 1.2) and implied in the proposed revision to Regulatory Guide 1.13 (Section 1.4, Appendix A).
	3.	APP-GW-GLR-029, "AP1000 Spent Fuel Storage Racks Critically Analysis," June 2006.

B 3.7 PLANT SYSTEMS

B 3.7.12 Spent Fuel Pool Storage

BASES

BACKGROUND The high density spent fuel storage racks are divided into two separate and distinct regions and include locations for storage of defective fuel as shown in Figure 4.3-1. Region 1, with a maximum of 243 storage locations and the Defective Fuel Cells, with 5 storage locations are designed to accommodate new fuel assemblies with a maximum enrichment of 5.0 weight percent U-235, or spent fuel assemblies regardless of the combination of initial enrichment, burnup, and decay time. Region 2, with a maximum of 641 storage locations is designed to accommodate spent fuel assemblies in all locations which comply with the combination of initial enrichment, burnup and decay time limits specified in LCO Figure 3.7.12-1, Fuel Assembly Burnup Requirements for the Region 2, "All Cell" Storage Configuration. Use of the IFE fuel rod storage canister is subject to the same storage requirements as the fuel assemblies.

> Additionally, a second scheme "1-out-of-4 5.0 weight-percent fresh" is available for Region 2 as shown in Figure 4.3-2. New 5.0 weight percent U-235 fuel or any spent fuel may be stored in one location. Spent fuel (equivalent to 1.361 new fuel) shall be stored in the other three locations. The combination of initial enrichment, burnup, and decay time of the three spent fuel assemblies shall comply with the limits specified in LCO Figure 3.7.12-2, Fuel Assembly Burnup Requirements for the Region 2 "1-out-of-4 5.0 weight-percent fresh" Storage Configuration. The set of four relative storage locations may be repeated throughout Region 2. If the "1-out-of-4 5.0 weight-percent fresh" and the "All Cell" configurations are used together, the fuel in the storage locations surrounding the "1-out-of-4 5.0 weight-percent fresh" group(s) shall meet the LCO 3.7.12, Figure 3.7.12-2 limits.

> The water in the spent fuel storage pool normally contains soluble boron, which would result in large subcriticality margins under actual operating conditions. For storage of fuel in the spent fuel racks, the design basis for preventing criticality outside the reactor is that there is a 95 percent probability at a 95 percent confidence level, without soluble boron, that the effective multiplication faction (k_{eff}) of the fuel assembly array will be less than 0.995, including uncertainties and tolerances. The NRC guidelines specify a limiting k_{eff} of 1.0 for normal storage in the absence of soluble boron. Hence, the design is based on the use of unborated water, which maintains a subcritical condition for the allowed loading patterns.

BACKGROUND (continued)

The double contingency principle discussed in ANSI N-16.1-1975 and the April 1978 NRC letter (Ref. 1) allows credit for soluble boron under other abnormal and accident conditions, since only a single independent accident need be considered at one time. For example, the only accident scenario that has an inadvertent misplacement of a new fuel assembly. This accident has the potential for more than negligible positive reactivity effect is a potential for exceeding the limiting reactivity, should there be a concurrent and independent accident condition resulting in the loss of all soluble poison. To mitigate these postulated criticality related accidents, boron is dissolved in the pool water. Safe operation with unborated water and no movement of assemblies may, therefore, be achieved by controlling the combination of initial enrichment, burnup and decay time of the stored fuel in accordance with the accompanying LCO. Prior to movement of an assembly, it is necessary to perform SR 3.7.12.1.

APPLICABLE SAFETY ANALYSES The hypothetical accidents can only take place during or as a result of the movement of an assembly (Refs. 2 and 3). For these accident occurrences, the presence of soluble boron in the spent fuel storage pool (controlled by LCO 3.7.15, "Fuel Storage Pool Boron Concentration") prevents criticality. By closely controlling the movement of each assembly and by checking the location of each assembly after movement, the time period for potential accidents may be limited to a small fraction of the total operating time. During the remaining time period with no potential for accidents, the operation may be under the auspices of the accompanying LCO.

The configuration of fuel assemblies in the fuel storage pool satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).

LCO The restrictions on the placement of fuel assemblies within Region 2 of the spent fuel pool in the accompanying LCO, ensure the k_{eff} of the spent fuel storage pool will always remain < 0.995, assuming the pool to be flooded with unborated water and < 0.95, with a boron concentration of

greater than 758 ppm.

"All Cell" Storage Configuration

The "All Cell" storage configuration permits storage in all Region 2 locations of spent fuel which meets the combination of initial enrichment, burnup and decay time requirements shown in LCO Figure 3.7.12-1, Fuel Assembly Burnup Requirements for the Region 2, "All Cell" Storage

LCO (continued)

	Configuration. Figure 3.7.12-1 permits new (no burnup) 1.627 weight percent U-235 fuel to be stored in the All Cell configuration. "1-out-of-4 5.0 weight-percent fresh" Storage Configuration Fuel stored in accordance with the "1-out-of-4 5.0 weight-percent fresh" storage configuration shall be stored in the relative locations shown in Figure 4.3-2. The "1-out-of-4 5.0 weight-percent fresh" storage configuration permits storage of 5.0 weight percent U-235 new (no burnup) fuel or any spent fuel in one specified location, provided fuel stored in the three remaining locations meets the enrichment, burnup and decay time requirements shown in LCO Figure 3.7.12-2, Fuel Assembly Burnup Requirements for the Region 2 "1-out-of-4 5.0 w/o Fresh" Storage Configuration. Figure 3.7.12-2 permits new (no burnup) 1.361 weight percent U-235 fuel to be stored in the three remaining locations. The 4-location configuration may be repeated throughout Region 2.
	Interface Requirements
	Fuel may be stored in both the "All Cell" and "1-out-of-4 5.0 weight- percent fresh" configurations at the same time, provided fuel stored in the interface locations around the "1-out-of-4 5.0 weight-percent fresh" configuration group(s) meets the LCO Figure 3.7.12-1 requirements. Fuel assemblies not meeting the criteria of Figures 3.7.12-1 and 3.7.12-2 shall be stored in accordance with Specification 4.3.1.1.
APPLICABILITY	This LCO applies whenever any fuel assembly is stored in Region 2 of this fuel storage pool.
ACTIONS	LCO 3.0.3 is applicable while in MODE 1, 2, 3, or 4. Since spent fuel pool storage requirements apply in all MODES when fuel is stored in Region 2 or 3, the ACTIONS have been modified by a Note stating the LCO 3.0.3 is not applicable. Spent fuel pool storage requirements are independent of reactor operations. Entering LCO 3.0.3 while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.
	LCO 3.0.8 is applicable while in MODE 5 or 6. Since spent fuel pool storage requirements apply in all MODES when fuel is stored in Region 2 or 3, the ACTIONS have been modified by a Note stating the LCO 3.0.8 is not applicable. Spent fuel pool storage requirements are independent of shutdown reactor operations. Entering LCO 3.0.8 while in MODE 5 or 6 would require the optimization of plant safety, unnecessarily.

ACTIONS (continued)

<u>A.1</u>

The LCO is not met if spent fuel assemblies stored in Region 2 "All Cell," "1-out-of-4 5.0 weight-percent fresh" or interface spent fuel assembly storage locations do not meet the applicable initial enrichment, burnup and decay time limits in accordance with Figure 3.7.12-1 or 3.7.12-2.

Additionally, LCO is not met if fuel, required to be stored in the New Fuel location of the "1-out-of-4 5.0 weight-percent fresh" storage configuration, is misplaced. When the LCO is not met, action must be initiated immediately to make the necessary fuel assembly movement(s) in Region 2 to bring the storage configuration into compliance with Figures 3.7.12-1 and 3.7.12-2 or to move fuel to Region 1 or the defective fuel cells.

SURVEILLANCE <u>SR 3.7.12.1</u> REQUIREMENTS

This SR verifies by administrative means that the initial enrichment, burnup and decay time of the fuel assembly is in accordance with Figure 3.7.12-1 or 3.7.12-2 as applicable for "All Cell," "1-out-of-4 5.0 weight-percent fresh" and interface spent fuel assembly storage locations. Fuel stored in Region 2 that does not meet the Figure 3.7.12-1 or 3.7.12-2 limits shall be stored in Figure 4.3-1 "1-out-of-4 5.0 weightpercent fresh" New Fuel location.

- REFERENCES 1. Double contingency principle ANSI N16.1-1975, as specified in the April 14, 1978 NRC letter (Section 1.2) and implied in the proposed revision to Regulatory Guide 1.13 (Section 1.4, Appendix A).
 - 2. APP-GW-GLR-029, "AP1000 Spent Fuel Storage Racks Criticality Analysis," June 2006.
 - 3. AP1000 Design Control Document, Rev. 15, Sections 9.12, "Spent Fuel Storage" and 15.7.4, "Fuel Handling Accident."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.1 DC Sources – Operating

BASES

BACKGROUND The Class 1E DC and UPS System (IDS) provides electrical power for safety related and vital control instrumentation loads, including monitoring and main control room emergency lighting. It also provides power for safe shutdown when all the onsite and offsite AC power sources are lost and cannot be recovered for 72 hours. As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the Class 1E DC electrical power system is designed to have sufficient independence, redundancy, and testability to perform its safety functions, assuming a single failure. The Class 1E DC electrical power system also conforms to the requirements of Regulatory Guide 1.6 (Ref. 2) and IEEE-308 (Ref. 3). The 250 VDC electrical power system consists of four independent safety related Class 1E DC electrical power subsystems (Division A, B, C, and D). Divisions A and D each consist of one 24 hour battery bank, one battery charger, and the associated control equipment and interconnecting cable. Divisions B and C each consist of two battery banks (one 24 hour and one 72 hour), two battery chargers, and the associated control equipment and interconnecting cabling. The loads on the battery banks (including those on the associated inverters) are grouped according to their role in response to a Design Basis Accident (DBA). Loads which are a one time or limited duration load (engineered safeguards features (ESF) actuation cabinets and reactor trip function) required within the first 24 hours following an accident are connected to the "24 hour" battery bank. Loads which are continuous or required beyond the first 24 hours following an accident (emergency lighting, post accident monitoring, and Qualified Data Processing System) are connected to the "72 hour" battery bank. There are a total of six battery banks. A battery bank consists of two battery strings connected in series. Each battery string consists of 60 cells connected in series. Divisions A and D each have one 2400 ampere hour battery bank and Divisions B and C each have two 2400 ampere hour battery banks. Additionally, there is one installed spare battery bank and one installed spare battery charger, which provide backup service in the event that one of the battery banks and/or one of the preferred battery chargers is out of service. The spare battery bank and charger are Class 1E and have the same rating as the primary components. If the spare battery bank with the charger is substituted for one of the preferred battery banks or

chargers, then the requirements of independence and redundancy between subsystems are maintained and the division is OPERABLE.

BACKGROUND (continued)

During normal operation, the 250 VDC load is powered from the battery		
chargers with the batteries floating on the system. In case of loss of		
normal power to the battery charger, the DC load is automatically		
powered from the station batteries.		

Each battery bank provides power to an inverter, which in turn powers an AC instrumentation and control bus. The AC instrumentation and control bus loads are connected to inverters according to the battery bank type, 24 hour or 72 hour.

The Class 1E DC power distribution system is described in more detail in Bases for LCO 3.8.5, "Distribution System – Operating," and LCO 3.8.6, "Distribution System – Shutdown."

Each battery has adequate storage capacity to carry the required load for the required duration as discussed in Reference 4.

Each 250 VDC battery bank, including the spare battery bank, is separately housed in a ventilated room apart from its charger and distribution centers. Each subsystem is located in an area separated physically and electrically from the other subsystems to ensure that a single failure in one subsystem does not cause a failure in a separate subsystem. There is no sharing between separate Class 1E subsystems such as batteries, battery chargers, or distribution panels.

The batteries for each Class 1E electrical power subsystem are based on 125% of required capacity. The voltage limit is 2.13 V per cell, which corresponds to a total minimum voltage output of 256 V per battery discussed in Reference 4. The criteria for sizing large lead storage batteries are defined in IEEE-485 (Ref. 5).

Each electrical power subsystem has ample power output capacity for the steady state operation of connected loads required during normal operation, while at the same time maintaining its battery bank fully charged. Each battery charger has sufficient capacity to restore the battery bank from the design minimum charge to its fully charged state within 24 hours while supplying normal steady state loads (Ref. 4).

APPLICABLEThe initial conditions of DBA and transient analyses in the Chapter 6SAFETY(Ref. 6) and Chapter 15, (Ref. 7), assume that engineered safety featuresANALYSESare OPERABLE. The Class 1E DC electrical power system provides250 volts power for safety related and vital control instrumentation loads

APPLICABLE SAFETY ANALYSES (continued)

including monitoring and main control room emergency lighting during all MODES of operation. It also provides power for safe shutdown when all the onsite and offsite AC power sources are lost.

The OPERABILITY of the Class 1E DC sources is consistent with the initial assumptions of the accident analyses. This includes maintaining at least three of the four divisions of DC sources OPERABLE during accident conditions in the event of:

- a. An assumed loss of all offsite and onsite AC power sources; and
- b. A worst case single failure.

The DC Sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO Class 1E DC electrical power subsystems are required to be OPERABLE to ensure the availability of the required power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. Loss of Class 1E DC electrical power from one division does not prevent the minimum safety function from being performed (Ref. 4).

An OPERABLE Class 1E DC electrical power subsystem requires all required batteries and respective chargers to be operating and connected to the associated DC bus(es). The spare battery and/or charger may be used by one subsystem for OPERABILITY.

- APPLICABILITY The Class 1E DC electrical power sources are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure safe unit operation and to ensure that:
 - Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and
 - b. Adequate core cooling is provided, and containment integrity and other vital functions are maintained in the event of a postulated DBA.

Class 1E DC electrical power requirements for MODES 5 and 6 are addressed in the Bases for LCO 3.8.2, "DC Sources – Shutdown."

ACTIONS

A.1, A.2, and A.3

Condition A represents one division with one or two battery chargers inoperable (e.g., the voltage limit of SR 3.8.1.1 is not maintained). The ACTIONS provide a tiered response that focuses on returning the battery to the fully charged state and restoring a fully qualified charger to OPERABLE status in a reasonable time period. Required Action A.1 requires that the battery terminal voltage be restored to greater than or equal to the minimum established float voltage within 6 hours. This time provides for returning the inoperable charger to OPERABLE status or providing an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage provides good assurance that, within 24 hours, the battery will be restored to its fully charged condition (Required Action A.2) from any discharge that might have occurred due to the charger inoperability.

Because of the passive system design and the use of fail-safe components, the remaining Class 1E DC electrical power subsystems have the capacity to support a safe shutdown and to mitigate most DBAs following a subsequent worst case single failure. The 6 hour Completion Time is reasonable based on engineering judgement balancing the risks of operation without one DC subsystem against the risks of a forced shutdown. Additionally, the Completion Time reflects a reasonable time to assess plant status; attempt to repair or replace, thus avoiding an unnecessary shutdown; and, if necessary, prepare and effect an orderly and safe shutdown.

A discharged battery having terminal voltage of at least the minimum established float voltage indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within 24 hours, avoiding a premature shutdown with its own attendant risk.

If established battery terminal float voltage cannot be restored to greater than or equal to the minimum established float voltage within 6 hours, and the charger is not operating in the current-limiting mode, a faulty charger is indicated. A faulty charger that is incapable of maintaining established battery terminal float voltage does not provide assurance that it can revert to and operate properly in the current limit mode that is necessary during the recovery period following a battery discharge event that the DC system is designed for.

ACTIONS (continued)

If the charger is operating in the current limit mode after 6 hours that is an indication that the battery is partially discharged and its capacity margins will be reduced. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within 24 hours (Required Action A.2).

Required Action A.2 requires that the battery float current be verified as less than or equal to 2 amps. This indicates that, if the battery had been discharged as the result of the inoperable battery charger, it has now been fully recharged. If at the expiration of the initial 24 hour period the battery float current is not less than or equal to 2 amps this indicates there may be additional battery problems and the battery must be declared inoperable.

Required Action A.3 limits the restoration time for the inoperable battery charger to 7 days. This action is applicable if an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage has been used (e.g., balance of plant non-Class 1E battery charger). The 7 day Completion Time reflects a reasonable time to effect restoration of the qualified battery charger to OPERABLE status.

B.1, B.2, and B.3

Condition B represents two divisions with one or more battery chargers inoperable (e.g., the voltage limit of SR 3.8.1.1 is not maintained). The ACTIONS provide a tiered response that focuses on returning the battery to the fully charged state and restoring a fully qualified charger to OPERABLE status in a reasonable time period. Required Action B.1 requires that the battery terminal voltage be restored to greater than or equal to the minimum established float voltage within 2 hours. This time provides for returning the inoperable charger to OPERABLE status or providing an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage, the battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery terminal voltage to greater than or equal to the minimum established float voltage. Restoring the battery will be restored to its fully charged condition (Required Action B.2) from any discharge that might have occurred due to the charger inoperability.

ACTIONS (continued)

A discharged battery having terminal voltage of at least the minimum established float voltage indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within 24 hours, avoiding a premature shutdown with its own attendant risk.

If the charger is operating in the current limit mode after 2 hours that is an indication that the battery is partially discharged and its capacity margins will be reduced. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within 24 hours (Required Action B.2).

Required Action B.2 requires that the battery float current be verified as less than or equal to 2 amps. This indicates that, if the battery had been discharged as the result of the inoperable battery charger, it has now been fully recharged. If at the expiration of the initial 24 hour period the battery float current is not less than or equal to 2 amps this indicates there may be additional battery problems and the battery must be declared inoperable.

Required Action B.3 limits the restoration time for the inoperable battery charger to 7 days. This action is applicable if an alternate means of restoring battery terminal voltage to greater than or equal to the minimum established float voltage has been used (e.g., balance of plant non-Class 1E battery charger). The 7 day Completion Time reflects a reasonable time to effect restoration of the qualified battery charger to OPERABLE status.

<u>C.1</u>

Condition C represents one division with one or more batteries inoperable. With one or more batteries inoperable, the DC bus is being supplied by the OPERABLE battery chargers. Any event that results in a loss of the AC bus supporting the battery chargers will also result in loss of DC to that train.

ACTIONS (continued)

Because of the passive system design and the use of fail-safe components, the remaining Class 1E DC electrical power subsystems have the capacity to support a safe shutdown and to mitigate most DBAs following a subsequent worst case single failure. The 6 hour Completion Time is reasonable based on engineering judgement balancing the risks of operation without one DC subsystem against the risks of a forced shutdown. Additionally, the Completion Time reflects a reasonable time to assess plant status; attempt to repair or replace, thus avoiding an unnecessary shutdown; and, if necessary, prepare and effect an orderly and safe shutdown.

The installed spare battery bank and charger may be used to restore an inoperable Class 1E DC electrical power subsystem; however, all applicable Surveillances must be met by the spare equipment used, prior to declaring the subsystem OPERABLE.

<u>D.1</u>

Condition D represents two divisions with one or more batteries inoperable. With one or more batteries inoperable, the DC bus is being supplied by the OPERABLE battery charger. Any event that results in a loss of the AC bus supporting the battery charger will also result in loss of DC to that train. The 2 hour limit allows sufficient time to effect restoration of an inoperable battery given that the majority of the conditions that lead to battery inoperability (e.g., loss of battery charger, battery cell voltage less than 2.07 V, etc.) are identified in Specifications 3.8.1, 3.8.2, and 3.8.7 together with additional specific completion times.

The installed spare battery bank and charger may be used to restore an inoperable Class 1E DC electrical power subsystem; however, all applicable Surveillances must be met by the spare equipment used, prior to declaring the subsystem OPERABLE.

<u>E.1</u>

If one of the Class 1E DC electrical power subsystems is inoperable, the remaining Class 1E DC electrical power subsystems have the capacity to support a safe shutdown and to mitigate all design basis accidents, based on conservative analysis.

Because of the passive system design and the use of fail-safe components, the remaining Class 1E DC electrical power subsystems have the capacity to support a safe shutdown and to mitigate most DBAs

ACTIONS (continued)

following a subsequent worst case single failure. The 6 hour Completion Time is reasonable based on engineering judgement balancing the risks of operation without one DC subsystem against the risks of a forced shutdown. Additionally, the Completion Time reflects a reasonable time to assess plant status; attempt to repair or replace, thus avoiding an unnecessary shutdown; and, if necessary, prepare and effect an orderly and safe shutdown.

The 6 hour Completion Time is also consistent with the time specified for restoration of one (of four) Protection and Safety Monitoring System (PMS) (LCO 3.3.2, ESFAS Instrumentation). Depending on the nature of the DC electrical power subsystem inoperability, one supported division of instrumentation could be considered inoperable. Inoperability of a PMS Division is similar to loss of one DC electrical power subsystem. In both cases, actuation of the safety functions associated with one of the four subsystems/divisions may no longer be available.

<u>F.1</u>

Condition F represents two subsystems with a loss of ability to completely respond to an event, and a potential loss of ability to remain energized during normal operation. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for complete loss of DC power to the affected distribution subsystems. The 2 hour limit is consistent with the allowed time for two inoperable DC distribution subsystems.

If two of the required DC electrical power subsystems are inoperable (e.g., inoperable battery, inoperable battery charger(s), or inoperable battery charger and associated inoperable battery), the two remaining DC electrical power subsystems have the capacity to support a safe shutdown and to mitigate all but the very worst case events. Since a subsequent worst case single failure would, however, result in the loss of the third subsystem, leaving only one subsystem with limited capacity to mitigate events, continued power operation should not exceed 2 hours. The 2 hour Completion Time is based on Regulatory Guide 1.93 (Ref. 11) and reflects a reasonable time to assess unit status as a function of the inoperable DC electrical power subsystem and, if the DC electrical power subsystem is not restored to OPERABLE status, to prepare to effect an orderly and safe unit shutdown.

ACTIONS (continued)

G.1 and G.2

If the inoperable DC electrical power subsystem cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.8.1.1</u> REQUIREMENTS

Verifying battery terminal voltage while on float charge for the batteries helps to ensure the effectiveness of the battery chargers which support ability of the batteries to perform their intended function. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery and maintain the battery in a fully charged state while supplying the continuous steady state loads of the associated DC subsystem. On float charge, battery cells will receive adequate current to optimally charge the battery. The voltage requirements are based on the nominal design voltage of the battery and are consistent with the initial voltages assumed in the battery sizing calculations. This voltage maintains the battery plates in a condition that supports maintaining the grid life (expected to be approximately 20 years). The 7 day Frequency is consistent with manufacturer recommendations and IEEE-450 (Ref. 8).

SR 3.8.1.2

This SR verifies the design capacity of the battery chargers. According to Regulatory Guide 1.32 (Ref. 9), the battery charger supply is recommended to be based on the largest combined demands of the various steady state loads and the charging capacity to restore the battery from the design minimum charge state to the fully charged state, irrespective of the status of the unit during these demand occurrences. The minimum required amperes and duration ensure that these requirements can be satisfied.

This SR provides two options. One option requires that each battery charger be capable of supplying 200 amps at the minimum established float voltage for 8 hours. The ampere requirements are based on the output rating of the chargers. The voltage requirements are based on the

SURVEILLANCE REQUIREMENTS (continued)

charger voltage level after a response to a loss of AC power. The time period is sufficient for the charger temperature to have stabilized and to have been maintained for at least 2 hours.

The other option requires that each battery charger be capable of recharging the battery after a service test coincident with supplying the largest coincident demands of the various continuous steady state loads (irrespective of the status of the plant during which these demands occur). This level of loading may not normally be available following the battery service test and will need to be supplemented with additional loads. The duration for this test may be longer than the charger sizing criteria since the battery recharge is affected by float voltage, temperature, an the exponential decay in charging current. The battery is recharged when the measured charging current is ≤ 2 amps.

The Surveillance Frequency is acceptable, given the unit conditions required to perform the test and the other administrative controls existing to ensure adequate charger performance during these 24 month intervals. In addition, this Frequency is intended to be consistent with expected fuel cycle lengths.

<u>SR 3.8.1.3</u>

A battery service test is a special test of battery capability, as found, to satisfy the design requirements (battery duty cycle) of the Class 1E DC electrical power system. The discharge rate and test length corresponds to the design duty cycle requirements as specified in Reference 4.

The Surveillance Frequency of 24 months is consistent with the recommendations of Regulatory Guide 1.32 (Ref. 9) and Regulatory Guide 1.129 (Ref. 10), which state that the battery service test should be performed with intervals between tests not to exceed 24 months. This Surveillance may be performed during any plant condition with the spare battery and charger providing power to the bus.

This SR is modified by two Notes. Note 1 allows the performance of a modified performance discharge test in lieu of a service test.

The modified performance discharge test is a simulated duty cycle consisting of just two rates; the one minute rate published for the battery or the largest current load of the duty cycle, followed by the test rate employed for the performance test, both of which envelope the duty cycle of the service test. Since the ampere-hours removed by a rated one minute discharge represents a very small portion of the battery capacity,

SURVEILLANCE REQUIREMENTS (continued)

the test rate can be changed to that for the performance test without compromising the results of the performance discharge test. The battery terminal voltage for the modified performance discharge test should remain above the minimum battery terminal voltage specified in the battery service test for the duration of time equal to that of the service test.

A modified discharge test is a test of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle). This will often confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. Initial conditions for the modified performance discharge test should be identical to those specified for a service test.

The reason for Note 2 is that performing the Surveillance would perturb the electrical distribution system and challenge safety systems if the spare battery is not connected. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

REFERENCES 1. 10 CFR 50, Appendix A, GDC 17.

 Regulatory Guide 1.6, "Independence Between Redundant Standby (Onsite) Power Sources and Between Their Distribution Systems," U.S. Nuclear Regulatory Commission, March 10, 1971. REFERENCES (continued)

- 3. IEEE-308 1991, "IEEE Standard Criteria for Class 1E Power Systems for Nuclear Power Generating Stations," Institute of Electrical and Electronic Engineers.
- 4. Section 8.3.2, "Class 1E DC Power Systems."
- 5. IEEE-485 1997, "IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stationary Applications," Institute of Electrical and Electronic Engineers, June 1983.
- 6. Chapter 6, "Engineered Safety Features."
- 7. Chapter 15, "Accident Analyses."
- 8. IEEE-450 1995, "IEEE Recommended Practice for Maintenance, Testing, and Replacement of Vented Lead-Acid Batteries for Stationary Applications," Institute of Electrical and Electronic Engineers, June 1986.
- 9. Regulatory Guide 1.32, "Criteria for Safety-Related Electric Power Systems for Nuclear Power Plants," U.S. Nuclear Regulatory Commission, February 1977.
- 10. Regulatory Guide 1.129 Revision 1, "Maintenance Testing and Replacement of Large Lead Storage Batteries for Nuclear Power Plants," U.S. Nuclear Regulatory Commission, February 1978.
- 11. Regulatory Guide 1.93, "Availability of Electric Power Sources," U.S. Nuclear Regulatory Commission, December 1974.

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.2 DC Sources – Shutdown

BASES			
BACKGROUND	A description of the Class 1E DC power sources is provided in the Bases for LCO 3.8.1, "DC Sources – Operating."		
APPLICABLE SAFETY ANALYSES	The initial conditions of Design Basis Accident (DBA) and transient analyses in the Chapter 6 (Ref. 1) and Chapter 15 (Ref. 2), assume engineered safety features are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the emergency auxiliaries and control and switching during all MODES of operation.		
	The OPERABILITY of the DC subsystem is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.		
	The OPERABILITY of the minimum Class 1E DC power sources during MODES 5 and 6 and during movement of irradiated fuel assemblies ensures that:		
	a. The unit can be maintained in the shutdown or refueling condition for extended periods;		
	 Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and 		
	c. Adequate Class 1E DC power sources are provided to mitigate events postulated during shutdown, such as an inadvertent draindown of the vessel or a fuel handling accident.		
	In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES 1, 2, 3, and 4 have no specific analyses in MODES 5 and 6 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal		

APPLICABLE SAFETY ANALYSES (continued)

consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

The shutdown Technical Specification requirements are designed to ensure that the unit has the capability to mitigate the consequences of certain postulated accidents. Worst case Design Basis Accidents which are analyzed for operating MODES are generally viewed not to be a significant concern during shutdown MODES due to the lower energies involved. The Technical specifications therefore require a lesser complement of electrical equipment to be available during shutdown than is required during operating MODES. More recent work completed on the potential risks associated with shutdown, however, have found significant risk associated with certain shutdown evolutions. As a result, in addition to the requirements established in the Technical Specifications, the industry has adopted NUMARC 91-06, "Guidelines for Industry Actions to Assess Shutdown Management," as an Industry initiative to manage shutdown tasks and associated electrical support to maintain risk at an acceptable low level. This may require the availability of additional equipment beyond that required by the shutdown Technical Specifications.

The Class 1E DC Sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

Class 1E DC electrical power subsystems are required to be OPERABLE to support required trains of Class 1E Distribution System divisions required to be OPERABLE by LCO 3.8.6. This ensures the availability of sufficient Class 1E DC power sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents, inadvertent reactor vessel draindown).

As described in the previous section, "Applicable Safety Analyses," in the event of an accident during shutdown, the Technical Specifications are designed to maintain the plant in such a condition that, even with a single failure, the plant will not be in immediate difficulty.

LCO

BASES			
APPLICABILITY	The Class 1E DC power sources required to be OPERABLE in MODES 5 and 6 and during movement of irradiated fuel assemblies provide assurance that:		
	 Required features to provide adequate coolant inventory makeup are available for the irradiated fuel assemblies in the core in case of an inadvertent draindown of the reactor vessel; 		
	 Required features needed to mitigate a fuel-handling accident are available; 		
	 Required features necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and 		
	 Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition. 		
	The Class 1E DC electrical power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.1, "DC Sources – Operating."		
ACTIONS	LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.		
	A.1 and A.2		
	With one or more of the required (per LCO 3.8.6, "Distribution Systems – Shutdown") Class 1E DC power subsystems inoperable, the remaining subsystems may be capable of supporting sufficient systems to allow		

ns – ng subsystems may be capable of supporting sufficient systems to allow continuation of CORE ALTERATIONS, fuel movement, and/or operations with a potential for draining the reactor vessel. By allowing the option to declare required features inoperable with the associated DC power source(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCO ACTIONS. In many instances this option would likely involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, any activities that could potentially result in inadvertent draining of the reactor vessel, and operations involving positive reactivity

ACTIONS (continued)

	additions that could result in failure to meet the minimum SDM or boron concentration limit) to assure continued safe operation. The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory, provided the required SDM is maintained.
	Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required DC electrical power subsystems and to continue this action until restoration is accomplished in order to provide the necessary Class 1E DC electrical power to the unit safety systems.
	The installed spare battery bank and charger may be used to restore an inoperable Class 1E DC power subsystem; however, all applicable surveillances must be met by the spare equipment used, prior to declaring the subsystem OPERABLE.
	The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required Class 1E DC electrical power subsystems should be completed as quickly as possible in order to minimize the time during which the unit safety systems may be without sufficient power.
	<u>SR 3.8.2.1</u>
REQUIREMENTS	SR 3.8.2.1 requires performance of all Surveillances required by SR 3.8.1.1 through SR 3.8.1.3. Therefore, see the corresponding Bases for LCO 3.8.1 for a discussion of each SR.
	This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DC sources from being discharged below their capability to provide the required power supply or otherwise rendered inoperable during the performance of SRs. It is the intent that these SRs must still be capable of being met, but actual performance is not required.
REFERENCES	1. Chapter 6, "Engineered Safety Features."
	2. Chapter 15, "Accident Analysis."

I

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.3 Inverters – Operating

BASES	
BACKGROUND	The inverters are the preferred source of power for the Class 1E AC instrument and control buses because of the stability and reliability they achieve. Divisions A and D, each consist of one Class 1E inverter. Divisions B and C, each consist of two inverters. The function of the inverter is to convert Class 1E DC electrical power to AC electrical power, thus providing an uninterruptible power source for the instrumentation and controls for the Protection and Safety Monitoring System (PMS). The inverters are powered from the Class 1E 250 V battery sources (Ref. 1).
	Under normal operation, a Class 1E inverter supplies power to the Class 1E AC instrument and control bus. If the inverter is inoperable or the Class 1E 250 VDC input to the inverter is unavailable, the Class 1E AC instrument and control bus is powered from the backup source associated with the same division via a static transfer switch featuring a make-before-break contact arrangement. In addition, a manual mechanical bypass switch is used to provide a backup power source to the Class 1E AC instrument and control bus when the inverter is removed from service. The backup source is a Class 1E regulating 480-208/ 120 volt transformer providing a regulated output to the Class 1E AC instrument and control bus through a static transfer switch and a manual bypass switch.
	In addition to powering safety loads, the Class 1E AC power sources are used for emergency lighting in the main control room and remote shutdown workstation. When a normal AC power source for emergency lighting is lost, the loads are automatically transferred to a Class 1E AC power source. Specific details on inverters and their operating characteristics are found in Chapter 8 (Ref. 1).
APPLICABLE SAFETY ANALYSES	The initial conditions of Design Basis Accident (DBA) transient analyses in Chapter 6 (Ref. 2) and Chapter 15 (Ref. 3), assume engineered safety features are OPERABLE. The inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the PMS instrumentation and controls so that the fuel, Reactor Coolant System (RCS), and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Technical Specifications 3.2 (Power Distribution Limits), 3.4 (Reactor Coolant System), and 3.6 (Containment Systems).

LCO

APPLICABLE SAFETY ANALYSES (continued)

The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and is based on meeting the design basis of the unit. This includes maintaining at least three of the four Divisions of AC instrument and control buses OPERABLE during accident conditions in the event of:

- a. An assumed loss of all offsite and onsite AC power source; and
- b. A worst case single failure.

Inverters are a part of distribution systems, and as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

The inverters ensure the availability of AC electrical power for the systems instrumentation required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA.

Maintaining the required inverters OPERABLE ensures that the redundancy incorporated into the design of the PMS instrumentation and controls is maintained. The six inverters ensure an uninterruptible supply of AC electrical power to the six Class 1E AC instrument and control buses even if all AC power sources are de-energized.

OPERABLE inverters require that the Class 1E AC instrument and control bus be powered by the inverter with output voltage and frequency within tolerances, and the power input to the inverter from a 250 VDC station battery.

This LCO is modified by a Note that allows one inverter to be disconnected from its associated Class 1E DC bus for \leq 72 hours, if the associated Class 1E AC instrument and control bus is powered from its Class 1E regulating transformer during the period and all other inverters are OPERABLE. This allows an equalizing charge to be placed on one battery bank. If the inverter was not disconnected, the resulting voltage condition might damage the inverter. These provisions minimize the loss of equipment that would occur in the event of a loss of offsite power. The 72 hour time period for the allowance minimizes the time during which a loss of offsite power could result in the loss of equipment energized from the affected Class 1E AC instrument and control bus while taking into consideration the time required to perform an equalizing charge on the battery bank.

LCO (continued)	
	The intent of this Note is to limit the number of inverters that may be disconnected. Only the inverter associated with the single battery bank undergoing an equalizing charge may be disconnected. All other inverters must be aligned to their associated batteries.
APPLICABILITY	The inverters are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that:
	 Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and
	 Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.
	Inverter requirements for MODES 5 and 6 are covered in the Bases for LCO 3.8.4, "Inverters – Shutdown."
ACTIONS	<u>A.1</u>
	With a required inverter inoperable, its associated Class 1E AC instrument and control bus is automatically energized from its regulating transformer. A manual switch is also provided which can be used if the static transfer switch does not properly function.
	For this reason a Note has been included in Condition A requiring the entry into the Conditions and Required Actions of LCO 3.8.5, "Distribution System – Operating." This ensures that the vital bus is re-energized within 12 hours.
	Required Action A.1 allows 24 hours to fix the inoperable inverter and return it to service. The 24 hour time limit is based upon engineering judgment, taking into consideration the time required to repair an inverter and the additional risk to which the unit is exposed because of the inverter inoperability. This has to be balanced against the risk of an immediate shutdown, along with the potential challenges to safety systems such a shutdown might entail. When the AC instrument and control bus is powered from its regulating transformer, it is relying upon interruptible AC electrical power sources (offsite and onsite). The uninterruptible inverter source to the AC instrument and control buses is the preferred source for powering instrumentation trip setpoint devices.

ACTIONS (continued)

B.1 and B.2

If the inoperable DC electrical power subsystem cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to MODE 5 where the probability and consequences on an event are minimized. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE <u>SR 3.8.3.1</u> REQUIREMENTS

This Surveillance verifies that the inverters are functioning properly with all required switches and circuit breakers closed and Class 1E AC instrument and control buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the PMS instrumentation connected to the Class 1E AC instrument and control buses. The 7 day Frequency takes into account the effectiveness of the voltage and frequency instruments, the redundant capability of the inverters, and other indications available in the control room that alert the operator to inverter malfunctions.

- REFERENCES 1. Section 8.3.2.1.1.2, "Class 1E Uninterruptible Power Supplies."
 - 2. Chapter 6, "Engineered Safety Features."
 - 3. Chapter 15, "Accident Analyses."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.4 Inverters – Shutdown

BASES		
BACKGROUND	A description of the inverters is provided in the Bases for Specification 3.8.3, "Inverters – Operating."	
APPLICABLE SAFETY ANALYSES	The initial conditions of Design Basis Accident (DBA) and transient analyses in Chapter 6 (Ref. 1) and Chapter 15 (Ref. 2), assume engineered safety features are OPERABLE. The DC to AC inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the Protection and Monitoring System Engineered Safety Feature Actuation System instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.	
	The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.	
	The OPERABILITY of the minimum inverters to each Class 1E AC instrument and control bus during MODES 5 and 6, ensures that (Refs. 1 and 2):	
	a. The unit can be maintained in the shutdown or refueling condition for extended periods;	
	 Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and 	
	 Adequate power is available to mitigate events postulated during shutdown, such as an inadvertent draindown of the vessel or a fuel handling accident. 	
	In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES 1, 2, 3, and 4 have no specific analyses in MODES 5 and 6 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal	

APPLICABLE SAFETY ANALYSES (continued)

consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

The shutdown Technical Specification requirements are designed to ensure that the unit has the capability to mitigate the consequences of certain postulated accidents. Worst case Design Basis Accidents which are analyzed for operating MODES are generally viewed not to be a significant concern during shutdown MODES due to the lower energies involved. The Technical specifications therefore require a lesser complement of electrical equipment to be available during shutdown than is required during operating MODES. More recent work completed on the potential risks associated with shutdown, however, have found significant risk associated with certain shutdown evolutions. As a result, in addition to the requirements established in the Technical Specifications, the industry has adopted NUMARC 91-06, "Guidelines for Industry Actions to Assess Shutdown Management," as an Industry initiative to manage shutdown tasks and associated electrical support to maintain risk at an acceptable low level. This may require the availability of additional equipment beyond that required by the shutdown Technical Specifications.

The Class 1E UPS inverters are part of the distribution system and, as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The inverters ensure the availability of electrical power for the instrumentation for systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or postulated DBA. The battery powered inverters provide an uninterruptible supply of AC electrical power to the Class 1E AC instrument and control buses, even if the normal power supply from the 480 VAC is deenergized. OPERABILITY of the inverters requires that the Class 1E instrument and control buses be powered by the inverter with output voltage and frequency within tolerances, and the power input to the inverter from a 250 VDC station battery. This ensures the availability of sufficient inverter power sources to operate the plant in a safe manner and to mitigate the consequences of postulated events during shutdown (fuel handling accidents, inadvertent reactor vessel draindown).

2/1020	
APPLICABILITY	The inverters required to be OPERABLE in MODES 5 and 6 and during movement of irradiated fuel assemblies provide assurance that:
	 Systems to provide adequate coolant inventory makeup are available for the irradiated fuel in the core in case of an inadvertent draindown of the reactor vessel;
	b. Systems needed to mitigate a fuel handling accident are available;
	c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and
	 Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition.
	Class 1E UPS inverter requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.3, "Inverters – Operating."
ACTIONS	LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.
	A.1 and A.2
	If one or more required (per LCO 3.8.6, Distribution Systems – Shutdown) inverters are inoperable, the remaining OPERABLE inverters may be capable of supporting required features to allow continuation of CORE ALTERATIONS, fuel movement, and operations with a potential for

capable of supporting required features to allow continuation of CORE ALTERATIONS, fuel movement, and operations with a potential for draining the reactor vessel. By allowance of the option to declare required features inoperable with associated inverter(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCOs' Required Actions. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, any activities that could potentially result in inadvertent draining of the reactor vessel, and operations involving positive reactivity additions that could result in loss of required SDM (MODE 5) or boron concentration (MODE 6)). Suspending positive reactivity additions that could result in

ACTIONS (continued)

failure to meet the minimum SDM or boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum SDM or refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Introduction of temperature changes including temperature increases when operating with a positive MTC must also be evaluated to ensure they do not result in a loss of required SDM.

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required inverters and to continue this action until restoration is accomplished in order to provide the necessary inverter power to the unit safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required inverters should be completed as quickly as possible in order to minimize the time the unit safety systems may be without power or powered from a regulating transformer.

SURVEILLANCE <u>SR 3.8.4.1</u> REQUIREMENTS

This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and Class 1E AC instrument and control buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the instrumentation connected to the Class 1E AC instrument and control buses. The 7 day Frequency takes into account the effectiveness of the voltage and frequency instruments, the redundant capability of the inverters, and other indications available in the control room that alert the operator to inverter malfunctions.

- REFERENCES 1. Chapter 6, "Engineered Safety Features."
 - 2. Chapter 15, "Accident Analysis."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.5 Distribution Systems – Operating

BASES

BACKGROUND	The onsite Class 1E and DC and UPS electrical power distribution system is divided by division into four independent AC and DC electrical power distribution subsystems (Divisions A, B, C, and D).
	The Class 1E AC distribution Divisions A and D each consists of one 208/120 V bus. The Class 1E AC distribution Divisions B and C each consists of two 208/120 V buses. The buses are normally powered from separate inverters which are connected to the respective Division Class 1E battery banks. The backup source provided for each Division for the Class 1E AC instrument and control buses is a Class 1E regulating transformer providing regulated output to the Class 1E AC instrument and control buses through a static transfer switch and a manual bypass switch. Power to the transformer is provided by the nonsafety related Main AC Power System. Additional description of this system may be found in the Bases for Specification 3.8.3, "Inverters – Operating."
	The Class 1E DC distribution Divisions A and D each consists of one 250 VDC bus. The Class 1E DC distribution Divisions B and C each consists of two 250 VDC buses. The buses for the four Divisions are normally powered from their associated Division battery chargers. The backup source for each Class 1E DC bus is its associated Class 1E battery bank. Additionally, there is one installed spare Class 1E battery bank and one installed spare Class 1E battery charger, which can provide backup power to a Class 1E DC bus in the event that one of the battery banks or one of the chargers is out of service. Additional description of this system may be found in the Bases for Specification 3.8.1, "DC Sources Operating."
	The list of all required distribution buses is presented in Table B 3.8.5-1 and shown in Section 8.3.2 (Ref. 1).
APPLICABLE SAFETY ANALYSES	The initial conditions of Design Basis Accident (DBA) and transient analyses in Chapter 6 (Ref. 2) and Chapter 15 (Ref. 3), assume engineered safety features (ESFs) are OPERABLE. The Class 1E AC and DC electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the ESFs so that the fuel, Reactor Coolant System (RCS) and containment design limits are not exceeded.

APPLICABLE SAFETY ANALYSES (continued)

These limits are discussed in more detail in the Bases for Technical Specifications 3.2 (Power Distribution Limits), 3.4 (Reactor Coolant System), and 3.6 (Containment Systems).

The OPERABILITY of the Class 1E AC and DC electrical power distribution systems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining at least three of the four Divisions of Class 1E AC and DC power distribution systems OPERABLE during accident conditions in the event of:

a. An assumed loss of all offsite and onsite AC power sources; and

b. A worst case single failure.

The Class 1E AC and DC electrical power distribution system satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).

LCO

The required power distribution subsystems listed in Table B 3.8.5-1 ensure the availability of Class 1E AC and DC electrical power for the systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. The Division A, B, C, and D Class 1E AC and DC electrical power distribution subsystems are required to be OPERABLE.

Maintaining the Division A, B, C, and D AC and DC electrical power distribution subsystems OPERABLE ensures that the redundancy incorporated into the design of the ESFs is not defeated. Three of the four Class 1E AC and DC power distribution subsystems are capable of providing the necessary electrical power to the associated ESF components. Therefore, a single failure within any subsystem or within the electrical power distribution subsystems will not prevent safe shutdown of the reactor.

OPERABLE Class 1E DC electric power distribution subsystems require the associated buses, motor control centers, and electrical circuits to be energized to their proper voltage from either the associated battery bank or charger. The spare battery bank and/or chargers may be used by one subsystem for OPERABILITY. OPERABLE Class 1E AC electrical power distribution subsystems require the associated buses to be energized to their proper voltages and frequencies from the associated inverter or regulating transformer.

BASES	
APPLICABILITY	The Class 1E AC and DC electrical power distribution subsystems are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that:
	 Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and
	 Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.
	The Class 1E AC and DC electrical power distribution subsystem requirements for MODES 5 and 6 are covered in the Bases for Specification 3.8.6, "Class 1E Distribution Systems – Shutdown."
ACTIONS	<u>A.1</u>
	With one division of the Class 1E AC instrument and control bus inoperable the remaining Class 1E AC instrument and control buses have the capacity to support a safe shutdown and to mitigate all DBAs, based on conservative analysis.
	Because of the passive system design and the use of fail-safe components, the remaining Class 1E AC instrument and control buses have the capacity to support a safe shutdown and to mitigate most design basis accidents following a subsequent worst case single failure. The

basis accidents following a subsequent worst case single failure. The 6 hour Completion Time is reasonable based on engineering judgement balancing the risks of operation without one AC instrument and control bus against the risks of a forced shutdown. Additionally, the Completion Time reflects a reasonable time to assess plant status; attempt to repair or replace, thus avoiding an unnecessary shutdown; and, if necessary, prepare and effect an orderly and safe shutdown.

This 6 hour limit is shorter than Completion Times allowed for most supported systems which would be without power. Taking exception to LCO 3.0.2 for components without adequate DC Power, which would have Required Action Completion Times shorter than 6 hours, is acceptable because of:

a. The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) while allowing stable operations to continue;

ACTIONS (continued)

- b. The potential for decreased safety by requiring entry into numerous applicable Conditions and Required Actions for components without DC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected division; and
- c. The potential for an event in conjunction with a single failure of a redundant component.

The 6 hour Completion Time takes into account the importance to safety of restoring the Class 1E AC instrument and control bus to OPERABLE status, the passive design of the ESF systems, the redundant capability afforded by the other OPERABLE Class 1E AC instrument and control buses, and the low probability of a DBA occurring during this period which requires more than two OPERABLE AC instrument and control buses.

The 6 hour Completion Time is also consistent with the time specified for restoration of one (of four) Protection and Safety Monitoring System division (LCO 3.3.2, ESFAS Instrumentation). Depending on the nature of the AC instrument and control inoperability, one supported division of instrumentation could be considered inoperable. Inoperability of a PMS division is similar to loss of one division AC instrument and control bus. In both cases, actuation of the safety functions associated with one of the four subsystems/divisions may no longer be available.

The second Completion Time for Required Action A.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DC bus is inoperable and subsequently restored OPERABLE, the LCO may already have been not met for up to 6 hours. This could lead to a total of 12 hours, since initial failure of the LCO, to restore the AC instrument and control distribution system. At this time, a DC circuit could again become inoperable, and AC instrument and control distribution restored OPERABLE. This could continue indefinitely.

The Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition A was entered. The 12 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

ACTIONS (continued)

<u>B.1</u>

With one Division of the Class 1E DC electrical power distribution subsystem inoperable, the remaining Divisions have the capacity to support a safe shutdown and to mitigate all DBAs, based on conservative analysis.

Because of the passive system design and the use of fail-safe components, the remaining Divisions have the capacity to support a safe shutdown and to mitigate most design basis accidents following a subsequent worst case single failure. The 6 hour Completion Time is reasonable based on engineering judgement balancing the risks of operation without one Division against the risks of a forced shutdown. Additionally, the completion time reflects a reasonable time to assess plant status; attempt to repair or replace, thus avoiding an unnecessary shutdown; and, if necessary, prepare and effect an orderly and safe shutdown.

The 6 hour Completion Time is also consistent with the time specified for restoration of one (of four) Protection and Safety Monitoring System division (LCO 3.3.2, ESFAS Instrumentation). Depending on the nature of the DC electrical power distribution subsystem inoperability, one supported division of instrumentation could be considered inoperable. Inoperability of a PMS division is similar to loss of one DC electrical power distribution subsystem. In both cases, actuation of the safety functions associated with one of the four subsystems/divisions may no longer be available.

This 6 hour limit is shorter than Completion Times allowed for most supported systems which would be without power. Taking exception to LCO 3.0.2 for components without adequate DC power, which would have Required Action Completion Times shorter than 6 hours, is acceptable because of:

- a. The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) while allowing stable operations to continue;
- b. The potential for decreased safety by requiring entry into numerous applicable Conditions and Required Actions for components without DC power and not providing sufficient time for the operators to perform the necessary evaluations and actions to restore power to the affected division; and

ACTIONS (continued)

c. The potential for an event in conjunction with a single failure of a redundant component.

The second Completion Time for Required Action B.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an AC instrument and control bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 6 hours. This could lead to a total of 6 hours, since initial failure of the LCO, to restore the DC distribution system. At this time, an AC train could again become inoperable, and DC distribution restored OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition B was entered. The 12 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

<u>C.1</u>

With two divisions of AC instrument and control buses inoperable, the remaining OPERABLE buses are capable of supporting the minimum safety functions necessary to shut down the unit and maintain it in the safe shutdown condition. Overall reliability is reduced, however, since an additional single failure could result in the minimum required ESF functions not being supported. Therefore, the required divisions of AC instrument and control buses must be restored to OPERABLE status within 2 hours by powering the bus from the associated inverter via inverted DC, inverter using internal AC source, or Class 1E constant voltage transformer.

Condition C represents two divisions of AC instrument and control vital buses without power; potentially both the DC source and the associated AC source are nonfunctioning. In this situation, the unit is significantly more vulnerable to a complete loss of all noninterruptable power. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for loss of power to the remaining buses and restoring power to the affected buses.

ACTIONS (continued)

This 2 hour time limit is more conservative than Completion Times allowed for the vast majority of components that are without adequate AC instrument and control power. Taking exception to LCO 3.0.2 for components without adequate vital AC power, which would have the Required Action Completion Times shorter than 2 hours if declared inoperable, is acceptable because of:

- a. The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) and not allowing stable operations to continue);
- b. The potential for decreased safety by requiring entry into numerous Applicable Conditions and Required Actions for components without adequate AC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected train; and
- c. The potential for an event in conjunction with a single failure of a redundant component.

The 2 hour Completion Time takes into account the importance to safety of restoring the AC instrument and control buses to OPERABLE status, the redundant capability afforded by the other OPERABLE buses, and the low probability of a DBA occurring during this period.

The second Completion Time for Required Action C.1 establishes a limit on the maximum allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition C is entered while, for instance, a DC bus is inoperable and subsequently returned to OPERABLE, the LCO may already have been not met for up to 12 hours. This could lead to a total of 14 hours, since initial failure of the LCO, to restore the bus distribution system. At this time, a DC train could again become inoperable, and AC bus distribution restored to OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition B was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

ACTIONS (continued)

<u>D.1</u>

With two divisions of DC electrical power distribution subsystems inoperable, the remaining DC electrical power distribution subsystems are capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining DC electrical power distribution subsystem could result in the minimum required ESF functions not being supported. Therefore, the required DC buses must be restored to OPERABLE status within 2 hours by powering the bus from the associated battery or charger.

Condition D represents two subsystems without adequate DC power; potentially both with the battery significantly degraded and the associated charger nonfunctioning. In this situation, the unit is significantly more vulnerable to a complete loss of all DC power. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for loss of power to the remaining divisions and restoring power to the affected divisions.

This 2 hour limit is more conservative than Completion Times allowed for the vast majority of components that would be without power. Taking exception to LCO 3.0.2 for components without adequate DC power, which would have Required Action Completion Times shorter than 2 hours, is acceptable because of:

- a. The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) while allowing stable operations to continue;
- b. The potential for decreased safety by requiring entry into numerous applicable Conditions and Required Actions for components without DC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected divisions; and
- c. The potential for an event in conjunction with a single failure of a redundant component.

The 2 hour Completion Time for DC buses is consistent with Regulatory Guide 1.93 (Ref. 3).

ACTIONS (continued)

The second Completion Time for Required Action D.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition D is entered while, for instance, an AC instrument and control bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 12 hours. This could lead to a total of 14 hours, since initial failure of the LCO, to restore the DC distribution system. At this time, an AC train could again become inoperable, and DC distribution restored to OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition C was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

E.1 and E.2

If the inoperable distribution subsystem cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to MODE 5 where the probability and consequences on an event are minimized. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

<u>F.1</u>

With two Divisions with inoperable distribution subsystems that result in a loss of safety function, adequate core cooling, containment OPERABILITY and other vital functions for DBA mitigation would be compromised, and immediate plant shutdown in accordance with LCO 3.0.3 is required.

SURVEILLANCE <u>S</u>REQUIREMENTS

<u>SR 3.8.5.1</u>

This Surveillance verifies that the Class 1E AC and DC electrical power distribution subsystems are functioning properly, with the required circuit breakers and switches properly aligned. The verification of proper voltage availability on the buses ensures that the required voltage is

SURVEILLANCE REQUIREMENTS (continued)

readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the redundant capability of the Class 1E AC and DC electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions.

- REFERENCES 1. Section 8.3.2, "DC Power Systems."
 - 2. Chapter 6, "Engineering Safety Features."
 - 3. Chapter 15, "Accident Analyses."

Table B 3.8.5-1 (page 1 of 1) Class 1E AC and DC Electrical Power Distribution System

TYPE	VOLTAGE	DIVISION A*	DIVISION B*	DIVISION C*	DIVISION D*
DC Buses	250 Vdc	IDSA-DS-1	IDSB-DS-1 IDSB-DS-2	IDSC-DS-1 IDSC-DS-2	IDSD-DS-1
DC Distribution Panels	250 Vdc	IDSA-DD-1 IDSA-DK-1	IDSB-DD-1 IDSB-DK-1	IDSC-DD-1 IDSC-DK-1	IDSD-DD-1 IDSD-DK-1
AC Instrumentation and Control Buses	120 Vac	IDSA-EA-1	IDSB-EA-1 IDSB-EA-3	IDSC-EA-1 IDSC-EA-3	IDSD-EA-1

* Each Division of the AC and DC electrical power distribution systems is a subsystem.

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.6 Distribution Systems – Shutdown

BASES		
BACKGROUND	A description of the Class 1E AC instrument and control bus and Class 1E DC electrical power distribution system is provided in the Bases for Specification 3.8.5, "Distribution System – Operating."	
APPLICABLE SAFETY ANALYSES	The initial conditions of Design Basis Accident (DBA) and transient analyses in Chapter 6 (Ref. 1) and Chapter 15 (Ref. 2), assume engineered safety features are OPERABLE. The Class 1E AC and DC electrical power sources and associated power distribution systems are designed to provide sufficient capacity, redundancy, and reliability to ensure the availability of necessary power to the ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.	
	The OPERABILITY of the minimum Class 1E AC and DC electrical power sources and associated power distribution subsystems during MODES 5 and 6, and during movement of irradiated fuel assemblies ensures that:	
	a. The unit can be maintained in the shutdown or refueling condition for extended periods;	
	 Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and 	
	 Adequate power is provided to mitigate events postulated during shutdown, such as an inadvertent draindown of the vessel or a fuel handling accident. 	
	The Class 1E AC and DC electrical power distribution systems satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).	
LCO	Various combinations of subsystems, equipment, and components are required OPERABLE by other LCOs, depending on the specific plant condition. Implicit in those requirements is the required OPERABILITY of necessary support required features. This LCO explicitly requires energization of the portions of the electrical distribution system necessary to support OPERABILITY of required systems, equipment, and components—all specifically addressed in each LCO and implicitly required via the definition of OPERABILITY.	

LCO (continued)	
	Maintaining these portions of the distribution system energized ensures the availability of sufficient power to operate the unit in a safe manner to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents).
APPLICABILITY	The Class 1E AC and DC electrical power distribution subsystems are required to be OPERABLE in MODES 5 and 6 and during movement of irradiated fuel assemblies provide assurance that:
	 Systems to provide adequate coolant inventory makeup are available for the irradiated fuel assemblies in the core in case of an inadvertent draindown of the reactor vessel;
	b. Systems needed to mitigate a fuel handling accident are available;
	c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and
	d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition and refueling condition.
	The Class 1E AC and DC electrical power distribution subsystem requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.5, "Distribution Systems – Operating."
ACTIONS	LCO 3.0.3 is not applicable while in MODE 5 or 6. However, since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3, while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.
	A.1 and A.2
	If one or more required Class 1E DC or Class 1E AC instrument and control bus electrical power distribution subsystems are inoperable, the remaining OPERABLE divisions may be capable of supporting required features to allow continuation of CORE ALTERATIONS, fuel movement, and/or operations with a potential for draining the reactor vessel. By

ACTIONS (continued)

allowing the option to declare required features associated with an inoperable distribution subsystem inoperable, appropriate restrictions will be implemented in accordance with the affected equipment LCO Required Actions. In many instances this would likely involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, any activities that could potentially result in inadvertent draining of the reactor vessel, and operations involving positive reactivity additions that could result in loss of required SDM (MODE 5) or boron concentration (MODE 6)). Suspending positive reactivity additions that could result in failure to meet the minimum SDM or boron concentration limit is required to assure continued safe operation. Introduction of coolant inventory must be from sources that have a boron concentration greater than that what would be required in the RCS for minimum SDM or refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Introduction of temperature changes including temperature increases when operating with a positive MTC must also be evaluated to ensure they do not result in a loss of required SDM.

Suspension of these activities does not preclude completion of actions to establish a safe conservative condition. These actions will minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC and DC electrical power distribution subsystems and to continue this action until restoration is accomplished in order to provide the necessary power to the unit safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required distribution subsystems should be completed as quickly as possible in order to minimize the time the unit safety systems may be without power.

SURVEILLANCE <u>SR 3.8.6.1</u> REQUIREMENTS

This Surveillance verifies that the Class 1E AC and DC electrical power distribution subsystems are functioning properly, with the required circuit breakers and switches properly aligned. The verification of proper voltage availability on the buses ensures that the required power is readily available for motive as well as control functions for critical system

SURVEILLANCE REQUIREMENTS (continued)

loads connected to these buses. The 7 day Frequency takes into account the redundant capability of the electrical power distribution subsystems and other indications available in the control room that alert the operator to subsystem malfunctions.

- REFERENCES 1. Chapter 6, "Engineered Safety Features."
 - 2. Chapter 15, "Accident Analysis."
 - 3. Section 8.3.2, "DC Power Systems."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.7 Battery Parameters

BASES

BACKGROUND	LCO 3.8.7, Battery Parameters, delineates the limits on electrolyte temperature, level, float voltage and specific gravity for the DC power source batteries. A discussion of these batteries and their OPERABILITY requirements is provided in the Bases for LCO 3.8.1, "DC Sources – Operating," and LCO 3.8.2, "DC Sources – Shutdown." In addition to the limitations of this Specification, the licensee controlled program also implements a program specified in Specification 5.5.11 for monitoring various battery parameters that is based on the recommendations of IEEE Standard 450-1995, "IEEE Recommended Practice For Maintenance, Testing, And Replacement Of Vented Lead-Acid Batteries For Stationary Applications" (Ref. 3).
APPLICABLE SAFETY ANALYSES	The initial conditions of Design Basis Accident (DBA) and transient analyses in Chapter 6 (Ref. 1), and Chapter 15 (Ref. 2), assume engineered safety features are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for safety related and vital control instrumentation loads including monitoring and main control room emergency lighting during all MODES of operation. It also provides power for safe shutdown when all the onsite and offsite AC power sources are lost.
	The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining at least three of the four Divisions of DC sources OPERABLE during accident conditions, in the event of:
	a. An assumed loss of all offsite and onsite AC power sources; and
	b. A worst case single failure.
	Battery parameters satisfy the Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	Battery parameters must remain within acceptable limits to ensure availability of the required DC power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. Battery parameter limits are conservatively established, allowing continued DC electrical system function even with

LCO (continued)	
	limits not met. Additional preventative maintenance, testing, and monitoring performed in accordance with the licensee controlled program is conducted as specified in Specification 5.5.11.
APPLICABILITY	The battery parameters are required solely for the support of the associated DC electrical power subsystems. Therefore, battery parameter limits are only required when the DC power source is required to be OPERABLE. Refer to the Applicability discussion in Bases for LCO 3.8.1, and LCO 3.8.2.
ACTIONS	A.1, A.2, and A.3
	With one or more cells in one or more batteries in one Division < 2.07 V, the battery cell is degraded. Within 2 hours verification of the required battery charger, OPERABILITY is made by monitoring the battery terminal voltage (SR 3.8.1.1) and of the overall battery state of charge by monitoring the battery float charge current (SR 3.8.7.1). This assures that there is still sufficient battery capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of one or more cells in one or more batteries < 2.07 V, and continued operation is permitted for a limited period up to 24 hours.
	Since the Required Actions only specify "perform," a failure of SR 3.8.1.1 or SR 3.8.7.1 acceptance criteria does not result in this Required Action not met. However, if one of the SRs is failed the appropriate Condition(s), depending on the cause of the failures, is entered. If SR 3.8.7.1 is failed then there is not assurance that there is still sufficient battery capacity to perform the intended function and the battery must be declared inoperable immediately.
	B.1 and B.2
	One or more batteries in one Division with float > 2 amps indicate that a partial discharge of the battery capacity has occurred. This may be due to a temporary loss of a battery charger or possibly due to one or more battery cells in a low voltage condition reflecting some loss of capacity. Within 2 hours verification of the required battery charger OPERABILITY is made by monitoring the battery terminal voltage. If the terminal voltage is found to be less than the minimum established float voltage there are two possibilities, the battery charger is inoperable or is operating in the current limit mode. Condition A addresses charger inoperability. If the

ACTIONS (continued)

charger is operating in the current limit mode after 2 hours that is an indication that the battery has been substantially discharged and likely cannot perform its required design functions. The time to return the battery to its fully charged condition in this case is a function of the battery charger capacity, the amount of loads on the associated DC system, the amount of the previous discharge, and the recharge characteristic of the battery. The charge time can be extensive, and there is not adequate assurance that it can be recharged within 24 hours (Required Action B.2). The battery must therefore be declared inoperable.

If the float voltage is found to be satisfactory but there are one or more battery cells with float voltage less than 2.07 V, the associated "OR" statement in Condition F is applicable and the battery must be declared inoperable immediately. If float voltage is satisfactory and there are no cells less than 2.07 V there is good assurance that, within 24 hours, the battery will be restored to its fully charged condition (Required Action B.2) from any discharge that might have occurred due to a temporary loss of the battery charger.

A discharged battery with float voltage (the charger setpoint) across its terminals indicates that the battery is on the exponential charging current portion (the second part) of its recharge cycle. The time to return a battery to its fully charged state under this condition is simply a function of the amount of the previous discharge and the recharge characteristic of the battery. Thus there is good assurance of fully recharging the battery within 24 hours, avoiding a premature shutdown with its own attendant risk.

If the condition is due to one or more cells in a low voltage condition but still greater than 2.07 V and float voltage is found to be satisfactory, this is not indication of a substantially discharged battery and 24 hours is a reasonable time prior to declaring the battery inoperable.

Since Required Action B.1 only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in the Required Action not met. However, if SR 3.8.1.1 is failed, the appropriate Condition(s), depending on the cause of the failure, is entered.

C.1, C.2, and C.3

With one or more batteries in one Division with one or more cells electrolyte level above the top of the plates, but below the minimum established design limits, the battery still retains sufficient capacity to

ACTIONS (continued)

perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of electrolyte level not met. Within 31 days the minimum established design limits for electrolyte level must be re-established.

With electrolyte level below the top of the plates there is a potential for dryout and plate degradation. Required Actions C.1 and C.2 address this potential (as well as provisions in Specification 5.5.11, Battery Monitoring and Maintenance Program). They are modified by a note that indicates they are only applicable if electrolyte level is below the top of the plates. Within 8 hours level is required to be restored to above the top of the plates. The Required Action C.2 requirement to verify that there is no leakage by visual inspection and the Specification 5.5.11.b item to initiate action to equalize and test in accordance with manufacturer's recommendation are taken from Annex D of IEEE Standard 450-1995. They are performed following the restoration of the electrolyte level to above the top of the plates. Based on the results of the manufacturer's recommended testing the batteries may have to be declared inoperable and the affected cells replaced.

<u>D.1</u>

With one or more batteries in one Division with pilot cell temperature less than the minimum established design limits, 12 hours is allowed to restore the temperature to within limits. A low electrolyte temperature limits the current and power available. Since the battery is sized with margin, while battery capacity is degraded, sufficient capacity exists to perform the intended function and the affected battery is not required to be considered inoperable solely as a result of the pilot cell temperature not met.

<u>E.1</u>

With one or more batteries in two or more Divisions with battery parameters not within limits there is not sufficient assurance that battery capacity has not been affected to the degree that the batteries can still perform their required function, given that redundant batteries are involved. With redundant batteries involved this potential could result in a total loss of function on multiple systems that rely upon the batteries. The longer Completion Times specified for battery parameters on non-redundant batteries not within limits are therefore not appropriate, and the parameters must be restored to within limits in three Divisions within 2 hours.

ACTIONS (continued)

<u>F.1</u>

With one or more batteries with any battery parameter outside the allowances of the Required Actions for Condition A, B, C, D, or E, sufficient capacity to supply the maximum expected load requirement is not assured and the corresponding battery must be declared inoperable. Additionally, discovering one or more batteries in one Division with one or more battery cells float voltage less than 2.07 V and float current greater than 2 amps indicates that the battery capacity must therefore be declared inoperable immediately.

SURVEILLANCE <u>S</u>REQUIREMENTS

<u>SR 3.8.7.1</u>

Verifying battery float current while on float charge is used to determine the state of charge of the battery. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery and maintain the battery in a charged state. The float current requirements are based on the float current indicative of a charged battery. Use of float current to determine the state of charge of the battery is consistent with IEEE-450 (Ref. 3). The 7 day Frequency is consistent with IEEE-450 (Ref. 3).

This SR is modified by a Note that states the float current requirement is not required to be met when battery terminal voltage is less than the minimum established float voltage of SR 3.8.1.1. When this float voltage is not maintained the Required Actions of LCO 3.8.1 ACTION A are being taken, which provide the necessary and appropriate verifications of the battery condition. Furthermore, the float current limit of 2 amps is established based on the nominal float voltage value and is not directly applicable when this voltage is not maintained.

SR 3.8.7.2 and SR 3.8.7.5

Optimal long term battery performance is obtained by maintaining a float voltage greater than or equal to the minimum established design limits provided by the battery manufacturer, which corresponds to 264.0 V at the battery terminals, or 2.20 Vpc. This provides adequate over-potential, which limits the formation of lead sulfate and self discharge, which could eventually render the battery inoperable. Float voltages in this range or less, but greater than 2.07 Vpc, are addressed in Specification 5.5.11. SRs 3.8.7.2 and 3.8.7.5 require verification that the cell float voltages are

SURVEILLANCE REQUIREMENTS (continued)

equal to or greater than the short term absolute minimum voltage of 2.07 V. The Frequency for cell voltage verification every 31 days for pilot cell and 92 days for each connected cell is consistent with IEEE-450 (Ref. 3).

SR 3.8.7.3

The limit specified for electrolyte level ensures that the plates suffer no physical damage and maintains adequate electron transfer capability. The Frequency is consistent with IEEE-450 (Ref. 3).

<u>SR 3.8.7.4</u>

This Surveillance verifies that the pilot cell temperature is greater than or equal to the minimum established design limit (i.e., 60°F). Pilot cell electrolyte temperature is maintained above this temperature to assure the battery can provided the required current and voltage to meet the design requirements. Temperatures lower than assumed in battery sizing calculations act to inhibit or reduce battery capacity. The Frequency is consistent with IEEE-450 (Ref. 3).

<u>SR 3.8.7.6</u>

A battery performance discharge test is a test of constant current capacity of a battery, normally done in the as found condition, after having been in service, to detect any change in the capacity determined by the acceptance test. The test is intended to determine overall battery degradation due to age and usage.

Either the battery performance discharge test or the modified performance discharge test is acceptable for satisfying SR 3.8.7.6; however, only the modified performance discharge test may be used to satisfy the battery service test requirements of SR 3.8.1.3.

A modified discharge test is a test of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle). This will often confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. Initial conditions for the modified performance discharge test should be identical to those specified for a service test.

It may consist of just two rates; for instance the one minute rate for the battery or the largest current load of the duty cycle, followed by the test rate employed for the performance test, both of which envelope the duty cycle of the service test. Since the ampere-hours removed by a

SURVEILLANCE REQUIREMENTS (continued)

one minute discharge represents a very small portion of the battery capacity, the test rate can be changed to that for the performance test without compromising the results of the performance discharge test. The battery terminal voltage for the modified performance discharge test must remain above the minimum battery terminal voltage specified in the battery service test for the duration of time equal to that of the service test.

The acceptance criteria for this Surveillance are consistent with IEEE-450 (Ref. 3) and IEEE-485 (Ref. 4). These references recommend that the battery be replaced if its capacity is below 80% of the manufacturer's rating. A capacity of 80% shows that the battery rate of deterioration is increasing, even if there is ample capacity to meet the load requirements. Furthermore, the battery is sized to meet the assumed duty cycle loads when the battery design capacity reaches this 80% limit.

The Surveillance Frequency for this test is normally 60 months. If the battery shows degradation, or if the battery has reached 85% of its expected life and capacity is < 100% of the manufacturer's rating, the Surveillance Frequency is reduced to 12 months. However, if the battery shows no degradation but has reached 85% of its expected life, the Surveillance Frequency is only reduced to 24 months for batteries that retain capacity \ge 100% of the manufacturer's ratings. Degradation is indicated, according to IEEE-450 (Ref. 3), when the battery capacity drops by more than 10% relative to its capacity on the previous performance test or when it is \ge 10% below the manufacturer's rating. These Frequencies are consistent with the recommendations in IEEE-450 (Ref. 3).

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would perturb the electrical distribution system and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g., post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown

SURVEILLANCE REQUIREMENTS (continued)

and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

- REFERENCES 1. Chapter 6, "Engineered Safety Features."
 - 2. Chapter 15, "Accident Analyses."
 - 3. IEEE-450 1995, "IEEE Recommended Practice for Maintenance, Testing, and Replacement of Vented Lead-Acid Batteries for Stationary Applications."
 - 4. IEEE-485-1983, June 1983.

B 3.9 REFUELING OPERATIONS

B 3.9.1 Boron Concentration

BASES	
BACKGROUND	The limit on the boron concentration of the Reactor Coolant System (RCS), the refueling cavity, and the transfer tube during refueling ensures that the reactor remains subcritical during MODE 6. Refueling boron concentration is the soluble boron concentration in the coolant in each of these volumes having direct access to the reactor core during refueling.
	The soluble boron concentration offsets the core reactivity and is measured by chemical analysis of a representative sample of the coolant in each of the volumes. The refueling boron concentration limit is specified in the COLR. Plant procedures ensure the specified boron concentration in order to maintain an overall core reactivity of $k_{eff} \le 0.95$ during fuel handling with control rods and fuel assemblies assumed to be in the most adverse configuration (least negative reactivity) allowed by procedures.
	The reactor is brought to shutdown conditions before beginning operations to open the reactor vessel for refueling. After the RCS is cooled down and depressurized, the vessel head is unbolted and slowly removed. The refueling cavity and the fuel transfer canal are then flooded with borated water from the In-containment Refueling Water Storage Tank (IRWST) by the use of the Spent Fuel Pool Cooling System (SFS).
	During refueling, the water volumes in the RCS, the fuel transfer canal and the refueling cavity are contiguous. However, the soluble boron concentration is not necessarily the same in each volume. If additions of boron are required during refueling, the Chemical and Volume Control System (CVS) provides the borated makeup.
	The pumping action of the Normal Residual Heat Removal System (RNS) in the RCS, the SFS pumps in the spent fuel pool and refueling cavity, and the natural circulation due to thermal driving heads in the reactor vessel and refueling cavity mix the added concentrated boric acid with the water in the fuel transfer canal. The RNS is in operation during refueling to provide forced circulation in the RCS, while the SFS is in operation to cool and purify the spent fuel pool and refueling cavity. Their operation assists in maintaining the boron concentration in the RCS, the refueling cavity, and fuel transfer canal above the COLR limit.

BASES	
APPLICABLE SAFETY ANALYSES	The boron concentration limit, specified in the COLR, is based on the core reactivity at the beginning of each fuel cycle (the end of refueling) and includes an uncertainty allowance.
	The required boron concentration and the plant refueling procedures that verify the correct fuel loading plan (including full core mapping) ensure that the k_{eff} of the core will remain ≤ 0.95 during the refueling operation. Hence, at least a 5% $\Delta k/k$ margin of safety is established during refueling.
	The RCS boron concentration satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	The LCO requires that a minimum boron concentration be maintained in the RCS, the refueling cavity and the transfer tube while in MODE 6. The boron concentration limit specified in the COLR ensures that a core $k_{eff} \leq 0.95$ is maintained during fuel handling operations. Violation of the LCO could lead to an inadvertent criticality during MODE 6.
APPLICABILITY	This LCO is applicable in MODE 6 to ensure that the fuel in the reactor vessel will remain subcritical. The required boron concentration ensures a k_{eff} of ≤ 0.95 . Above MODE 6, LCO 3.1.1, "SHUTDOWN MARGIN (SDM)" ensures that an adequate amount of negative reactivity is available to shut down the reactor and maintain it subcritical.
ACTIONS	A.1 and A.2
	Continuation of CORE ALTERATIONS or positive reactivity additions (including actions to reduce boron concentration) is contingent upon maintaining the plant in compliance with the LCO. If the boron concentration of any coolant volume in the RCS, the refueling cavity, or the fuel transfer canal is less than its limit, all operations involving CORE ALTERATIONS or positive reactivity additions must be suspended immediately.
	Suspension of CORE ALTERATIONS and positive reactivity additions shall not preclude completion of actions to establish a safe condition, including moving a component to a safe position.
	<u>A.3</u>
	In addition to immediately suspending CORE ALTERATIONS or positive reactivity additions, boration to restore the concentration must be initiated immediately.

ACTIONS (continued)

In determining the required combination of boration flow rate and concentration, no unique design basis accident (DBA) must be satisfied. The only requirement is to restore the boron concentration to its required value as soon as possible. In order to raise the boron concentration as soon as possible, the operator shall begin boration with the best source available for plant operations.

Once boration is initiated, it must be continued until the boron concentration is restored. The restoration time depends on the amount of boron that must be injected to reach the required concentration.

SURVEILLANCE <u>SR 3.9.1.1</u> REQUIREMENTS

This SR verifies that the coolant boron concentration in the RCS, the refueling cavity and the fuel transfer canal is within the COLR limit. The boron concentration of the coolant in each volume is determined periodically by chemical analysis.

A minimum Frequency of once every 72 hours is a sufficient interval to verify the boron concentration. The surveillance interval is based on operating experience, isolation of unborated water sources in accordance with LCO 3.9.2, and the availability of the source range neutron flux monitors required by LCO 3.9.3.

REFERENCES 1. Chapter 15, "Accident Analysis."

 NS-57.2, ANSI/ANS-57.2-1983, Section 6.4.2.2.3, American Nuclear Society, American National Standard, "Design Requirements for Light Water Reactor Spent Fuel Storage Facilities at Nuclear Power Plants," 1983.

B 3.9 REFUELING OPERATIONS

B 3.9.2 Unborated Water Source Flow Paths

BASES	
BACKGROUND	During MODE 6 operation, all flow paths for reactor makeup water sources containing unborated water which are connected to the Reactor Coolant System (RCS) must be closed to prevent an unplanned dilution of the reactor coolant. At least one isolation valve in each flow path must be secured in the closed position.
	The Chemical and Volume Control System is capable of supplying borated and unborated water to the RCS through various flow paths. Since a positive reactivity addition, made by reducing the boron concentration, is inappropriate during MODE 6, isolation of all unborated water sources prevents an unplanned boron dilution event.
APPLICABLE SAFETY ANALYSES	The possibility of an unplanned boron dilution event (Ref. 1) in MODE 6 is precluded by adherence to this LCO which requires that potential dilution sources be isolated. Closing the required valves during refueling operations prevents the flow of unborated water to the filled portions of the RCS. The valves are used to isolate unborated water sources. These valves have the potential to indirectly allow dilution of the RCS boron concentration in MODE 6. By isolating unborated water sources, a safety analysis for an uncontrolled boron dilution accident in accordance with the Standard Review Plan (Ref. 2) is not required in MODE 6.
	The RCS boron concentration satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	This LCO requires that flow paths to the RCS from unborated water sources be isolated to prevent unplanned boron dilution during MODE 6 and, thus, avoid a reduction in SHUTDOWN MARGIN.
APPLICABILITY	In MODE 6, this LCO is applicable to prevent an unplanned boron dilution event by ensuring isolation of all sources of unborated water to the RCS.
	In MODES 1 through 5, the requirements of LCO 3.1.9, "Chemical and Volume Control System (CVS) Demineralized Water Isolation Valves and Makeup Line Isolation Valves," apply.

ACTIONS

The ACTIONS Table has been modified by a Note which allows separate Condition entry for each unborated water source flow path.

A.1

Continuation of CORE ALTERATIONS is contingent upon maintaining the plant in compliance with this LCO. With any valve used to isolate unborated water sources not secured in the closed position, all operations involving CORE ALTERATIONS must be suspended immediately. The Completion Time of "Immediately" shall not preclude completion of actions to establish a safe condition, including movement of a component to a safe location.

Condition A has been modified by a Note to require that Required Action A.3 must be completed whenever Condition A is entered.

A.2

Preventing unplanned dilution of the reactor coolant boron concentration is dependent on maintaining the unborated water isolation valves secured closed. Securing the valves in the closed position verifies that the valves cannot be inadvertently opened. The Completion Time of "Immediately" requires an operator to initiate actions to close an open valve and secure the isolation valve in the closed position immediately. Once actions are initiated, they must be continued until the valves are secured in the closed position.

A.3

Due to the potential of having diluted the boron concentration of the reactor coolant, SR 3.9.1.1 (verification of boron concentration) must be performed whenever Condition A is entered to verify that the required boron concentration exists. The Completion Time of 4 hours is sufficient to obtain and analyze a reactor coolant sample for boron concentration.

SURVEILLANCE SR 3.9.2.1 REQUIREMENTS

These valves are to be secured closed to isolate possible dilution flow paths. The likelihood of a significant reduction in the boron concentration during MODE 6 operations is remote due to the large mass of borated water in the refueling cavity and the fact that all unborated water source flow paths are isolated, precluding a dilution. The boron concentration is checked every 72 hours during MODE 6 under SR 3.9.1.1. This surveillance demonstrates that the valves are closed through a system

SURVEILLANCE REQUIREMENTS (continued)

walkdown. The 31 day Frequency is based on engineering judgement and is considered reasonable in view of other administrative controls that will verify that the valve opening is an unlikely possibility.

- REFERENCES 1. Chapter 15, "Accident Analyses."
 - 2. NUREG-0800, Standard Review Plan, Section 15.4.6, "Chemical and Volume Control System Malfunction that Results in a Decrease in Boron Concentration in the RCS."

B 3.9 REFUELING OPERATIONS

B 3.9.3 Nuclear Instrumentation

BASES	
BACKGROUND	The source range neutron flux monitors are used to monitor the core reactivity during refueling operations. The source range neutron flux monitors are part of the Protection and Safety Monitoring System (PMS). These detectors are located external to the reactor vessel and detect neutrons leaking from the core.
	The source range neutron flux monitors are BF3 detectors operating in the proportional region of the gas filled detector characteristic curve. The detectors monitor the neutron flux in counts per second. The instrument range covers six decades of neutron flux $(1x10^{+6} \text{ cps})$ with a 5% instrument accuracy. The detectors also provide continuous visual and audible indication in the main control room and an audible alarm in the main control room and containment building.
APPLICABLE SAFETY ANALYSES	Two OPERABLE source range neutron flux monitors are required to provide a signal to alert the operator to unexpected changes in core reactivity such as those associated with an improperly loaded fuel assembly. During initial fuel loading, or when otherwise required, temporary neutron detectors may be used to provide additional reactivity monitoring (Ref. 2). The potential for an uncontrolled boron dilution accident is eliminated by isolating all unborated water sources as required by LCO 3.9.2 (Ref. 1).
	The source range neutron flux monitors satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii).
LCO	This LCO requires two source range neutron flux monitors to be OPERABLE to ensure that redundant monitoring capability is available to detect changes in core reactivity.
APPLICABILITY	In MODE 6, the source range neutron flux monitors are required to be OPERABLE to determine possible changes in core reactivity. There are no other direct means available to monitor the core reactivity conditions. In MODES 2, 3, 4, and 5, the source range detectors and associated circuitry are also required to be OPERABLE by LCO 3.3.1, "Reactor Trip System Instrumentation."

ACTIONS <u>A.1 and A.2</u>

Redundancy has been lost if only one source range neutron flux monitor is OPERABLE. Since these instruments are the only direct means of monitoring core reactivity conditions, CORE ALTERATIONS and positive reactivity additions must be suspended immediately. Performance of Required Action A.1 shall not preclude completion of actions to establish a safe condition.

<u>B.1</u>

If no source range neutron flux monitors are OPERABLE, actions to restore a monitor to OPERABLE status shall be initiated immediately. Once initiated, actions shall be continued until a source range neutron flux monitor is restored to OPERABLE status.

<u>B.2</u>

If no source range neutron flux monitors are OPERABLE, there is no direct means of detecting changes in core reactivity. However, since CORE ALTERATIONS and positive reactivity additions are discontinued, the core reactivity condition is stabilized and no changes are permitted until the source range neutron flux monitors are restored to OPERABLE status. This stable condition is confirmed by performing SR 3.9.1.1 to verify that the required boron concentration exists.

The Completion Time of 4 hours is sufficient to obtain and analyze a reactor coolant sample for boron concentration. The Frequency of once per 12 hours ensures that unplanned changes in boron concentration would be identified. The 12 hour Frequency is reasonable considering the low probability of a change in core reactivity during this time period.

SURVEILLANCE SURVEILLANCE

<u>SR 3.9.3.1</u>

SR 3.9.3.1 is the performance of a CHANNEL CHECK, which is the comparison of the indicated parameter values monitored by each of these instruments. It is based on the assumption that the two indication channels should be consistent for the existing core conditions. Changes in core geometry due to fuel loading can result in significant differences between the source range channels, however each channel should be consistent with its local conditions.

The Frequency of 12 hours is consistent with the CHANNEL CHECK Frequency specified for these same instruments in LCO 3.3.1, "Reactor Trip System Instrumentation."

SURVEILLANCE REQUIREMENTS (continued)

SR 3.9.3.2

SR 3.9.3.2 is the performance of a CHANNEL CALIBRATION every 24 months. This SR is modified by a Note stating that neutron detectors are excluded from the CHANNEL CALIBRATION. The CHANNEL CALIBRATION for the source range neutron flux monitors consisting of obtaining the detector plateau or preamp discriminator curves, evaluating those curves, and comparing the curves to the manufacturer's data. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage. Operating experience has shown these components usually pass the Surveillance when performed during the refueling outage.

- REFERENCES 1. Chapter 15, "Accident Analysis."
 - 2. Section 14.2.6.1, "Initial Fuel Loading."

B 3.9 REFUELING OPERATIONS

B 3.9.4 Refueling Cavity Water Level

BASES

BACKGROUND	The movement of irradiated fuel assemblies within containment requires a minimum water level of 23 ft above the top of the reactor vessel flange. During refueling, this maintains sufficient water level in containment, refueling cavity, refueling canal, fuel transfer canal, and spent fuel pool to retain iodine fission product activity in the event of a fuel handling accident (Refs. 1 and 2). Sufficient iodine activity would be retained to limit offsite doses from the accident to within the values reported in Chapter 15.
APPLICABLE SAFETY ANALYSES	During movement of irradiated fuel assemblies, the water level in the refueling cavity and the refueling canal is an initial condition design parameter in the analysis of a fuel-handling accident in containment, as postulated by Regulatory Guide 1.183 (Ref. 1).
	The fuel handling accident analysis inside containment is described in Reference 2. This analysis assumes a minimum water level of 23 feet.
	Refueling Cavity Water Level satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	A minimum refueling cavity water level of 23 ft above the reactor vessel flange is required to ensure that the radiological consequences of a postulated fuel handling accident inside containment are within the values calculated in Reference 2.
APPLICABILITY	Refueling Cavity Water Level is applicable when moving irradiated fuel assemblies in containment. The LCO minimizes the possibility of radioactive release due to a fuel handling accident in containment that is beyond the assumptions of the safety analysis. If irradiated fuel assemblies are not being moved in containment, there can be no significant radioactivity release as a result of a postulated fuel handling accident. Requirements for fuel handling accidents in the spent fuel pool are covered by LCO 3.7.5, "Spent Fuel Pool Water Level."

BASES	
ACTIONS	LCO 3.0.8 is applicable while in MODE 5 or 6. Since irradiated fuel assembly movement can occur in MODE 5 or 6, the ACTIONS have been modified by a Note stating that LCO 3.0.8 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, the fuel movement is independent of shutdown reactor operations. Entering LCO 3.0.8 while in MODE 5 or 6 would require the optimization of plant safety, unnecessarily.
	<u>A.1</u>
	With a water level of < 23 ft above the top of the reactor vessel flange, all operations involving movement of irradiated fuel assemblies within containment shall be suspended immediately to ensure that a fuel handling accident cannot occur.
	The suspension of fuel movement shall not preclude completion of movement to safe position.
SURVEILLANCE REQUIREMENTS	<u>SR 3.9.4 1</u>
	Verification of a minimum water level of 23 ft above the top of the reactor vessel flange ensures that the design basis for the analysis of the postulated fuel handling accident during refueling operations is met. Water at the required level above the top of the reactor vessel flange limits the consequences of damaged fuel rods that are postulated to result from a fuel handling accident inside containment (Ref. 2).
	The Frequency of 24 hours is based on engineering judgement and is considered adequate in view of the large volume of water and the normal procedural controls of valve positions which make significant unplanned level changes unlikely.
REFERENCES	 Regulatory Guide 1.183, "Alternate Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors."
	2. Section 15.7.4, "Fuel Handling Accident."

B 3.9 REFUELING OPERATIONS

B 3.9.5 Containment Penetrations

BASES

BACKGROUND During movement of irradiated fuel assemblies within containment, potential releases of fission product radioactivity within containment are monitored and filtered or are restricted from escaping to the environment when the LCO requirements are met. Monitoring of potential releases of radiation is performed in accordance with Administrative Controls Section 5.5.2, "Radioactive Effluent Control Program." In MODES 1, 2, 3, and 4, containment OPERABILITY is addressed in LCO 3.6.1, "Containment." In MODES 5 and 6, closure capability of containment penetrations is addressed in LCO 3.6.8, "Containment Penetrations." Since there is no potential for containment pressurization due to a fuel handling accident, the Appendix J leakage criteria and tests are not required in MODES 5 and 6.

> The containment serves to contain fission product radioactivity that may be released from the reactor core following an accident, such that offsite radiation exposures are maintained within the requirements of 10 CFR 50.34. For a fuel handling accident, the AP1000 dose analysis does not rely on containment closure to meet the offsite radiation exposure limits. This LCO is provided as an additional level of defense against the possibility of a fission product release from a fuel handling accident.

> The containment equipment hatches, which are part of the containment pressure boundary, provide a means for moving large equipment and components into and out of containment. During movement of irradiated fuel assemblies within containment, an equipment hatch is considered closed if the hatch cover is held in place by at least four bolts. Good engineering practice dictates that the bolts required by this LCO be approximately equally spaced.

> If the equipment hatch is open, an alternative barrier between the containment atmosphere and the outside atmosphere shall be in place. Each containment equipment hatch opens into a staging area in the auxiliary building. These staging areas contain doors that open to the radiologically controlled areas of the annex building. The annex building contains a door that opens to the outside atmosphere. The alternate barrier may consist of the staging area in the auxiliary building, or may consist of the staging areas in the auxiliary building and the radiologically controlled areas in the auxiliary building and the radiologically controlled areas in the annex building provided the doors from the annex building to the outside atmosphere are closed. The alternate barrier may

BACKGROUND (continued)

also consist of a temporary equipment hatch cover that provides equivalent isolation capability. The alternate boundary prevents the airborne fission products from being readily released to the atmosphere if the equipment hatches were open during a fuel handling accident.

If an equipment hatch is open during movement of irradiated fuel assemblies within containment, the containment air filtration system (VFS) shall be OPERABLE, and at least one exhaust fan shall be operating to provide for monitoring of air-borne radioactivity. This system services the containment, and upon detection of high radiation, also services the fuel handling area, the auxiliary building (including the staging areas), and the annex building. If high airborne radioactivity is detected in the area enclosed by the alternate barrier, the radiologically controlled area ventilation system (VAS) supply and exhaust duct isolation dampers automatically close to isolate the affected area from the outside environment, and the VAS exhaust is automatically aligned to the VFS exhaust subsystem. The operation of the VFS exhaust fans provides the system with the ability for monitoring of radioactivity releases from containment following a fuel handling accident and, if operating, will provide filtration of the containment atmosphere.

If a personnel air lock or spare containment penetration is open during movement of irradiated fuel assemblies within containment, then the containment air filtration system (VFS) shall be OPERABLE and operating to monitor for the release of radioactivity and to provide filtration of the air inside containment. These penetrations open into the auxiliary building. Upon detection of high radiation in the exhaust air from the auxiliary building, VFS will provide filtered exhaust of these areas. Considering that these penetrations open into the auxiliary building and not directly to the atmosphere, and that the VFS is in operation, an alternate barrier to the release of radioactivity directly to the environment is provided.

APPLICABLE SAFETY ANALYSES

For the AP1000, there are no safety analyses that require containment closure during movement of irradiated fuel assemblies within containment, other than those discussed in LCO 3.6.8. Fuel handling accidents, analyzed in Reference 1, include dropping a single irradiated fuel assembly and handling tool or a heavy object onto other irradiated fuel assemblies. The requirements of LCO 3.9.4, "Refueling Cavity Water Level," ensure that the release of fission product radioactivity, subsequent to a fuel handling accident, results in doses that are well within the

APPLICABLE SAFETY ANALYSES (continued)

guideline values specified in 10 CFR 50.34. Standard Review Plan, Section 15.0.1 (Reference 2), defines the dose acceptance limit to be 25% of the limiting dose guideline values.

This specification is included as defense-in-depth.

LCO This LCO provides defense-in-depth against the consequences of a fuel handling accident in containment by limiting the potential escape paths for fission product radioactivity released within containment. This LCO requires that if an equipment hatch, personnel air lock, or spare containment penetration is open during movement of irradiated fuel assemblies within containment, then the containment air filtration system (VFS) shall be OPERABLE and operating to monitor for the release of radioactivity and to provide filtration of the air inside containment.

The VFS is OPERABLE when:

- a. One VFS exhaust fan is operating; the associated HEPA filter and charcoal adsorber are not excessively restricting flow, and are capable of performing their filtration function; and air circulation can be maintained;
- b. An alternative barrier between the containment atmosphere and the outside atmosphere is in place. The alternate barrier may consist of the staging area in the auxiliary building, or may consist of the staging areas in the auxiliary building and the radiologically controlled areas in the annex building provided the doors from the annex building to the outside atmosphere are closed.

Doors in the alternate barrier which are normally closed may be opened for short periods of time for ingress and egress. The alternate barrier may also consist of a temporary equipment hatch cover that provides equivalent isolation capability.

APPLICABILITY The containment penetration requirements are applicable during movement of irradiated fuel assemblies within containment because this is when there is a potential for a fuel handling accident. In MODES 1, 2, 3, and 4, containment penetration requirements are addressed by LCO 3.6.1. In MODES 5 and 6, when movement of irradiated fuel assemblies within containment are not being conducted, the potential for a fuel handling accident does not exist. Containment closure capability in MODES 5 and 6 are addressed by LCO 3.6.8.

ACTIONS LCO 3.0.8 is applicable while in MODE 5 or 6. Since irradiated fuel assembly movement can occur in MODE 5 or 6, the ACTIONS have been modified by a Note stating that LCO 3.0.8 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, the fuel movement is independent of shutdown reactor operations. Entering LCO 3.0.8 while in MODE 5 or 6 would require the optimization of plant safety, unnecessarily.

<u>A.1</u>

The required status for the containment equipment hatch, air locks or spare penetration is either closed, or open with the VFS OPERABLE and operating. The required status for the containment penetrations that provide direct access from the containment atmosphere to the outside atmosphere is either closed by a manual or automatic isolation valve, blind flange or equivalent, or capable of being closed by an OPERABLE Containment Isolation Signal. If the containment equipment hatch or air locks, or any containment penetration that provides direct access from the containment atmosphere is not in the required status, the unit must be placed in a condition where the isolation function is not needed. This is accomplished by immediately suspending movement of irradiated fuel assemblies within containment. Performance of these actions shall not preclude completion of movement of a component to a safe position.

SURVEILLANCE <u>SR 3.9.5 1</u> REQUIREMENTS

This Surveillance verifies that each of the containment penetrations required to be in its closed position is in that position or the VFS is OPERABLE and operating. For the VFS to be considered OPERABLE, this surveillance also requires that an alternate barrier is in place.

SR 3.9.5.2

This Surveillance demonstrates that each containment purge and exhaust valve actuates to its isolation position on manual initiation. The Surveillance on the open purge and exhaust valves will demonstrate that the valves are not blocked from closing. The Frequency is in accordance with the Inservice Testing Program.

The SR is modified by a Note stating that this Surveillance is not required to be met for valves in isolated penetrations. The LCO provides the option to close penetrations in lieu of requiring automatic actuation capability.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.9.5.3

This SR verifies the ability of the VFS to maintain a negative pressure (\leq -0.125 inches water gauge relative to outside atmospheric pressure) in the containment and the portions of the auxiliary and/or annex building that comprise the envelope defined as the alternate barrier. This surveillance is performed with the VFS in containment operating. Doors in the alternate barrier which are normally closed may be opened for ingress and egress. The portion of the VAS which services the area enclosed by the alternate barrier is aligned to the VFS exhaust subsystem, and the VAS auxiliary/annex building supply fans and VFS containment purge supply fans not operating. The Frequency of 24 months is consistent with the guidance provided in NUREG-0800, Section 6.5.1 (Ref. 3).

SR 3.9.5.4

The VFS should be checked periodically to ensure that it functions properly. As the operating conditions on this system are not severe, testing each train within 31 days prior to fuel movement provides an adequate check on this system. Operation of the heater dries out any moisture accumulated in the charcoal from humidity in the ambient air.

- REFERENCES 1. Section 15.7.4, "Fuel Handling Accident."
 - 2. NUREG-0800, Section 15.0.1, Rev. 0.
 - 3. NUREG-0800, Section 6.5.1, Rev. 2, July 1981.

B 3.9 REFUELING OPERATIONS

B 3.9.6 Containment Air Filtration System (VFS)

BASES

BACKGROUND The radiologically controlled area ventilation system (VAS) serves the fuel handling area of the auxiliary building, and the radiologically controlled portions of the auxiliary and annex buildings, except for the health physics and hot machine shop areas which are provided with a separate ventilation system (VHS). If high airborne radioactivity is detected in the exhaust air from the fuel handling area, the auxiliary building, or the annex buildings, the VAS supply and exhaust duct isolation dampers automatically close to isolate the affected area from the outside environment and the containment air filtration exhaust subsystem starts. The VFS exhaust subsystem prevents exfiltration of unfiltered airborne radioactivity by maintaining the isolated zone at \leq -0.125 inches water gauge pressure relative to the outside atmosphere. Monitoring of potential releases of radiation is performed in accordance with Administrative Controls Section 5.5.2, "Radioactive Effluent Control Program."

For a fuel handling accident, the AP1000 dose analysis does not rely on the OPERABILITY of the VAS or VFS exhaust subsystem to meet the offsite radiation exposure limits. This LCO is provided as an additional level of defense-in-depth against the possibility of a fission product release from a fuel handling accident in the fuel building. The plant vent radiation detectors monitor effluents discharged from the plant vent to the environment.

Each VFS exhaust subsystem includes one 100 percent capacity exhaust air filtration unit, and the associated exhaust fan, heater and ductwork.

The filtration units are connected to a ducted system with isolation dampers to provide HEPA filtration and charcoal adsorption of exhaust air from the containment, fuel handling area, radiologically controlled areas of the auxiliary and annex buildings. A gaseous radiation monitor is located downstream of the exhaust air filtration units to provide an alarm if abnormal gaseous releases are detected. The plant vent exhaust flow is monitored for gaseous, particulate and iodine releases to the environment. During conditions of abnormal airborne radioactivity in the fuel handling area, auxiliary and/or annex buildings, the VFS exhaust subsystem provides filtered exhaust to minimize unfiltered offsite releases.

BACKGROUND (continued)		
	The VAS is described in Reference 1 and the VFS is described in Reference 2.	
APPLICABLE SAFETY ANALYSES	The VFS is not required to mitigate the consequences of the limiting Design Basis Accident (DBA), which is a fuel handling accident. The analysis of the fuel handling accident, given in Reference 3, assumes that all fuel rods in an assembly are damaged. The DBA analysis of the fuel handling accident does not assume that the VFS provides a filtered exhaust, and its operation would reduce the consequences of the fuel handling accident.	
	This specification is included for defense-in-depth.	
LCO	One VFS exhaust subsystem is required to be OPERABLE to reduce the consequences of a fuel handling accident by filtering the fuel building atmosphere.	
	A VFS exhaust subsystem is considered OPERABLE when its associated:	
	a. Exhaust fan is capable of operating;	
	 HEPA filter and charcoal adsorber are not excessively restricting flow, and are capable of performing their filtration function; 	
	c. The associated heater and ductwork are capable of operating.	
APPLICABILITY	During movement of irradiated fuel in the fuel handling area, one VFS exhaust subsystem is OPERABLE to alleviate the potential consequences of a fuel handling accident.	
ACTIONS	LCO 3.0.3 is applicable while in MODE 1, 2, 3, or 4. Since irradiated fuel assembly movement can occur in MODE 1, 2, 3, or 4, the ACTIONS have been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operations. Entering LCO 3.0.3 while in MODE 1, 2, 3, or 4 would require the unit to be shutdown unnecessarily.	

ACTIONS (continued)

LCO 3.0.8 is applicable while in MODE 5 or 6. Since irradiated fuel assembly movement can occur in MODE 5 or 6, the ACTIONS have been modified by a Note stating that LCO 3.0.8 is not applicable. If moving irradiated fuel assemblies while in MODE 5 or 6, the fuel movement is independent of shutdown reactor operations. Entering LCO 3.0.8 while in MODE 5 or 6 would require the optimization of plant safety, unnecessarily.

<u>A.1</u>

When the required VFS exhaust subsystem is inoperable during movement of irradiated fuel assemblies in the fuel building, action must be taken to place the unit in a condition in which the LCO does not apply. Action must be taken immediately to suspend movement of irradiated fuel assemblies in the fuel building. This does not preclude the movement of fuel to a safe position.

SURVEILLANCE <u>SR 3.9.6.1</u> REQUIREMENTS

Each VFS exhaust subsystem should be checked 31 days prior to fuel movement in the fuel handling area to ensure that it functions properly. As the operating conditions on this subsystem are not severe, testing each subsystem within one month prior to fuel movement provides an adequate check on this system. Operation of the heater dries out any moisture accumulated in the charcoal from humidity in the ambient air.

SR 3.9.6.2

This SR verifies that the VAS fuel handling area subsystem aligns to the VFS and that the VFS exhaust subsystem starts and operates on an actual or simulated actuation signal. During the post-accident mode of operation, the VAS fuel handling area subsystem aligns to the VFS filtered exhaust subsystem. The 24 month Frequency is consistent with Reference 4.

<u>SR 3.9.6.3</u>

This SR verifies the integrity of the fuel handling area of the auxiliary building enclosure. The ability of the VAS and VFS to maintain negative pressure (\leq -0.125 inches water gauge relative to outside atmospheric pressure) in the fuel handling area of the auxiliary building is periodically tested to verify proper function of the VAS and VFS exhaust subsystem. During this surveillance, the VAS fuel handling area subsystem is aligned

SURVEILLANCE REQUIREMENTS (continued)

to the operating VFS exhaust subsystem. The fan for the VAS fuel handling area subsystem is off. In this configuration, the VFS exhaust subsystem is designed to maintain a negative pressure in the fuel handling area of the auxiliary building (\leq -0.125 inches water gauge relative to outside atmospheric pressure), to prevent unfiltered and unmonitored leakage. Doors may be opened for short periods of time to allow ingress and egress. During this surveillance, the VAS may be servicing the remaining portions of the auxiliary and annex buildings. The Frequency of 24 months is consistent with the guidance provided in NUREG-0800, Section 6.5.1 (Ref. 5).

REFERENCES	1.	Section 9.4.3,	"Radiologically	Controlled Area	Ventilation System	em."
------------	----	----------------	-----------------	------------------------	--------------------	------

- 2. Section 9.4.7, "Containment Air Filtration System."
- 3. Section 15.7.4, "Fuel Handling Accident."
- 4. Regulatory Guide 1.140 (Rev. 2).
- 5. NUREG-0800, Section 6.5.1, Rev. 2, July 1981.

B 3.9 REFUELING OPERATIONS

B 3.9.7 Decay Time

BASES

BACKGROUND	The movement of irradiated fuel assemblies within containment or in the fuel handling area inside the auxiliary building requires allowing at least 48 hours for radioactive decay time before fuel assembly handling can be initiated. During fuel handling, this ensures that sufficient radioactive decay has occurred in the event of a fuel handling accident (Refs. 1 and 2). Sufficient radioactive decay of short-lived fission products would have occurred to limit offsite doses from the accident to within the values reported in Chapter 15.
APPLICABLE SAFETY ANALYSES	During movement of irradiated fuel assemblies, the radioactivity decay time is an initial condition design parameter in the analysis of a fuel-handling accident inside containment or in the fuel handling area inside the auxiliary building, as postulated by Regulatory Guide 1.183 (Ref. 1).
	The fuel handling accident analysis inside containment or in the fuel handling area inside the auxiliary building is described in Reference 2. This analysis assumes a minimum radioactive decay time of 48 hours. Radioactive decay time satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii).
LCO	A minimum radioactive decay time of 48 hours is required to ensure that the radiological consequences of a postulated fuel handling accident inside containment or in the fuel handling area inside the auxiliary building are within the values calculated in Reference 2.
APPLICABILITY	Radioactive decay time is applicable when moving irradiated fuel assemblies in containment or in the fuel handling area inside the auxiliary building. The LCO minimizes the possibility of radioactive release due to a fuel handling accident that is beyond the assumptions of the safety analysis. If irradiated fuel assemblies are not being moved, there can be no significant radioactivity release as a result of a postulated fuel handling accident. Requirements for fuel handling accidents in the spent fuel pool are also covered by LCO 3.7.5, "Spent Fuel Pool Water Level."

ACTIONS

	 LCO 3.0.8 is applicable while in MODE 5 or 6. Since movement of irradiated fuel assemblies with less than 48 hours of decay time can occur in MODE 6 after removing the reactor vessel head following the reactor shutdown, the ACTIONS have been modified by a Note stating that LCO 3.0.8 is not applicable. If moving irradiated fuel assemblies while in MODE 6, the fuel movement is independent of shutdown reactor operations since the reactor is already shutdown. Entering LCO 3.0.8 while in MODE 6 would not specify any action. A.1 With a decay time of less than 48 hours, all operations involving movement of irradiated fuel assemblies within containment or in the fuel handling area inside the auxiliary building shall be suspended immediately to ensure that a fuel handling accident cannot occur. 				
	The suspension of fuel movement shall not preclude completion of movement to safe position.				
SURVEILLANCE REQUIREMENTS	<u>SR 3.9.7.1</u>				
	Verification that the reactor has been subcritical for at least 48 hours prior to movement of irradiated fuel in the reactor pressure vessel to the refueling cavity in containment or to the fuel handling area inside the auxiliary building ensures that the design basis for the analysis of the postulated fuel handling accident during refueling operations is met. Specifying radioactive decay time limits the consequences of damaged fuel rods that are postulated to result from a fuel handling accident (Ref. 2).				
REFERENCES	 Regulatory Guide 1.183, "Alternate Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors." 				
	2. Section 15.7.4, "Fuel Handling Accident."				