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Chapter Two

2. Finite Element Modeling for
Acoustics

W. Desmet*, D. Vandepittet

2.1 Introduction

The finite element method is the most commonly used numerical prediction
technique for solving engineering problems, which consist of finding the
distribution of one (or several) field variable(s) in a continuum domain, governed
by an appropriate (set of) partial differential equation(s) and boundary conditions.

The finite element method (see e.g. [2.52], [2.8] and [2.351) is based on two
concepts:

* transformation of the original problem into an equivalent integral formulation
(weighted residual or variational),

* approximation of the field variable distributions and the geometry of the
continuum domain in terms of a set of shape functions, which are locally
defined within small subdomains ('finite elements') of the continuum domain.
Through the application of the element concept, the original problem of

determining field variable distributions in a continuum domain is approximately
transformed into a problem of determining the field variables at some discrete

* (nodal) positions within each element. This transformation results in a.set of
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algebraic equations, for which numerical solution procedures are readily
available.

The use of the finite element method for acoustics was initiated by [2.30] and
it has been applied in a concerted manner from the seventies onwards (see e.g.,
[2.20], [2.211, [2.44], [2.40]).

This chapter describes the use of the finite element method for solving time-
harmonic acoustic problems. Based on the mathematical definition of an interior
acoustic problem (section 2), the basic principles of the finite element method are
discussed in section 3. In order to ensure the convergence of an acoustic finite
element model, the proposed solution approximation must meet some necessary
and sufficient convergence conditions, as outlined in section 4. The next section
discusses the main properties of an (acoustic) finite element model. Section 6
addresses the direct and the modal approach for solving acoustic finite element
models. Sections 7 and 8 discuss the extension of the finite element method for
solving exterior acoustic problems and coupled vibro-acoustic problems. In the
last section, several properties are illustrated through a simple, one-dimensional
example.

2.2 Problem definition

The steady-state acoustic pressure p at any location (xy,z) in a bounded fluid
domain V, enclosed by a boundary surface S2, due to a time-harmonic external
source distribution q at frequency ao =21rf is governed by the second-order
Helmholtz equation

V 2p(x, y, z) + k 2 .p(x, y, z) = -jpoo.q(x, y, z) (2.1)

where k=--o/c=27rf/c is the acoustic wavenumber, c is the speed of sound and po is
the ambient fluid mass density.

In order to uniquely define the pressure field in domain V, one boundary
condition must be specified at each position on the closed boundary surface

e imposed pressure:

p =T on Qp *(2.2)

* imposed normal velocity:

= -4 (2.3)- POO) C%=n on Q,

9 imposed normal impedance:

P=.v Vn j Z  O pon Z (2.4)
A PoCO 0n pocoA 57
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2.3 Basic principles

The use of the finite element method for solving the above-defined interior
acoustic problem, is based on the transformation of the problem into an
equivalent weighted residual formulation (section 2.3.1). An approximation is
introduced by expressing the pressure field in terms of a set of prescribed shape
functions, which are locally defined within small subdomains ('finite elements') of
the bounded fluid domain (section 2.3.2). In this way, the original problem of
determining the pressure field at any position in the fluid domain may be
approximately transformed into a problem of determining the pressure at some
discrete positions in the fluid domain. This transformation results in a set of
algebraic equations ('finite element model') (section 2.3.3).

2.3.1 Weighted residual formulation of the Helmholtz equation

The weighted residual concept provides an equivalent integral formulation of the
Helmholtz Eq. (2.1). The concept defines a steady-state acoustic pressure field in
a bounded fluid domain V as a pressure field, for which the integral equation

)(V\2p + k2 p + jpocq). dV = 0 (2.5)
V

is satisfied for any weighting function )5, that is bounded and uniquely defined
within volume V and on its boundary surface l2.

The weighted residual formulation (2.5) may be reformulated as

_ (i- (p V f + -- + --. dV
v a' ' a a ay aa, (2.6)

+ f k2 p. dV + Jjpowq. dV = 0
V V

or

f(V'75'p).dV-w 2 y(+ 2p).dV=
V V c (2.7)

Jjpoajpq.dV + f[l )+ k(P3-) +ilA 1.

According to the divergence theorem, the integral of the normal component of
a vector field •, taken over a closed surface 2, is equal to the integral of the
divergence of the vector field, taken over the volume V, enclosed by the surface 12,

J( )dV= f(q. h).d(2 (2.8)
V d2

where h is the unit normal vector with positive orientation away from the volume
V.

Application of this theorem to the last integral term in Eq. (2.7) yields

f[ k Jf =ý)+ (i2ý)+ (i4)J tý.f'PId
V a(2.9)

=i - J(ipcotl7 .i).dQ
. an0
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Substitution of Eq. (2.9) into Eq. (2.7) yields the Veak form' of the weighted
residual formulation of the Helmholtz equation,

f(Vý''p)'dV - c2 f( 2 •p).d-V J(jpoacq).dV - f(jpowoi4.ni).dQ (2.10)

V v c V

2.3.2 Field variable approximations

In the finite element method, the fluid domain V is discretized into a number of
small subdomains Ve ('finite elements) and a number of nodes, say nh, are
defined at some particular locations in each element. Within each element, the.
distribution of the field variable, i.e. the pressure p, is approximated as an

expansion k in terms of a number, say np, of prescribed shape functions Ne,
which are only defined within the considered element domain Ve,

np

p (x, y, z) -x yz) N,'(x, y, z). ai (xyz) V
i=1

For the commonly used linear tetrahedral and linear hexahedral fluid
elements, the nodes are defined at each corner point of their element volumes
and the number of element shape functions is equal to the number of nodes

(np=re). Each shape function Ne is defined, such that it has a value of unity at
node i of the element and that it is zero at all other element nodes. In this way,
each contribution ai in the pressure expansion (2. 11) represents the pressure
approximation Pi at node i of the element,

P(x,y,z) Y N' (x,y,z). h (x,y,z) EV, (2.12)
1=1

Based on the element shape functions Ne, which are locally defined in one

element Ve, some global shape functions Ni may be constructed, which are

defined in the entire fluid domain V. In each element domain Ve to which node i

belongs, the global shape function Ni is identical to the corresponding element

shape function Ne, while it is zero in all other element domains. In this way, a
global pressure expansion may be defined as

nf.P)(x,y, z) N- (Ux, y, z). P, =:[N].{•bi} (x,y~z) EV (2.13)

i=1

where n/is the total number of nodes in the discretization, [N] is. a (lxnf) vector

of global shape functions and {IM } is a (njxl) vector of unknown nodal pressure

values. The corresponding pressure gradient approximation becomes then
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c13xP

.PPZ O [ 1[].[ ]

(2.14)

where [a] is a (3x1) vector of gradient operators and [B] is a (3 xnf) matrix of
gradient components of the global shape functions.

The concepts of element discretization and shape function definition are
illustrated in Fig. 2.1 for a two-dimensional fluid volume, which is discretized into
linear rectangular fluid elements.

I*
N1

j I

ýN 2

(a)

element I

(b)

I
N 

4

-ý l1

(c)

Fig. 2.1 : (a) FE discretization of a two-dimensional volume, (b) element
shape functions, (c) global shape function

2.3.3 Finite element model for uncoupled acoustic problems

The determination of the unknown nodal pressure values tj in the expansions
(2.13) and (2.14) is based on the weak form (2.10) of the weighted residual
formulation of the Helmholtz equation.

In the most commonly used Galerkin weighted residual approach, the
weighting function ý and its gradient vector in Eq. (2.10) are expanded in terms
of the same set of shape functions as used for the pressure and pressure gradient
expansions, i.e.

nf

7(x,y,z): ZN,(x,y,z).,, :[N].{i5} (x,y,z) EV
i=1

(2.'15)

= [~9J[N]..{~} =[B]. {~} (2.16)

-41 -



LMS International Numerical Acoustics

The substitution of the expansions (2. 13)-(2.16) into the various integral terms
of the weak .form (2.10) of the weighted residual formulation enables the
definition of an acoustic stiffness matrix (section 2.3.3.1), an acoustic mass
matrix (section 2.3.3.2), acoustic excitation vectors (section 2.3.3.3) and an
acoustic damping matrix (section 2.3.3.4). The combination of these components
yields an acoustic finite element model (section 2.3.3.5;), which can be solved for
the unknown nodal pressure values hi. 3.3.1. Acoustic stiffness matrix

2.3.3.1 Acoustic stiffness matrix

For the first integral term in the left-hand side of Eq. (2.10), the substitutions
yield

f(7.~k) dV f (([ B]. {ýi })T. ([ B]. 1k)).- d V
V V (2.17)

=j~ I~T. j([ B]T [B]). dv). T. K].

TV

where [.T denotes the transpose of a matrix and [K] is a (rnxnf) matrix.

To preserve the analogy with a structural finite element model, the matrix [K]
is called the acoustic 'stiffness' matrix, although it represents an inverse mass or
mobility matrix, relating the pressure to an acceleration.

The matrix element KiY on row i and column j of this matrix is

= +J i 07VJ +V 7 (2.18)KY. f- + +'4 - ).dr

Recall that the global shape functions Ni and N1  (and their spatial

derivatives) have only non-zero values in the domains of those elements, to
which, respectively, node i and node j belong. As a result, the volume integration
in Eq. (2.18) may be confined to the integration over the domains of those
elements, to which both node i and node j belong. Since the latter integration may
be regarded as a sum of integrations over each of the common element domains
and since the global shape functions in each of these element domains are:
identical to the corresponding element shape functions, matrix element Ki may
be expressed as

K__ =_ ( 7V __ -e. V Ve e (2.19)
Y = Y (- ve J +" 4" J d

VVI
where rnij is the number of elements, to which both node i and node j belong.

Since each node belongs to common elements with only a few, adjacent nodes,
only a few matrix elements. Kij are non-zero. This results in a sparsely populated
stiffness matrix [K]

Due to this advantageous matrix property, the practical calculation of the
stiffness matrix can be performed in a very efficient way. By confining the volume
integration in Eq. (2.17) to one element domain, one may write

V.dV = 1)i I. [T. ~(I[e ])T. ( ed [])}. dV". {ý }
V e C (2.20)

S{ Ie}T. [([Be T.[Be .dV] {ie} P= e}T.[KeI{Ke}
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where Ne is a (lxnp) vector of element shape functions and is a (npxl)

vector of unknown nodal pressure values of the considered element. The matrix

elements in the associated (npxnp) element stiffness matrix [Ke] are

K'= 7(V RV•+ 0 + e -J).dV (2.21)

Note that, since all element shape functions have non-zero values in their
element domain Ve, each element stiffness matrix is now fully populated.

The calculation of the global stiffness matrix [K] may now be performed in a
two-step procedure. In the first step, all element stiffness matrices are calculated.
In the second step, each non-zero element Ki of the .global stiffness matrix is
obtained, according to Eq. (2.19), from a simple addition of the corresponding
entries Eq. (2.21) in the appropriate element stiffness matrices. With an
appropriate numbering of the nodes in the FE discretization, the non-zero entries
in the stiffness matrix appear in a narrow band around the matrix diagonal,
yielding a sparsely populated, banded stiffness matrix.

2.3.3.2 Acoustic mass matrix

In a completely similar way, the second integral term in the left-hand side of Eq.
(2.10) may be expressed as

_CV2 J( dV=-'w2 {f }T. {t. ,(-[N][N]}dV}{j

where [M] is a (nfxnf) matrix.
Again, to preserve the analogy with a structural finite element model, the

matrix [M] is called the acoustic 'mass' matrix, although it represents a

compressibility matrix, relating the pressure to a displacement.

As for the global stiffness matrix, the practical calculation of this sparsely
populated, banded global mass matrix is based on an assemblage of the element
mass matrices, according to

My f(NiNj).dV "r S NeNN).d Vl(2.23)

. e= C, e)

2.3.3.3 Acoustic excitation vectors

The first integral term in the right hand side of Eq. (2.10) may be expressed as

f•(jpocj [Nq).dV= ). iT.( ip [] dV"o = {T)} Td{Q} (2.24)

V VV

where {Qi } is a (nixl) acoustic source vector.

When the distribution q of external acoustic sources is confined, for instance,
to an acoustic point source of strength qi, located at node i, the source

distribution q is

q (x, y, z) = qi. (x i, Yi, z i) (2.25)
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where t5 is a Dirac delta function at node i. The subsequent source vector
becomes then

{Qi } =ipo A•.[N]T. 5.d) (2.26)
V/

Provided that node i is not located on the boundary surface of , all
components of the (njxl) source vector are zero, except the component on row i,
which equals jpocoqj.

The second integral term in the right hand side of Eq. (2.10) allows the
introduction of the boundary conditions. Since the integration over the boundary
surface 12. may be regarded as a sum of the integrations over the subsurfaces
12, , QZ and 12 and since the normal velocity and normal impedance boundary

conditions (2.3) and (2.4) must be satisfied on, respectively, Q, and (22., the
second integralterm in the right hand side of Eq. (2.10) may be expressed as

- f(jpoC°IP;).dQ- J(jpo op.h).dQ - f(jpocop4Ap).dc (2.27)

The substitution of expansion (2.15) into the first term of Eq. (2.27) yields

f(jpoooip`n).dQ = f(_jpoco[N] n)'.d] = {ti}T{V.} (2.28)

The component on row iof the (nxl) input velocity vector {Vni-} is thus

Vni= f(-jPocoNijVn).d2 (2.29)

The boundary surface of an element is the union of all its faces. The boundary
surface of a linear tetrahedral or a linear hexahedral fluid element, for instance,
is the union of, respectively, four and six faces. For these compatible elements,

the value of a global shape function N. at a certain element face is only non-

zero, if node i is located on the considered element face. As a consequence, the

value of a global shape function Ni at the boundary surface & and the

subsequent vector component Vni are only non-zero for those nodes that are

located on the boundary surface A2 .

Hence, the practical calculation of the input velocity vector is based on its
component expression

e (2.30

Vni -JPoCO f j W f(N7"iVn).dQ (2.30)
e=lf=l (2f

where mr, is the number of elements, for which node i is located on their fe

element faces D2f, that are part of the boundary surface (2Q.
The prescribed normal velocity at a certain location in an element face is often

specified. by a shape function expansion, comparable to the pressure expansion
(2.1-3),

n(xYy,z, ){n}r.[NT.Nf I {ef} (.,y,z) S2f (2.31)
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where the (3xl) vector {n} consists of the x-, y- and z-components of the unit
vector, normal to the considered element face. The matrix

0 e o o
N+ 0 N' ... 0 N" 0(2.32)[ o 0 N . 0 Ne"

is a (3x3n,) matrix, which contains the pressure shape functions of the nv nodes,
located on the considered element face. In each of these nodes, the x-, y- and z-
component of the fluid velocity is specified, yielding the (3nxl) vector

{f}I = {I ý] iýy I ýý.zI .. xn y,, y ~n,, I 2.3

The substitution of expansion (2.15) into the second term of Eq. (2.27) yields

_ (j'Ipowi)p .ji). d.(2 I T. .(_jTocoN[N lTr ). d j = {1i}T. {p} (2.34)

Due to the particular shapes of the global shape functions Ni , the component

on row i of the (njxl) input pressure vector {fP},

Pi = f (-Jp owcNi;. 5). d( (2.35)
Op

is only non-zero, if node i is located on the boundary surface .12p. Since the latter

expression doesn't allow the introduction of the prescribed pressure boundary
condition (2.2), this boundary condition enters the finite element model in a
different way, as will be discussed in section 2.3.3.5.

2.3.3.4 Acoustic damping matrix

The third term in Eq. (2.27) may be expressed as

-- J(Jogp'Ap).'dX2= jco{pi}T' K(PO-H[N]T'[N])"dS- '{ i (2.36)

where [C] is the (njxnf) acoustic damping matrix, induced by the impedance

boundary conditions.
The matrix element Cij on row i and column j of this matrix is

Cj = J(po-ANNj)dd2 (2.37)
.A2,

As it is the case for the stiffness and mass matrix, the damping matrix is
sparsely populated, since matrix element Ci is only non-zero, if node i and node j
are located on at least one common- element face that is part of the boundary
surface (2Z.

The practical calculation of the non-zero matrix elements is therefore based on
the expression

mz Y e e (2.38)
Ci = f I60(O-. N." N Nj). dd2.

f =1 fl•(f
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where mnzij is the number of element faces Qf, on which both node i and node j

are located and that are part of the boundary surface 12Z. The specification of the
prescribed normal admittance is usually restricted to a constant value per
element face in 12Z.

2.3.3.5 Acoustic finite element model

By substituting expressions (2.17), (2.22), (2.24), (2.28), (2.34) and (2.36) into
Eq. (2.10), the weak form of the weighted residual formulation of the Helmholtz
equation, including the boundary conditions (2.3) and (2.4), becomes

{ T.( + jC[ C] _CO2[M]).{}={ T.(t{Qi}I+{IV}+{p} (2.39)

Since the weighted residual formulation should hold for any expansion of the
weighting function, i.e. for any set of shape function contributions {(ji} (see Eq.

(2.15)), a set of ff equations in the nf unknown nodal pressure approximations Pi
is obtained,

([K]+jo[C]_Co2[M]). {i}.= {Qi} + {V}+{.} (2.40)

Row i in this matrix equation expresses the weighted residual formulation, in
which the global shape function Ni, associated with node i, is used as weighting

function j5.

The prescribed pressure boundary condition (2.2) is not yet included in matrix
Eq. (2.40). This is usually done by directly assigning the prescribed pressure
value at each node location on the boundary surface .Qp to its corresponding

nodal unknown P,.

When this assignment is done for the np nodes on 12p,, only na (= nf - n;5)

pressure approximations hi are still unknown. This means that nT equations

should be eliminated in matrix Eq. (2.40) to have a well-determined set of
equations.

This is usually done by eliminating each row in Eq. (2.40), that expresses the
weighted residual formulation, in which the global shape function of a node on
the boundary surface 12p is used as weighting function. The elimination of these

equations, which orthogonalize the error on the pressure predictions in the region
near the boundary surface flp with respect to the shape functions in this region,

is motivated by the fact that this prediction error is smaller than the errors in the
other regions of the fluid domain, since the exact pressure values at the nodes of
the boundary surface Op are a priori assigned.

By eliminating the appropriate rows in Eq. (2.40) and by shifting all terms in
the left hand side of Eq. (2.40), which contain the a priori assigned nodal
pressure values, to the right hand side vector, the resulting finite element model
for an uncoupled acoustic problem is obtained,

([Ka]+ JW[Ca]-2[Ma]).{Pi} = {i} (2.41)

where the (nrxl) vector {pi} contains the remaining unknown nodal pressure

approximations and where the acoustic stiffness, damping and mass matrices
[Ka], [Ca] and [Ma] are now (naxra) matrices.

Since the non-zero components of {P. } occur only in the eliminated equations

of Eq. (2.40), the (wax1) acoustic force vector {JFa,} contains the stiffness,
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damping and mass. terms in the a priori assigned nodal pressures and the
contributions from the acoustic source vector (2.24) and the input velocity vector
(2.28).

2.4 Convergence and parametric mapping

2.4.1 Convergence

The prediction accuracy, obtained from a finite element model, depe nds
mainly on the number of elements and on the nature of the prescribed shape
functions. In this framework, it is important that the accuracy systematically
improves as the number of elements increases, so that the proposed solution
expansion eventually converges towards the exact solution. To ensure this
convergence, some conditions must be satisfied by the shape functions and the
weighting functions.

A necessary condition for the solution expansion (2.13) to be convergent is the
condition of completeness.

The unknown nodal pressure degrees of freedom result from the matrix Eq.
(2.41), in which the coefficients are defined in integral forms. All terms in the
integration functions, which originate from the weighted residual formulation
(2.10), comprise the pressure field p, the weighting function ý and/or their first-

order spatial derivatives (gradient vectors).
In the exact solution, the pressure field and its gradient vector components -

and hence each of the integration terms in Eq. (2.10) - reach constant values
within any infinitesimally small region in the fluid domain. Therefore, a necessary
convergence condition upon the element shape functions is that the
approximating pressure expansion (2.13) and the pressure gradient expansion
(2.14) can also reach constant values within each element.

A second convergence consideration concerns the element compatibility. In
order to be able to evaluate the various integrals in the weighted residual
formulation (2.10), shape functions (and weighting functions), which would result
in terms in the integrals becoming infinite, must be avoided. To achieve this, the
acoustic elements should be compatible in that the first-order pressure
derivatives, being the highest-order derivatives in the weighted residual
formulation (2.10), exist for the proposed pressure expansion (2.13) within each
element and that this pressure expansion is continuous along the interelement
boundaries. Acoustic elements, that yield a pressure expansion, which is
continuous along the interelement boundaries, but whose first-order derivatives
are discontinuous along the interelement boundaries, are denoted as elements
with CO-continuity.

For a finite element discretization that consists of conforming elements, i.e.
elements that satisfy both the completeness and compatibility conditions, the
solution expansion converges monotonically to the exact solution. For a finite
element discretization that consists of nonconforming elements, i.e. elements that
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satisfy the completeness condition but not the compatibility condition, its - not
necessarily monotonic - convergence can still be ensured, provided that the
discretization passes a 'patch test', which is basically a completeness test on an
assemblage of incompatible elements.

Since the differentiation and integration of a polynomial function are very
easy, the construction of a finite element model becomes simple and
straightforward, if the element shape functions are obtained from a set of
polynomial functions. For this type of finite element discretizations, some specific
requirements may be derived from the above mentioned convergence
considerations. As mentioned before, the highest-order spatial derivatives of the
pressure p and the weighting function ýi in the weighted residual formulation
(2.10) are of first order. Hence, the convergence of an acoustic finite element
discretization is ensured, if the expansions (2.13) and (2.15) for, respectively, p
and ý consist of polynomial shape functions, which are complete up to at least
the first order within each element and if they are continuous along the
interelement boundaries (CO-continuity).

Commonly used elements in acoustic finite element modeling are linear
rectangular and linear triangular elements for two-dimensional problems and
linear rectangular prism and linear tetrahedral elements for three-dimensional
problems (see Fig. 2.2).

The pressure shape functions for these elements are defined as follows

* linear rectangular element (Fig. 2.2 ([L))

N =4(1+4i4,)(l+,7 irl) (i= ..4) (2.42)
4

* linear triangular element (Fig. 2.2 (b))

Ne=L1  (i L 3) (2.43)

where the normalized area co-ordinate system (LI,L2,La) is related 'to the global
Cartesian co-ordinate system (xy):I l = IF b i c2  all Xf (2.44)L2 b2 a2 |Y

SL3 b3 c3 a3 _I

where

A= de X
2 Y2 , (2.45)

2 1 X3 Y)3 ~

a, =x 2Y 3 -x 3 Y 2, bl =Y2-Y3, ci =x 3 -x 2

The other parameters are obtained from cyclic rotation of the indices.

" linear rectangular prism element (Fig. 2.2 (c))

NI'=8(1+4i)(1+ r1 i0U)(l+I) (i= 1.8) (2.46)
8

* linear tetrahedral element (Fig. 2.2 id))

Ue=L. (i = L.4) (2.47)
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where the normalized volume co-ordinate system (L1,L2,L3,L4) is related to the
global Cartesian co-ordinate system (xy,z) in a similar way as the relations (2.44)
and (2.45) for the normalized area co-ordinate system.

(- I,1) 
(,1),/

23L (3L 2  -1

(a) (b)

4

2 3 -. (1.yl

A (x(y 1 z 1) (0,0,1,0)

(1,0,0,0)

L;x

(- ) 5

1 7 _(1,1,-) (x0Y2,z 2)
- ,- ,- , -- 

(0,1,0,02 )

(c) (d)

Fig. 2.2: linear rectangular (a), linear triangular (b), linear rectangular
prism (c) and linear tetrahedral (d) elements

The convergence of a finite element discretization with these element types is
ensured. All these elements satisfy the necessary completeness condition, since
the polynomial shape functions comprise at least all terms up to the first order.
The efficiency of triangular and tetrahedral elements may be noticed in this
respect, since their number of nodes equals the minimum number, required for a
complete first-order polynomial expansion.

All elements satisfy also the CO-continuity condition, since the pressure in
each element boundary is completely defined by the pressure degrees of freedom
of the nodes in that boundary. For the linear rectangular element (see Fig. 2.2
(a)), for instance, the pressure approximation is

p N•.p, + N.P 2 + N.p 3 + N'.P4

+P2 +P3 +P 4 p+(P A +P 4'-PA -P 2 g.+ (P2 +P 3 -PI -P 4(P, 
-).r/ (2.48)

4 4 4
+( A + P 3 - P2 - P4_).

The pressure approximation along the boundary between nodes 3 and 4 (i,e:
•=1,,7c= [- 1,1]) has a linear shape,

P3 + P4 ) (P P4). 7  
(2.49)

.2 2
which is uniquely defined by the pressure values at nodes 3 and 4. Since in the
adjacent rectangular element the pressure along this boundary has also a linear
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shape, which is uniquely defined by the common nodes 3 and 4, the pressure
continuity along this boundary is ensured.

2.4.2 Parametric mapping

To obtain a convergent discretization with elements, having polynomial element
shape functions, the faces .of the element boundary surfaces must ,usually be
located in 'planes', having a constant value for one of the Cartesian co-ordinates
or one of the normalized' area or volume co-ordinates. As a result, a convergent
discretization with polynomial shape functions is usually confined to rectangular
and triangular elements for two-dimensional problems and rectangular prism and
tetrahedral elements for three-dimensional problems, as discussed in the
previous section.

For most acoustic problems, however, the fluid domain has a geometrically
complex shape, which cannot be discretized exactly into an assemblage of these
geometrically simple elements. Consequently, a finite element discretization for
such problems induces not only an approximation, error on the acoustic pressure
predictions, but also on the geometrical description. To keep the geometrical
discretization error within acceptable levels, a discretization is often constructed
using the concept of parametric mapping, which enables the use of elements with
more complex, distorted geometries.

The above mentioned geometrically simple elements, denoted as 'parent'

elements, constitute the starting point of the mapping concept. In these parent
elements, for which convergence is ensured, the pressure field is described in
terms of polynomial shape functions, which are defined in a local element co-
ordinate system (Cartesian, normalized area or normalized volume co-ordinate
system). By distorting such a parent element, together with its local element co-
ordinate system, an -element with a- distorted geometry, and a local, now.
curvilinear, 'element co-ordinate system is obtained.

In a similar way as for the pressure approximation, the geometry -of the
distorted element, i.e. the relationship between the global Cartesian and the local
curvilinear co-ordinates, of each point in the distorted element domain, is
described as an expansion of some prescribed shape functions. For some points
in the element*, their desired global co-ordinates are specified. By defining each
shape function as a (polynomial) function in the local co-ordinate system with a
value of unity at one of the specified points and zero at the others, each shape
function contribution in the geometrical expansion corresponds vwith the desired
global Cartesian do-ordinates of one ,of the specified points.

Elements with the same shape functions, describing'their geometry. and their
pressure distributions, are commonly used and denoted" as isoparametric'
acoustic elements. Provided that some limitations on the amount of distortion are
not violated, the parametric mapping concept yields a one-to-one correspondence.
between the global Cartesian and- the local curvilinear co-ordinate systems. An
important feature of this type of isoparametric mapping is that the convergence
properties of the parent discretization are usually preserved in the mapped
discretization.

Linear ,quadrilateral and linear hexahedral elements, for instance, are
commonly used, acoustic finite elements, which are obtained from an
isoparametric mapping of,. respectively, the linear rectangular and the linear
rectangular prism elements. The geometry of these isoparametric elements, i.e.

* the specified points usually coincide with (some of) the nodes of the element and

their number equals the number of prescribed shape functions
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the relation between the global Cartesian co-ordinates (xy,z) of each point in the
element and the corresponding local co-ordinates (4, q,4), is expressed as

ne

x(ý, 17,;) N ue (ý, 7,4)'xi = [Ne (,rl,, )]{xi}
/=1

y(#,l,;) E =(2.50)

i=1

z( H74 =Ne(q) 1,[N
i=1

where N' are the parent element shape functions (see Eq. (2.42) and (2.46)) and
where xi, yi, zi are the desired global Cartesian co-ordinates of the element nodes.

Fig. 2.3 illustrates this concept for the isoparametric mapping of a linear
rectangular parent element onto a linear quadrilateral element.

-1 y 3
4 Y3 A

2 2 21

•:' '~~y= N• (•,t).Y '

4
4  __2.

Y•"

1 l-l 4 X

Xt X3 x4 *

Fig. 2.3: isoparametric linear quadrilateral element

Based on the co-ordinate transformation of type (2.50), the -integration
functions in the weighted residual formulation (2.10) may be transformed from
the global Cartesian to the local curvilinear co-ordinates. Due to the simple
geometry of the parent elements, the integration limits of the resulting integrals,
which could be complicated when defined in the global Cartesian co-ordinates,
become constant in the local co-ordinates. Therefore, the co-ordinate
transformation is a useful tool for the practical calculation of the finite element
model (2.41).

According to the rules of partial differentiation, the spatial derivatives with
respect to the local element co-ordinates ý, q and • may be expressed in terms of
those with respect to the global Cartesian co-ordinates x, y and z,

dv ,••O •.cq =jjre;] .(.1

N o e n a nd 2e ( O

integrals,~ ~ ~ ~ ~ ~~ja whic 0eemn h opnnso h oc etradtesifes

dyVe 07V', dyee

Each element in the Jacobian matrix [J] is a function in the local element co-
ordinates 4ý, j7 and ~,which is obtained from the mapping relationship (2.50).
Based on the expressions. (2.50) and (2.51), the integration variables in the
integrals, which determine the components of the force vector and the stiffness,
mass and damping matrix of the finite element model (2.4 1), may be transformed
from the global Cartesian to the local element co-ordinates. This co-ordinate
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transformation yields, for instance, for an element stiffness matrix, as defined in
(2.20),

[Ke]= ( 1 .
Ve (2.52)

' J(([[ [Ne])T.( [N' ])) det4 JP. d". d. d•".

in which the components of vector [a], which are the partial differential operators
with respect to the global co-ordinates x, y and z, are expressed in terms of the
partial differential operators with respect to the local element co-ordinates '7, ,

and 4, using the inverse of the Jacobian matrix (see (2.51)).

2.5 Properties

Several advantageous properties of the stiffness, mass and damping matrices of
an acoustic finite element model (2.41) may be derived from their element
expressions.

* As already mentioned before, the matrices are sparsely populated due to the
local character of the shape functions. Moreover, with an appropriate numbering
of the nodes in the discretization, which is automatically generated in commercial
FE programs, the matrices may have a banded structure, Le the non-zero matrix
elements may be arranged in a narrow band around the matrix diagonal.

Since the indices i and j in the element expressions (2.18), (2.23) and (2.37) may
be interchanged, the matrices are symmetrical. This property is beneficial, not
only for the required memory resources, since only half of the matrices must be
stored, but also for the computational costs, since efficient symmetric matrix
solvers can be used for solving the finite element model.

Since the shape functions are independent of frequency, the elements of the
stiffness and mass matrices are frequency independent. This allows the use of
standard eigenvalue solvers for the calculation of. the undamped natural
frequencies and mode shapes of structural and acoustic system (cf. section
2.6.2.).

Although the frequency doesn't occur in an explicit way in (2.37), the elements
of the damping matrix are usually frequency dependent, due to the frequency
dependence of the prescribed normal impedance (or admittance).

Since all element shape functions have real values, the elements of the stiffness
and mass matrices are real, while the elements of the damping matrix are
usually complex, since the prescribed normal impedance (or admittance) is
usually a complex function.

The numerical calculation of the matrix coefficients is very easy and
straightforward. The involved numerical integrations are usually performed with
a simple Gauss quadrature rule with only a few integration points per element
(see e.g. [2.52]).
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" The finite element method can easily handle problems with inhomogeneous
acoustic domains, in that the fluid properties in the various element domains can
be different.

The modeling concepts, especially the use of (low-order) polynomial shape
functions in the parent element definition, induce also some disadvantageous
properties of the finite element method.

" The dynamic response of an acoustic system results from a complex mechanism
of wave propagation in the fluid domain. The resulting spatial variation of the
oscillatory dynamic response is mainly determined by the spatial distribution of
the external source excitation and its frequency contents. The latter is caused by
the fact that the acoustic wavelength 2 depends on the frequency co, i.e. 2 =

27r.clco = c/f.
Since the (low-order) polynomial functions, used for the description of the

pressure field, can only represent a restricted spatial variation, a large number of
elements is required to accurately represent the oscillatory wave nature of the
acoustic response.

To obtain an acceptable level of prediction accuracy, a general rule of thumb
states that at least 10 elements per acoustic wavelength are required (see e.g.
[2.49]). Hence, according to this rule of thumb, the number of elements should
increase as the frequency increases, since the acoustic wavelength decreases as
the frequency increases. Therefore, the larger the fluid domain and the higher the
excitation frequency, the larger becomes the model size.

As a result, the application of the finite element method for real-life
engineering problems usually involves large model sizes and requires a large
amount of memory and computational efforts for constructing and solving the
model.

As a result, the applicability of the finite element method is practically
restricted to a limited frequency range. Above a certain frequency limit, which
depends on the nature of the problem and on the available computer resources,
these prediction methods would require a prohibitively large amount of
computational .effort and memory resources to get 'an acceptable level of.
accuracy.

* The prediction accuracy for derived secondary-field variables is 'smaller
than for primary field variables. Predictions of dynamic quantities such as fluid
velocities or acoustic intensities are obtained .by deriving the prediction results of
the primary field variables, i.e. the acoustic pressure. Since the latter are usually
expressed in terms of polynomial expansions, which are complete up to a certain
order, the derived variables are expressed in terms of polynomial expansions,
which are only complete up to a lower order. As a result, these' lower-order
polynomial expansions represent a smaller spatial variation of the derived
*secondary variables than the expansions of the corresponding primary variables.

In a linear. hexahedral fluid element, for example, the pressure is expressed in
terms of a polynomial expansion, which is complete up to the first order, while
the fluid velocity vector, which is proportional to the spatial gradient of the
pressure, is no longer expressed in terms of a complete linear, expansion.
However, there is no physical justification for the subsequent smaller spatial
variation of the fluid velocity predictions, since the pressure and fluid velocity of
an acoustic wave have the same spatial variation. Consequently, the prediction
accuracy of the fluid velocity is smaller than the accuracy of the pressure for a
given finite element discretization. Moreover, for low-order polynomial expansions
of the primary field variables, the subsequent expansions for the derived '
secondary variables become often discontinuous at the interelement boundaries.
This is the case, for example, for the fluid velocity in linear hexahedral fluid
elements.
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Since the element domains in a finite element discretization have a finite volume
and since only models of finite size are amenable to numerical solution
algorithms, the finite element method is, in principle, restricted to acoustic
problems, which are defined in bounded fluid domains. However, there are
several ways to extend the modeling concepts of the finite element method to the
use for solving acoustic problems with unbounded fluid domains, as discussed in
section 2.7.

2.6 Solution methods

2.6.1 Direct solution method

In the direct solution method, the finite element model (2.41) is directly solved at
each frequency of interest for the vector of unknown nodal pressures. Back-
substitution of the solution vector into the pressure expansion (2.13) yields the
finite element approximation for the steady-state acoustic pressure field.

In this respect, it can be noted that, due to the, advantageous matrix
properties of a finite element model (symmetry, frequency independence, ... (cf.
section 2.5)), the main part of the computational efforts is spent on solving the
(large) matrix equation (2.41), while the construction of the model, i.e. the
calculation of the matrix elements, requires only some minor efforts..

2.6.2 Modal solution method

As already mentioned in section 2.5, the application of the finite element method
for real-life engineering problems usually involves large model sizes and requires
a large amount of memory and computational efforts. However, the model sizes
and subsequent computational efforts may be substantially reduced by using the.
modal expansion technique.

In this technique, the acoustic pressure field is expanded in terms of (some of)
'the modes of the considered system. The, contributions of the modes to the
acoustic response become then the unknowns of the modal model instead of the
nodal degrees of freedom in the original model.

Such a modal solution procedure consists mainly of the following steps:

1. calculation of the undamped acoustic modes:

The calculation of the undamped mode shapes of an interior acoustic system, inwhich the entire boundary surface is assumed to be perfectly rigid, are obtained

by. discarding the damping matrix [C,] and the ek terral. excitation vector {Fa} in

the finite element model (2.41). Since the stiffness and mass matrices [Ka] and

[Ma] are independent .of frequency, the mode shape predictions are obtained

from the following eigenvalue problem,

[Ka]{2m} .[ (2.53):KO =om.[Mal0.1m (m= ]..n,)

where each (naxl) eigenvector {(} represents a mode, shape and where the

associated eigenvalue corresponds with the square of the natural frequency cm of
that mode.
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Note that, due to the discretization of the acoustic system, which has an
infinite number of degrees of freedom and, hence, an infinite number of modes,
into a system with n. degrees of freedom, only n. mode shapes are obtained.

2. proiection onto a modal base:

The nodal degrees of freedom in the (n.xl) vector {pj} in the finite element model

(2.41) are expressed in terms of a set of ma (_< na) modal vectors,
ma

{pi} = m.{m}=[•]{(bm} (2.54)

m=I

where [ 0] is a (nrxm.) matrix of modal vectors and where (0me} is a (max 1) vector

of modal participation factors.

3. modal model:

By substituting the modal expansion (2.54) into the finite element model (2.41)
and by premultiplying both sides of the resulting matrix equation with the
transpose of the modal vector matrix, the following modal model is obtained,

([k]+j 2 (0. (2.55)

where the (mrxl) modal excitation vector is

pp] T (F .(2.56)

and where the (rmnxm.) modal stiffness, mass and damping matrices are

[k.] =[p]T [K, ][ (], [1ýfa] =[cti' T [Ma][,p'14[a D T C] (2.57)

Due to the orthogonality of the modal vectors with respect to the mass matrix,

{P }T[Ma]{10m2 } = 0 if MI # i 2 , (2.58)

the modal mass and modal stiffness matrices are diagonal matrices. By
normalizing the modal vectors, according to

{(P}m, T[Ma]{ ,Im} = 1, (mi I..ma), (2.59)

the modal mass matrix becomes the unity matrix, ] (2.60)

and the diagonal modal stiffness matrix becomes

[k] (2.61)

OjMa

When the finite element model (2.41) has a proportional damping matrix, i.e. a
damping matrix, which may be written as'a linear combination of the stiffness.
and mass matrix,
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[Ca] = [Ka ] +/3[Ma] (2.62)

the modal damping matrix is also a diagonal matrix,

(2.63)

with the modal damping ratio's

a- m + (2.64)
2 2com

4. soluinq the modal model:

The modal model (2.55) is solved at each frequency of interest for the vector {0m }
of unknown modal participation factors. Back-substitution of the solution vector
into the pressure expansion (2.13), taking into account the modal projection
(2.54), yields the approximation for the steady-state acoustic pressure field,

p(x,.y,z) P [Nl{pi }= [Nl[(1{•5m } (2.65)

Although all modes should be used (mn=nr) in the modal expansion (2.54) to
get the same accuracy as with the direct solution method*, a relatively 'small
truncated set of modes yields already a level of accuracy close to the one of the
much larger original model. In this framework, a rule of thumb states that an
accurate prediction of the steady-state dynamic behavior in a certain frequency
range is obtained by using all modes with natural frequencies, smaller than twice
the upper frequency limit of the considered frequency range.

In this way, a significant model size reduction can be obtained (r 0<<«,),
especially in the low-frequency range, where the modal densities are small. In
addition to the reduced model size, the matrices in a modal model often become
diagonal, due to the orthogonality properties of the modes. As a result, when the
steady-state response is needed at a large number of frequencies, the
computational effort for constructing the modal base and then solving the
reduced modal model at each frequency of interest is usually substantially
smaller than for directly solving the original model at each frequency.

2.7 Exterior radiation problems

In principle, the finite element method can only be used for interior acoustic
problems, which have a bounded acoustic domain, since the numerical
implementation requires a finite number of finite elements. There are several
ways, however, to extend the modeling concepts of the finite element method to
the use for solving exterior acoustic problems, which have an, unbounded
acoustic domain.

In this framework, an artificial boundary surface Qe is introduced at some
finite distance from the boundary surface f2. Consequently, the original

* since the total number of modes equals the total number of degrees of freedom of

the model, no model size reduction would then be obtained.
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unbounded fluid domain V is split into a bounded domain V1 between 12 and S2e
and an unbounded domain V2 between fle and D2, (see Fig. 2.4).

Fig. 2.4: computational domains for exterior problems

The bounded domain V1 is suited for a finite element discretization. To get a
well-posed acoustic problem in this domain, an appropriate boundary condition
must be specified at the artificial boundary surface 1e. In this way, an exterior
problem is dealt with as an approximate interior problem.

For exterior acoustic problems, the Sommerfeld radiation condition must be
satisfied at the boundary surface Q2, to ensure that all acoustic waves propagate
freely towards infinity and that no reflections occur at this boundary,

Oi) +(2.66)
l IFI.-*co

Several approaches can be used to approximate this radiation condition.

1. The simplest approach is to use the specific acoustic impedance of freely
propagating plane waves as impedance boundary condition for the pressure and
normal fluid velocity at the artificial boundary surface Se (see e.g. [2.18]),

p(r) = p0 cv, (r), r E (2e (2.67)

For this boundary condition to be (quasi) non-reflective for the acoustic waves
in an exterior fluid domain, the distance between the artificial boundary surface
1e and the boundary surface 12 must be very large: As a result, the bounded
domain V1 is still very large, which yields a very large and computationally
expensive finite element model.

2. A more advanced approach consists of using 'damping' elements at the artificial
boundary surface of the finite element discretization of domain V1 in order to
approximately model the absorption of outgoing acoustic waves. This approach
was initially proposed by [2.10], [2.11] and has been refined by [2.15], [2.45] and
[2.2], [2.3]. A surface with a simple geometrical shape, usually a sphere, is
selected as artificial boundary surface 12 e. The pressure field in the unbounded
domain V2 is approximated in terms of an analytical multipolar expansion of
outgoing wave functions that satisfy the Sommerfeld radiation condition. The
evaluation of this analytical expansion at the artificial boundary surface Qe4
yields the pressure values, which are imposed at the boundary nodes of the
'damping' elements, located at the artificial boundary surface in the finite
element discretization of domain V1 . For 'monopolar damping' elements, which
are based on a monopolar pressure expansion, the artificial boundary surface
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must be located in the far-field of the exterior pressure at a large distance from
the boundary surface fl•. For 'dipolar damping' elements, the extent of the
domain V1 can be quite limited and becomes attractive for finite element
discretization:'

3. The Dirichlet-to-Neumann method (DtN method) is based on an exact
formulation of the boundary condition at the artificial boundary surface Qe.

[2.37] proposed an analytical solution for the pressure field in the unbounded
domain V2 that satisfies the Sommerfeld radiation condition and an arbitrary
Dirichlet condition (imposed pressure condition) on the artificial boundary
surface. They used this solution to form a relation between the pressure and its
normal gradient at the artificial boundary surface _(e, which yields the exact
impedance boundary condition. The finite element implementation of this exact
Dirichlet-to-Neumann impedance boundary condition has been discussed by
[2.33], [2.48] and [2.30]. Since this method allows the artificial boundary surface
a2e to be located in the near-field of the exterior pressure, only a small domain Vi
must be discretized, which yields a fairly small finite element model.

4. 'Instead of using an analytical expression for the pressure field in the unbounded
domain V2 and for the derivation of the boundary condition on the artificial
boundary surface a2e, the pressure field in V2 can also be approximated
numerically through the use of an infinite element discretization of this
unbounded domain ([2.14], [2.13], [2.1]). Each of the infinite elements in such a
discretization contains a part of the artificial boundary surface ae and is
infinitely extended away from the artificial boundary surface. In this way, the
infinite elements span as a single layer around the conventional finite elements,
used for the pressure field in the domain Vi. The pressure within the infinite
elements is expressed in terms of shape functions with a built-in amplitude
decay and wave-like variation to- model outgoing waves. To overcome the
difficulties which arise with the numerical integrations involved in. the
implementation of infinite elements, infinite wave envelope elements ([2.4], [2.5])
and more recently mapped infinite wave envelope elements ([2.6], [2.24], [2.7])
have been developed. They use shape functions similar to those of regular
infinite elements but use the complex conjugates of the shape functions as
weighting functions. This removes all wavelike terms from the element integrals
and simplifies the frequency dependence of the resulting model matrices.

The size of the resulting model, consisting of a finite element model for the
acoustic domain V1 and an infinite element model for the acoustic domain V 2 , is
strongly dependent on the location of the artificial boundary surface De and the
subsequent size of domain Vi. The size of domain V1 is in its turn strongly related
to the shape functions, used in the infinite elements in domain 1V2. The more
accurate these shape functions can represent outwards travelling waves, the
smaller the size of domain V, can be to get an accurate prediction of the coupled
response in exterior vibro-acoustic systems. In this framework, [2.16] has
proposed the use of spheroidal co-ordinate systems for the formulation of the
infinite element shape functions. This permits the required extent of domain V1 to
be reduced in the case of slender objects.

2.8 Coupled vibro-acoustic problems

For coupled vibro-acoustic problems, an acoustic and a structural problem must
be solved simultaneously to include the mutual coupling interaction between the
fluid pressure and the structural deformation. The most commonly used
technique for interior coupled problems, which have a bounded acoustic domain,
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is a coupled FE/FE model, in which an acoustic FE model is coupled with a
structural FE model.

2.8.1 Problem definition

In an interior coupled vibro-acoustic system, the fluid is comprised in a bounded
acoustic domain V, of which the boundary surface Qa contains an elastic
structural surface Qs (Qa=9s O p QvU Z), as shown in Fig. 2.5.

Fig. 2.5: interior coupled vibro-acoustic system

fluid pressure field
As for uncoupled acoustic problems (see section 2.2), the steady-state acoustic
pressure in the fluid domain V is governed by the Helmholtz equation

V2 p(x, y, z) + k 2 .p(x, y, z) = -jpoco.q(x, y, z) (2.68)

For interior coupled vibro-acoustic systems, four different types of acoustic
boundary conditions may be specified on the boundary surface Qa of domain V.

* imposed pressure:

p =P on Qp (2.69)

" imposed normal velocity:

Vn = _•4? _V on Qv (2.70)

" imposed normal impedance:

p=Z._Vn_ jZ Cp= j o z (2.71)
A poW6 • ~oo onn

" normal velocity continuity:

S joQ(2.72)

The last boundary condition expresses the vibro-acoustic coupling condition,
in that the normal fluid velocity must equal the normal structural velocity along
the fluid-structure coupling interface ns.

structural displacement field
Although any type of elastic structure could be part of a coupled vibro-acoustic
system, the elastic structureis assumed to be a shell-type structure, which has a
small thickness dimension, since significant vibro-acoustic coupling effects occur
mainly for elastic structures with a small stiffness and mass.

For this type of structures, the displacement field is usually characterized in
terms of the displacement components of the shell middle surface, which may be
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described in a local co-ordinate system (sl,s2,n), attached to the middle surface
(see Fig. 2.6). The co-ordinate directions sl and s2 are located in the plane of the
middle surface, while n represents the direction normal to the middle surface
with. positive orientation away from the fluid domain.

Fig. 2.6: shell co-ordinate system

The corresponding middle surface displacement components ws l, ws2 and wn
are governed by the following type of linear dynamic equations;

wsl(r)] [•~'] 0

([i•C] 2 C .twn(r)} {fz(r)•{ 0 { } r e 2s. (2.73)

•W [w(r)j fn(r)j p(r)

is a (3x3) matrix of differential operators, governing the elastic and

damping forces in the shell structure and the elements of the (3x3) matrix [1t1]
represent the inertial parameters of the structure. The first term in the right-
hand side of Eq. (2.73) represents the distribution of mechanically applied forces
(force per unit area) on the structure. The second term represents the fluid
pressure loading. Since the fluid has no viscosity, the fluid pressure exerts only a
force excitation in the normal direction. Note that, although assumed in Eq.
(2.73) for the sake of simplicity, the elastic structure needs not to be completely
in contact with the fluid.

The dynamic Eq. (2.73) describe the different wavetypes in the elastic
structure. With s being the number of wavetypes, the structural displacement
field is uniquely defined, if s boundary conditions are specified at each point of
the boundary Fs of surface Q2s. A general formulation of these boundary
conditions is

[is,bl Ws2(F) = {js(r)}, r Ers' (2.74)

wI(r)

where Lsb is a (sx3) matrix of differential operators, governing the

appropriate boundary conditions and {Ikr)} is a (sxl) vector of corresponding

prescribed functions.

2.8.2 Model types

The coupled FE/FE models can be classified into three major categories, based
on the approach used in the problem formulation the Eulerian, the Lagrangian
and the mixed approach.
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2.8.2.1 Eulerian model

In an Eulerian formulation, the acoustic response is described by a single scalar
function, usually the pressure, while the structural response is described by the
displacement vector.

acoustic FE model
As described in section 2.3, the finite element approximation of the steady-state

pressure p in the bounded fluid domain V is an expansion ý in terms of a set of
global shape functions Ni,

n. nPh)(x, y, z) N= •N(x, y, z)-.p, + N, N(x, y, z)- Pi (2.75)
i=l i~l

=[Naj{pi}+[Np1{iji}, (x,y,z)EV,
where np is the number of constrained degrees of freedom, i.e. the prescribed
pressure values Tj3 at the np nodes, which are located on the part Qp of the
boundary surface, on which a prescribed pressure boundary condition is
imposed. The global shape functions, associated with these constrained degrees
of freedom, are comprised in the (lxnp) vector [Np . The na unconstrained

degrees of freedom are comprised in the (naxil) vector {p, } and their associated

global shape functions are comprised in the (lxna) vector [N.]. The resulting

finite element model for the unconstrained degrees of freedom takes the form,

([Ka]+o[Ca]o2[Ma] ). {Pi} I{F (2.76)

The (naxil) vector {Fa} contains the terms in the constrained degrees of
freedom, the contributions from the external acoustic sources in the fluid domain
V and the contributions from the prescribed velocity input, imposed on part Qv of
the boundary surface (2.70). The latter contributions are expressed as (see (2.29))

f(_jporo[Ua]T V). d(2 (2.77)

where ',, is the prescribed normal fluid velocity, with positive orientation away

from the fluid domain V.

structural FE model
As described e.g. by [2.54], the finite element approximations of the steady-state
dynamic displacement components of the middle surface Os of an elastic shell
structure in the x-, y- and z-direction of a global Cartesian co-ordinate system are

{:y(xyz) =[N, I{wi} +[N, {;Wi} (2.78)

where the (3xnw) matrix [N. ] comprises the global shape functions, which are
associated with the nw constrained degrees of freedom, i.e. the prescribed
translational and rotational displacements W, at nodes, which are located on the
part of the shell boundary, on which prescribed. translational and/or rotational
displacements are imposed. The ns unconstrained translational and rotational
displacement degrees of freedom are comprised in the (nsxl) vector {wk} and

their associated global shape functions are comprised in the (3xns) matrix [NK].
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The resulting finite element model for the unconstrained degrees of freedom takes
the form,

([Ks] +jo[Cs] _2[Ms]). {w} {Fs} (2.79)

The (nsxns) matrices [K, ], [M] and [C] l. are the structural stiffness, mass

and damping matrices. The (nsxl) vector {Ys} contains the terms in the
constrained degrees of freedom, the contributions from the prescribed forces and
moments, applied on (part of the shell boundary and the contributions from the
external load p, applied normal to the shell surface Qs. The latter contributions
are expressed as

nse (. dP). (2.80)
Yz f ([NS]T.{ne}.p).

where nse is the number of flat plate elements nse in the shell discretization and
where the unit vector, normal to a plate element, is represented/in the (3xl)
vector {ne}•

coupling of both models
The force loading of the acoustic pressure on the elastic shell structure along the
fluid-structure coupling interface in an interior coupled vibro-acoustic system
may be regarded as an additional normal load. As a result, an additional term of
type (2.80), using the acoustic pressure approximation (2.75), must be added to
the structural FE model (2.79). When it is assumed that the elastic shell
structure is completely comprised in the boundary surface of the fluid domain,
the structural FE model (2.79) modifies to

([Ks]+jcO[Cs,]_C2[MIs])..{wi}+[KcI{pi}=I{Fsi} . (2.81)

The (nsxna) coupling matrix [K, ] is

Ise T(Ij.N 
(.2[KcJ=y (N]T e[n W

and the (nsxl) excitation vector {F, } is

{se} ( ]T {N e }. [Np j~}qdf] (2.83).

The continuity of the normal shell velocities and the normal fluid' velocities at
the fluid-structure coupling interface may be regarded as an additional velocity
input on the part Os of the boundary surface of the acoustic domain. As a result,
an additional term of type (2.77), using the shell displacement approximations
(2.78), must be added to the acoustic FE model (2.76). This modified acoustic FE
model becomes

([Ks] +I[Cal-2[Ma]). {pi} -o 2 [MJ]{wi} = {F} (2.84)

The (naxns) coupling matrix [Me ] is
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[M,] = XI f p00[Na]T nejT[Ns]).d_( 2.5
e=Jk,2se

and the (naxl) excitation vector is

, I 2( [ T {ne 2( [N, ]{. }ne M) (2.86)
e= 1I .-(2..

A comparison between the coupling matrices (2.82) and (2.85) indicates that

[M,]=_po[KclT 
(2.87)

Combining the modified structural FE model (2.81) and the modified acoustic
FE model (2.84) yields the Eulerian FE/FE model for an interior coupled vibro-
acoustic system,

iK, Kc [ýS' 0 O]"2[ M, OJ{wi}{Fu (2.88)0 KaJ I + C10 CJ L-POKT Ma PA Fa

The coefficients in the coupled stiffness matrix and coupled mass matrix are
still frequency independent but, in contrast with an uncoupled structural or
uncoupled acoustic finite element model, these coupled matrices are no longer
symmetric. This is due to the fact that the force loading of the fluid on the
structure is proportional to the pressure,, resulting in a cross-coupling matrix
[Kc] in the coupled stiffness matrix, while the force loading of the structure on

the fluid is proportional to the acceleration, resulting in a cross-coupling matrix

L PoKe'] in the coupled mass matrix.

Note that for the practical calculation of this coupled model, it is convenient
that the acoustic and structural meshes are matching, i.e. that the nodes of the
acoustic and the structural meshes at the fluid-structure coupling interface
coincide. If not, the structural nodal displacement degrees of freedom must be
related to the acoustic nodal pressure degrees of freedom along the fluid-
structure coupling interface through some geometrical transfer matrices, as
proposed e.g. by [2.19].

Due to the cross-coupling matrices, the banded, sparsely populated nature of
the matrices in an uncoupled finite element model partly vanishes in a coupled
finite element model. As a consequence, the efficient equation solvers and
eigenvalue solvers for sparse symmetric matrices can no longer be used and have
to be replaced by non-symmetric solvers', which are more time expensive. For this
reason, the undamped natural frequencies and mode shapes at low frequencies
are often calculated by assuming an incompressible fluid ([MA]=[o]), which

yields a simpler eigenvalue problem,

(2.89)

where [M] is referred to as theadded mass matrix,

[i1=pO[K,][Kaf][K ]T (2.90)
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In an alternative Eulerian formulation ([2.27], [2.43]), the fluid is described by
the fluid velocity potential (0, of which the gradient vector equals the fluid velocity
vector v,

SJ VP=V 9 . (2.91)
PoCO

This choice renders the symmetric model,

- POK] p oK - PoC - 0 - PoMa ] Oi (2.92)

For damped systems, this symmetric formulation is obtained without any

penalty. For undamped systems ([Cs = [Ca] = [0]), the use of the fluid velocity

potential yields a symmetric model, which becomes, however, complex due to the
introduction of an artificial damping matrix. This is disadvantageous in terms of
computational effort since solving a non-symmetric but real model, obtained from
an undamped pressure formulation (see (2.88)), requires less arithmetical
operations than solving a symmetric but complex model, obtained from a velocity
potential formulation (see (2.92)).

2.8.2.2 Lagrangian model

In a Lagrangian formulation, both structural and acoustic responses are
described by their displacement vector ([2.28]). Since both the force loading of the
structure on the fluid as well as the force loading of the fluid on the structure are
proportional to the structural/fluid acceleration, the coupled system matrices in
a Lagrangian formulation are symmetric. However, the advantage of symmetry
can hardly counterbalance the drawbacks of the formulation.

A first drawback is the substantial increase of the size of the coupled problem,
since the fluid displacement has three vectorcomponents instead of one scalar
value (pressure or fluid velocity potential) for each node of the acoustic mesh.

A second, and more severe, drawback is the existence of spurious rotational
modes. Under the assumption of an inviscid fluid, the shear modulus of the fluid
is zero and hence, the fluid motion is irrotational. The Lagrangian formulation
results from the application of the variational principle to an energy functional.
Since the shear modulus of an inviscid fluid is zero, the matrix D, linking the
fluid stresses to the fluid strains (o=D.E), is singular. This allows zero-energy
rotational deformation modes, which are not excluded from the Lagrangian model
since these spurious modes don't contribute to the energy functional. In order to
avoid these physically unfeasible modes, an additional irrotationality constraint
of the fluid has to be imposed by a penalty method ([2.32], [2.53], [2.12], [2.42]).
This is done by adding an additional rotational energy functional. J'), weighted by
a penalty factor a, to the energy functional,

a.j(a) (U-) a. f(,7xi7)2 dV, (2.93)2 " ,Va

where V, is the acoustic domain and fi(=•1/(')) is the fluid displacement
vector. The resulting system equations are, in absence of any type of damping,
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~[L][Kska+a~a[L]w2(a)[L] T[M Ma[(.94

with {, }[L]{v}.

Based on the coupling conditions at the fluid-structure interface, matrix [L]
represents the static condensation of all' nodal structural displacement
components mi and nodal fluid displacement components uj in terms of the
displacements Vi at the nodes which do not 'belong to the fluid-structure

interface. [ks] and [Ka], [VIlk] and [IM4a] 'are the structural and acoustic

stiffness and mass matrices. Matrix. [Ka] results from the irrotationality

constraint. and { . are the external nodal structural and acoustic

excitation vectors. Only a penalty factor a=oc ensures an irrotational acoustic
response. Since the system equations can only be solved for a finite value of a,
the response vectors and eigensolutions depend on a and satisfy the
irrotationality constraint only in an approximate way.

To remove the deficiency of spurious rotational modes,' [2.9] have proposed an
advanced Lagrangian formulation, using the displacement, pressure and a
'vorticity moment'-as acoustic variables. The two latter variables are associated
with element internal variables 'and are statically condensed out at element level,
so that only the nodal fluid displacements occur in the global coupled model.

2.8.2.3 Mixed model

In mixed formulations, the structural response is described by its displacement
vector and the acoustic response is described by the pressure and the fluid
displacement potential V,, whose gradient is 'proportional to the 'fluid
displacement. The fluid-structure coupling interaction can be introduced as
cross-coupling matrices in the coupled mass , matrix ([2.39]). A .more
advantageous' mixed 'formulation introduces the fluid-structure coupling
interaction as cross-coupling matrices in the coupled stiffness matrix ([2.41],
[2.46]). In absence of any type of damping, the latter formulation is

[ 2 M0 (2.95)0 0 "B~a 1- 02 Ka • 0/ (.5

•.-Mc Ba -Ma 0 0 0 Pi a

[Mc ]results from the fluid-structure coupling interaction and [Ba] relates the
nodal fluid pressures to the nodal fluid displacement potentials.

The system equations are symmetric,' no third. artificial damping matrix is
introduced and no spurious rotational modes are present.

This mixed formulation has, however, two major -drawbacks. First of all, the
size of the coupled problem is substantially larger, compared to the Eulerian
formulation (2.88), since there are two degrees of freedom for each acoustic node.
Secondly, special equation and eigenvalue, solvers are required; since the coupled
stiffness matrix is indefinite and the coupled mass matrix is positive semi-
definite.

At present,, a comparison of the advantages and drawbacks of the different
symmetric formulations with those of the non-symmetric Eulerian pressure
formulation (2.88) denotes the latter as the most appropriate prediction
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technique. Therefore, most of the available finite elements programs (e.g.
SYSNOISE, MSC/NASTRAN, ANSYS) use the Eulerian pressure formulation for
coupled predictions of interior coupled vibro-acoustic, systems.

2.8.3 Model size reduction techniques

For the uncoupled structural and uncoupled acoustic problems, encountered in
uncoupled vibro-acoustic systems, their model sizes and subsequent
computational efforts may be efficiently reduced by using model size reduction
techniques, such as the modal expansion technique, the component mode
synthesis and the Ritz vector expansion technique. For coupled vibro-acoustic
problems, however, the efficiency of these model size reduction techniques is
significantly reduced, as discussed below.

2.8.3.1 Modal expansion

In the modal expansion technique, the dynamic field variables are expanded in
terms of the modes of the considered system (cf. section 2.6.2.). For element
based models, the contributions of the different modes to the dynamic response
become the unknowns of the modal model instead of the nodal degrees of
freedom in the original model. Although all modes should be used to get the same
accuracy as with the original model*, a relatively small truncated set of modes
yields already a level of accuracy close to the one of the much larger original
model. In this -framework, a rule of thumb states that an accurate prediction of
the steady-state dynamic behavior in a certain frequency range is obtained by
using all modes with natural frequencies, smaller than twice the upper frequency
limit of the considered frequency range. Especially in the low-frequency range,
where modal densities are small, this yields a significant model size reduction.

In addition to the reduced model size, the matrices in a modal model often
become diagonal due to the orthogonality properties of the modes. As a result,
when the steady-state response is needed at a large number of frequencies, the
computational effort for constructing the modal base and then solving the
reduced modal model at each frequency of interest is usually substantially
smaller than for directly solving the original model at each frequency.

The modal expansion technique for coupled Eulerian models (2.88) is applied
as follows.

The predictions for the undamped mode shapes and natural frequencies of a
coupled vibro-acoustic system result from the following right eigenvalue problem,

K, I K, co 2_K Tc Ma c} (c= L..ns +na) (2.96)

where each ((fn+ný)xl) right eigenvector {IOc} represents a mode shape and where
the associated eigenvalue corresponds with the squared value of the natural
frequency wc of that mode.

Since, in contrast with uncoupled acoustic and uncoupled structural FE
models, the stiffness and mass matrices in a coupled Eulerian model are no
longer symmetric, the above eigenvalue problem is non-symmetric. Hence, the left
eigenvectors {Rc} of the associated left eigenvalue problem,

* since the total number of modes equals the total number of degrees of freedom of

the model, no model size reduction would be obtained
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T. S c'j= ,2-,5Aj' S 1  (2.97)
{•}.0 Ka--c{•} -K• T

differ from the right eigenvectors { c}. However, [2.381 indicated that, due to

the particular matrix relation (2.87), the components, which correspond with the
n. acoustic degrees of freedom in each pair of associated left and right
eigenvectors, are identical and that the components, which correspond with the
n. structural degrees of freedom in the left eigenvectors, are proportional to the
corresponding right eigenvector components with a factor, equal to the associated
eigenvalue,

{} = {-s"sc {2)c'- sc = I + na) (2.98)

The Eulerian model (2.88) may be transformed into a modal model by
expanding the nodal degrees of freedom in terms of a set of mc(_< n+n.) modes of
the coupled vibro-acoustic system,

wi {n} c sc (2.99)

where [0] is'a ((,+ný)xm•) matrix of right eigenvectors and where {c} is a (mxl)

vector of modal participation factors.
By substituting the modal expansion (2.99) into the Eulerian model (2.88), in

which all equations of the acoustic part are divided by po, and by premultiplying
both sides of the. resulting matrix equation with the transpose of the ((rm+nf)xmT)
matrix of corresponding left eigenvectors, the following modal model is obtained,

([ + {[1- 1 - } (2.100)

where the (mxl) modal excitation vector is

SFs (2.101)

PO

and where the (mxcxn) modal stiffness, mass and damping matrices are

[ ][ •]T[ s K ] [T-[]L-]T  -M a V "
L0Po P (2.102)

Due to the orthogonality of the left and right eigenvectors.with respect to the
mass matrix,

cJ}T"[.sT 1 { 0 0 ifC1 #C2, (2.103)

PO
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the modal mass and modal stiffness matrices are diagonal matrices. By
normalizing the eigenvectors, according to

P0 I

the modal mass matrix becomes the unity matrix,

[ 1 ".[ . ](2.105)
and the diagonal modal stiffness matrix becomes

[k] (2.106)

M2

The fact that the left and right eigenvector result from a non-symmetric
eigenvalue problem, puts, however, a severe practical limitation on the use of the
modal expansion technique for coupled vibro-acoustic problems.

In contrast with the symmetric eigenvalue problems for uncoupled structural
and uncoupled acousiic models, the non-symmetric eigenvalue'problemg for
coupled models are much more computationally demanding.

To illustrate this, a rectangular acoustic cavity with a length of 1 m, a width of
0.5 m and a height of 0.15 m is considered. One side of the cavity consists of a
flexible, rectangular plate of 1 m x 0.5 m with clamped boundaries, while the five
other cavity side walls are perfectly rigid. Three structural discretizations are
built with 4-noded rectangular plate elements (CQUAD4), six acoustic discre-
tizations are built with 8-noded rectangular fluid elements (CHEXA8), yielding six
discretizations for the coupled system. Tab. 2.1 lists the number of elements in
the structural and acoustic discretizations and the resulting numbers mt, na and
rit of unconstrained degrees of freedom of the different FE models.

structural ][ acoustic coupled
fxlny fnxxnyxnz [ n- rtc= n+ n.

20x12 627 20x12x4 1365 1992
20x12x8 2457 3084

40x24 2691 40x24x4 5125 7816
40x24x8 9225 11916

60x36 6195 60x36x4 11285 17480
60x36x8 20313 26508

Tab. 2.1: numbers ns,na,n. of unconstrained degrees of freedom
(nx,ny,n.: number of elements in the length, width and height of the

acoustic cavity)

The first 10 modes of the considered finite elements models have been
calculated with the MSC/NASTRAN software on a Hewlett-Packard-C180
workstation (SPECfp95=18.7, SPECint95=11.8). The involved CPU-times are
plotted against the corresponding number of unconstrained degrees of freedom in
Fig. 2.7.
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Fig. 2.7: CPU time for mode extraction from the uncoupled structural (x),
uncoupled acoustic (o) and coupled vibro-acoustic (P) models

This figure clearly illustrates that a non-symmetric eigenvalue problem,
involved with the mode extraction from coupled Eulerian FE/FE models, requires
a substantially larger amount of computational effort than the symmetric
eigenvalue problems, involved with the mode extraction from uncoupled
structural and uncoupled acoustic FE models. Note also that the difference
between the CPU times for the uncoupled structural and uncoupled acoustic
models illustrates that the computational effort is not only determined by the
model size, but also by the bandwidth of the sparsely populated stiffness and
mass matrices.

In this way, the mode extraction becomes a computationally very expensive
calculation for many coupled vibro-acoustic problems.

2.8.3.2 Component mode synthesis

Due to the problems, involved with the calculation of the modes of a coupled
vibro-acoustic system, the component mode synthesis technique provides an
alternative approach to get a model size reduction.

In this technique, a system is regarded as an assembly of several components
and the dynamic variables of the total system are expanded in terms of the modes
of the different system components, which can be calculated in a more efficient
way than the modes of the total system. Since the system is divided into several
components, some additional constraints must be specified at the interfaces
between the components to enable the calculation of the component modes. This
has an important influence on the resulting accuracy and efficiency of this model
size reduction technique. For a detailed discussion of this technique, the reader
is referred to e.g. [2.22] and [2.34].

Coupled vibro-acoustic systems are often decomposed into two components,
i.e. the elastic shell structure and the acoustic fluid domain. Several types of
interface boundary conditions between the structural and acoustic component
may be used to determine the component modes. The most commonly used
interface conditions for coupled vibro-acoustic systems are discussed below.

[2.50] proposed the expansion of the structural nodal degrees of freedom in terms
of a set of m. modes of the uncoupled structural system, i.e. the modes of the
elastic shell structure without acoustic pressure loading along the fluid-
structure coupling interface, and expanding the acoustic nodal degrees of
freedom in terms of a set of mn. modes of the uncoupled acoustic system, i.e. the
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modes of the fluid domain with the fluid-structure coupling interface assumed to
be perfectly rigid.

The application of this type of component mode synthesis technique for a
coupled Eulerian model (2.88) is as follows.

The structural expansion becomes

jw, 1 s_ 0 (,_ ,[sI-- 11 (2.107)
M=1

where each column in the (nsxm) matrix [osu ] is a modal vector {Osu m} of the

uncoupled elastic shell structure with natural frequency cs,,
[ u,m}= , m} (m=l..ms) (2.108)

and where {10 } is a (m.,x)) vector of structural modal participation factors.
The acoustic expansion is

ma

{pi}= Ybam.{'Paum} =[0.au,1a} (2.109)

m=l

where each column in the (nmxmr) matrix [0au, is a modal vector {au, m } of the

uncoupled fluid domain with natural frequency co a, M
[Ka{au, m} CO2,m[Ma{ Oau,m} (m=1..ma) (2.110)

and where {(a } is a (maxl) vector of acoustic modal participation factors.
By substituting the component mode expansions (2.107) and (2.109), in which

the uncoupled structural and acoustic modal vectors are normalized with respect
to their corresponding mass matrices, into the Eulerian model (2.88) and by
premultiplying the structural and acoustic part of the resulting matrix equation
with the transpose of, respectively, the structural and the acoustic modal vector
matrix, the following modal model is obtained,

( j '0 (2.111)

The ((mas+mn)xl) right-hand side vector is

O'T_ 0 (2.112)

The ((rm+ma)x(m+r+ma)) modal stiffness matrix is

[k][As A] (2.113)

where the (m.sxm.,) matrix [As] and the (maxrm0 ) matrix [Aa] are diagonal
matrices,

Os,1 '0 Coa,1 0

[As]= -_ I0 . ., P [Aa]- =.. (2.114)

0 (O 'S, m0 0)a, Ma
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and where the (mrxra) matrix [A] is

[A] = p1suT.[K cikpau] (2.115)

The ((m.,+m.)x(mrr+m.)) modal mass matrix is

[A I T 0 ] 
(2 .1 16 )

where [Is] and [Ia] are, respectively, the (nrxm.) and (maxmo) unity matrices.

The ((mr+m.)x(m•+m•)) modal damping matrix is

[=I•sT.Cs' su 0 1 (2.117)

0J O au. Ca. au]
The application of the component mode synthesis technique, using these

uncoupled. component modes, for a coupled Eulerian model of type (2.92) is
described in e.g. [2.25] and its application for a coupled mixed model (2.95) is
described in e.g. [2.31].

In comparison with the modal expansion, discussed in section 2.8.3.1., the
calculation of the modal vectors are much less computationally demanding, since
the modes of the uncoupled structural and uncoupled acoustic systems result
from symmetric eigenvalue problems.

However, the efficiency of this component mode synthesis in reducing the size
of the original (Eulerian) model is substantially smaller. This is mainly due to the
inefficient way, in which the displacement continuity (2.72) at the fluid-structure
coupling interface is approximated by the uncoupled acoustic. modes. Since the
uncoupled acoustic modes are calculated with rigid wall boundary conditions at
the fluid-structure interface, the fluid displacement, normal to this interface, is
zero in each mode. In this way, any combination of the uncoupled acoustic
modes yields a zero normal fluid displacement and violates the displacement
continuity condition. To get an accurate approximation of the near-field pressure
effects in the vicinity of the fluid-structure coupling interface, which are usually
associated with the displacement continuity, a lot of high-order acoustic modes
should be comprised in the uncoupled modal base, which results in a large size
of the modal model. Consequently, the benefit of a computationally efficient
construction of the modal base is reduced by the smaller model size reduction,
obtained with uncoupled component modes.

" To enhance the ability of the acoustic component modes to represent the
displacement continuity and the associated near-field effects, [2.51] recently
proposed to calculate the acoustic component modes with an impedance
boundary condition at the fluid-structure coupling interface. Since the efficiency
of this type of component mode synthesis is largely dependent on the applied
impedance value, this approach is still subject of on-going research, mainly
looking for a systematic procedure to determine a proper impedance value.

* Another way to enhance the accuracy of a component mode synthesis has.been
described by [2.26], who extended the fixed-interface component mode synthesis
technique, developed by [2.23] and [2.47] for large structural problems, to
coupled vibro-acoustic problems.

In this approach, the structural displacement is still expanded in terms of a
set of uncoupled structural modes. The fluid pressure is expanded in terms of a
set of fixed-interface modes and constraint modes. Fixed-interface modes are
acoustic modes with zero pressure boundary conditions at the fluid-structure
coupling interface. In each of the constraint modes, which are usually determined
with a static condensation technique, one of the previously fixed interface degrees
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of freedom is released. In this way, each constraint mode represents the static
pressure field with a unit pressure at the released interface degree of freedom.
[2.36] refined the method by determining the constraint modes, with a dynamic
calculation procedure. Since a large, number of constraint modes are needed to
get an acceptable level of accuracy, the resulting reduction of the model size and
the computational effort is fairly small, which makes this 'approach of minor
practical use for coupled vibro-acoustic problems.

2.8.3.3 Ritz vector expansion

The Ritz vector expansion technique provides a way to circumvent the
p'roblems, associated with the fact that the modes of a system or its components
are independent of the external excitations of the system. Especially for local
excitations, such as structural point forces and acoustic point sources, the forced
responses often peak in the vicinity of the excitation point and attenuate rapidly
away from the excitation. In order to accurately represent these local spatial
patterns with excitation independent modes, a lot of high-order modes should be
taken into account in the modal base of a modal expansion or component mode
synthesis model. This has a disadvantageous effect on the model size and
subsequent computational effort.

The Ritz vectors constitute an orthogonal set of functions, which not only
depend on the dynamic properties of the system but also on the external
excitations. [2.17], for instance, proposed the use of Ritz vectors for the
expansion of the structural displacement and the fluid pressure in a coupled
Eulerian FE/FE model (2.88). In comparison with a modal expansion model, a
smaller number of Ritz vectors is needed to get an acceptable level of accuracy,.
since the Ritz vectors depend also on the external excitations. A Ritz vector
expansion is, however, not commonly preferred to a modal expansion, since the'
benefit of the smaller model size is often nullified by the increased computational
effort for calculating an orthogonal set of Ritz vectors.

2.8.4 Limitations of coupled FE/FE models

In comparison with uncoupled vibro-acoustic problems, the practical use of
existing numerical prediction tools for coupled vibro-acoustic problems is more
limited, since the involved model sizes and the associated computational efforts
and memory requirements are larger and since the commonly used model size
reduction techniques are less efficient.

larger model sizes
The discussion of the finite element method has already revealed the necessity of
using a large number of degrees of freedom to get an acceptable level of accuracy.
In comparison with uncoupled vibro-acoustic problems, the involved model sizes
and the associated computational efforts and. '-memory requirements are
substantially larger for coupled vibro-acoustic problems. This is mainly due to
the following reasons.

* In order to incorporate the vibro-acoustic coupling effects, the structural and the
acoustic problem must be solved simultaneously, whereas for uncoupled vibro-
acoustic systems, the structural and the acoustic problem may be solved in a
sequential procedure.

* Coupled models are not only larger, but their numerical solution algorithms
have also a smaller computational efficiency. Compared with an uncoupled
structural or an uncoupled acoustic finite element model of the same size, solving
a coupled Eulerian FE/FE model is computationally less efficient, since such a
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coupled model is no longer symmetric and since its bandwidth is substantially
larger (see (2.88)).

reduced efficiency of model size reduction techniques
For the uncoupled structural and uncoupled acoustic problems, encountered in
uncoupled vibro-acoustic systems, their model sizes and subsequent
computational efforts may be efficiently reduced by using model size reduction
techniques, such as the modal expansion technique, the component mode
synthesis and the Ritz vector expansion technique. For coupled vibro-acoustic
problems, however, the efficiency of these model size reduction techniques is
significantly reduced, as already discussed in section 2.8.3.

limited applicability
As already mentioned before, the number of elements in a finite element
discretization should increase as the frequency increases. An increase of the
number of elements yields a larger model size and requires a larger amount of
computational effort and memory resources. As a result, the applicability of the
finite element and boundary element method is practically restricted to a limited
frequency range. Above a certain frequency limit, which depends on the nature of
the problem and on the available computer resources, these prediction methods
would require a prohibitively large amount of computational effort and memory
resources to get an acceptable level of accuracy.

As discussed above, the model sizes and subsequent computational efforts are
larger and the efficiency of model size reduction techniques is smaller for coupled
vibro-acoustic problems than for uncoupled structural and uncoupled acoustic
problems. For these reasons, the practical frequency upper limit for applying
element based prediction techniques for coupled problems is substantially
smaller than for uncoupled' problems.

2.9 Examples

In this section, several properties of the finite element method are illustrated
through a one-dimensional uncoupled acoustic problem and a one-dimensional
coupled vibro-acoustic problem.

2.9.1 Uncoupled acoustic problem

2.9.1.1 Problem definition

A tube of length L, is filled with a fluid with density po and speed of sound c. At
one end of the tube, a time-harmonic velocity with amplitude V (displacement
amplitude X) and frequency co is imposed, while the other end of the tube is rigid
walled (see Fig. 2.8(a)).

The steady-state pressure response in the fluid 'is approximated using a finite
element discretization, which consists of n two-noded elements of length L=Lx/n,
yielding a total of (n+l) nodes (see Fig. 2.8(b)).
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Fig. 2.8: one-dimensional acoustic problem (a) and its FE discretization (b)

The exact steady-state pressure in the tube is

Pexact (x) = p0c oX[s in ( Cox- ) + ' Cs(Cx(218
PeatX~0 W[il~± L cos(-:)j, (2.1 18)C tan({L-} c

C

in which the harmonic time dependence elc~t is suppressed.

2.9.1.2 Direct finite element model

The pressure within -each element i between nodes i and (i+1) is approximated
in terms of two linear shape functions (x c[xi, ii+ 1),

p(x) pi..NI(x)+pi+i.N[+j(x)=p1 .(x-xi(
L L

where xi is the location of node i.
According to Eq. (2.21) and (2.23), the element stiffness and element mass

matrices for this discretization become,

e[K] 1/L -1/L[]. [L13 L16] (2.120)
t ]7k-1.1 I/LI [Me]L L2 L/6 L/3J

The resulting finite element model becomes

([Ka] P (2.121)

'Pn+l -
in which the global stiffness and global mass matrices are

1/L -1/L

-I/L 2/L -1/L 0

-1/L 2/L -1/L

[Ka]: ... -. .,. (2.122)

-1/L 2/L -1/L

0 -]/L 2/L -1/L

-1/L 1/L
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L/3 L/6

L/6 2L/3 L/6 0
L/6 2L/3 L1/6

1[M (2.123)

L/6 2L/3 L/6

0 L/6 2L/3 L/6

L/6 L/3

Since the pressure expansion (2.119) enables the representation of a complete
polynomial function of the first order and since the pressure has a unique value
at the interelement boundaries, the convergence of this type of finite element
discretization is ensured.

Fig. 2.9 compares the finite element predictions (n=20) with the exact
solutions for the case of an air-filled (po=1.225 kg/m 3, c=340 m/s) tube of length
L=-1 m. At the left hand side, a displacement is imposed with amplitude X=10-3
m. Two excitation frequencies are considered: co/2x=100 Hz (Fig. 2.9(a,c)) and
,500 Hz (Fig. 2.9(b,d)).

To indicate the accuracy of a certain finite element approximation, a global
measure Ap for the pressure predictions and a global measure Au for the velocity
(and displacement) predictions may be defined as follows:

2

SlPPexact I d f a Pexact 2

Ap= 0 LV 0 2x 2 (2.124)
Pexact"dx i dx

0 0

An indication of the convergence rate is obtained by plotting the number of
nodes (n+l) of a certain FE discretization against the corresponding accuracy
measures Ap and Av. Fig. 2.10 shows the resulting curves for the two considered
excitation frequencies.
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Fig. 2.9 instantaneous steady-state pressure and displacement
(solid: exact, x-marked : FE (n=20))
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Fig. 2.10 pressure (solid) and velocity (dotted) convergence rates

Fig. 2.9 and Fig. 2.10 illustrate some important features of the finite element
prediction for solving-steady-state dynamic problems.

•The accuracu. obtained from, a aiven finite element dis~cretizaition,. dec~reases, wJhen.

the excitation freguency increases

The dynamic response of an acoustic system results from a complex wave
propagation mechanism in the fluid. The wavelength 2 of a freely propagating
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harmonic wave in a fluid is proportional to the speed of sound c in the fluid and
inversely proportional to the frequency w,

2= c (2.125)
a)

Consequently, the spatial variation of the dynamic response, which is strongly
related to the wavelength 2, increases for increasing frequency. This is clearly
illustrated in Fig. 2.9, where the period of the exact pressure oscillations in the
tube corresponds with the fact that LO0.32 at 100 Hz and L, 1.5A at 500 Hz.

Since the pressure distribution is determined by low-order polynomial shape
functions, a finite element discretization yields only an approximation with a
limited spatial variation. As mentioned before, a rule of thumb states that a
discretization should have at least 10 elements per wavelength to keep the
discretization error within acceptable limits. Hence, according to (2.125), the
accuracy, obtained from a given discretization (i.e. a given number of nodes and
elements), decreases with increasing frequency, as illustrated in Fig. 2.10.

* The accuracui for derived secondarm variables is smaller than for primaru field
variables

Since the fluid velocity and displacement in a freely propagating harmonic
wave have the same spatial period as the pressure, the dynamic pressure and
velocity (and displacement) distributions in an acoustic system have similar
spatial variations, as may be seen from the exact solutions in Fig. 2.9.

As mentioned before, the fluid velocity and displacement distributions in a
finite element approximation are derived secondary variables, in that they are
expressed in terms of the first-order derivatives of the pressure shape functions.
Since the order of the derived velocity shape functions is smaller than the order
of the pressure shape functions, the velocity and displacement approximations
have a smaller spatial variation than the pressure approximation. Since this is in
contrast with the above mentioned physical reality, the accuracy for the derived
secondary variables in a given discretization is smaller than for the primary
variables.

In the present example, in which the pressure is approximated as a linear
function within each element, the corresponding velocity and displacement
predictions are constant within each element and discontinuous at the element
boundaries, as 'shown in Fig. 2.9. The subsequent accuracy of the velocity
predictions in a given discretization is smaller than the pressure accuracy, as
illustrated by the pressure and velocity convergence rates in Fig. 2.10.

2.9.1.3 Modalfinite element model

The exact natural frequencies of the modes of the considered acoustic tube,
assuming both tube ends to be perfectly rigid, are

fm, exact- =m_ (m-)c = 1,2. (2.126)
27r 2Lx

The predictions of the modes and their natural frequencies for 'the finite
element model (2.121), which results from a discretization of the tube into n
linear elements, are obtained from the eigenvalue problem

whree) e eorr2.[Maepem} (m= p..(n+ m))[Kj(~j o~m1))(2.127)

where each ((n+l)xl) eigenvector represents a predicted mode shape
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Pi'm

{ =P2,m (2.128)

ýPn+,m J

and where its associated eigenvalue represents the squared value of the predicted
natural frequency.

Tab. 2.2 compares the exact and predicted natural frequencies of the first 10
modes of an air-filled (po=1. 2 2 5 kg/m 3 , c=340 m/s) tube of length L•=I m, which
is discretized into n= 100 linear elements.

exact (126) FE (n=100)
0 Hz 0.000 Hz

170 Hz 170.007 Hz
340 Hz 340.056 Hz
510 Hz 510.189 Hz
680 Hz 680.448 Hz
850 Hz 850.874 Hz
1020 Hz 1021.511 Hz
1190 Hz 1192.399 Hz
1360 Hz 1363.582 Hz
1530 Hz 1535.101 Hz

Tab. 2.2: exact and predicted natural frequencies

This table illustrates the typical feature of a finite element model regarding
mode extraction: due to the element discretization, the natural frequencies are
systematically overestimated and the absolute and relative overestimations
increase for increasing frequency.

By expressing the unknown nodal pressure degrees of freedom in the finite
element model (2.121) in terms of a set of m0 modal vectors, as proposed in Eq.
(2.54), the modal model (2.55) for the considered acoustic tube becomes

I-o X. 1 1I
~(O~CO2 ~ nwl{~A J L~p0~pI~a J(2.129)

where the unknowns are the modal participation factors Om in the modal
expansion (2.54).

The modal model (2.129) was solved for the case of an air-filled (po=1. 2 2 5
kg/m 3 , c=340 m/s) tube of length Lý=1 m with an imposed displacement at the
left hand side with amplitude X=10-3 m and frequency cw/2rc=500 Hz. The tube
discretization consisted of n=100 linear elements. Fig. 2.11 plots the resulting
accuracies of the pressure and velocity predictions, indicated by their measures
Ap and Au (see (2.124)), against the number of modes m. in the modal model.

This figure clearly indicates the efficiency of the modal expansion technique.
The steep decrease of the error curves for small values of m. indicates that a
modal model with a relatively small number of modes yields an accuracy, close to
the accuracy, obtained with a direct solution.of the much larger finite element
model. Note that the latter accuracy corresponds with a modal solution, in which
all modes are taken into account (mr=n+l).

As mentioned in section 2.6.2, a rule of thumb states that a good accuracy is
obtained by using all the modes, whose natural frequencies are smaller than 2O.
According to this rule of thumb and to Tab. 2.2, a modal solution with the first 7
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modes should have an accuracy, close to one of the direct solution, for an
excitation frequency of 500 Hz. This is indeed confirmed by Fig. 2.11, in which
the error measures for this modal model are '+'-marked.

l0°

10.

0 100

number of modes ma

Fig. 2.11: pressure (solid) and velocity (dashed) convergence rates at 500 Hz

2.9.2 Coupled vibro-acoustic problem

2.9.2.1 Problem definition

A one-dimensional acoustic tube of length L. is filled with a fluid with density po
and a speed of sound c. One end of the tube is rigid walled, while the other end.
consists of a piston with an infinitesimal area dy.dz and a mass per unit area ms.
The piston is elastically supported with a stiffness per unit area ks and is excited
by a dynamic force F.dydz at frequency co (see Fig. 1.12(a)).

w

p(x) F-flw

I _x

(a)

L

1 2 3 i- i i+1 n n+1

(b)

Fig. 2.12 : one-dimensional coupled problem (a) and its acoustic
discretization (b)

The exact steady-state pressure response in the fluid and the exact steady-
state piston displacement are
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Pexact(P W oc - coL)occoF 2)(WL cos(-Co) (2.130)oOCCo cos(-ý-_x)+ (ks _ msCO 2)sin(C=x) c

C C

ScoLF, sin(°L X)

c (2.131)
Wexact - Pcocos(L ) +(ks _msc coLx

___ O o =`)+(k )sCOsin (_ )
C C

in which the harmonic time dependence ei"0t is suppressed.

2.9.2.2 Model reduction techniques

As in the previous example, the steady-state pressure response in the fluid is
approximated using a finite element discretization, which consists of n linear
fluid elements with (n+l) nodal pressure degrees of freedom (see Fig. 2.12(b)). The
steady-state piston displacement is the single nodal degree of freedom of the
structural FE model. The Eulerian FE/FE model (2.88) of the coupled vibro-
acoustic system is

-[ T P2 0 (2.132)

Pn+ 1 0

The ((n+1)x(n+1)) acoustic stiffness'and mass matrices. [Ka] and [Ma] are

given in Eq. (2.122) and (2.123). The (lx(n+1)) coupling matrix [Kc] is

[Kc]=[o 0 ... 0-1] (2.133)

The modal expansion technique, discussed in section 2.8.3.1, 'and the
component mode synthesis technique, discussed in section 2.8.3.2, are applied to
an Eulerian model (2.132) with n=50 fluid elements for the case of an air-filled
(po=1. 2 2 5 kg/m 3, c=340 m/s) tube of length Lx=l m with a piston (nm=1 kg/m 2,
ks= 100000 N/m 3), excited by a force F=I N/m2 at frequency c/27t=200 Hz.

Fig. 2.13 compares the exact steady-state pressure and displacement with the
corresponding prediction results, obtained with, on the one hand, an expansion
with rna=5 modes of the coupled system and, on the other hand, an expansion
with the single structural degree Of freedom and m.=4 modes of the uncoupled
acoustic system.

This figure clearly illustrates that, in comparison with a modal expansion
model of the same size, the accuracy with a component mode synthesis model is
significantly smaller, due to the zero fluid displacement in all uncoupled acoustic
modes at the fluid-structure coupling interface (x= 1).

As a result, the component mode synthesis technique requires a substantially
larger modal base to get an accuracy, comparable with the accuracy of the modal
expansion technique.

This is illustrated in Fig. 2.14, which plots the accuracy of the pressure and
displacement predictions, indicated by their error measures Ap and Av, defined in
Eq. (2.124), against the number of modes in a modal expansion and a component
mode synthesis model.
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Fig. 2.13: instantaneous steady-state pressure (a) and displacement (b) at
200 Hz (solid: exact, x-marked: modal expansion (m.=5,n=50), dashed:

component mode synthesis (ma=4,n=50))
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MEE
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Fig. 2.14: pressure (left) and displacement (right) convergence rates for
modal expansion (solid) and component mode synthesis (dashed) models
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AFFIDAVIT

I, David H. Hinds, state as follows:

(1) I am the Manager, New Units Engineering, GE Hitachi Nuclear Energy ("GEH"), have
been delegated the function of reviewing the information described in paragraph (2) which
is sought to be withheld, and have been authorized to apply for its withholding.

(2) The information sought to be withheld is contained in Enclosure 1 of GEH letter MFN 08-
878, Mr. Richard E. Kingston to U.S. Nuclear Regulatory Commission, entitled Response
to Portion of NRC RAI Letter No. 220 Related to ESBWR Design Certification Application
- DCD Tier 2 Section 3.9 - Mechanical Systems and Components; RAI Numbers 3.9-221,
3.9-222, 3.9-224, 3.9-225, 3.9-226, 3.9-227, 3.9-228, 3.9-229, 3.9-230, 3.9-231, & 3.9-232,
dated November 6, 2008. The GEH proprietary information in Enclosure 1, which is
entitled 1.Response to Portion of NRC RAI Letter No. 220 Related to ESBWR Design
Certification Application - DCD Tier 2 Section 3.9 - Mechanical Systems and
Components; RAI Numbers 3.9-221, 3.9-222, 3.9-224, 3.9-225, 3.9-226, 3.9-22 7, 3.9-228,
3.9-229, 3.9-230, 3.9-231, & 3.9-232 - Proprietary Version, is delineated by a [[.d..o.
underline inside double square brackets. ]]. Figures and large equation objects are

identified with double square brackets before and after the object. In each case, the
superscript notation ,3) refers to Paragraph (3) of this affidavit, which provides the basis for
the proprietary determination. A non-proprietary version of this information is provided in
Enclosure 2, 2.Response to Portion of NRC RAI Letter No. 220 Related to ESBWR Design
Certification Application - DCD Tier 2 Section 3.9 - Mechanical Systems and
Components; RAI Numbers 3.9-221, 3.9-222, 3.9-224, 3.9-225, 3.9-226, 3.9-22 7, 3.9-228,
3.9-229, 3.9-230, 3.9-231, & 3.9-232 - Public Version.

(3) In making this application for withholding of proprietary, information of which it is the
owner, GEH relies upon the exemption from disclosure set forth in the Freedom of
Information Act ("FOIA"), 5 USC Sec. 552(b)(4), and the Trade Secrets Act,
18 USC Sec. 1905, and NRC regulations 10 CFR 9.17(a)(4), and 2.390(a)(4) for "trade
secrets" (Exemption 4). The material for which exemption from disclosure is here sought
also qualify under the narrower definition of "trade secret," within the meanings assigned to
those terms for purposes of FOIA Exemption 4 in, respectively, Critical Mass Energy
Proiect v. Nuclear Regulatory Commission, 975F2d871 (DC Cir. 1992), and Public Citizen
Health Research Group v. FDA, 704F2d1280 (DC Cir. 1983).

(4) Some examples of categories of information which fit into the definition of proprietary
information are:

a. Information that discloses a process, method, or apparatus, including supporting data
and analyses, where prevention of its use by GEH competitors without license from
GEH constitutes a competitive economic advantage over other companies;
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b. Information which, if used by a competitor, would rieduce his expenditure of resources
or improve his competitive position in the design, manufacture, shipment, installation,
assurance of quality, or licensing of a similar product;

c. Information which reveals aspects of past, present, or future GEH customer-funded
development plans and programs, resulting in potential products to GEH;

d. Information which discloses patentable subject matter for which it may be desirable to
obtain patent protection.

The information sought to be withheld is considered to be proprietary for the reasons set
forth in paragraphs (4)a., and (4)b, above.

(5) To address 10 CFR 2.390(b)(4), the information sought to be withheld is being submitted to
NRC in confidence. The information is of a sort customarily held in confidence by GEH,
and is in fact so held. The information sought to be withheld has, to the best of my
knowledge and belief, consistently been held in confidence by GEH, no public disclosure
has been made, and it is not available in public sources. All disclosures to third parties
including any required transmittals to NRC, have,been made, or must be made, pursuant to
regulatory provisions or proprietary agreements which provide for maintenance of the
information in confidence. Its initial designation as proprietary information, and the
subsequent steps taken to prevent its unauthorized disclosure, are as set forth in paragraphs
(6) and (7) following.

(6) Initial approval of proprietary treatment of a document is made by the manager of the
originating component, the person most likely to be acquainted with the value and
sensitivity of the information in relation to industry knowledge, or subject to the terms
under which it was licensed to GEH. Access to Such documents within GEH is limited on a
"need to know" basis.

(7) The procedure for approval of external release of such a document typically requires review
by the staff manager, project manager, principal scientist or other equivalent authority, by
.the manager of the cognizant marketing function (or his delegate), and by the Legal
Operation, for technical content, competitive effect, and determination of the accuracy. of
the proprietary designation. Disclosures outside GEH are limited to regulatory bodies,
customers, and potential customers, and their agents, suppliers, and licensees, and others
with a legitimate need for the information, and then only in accordance with appropriate
regulatory provisions or proprietary agreements.

(8) The information identified in paragraph (2), above, is classified as proprietary because it
identifies detailed GE ESBWR design information. GE utilized prior design information
and experience from its fleet with significant resource allocation in developing the system
over several years at a substantial cost.

The development of the evaluation process along with the interpretation and application of
the analytical results is derived from the extensive experience database that constitutes a
maj or GEH asset.
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(9) Public disclosure of the information sought to be withheld is likely, to cause substantial
harm to GEH's competitive position and foreclose or reduce the availability of
profit-making opportunities. The information is part of GEH's comprehensive BWR safety
and technology base, and its commercial value extends beyond the original development
cost. The value of the technology base goes beyond the extensive physical database and
analytical methodology and includes development of the expertise to determine and apply
the appropriate evaluation process. In addition, the technology base includes the value
derived from providing analyses done with NRC-approved methods.

The research, development, engineering, analytical and NRC review 'costs comprise a
substantial investment of time and money by GEH.

The precise value of the expertise to devise an evaluation process and apply the correct
analytical methodology is difficult to quantify, but it clearly is substantial.

GEH's competitive advantage will be lost if its competitors are able to use the results of the
GEH experience to normalize or verify their own process or if they are able to claim an
equivalent understanding by demonstrating that they can arrive at the same or similar
conclusions.

The value of this information to GEH would be lost if the information were disclosed to the
public. Making such information available to competitors without their having been
required to undertake a similar expenditure of resources would unfairly provide competitors
with a windfall, and deprive GEH of the opportunity to exercise its competitive advantage
to seek an adequate return on its large investment in developing these very valuable
analytical tools.

I declare under penalty of perjury that the foregoing affidavit and the matters stated therein are
true and correct to the best of my knowledge, information, and belief.

Executed on this 6th day of November 2008.

David H. Hinds
GE-Hitachi Nuclear Energy Americas LLC
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