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I. Introduction 

Designers of new and innovative reactors have recently turned to so-called passive 

cooling systems for performing a variety of functions during both emergency conditions and 

normal operation. Passive systems, as defined by the IAEA (1991), do not rely upon external 

power sources or operator actions, or at least do so only to a very limited degree; rather, these 

systems operate by exploiting various natural phenomena (e.g., conduction, condensation, 

gravity, buoyancy and/or natural circulation) to accomplish their function.  

Due to their reliance on inherent physical laws, passive systems are often thought to be 

more reliable than traditional active systems (EPRI, 2007). Indeed, considering that the 

reliability of active systems is often limited by the availability of AC power or successful 

operator action, it stands to reason that passive systems, relying upon neither, would be more 

reliable (Mackay et al., 2007). Furthermore, passive systems are often thought to be less 

expensive than their active brethren, an assumption stemming from the fact that the design of a 

passive system precludes many of the costly components, such as pumps, that would otherwise 

be necessary (EPRI, 2007). In addition, the use of passive systems may warrant the elimination 

of various support systems, such as backup diesel generators, resulting in overall system 

simplification that benefits both cost and reliability. Thus, it is their potential to achieve 

enhanced reliability at a low cost that motivates the use of passive systems in innovative reactor 

designs. 

The remainder of this report summarizes the current state-of-the-art in the reliability 

assessment of passive safety systems. Section II provides examples of passive systems that have 

been proposed for advanced LWRs. Section III addresses the issue of failure of a passive safety 
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system, followed by a discussion of various thermal-hydraulic phenomena that are expected to 

affect the performance of passive systems in Section IV. In Section V, the issue of uncertainty is 

addressed, including the sources of uncertainty in modeling passive safety systems and the 

effects of this uncertainty on reliability assessment. Finally, Section VI provides a discussion of 

existing methodologies and tools for assessing the reliability of passive safety systems. 

 

 

II. Examples of Passive Systems 

The applications of passive systems to reactor safety are numerous.  The IAEA currently 

recognizes four categories of passive safety systems, as listed in Table 1 (IAEA, 1991). Of these, 

categories B and C have received the most attention of late due to their potential to provide core-

cooling without requiring AC power. A quick review of the literature reveals numerous 

innovative reactor designs that utilize category B and C passive safety systems, the most notable 

being the latest designs by Westinghouse and GE: the Westinghouse AP1000 and the GE 

ESBWR (ESBWR 2008, Shultz 2006).  

The AP1000 is an advanced PWR that is capable of providing passive core cooling under 

accident scenarios. This is accomplished through the establishment of various natural circulation 

cooling loops, including the Passive Residual Heat Removal (PRHR) system and the Passive 

Containment Cooling System (PCCS). Furthermore, core uncovery is mitigated by various 

passive injection systems; these systems include the gravity-driven Core Makeup Tank (CMT), 

accumulators, and the In-containment Refueling Water Storage Tank (IRWST) injection system. 

In addition, each of these systems injects borated water directly into the core to provide an 

alternative means of passive shutdown. Reyes (2005) provides a detailed description of the 

operation of each of these systems.  

The ESBWR is an innovative BWR design the employs numerous passive systems to 

accomplish a variety of safety functions, such as reactivity control, containment heat removal, 

core depressurization, and inventory control. These functions are achieved through such systems 

as the Isolation Condenser (IC), Gravity Driven Coolant System (GDCS), and the Passive 

Containment Cooling System (PCCS). In addition, the ESBWR is notable in that it utilizes 

natural circulation to provide the main heat transport during normal operation. A brief 

description of the ESBWR passive systems is provided by Challberg et al. (1998). 
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Table 1. IAEA Classification for Passive Safety Systems (IAEA, 1991) 

 

Category Description Example 

A Physical barriers and static structures Cladding, piping, containment 

B Moving fluid with no moving parts Natural circulation cooling systems 

C Moving fluid with moving parts 
Gravity-driven make-up tanks and 

accumulators with check-valves 

D Active Initiation / Passive Execution 
Gravity-driven control rods 

requiring active initiation 

 

 

III. The Concept of Functional Failure 

 The increased reliance on passive systems to provide various critical safety functions has 

not exactly been met with open arms by regulators, who have expressed concerns over designers’ 

capabilities to quantify the reliability of such systems. This is particularly true regarding systems 

that rely upon thermalhydraulic phenomena such natural circulation (i.e., category B and C 

passive systems).  

It was mentioned above that passive systems are expected to be more reliable than active 

systems due to decreased reliance on energy sources and intelligent actions; while perhaps true, 

this assertion remains to be verified. An unfortunate attribute of passive systems is that their 

driving forces are often weak (Mackay et al., 2007). As a result, the performance of passive 

systems tends to be sensitive to perturbations in the state of the plant. To illustrate the 

consequences of this, consider a decay heat removal system operating under natural circulation 

whose objective is to maintain adequate core cooling to prevent the cladding temperature from 

exceeding some specified failure limit. In this case, it is helpful to think of the cladding 

temperature as a load acting on the system, with the failure limit representing the system’s 

capacity to withstand that load. Hence, failure will occur when the load exceeds the capacity. 

This is the load-capacity failure model, also known as the resistance-stress (R-S) failure model, 



 4 

familiar to structural reliability (Burgazzi, 2007). For our example, the flow rate, and hence the 

maximum cladding temperature, may depend strongly on pressure losses in the natural 

circulation loop; as a result, minor alterations in the total pressure drop, due to corrosion or 

fouling, for instance, may sufficiently decrease coolant flow to an unacceptable level, resulting in 

cladding temperature exceeding the failure limit.  

In this hypothetical example, no components were assumed to fail, in the traditional 

sense, yet the passive system was unable to perform its required function due to the degraded 

condition of the plant. This warrants the consideration of a new type of failure, termed functional 

failure, applicable to passive systems. The concept of functional failure, as introduced by 

Burgazzi (2003), refers to the inability of a passive system to perform its intended function when 

called into operation due to deviations from its expected behavior. Specifically, this concept 

refers to failures that result from unfavorable initial/boundary conditions or the onset of adverse 

thermalhydraulic phenomena, rather than traditional active component failures. The term active 

in the previous statement is important, as the failure of a passive component (e.g., a check valve) 

would be considered to contribute to functional failure. For instance, a natural circulation system 

that is initiated by the opening of a check valve may fail if the valve only opens partially, 

resulting in an increased flow resistance in the system. Pagani et al. (2005) point out that 

functional failures are generally neglected in actively driven systems because sufficient safety 

margins exist to preclude their occurrence.  Furthermore, the operating point of an active system 

can usually be easily adjusted to compensate for adverse plant conditions.  In the case of passive 

systems, effective safety margins are reduced due to the uncertainty in predicting system 

performance. This issue will be discussed at greater detail in the following sections. 

 

 

IV. Thermalhydraulic Phenomena Affecting Passive System Performance 

 The previous discussion on functional failure alluded to the possible occurrence of 

thermalhydraulic phenomena that may impair the performance of category B and C passive 

systems. Saha (2005) and Vijayan and Nayak (2005) have identified a variety of such 

phenomena and provide a detailed description of each. The following is a summary of their 

discussions.  It should be noted that, although these phenomena are not necessarily unique to 
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passive systems, their effects can be more detrimental due to the weak driving forces 

characteristic of passive systems. 

 

 

IV.1 Thermal stratification 

 Thermal stratification refers to a phenomenon wherein horizontal layers of fluid of 

varying temperature are formed in a large pool. This stratification is the result of a density 

gradient that forms between the hot and cold fluid; the hotter fluid, being less dense, rises to the 

top of the pool, and the cooler fluid falls to the bottom. This phenomenon is important for 

systems with heat exchangers submerged in large pools of water as heat sinks, such as the 

IRWST.  Far from the heat exchanger, the fluid can stagnate in a stable stratified state. Hence, 

natural circulation will occur only in the vicinity of the heat exchanger, decreasing the overall 

heat transfer capability of the system (Saha, 2005).  In addition, the effective heat capacity of the 

pool is greatly reduced.  As a result, special modeling considerations must be made to determine 

whether, and under what conditions, thermal stratification will occur, and what effects its 

occurrence will have on the system. 

 

IV.2 Carryover and Carryunder 

 Carryover and carryunder are two phenomena of importance in BWRs that operate under 

natural circulation. In traditional BWRs, separation of the liquid and gaseous phases of the 

coolant is performed with mechanical steam separators. These mechanical separators introduce a 

large pressure drop in the system. This pressure drop greatly decreases the performance of 

natural circulation systems, where the driving head is weak; as a result, many designers have 

opted to remove the separators, relying instead upon gravity to separate the gaseous and liquid 

phases (Saha, 2005). Gravity is not as effective a steam separator as traditional mechanical 

separators, and the possibility exists for entrained liquid to be carried with the steam to the 

turbine, a process known as carryover. This process is detrimental to the turbine as these 

entrained water droplets will erode the turbine blades. Similarly, vapor bubbles can become 

entrained in the liquid as it returns to the core.  The result is an overall decrease in density of the 

recirculation flow, which reduces the driving head leading to reduced flow.  Carryover and 

carryunder depend on a variety of factors such as bubble dynamics, geometry, and interfacial 
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drag (Saha, 2005).  As a result, it is very difficult to accurately model the effects of these 

phenomena. 

 

 

IV.3 Condensation in the Presence of Non-condensable Gases 

 Condensation is known to be greatly impaired in the presence of non-condensable gases. 

Non-condensable gases tend to be carried with vapor to the walls of the condenser.  As the vapor 

is condensed it is carried away while the non-condensables tend to remain in the vicinity of the 

condenser.  These gases form a barrier to further vapor condensation, as additional vapor must 

diffuse through the non-condensable gases (Saha, 2005).  This effect is particularly important 

when considering condensation on the walls of the containment, as in the AP1000 PCCS, for 

example.  The containment building contains air, and possibly other non-condensables, that can 

impede heat transfer through the containment walls.  The effect of non-condensable gases may 

also need to be considered when modeling natural circulation loops in the primary system.  In 

this case, non-condensable gases can enter the primary system through the condenser (in a 

BWR), which is generally at a vacuum.  Fission gases breaching the cladding are another source 

of non-condensable gases.  Although correlations exist to predict the effects of non-condensable 

gases, accurate modeling of this phenomenon is not a trivial task. 

 

IV.4 Vortex Formation in Pools 

 This phenomenon refers to the formation of vortices in pools that drain water to the core 

under the effects of gravity.  An example of such a system is the IRWST.  The primary concern 

is that vortices can form near the pool outlet, and under the right conditions, air can become 

entrained in the fluid as it leaves the pool (Saha, 2005).  This results in another source for non-

condensable gases in the primary system. 

 

IV.5 Counter-Current Flow Limitation 

 Counter-Current Flow Limitation (CCFL) is important when considering a two-phase 

mixture flowing through a pipe, with the liquid phase flowing in the opposite direction as the 

vapor phase.  This situation may arise, for instance, if core makeup water is being injected to the 

core through the hot leg while, simultaneously, steam is attempting to exit the core.  As the two 
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phases flow against one another, interfacial drag will tend to slow the flow in either direction. 

This results in a maximum attainable flow rate, and is referred to as CCFL (Saha, 2005).  An 

extreme case would exist when the interfacial drag is sufficient to stop flow in one direction 

altogether.  In the above example, this could result in the inability of the core makeup water to 

reach the core.  

 

IV.6 Flow Instabilities 

 Flow instabilities are well recognized phenomena amongst the BWR community. 

However, due to their rare occurrence in forced-circulation single-phase systems, these 

phenomena are largely a nonissue to designers of traditional PWRs. On the other hand, natural 

circulation systems, both single-phase and two-phase, are highly susceptible to flow instabilities. 

This is a result of the strong coupling that exists between the hydrodynamics and heat transfer in 

these systems; the flow rate in a natural circulation system is strongly dependent upon the 

coolant temperature as it exits the core, which, in turn, depends on the flow rate through the core, 

which is governed by the coolant outlet temperature, and so on.  Hence, it is easy to see the 

potential for flow oscillations in systems that operate under natural circulation.  From a safety 

perspective, flow instabilities are important for a variety of reasons; for instance, flow 

oscillations can induce mechanical vibrations in system components, potentially subjecting them 

to fatigue failure (Vijayan and Nayak, 2005).   Moreover, flow oscillations may induce 

premature critical heat flux (CHF), and may further result in power oscillations due to 

thermalhydraulic-neutronics coupling.  

 Vijayan and Nayak (2005) provide a very detailed description of various flow instabilities 

that may be expected to occur in natural circulation systems and provide a discussion on 

analyzing these phenomena.  A particularly important phenomenon in natural circulation systems 

is the Density Wave Instability (DWI).  This is the name given to the type of oscillation 

described in the previous paragraph.  The basic idea is that a natural circulation system will 

respond to a sudden power increase with an increase in flow due to a decrease in coolant density. 

This increase in flow will result in a cooler average core outlet temperature, which will, in turn, 

decrease the flow because of the reduced thermal head.  As the flow decreases, the coolant 

temperature will rise, increasing the flow rate and beginning the cycle anew.  Depending on the 

conditions in the core, the oscillation can either grow indefinitely (unstable), decay (stable), or 
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converge to a constant amplitude oscillation (limit cycle).  If neutronic feedback is sufficient, this 

phenomenon is classified as a compound dynamic instability (Vijayan and Nayak, 2005).    

 Additional instabilities that are attributed to boiling inception include flashing and 

geysering (Vijayan and Nayak, 2005).  The former can occur for a single-phase natural 

circulation system with a tall riser.  As the heated fluid rises through the riser, it experiences a 

decreasing static pressure.  If this pressure drops below the vapor pressure of the liquid, the 

liquid will suddenly flash to vapor, rapidly increasing the buoyancy and flow rate.  This will 

reduce the fluid outlet temperature, as described above, possibly leading to flow oscillations. 

Geysering is a similar instability that is induced when boiling occurs within the core.  In this 

case, the rising vapor will expand due to decreasing static pressure, leading to a similar behavior. 

Instabilities of this nature may be an important concern in advanced reactors, namely in 

situations where boiling is initiated upon system depressurization through the actuation of a 

series of automatic depressurization valves (ADVs). In such a case, the transition from single-

phase to two-phase flow conditions may result in flow oscillations that could challenge the 

performance of the natural circulation heat removal systems. 

 

 

V. Uncertainty and the Reliability of Passive Systems 

A well posed reliability assessment should address two questions: how likely is the 

system to fail, and how confident are we in that assessment?  Naturally, this is a problem 

involving uncertainty.  The first of these questions addresses the failure probability of the 

system, which is a product of the inherent variability that exists in the system performance.  This 

randomness, or stochastic variability, is often referred to as aleatory or irreducible uncertainty 

(Ang and Tang, 2006).  The latter terminology arises from the assumption that randomness is 

inherent to the system, and hence, cannot be removed or reduced.  However, this is a bit of a 

misnomer, as pointed out by Der Kiureghian (2008) who, in quoting Ove Ditlevsen, claims that 

“[with the exception of] quantum mechanical phenomena inherent variability is reducible by 

more detailed modeling.”  The author goes on to claim, “Inherent variability is relative to a level 

of refinement of the model…. Randomness is not a property of nature but a property of the 

model” (Der Kiureghian, 2008).  For instance, it would, in principle, be possible to precisely 

model the outcome of a coin toss, but the vast amount of information regarding initial conditions, 
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as well as the complexity of the model, would render the problem impractical; for most purposes, 

modeling the coin toss as a ‘random’ event is good enough.  The randomness in this example is 

inherent to the model, not the system itself.  Hence, the claim that aleatory uncertainty is 

irreducible should be clarified to state that it is irreducible within the current modeling practice 

or capability.  

The second question concerns our confidence that our assessment of the system reliability 

is accurate.  This confidence, or “degree of belief,” is represented by epistemic uncertainty and 

reflects our lack of knowledge of how the system will perform – a lack of knowledge that results 

from an imperfect knowledge of the system boundary/initial conditions, as well as an inadequate 

understanding of the various phenomena (Section IV) that can lead to system failure 

(Apostolakis, 1990).  Recall that in Section III it was claimed that the performance of a passive 

system is highly sensitive to its boundary conditions.  A corollary to this claim is that any 

uncertainty in an analyst’s knowledge of the boundary conditions of the system will magnify the 

uncertainty in the system performance.  In fact, it is not only uncertainties in boundary 

conditions, but also uncertainties in various other system parameters, such as thermal 

conductivities and pressure form loss coefficients, that complicate our ability of accurately 

modeling system behavior.  As a result, epistemic uncertainties often pose the greatest challenge 

to reliability assessment.  

As we have seen, reliability assessment is really a problem of uncertainty quantification, 

and as such, it is constructive to identify all the potentially important sources of uncertainty. 

D’Auria (2004) provides an extensive list of such uncertainties that arise in modeling 

thermalhydraulic phenomena.  The majority of these uncertainties may be classified as model 

uncertainty.  As the name suggests, model uncertainty results from a lack of fidelity between a 

real system and the necessarily simplified model used to describe the system.  However, model 

uncertainty can be further subdivided into two other categories: representational uncertainty, and 

solution uncertainty.  The former refers to the uncertainty introduced when attempting to 

represent the physics of a real system with an idealized collection of partial differential equations 

and other mathematical relations. In the process, various simplifying assumptions are often 

made; for instance, fluids are often approximated as a continuum to simplify the mathematics.  In 

addition, many complex phenomena are not easily modeled based on first principles; in these 

cases, constitutive relations based on experimentation are often used.  Examples include 



 10 

interfacial momentum transfer in two phase flow, wall friction, and heat transfer correlations. 

This introduces further uncertainty due to experimental measurement error and the need to fit 

complex data structures with simplified continuous mathematical relations.  Furthermore, these 

correlations are often assumed to apply outside of their range of validity or in geometries 

different from those for which they were derived (D’Auria, 2004).  

Solution uncertainty represents the errors introduced when actually solving the 

representative mathematical model.  In almost all cases of interest, these equations must be 

solved numerically.  Hence, the continuous representation is reduced to a discrete representation, 

resulting in a loss of accuracy.  Various numerical errors result as the computational methods 

employed to solve the discrete equations are limited by machine accuracy.  Moreover, solution 

algorithms generally require averaging of fluid properties over nodes; as a result, improper 

nodalization can introduce substantial errors. In addition, the governing equations may be further 

simplified to reduce the complexity of the numerical algorithm and/or to reduce computation 

speed.  D’Auria (2004) points out that many codes are not capable of satisfying the 2
nd

 law of 

thermodynamics.  In addition, codes such as RELAP5 treat all flow as if in a cylindrical pipe. 

The correlations mentioned above are often only implemented in codes in an approximate form, 

and interpolation is often employed when these correlations exhibit discontinuities – such is the 

case when computing heat transfer coefficients in the transition flow regime.  Finally, the 

individuals who developed the codes are only human and subject to error.  These examples 

comprise only a subset of the possible sources of model uncertainty. 

  The solution of a system of differential equation requires not only a statement of the 

equations to be solved (the model), but also a statement of the initial conditions and boundary 

conditions (the inputs).  Hence, another class of uncertainty exists that is important for reliability 

assessment of passive systems, known as input uncertainty. In many cases, the conditions of the 

plant at the instant a passive system is called into operation are not precisely known.  Thus, the 

initial conditions, such as primary system pressure or heat sink temperature, are subject to a great 

deal of variability; this variability may be of either aleatory or epistemic nature, or both.  In 

addition, the boundary conditions will also be subject to uncertainty, as will be the case in a 

LOCA condition when the break size is not precisely known, or when considering condensation 

when the presence of non-condensable gases is unknown.  
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 The final class of uncertainty to be considered is statistical uncertainty.  Statistical 

uncertainty arises any time inferences are made on a population based on information acquired 

from a finite sample.  In the present case, the population refers to the spectrum of all possible 

system conditions that result when accounting for each of the aforementioned uncertainties. 

Statistical uncertainty results because only a finite number of model simulations (samples) can 

reasonably be performed, and its magnitude will vary inversely with this number. As a result, 

statistical uncertainty is reducible, and is rightfully classified as an epistemic uncertainty. 

 

 

VI. Existing Methodologies and Tools for the Reliability Assessment of Passive Systems 

 To summarize the previous sections, the overall objective of reliability assessment is to 

quantify the probability of functional failure of passive systems resulting from both the failure of 

passive components, such as pipes and check valves, and the occurrence of various performance-

impairing phenomena.  In addition, it is imperative to quantify each of the aforementioned 

epistemic uncertainties in an attempt to assess their effect on our estimation of the system failure 

probability.  It should be mentioned that the end goal of a reliability assessment requires to 

incorporation of the passive system reliability into the overall plant PRA.  To this end, a variety 

of approaches have been proposed, both domestically and abroad, the most promising of which 

are discussed below.  

 

VI.1 Fault Tree Approach to System Reliability 

An early approach proposed by Burgazzi (2002) involves the construction of fault trees to 

assess the failure probability of passive systems.  This approach considers first the reliability of a 

passive system to be the product of both the reliability of system components and the reliability 

of the passive function.  Hence, two branches will extend from the top failure event in a fault 

tree, connected by an “OR” gate.  Each branch corresponds to either component failure or 

functional failure, as illustrated in Fig. 1 (Burgazzi, 2002).  At this point, a traditional fault tree 

evaluation is performed to determine the failure logic for system components.  The assessment of 

functional failure is performed in a similar manner by relating the failure of the system to a series 

of degraded states in which the system can exist; an example of a degraded state would be a high 

concentration of non-condensable gases.  Finally, the probability that these degraded states will 
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be realized is expressed in terms of the failure probability of various components, such as non-

condensable vent valves, that are designed to prevent these conditions.  Alternatively, the 

probability of realizing a degraded state can be expressed in terms of a basic occurrence, such as 

 

Fig. 1. Example top-level fault tree for passive IC system (Burgazzi, 2002) 
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Fig. 2. Fault tree for natural circulation functional failure in IC system (Burgazzi, 2002) 

 

excessive pipe fouling.  Figure 2 illustrates the breakdown of natural circulation failure in such a 

fault tree representation (Burgazzi, 2002). 

The primary advantage of this approach to passive system reliability is that it allows ease 

of implementation of the passive system failure probability into the overall plant PRA.  This is 

because the system failure is expressed in terms of a fault tree, essentially making the system 

indistinguishable from other active systems in the PRA.  However, a variety of limitations exist 

regarding this approach.  To the author’s credit, it is admitted that this approach “represents a 

simplification of the matter whose treatment should encompass a wider research ranging from 

both the thermal-hydraulic and probabilistic analysis” (Burgazzi, 2002).  This approach is only 

meant to illustrate, at a high level, a possible approach to implementing the reliability of passive 

systems with other active systems.  That being said, one of the main limitations of the approach 
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concerns the definition of many of the basic fault events, such as excessive pipe fouling. 

Specifically, the term “excessive” is not well defined, and its exact definition will likely have a 

large impact on the system failure probability.  Furthermore, due to the complexity of passive 

thermalhydraulic phenomena and the synergism that exists between the various phenomena, it is 

foreseeable that the appropriate definition for “excessive” will depend upon other conditions in 

the system.  To be more precise, suppose that there exists a specific amount of pipe fouling that 

is sufficient to fail the system when all other components in the system are in their nominal 

operating conditions (i.e., not failed).  Then, according to the fault tree in Fig. 2, the probability 

of degraded heat transfer would be simply the probability of achieving that amount of pipe 

fouling.  On the other hand, suppose that the non-condensable vent valves suffer partial failure, 

resulting in a condition of “low” concentration of non-condensable gases in the system, as 

compared to the “high” concentration that is necessary to fail the system on its own. In this case, 

the condensation behavior of the system will be somewhat degraded and a lower degree of pipe 

fouling (compared to above) may be sufficient to fail the system.  Thus, the synergism between 

different phenomena in the natural circulation system may introduce complex dependencies in 

the fault tree that cannot be easily accounted for. 

An additional limitation of this approach concerns the ability to identify the failure modes 

of the passive system, including the relevant thermalhydraulic phenomena and the component 

failures that lead to their occurrence.  In later papers, Burgazzi (2004, 2006) describes two 

qualitative hazard identification tools, Failure Modes and Effects Analysis (FMEA) and Hazard 

and Operability (HAZOP), that may be capable of assisting analysts in identifying these failure 

modes. These tools are discussed in the following. 

 

VI.2 FMEA and HAZOP  

FMEA is a component level approach, wherein each component in the passive system is 

identified; in addition, a “virtual” component may be introduced to represent the passive 

function, such as natural circulation.  Following the identification of all system components, the 

failure modes of each component are identified, followed by a consideration of failure causes. 

The next steps include the identification of possible preventative and mitigative measures to be 

taken and the identification of the failure consequences on the system.  FMEA is highly 

qualitative, requiring input from various experts to identify the failure causes of the system 
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components and their consequences. As such, its usefulness in reliability analysis is limited. The 

main utility in utilizing an approach such as FMEA is to provide a framework to structure the 

experts’ thought processes and to focus their attention toward basic system processes and 

dependencies in the hopes of identifying hard-to-spot failures.  

An alternative approach proposed by Burgazzi (2004) is the HAZOP methodology. 

HAZOP is a parameter-based approach, focusing attention on fundamental system parameters 

(i.e. temperature, pressure, flow rate, etc.) and their effects on system performance.  This method 

requires the identification of all relevant system parameters.  Subsequently, a collection of guide 

words (such as more of, less of, none, etc.) are applied to each parameter.  The objective is to 

force the analyst to consider various “what if” scenarios to illicit valuable information 

concerning system failure modes.  Again, this method is qualitative and is only as valuable as the 

experts using it.  Additionally, the identification of all of the relevant parameters is often a 

challenging task.  Zio et al. (2003) have proposed to use the Analytic Hierarchy Process (AHP) 

as a tool for parameter identification and ranking based on experts’ opinions regarding parameter 

importance.  The AHP is discussed in greater detail in the subsequent section. 

 

VI.3 The Analytic Hierarchy Process for Parameter Identification and Ranking 

The Analytic Hierarchy Process was first proposed by Saaty (1980) as a priority ranking 

tool to be used when making complex decisions.  Since its inception, the AHP has enjoyed great 

success and has recently been recognized by Zio et al. (2003) for its potential applications to 

reliability assessment of passive systems.  The AHP provides a systematic method for 

decomposing a complex system into a collection of thermal-hydraulic phenomena and the basic 

parameters that affect those phenomena.  In addition, the AHP can be used to qualitatively rank 

parameters based on expert judgments regarding the influence of these parameters on system 

performance.  The method works by first identifying a top goal, which is generally defined as the 

high-level objective of the passive system; for instance, the top goal might be to remove decay 

heat from the core, with a lower-level system objective being to prevent the cladding or fuel 

from overheating.   Next, the components of the system are identified; within each component, 

various thermalhydraulic phenomena are expected to occur, and these are identified next. 

Subsequently, each of the identified phenomena is expressed in terms of general parameters, 

such as heat transfer coefficients and pressure drops.  An illustration of such a hierarchy is 
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provided in Fig. 3 for the example of an isolation condenser taken from Zio et al. (2003).  The 

final steps involve continued decomposition of the general parameters into increasing basic 

parameters.  The bottom of the hierarchy should consist of the most basic system parameters, 

such as geometries, material properties, or state variables such as temperature and pressure.  

 

 

Fig. 3. Example of parameter decomposition via AHP (Zio et al., 2003)  

 

 It was stated previously that the AHP can be used to rank parameters based on their 

expected influence on system performance (the top goal).  This is accomplished by assembling a 

panel of experts and having each perform pairwise comparisons of different parameters.  At each 

level in the hierarchy, the parameters are comparatively ranked on a scale from 1 to 9 based on 

their effect on the next highest level.  The results are arranged in a matrix, and the principal 

eigenvector of that matrix provides the appropriate ranking.  More details are provided by Zio et 

al. (2003).  As an example application of the AHP, Zio et al. (2003) considered an isolation 

condenser system, the partial hierarchy for which is illustrated in Fig. 3.  The authors identified 

32 basic parameters that were expected to influence the system performance.  In addition, the 

parameters were ranked based on judgments from five different experts.  The eleven most 

important parameters were identified and compared to the eleven most important parameters 
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identified through a quantitative sensitivity analysis using standardized regression coefficients. 

The results show good agreement regarding the parameters that were identified to be important; 

however, the actual rank of the parameters between the studies differed (Zio et al., 2003).   This 

indicates that the AHP may be useful for screening the most important parameters provided that 

a large enough subset of the original parameters remains after the screening process.  What is 

meant by ‘large enough’ is another issue altogether, but from the results in this example, large 

enough seems to be on the order of 10 parameters. 

 

VI.4 APSRA Methodology 

 Nayak et al. (2007, 2008) have proposed an alternative methodology for reliability 

assessment of passive systems, which they have named Assessment of Passive System 

ReliAbility (APSRA).  Figure 4, taken from these references, illustrates the major steps of the 

APSRA methodology.  The first four steps can be considered the preprocessing phase.  In this 

phase, the problem is defined (Step I) and all parameters that affect the system are identified 

(Step II).  Step III includes identifying the failure criteria; that is, identifying what the mission of 

the system is, and what constitutes failure of that mission.  In addition, identification of 

operational characteristics entails using simplified codes to approximate the behavior of the 

system to get a feel for what parameters will have the greatest effect on the system performance; 

this is essentially a sort of sensitivity study using approximate models.  Based on the results from 

this sensitivity study, the key parameters that have the largest impact on system performance are 

identified in Step V.  These parameters will be the subject of further consideration in the 

remaining analysis, and those parameters that do not greatly affect the system are neglected. 

Strictly speaking, the preprocessing phase should also include a step for model development.  

The APSRA methodology calls for the development of two different models; the first is a 

simplified model discussed previously, and the second is a best-estimate model, using a code 

such as RELAP5, which will be used in the subsequent steps.  
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Fig. 4 The APSRA Methodology (Nayak et al., 2008) 

 

 After identifying the key parameters and developing the best-estimate system model, Step 

VI requires the generation of a failure surface, i.e., a surface in the parameter space of the model 

that marks the boundary between successful and failed system operation.  The failure surface is 

generated by performing a series of simulations with the best-estimate model using a variety of 

possible parameter values.  The authors indicate that the outcomes of these trials are noted 

(success or failure), and the failure surface is generated accordingly; however, the details of this 

process have yet to be presented in the literature.  Once the failure surface has been generated, it 

is subject to an extensive experimental validation procedure to quantify the uncertainties in the 

ability of the best-estimate model to predict success and failure.  This validation process is 

performed on-site at various experimental facilities located at the Bhaba Atomic Research Centre 

(Nayak et al., 2007, 2008).  This step is performed due to the recognition that a great deal of 

model uncertainty exists when attempting to simulate complex thermal hydraulic phenomena, as 

discussed in Section V; in particular, the authors note the difficulties in modeling low-flow 

natural circulation, flow instabilities, CHF during flow oscillations, condensation in the presence 
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on non-condensable gases, and thermal stratification (Nayak et al., 2008).  Most of these 

phenomena have been described in detail in Section IV.  The concern with modeling low-flow 

natural circulation is due to the difficulty, or even the impossibility, of modeling multi-

dimensional flow that may not be fully developed with commonly used systems codes such as 

RELAP5 (Nayak et al., 2008).  

 Once the failure surface has been generated, and the uncertainties quantified, a process 

termed root diagnosis is performed to identify the components whose failures will result in 

unfavorable parameter deviations, thus failing the system.  This is yet another area where the 

authors fail to provide a great deal of detail, and it is unclear how the authors propose to identify 

these components.  A similar concern was expressed in the discussion regarding the fault tree 

methodology proposed by Burgazzi.  In fact, at this point in the APSRA methodology, the two 

approaches are very similar; a fault tree for the passive system is created considering the failures 

of active and passive components, and this fault tree is used to compute the failure probability of 

system.  

 The authors have applied the APSRA methodology to assess the failure probability of the 

Main Heat Transport (MHT) natural circulation system in the Advanced Heavy Water Reactor 

(AHWR).  As a two-phase natural circulation system, the authors have placed considerable 

emphasis on the occurrence of flow oscillations that can challenge the system performance.  The 

authors claim to have successfully generated a failure surface for the MHT system; however, at 

the time of publication, no validation experiments had been performed (Nayak et al., 2008). 

Moreover, the authors’ considerable ambiguity in their discussion of failure surface generation 

and root diagnosis make it difficult to critically evaluate this work.  These two tasks are 

suspected to introduce complications to the analysis and limit its utility, from a practical 

perspective; yet, without a detailed discussion describing these processes, it is impossible to 

draw any conclusions.  Furthermore, the failure surface that is generated is plant specific, and the 

uncertainty quantification results from one plant will not be easily adaptable to other plants and 

systems.  As a result, the explicit reliance upon experimentation to quantify the uncertainties in 

the failure surface may limit the applicability of this approach for plants in which not 

experimental facilities are available: for instance, new plants that only exist in the early design 

phase. 
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VI.5 The RMPS Methodology 

 

 In 1999, The Italian National Agency for New Technologies, Energy, and the 

Environment (ENEA), in collaboration with the University of Pisa and the Polytechnic of 

Milano, began the development of a new methodology for reliability assessment called REPAS 

(Reliability Evaluation of PAssive Systems) (EPRI 2007, Jafari et al. 2003, Ricotti et al. 2002). 

This work laid the foundation for the development of yet another methodology, RMPS 

(Reliability Methods for Passive Safety functions), beginning in 2001 (Marquès et al. 2005).  

The development of RMPS was sponsored by the European Union and was carried out by the 

French Commissariat à l’Energie Atomique (CEA) in collaboration with various European 

research centers and universities.  Figure 5 illustrates the flow diagram for the RMPS 

methodology (Marquès et al., 2005).  Although the diagram appears complicated, the 

methodology can be described by three phases: a preprocessing and model development phase, a 

simulation and propagation phase, and an analysis/post-processing phase.  Each of these steps is 

described in the following.  

 The preprocessing phase of the RMPS methodology is similar to the first several steps of 

the APSRA methodology and consists first of identifying the system and its intended mission. 

The mission of the system should be representable by a measurable quantity that can be used to 

specify the success/failure criteria of the system; an example could be peak cladding temperature 

(PCT), with the success criteria being to prevent the PCT from exceeding, say, 1204°C.  There 

may exist multiple success/failure criteria corresponding to different components or failure 

mechanisms; for instance, one success criterion could be to limit the PCT, whereas another 

success criterion could require limiting the maximum temperature differential at the core outlet 

to prevent thermal stresses due to strong temperature gradients.  Another important step is to 

identify all the phenomena that may impair system performance (the failure modes); this process 

may be assisted by the use of methods such as FMEA or HAZOP, as discussed above. 

Concurrent to this task should be the development of a best-estimate model to employ for system  
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Fig. 5 RMPS methodology flowchart (Marquès et al., 2005)  

 

 

simulations.  If possible, the model should be validated by comparisons with existing 

experimental data.  Additionally, the model may assist in identifying unforeseen failure modes, 

such as instabilities.  The next steps include identifying all the system parameters that are 

expected to influence the system’s performance and screening the most important parameters. 

The identification and initial screening can be accomplished via the aforementioned AHP, and 

additional screening of parameters can be accomplished by conducting sensitivity studies using 
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the best-estimate model to identify the parameters to which the system is most sensitive. 

Numerous methods of varying complexity (i.e., linear vs. nonlinear) exist for performing these 

studies (Saltelli et al. 2000, Saltelli et al. 2004). 

 The next step marks the point where the RMPS methodology differs significantly from 

the APSRA methodology.  The authors of the RMPS methodology have attempted to attribute 

the uncertainty in passive system performance to the uncertainty in the initial conditions and 

boundary conditions of the system (Marquès et al. 2005, Marquès et al. 2002).  In other words, a 

considerable amount of uncertainty exists in the exact values of the initial/boundary conditions 

when the system is called into operation, and this uncertainty is largely responsible for our lack 

of knowledge of how the system will perform.  As a result, these uncertainties in the input 

parameters need to be quantified in terms of probability density functions.  If sufficient data for 

the parameters are available, these data can be used to generate appropriate density functions 

using goodness-of-fit tests.  However, if available data are insufficient, as is usually the case for 

applications regarding new or innovative reactor systems, expert judgment will be necessary to 

select the distributions (Marquès et al., 2005).  It is important that any dependencies between 

different parameters be identified and accounted for, either by correlation matrices or explicit 

functional relations; this task is very difficult when relying upon expert judgment.  

 After completing each of the above tasks comes the simulation and propagation phase of 

the methodology.  The goal is to quantitatively assess the impact of uncertainty in the input 

parameters on the system performance and to compute the failure probability of the system.  The 

authors have identified two approaches for accomplishing this task.  The first is regarded as 

direct-sampling, and the idea is to propagate the uncertainties in the input parameters directly 

through the code model to obtain the uncertainty in the system performance.  This is performed 

through a number of Monte-Carlo simulations, wherein the input parameter values are randomly 

selected based on their respective distributions and the code is run for each collection of inputs. 

The failure probability is then computed by dividing the number of simulations that resulted in 

failure by the total number of simulations performed.  While this is a rather straightforward 

approach to computing the failure probability, there are a number of drawbacks.  First and 

foremost is that the number of simulations necessary to accurately predict the failure probability 

is usually quite large; if only a few simulations are performed, the statistical uncertainty will be 

quite large and the variance in the predicted probability will be high.  In addition, failure of the 
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system is expected to be quite rare, requiring parameters to take on improbable values (the tails 

of the distributions).  As a result, a high number of simulations must be performed to guarantee 

that the tails of these distributions have been sampled.  This is complicated by the fact that the 

simulations themselves are usually very time-consuming, on the order of several hours (Marquès 

et al., 2005).  Variance reduction techniques, such as stratified sampling and importance 

sampling, may be able to provide some relief by allowing for more accurate predictions with 

fewer simulations; however, the benefits of using such techniques are limited and further 

complicate the analysis.  

 The second proposed approach is to develop a response surface to approximate the output 

from the best-estimate model.  The response surface is a mathematically simplified model, such 

as a polynomial surface, that is used to approximate the actual model.  To develop the response 

surface, parameter values are judiciously selected based on experimental design techniques, such 

as fractional factorial designs or Taguchi orthogonal arrays (Box and Draper 2007, Roy 1990). 

Simulations are performed for each of the selected collections of parameters, and the results are 

then fitted with a surface in parameter space, similar to least-squares regression.  The 

assumption, then, is that this fitted surface well-represents the system behavior for all parameter 

values.  The failure probability is then computed by propagating the input uncertainty through 

the response surface, as opposed to the original best-estimate model.  The use of the response 

surface greatly improves computation speed; hence, many more samples can be drawn than what 

would have otherwise been feasible due to time-constraints.  This allows for a reduction in 

statistical uncertainty in predicting the failure probability.  The drawback is that the response 

surface is, by definition, a simplification of the original model, and therefore introduces 

additional epistemic uncertainty.  This uncertainty can be estimated based on the fidelity between 

the original model and the response surface (expressed in terms of the coefficient of 

determination (Fong et al. 2008).  Thus, the assumption that the response surface represents well 

the system behavior for parameter values can be clarified to mean that all deviations from the 

response-surface predictions are accounted for by this uncertainty.  Unfortunately, this need not 

be the case, nor is it possible to prove this assumption to be valid. 

 The final step of the RMPS methodology requires incorporating the computed passive 

system failure probability into the overall plant PRA.  Marquès et al. (2005) propose to 

accomplish this task by adding an event corresponding to passive system failure to any event tree 
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for any accident sequence where the system is expected to participate.  The authors present an 

example of using the RMPS methodology to estimate the failure probability for the Residual 

Passive Heat Removal system on the Primary circuit (RP2) during a Total Loss of Power Supply 

event.  The RP2 system is similar to the PRHR system in the AP1000. The authors identified 24 

parameters that were expected to influence system behavior, including the initial level of water 

in the heat sink pools, the amount of fouling in the heat exchanger tubes, the initial power level, 

and the instant at which the isolation valves are opened.  Additionally, uncertainty in the selected 

ANS decay heat curve was expected to contribute to the failure probability. Indeed, the authors 

conclude based on sensitivity studies that the ANS curve uncertainty contributed the most to 

system failure probability (Marquès et al., 2005).  Additional uncertain parameters that were 

deemed of high importance include the heat sink pool levels and the amount of non-condensable 

gases present (Marquès et al., 2005).  Another partial application of the RMPS methodology was 

applied by Marquès et al. (2002) to the isolation condenser system.  In this example, the system 

pressure was determined to be the most important parameter, followed by the collapsed water 

level in the RPV and the heat sink pool level. It should be noted that model uncertainty is not 

accounted for in the published examples for the RMPS methodology (Marquès et al., 2005). 

 

VI.6 Contributions from MIT 

 Various studies have been conducted at MIT concerning the reliability of passive safety 

systems.  These studies have been more focused on the passive systems utilized in advanced 

reactor designs, as opposed to LWRs.  Moreover, these studies were aimed primarily at 

identifying potential design options to improve safety.  A series of studies have been published 

regarding the reliability of a passive decay heat removal (DHR) system in a gas-cooled fast 

reactor (GFR) (Pagani et al. 2005, Mackay et al. 2007, Fong et al. 2008).  In the first of these 

studies, described by Pagani et al. (2005), a simplified steady-state model was considered.  The 

approach that was adopted for the reliability assessment was very similar to that of the RMPS 

methodology, with the exception of the treatment of model uncertainty.  Pagani et al. (2005) 

recognized that model uncertainty can be attributed to errors in the correlations used to predict 

various thermalhydraulic parameters, such as Nusselt numbers and friction factors.  Thus, the 

authors propose to use the adjustment factor approach, which requires introducing a distributed 

multiplicative (or additive) factor that represents epistemic uncertainty in the model (Pagani et al. 
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2005, Zio and Apostolakis 1996).  For simplicity, the authors assumed that all of the uncertain 

parameters and adjustment factors were normally distributed, with means and standard 

deviations based on industry practice and experience or expert judgment (Pagani et al., 2005). 

Pagani et al. (2005) conclude that a passive system can actually be less reliable than an active 

system designed to accomplish the same mission.  This is because of the high epistemic 

uncertainty associated with passive system performance that results in a degraded safety margin. 

Further, the authors conclude that passive systems may benefit more from redundancy than 

active systems. 

 Recognizing the modeling limitations of the previous analysis, Mackay et al. (2007) 

expand the analysis to account for transient effects by modeling the system in RELAP5.  Due to 

the increased computation time necessary to perform transient simulations, the authors opted to 

use a stratified sampling technique, known as Latin Hypercube Sampling (LHS), to propagate 

the parameter and model uncertainties (Mackay et al., 2007).  This allowed for a reduction in the 

number of simulations that needed to be performed to more reasonable levels.  The analysis 

revealed that when multiple DHR loops were modeled, the coolant flow was capable of 

bypassing the core by flowing between multiple cooling loops.  In some cases, flow reversal was 

observed in the core.  This was due to the large pressure drop in the core, and the tendency for 

the flow to choose the path of least resistance.  These results provide warning against modeling 

only a single coolant loop and assuming that the additional loops will perform similarly.  In 

addition, check valve leakage was identified as an important parameter for its effect on DHR 

performance. 

 Fong et al. present results from the reliability assessment of two decay heat removal 

systems working in parallel in the lead-cooled Flexible Conversion Ratio Reactor (FCCR).  The 

two systems analyzed were the Reactor Vessel Auxiliary Cooling System (RVACS) and the 

Passive Secondary Auxiliary Cooling System (PSACS).   The computation time to perform 

simulations is particularly limiting in this work.  Due to the high thermal capacity of the lead 

coolant, and the consequent slowly evolving system transients, the mission time for these 

systems was taken to be 72 hours (Fong et al. 2008).  As a result, the time to perform each 

simulation, performed with RELAP5-3D, was on the order of 30 hours.  This provided strong 

motivation to pursue the response surface technique discussed previously.  The authors selected 

5 parameters for the reliability study, and these parameters were used to construct a quadratic 
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response surface.  Additionally, the authors found that this quadratic response surface was able to 

provide a good fit to the simulated data.  The response surface error was estimated based on the 

approximately normally distributed residuals, and it was found that the reliability estimate for the 

system is strongly dependent upon this error. 
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