

EPEI ELECTRIC POWER RESEARCH INSTITUTE

MRP-169 OWOL Inspection NRC Meeting

Dennis Weakland First Energy MRP Chairman

Ronald Swain Electric Power Research Institute Project Manager

Pete Riccardella Structural Integrity Associates Principal Investigator

October 23, 2008

Introduction

Dennis Weakland

Presentation Outline

- Section 1: Introduction
 - -Background
 - -Proposed schedule
- •Section 2: OWOL Inspection qualification
- •Section 3: Proposed solution
- •Section 4: Discussion & Summary

Weld Overlay : BWRs and PWRs

- Over 800 overlays applied in BWRs during 25 year period, many still operating
- Numerous (> 2000) in-service inspections performed on overlaid BWR welds
- No evidence of flaws growing in overlays or underlying base metal or welds
- An effective mitigation technique against PWSCC
- Used for PWR Pressurizer nozzle mitigation
 - End of Spring 2008: 89% of total were mitigated

NRC RAI Background

- In 2005, EPRI developed guidelines for PWOL mitigation strategy, MRP-169 provided technical basis for Full-Structural and Optimized WOLs
- •NRC issued RAIs on August, 2006 and February 2008 respectively
- Responses to all RAIs submitted to NRC in April 2008 and incorporated into MRP-169, Rev. 1
- Currently only outstanding issue regards OWOL inspection qualification

NRC RAI Background (Cont'd)

- Approval/SER on MRP-169 before summer 2008 was requested during 2007 NRC meeting to support the applications of OWOL
- Initial OWOL implementation (fall 2008) was postponed due to NDE qualification concern and associated lack of SER on MRP-169
- Proposed Solution
 - New more conservative design analysis requirement to demonstrate that OWOL is effectively FSWOL for axial flaws
 - Revised inspection requirement (outer 25% for axial + outer 50% circumferential flaws)

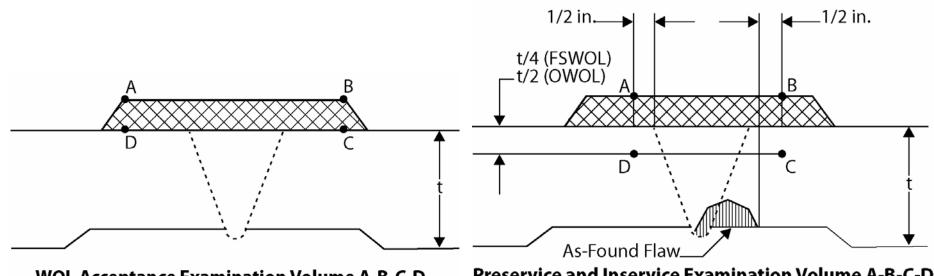
MRP-169 Proposed New Schedule

Timeframe	Milestones
November 2008	NRC resumes reviewing MRP-169 revision 1.0
January 2009	Submission of MRP-169 Addendum to NRC
May 2009	SER of MRP-169 and Addendum
Fall 2009/spring 2010	Implementation of OWOL by utilities

Status of PWOL Inspection PDI

Carl Latiolais & Ronald Swain

Inspection & Mitigation of Alloy 82/182 butt welds


PWOL inspection Project Description

- Fabricate samples to support the following tasks:

- Obtain residual stress data for mitigation to support the application of PWOL (Optimized design) on large diameter components
- Develop procedures and techniques to examine beyond the outer 25% of the original base material in order to satisfy MRP-169 OWOL inspection requirements (outer 50%)
- Develop procedures and techniques to examine cast SS base material under weld overlays
- Expand currently qualified WOL procedure thickness ranges
- Develop Relief Requests and/or ASME Code revision to support qualification of the UT techniques developed

WOL Examination Volumes

WOL Acceptance Examination Volume A-B-C-D

Preservice and Inservice Examination Volume A-B-C-D

Inspection & Mitigation of Alloy 82/182 butt welds PZR Surge Line and Shutdown Cooling Mockups

- Smaller Diameter
 Configurations
 - All have cast safe-ends
 - Mock-ups have flaws at 50% and 75% of the original weld and base material thickness
 - Flaws located in cast base material and in weld
 - Mockup construction, characterization, and NDE evaluation performed in 2007

Inspection & Mitigation of Alloy 82/182 Butt Welds RCS Mockup

- 36" diameter, 3.4" thick RCS piping overlay mockup
 - Contains cast safe-end
 - Flaws located in cast base material and in weld
 - Half of circumference of overlay is optimized design thickness (0.7"), while other half is full-structural design thickness (1.4")
 - Optimized overlay contains flaws ranging down to outer 50% of original weld and base material
 - Full-structural overlay contains flaws ranging down to outer 25% of original weld and base material
 - Mockup construction and residual stress design data collection completed in Feb. 2008
 - Mockup characterization and initial evaluation of NDE techniques completed in August 2008
 - UT technique qualification has been unsuccessful, to date
 - Due to difficulties with detection of axial flaws 50-75% thru-wall

Inspection & Mitigation of Alloy 82/182 Butt Welds RCS Mockup

- To further investigate difficulties with detection of axial flaws, an additional mockup was fabricated using an alternate flaw implantation technique
 - UddCom block
 - Non-blind mockup
 - Constructed to simulate metal path of RCS mockup
 - 2 axial flaws included (50% and 75% thru wall)
 - Weld solidification flaws (more faceted crack morphology)
 - Pre-overlay scan of the mockup ensured detectability of flaws prior to overlay
 - Post overlay scan revealed similar detection issues for 50% thru-wall axial flaw
- Further UT technique development may be required before detection of axial flaws at these depths can be qualified

Summary of Overlay UT Results

Surge/SDC: flaws in weld	RCS: flaws in weld
Detected & sized all circ and axial flaws in outer 25%	Detected & sized all circ & axial flaws in outer 25%
Detected all circ flaws, and some axial flaws outer 25 to 50% range	Detected and sized all circ flaws outer 25 to 50% range
Sizing - Not yet qualified outer 25 to 50% range (technique refinement)	Can't detect axial flaws outer 25 to 50% range
Surge/SDC: flaws in cast SS	RCS: flaws in cast SS
Limited detection of circ & axial flaws (Some flaws missed) -Not	No detections
qualified	Sizing not qualified
Sizing not qualified	

Summary

- Current UT results show that procedures for detection and sizing of circ and axial flaws in the outer 25% of weld and wrought base material can be qualified for both full-structural and optimized weld designs
- UT of overlaid cast stainless steel cannot be qualified at this time
 - NOTE: Cast stainless is not included in the weld overlay examination volume, as defined in Code Case N-770 or MRP-139 interim guidance
- UT of optimized weld overlays on non-cast materials is expected to be qualified to detect and size circ flaws down to the outer 50% of weld and base materials, while axial flaw detection will likely be limited to the outer 25%, in the near term
- Future Action: Establish qualification requirements for OWOL and begin qualifying vendors

Alternate Design / Inspection Approach for OWOLs Pete Riccardella

NDE Qualification Status

- •NDE Qualification to outer 50% can be achieved for circ flaws
- Axial flaw qualification currently limited to outer 25%

Alternative OWOL Approach

- Proposed OWOL design that will be supported by PDI qualified NDE:
 - OWOL design based on 360° circumferential flaw, 75% thru-wall
 - Design will be shown to meet Section XI Appendix C flaw evaluation rules for 100% thru-wall axial flaw
 - Fatigue and PWSCC crack growth will be performed to show no growth for 75% assumed initial axial flaw
 - NDE to be conducted with expanded UT procedure which is PDI qualified to 50% thru-wall for circ flaws only
 - NDE <u>for axial flaws</u> to be performed using existing, FSWOL procedure (PDI qualified to 75% thru-wall)

Analysis Results for RPV Hot Leg Nozzle OWOL

- Analysis of plant specific RPV hot leg nozzle indicates that OWOL design is governed by circ flaws
 - 34" OD nozzle; 2.5" DMW thickness
 - OWOL thickness = 0.5" (excluding buffer layer)
 - Section XI Appendix C analysis indicates acceptable axial flaw size is 100% through DMW
 - Residual stress and crack growth analyses indicate no growth for 75% thru-wall axial flaw
- Therefore, the overlay design is effectively full structural for axial flaws

ASME XI Appendix C Evaluation Procedure for Axial Flaws

$$\sigma_{h} = \frac{3S_{m}}{SF} \left[\frac{t/a - 1}{t/a - 1/M_{2}} \right]$$
(7)
where

$$M_{2} = \left[1 + 1.61 \ \ell^{2}/(4 \ Rt) \right]^{\frac{1}{2}}$$

$$\sigma_{h} = \text{nominal hoop stress} = PD/2t$$

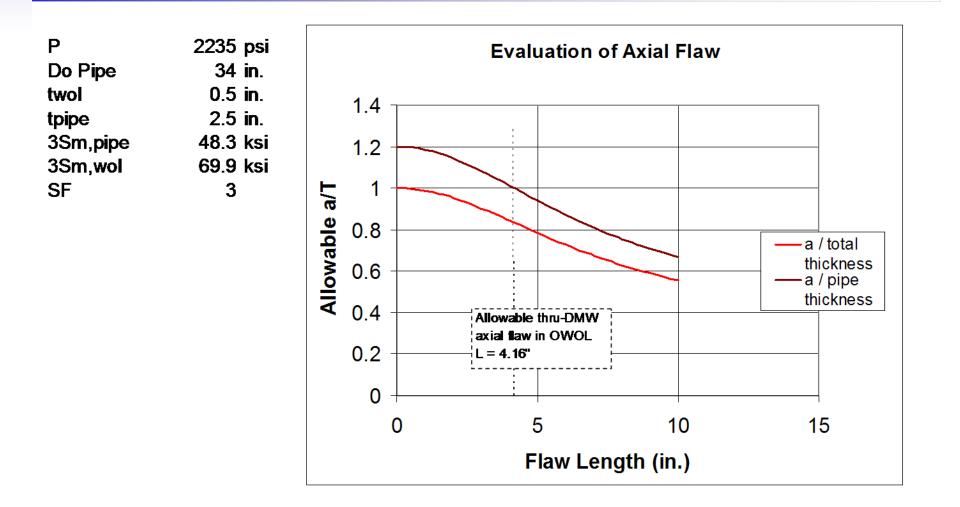
$$D = \text{nominal outside diameter of the pipe}$$

$$\ell = \text{total flaw length}$$

$$a = \text{flaw depth}$$

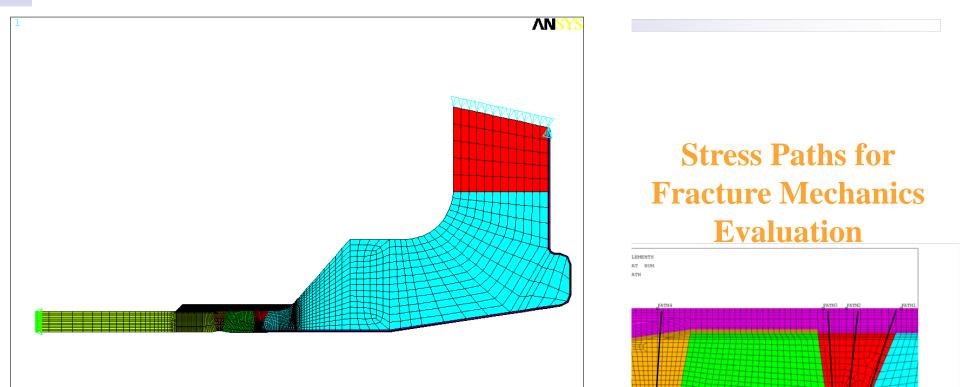
$$R = \text{mean radius of the pipe}$$

$$t = \text{nominal thickness}$$

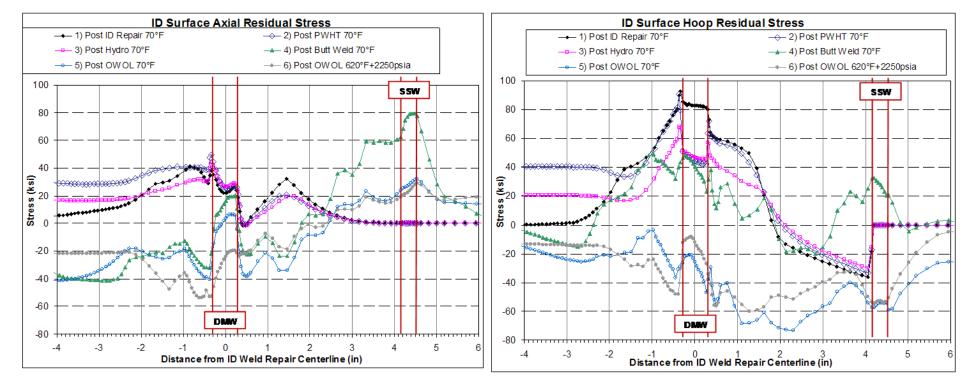

$$SF = \text{Safety Factor; 3.0 for Level A and B Service}$$

$$\text{Loadings, 1.5 for Level C and D Service}$$

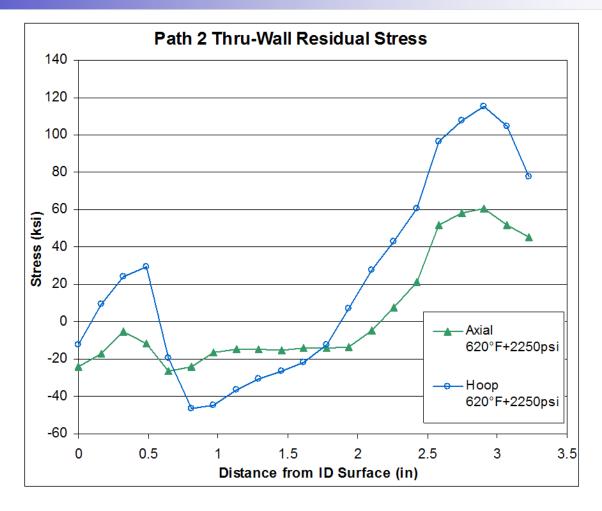
$$\text{Loadings}$$
(b) Upper bounds on the applicability of Eq. (7) are set at flaw depths of 75% of the wall thickness. Equation



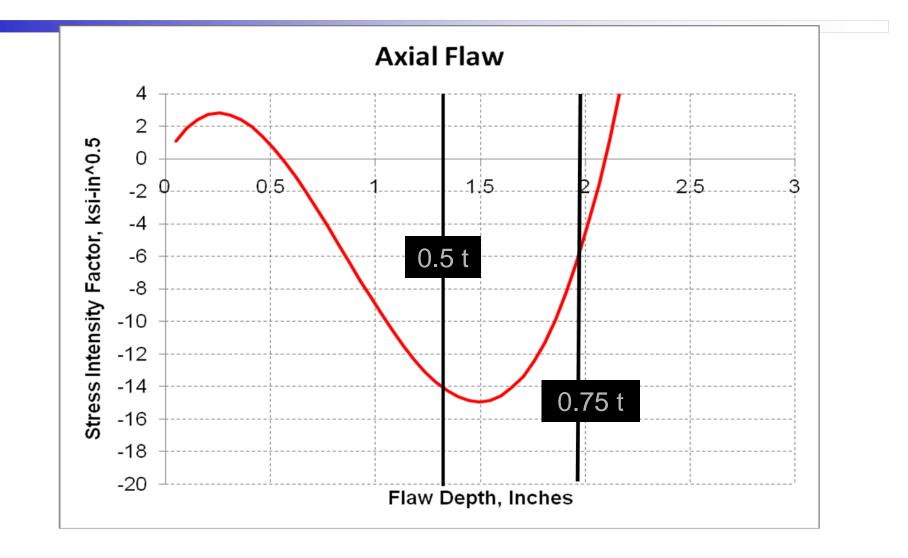
ASME XI Axial Flaws Evaluation Applied to Hot Leg Nozzle OWOL


FEM of RPV Outlet Nozzle OWOL

Finite Element Model



RPV Outlet Nozzle ID Surface Residual Stress Results



RPV Outlet Nozzle Thru-Wall Path Stresses (Resid + Op. Temp & Press)

Crack Growth Evaluation for Axial Flaws

Conclusions

- Alternate OWOL Design/Analysis approach proposed that will be supported by NDE qualification capability for axial flaws
 - Provides same design margins as FSWOL for axial flaws
- Circ flaws more critical from structural Integrity standpoint (axial flaws will not cause pipe rupture)
- MRP-169 addendum will be issued to address alternative approach
- MRP-169 approval needed to support initial OWOL applications in fall 2009

Discussion & Summary

MRP-169 Proposed New Schedule

Timeframe	Milestones
November 2008	NRC resumes reviewing MRP-169 revision 1.0
January 2009	Submission of MRP-169 Addendum to NRC
May 2009	SER of MRP-169 and Addendum
Fall 2009/spring 2010	Implementation of OWOL by utilities

