

Figure 2.5-90—{Historical Seismicity in Vicinity of the Charlevoix Seismic Zone and the EPRI Team Sources Used to Represent that Zone}

Figure 2.5-91—{Earthquake Occurrence Rates for EPRI (1989) Catalog and for Catalog Extended Through 2007 for Region 1}

Figure 2.5-92—{Earthquake Occurrence Rates for EPRI (1989) Catalog and for Catalog Extended Through 2007 for Region 2}

Figure 2.5-94—{Mean and Fractile 25 Hz Seismic Hazard Curves, Rock, No CAV}

Figure 2.5-97—{Mean and Fractile 2.5 Hz Seismic Hazard Curves, Rock, No CAV}

Figure 2.5-100—{M and R Deaggregation for 1 and 2.5 Hz at 10-4 Annual Frequency of Exceedence}

Figure 2.5-101—{M and R Deaggregation for 5 and 10 Hz at 10-4 Annual Frequency of Exceedence}

Figure 2.5-102—{M and R Deaggregation for 1 and 2.5 Hz at 10-5 Annual Frequency of Exceedence}

Figure 2.5-103—{M and R Deaggregation for 5 and 10 Hz at 10-5 Annual Frequency of Exceedence}

Figure 2.5-104—{M and R Deaggregation for 1 and 2.5 Hz at 10-6 Annual Frequency of Exceedence}

Figure 2.5-105—{M and R Deaggregation for 5 and 10 Hz at 10-6 Annual Frequency of Exceedence}

Figure 2.5-106—{Smooth 10-4 UHRS for HF and LF Earthquakes}

Figure 2.5-107—{Smooth 10-5 UHRS for HF and LF Earthquakes}

Figure 2.5-108—{Smooth 10-6 UHRS for HF and LF Earthquakes}

Figure 2.5-109—{Artificial VS Profiles 1 through 10 for the GMRS Calculations}

Figure 2.5-110—{Summary Statistics of VS for the GMRS Calculations}

Vs (m/s)

Figure 2.5-115—{Maximum Strain vs. Depth at GMRS Elevation for 1E-4 HF Input Motion}

Figure 2.5-116—{Damping Ratio vs. Depth at GMRS Elevation for 1E-4 HF Input Motion}

logar	ithmic mean	prof.	1
prof.	2	prof.	3
prof.	4	prof.	5
prof.	6	prof.	7
prof.	8	prof.	9
prof.	10	prof.	11
prof.	12	prof.	13
prof.	14	prof.	15
prof.	16	prof.	17
prof.	18	prof.	19
prof.	20	prof.	21
prof.	22	— — — prof.	23
— — — prof.	24	— — — prof.	25
— — — prof.	26	— — — prof.	27
— — — prof.	28	— — — prof.	29
prof.	30	prof.	31
prof.	32	prof.	33
prof.	34	prof.	35
prof.	36	prof.	37
prof.	38	prof.	39
prof.	40	prof.	41
prof.	42	prof.	43
prof.	44	prof.	45
prof.	46	prof.	47
prof.	48	prof.	49
prof.	50	prof.	51
prof.	52	prof.	53
prof.	54	prof.	55
prof.	56	prof.	57
prof.	58	prof.	59
prof.	60		

Figure 2.5-119—{Maximum Strain vs. Depth at GMRS Elevation for 1E-4 LF Input Motion}

Figure 2.5-120—{Damping Ratio vs. Depth at GMRS Elevation for 1E-4 LF Input Motion}

logarithmic mean	prof. 1	
prof. 2	prof. 3	
prof. 4	prof. 5	
prof. 6	prof. 7	
prof. 8	prof. 9	
prof. 10	prof. 11	
prof. 12	prof. 13	
prof. 14	prof. 15	
prof. 16	prof. 17	
prof. 18	prof. 19	
prof. 20	prof. 21	
— — prof. 22	— — — prof. 23	
— — prof. 24	— — — prof. 25	
— — — prof. 26	— — — prof. 27	
— — — prof. 28	prof. 29	
prof. 30	prof. 31	
prof. 32	prof. 33	
prof. 34	prof. 35	
prof. 36	prof. 37	
prof. 38	prof. 39	
prof. 40	prof. 41	
prof. 42	prof. 43	
prof. 44	prof. 45	
prof. 46	prof. 47	
prof. 48	prof. 49	
prof. 50	prof. 51	
prof. 52	prof. 53	
prof. 54	prof. 55	
prof. 56	prof. 57	
prof. 58	prof. 59	
prof. 60		

Figure 2.5-122—{Amplification Factor and Logarithmic Sigma at GMRS Elevation for 1E-5 HF Input Motion}

Figure 2.5-123—{Maximum Strain vs. Depth at GMRS Elevation for 1E-5 HF Input Motion}

Figure 2.5-124—{Damping Ratio vs. Depth at GMRS Elevation for 1E-5 HF Input Motion}

logarithmic mean	prof. 1
prof. 2	prof. 3
prof. 4	prof. 5
prof. 6	prof. 7
prof. 8	prof. 9
prof. 10	prof. 11
prof. 12	prof. 13
prof. 14	prof. 15
prof. 16	prof. 17
prof. 18	prof. 19
prof. 20	prof. 21
— — — prof. 22	— — — prof. 23
— — — prof. 24	— — — prof. 25
— — — prof. 26	— — — prof. 27
— — — prof. 28	prof. 29
prof. 30	prof. 31
prof. 32	prof. 33
prof. 34	prof. 35
prof. 36	prof. 37
prof. 38	prof. 39
prof. 40	prof. 41
prof. 42	prof. 43
prof. 44	prof. 45
prof. 46	prof. 47
prof. 48	prof. 49
prof. 50	prof. 51
prof. 52	prof. 53
prof. 54	prof. 55
prof. 56	prof. 57
prof. 58	prof. 59
prof. 60	

Figure 2.5-127—{Maximum Strain vs. Depth at GMRS Elevation for 1E-5 LF Input Motion}

prof. 1

prof. 3

prof. 5

prof. 7

prof. 9

prof. 11

-prof. 13

-prof. 15

prof. 17

prof. 19

prof. 21

prof. 25

-prof. 29

prof. 31

-prof. 33

prof. 35

prof. 37 prof. 39

prof. 41

-prof. 43

prof. 45 prof. 47

-prof. 49

-prof. 51

prof. 53

prof. 55

-prof. 57

-prof. 59

Figure 2.5-128—{Damping Ratio vs. Depth at GMRS Elevation for 1E-5 LF Input Motion}

-
4
-
S
Ð
-
-
•
N 1
-
9

FSAR Section 2.5

Figure 2.5-131—{Maximum Strain vs. Depth at GMRS Elevation for 1E-6 HF Input Motion}

Figure 2.5-132—{Damping Ratio vs. Depth at GMRS Elevation for 1E-6 HF Input Motion}

logarithmic mean	prof. 1
prof. 2	prof. 3
prof. 4	prof. 5
prof. 6	prof. 7
prof. 8	prof. 9
prof. 10	prof. 11
prof. 12	prof. 13
prof. 14	prof. 15
prof. 16	prof. 17
prof. 18	prof. 19
prof. 20	prof. 21
— — — prof. 22	— — — prof. 23
— — — prof. 24	— — prof. 25
— — — prof. 26	— — prof. 27
— — — prof. 28	prof. 29
prof. 30	prof. 31
prof. 32	prof. 33
prof. 34	prof. 35
prof. 36	prof. 37
prof. 38	prof. 39
prof. 40	prof. 41
prof. 42	prof. 43
prof. 44	prof. 45
prof. 46	prof. 47
prof. 48	prof. 49
prof. 50	prof. 51
prof. 52	prof. 53
prof. 54	prof. 55
prof. 56	prof. 57
prof. 58	prof. 59
prof. 60	

Figure 2.5-135—{Maximum Strain vs. Depth at GMRS Elevation for 1E-6 LF Input Motion}

Figure 2.5-136—{Damping Ratio vs. Depth at GMRS Elevation for 1E-6 LF Input Motion}

logarithmic mean	prof. 1
prof. 2	prof. 3
prof. 4	prof. 5
prof. 6	prof. 7
prof. 8	prof. 9
prof. 10	prof. 11
prof. 12	prof. 13
prof. 14	prof. 15
prof. 16	prof. 17
prof. 18	prof. 19
prof. 20	prof. 21
— — — prof. 22	— — — prof. 23
prof. 24	— — — prof. 25
— — — prof. 26	— — — prof. 27
— — — prof. 28	prof. 29
prof. 30	prof. 31
prof. 32	prof. 33
prof. 34	prof. 35
prof. 36	prof. 37
prof. 38	prof. 39
prof. 40	prof. 41
prof. 42	prof. 43
prof. 44	prof. 45
prof. 46	prof. 47
prof. 48	prof. 49
prof. 50	prof. 51
prof. 52	prof. 53
prof. 54	prof. 55
prof. 56	prof. 57
prof. 58	prof. 59
prof. 60	

FSAR Section 2.5

Figure 2.5-150—{10-5 Horizontal UHRS at FIRS Elevation, and FIRS}

Figure 2.5-152—{Horizontal and Vertical GMRS}

Figure 2.5-153—{Horizontal and Vertical FIRS}

Figure 2.5-154—{Site Area Cross Section}

						TI
Point	Content, percent	Unit Wt. Ib/ft ³		130.0		
-	4.2	125.0				
2	6.1	127.9				
ო	7.8	129.9		, bet		
4	9.7	130.2		(t)isua		
2	11.6	127.2				1
9	MN	WN				
				115.0		
					$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	1
				110.0 +		1 4
Snecific G	travity for 7	ero Air		5	Moisture Content, %	-
Voids Cun	Ve		2.698			1
mimixen	Day Doneit	, nof	130.4	Note: Maximum dry density and optimum	Compaction Test Method (A, B, or C): C	
אמעווומווו	רוא רפוואר	iy, pu	t.00-	moisture content are based on minus 3/4-	Max Particle Size in Test: 3/4 in.	
Optimum 1	Moisture Co	ontent, %	9.0	incir raction, and are NOT corrected for oversize gravel.	Percent Oversize Particles >3/4 in. 24.5	

Г

Figure 2.5-157—{Moisture Density Curve Modified Compaction}

Figure 2.5-164—{Seismic Contour Lines 1-5}

Figure 2.5-166—{Shear Wave Velocity Profile For Combined Arrays 1 and 2}

FSAR Section 2.5

2–1647 © 2008 UniStar Nuclear Services, LLC. All rights reserved. COPYRIGHT PROTECTED

Figure 2.5-175—{Offshore Permeability Tests in Rock}

Figure 2.5-176—{General Site and Grading Plan with Slope Locations}

FSAR Section 2.5

FSAR Section 2.5

FSAR Section 2.5

