

# **Traffic Impact Study Related to the Proposed**

# Construction and Operation of the Bell Bend Nuclear Power Plant

## **Preliminary Findings Report**



Prepared for AREVA NP, Inc. 400 Donald Lynch Blvd Marlborough, MA 01752 Prepared by KLD Engineering, P.C. 47 Mall Drive, Suite 8 Commack, NY 11725

September 24, 2008

TR-439 Rev. 2

#### TABLE OF CONTENTS

| Exe | cutiv        | e Summary                                                              | 4  |
|-----|--------------|------------------------------------------------------------------------|----|
| 1.  |              | oduction                                                               |    |
| 1   | .1.          | Project Objective                                                      | 7  |
| 1   | .2.          | Study Area Definition                                                  |    |
| 2.  | Exi          | sting Conditions                                                       |    |
| 2   | .1.          | Existing Lane Configuration                                            | 10 |
| 2   | .2.          | Existing Traffic Counts                                                | 10 |
| 2   | .3.          | Existing Level of Service (LOS) and Capacity Analysis                  | 11 |
| 3.  | Bac          | kground (Future No-Build) Conditions                                   |    |
|     | .1.          | Regional Growth and Other Developments                                 |    |
| 4.  | Futi         | ure Build Conditions                                                   |    |
|     | .1.          | Site Trip Generation                                                   |    |
| 4   | .2.          | Site Trip Distribution and Assignment                                  | 17 |
| 4   | . <i>3</i> . | Total Traffic Volumes and Projected LOS                                | 19 |
| 5.  | Pro          | jected Traffic Conditions During Construction                          | 21 |
| 5   | .1.          | Trip Generation and Site Access                                        | 21 |
| 5   | .2.          | Operational Staff                                                      | 22 |
| 5   | . <i>3</i> . | Outage Staff – Maintenance and Refueling                               | 22 |
| 5   | .4.          | Heavy Vehicles                                                         |    |
| 5   | .5.          | Construction Staffing                                                  |    |
| 5   | .6.          | Total Trip Generation                                                  | 25 |
| 5   | . 7.         | Total Traffic Onsite Including Background Traffic                      | 27 |
| 5   | .8.          | Projected Level of Service during Construction                         |    |
| 6.  | Mit          | igation Measures                                                       | 33 |
| 7.  |              | nmary                                                                  |    |
| 8.  |              | erences                                                                |    |
|     |              |                                                                        |    |
|     |              |                                                                        |    |
| A   | 1.           | - A C 1141- Discuss Friedrice Circus Timbre Discus Field Date C-11-4-4 |    |

- Appendix A Condition Diagrams, Existing Signal Timing Plans, Field Data Collected
- Appendix B Capacity Analysis Existing Conditions
- Appendix C Capacity Analysis Future No Build Conditions
- Appendix D Traffic Assignment Computations
- Appendix E Capacity Analysis Future Build Conditions
- Appendix F Material Arrival Shipments
- Appendix G Capacity Analysis Construction Conditions
- Appendix H Capacity Analysis Construction Outage Conditions
- Appendix I Capacity Analysis Mitigation Measures

## LIST OF TABLES

| Table 1 – Study Area Intersections                                                             | 8    |
|------------------------------------------------------------------------------------------------|------|
| Table 2 – Field Data Collected                                                                 | . 10 |
| Table 3 – Intersection LOS: Existing Conditions                                                | . 11 |
| Table 4 – Intersection LOS: Future No-Build Conditions                                         | . 14 |
| Table 5 – Spatial Distribution of Current Employment on Site                                   | . 18 |
| Table 6 – Intersection LOS: Future Build Conditions                                            |      |
| Table 7 – Outage Schedule                                                                      |      |
| Table 8 – Spatial Distribution of Census Block Population                                      | . 24 |
| Table 9 – Intersection LOS: Projected Conditions During Construction                           |      |
| Table 10 – Intersection LOS: Projected Conditions During Construction With Outage              |      |
| Table 11 – Intersection LOS at RT 11 and RT239/Union Street with Mitigation                    |      |
| Table 12 – Intersection LOS at RT 11 and Main Street with Mitigation                           |      |
| Table 13 – Intersection LOS at RT 11/Front St/2 <sup>nd</sup> Street and RT 93 with Mitigation | . 35 |
| Table 14 – Intersection LOS at RT 11 and RT93/Orange St with Mitigation                        |      |
| Table 15 – Intersection LOS at RT 11 and Poplar St with Mitigation                             |      |
| Table 16 – Summary of Mitigation Measures                                                      | . 38 |
|                                                                                                |      |
| LIST OF FIGURES                                                                                |      |
| Figure 1 SSES/Bell Bend Site                                                                   | 7    |
| Figure 2 – Traffic Impact Analysis: Approach                                                   |      |
| Figure 3 – Study Area                                                                          |      |
| Figure 4 - Weekday AM Peak Hour Traffic Volumes (veh/hour): Existing Conditions                | . 12 |
| Figure 5 - Weekday PM Peak Hour Traffic Volumes (veh/hour): Existing Conditions                |      |
| Figure 6 - Weekday AM Peak Hour Traffic Volumes (veh/hour): Future NoBuild                     | . 15 |
| Figure 7 - Weekday PM Peak Hour Traffic Volumes (veh/hour): Future NoBuild                     |      |
| Figure 8 – Temporal Distribution of Power Plant Employees                                      |      |
| Figure 9 – Trip Assignment (%) of Bell Bend Power Plant Operations Staff                       | . 18 |
| Figure 10 - Weekday AM Peak Hour Traffic Volumes (veh/hour): Future Build                      |      |
| Figure 11 - Weekday PM Peak Hour Traffic Volumes (veh/hour): Future Build                      | . 20 |
| Figure 12 – Construction Staffing Schedule                                                     |      |
| Figure 13 – Traffic Assignment – Construction Traffic (%) Leaving Site                         |      |
| Figure 14 – Traffic Assignment – Construction Traffic (%) Arriving at Site                     |      |
| Figure 15 – Construction Site Trip Generation                                                  |      |
| Figure 16 - Weekday AM Peak Hour Traffic Volumes (veh/hour): Construction Peak                 | . 28 |
| Figure 17 - Weekday PM Peak Hour Traffic Volumes (veh/hour): Construction Peak                 |      |
| Figure 18 - Weekday AM Peak Hour Traffic Volumes (veh/hour): Construction With Outage          |      |
| Figure 19 - Weekday PM Peak Hour Traffic Volumes (veh/hour): Construction With Outage.         |      |
| Figure 20 – Mitigation at Union Street/RT 239 and RT 11                                        |      |
| Figure 21 – Mitigation at Main Street and RT 11                                                | . 34 |
| Figure 22 – Mitigation at RT 93 (Market St) and RT 11 (Front St, 2 <sup>nd</sup> Street)       | . 35 |
| Figure 23 – RT 93 (Orange St) and RT 11 (Front St)                                             |      |
| Figure 24 – RT 11 & Poplar Street                                                              |      |
|                                                                                                |      |

## **Executive Summary**

UNISTAR and PPL plan to expand the existing power generation site in Berwick which is located in Luzerne County, Pennsylvania. Susquehanna Steam Electric Station (SSES) has 2 units currently operational. The plan is to construct <u>one</u> more unit (denoted "Bell Bend") west of the existing site. The proposed expansion is planned over a 68 month period from May 2011 through December 2016. The new unit is expected to be operational by June 2017.

This report addresses the traffic impacts and mitigation alternatives for the "Future Build" and for the "Construction Phase Peak", the latter with and without concurrent "outages" (the period during which one of the existing units is refueled and maintained, generally occurring once every two years and lasting approximately one month for each event).

In accord with PennDOT procedures, the "Future No Build" (with signals optimized for that traffic) was used as the baseline for the mitigation. That is, the target that should be achieved in the "Future Build" and the "Construction Phase Peak" is a level of service (LOS) that is the same as the "Future No Build". Growth factors were based upon PennDOT tables, and data collection was done in accord with PennDOT requirements. Meetings were held with PennDOT District 4-0, Luzerne County, and Salem township and then with PennDOT District 3-0, Columbia County, and Berwick borough, given the area of probable impact.

The trip distribution for the future operational staff for the new Bell Bend unit was based upon the profile of the origins (by zip code) of workers at the existing SSES units. The trip distribution of the construction workers was based upon the regional concentration of jobs, using U.S. Census data.

The project area was identified based upon the dispersal of trips during the major event, namely the construction phase peak. The geography and road network dictated that the affected intersections were generally along Route 11, with many of the trips travelling to or from I-80 and I-81.

For the "Future Build" alternative, it was possible to retain the intersection levels of all affected signalized intersections, simply by optimizing the signals for the additional traffic. This was feasible because the total number of workers at the new unit is estimated to be 363.

For the "Construction Phase Peak", both the impact of truck movements and of the workers was considered.

Although there are a very significant number of truck movements over the construction period, the impact on hourly flow is relatively low (typically 1-2 trucks per hour) due to the duration of the construction period. Wide loads are avoided, due to planned movements of larger elements by rail. Concrete is made on-site, using materials from a local quarry along Route 11, east of the site. Local requests to minimize truck trips during school start/end hours are planned to be taken into account in scheduling, to the maximum extent possible.

The number and concentration of construction worker trips to and from the site does however cause significant additions to the future no-build traffic loads, and poses substantial challenges for mitigation. The peak period of construction is estimated to generate 3039 trips per day by auto, split over three weekday shifts in a 60-35-5 proportion. These construction staff trips are estimated to come from the northeast of the site and from west of site in a 48/52 ratio, based upon census data on employment concentrations. The arrival/departure times at the busiest times actually shift the peak hour to the construction schedule.

The duration of the major impact period, when one considers the construction activity profile and the months on either side of it, is estimated to be 18-24 months long.

The primary measures considered and recommended for the "construction phase peak" are:

- > Signal retiming at the intersections of RT 11 (2<sup>nd</sup> Street) & RT 93 (Market Street) will retain the "future no build" level of service;
- ➤ Signal retiming combined with removing of parking and/or re-designation of movements by lane will enable the "future no build" level of service to be attained at other intersections (RT 11 & Main Street, RT 11 & Union Street);
- At some intersections (RT 11 (Front Street) & RT 93 (Market Street), RT 11 and Polar Street, and RT 11 & RT 93 (Orange Street)), the traffic volumes combined with the restrictions on the geometry make it impossible to mitigate enough to attain the "future no build" levels but do allow intersection operation at LOS E or better during the both peaks;
- ➤ In one case (RT 11 & Poplar Street), it is assumed that some traffic from the side street will find alternate paths (readily available) because of the delays otherwise encountered. This will load traffic onto Route 11 from Mercer Street, leading to signalization there for system considerations (including the need to serve the minor street, and potential for blockages);
- The Bell Bend entrance along Route 11 carries very significant flows arriving from both directions in the AM (and departing in the PM), leading to a treatment that will require (a) signalization during the construction phase, (b) redesignation or realignment of through lanes on Route 11 during this same period to allow right turn lanes from WB Route 11 into the site & right turn lane onto SB Route 11 from the site, and (c) internal to

the site, a three-lane road with one reversible lane (by time of day) for the construction worker traffic.

These findings now have to be discussed with the local and state agencies, and then presented.

As part of that dialog, the following information has to be emphasized:

- 1. The construction phase peak, particularly combined with an outage, will lead to traffic impacts that cannot be fully mitigated, in the sense of always attaining the "future no build" levels of service;
- 2. Reduction of parking even only for peak hours is logically a concern. Likewise, channeling two lanes of traffic into one heavily loaded lane is a concern, even if this is done away from the intersections.
- 3. Further, the addition of at least one signal (Route 11 & Mercer) to avoid blockages and allow side street access (e.g. for system considerations) will need discussion;
- 4. The temporary treatments at the Bell Bend entrance on Route 11, including signalization, will need to be reversed after the peak of construction;
- 5. There are nominally other solutions, such as routing westbound traffic along Route 93 to Route 487 and then southbound towards I-80, but this is unattractive because of (a) the extra trip lengths incurred, and (b) the existence of a T-intersection at the intersection of Routes 93 and 487, so that the impact area is at best transferred;
- 6. Some alternatives including busing from remote parking fields were considered, but the operational issues involved with these lead to the conclusion that at this point, the most practical and effective mitigation approach is as described above.

With regard to the overall traffic plan, the proposed site includes a parking lot to handle all the expected construction traffic demand. The security checkpoints onsite are not expected to result in any spillback onto Route 11.

In short, there are traffic impacts during the construction phase that cannot be fully mitigated, although operational levels of service can generally be attained. In the "Future Build" condition, with the new Bell Bend unit operational, all traffic impacts can be mitigated simply by signal optimization.

#### 1. Introduction

#### 1.1. Project Objective

UNISTAR and PPL plan to expand the existing power generation site in Berwick which is located in Luzerne County, Pennsylvania. Susquehanna Steam Electric Station (SSES) has 2 units currently operational and there is a plan to construct <u>one</u> more unit (Bell Bend) west of the existing site. Figure 1, shows the location of the SSES and Bell Bend.



Figure 1 SSES/Bell Bend Site

This report describes the efforts of the Traffic Impact Analysis (TIA) of the additional unit. The following traffic conditions are analyzed: existing, future no-build (background), and future build (build-out) as shown in Figure 2. In addition, given the size and duration of the construction effort related to a nuclear reactor, the TIA will include analysis of the traffic during construction. This is also shown in Figure 2.



Figure 2 – Traffic Impact Analysis: Approach

This work effort analyzed the effects of the additional traffic that is expected at this site related to the construction and operation of the new unit and identified related mitigation measures.

### 1.2. Study Area Definition

SSES is located along the PA Route 11, which is the major thoroughfare through this area. The scope of the study area as part of this TIA is presented in Figure 3. It includes the following intersections along RT 11:

**Table 1 – Study Area Intersections** 

| No.    | Name                                            | Type    | PennDOT, District |
|--------|-------------------------------------------------|---------|-------------------|
| A      | RT 11 (Second Street) and RT 93 (Market Street) | Signal  | 3-0               |
| В      | RT 11 and Poplar Avenue                         | Signal  | 3-0               |
| $\Box$ | RT 11 (Front Street), RT 93 (Orange Street),    | Signal  | 3-0               |
|        | LaSalle Street                                  | Digital | 5-0               |
| D      | RT 11 (Front Street) and RT 93 (Market Street)  | Signal  | 3-0               |
| Е      | RT 11 and Proposed Site Access for Bell Bend    | New     | 4-0               |
| F      | RT 11 and PPL Site Entrance                     | Stop    | 4-0               |
| G      | RT 11 and Main Street                           | Signal  | 4-0               |
| Н      | RT 11 and RT 239 (Union Street)                 | Signal  | 4-0               |

These are approximately within 4 miles from the site in the north and south direction. These intersections are identified as described in the following section.



Figure 3 – Study Area

### **Identification of Study Intersections**

Based on the location of the site, the major travel routes to/from the site would be the following:

From the North West and North – Route 239 and Route 11
From the North East and East – I-81, Route 29, and Route 11
From the South East, South and South West – I-80, Route 93 and Route 11
From the West – Route 93 and Route 11

The study area intersections were identified as the major intersections that were on route for the operations and construction workforce at the Bell Bend site. The operations workforce for the Bell Bend site is expected to have a spatial distribution similar to the current workforce at SSES.

However, the construction workforce for the Bell Bend site is expected to be derived from all areas surrounding the site based on the census block population. That is, the more populated areas such as Wilkes-Barre and Hazelton would have higher contributions to the construction workforce.

## 2. Existing Conditions

## 2.1. Existing Lane Configuration

The roadway condition diagrams are included in Appendix A of this report. These condition diagrams define the posted speed limit, lane assignments and intersection traffic control. The existing traffic control permits for the study area were provided by PennDOT Districts 3-0 and 4-0 for the study area intersections. These plans are also included in Appendix A.

#### 2.2. Existing Traffic Counts

The following traffic data was collected within the study area:

Table 2 - Field Data Collected

| Location                     | Type Of<br>Information | Date      | Time            |
|------------------------------|------------------------|-----------|-----------------|
| RT 11/East 2nd Street and RT | Turning                | 6/12/2008 | 6AM-9AM and     |
| 93/Market Street             | Movement               | 0/12/2008 | 2:30PM-5:30PM   |
| RT 11/W Front Street and RT  | Turning                | 6/12/2008 | 6AM-9AM and     |
| 93/Market Street             | Movement               | 0/12/2008 | 2:30PM-5:30PM   |
| RT11 and Poplar Street       | Turning                | 6/11/2008 | 6AM-9AM and     |
| K111 and Popiar Street       | Movement               | 0/11/2008 | 2:30PM-5:30PM   |
| RT11 and RT 93               | Turning                | 6/12/2008 | 6AM-9AM and     |
| K111 and K1 93               | Movement               | 0/12/2008 | 2:30PM-5:30PM   |
| RT 11 and PPL Entrance       | ATR                    | 6/12/2008 | 1-week, 24 Hour |
| RT11 and Main Street         | Turning                | 6/11/2008 | 6AM-9AM and     |
| K111 and Main Street         | Movement               | 0/11/2008 | 2:30PM-5:30PM   |
| RT 11 and RT 239             | Turning                | 6/12/2008 | 6AM-9AM and     |
| RT TI and RT 239             | Movement               | 0/12/2008 | 2:30PM-5:30PM   |
| RT 11 and Confers Lane       | ATR                    | 6/11/2008 | 1-week, 24 Hour |
| DT 11/Owanga St/LaSalla St   | Turning                | 6/12/2008 | 6AM-9AM and     |
| RT 11/Orange St/LaSalle St.  | Movement               | 0/12/2008 | 2:30PM-5:30PM   |
| LIC 11/Linion Ct             | Turning                | 6/12/2008 | 6AM-9AM and     |
| US 11/Union St.              | Movement               | 0/12/2008 | 2:30PM-5:30PM   |

The field data collected is presented in Appendix A.

#### 2.3. Existing Level of Service (LOS) and Capacity Analysis

The ability of a roadway network to accommodate projected traffic volumes generated by the proposed development during its construction and operation is assessed utilizing the techniques to measure capacity and LOS. LOS is an ordinal scale that is defined from A to F with "A" being the best level of service. The different levels are defined in the latest edition of the Highway Capacity Manual (HCM 2000<sup>1</sup>), in terms of average delay for intersections and average travel speed for arterials. Typically, the LOS is determined for the Peak 1-hour during the identified periods as it represents "worst case" conditions.

Based on the state guidelines signalized intersections were analyzed using HCM methodology as implemented in SYNCHRO<sup>2</sup> software. Unsignalized intersections (stop controlled) were analyzed using the HCM Methodology as implemented in the HCS+ software<sup>3</sup>.

Figures 4 and 5 present the peak hour volumes and turning movements at the study intersections for the weekday AM and PM peak conditions. Using these peak period values, capacity analyses were performed and the calculations are presented in Appendix B and the summary results are presented in Table 3.

**Table 3 – Intersection LOS: Existing Conditions** 

|                                        |              | Existing |    |
|----------------------------------------|--------------|----------|----|
| Intersection                           | Туре         | AM       | PM |
| RT11 & Union Street                    | Signalized   | В        | В  |
| RT11 & Main Street                     | Signalized   | A        | A  |
| RT11 & PPL Entrance                    | Unsignalized | В        | В  |
| 2 <sup>nd</sup> Street & Market Street | Signalized   | В        | В  |
| Front Street & Market Street           | Signalized   | В        | В  |
| RT11 & LaSalle Street                  | Signalized   | A        | A  |
| RT11 & Orange Street                   | Signalized   | A        | В  |
| RT11 & Poplar Avenue                   | Signalized   | В        | E  |

<sup>&</sup>lt;sup>1</sup> HCM 2000, Transportation Research Board, Washington DC, <a href="http://www.trb.org/news/blurb\_detail.asp?id=1166">http://www.trb.org/news/blurb\_detail.asp?id=1166</a>

<sup>&</sup>lt;sup>2</sup> SYNCHRO – This is a software package designed for analysis of signalized intersections that is recommended or required by most DOTs, (required by PennDOT Dist 3-0 and 4-0). It is developed by Traffic Ware. (<a href="http://www.trafficware.com">http://www.trafficware.com</a>). The LOS and delay calculations are performed using the LOS definitions outlined in the HCM.

<sup>&</sup>lt;sup>3</sup> HCS+ - This software package is the implementation of the methods and procedures outlined in the HCM. It was originally developed for the Federal Highway Administration (FHWA) but is currently maintained and updated by McTrans Centre at University of Florida. (http://mctrans.ce.ufl.edu/index.htm)





## 3. Background (Future No-Build) Conditions

#### 3.1. Regional Growth and Other Developments

It is anticipated that the new unit will be operational in 2017. Based on guidance from PennDOT (growth factor tables) this report uses a compounded growth factor of 0.41% and 0.6% for rural non-interstate roads in Luzerne County and Columbia County respectively. Using these growth factors and the existing traffic volumes, the future traffic volumes for 2017 are calculated. These volumes were used for the LOS and capacity analyses. The future no-build results assume the signals retimed using SYNCHRO.

Given that there are no major highway development/improvement projects planned within the study area to influence the capacity of the roadway system, the forecasted volumes were analyzed using the existing highway network. The LOS analysis is presented in Table 4.

**Table 4 – Intersection LOS: Future No-Build Conditions** 

|                                        |              | Future No-Build |    |
|----------------------------------------|--------------|-----------------|----|
| Intersection                           | Туре         | AM              | PM |
| RT11 & Union Street                    | Signalized   | В               | В  |
| RT11 & Main Street                     | Signalized   | A               | A  |
| RT11 & PPL Entrance                    | Unsignalized | В               | В  |
| 2 <sup>nd</sup> Street & Market Street | Signalized   | В               | В  |
| Front Street & Market Street           | Signalized   | В               | В  |
| RT11 & LaSalle Street                  | Signalized   | A               | A  |
| RT11 & Orange Street                   | Signalized   | В               | В  |
| RT11 & Poplar Avenue                   | Signalized   | В               | В  |

The resulting peak hour volumes during the weekday AM and PM peak hours are shown in Figures 6 and 7. The LOS computations and capacity analysis are presented in Appendix C.





#### 4. Future Build Conditions

### 4.1. Site Trip Generation

It is anticipated that the new unit will be operational in 2017 and will require 363 additional employees on site. Unistar Nuclear Development LLC, (the plant operator) estimates that the average vehicle occupancy for its employees is 1.0 implying that the new unit will generate 363 additional trips. These additional employees are assigned the same travel patterns as those on site and working on the existing two SSES units.

#### 4.2. Site Trip Distribution and Assignment

The staff size for the existing 2 units is approximately 1460 employees (1200 full-time and 260 contractors).

Figure 8 represents the arrival and departure distribution across the workday of the power plant employees at the SSES Entrance along RT 11. These are derived from the ATR counts collected at the SSES Entrance.



Figure 8 – Temporal Distribution of Power Plant Employees

It is anticipated that the new employees at the Bell Bend site will use the proposed access road east of Confers Lane along Route 11. Therefore, the 363 new trips anticipated on site will be assigned onto the Bell Bend access road based on the temporal distribution shown in Figure 8.

Because this result in an assignment of more than 100 trips in the peak hour, it requires LOS analysis including the additional traffic.

The traffic to/from the site is assigned as follows. Using the employee zip codes the spatial distribution of the workers on site is shown in Table 5. As shown in Table 5, most of the current operations workforce is drawn from the west (Berwick). Using this distribution and the available routes, the operations traffic leaving the site is assigned as shown in Figure 9.

Table 5 - Spatial Distribution of Current Employment on Site

| Direction | No. of Workers | Distribution (%) |
|-----------|----------------|------------------|
| N         | 77             | 6.19             |
| NW        | 60             | 4.83             |
| W         | 582            | 46.82            |
| SW        | 134            | 10.78            |
| S         | 31             | 2.49             |
| SE        | 105            | 8.45             |
| Е         | 119            | 9.57             |
| NE        | 135            | 10.86            |



Figure 9 – Trip Assignment (%) of Bell Bend Power Plant Operations Staff

The same distribution is applied to the operations staff arriving on site. The calculations to derive these percentages are shown in Appendix D.

### 4.3. Total Traffic Volumes and Projected LOS

The total traffic on site, during the Future Build conditions are estimated by adding the trips generated on site with the Background Traffic. The resulting peak hour volumes are shown in Figures 10 and 11.





The LOS within the study area is presented in Table 6.

**Table 6 – Intersection LOS: Future Build Conditions** 

|                                        |              | Future No-Build |    | Future Build |       |
|----------------------------------------|--------------|-----------------|----|--------------|-------|
| Intersection                           | Type         | AM              | PM | AM           | PM    |
| RT11 & Union Street                    | Signalized   | В               | В  | В            | В     |
| RT11 & Main Street                     | Signalized   | A               | A  | A            | A     |
| RT11 & PPL Entrance                    | Unsignalized | В               | В  | В            | В     |
| RT11 & Bell Bend Entrance              | Unsignalized |                 |    | В            | В     |
| 2 <sup>nd</sup> Street & Market Street | Signalized   | В               | В  | В            | В     |
| Front Street & Market Street           | Signalized   | В               | В  | В            | В     |
| RT11 & LaSalle Street                  | Signalized   | A               | A  | A            | A     |
| RT11 & Orange Street                   | Signalized   | В               | В  | В            | $B^*$ |
| RT11 & Poplar Avenue                   | Signalized   | В               | В  | В            | В     |

Note: \*at the intersection of RT 11 and Orange Street during the PM peak hour, the signal timing plan in the Future Build was modified to restore the level of service from LOS C to match the Future No-Build LOS B condition.

Appendix E presents the LOS calculations for the Future Build Conditions. As indicated in Table 6, the only mitigation required is the optimization of the signal timing plan at RT 11 and Orange Street once the Bell Bend unit is operational. The worksheets and the LOS computation for the Future Build conditions are presented in Appendix E.

## 5. Projected Traffic Conditions During Construction

The construction is planned over a 68-month schedule. The expected time line for construction is May 2011 through December 2016. The work is expected to be distributed over 3 shifts a day, 5 days a week. The shift timings are the following:

- Shift 1: 7:30 AM to 4:00 PM

- Shift 2: 4:00 PM to 12:00 AM

- Shift 3: 12:00 AM to 7:30 AM

## 5.1. Trip Generation and Site Access

The additional traffic expected on site can be grouped into 4 major categories

- Operational Staff
- Outage Staff
- Heavy Vehicles to haul in materials
- Construction Staff

TR-439

Rev. 2

The construction staff and heavy vehicle shipments and the operations staff expected on site will access the site using the proposed site access road for Bell Bend (east of Confers Lane along Route 11). The SSES outage staff (refueling) will access the site using the SSES site access as they will be plant employees and will use the existing parking lot on site.

#### 5.2. Operational Staff

The new unit will require 363 additional personnel upon completion and it is estimated that less than 100 operations personnel will be on site before 2014. Using this information a conservative assumption is made that the number of operations personnel on site before 2014 is 100 and after 2014 is 363. Assuming average vehicle occupancy of 1.0 for these employees, 100 trips will be generated before 2014 and 363 trips after 2014. These employees will be distributed over the day and directionally as discussed under the Future Build Conditions.

#### 5.3. Outage Staff – Maintenance and Refueling

The existing 2 units currently operate on a 24-month outage schedule, with each unit staggered by year. Table 7 presents the outage schedule for the next 4 outages. During each outage it is expected to have an outage workforce of 1400 personnel on site. These personnel work on the same shift schedule as the existing employees (2 shifts 6AM-6PM, 6PM-6AM) and will be distributed across the day and directionally assigned similar to the operational staff (Table 5). The calculations to derive the assignment are shown in Appendix D.

Table 7 – Outage Schedule

| Unit   | Outage 1   | Outage 2   | Outage 3   | Outage 4   |
|--------|------------|------------|------------|------------|
| Unit 1 | March 2009 | March 2011 | March 2013 | March 2015 |
| Unit 2 | March 2010 | March 2012 | March 2014 | March 2016 |

Assuming average vehicle occupancy of 1.0 for these employees also, 1400 trips are expected to be generated each month shown in Table 7.

### 5.4. Heavy Vehicles

It is expected that the heavy permanent plant equipment loads to include the Turbine Generator, Diesel Generators, Large Transformer, and Nuclear Steam Supply will be brought to the site by rail, the backfill and excavation will occur on site and all other plant material will arrive by road. The breakdown of the materials arriving on site is presented in Appendix F. Based on the data

provided by Unistar Nuclear (the operator), it is expected that a total of 67,879 15-ton-shipments will arrive through the construction schedule. Of these shipments, 56,557 are expected to arrive in all the shifts, over the first 60 months 6 days a week (Monday-Saturday) and the remaining are expected to arrive over the first 60 months only during the day shift. The set of 56,557 will be referred to as *Concrete Material Shipments* and the 11,322 will be referred to as *Other Shipments*. It is assumed that each 15-ton shipment will arrive on separate tractor-trailers leading to an average of 39 trucks and 8 trucks per day for the *Concrete Material Shipments* and *Other Shipments*, respectively. The spatial distribution of the heavy vehicles is discussed in the next section along with the construction staffing.

#### 5.5. Construction Staffing

The schedule of the construction staffing is presented in Figure 12. This chart represents the total number of workers expected on site per day by month. As seen from the schedule the bulk of the construction staffing is expected in latter half of the 68 month schedule. Each bar in Figure 12 represents the number of workers expected on site. Months 42 to 53 have the highest number with 3950 workers on site. It is expected that the average vehicle occupancy for these workers will be 1.30, based upon expert guidance from a construction contractor (via UniStar) from their experience in its large construction projects. Also, these workers will be distributed as 60%-35%-5% between the 3 shifts each day.



Figure 12 – Construction Staffing Schedule

Based on the census block data the major population centers would be logical sources for the construction staff. Using the 2000 census data within 40-miles of the site, Table 9 presents the spatial distribution of the construction workers.

Table 8 – Spatial Distribution of Census Block Population

| Direction | 2000 Census Block Population* | Distribution (%) |
|-----------|-------------------------------|------------------|
| N         | 38,458                        | 3.8              |
| NW        | 19,451                        | 1.9              |
| W         | 117,235                       | 11.5             |
| SW        | 87,884                        | 8.6              |
| S         | 121,621                       | 11.9             |
| SE        | 158,518                       | 15.5             |
| Е         | 96,586                        | 9.8              |
| NE        | 380,169                       | 37.3             |

Note: \* - The spatial analysis of the census block data was performed using ArcGIS 9.2

It appears from Table 8 that most of the traffic will come from the North East (NE) and South East (SE) directions. These correspond to the Wilkes-Barre/Scranton region and Hazelton areas respectively. Using these percentages and the available routes to the site the construction and heavy vehicle traffic departing the site is assigned to the study area intersections as shown in Figure 13.



Figure 13 – Traffic Assignment – Construction Traffic (%) Leaving Site

A similar distribution is assumed for the traffic arriving on site and shown in Figure 14. The calculations to derive these percentages are shown in Appendix D.



Figure 14 – Traffic Assignment – Construction Traffic (%) Arriving at Site

### 5.6. Total Trip Generation

The total traffic generated on site during the construction is the total of these 4 categories and is shown in Figure 15 by month in trips/day over the 68-month construction schedule. Figure 15 indicates that the month of highest traffic is coincident with outages. Over the 68-month schedule, the month of the highest traffic is March 2015 with 4849 trips. However, without the outage the periods of September 2014 to September 2015 have the highest expected traffic on site with 3449 trips.

These trips are assigned directionally and temporally to the two intersections near the site – Bell Bend and SSES access roads along RT11. Subsequently, they are distributed to the other study area intersections.



Figure 15 - Construction Site Trip Generation

#### 5.7. Total Traffic Onsite Including Background Traffic

The selected period for analysis during construction is February 2015. Using a compounded growth factor of 0.41% for Luzerne and 0.6% Columbia County respectively, the background traffic volumes were calculated for 2015. These volumes are combined with the traffic generated from the construction on site and these totals were used for the LOS and capacity analyses.

### 5.8. Projected Level of Service during Construction

Given that there are no major highway development/improvement projects planned within the study area to influence the capacity of the roadway system, the forecasted volumes were analyzed using the existing highway network. The resulting peak hour volumes are shown in Figures 16 and 17. The results of the capacity analysis and the LOS are presented in Table 9. Appendix G presents the worksheets for the calculations of the intersection LOS.

**Table 9 – Intersection LOS: Projected Conditions During Construction** 

|                                        |              | Future No-Build |    | Future No-Build Construct |    |
|----------------------------------------|--------------|-----------------|----|---------------------------|----|
| Intersection                           | Туре         | AM              | PM | AM                        | PM |
| RT11 & Union Street                    | Signalized   | В               | В  | C                         | C  |
| RT11 & Main Street                     | Signalized   | A               | A  | C                         | F  |
| RT11 & PPL Entrance                    | Unsignalized | В               | В  | C                         | В  |
| RT11 & Bell Bend Entrance              | Unsignalized |                 |    | F                         | F  |
| 2 <sup>nd</sup> Street & Market Street | Signalized   | В               | В  | В                         | F  |
| Front Street & Market Street           | Signalized   | В               | В  | C                         | E  |
| RT11 & LaSalle Street                  | Signalized   | A               | A  | A                         | A  |
| RT11 & Orange Street                   | Signalized   | В               | В  | D                         | F  |
| RT11 & Poplar Avenue                   | Signalized   | В               | В  | F                         | E  |

As indicated in Table 9, almost all intersection requires mitigation during the AM and PM peak periods. The mitigation measures to address these intersections are discussed in the following section 6.



## Not to Scale



Figure 16 - Weekday AM Peak Hour Traffic Volumes (veh/hour): Construction Peak



"Outages" (maintenance and refueling) occur every 2 years and last one month. If the peak period during construction were analyzed coincident with an Outage, the results are presented in Table 10.

**Table 10 – Intersection LOS: Projected Conditions During Construction With Outage** 

|                                        |              | Future No-Build |    | Construction |    |
|----------------------------------------|--------------|-----------------|----|--------------|----|
| Intersection                           | Type         | AM              | PM | AM           | PM |
| RT11 & Union Street                    | Signalized   | В               | В  | E            | C  |
| RT11 & Main Street                     | Signalized   | A               | A  | D            | E  |
| RT11 & PPL Entrance                    | Unsignalized | В               | В  | D            | C  |
| RT11 & Bell Bend Entrance              | Unsignalized |                 |    | F            | F  |
| 2 <sup>nd</sup> Street & Market Street | Signalized   | В               | В  | В            | F  |
| Front Street & Market Street           | Signalized   | В               | В  | E            | E  |
| RT11 & LaSalle Street                  | Signalized   | A               | A  | A            | A  |
| RT11 & Orange Street                   | Signalized   | В               | В  | F            | E  |
| RT11 & Poplar Avenue                   | Signalized   | В               | В  | F            | D  |

The LOS calculations for Table 10 are presented in Appendix H. The resulting peak hour volumes are shown in Figures 18 and 19. The results in Table 10 are similar to Table 9 with almost all intersection requiring mitigation during the AM and PM peak periods. The mitigation measures to address these intersections are discussed in the following section.





Figure 18 - Weekday AM Peak Hour Traffic Volumes (veh/hour): Construction With Outage



Figure 19 - Weekday PM Peak Hour Traffic Volumes (veh/hour): Construction With Outage

## 6. Mitigation Measures

Based on the results in Tables 9 and 10, mitigation is required at almost all the intersections. This section discusses the mitigation measures applied to each intersection within the study area.

#### RT 11 and RT239/Union Street

At this intersection signal optimization results in an intersection level of service comparable to the Future No-Build conditions during the PM peak periods. However, during the AM peak period, there is heavy demand in the EB and SB directions and the volumes are high for the single lane approaches. By using the parking lanes for the right turns from Union St/RT 239 going EB onto RT11 SB, and using the parking lanes along SB RT 11 intersection will operate at LOS B. This concept is presented in Figure 20. Table 11 presents the resulting LOS at these intersections. The updated signal settings and the worksheets for the LOS computations are presented in Appendix I.

Table 11 – Intersection LOS at RT 11 and RT239/Union Street with Mitigation

| Case                    | Base (Target) | Before Mitigation | After Mitigation |
|-------------------------|---------------|-------------------|------------------|
| Construction AM         | В             | C                 | В                |
| Construction PM         | В             | С                 | В                |
| Construction, Outage AM | В             | E                 | В                |
| Construction, Outage PM | В             | С                 | В                |



Figure 20 – Mitigation at Union Street/RT 239 and RT 11

#### RT 11 and Main Street

At this intersection, by optimizing the signal settings, the operating level of service at this intersection improves to LOS B, thereby mitigating some of the impacts of the construction traffic. Additionally, restriping the lanes along RT 11 NB in the PM and restriping lanes on SB RT 11 in the AM results in LOS A at this intersection. Table 12 presents the LOS at this intersection after mitigation.

Table 12 – Intersection LOS at RT 11 and Main Street with Mitigation

| Case                    | Base (Target) | Before Mitigation | After Mitigation |
|-------------------------|---------------|-------------------|------------------|
| Construction AM         | A             | C                 | A                |
| Construction PM         | A             | F                 | A                |
| Construction, Outage AM | A             | D                 | A                |
| Construction, Outage PM | A             | E                 | A                |

The restriping would include converting SB RT 11 to 2 through with a shared left turn lane and converting the NB RT 11 to 2 through with a shared right turn lane. This concept is shown in Figure 21. The LOS computations and worksheets are presented in Appendix I.



Figure 21 – Mitigation at Main Street and RT 11

### RT 11/East 2<sup>nd</sup> Street/West Front Street/RT 93/Market Street

This is the one way pair for RT 11 at the RT 93 (Market Street) bridge. Signal optimization and retiming at East 2<sup>nd</sup> Street mitigates all impacts. The resulting LOS is shown in Table 13. The LOS computations and worksheets are presented in Appendix I. However, at West Front Street, the traffic is heavy along EB RT 93 and NB RT 11 and requires restriping. Figure 22 shows a concept to restripe this intersection. As shown in Figure 22, by restricting street parking along RT 11 the capacity to move traffic NB on RT 11 is increased. Similarly, along RT 93 towards the bridge, an additional through lane is added. Also the merge further along NB RT 11 and along EB RT 93 would need to be analyzed to measure any spillback effects. It is important to note that with these mitigation measures, the intersection is expected to operate only at LOS C during the AM peak period when an outage is coincident with the construction peak.

Table 13 – Intersection LOS at RT 11/Front St/2<sup>nd</sup> Street and RT 93 with Mitigation

| RT 11/East 2 <sup>nd</sup> Street and RT 93/Market Street |               |                   |                  |  |
|-----------------------------------------------------------|---------------|-------------------|------------------|--|
| Case                                                      | Base (Target) | Before Mitigation | After Mitigation |  |
| Construction AM                                           | В             | В                 | В                |  |
| Construction PM                                           | В             | F                 | В                |  |
| Construction, Outage AM                                   | В             | В                 | В                |  |
| Construction, Outage PM                                   | В             | F                 | В                |  |
| RT 11/West Front Street and RT 93/Market Street           |               |                   |                  |  |
| Construction AM                                           | В             | C                 | В                |  |
| Construction PM                                           | В             | E                 | В                |  |
| Construction, Outage AM                                   | В             | E                 | С                |  |
| Construction, Outage PM                                   | В             | E                 | В                |  |



Figure 22 – Mitigation at RT 93 (Market St) and RT 11 (Front St, 2<sup>nd</sup> Street)

#### RT 11 & RT 93 (Orange Street)

At this intersection (Figure 23), the signal optimization improves the level of service. Table 14 presents the resulting LOS with the updated signal settings. The LOS computations and worksheets are presented in Appendix I.

Table 14 – Intersection LOS at RT 11 and RT93/Orange St with Mitigation

| Case                    | Base (Target) | Before Mitigation | After Mitigation |
|-------------------------|---------------|-------------------|------------------|
| Construction AM         | В             | D                 | В                |
| Construction PM         | В             | F                 | С                |
| Construction, Outage AM | В             | F                 | В                |
| Construction, Outage PM | В             | E                 | D                |

This intersection is constrained in terms of increasing the capacity by widening or adding to the intersection. It is located in the center of the Berwick Town where RT 11 has no shoulder, narrow lanes and commercial establishments on either side that use the center left turn lane. Using this center lane as shown in Figure 24 is an enticing option, but it would be challenging in terms of operations and needs discussion.



Figure 23 – RT 93 (Orange St) and RT 11 (Front St)

### RT 11 and Poplar Street

This is another intersection (Figure 24) in downtown Berwick. The signal optimization improves the level of service and is presented in Table 15. The LOS computations and

worksheets are presented in Appendix I. However, with the high volumes of traffic travelling to/from the site and I-80, the single lane along RT 11 is not sufficient and results in operating LOS lower than the Future No-Build. Also, as mentioned earlier, there is limited room for intersection capacity improvements, since there is no shoulder, and the only option would be to use the center left turn lane, but that would need to be reversed to handle the AM and PM demands appropriately.

Table 15 – Intersection LOS at RT 11 and Poplar St with Mitigation

| Case                    | Base (Target) | Before Mitigation | After Mitigation |
|-------------------------|---------------|-------------------|------------------|
| Construction AM         | В             | F                 | В                |
| Construction PM         | В             | E                 | D                |
| Construction, Outage AM | В             | F                 | E                |
| Construction, Outage PM | В             | D                 | D                |



Figure 24 – RT 11 & Poplar Street

#### RT 11 and Bell Bend Site Access

The proposed site access road would require signalization and designation of lanes along the site entrance to operate acceptably and ensure that the workers can get to/from the site in a timely fashion. Given the heavy flow in and out of the site during the AM and PM

respectively, it is recommended that the site access road be set up as a 3 lane road with a reversible center lane. Also, the signalization would be temporary and last only during the construction peak periods.

The summary of the mitigation measures is presented in table 16.

**Table 16 – Summary of Mitigation Measures** 

| Case         | Future<br>Build    | Consti                                        | ruction                                       | Construction                                                   | and Outage                                    |                                                |
|--------------|--------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| Intersection | PM                 | AM                                            | PM                                            | AM                                                             | PM                                            | Notes                                          |
| Main St      |                    | Signal<br>Retiming,<br>Restriping<br>SB RT 11 | Signal<br>Retiming,<br>Restriping<br>NB RT 11 | Signal<br>Retiming,<br>Restriping SB<br>RT 11                  | Signal<br>Retiming,<br>Restriping<br>NB RT 11 | -                                              |
| Union St     |                    | Signal<br>Retiming,<br>Restriping<br>SB RT 11 | Signal<br>Retiming                            | Signal<br>Retiming,<br>Restriping EB<br>Union, and RT<br>11 SB | Signal<br>Retiming                            | -                                              |
| Bell Bend    |                    | Temporary<br>signal<br>during<br>Construction | Temporary<br>signal<br>during<br>Construction | Temporary signal during Construction                           | Temporary signal during Construction          | -                                              |
| 2nd St       |                    | Signal<br>Retiming                            | Signal<br>Retiming                            | Signal<br>Retiming                                             | Signal<br>Retiming                            | -                                              |
| Front St     |                    | Signal<br>Retiming,<br>Restriping<br>SB RT 11 | Signal<br>Retiming,<br>Restriping<br>EB RT 93 | Signal<br>Retiming,<br>Restriping SB<br>RT 11                  | Signal<br>Retiming,<br>Restriping<br>EB RT 93 | Mitigation attains LOS                         |
|              |                    | LOS B                                         | LOS B                                         | LOS C                                                          | LOS B                                         | values shown<br>and not the<br>Future No Build |
| Poplar       |                    | Signal<br>Retiming                            | Signal<br>Retiming                            | Signal<br>Retiming                                             | Signal<br>Retiming                            | level of service,<br>LOS B.                    |
|              |                    | LOS B                                         | LOS D                                         | LOS E                                                          | LOS D                                         | Any additional mitigation needs                |
| Orange St    | Signal<br>Retiming | Signal<br>Retiming                            | Signal<br>Retiming                            | Signal<br>Retiming                                             | Signal<br>Retiming                            | discussion                                     |
|              | LOS B              | LOS B                                         | LOS C                                         | LOS B                                                          | LOS D                                         |                                                |

#### 7. Summary

The duration of the major impact period, when one considers the construction activity profile and the months on either side of it, is estimated to be 18-24 months long.

The primary measures considered and recommended for the "construction phase peak" are:

- ➤ Signal retiming at the intersections of RT 11 (2<sup>nd</sup> Street) & RT 93 (Market Street) will retain the "future no build" level of service;
- ➤ Signal retiming combined with removing of parking and/or re-designation of movements by lane will enable the "future no build" level of service to be attained at other intersections (RT 11 & Main Street, RT 11 & Union Street);
- At some intersections (RT 11 (Front Street) & RT 93 (Market Street), RT 11 and Polar Street, and RT 11 & RT 93 (Orange Street)), the traffic volumes combined with the restrictions on the geometry make it impossible to mitigate enough to attain the "future no build" levels but do allow intersection operation at LOS E or better during the both peaks;
- In one case (RT 11 & Poplar Street), it is assumed that some traffic from the side street will find alternate paths (readily available) because of the delays otherwise encountered. This will load traffic onto Route 11 from Mercer Street, leading to signalization there for system considerations (including the need to serve the minor street, and potential for blockages);
- The Bell Bend entrance along Route 11 carries very significant flows arriving from both directions in the AM (and departing in the PM), leading to a treatment that will require (a) signalization during the construction phase, (b) redesignation or realignment of through lanes on Route 11 during this same period to allow right turn lanes from WB Route 11 into the site & right turn lane onto SB Route 11 from the site, and (c) internal to the site, a three-lane road with one reversible lane (by time of day) for the construction worker traffic.

These findings now have to be discussed with the local and state agencies, and then presented.

As part of that dialog, the following information has to be emphasized:

1. The construction phase peak, particularly combined with an outage, will lead to traffic impacts that cannot be fully mitigated, in the sense of always attaining the "future no build" levels of service;

- 2. Reduction of parking even only for peak hours is logically a concern. Likewise, channeling two lanes of traffic into one heavily loaded lane is a concern, even if this is done away from the intersections.
- 3. Further, the addition of at least one signal (Route 11 & Mercer) to avoid blockages and allow side street access (e.g. for system considerations) will need discussion;
- 4. The temporary treatments at the Bell Bend entrance on Route 11, including signalization, will need to be reversed after the peak of construction;
- 5. There are nominally other solutions, such as routing westbound traffic along Route 93 to Route 487 and then southbound towards I-80, but this is unattractive because (a) the extra trip lengths incurred, and (b) the existence of a T-intersection at the intersection of Routes 93 and 487, so that the impact area is at best transferred;
- 6. Some alternatives including busing from remote parking fields were considered, but the operational issues involved with these lead to the conclusion that at this point, the most practical and effective mitigation approach is as described above.

With regard to the overall traffic plan, the proposed site includes a parking lot to handle all the expected construction traffic demand. The security checkpoints onsite are not expected to result in any spillback onto Route 11.

In short, there are traffic impacts during the construction phase that cannot be fully mitigated, although operational levels of service can generally be attained. In the "Future Build" condition, with the new Bell Bend unit operational, all traffic impacts can be mitigated simply by signal optimization.

#### 8. References

KLD Engineering P.C., Bell Bend Traffic Study - Assumptions-Rev1, May 2008.

KLD Engineering P.C., BBNPP-KLD-TrafficStudy-StudyAreaDefinition-Rev.0, June 2008.

McTrans Centre at University of Florida, (<a href="http://mctrans.ce.ufl.edu">http://mctrans.ce.ufl.edu</a>), HCS+ User Manual.

PennDOT, Guidelines for preparation of a Traffic Impact Study, February 2004.

PennDOT, Publication 282, April 2004.

Traffic Ware (<a href="http://www.trafficware.com">http://www.trafficware.com</a>), SYNCHRO 6 User Manual.

Transportation Research Board, Washington, DC, Highway Capacity Manual 2000.

UniStar, NMP Site Selection and Optimization Final Report, July 2007.

UniStar, RFI-06-32, December 2006.

UniStar, RFI-06-33, December 2006.

#### **APPENDIX A**

Existing Conditions:

- 1. Condition Diagrams
- 2. Field Data Collected
  - 3. Signal Permits

Appendix A 1

Appendix A 2

KLD Engineering, P.C. Bell Bend Traffic Study

KLD Engineering, P.C. Bell Bend Traffic Study

Appendix A 4

610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 / Lasalle St Date: Thursday, June 12 2008

Tech. RZ

File Name : SM0612-4C Site Code : 00000000

Start Date : 6/12/2008

| 1                |       |          | RTE 11             |      |            | ps Printec | RTE           |                |      |            |         | LASAI | IDOT     |      |            | 1          |
|------------------|-------|----------|--------------------|------|------------|------------|---------------|----------------|------|------------|---------|-------|----------|------|------------|------------|
|                  |       |          | KIE II<br>outhboun | d    |            |            |               | 11<br>orthboun | d    |            |         |       | astbound | i.   |            |            |
| Start Time       | Right | Thru     | Left               | Peds | App. Total | Right      | Thru          | Left           | Peds | App. Total | Right   | Thru  | Left     | Peds | App. Total | Int. Total |
| 06:00 AM         | 4     | 76       | 1                  | 0    | 81         | 0          | 88            | 8              | 0    | 96         | 6       | 0     | 0        | 0    | 6          | 183        |
| 06:15 AM         | 0     | 86       | 0                  | 0    | 86         | 0          | 101           | 9              | 0    | 110        | 8       | 0     | 0        | 0    | 8          | 204        |
| 06:30 AM         | 0     | 115      | 1                  | 0    | 116        | 0          | 116           | 16             | 0    | 132        | 11      | 0     | 0        | 0    | 11         | 259        |
| 06:45 AM         | 2     | 106      | 0                  | 0    | 108        | 0          | 83            | 20             | 0    | 103        | 4       | 0     | 0        | 0    | 4          | 215        |
| Total            | 6     | 383      | 2                  | 0    | 391        | 0          | 388           | 53             | 0    | 441        | 29      | 0     | 0        | 0    | 29         | 861        |
| 07:00 AM         | 1     | 99       | 0                  | 0    | 100        | 0          | 89            | 9              | 0    | 98         | 14      | 0     | 0        | 0    | 14         | 212        |
| 07:15 AM         | 4     | 109      | 3                  | 0    | 116        | 0          | 124           | 8              | 0    | 132        | 8       | 0     | 0        | 1    | 9          | 257        |
| 07:30 AM         | 3     | 149      | 2                  | 0    | 154        | 0          | 96            | 11             | 0    | 107        | 20      | 0     | 0        | 0    | 20         | 281        |
| 07:45 AM         | 6     | 172      | 3                  | 1    | 182        | 0          | 80            | 21             | 1    | 102        | 19      | 0     | 0        | 2    | 21         | 305        |
| Total            | 14    | 529      | 8                  | 1    | 552        | 0          | 389           | 49             | 1    | 439        | 61      | 0     | 0        | 3    | 64         | 1055       |
| 08:00 AM         | 9     | 117      | 2                  | 1    | 129        | 0          | 126           | 9              | 0    | 135        | 11      | 0     | 0        | 0    | 11         | 275        |
| 08:15 AM         | 2     | 140      | 2                  | 0    | 144        | 0          | 138           | 4              | 0    | 142        | 15      | 0     | 0        | 0    | 15         | 301        |
| 08:30 AM         | 4     | 115      | 0                  | 0    | 119        | 0          | 118           | 6              | 1    | 125        | 10      | 0     | 0        | 2    | 12         | 256        |
| 08:45 AM         | 4     | 131      | 0                  | 0    | 135        | 0          | 133           | 11             | 0    | 144        | 10      | 0     | 0        | 1    | 11         | 290        |
| Total            | 19    | 503      | 4                  | 1    | 527        | 0          | 515           | 30             | 1    | 546        | 46      | 0     | 0        | 3    | 49         | 1122       |
| ** BREAK ***     |       |          |                    |      |            |            |               |                |      |            |         |       |          |      |            |            |
| 02:30 PM         | 8     | 180      | 1                  | 0    | 189        | 0          | 184           | 19             | 0    | 203        | 26      | 0     | 0        | 0    | 26         | 418        |
| 02:45 PM         | 8     | 164      | 4                  | 1    | 177        | 0          | 152           | 21             | 0    | 173        | 28      | 0     | 0        | 1    | 29         | 379        |
| Total            | 16    | 344      | 5                  | 1    | 366        | 0          | 336           | 40             | 0    | 376        | 54      | 0     | 0        | 1    | 55         | 797        |
| 03:00 PM         | 13    | 223      | 4                  | 0    | 240        | 0          | 189           | 9              | 0    | 198        | 43      | 0     | 0        | 0    | 43         | 481        |
| 03:15 PM         | 7     | 218      | 1                  | 3    | 229        | 0          | 204           | 16             | 1    | 221        | 31      | 0     | 0        | 2    | 33         | 483        |
| 03:30 PM         | 8     | 225      | 5                  | 0    | 238        | 0          | 197           | 22             | 1    | 220        | 38      | 0     | 0        | 1    | 39         | 497        |
| 03:45 PM         | 10    | 187      | 3                  | 2    | 202        | 0          | 221           | 20             | 0    | 241        | 30      | 0     | 0        | 0    | 30         | 473        |
| Total            | 38    | 853      | 13                 | 5    | 909        | 0          | 811           | 67             | 2    | 880        | 142     | 0     | 0        | 3    | 145        | 1934       |
| 04:00 PM         | 8     | 224      | 1                  | 0    | 233        | 0          | 210           | 16             | 0    | 226        | 39      | 0     | 0        | 2    | 41         | 500        |
| 04:15 PM         | 11    | 223      | 7                  | 1    | 242        | 0          | 188           | 17             | 0    | 205        | 21      | 0     | 0        | 1    | 22         | 469        |
| 04:30 PM         | 3     | 237      | 6                  | 0    | 246        | 0          | 229           | 21             | 0    | 250        | 56      | 0     | 0        | 2    | 58         | 554        |
| 04:45 PM         | 7     | 195      | 1                  | 4    | 207        | 0          | 193           | 22             | 0    | 215        | 24      | 0     | 0        | 1    | 25         | 447        |
| Total            | 29    | 879      | 15                 | 5    | 928        | 0          | 820           | 76             | 0    | 896        | 140     | 0     | 0        | 6    | 146        | 1970       |
| 05:00 PM         | 11    | 214      | 4                  | 0    | 229        | 0          | 234           | 9              | 0    | 243        | 32      | 0     | 0        | 1    | 33         | 505        |
| 05:15 PM         | 5     | 180      | 6                  | 0    | 191        | 0          | 214           | 33             | 0    | 247        | 30      | 1     | 0        | 2    | 33         | 471        |
| Grand Total      | 138   | 3885     | 57                 | 13   | 4093       | 0          | 3707          | 357            | 4    | 4068       | 534     | 1     | 0        | 19   | 554        | 8715       |
| Apprch %         | 3.4   | 94.9     | 1.4                | 0.3  |            | 0          | 91.1          | 8.8            | 0.1  |            | 96.4    | 0.2   | 0        | 3.4  |            |            |
| Total %          | 1.6   | 44.6     | 0.7                | 0.1  | 47         | 0          | 42.5          | 4.1            | 0    | 46.7       | 6.1     | 0     | 0        | 0.2  | 6.4        | 0 = c :    |
| Cars             | 138   | 3797     | 57                 | 13   | 4005       | 0          | 3616          | 357            | 4    | 3977       | 499     | 1     | 0        | 19   | 519        | 8501       |
| % Cars           | 100   | 97.7     | 100                | 100  | 97.8       | 0          | 97.5          | 100            | 100  | 97.8       | 93.4    | 100   | 0        | 100  | 93.7       | 97.5       |
| Heavy Vehicles   | 0     | 88       | 0                  | 0    | 88         | 0          | 90            | 0              | 0    | 90         | 3       | 0     | 0        | 0    | 3          | 181        |
| % Heavy Vehicles | 0     | 2.3      | 0                  | 0    | 2.2        | 0          | 2.4           | 0              | 0    | 2.2        | 0.6     | 0     | 0        | 0    | 0.5        | 2.1        |
| RTOR             | 0     | $0 \\ 0$ | 0                  | 0    | 0          | 0          | $\frac{1}{0}$ | 0              | 0    | 1<br>0     | 32<br>6 | 0     | 0        | 0    | 32<br>5.8  | 33<br>0.4  |

610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 / Lasalle St Date: Thursday, June 12 2008

Tech. RZ

File Name : SM0612-4C Site Code : 00000000 Start Date : 6/12/2008



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 / Lasalle St Date: Thursday, June 12 2008

Tech. RZ

File Name : SM0612-4C Site Code : 00000000 Start Date : 6/12/2008

|                    |            | ~         | RTE 11     |          |            |       | RTE  |           |      |            |       |      | LLE ST    | -    |            |            |
|--------------------|------------|-----------|------------|----------|------------|-------|------|-----------|------|------------|-------|------|-----------|------|------------|------------|
|                    |            | S         | outhboun   | nd       |            |       | N    | Iorthbour | ıd   |            |       |      | Eastboung | d    |            |            |
| Start Time         | Right      | Thru      | Left       | Peds     | App. Total | Right | Thru | Left      | Peds | App. Total | Right | Thru | Left      | Peds | App. Total | Int. Total |
| Peak Hour Analysi  | s From 06  | :00 AM    | to 11:45 A | AM - Pea | k 1 of 1   |       |      |           |      |            |       |      |           |      |            |            |
| Peak Hour for Enti | re Interse | ction Beg | ins at 07: | 30 AM    |            |       |      |           |      |            |       |      |           |      |            |            |
| 07:30 AM           | 3          | 149       | 2          | 0        | 154        | 0     | 96   | 11        | 0    | 107        | 20    | 0    | 0         | 0    | 20         | 281        |
| 07:45 AM           | 6          | 172       | 3          | 1        | 182        | 0     | 80   | 21        | 1    | 102        | 19    | 0    | 0         | 2    | 21         | 305        |
| 08:00 AM           | 9          | 117       | 2          | 1        | 129        | 0     | 126  | 9         | 0    | 135        | 11    | 0    | 0         | 0    | 11         | 275        |
| 08:15 AM           | 2          | 140       | 2          | 0        | 144        | 0     | 138  | 4         | 0    | 142        | 15    | 0    | 0         | 0    | 15         | 301        |
| Total Volume       | 20         | 578       | 9          | 2        | 609        | 0     | 440  | 45        | 1    | 486        | 65    | 0    | 0         | 2    | 67         | 1162       |
| % App. Total       | 3.3        | 94.9      | 1.5        | 0.3      |            | 0     | 90.5 | 9.3       | 0.2  |            | 97    | 0    | 0         | 3    |            |            |
| PHF                | .556       | .840      | .750       | .500     | .837       | .000  | .797 | .536      | .250 | .856       | .813  | .000 | .000      | .250 | .798       | .952       |
| Cars               | 20         | 561       | 9          | 2        | 592        | 0     | 421  | 45        | 1    | 467        | 60    | 0    | 0         | 2    | 62         | 1121       |
| % Cars             | 100        | 97.1      | 100        | 100      | 97.2       | 0     | 95.7 | 100       | 100  | 96.1       | 92.3  | 0    | 0         | 100  | 92.5       | 96.5       |
| Heavy Vehicles     | 0          | 17        | 0          | 0        | 17         | 0     | 19   | 0         | 0    | 19         | 1     | 0    | 0         | 0    | 1          | 37         |
| % Heavy Vehicles   | 0          | 2.9       | 0          | 0        | 2.8        | 0     | 4.3  | 0         | 0    | 3.9        | 1.5   | 0    | 0         | 0    | 1.5        | 3.2        |
| RTOR               | 0          | 0         | 0          | 0        | 0          | 0     | 0    | 0         | 0    | 0          | 4     | 0    | 0         | 0    | 4          | 4          |
| % RTOR             | 0          | 0         | 0          | 0        | 0          | 0     | 0    | 0         | 0    | 0          | 6.2   | 0    | 0         | 0    | 6.0        | 0.3        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 / Lasalle St Date: Thursday, June 12 2008

Tech. RZ

File Name : SM0612-4C Site Code : 00000000 Start Date : 6/12/2008

|                    |             |           | RTE 11     |       |            |       | RTE  | 11       |      |            |       | LASAI | LLE ST    |      |            |            |
|--------------------|-------------|-----------|------------|-------|------------|-------|------|----------|------|------------|-------|-------|-----------|------|------------|------------|
|                    |             |           | outhboun   | đ     |            |       |      | orthboun | d    |            |       |       | Eastbound | 1    |            |            |
| Start Time         | Right       | Thru      | Left       | Peds  | App. Total | Right | Thru | Left     | Peds | App. Total | Right | Thru  | Left      | Peds | App. Total | Int. Total |
| Peak Hour Analysi  |             |           |            |       |            | 6     |      |          |      |            |       |       |           |      |            |            |
| Peak Hour for Enti | re Intersec | tion Begi | ns at 03:4 | 45 PM |            |       |      |          |      |            |       |       |           |      |            |            |
| 03:45 PM           | 10          | 187       | 3          | 2     | 202        | 0     | 221  | 20       | 0    | 241        | 30    | 0     | 0         | 0    | 30         | 473        |
| 04:00 PM           | 8           | 224       | 1          | 0     | 233        | 0     | 210  | 16       | 0    | 226        | 39    | 0     | 0         | 2    | 41         | 500        |
| 04:15 PM           | 11          | 223       | 7          | 1     | 242        | 0     | 188  | 17       | 0    | 205        | 21    | 0     | 0         | 1    | 22         | 469        |
| 04:30 PM           | 3           | 237       | 6          | 0     | 246        | 0     | 229  | 21       | 0    | 250        | 56    | 0     | 0         | 2    | 58         | 554        |
| Total Volume       | 32          | 871       | 17         | 3     | 923        | 0     | 848  | 74       | 0    | 922        | 146   | 0     | 0         | 5    | 151        | 1996       |
| % App. Total       | 3.5         | 94.4      | 1.8        | 0.3   |            | 0     | 92   | 8        | 0    |            | 96.7  | 0     | 0         | 3.3  |            |            |
| PHF                | .727        | .919      | .607       | .375  | .938       | .000  | .926 | .881     | .000 | .922       | .652  | .000  | .000      | .625 | .651       | .901       |
| Cars               | 32          | 856       | 17         | 3     | 908        | 0     | 834  | 74       | 0    | 908        | 137   | 0     | 0         | 5    | 142        | 1958       |
| % Cars             | 100         | 98.3      | 100        | 100   | 98.4       | 0     | 98.3 | 100      | 0    | 98.5       | 93.8  | 0     | 0         | 100  | 94.0       | 98.1       |
| Heavy Vehicles     | 0           | 15        | 0          | 0     | 15         | 0     | 14   | 0        | 0    | 14         | 2     | 0     | 0         | 0    | 2          | 31         |
| % Heavy Vehicles   | 0           | 1.7       | 0          | 0     | 1.6        | 0     | 1.7  | 0        | 0    | 1.5        | 1.4   | 0     | 0         | 0    | 1.3        | 1.6        |
| RTOR               | 0           | 0         | 0          | 0     | 0          | 0     | 0    | 0        | 0    | 0          | 7     | 0     | 0         | 0    | 7          | 7          |
| % RTOR             | 0           | 0         | 0          | 0     | 0          | 0     | 0    | 0        | 0    | 0          | 4.8   | 0     | 0         | 0    | 4.6        | 0.4        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 Nb/Rt. 93 Date: Thursday, June 12, 2008

Counter: BB

File Name : SM0612-2 Site Code : 00000000

Start Date : 6/12/2008

|                   |       |      |        |      |            |           | Grou       | ps Prir | nted- Ca | ars - Hea  | vy Veh    | icles - I | RTOR    |        |            |       |           |          |      |            |             |
|-------------------|-------|------|--------|------|------------|-----------|------------|---------|----------|------------|-----------|-----------|---------|--------|------------|-------|-----------|----------|------|------------|-------------|
|                   |       |      | US 11  |      |            |           |            | Front S |          |            |           |           | US 11   |        |            |       |           | Front S  | St   |            |             |
|                   |       | So   | uthbou | ınd  |            |           | W          | estbou  | nd       |            |           | N-        | orthbou | ınd    |            |       | Е         | astbou   | nd   |            |             |
| Start Time        | Right | Thru | Left   | Peds | App. Total | Right     | Thru       | Left    |          | App. Total | Right     | Thru      | Left    | Peds   | App. Total | Right | Thru      | 1        | Peds | App. Total | Int. Total  |
| 06:00 AM          | 0     | 0    | 0      | 0    | 0          | 37        | 29         | 0       | 0        | 66         | 21        | 83        | 0       | 0      | 104        | 0     | 30        | 17       | 1    | 48         | 218         |
| 06:15 AM          | 0     | 0    | 0      | 0    | 0          | 51        | 26         | 0       | 0        | 77         | 13        | 83        | 0       | 0      | 96         | 0     | 45        | 14       | 0    | 59         | 232         |
| 06:30 AM          | 0     | 0    | 0      | 0    | 0          | 75        | 42         | 0       | 1        | 118        | 17        | 95        | 0       | 2      | 114        | 0     | 31        | 21       | 0    | 52         | 284         |
| 06:45 AM          | 0     | 0    | 0      | 0    | 0          | 33        | 39         | 0       | 2        | 74         | 16        | 67        | 1       | 0      | 84         | 0     | 31        | 19       | 2    | 52         | 210         |
| Total             | 0     | 0    | 0      | 0    | 0          | 196       | 136        | 0       | 3        | 335        | 67        | 328       | 1       | 2      | 398        | 0     | 137       | 71       | 3    | 211        | 944         |
| 07:00 AM          | 0     | 0    | 0      | 0    | 0          | 27        | 52         | 0       | 0        | 79         | 33        | 69        | 0       | 0      | 102        | 0     | 34        | 15       | 1    | 50         | 231         |
| 07:15 AM          | 0     | 0    | 0      | 0    | 0          | 38        | 41         | 0       | 1        | 80         | 27        | 91        | 1       | 0      | 119        | 0     | 38        | 10       | î    | 49         | 248         |
| 07:30 AM          | 0     | 0    | 0      | 0    | 0          | 27        | 29         | 0       | 0        | 56         | 17        | 68        | 0       | 1      | 86         | 0     | 50        | 11       | 0    | 61         | 203         |
| 07:45 AM          | ő     | ő    | 0      | ő    | ő          | 54        | 100        | 0       | 0        | 154        | 16        | 66        | 0       | 1      | 83         | 0     | 39        | 14       | 0    | 53         | 290         |
| Total             | 0     | 0    | 0      | 0    | 0          | 146       | 222        | 0       | 1        | 369        | 93        | 294       | 1       | 2      | 390        | 0     | 161       | 50       | 2    | 213        | 972         |
| 08:00 AM          | 0     | 0    | 0      | 0    | 0          | 1 20      | <i>(</i> 7 | 0       | 0        | 05         | 27        | 97        | 0       | 0      | 112        | 0     | 22        | 17       | 1    | 50         | 250         |
|                   | _     | 0    | 0      | 0    | 0          | 28        | 67         | 0       | 0        | 95         | 27        | 86        | 0       | 0      | 113        | 0     | 32        | 17       | 1    |            | 258         |
| 08:15 AM          | 0     | 0    | 0      | 0    | 0          | 39        | 77<br>57   | 0       | 1        | 117        | 39        | 69        | 1       | 0      | 109        | 0     | 41        | 16       | 0    | 57         | 283         |
| 08:30 AM          | 0     | 0    | 0      | 0    | 0          | 26        | 56         | 0       | 1        | 83         | 35        | 62        | 0       | 0      | 97         | 0     | 37        | 7        | 0    | 44         | 224         |
| 08:45 AM<br>Total | 0     | 0    | 0      | 0    | 0          | 39<br>132 | 54<br>254  | 0       | 0 2      | 93<br>388  | 24<br>125 | 76<br>293 | 5       | 5<br>5 | 109<br>428 | 0     | 31<br>141 | 16<br>56 | 1 2  | 48<br>199  | 250<br>1015 |
| 1 Ota1            | 1 0   | U    | U      | U    | U          | 132       | 234        | U       | 2        | 300        | 123       | 293       | 3       | 3      | 426        | 0     | 141       | 50       | 2    | 199        | 1013        |
| *** BREAK *       | **    |      |        |      |            |           |            |         |          |            |           |           |         |        |            |       |           |          |      |            |             |
| 02:30 PM          | 0     | 0    | 0      | 1    | 1          | 37        | 48         | 0       | 0        | 85         | 46        | 116       | 1       | 0      | 163        | 0     | 59        | 14       | 2    | 75         | 324         |
| 02:45 PM          | 0     | 0    | 0      | 0    | 0          | 33        | 70         | 0       | 1        | 104        | 41        | 105       | 2       | 5      | 153        | 0     | 55        | 17       | 1    | 73         | 330         |
| Total             | 0     | 0    | 0      | 1    | 1          | 70        | 118        | 0       | 1        | 189        | 87        | 221       | 3       | 5      | 316        | 0     | 114       | 31       | 3    | 148        | 654         |
| 03:00 PM          | 0     | 0    | 0      | 0    | 0          | 19        | 60         | 0       | 1        | 80         | 40        | 124       | 0       | 1      | 165        | 0     | 83        | 24       | 2    | 109        | 354         |
| 03:15 PM          | 0     | 0    | 0      | 0    | 0          | 34        | 58         | 0       | 1        | 93         | 52        | 114       | 1       | 4      | 171        | 0     | 81        | 17       | 5    | 103        | 367         |
| 03:30 PM          | 0     | 0    | 0      | 0    | 0          | 27        | 70         | 0       | 0        | 97         | 48        | 132       | 2       | 5      | 187        | 0     | 84        | 21       | 4    | 109        | 393         |
| 03:45 PM          | 0     | 0    | 0      | 0    | 0          | 37        | 68         | 0       | 2        | 107        | 44        | 152       | 0       | 4      | 200        | 0     | 73        | 20       | 3    | 96         | 403         |
| Total             | 0     | 0    | 0      | 0    | 0          | 117       | 256        | 0       | 4        | 377        | 184       | 522       | 3       | 14     | 723        | 0     | 321       | 82       | 14   | 417        | 1517        |
| 04:00 PM          | 0     | 0    | 0      | 0    | 0          | 36        | 67         | 0       | 0        | 103        | 40        | 136       | 2       | 2      | 180        | 0     | 88        | 20       | 1    | 109        | 392         |
| 04:15 PM          | 0     | 0    | 0      | 0    | 0          | 26        | 78         | 0       | 2        | 106        | 46        | 136       | 2       | 1      | 185        | 0     | 64        | 13       | 7    | 84         | 375         |
| 04:30 PM          | 0     | 0    | 0      | 0    | 0          | 39        | 64         | 0       | 2        | 105        | 57        | 164       | 2       | 0      | 223        | 0     | 104       | 25       | 2    | 131        | 459         |
| 04:45 PM          | 0     | 0    | 0      | 0    | 0          | 36        | 67         | 0       | 1        | 104        | 43        | 144       | 0       | 0      | 187        | 0     | 76        | 29       | 1    | 106        | 397         |
| Total             | 0     | 0    | 0      | 0    | 0          | 137       | 276        | 0       | 5        | 418        | 186       | 580       | 6       | 3      | 775        | 0     | 332       | 87       | 11   | 430        | 1623        |
| 05:00 PM          | 0     | 0    | 0      | 0    | 0          | 41        | 82         | 0       | 5        | 128        | 58        | 144       | 1       | 3      | 206        | 0     | 81        | 20       | 1    | 102        | 436         |
| 05:15 PM          | 0     | 0    | 0      | 0    | 0          | 42        | 79         | 0       | 0        | 121        | 50        | 123       | 1       | 1      | 175        | 0     | 70        | 18       | 3    | 91         | 387         |
| Grand Total       | 0     | 0    | 0      | 1    | 1          | 881       | 1423       | 0       | 21       | 2325       | 850       | 2505      | 21      | 35     | 3411       | 0     | 1357      | 415      | 39   | 1811       | 7548        |
| Apprch %          | 0     | 0    | 0      | 100  | 1          | 37.9      | 61.2       | 0       | 0.9      |            | 24.9      | 73.4      | 0.6     | 1      | 2 F11      | 0     | 74.9      | 22.9     | 2.2  | 1011       | ,,,,,,,     |
| Total %           | 0     | 0    | 0      | 0    | 0          | 11.7      | 18.9       | 0       | 0.3      | 30.8       | 11.3      | 33.2      | 0.3     | 0.5    | 45.2       | 0     | 18        | 5.5      | 0.5  | 24         |             |
| Cars              | 0     | 0    | 0      | 1    | 1          | 657       | 1389       | 0       | 21       | 2067       | 778       | 2464      | 21      | 35     | 3298       | 0     | 1315      | 413      | 39   | 1767       | 7133        |
| % Cars            | 0     | 0    | 0      | 100  | 100        | 74.6      | 97.6       | 0       | 100      | 88.9       | 91.5      | 98.4      | 100     | 100    | 96.7       | 0     | 96.9      | 99.5     | 100  | 97.6       | 94.5        |
| Heavy Vehicles    | 0     | 0    | 0      | 0    | 0          | 22        | 34         | 0       | 0        | 56         | 26        | 41        | 0       | 0      | 67         | 0     | 42        | 2        | 0    | 44         | 167         |
| % Heavy Vehicles  | 0     | 0    | 0      | 0    | 0          | 2.5       | 2.4        | 0       | 0        | 2.4        | 3.1       | 1.6       | 0       | 0      | 2          | 0     | 3.1       | 0.5      | 0    | 2.4        | 2.2         |
| % Heavy Venicles  | 0     | 0    | 0      | 0    | 0          | 202       | 0          | 0       | 0        | 202        | 46        | 0         | 0       | 0      | 46         | 0     | 0         | 0.5      | 0    | 0          | 248         |
| % RTOR            | 0     | 0    | 0      | 0    | 0          | 22.9      | 0          | 0       | 0        | 8.7        | 5.4       | 0         | 0       | 0      | 1.3        | 0     | 0         | 0        | 0    | 0          | 3.3         |
| 70 KIUK           | l U   | υ    | U      | U    | U          | 44.9      | υ          | υ       | U        | 0./        | J.4       | U         | U       | υ      | 1.3        | ı U   | U         | υ        | υ    | U          | ⊥ ∋.∋       |

610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 Nb/Rt. 93 Date: Thursday, June 12, 2008

Counter: BB

File Name : SM0612-2 Site Code : 00000000 Start Date : 6/12/2008



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 Nb/Rt. 93 Date: Thursday, June 12, 2008

Counter: BB

File Name : SM0612-2 Site Code : 00000000 Start Date : 6/12/2008

|                  |          |          | US 11   |           |            |          |      | Front S | t    |            |       |      | US 11   |      |            |       |      | Front S | it   |            |            |
|------------------|----------|----------|---------|-----------|------------|----------|------|---------|------|------------|-------|------|---------|------|------------|-------|------|---------|------|------------|------------|
|                  |          | So       | uthbou  | nd        |            |          | W    | estbou  | nd   |            |       | No   | orthbou | ınd  |            |       | Е    | astbour | nd   |            |            |
| Start Time       | Right    | Thru     | Left    | Peds      | App. Total | Right    | Thru | Left    | Peds | App. Total | Right | Thru | Left    | Peds | App. Total | Right | Thru | Left    | Peds | App. Total | Int. Total |
| Peak Hour Ana    | alysis F | rom 06:  | 00 AM   | to 11:4   | 5 AM - I   | Peak 1 c | of 1 |         |      |            |       |      |         |      |            |       |      |         |      |            |            |
| Peak Hour for    | Entire I | ntersect | tion Be | gins at ( | 07:45 AN   | Л        |      |         |      |            |       |      |         |      |            |       |      |         |      |            |            |
| 07:45 AM         | 0        | 0        | 0       | 0         | 0          | 54       | 100  | 0       | 0    | 154        | 16    | 66   | 0       | 1    | 83         | 0     | 39   | 14      | 0    | 53         | 290        |
| 08:00 AM         | 0        | 0        | 0       | 0         | 0          | 28       | 67   | 0       | 0    | 95         | 27    | 86   | 0       | 0    | 113        | 0     | 32   | 17      | 1    | 50         | 258        |
| 08:15 AM         | 0        | 0        | 0       | 0         | 0          | 39       | 77   | 0       | 1    | 117        | 39    | 69   | 1       | 0    | 109        | 0     | 41   | 16      | 0    | 57         | 283        |
| 08:30 AM         | 0        | 0        | 0       | 0         | 0          | 26       | 56   | 0       | 1    | 83         | 35    | 62   | 0       | 0    | 97         | 0     | 37   | 7       | 0    | 44         | 224        |
| Total Volume     | 0        | 0        | 0       | 0         | 0          | 147      | 300  | 0       | 2    | 449        | 117   | 283  | 1       | 1    | 402        | 0     | 149  | 54      | 1    | 204        | 1055       |
| % App. Total     | 0        | 0        | 0       | 0         |            | 32.7     | 66.8 | 0       | 0.4  |            | 29.1  | 70.4 | 0.2     | 0.2  |            | 0     | 73   | 26.5    | 0.5  |            |            |
| PHF              | .000     | .000     | .000    | .000      | .000       | .681     | .750 | .000    | .500 | .729       | .750  | .823 | .250    | .250 | .889       | .000  | .909 | .794    | .250 | .895       | .909       |
| Cars             | 0        | 0        | 0       | 0         | 0          | 74       | 293  | 0       | 2    | 369        | 97    | 273  | 1       | 1    | 372        | 0     | 137  | 54      | 1    | 192        | 933        |
| % Cars           | 0        | 0        | 0       | 0         | 0          | 50.3     | 97.7 | 0       | 100  | 82.2       | 82.9  | 96.5 | 100     | 100  | 92.5       | 0     | 91.9 | 100     | 100  | 94.1       | 88.4       |
| Heavy Vehicles   |          |          |         |           |            |          |      |         |      |            |       |      |         |      |            |       |      |         |      |            |            |
| % Heavy Vehicles | 0        | 0        | 0       | 0         | 0          | 3.4      | 2.3  | 0       | 0    | 2.7        | 6.0   | 3.5  | 0       | 0    | 4.2        | 0     | 8.1  | 0       | 0    | 5.9        | 3.9        |
| RTOR             | 0        | 0        | 0       | 0         | 0          | 68       | 0    | 0       | 0    | 68         | 13    | 0    | 0       | 0    | 13         | 0     | 0    | 0       | 0    | 0          | 81         |
| % RTOR           | 0        | 0        | 0       | 0         | 0          | 46.3     | 0    | 0       | 0    | 15.1       | 11.1  | 0    | 0       | 0    | 3.2        | 0     | 0    | 0       | 0    | 0          | 7.7        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 Nb/Rt. 93 Date: Thursday, June 12, 2008

Counter: BB

File Name : SM0612-2 Site Code : 00000000 Start Date : 6/12/2008

|                  |           |          | US 11         |           |            |         |      | Front S |      |            |       |      | US 11          |      |            |       |      | Front S |      |            |            |
|------------------|-----------|----------|---------------|-----------|------------|---------|------|---------|------|------------|-------|------|----------------|------|------------|-------|------|---------|------|------------|------------|
|                  |           | So       | <u>uthbou</u> | nd        |            |         | W    | estbou  | nd   |            |       | N    | <u>orthbou</u> | ınd  |            |       | E    | astbour | nd   |            |            |
| Start Time       | Right     | Thru     | Left          | Peds      | App. Total | Right   | Thru | Left    | Peds | App. Total | Right | Thru | Left           | Peds | App. Total | Right | Thru | Left    | Peds | App. Total | Int. Total |
| Peak Hour Ana    | alysis Fi | rom 12:  | 00 PM         | to 05:1   | 5 PM - P   | eak 1 o | f 1  |         |      |            |       |      |                |      |            |       |      |         |      |            |            |
| Peak Hour for    | Entire I  | ntersect | ion Be        | gins at ( | 04:30 PM   | 1       |      |         |      |            |       |      |                |      |            |       |      |         |      |            |            |
| 04:30 PM         | 0         | 0        | 0             | 0         | 0          | 39      | 64   | 0       | 2    | 105        | 57    | 164  | 2              | 0    | 223        | 0     | 104  | 25      | 2    | 131        | 459        |
| 04:45 PM         | 0         | 0        | 0             | 0         | 0          | 36      | 67   | 0       | 1    | 104        | 43    | 144  | 0              | 0    | 187        | 0     | 76   | 29      | 1    | 106        | 397        |
| 05:00 PM         | 0         | 0        | 0             | 0         | 0          | 41      | 82   | 0       | 5    | 128        | 58    | 144  | 1              | 3    | 206        | 0     | 81   | 20      | 1    | 102        | 436        |
| 05:15 PM         | 0         | 0        | 0             | 0         | 0          | 42      | 79   | 0       | 0    | 121        | 50    | 123  | 1              | 1    | 175        | 0     | 70   | 18      | 3    | 91         | 387        |
| Total Volume     | 0         | 0        | 0             | 0         | 0          | 158     | 292  | 0       | 8    | 458        | 208   | 575  | 4              | 4    | 791        | 0     | 331  | 92      | 7    | 430        | 1679       |
| % App. Total     | 0         | 0        | 0             | 0         |            | 34.5    | 63.8 | 0       | 1.7  |            | 26.3  | 72.7 | 0.5            | 0.5  |            | 0     | 77   | 21.4    | 1.6  |            |            |
| PHF              | .000      | .000     | .000          | .000      | .000       | .940    | .890 | .000    | .400 | .895       | .897  | .877 | .500           | .333 | .887       | .000  | .796 | .793    | .583 | .821       | .914       |
| Cars             | 0         | 0        | 0             | 0         | 0          | 148     | 289  | 0       | 8    | 445        | 194   | 570  | 4              | 4    | 772        | 0     | 328  | 91      | 7    | 426        | 1643       |
| % Cars           | 0         | 0        | 0             | 0         | 0          | 93.7    | 99.0 | 0       | 100  | 97.2       | 93.3  | 99.1 | 100            | 100  | 97.6       | 0     | 99.1 | 98.9    | 100  | 99.1       | 97.9       |
| Heavy Vehicles   |           |          |               |           |            |         |      |         |      |            |       |      |                |      |            |       |      |         |      |            |            |
| % Heavy Vehicles | 0         | 0        | 0             | 0         | 0          | 1.3     | 1.0  | 0       | 0    | 1.1        | 1.0   | 0.9  | 0              | 0    | 0.9        | 0     | 0.9  | 1.1     | 0    | 0.9        | 1.0        |
| RTOR             | 0         | 0        | 0             | 0         | 0          | 8       | 0    | 0       | 0    | 8          | 12    | 0    | 0              | 0    | 12         | 0     | 0    | 0       | 0    | 0          | 20         |
| % RTOR           | 0         | 0        | 0             | 0         | 0          | 5.1     | 0    | 0       | 0    | 1.7        | 5.8   | 0    | 0              | 0    | 1.5        | 0     | 0    | 0       | 0    | 0          | 1.2        |



www.TSTData.com

Location: Columbia County, PA Intersection: US 11/Main St

Site Code : 00000000 Date: Wendesday: June 11, 2008 Start Date : 6/11/2008

Page No : 1 Counter: JI

Groups Printed, Cars - Heavy Vehicles - RTOR

|                  |      |         |           | Groups     | Printed- |      |       | nicles - RTC | R     |       |        |            |            |
|------------------|------|---------|-----------|------------|----------|------|-------|--------------|-------|-------|--------|------------|------------|
|                  |      | Rt 11 M | /lain St. |            |          | Rt   | 239   |              |       | Saler | n Blvd |            |            |
|                  |      | South   | bound     |            |          | West | bound |              |       | North | bound  |            |            |
| Start Time       | Thru | Left    | Peds      | App. Total | Right    | Left | Peds  | App. Total   | Right | Thru  | Peds   | App. Total | Int. Total |
| 06:00 AM         | 48   | 9       | 0         | 57         | 13       | 9    | 0     | 22           | 3     | 25    | 0      | 28         | 107        |
| 06:15 AM         | 80   | 20      | 0         | 100        | 16       | 8    | 0     | 24           | 4     | 37    | 0      | 41         | 165        |
| 06:30 AM         | 86   | 14      | 0         | 100        | 19       | 19   | 0     | 38           | 1     | 35    | 0      | 36         | 174        |
| 06:45 AM         | 54   | 16      | 0         | 70         | 20       | 7    | 0     | 27           | 2     | 30    | 0      | 32         | 129        |
| Total            | 268  | 59      | 0         | 327        | 68       | 43   | 0     | 111          | 10    | 127   | 0      | 137        | 575        |
| 07:00 AM         | 42   | 12      | 0         | 54         | 17       | 7    | 0     | 24           | 5     | 37    | 0      | 42         | 120        |
| 07:15 AM         | 50   | 17      | 0         | 67         | 16       | 9    | 0     | 25           | 3     | 43    | 0      | 46         | 138        |
| 07:30 AM         | 50   | 12      | 0         | 62         | 27       | 7    | 0     | 34           | 1     | 40    | 0      | 41         | 137        |
| 07:45 AM         | 51   | 14      | 0         | 65         | 21       | 7    | 0     | 28           | 4     | 38    | Ō      | 42         | 135        |
| Total            | 193  | 55      | 0         | 248        | 81       | 30   | 0     | 111          | 13    | 158   | 0      | 171        | 530        |
| 08:00 AM         | 45   | 18      | 0         | 63         | 18       | 3    | 0     | 21           | 5     | 24    | 0      | 29         | 113        |
| 08:15 AM         | 40   | 15      | 0         | 55         | 18       | 4    | 0     | 22           | 2     | 29    | 0      | 31         | 108        |
| 08:30 AM         | 40   | 17      | 0         | 57         | 21       | 5    | 0     | 26           | 5     | 32    | 0      | 37         | 120        |
| 08:45 AM         | 26   | 10      | 0         | 36         | 21       | 1_   | 1     | 23           | 4     | 33    | 0      | 37         | 96         |
| Total            | 151  | 60      | 0         | 211        | 78       | 13   | 1     | 92           | 16    | 118   | 0      | 134        | 437        |
| 02:30 PM         | 45   | 16      | 0         | 61         | 24       | 7    | 0     | 31           | 8     | 50    | 0      | 58         | 150        |
| 02:45 PM         | 34   | 19      | 0         | 53         | 28       | 12   | 0     | 40           | 7     | 60    | 0      | 67         | 160        |
| Total            | 79   | 35      | 0         | 114        | 52       | 19   | 0     | 71           | 15    | 110   | 0      | 125        | 310        |
| 03:00 PM         | 35   | 23      | 0         | 58         | 30       | 3    | 0     | 33           | 11    | 64    | 0      | 75         | 166        |
| 03:15 PM         | 38   | 21      | 0         | 59         | 23       | 6    | 0     | 29           | 13    | 61    | 0      | 74         | 162        |
| 03:30 PM         | 48   | 20      | 0         | 68         | 23       | 9    | 0     | 32           | 20    | 64    | 0      | 84         | 184        |
| 03:45 PM         | 60   | 26      | 0         | 86         | 37       | 5    | 0     | 42           | 18    | 55    | 0      | 73         | 201        |
| Total            | 181  | 90      | 0         | 271        | 113      | 23   | 0     | 136          | 62    | 244   | 0      | 306        | 713        |
| 04:00 PM         | 61   | 31      | 0         | 92         | 34       | 2    | 0     | 36           | 11    | 63    | 0      | 74         | 202        |
| 04:15 PM         | 56   | 38      | 0         | 94         | 32       | 4    | 0     | 36           | 14    | 80    | Ō      | 94         | 224        |
| 04:30 PM         | 39   | 40      | 0         | 79         | 23       | 1    | 0     | 24           | 9     | 65    | 0      | 74         | 177        |
| 04:45 PM         | 52   | 25      | 0         | 77         | 38       | 5    | 0     | 43           | 8     | 71    | 0      | 79         | 199        |
| Total            | 208  | 134     | 0         | 342        | 127      | 12   | 0     | 139          | 42    | 279   | 0      | 321        | 802        |
| 05:00 PM         | 37   | 21      | 0         | 58         | 34       | 2    | 0     | 36           | 5     | 52    | 0      | 57         | 151        |
| Grand Total      | 1117 | 454     | 0         | 1571       | 553      | 142  | 1     | 696          | 163   | 1088  | 0      | 1251       | 3518       |
| Apprch %         | 71.1 | 28.9    | 0         |            | 79.5     | 20.4 | 0.1   |              | 13    | 87    | 0      |            |            |
| Total %          | 31.8 | 12.9    | 0         | 44.7       | 15.7     | 4    | 0     | 19.8         | 4.6   | 30.9  | 0      | 35.6       |            |
| Cars             | 1051 | 433     | 0         | 1484       | 323      | 130  | 0     | 453          | 137   | 1029  | 0      | 1166       | 3103       |
| % Cars           | 94.1 | 95.4    | 0         | 94.5       | 58.4     | 91.5 | 0     | 65.1         | 84    | 94.6  | 0      | 93.2       | 88.2       |
| Heavy Vehicles   | 65   | 18      | 0         | 83         | 39       | 11   | 1     | 51           | 6     | 58    | 0      | 64         | 198        |
| % Heavy Vehicles | 5.8  | 4       | 0         | 5.3        | 7.1      | 7.7  | 100   | 7.3          | 3.7   | 5.3   | 0      | 5.1        | 5.6        |
| RTOR             | 1    | 3       | 0         | 4          | 191      | 1    | 0     | 192          | 20    | 1     | 0      | 21         | 217        |
| % RTOR           | 0.1  | 0.7     | 0         | 0.3        | 34.5     | 0.7  | 0     | 27.6         | 12.3  | 0.1   | 0      | 1.7        | 6.2        |

File Name: SM0611-6

610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/Main St

Date: Wendesday: June 11, 2008

Counter: JI

File Name : SM0611-6 Site Code : 00000000 Start Date : 6/11/2008



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/Main St

Date: Wendesday: June 11, 2008

Counter: JI

File Name : SM0611-6 Site Code : 00000000 Start Date : 6/11/2008

|                      |             | Rt 11 M   | lain St.   |              |       | Rt    | 239   |            |       | Saler | n Blvd |            |            |
|----------------------|-------------|-----------|------------|--------------|-------|-------|-------|------------|-------|-------|--------|------------|------------|
|                      |             | South     | bound      |              |       | Westl | bound |            |       | North | bound  |            |            |
| Start Time           | Thru        | Left      | Peds       | App. Total   | Right | Left  | Peds  | App. Total | Right | Thru  | Peds   | App. Total | Int. Total |
| Peak Hour Analysis   | From 06:    | 00 AM to  | 11:45 AM   | 1 - Peak 1 o | f 1   |       |       |            |       |       |        |            |            |
| Peak Hour for Entire | e Intersect | ion Begin | s at 06:15 | 5 AM         |       |       |       |            |       |       |        |            |            |
| 06:15 AM             | 80          | 20        | 0          | 100          | 16    | 8     | 0     | 24         | 4     | 37    | 0      | 41         | 165        |
| 06:30 AM             | 86          | 14        | 0          | 100          | 19    | 19    | 0     | 38         | 1     | 35    | 0      | 36         | 174        |
| 06:45 AM             | 54          | 16        | 0          | 70           | 20    | 7     | 0     | 27         | 2     | 30    | 0      | 32         | 129        |
| 07:00 AM             | 42          | 12        | 0          | 54           | 17    | 7     | 0     | 24         | 5     | 37    | 0      | 42         | 120        |
| Total Volume         | 262         | 62        | 0          | 324          | 72    | 41    | 0     | 113        | 12    | 139   | 0      | 151        | 588        |
| % App. Total         | 80.9        | 19.1      | 0          |              | 63.7  | 36.3  | 0     |            | 7.9   | 92.1  | 0      |            |            |
| PHF                  | .762        | .775      | .000       | .810         | .900  | .539  | .000  | .743       | .600  | .939  | .000   | .899       | .845       |
| Cars                 | 252         | 58        | 0          | 310          | 39    | 41    | 0     | 80         | 11    | 133   | 0      | 144        | 534        |
| % Cars               | 96.2        | 93.5      | 0          | 95.7         | 54.2  | 100   | 0     | 70.8       | 91.7  | 95.7  | 0      | 95.4       | 90.8       |
| Heavy Vehicles       | 10          | 2         | 0          | 12           | 4     | 0     | 0     | 4          | 1     | 6     | 0      | 7          | 23         |
| % Heavy Vehicles     | 3.8         | 3.2       | 0          | 3.7          | 5.6   | 0     | 0     | 3.5        | 8.3   | 4.3   | 0      | 4.6        | 3.9        |
| RTOR                 | 0           | 2         | 0          | 2            | 29    | 0     | 0     | 29         | 0     | 0     | 0      | 0          | 31         |
| % RTOR               | 0           | 3.2       | 0          | 0.6          | 40.3  | 0     | 0     | 25.7       | 0     | 0     | 0      | 0          | 5.3        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/Main St

Date: Wendesday: June 11, 2008

Counter: JI

File Name : SM0611-6 Site Code : 00000000 Start Date : 6/11/2008

|                      |             | Rt 11 N   |            |              |       | Rt   | 239   |            |       |       | n Blvd |            |            |
|----------------------|-------------|-----------|------------|--------------|-------|------|-------|------------|-------|-------|--------|------------|------------|
|                      |             | South     | bound      |              |       | West | bound |            |       | North | bound  |            |            |
| Start Time           | Thru        | Left      | Peds       | App. Total   | Right | Left | Peds  | App. Total | Right | Thru  | Peds   | App. Total | Int. Total |
| Peak Hour Analysis   | From 12:0   | 00 PM to  | 05:00 PM   | l - Peak 1 o | f 1   |      |       |            |       |       |        |            |            |
| Peak Hour for Entire | e Intersect | ion Begin | s at 03:30 | ) PM         |       |      |       |            |       |       |        |            |            |
| 03:30 PM             | 48          | 20        | 0          | 68           | 23    | 9    | 0     | 32         | 20    | 64    | 0      | 84         | 184        |
| 03:45 PM             | 60          | 26        | 0          | 86           | 37    | 5    | 0     | 42         | 18    | 55    | 0      | 73         | 201        |
| 04:00 PM             | 61          | 31        | 0          | 92           | 34    | 2    | 0     | 36         | 11    | 63    | 0      | 74         | 202        |
| 04:15 PM             | 56          | 38        | 0          | 94           | 32    | 4    | 0     | 36         | 14    | 80    | 0      | 94         | 224        |
| Total Volume         | 225         | 115       | 0          | 340          | 126   | 20   | 0     | 146        | 63    | 262   | 0      | 325        | 811        |
| % App. Total         | 66.2        | 33.8      | 0          |              | 86.3  | 13.7 | 0     |            | 19.4  | 80.6  | 0      |            |            |
| PHF                  | .922        | .757      | .000       | .904         | .851  | .556 | .000  | .869       | .788  | .819  | .000   | .864       | .905       |
| Cars                 | 210         | 114       | 0          | 324          | 90    | 17   | 0     | 107        | 56    | 253   | 0      | 309        | 740        |
| % Cars               | 93.3        | 99.1      | 0          | 95.3         | 71.4  | 85.0 | 0     | 73.3       | 88.9  | 96.6  | 0      | 95.1       | 91.2       |
| Heavy Vehicles       | 14          | 1         | 0          | 15           | 9     | 3    | 0     | 12         | 0     | 8     | 0      | 8          | 35         |
| % Heavy Vehicles     | 6.2         | 0.9       | 0          | 4.4          | 7.1   | 15.0 | 0     | 8.2        | 0     | 3.1   | 0      | 2.5        | 4.3        |
| RTOR                 | 1           | 0         | 0          | 1            | 27    | 0    | 0     | 27         | 7     | 1     | 0      | 8          | 36         |
| % RTOR               | 0.4         | 0         | 0          | 0.3          | 21.4  | 0    | 0     | 18.5       | 11.1  | 0.4   | 0      | 2.5        | 4.4        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/E.2nd St Date: Thursday, June 12, 2008

Counter: LE

File Name : SM0611-1 Site Code : 00000000 Start Date : 6/12/2008

|                  |       |      | - 01   | 04   |            |       |      | •     |      | cars - r   | leavy |      |       |      |            | 1     |      | NA I   |      |            | 1          |
|------------------|-------|------|--------|------|------------|-------|------|-------|------|------------|-------|------|-------|------|------------|-------|------|--------|------|------------|------------|
|                  |       |      | ≣. 2nd |      |            |       |      | Mark  |      |            |       |      | . 2nd |      |            |       |      | Marke  |      |            |            |
|                  |       |      | uthbo  |      |            |       |      | estbo |      |            |       |      | rthbo |      |            |       |      | astbou |      |            |            |
| Start Time       | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Right | Thru | Left  | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Int. Total |
| 06:00 AM         | 6     | 52   | 13     | 0    | 71         | 0     | 11   | 18    | 0    | 29         | 0     | 0    | 0     | 0    | 0          | 14    | 36   | 0      | 0    | 50         | 150        |
| 06:15 AM         | 6     | 58   | 19     | 0    | 83         | 0     | 11   | 17    | 0    | 28         | 0     | 0    | 0     | 0    | 0          | 19    | 45   | 0      | 0    | 64         | 175        |
| 06:30 AM         | 9     | 86   | 16     | 0    | 111        | 0     | 24   | 33    | 0    | 57         | 0     | 0    | 0     | 0    | 0          | 20    | 39   | 0      | 0    | 59         | 227        |
| 06:45 AM         | 7     | 73   | 14     | 0    | 94         | 0     | 18   | 17    | 0    | 35         | 0     | 0    | 0     | 0    | 0          | 21    | 36   | 0      | 0    | 57         | 186        |
| Total            | 28    | 269  | 62     | 0    | 359        | 0     | 64   | 85    | 0    | 149        | 0     | 0    | 0     | 0    | 0          | 74    | 156  | 0      | 0    | 230        | 738        |
| 07:00 AM         | 5     | 49   | 14     | 0    | 68         | 0     | 21   | 30    | 0    | 51         | 0     | 0    | 0     | 0    | 0          | 20    | 44   | 4      | 0    | 68         | 187        |
| 07:15 AM         | 7     | 99   | 22     | 0    | 128        | 0     | 19   | 24    | 0    | 43         | 0     | 0    | 0     | 0    | 0          | 20    | 35   | 1      | 0    | 56         | 227        |
| 07:30 AM         | 14    | 145  | 25     | 0    | 184        | 0     | 8    | 28    | 0    | 36         | 0     | 0    | 0     | 0    | 0          | 21    | 38   | 0      | 0    | 59         | 279        |
| 07:45 AM         | 15    | 96   | 23     | 0    | 134        | 0     | 42   | 67    | 0    | 109        | 0     | 0    | 0     | 0    | 0          | 26    | 36   | 0      | 0    | 62         | 305        |
| Total            | 41    | 389  | 84     | 0    | 514        | 0     | 90   | 149   | 0    | 239        | 0     | 0    | 0     | 0    | 0          | 87    | 153  | 5      | 0    | 245        | 998        |
| 08:00 AM         | 3     | 63   | 21     | 0    | 87         | 0     | 23   | 42    | 0    | 65         | 0     | 0    | 0     | 0    | 0          | 27    | 30   | 0      | 0    | 57         | 209        |
| 08:15 AM         | 7     | 81   | 29     | 0    | 117        | 0     | 41   | 32    | 0    | 73         | 0     | 0    | 0     | 0    | 0          | 22    | 27   | 0      | 0    | 49         | 239        |
| 08:30 AM         | 8     | 69   | 14     | 0    | 91         | 0     | 14   | 33    | 0    | 47         | 0     | 0    | 0     | 0    | 0          | 18    | 29   | 0      | 0    | 47         | 185        |
| 08:45 AM         | 2     | 89   | 14     | 0    | 105        | 0     | 27   | 17    | 0    | 44         | 0     | 0    | 0     | 0    | 0          | 26    | 32   | 0      | 0    | 58         | 207        |
| Total            | 20    | 302  | 78     | 0    | 400        | 0     | 105  | 124   | 0    | 229        | 0     | 0    | 0     | 0    | 0          | 93    | 118  | 0      | 0    | 211        | 840        |
| *** BREAK *      | ***   |      |        |      |            |       |      |       |      |            |       |      |       |      |            |       |      |        |      |            |            |
| 02:30 PM         | 12    | 130  | 43     | 0    | 185        | 0     | 36   | 26    | 0    | 62         | 0     | 0    | 0     | 0    | 0          | 29    | 47   | 0      | 0    | 76         | 323        |
| 02:45 PM         | 4     | 114  | 32     | 0    | 150        | 0     | 29   | 32    | 0    | 61         | 0     | 0    | 0     | 0    | 0          | 41    | 51   | 0      | 0    | 92         | 303        |
| Total            | 16    | 244  | 75     | 0    | 335        | 0     | 65   | 58    | 0    | 123        | 0     | 0    | 0     | 0    | 0          | 70    | 98   | 0      | 0    | 168        | 626        |
| 03:00 PM         | 18    | 152  | 58     | 0    | 228        | 0     | 41   | 42    | 0    | 83         | 0     | 0    | 0     | 0    | 0          | 40    | 56   | 0      | 0    | 96         | 407        |
| 03:15 PM         | 8     | 150  | 56     | ő    | 214        | 0     | 21   | 38    | 0    | 59         | 0     | ő    | 0     | 0    | 0          | 29    | 56   | 0      | 0    | 85         | 358        |
| 03:30 PM         | 34    | 150  | 62     | 0    | 246        | 0     | 32   | 58    | 0    | 90         | 0     | 0    | 0     | 0    | 0          | 24    | 47   | 0      | 0    | 71         | 407        |
| 03:45 PM         | 10    | 147  | 61     | ő    | 218        | 0     | 23   | 35    | 0    | 58         | 0     | ő    | 0     | 0    | 0          | 42    | 64   | 0      | 0    | 106        | 382        |
| Total            | 70    | 599  | 237    | 0    | 906        | 0     | 117  | 173   | 0    | 290        | 0     | 0    | 0     | 0    | 0          | 135   | 223  | 0      | 0    | 358        | 1554       |
| 04:00 PM         | 19    | 135  | 58     | 0    | 212        | 0     | 36   | 41    | 0    | 77         | 0     | 0    | 0     | 0    | 0          | 31    | 60   | 0      | 0    | 91         | 380        |
| 04:15 PM         | 21    | 142  | 47     | 0    | 210        | 1     | 26   | 39    | 0    | 66         | 0     | 0    | 0     | 0    | 0          | 25    | 29   | 0      | 0    | 54         | 330        |
| 04:30 PM         | 10    | 122  | 52     | 0    | 184        | 0     | 28   | 38    | 0    | 66         | 0     | 0    | 0     | 0    | 0          | 30    | 69   | 0      | 0    | 99         | 349        |
| 04:45 PM         | 8     | 85   | 44     | 0    | 137        | 0     | 16   | 26    | 0    | 42         | 0     | 0    | 0     | 0    | 0          | 25    | 65   | 0      | 0    | 90         | 269        |
| Total            | 58    | 484  | 201    | 0    | 743        | 1     | 106  | 144   | 0    | 251        | 0     | 0    | 0     | 0    | 0          | 111   | 223  | 0      | 0    | 334        | 1328       |
| 05:00 PM         | 6     | 103  | 31     | 0    | 140        | 0     | 35   | 53    | 0    | 88         | 0     | 0    | 0     | 0    | 0          | 20    | 46   | 0      | 0    | 66         | 294        |
| 05:15 PM         | 7     | 116  | 29     | 0    | 152        | 0     | 24   | 39    | 0    | 63         | 0     | 0    | 0     | 0    | 0          | 24    | 49   | 0      | 0    | 73         | 288        |
| Grand Total      | 246   | 2506 | 797    | 0    | 3549       | 1     | 606  | 825   | 0    | 1432       | 0     | 0    | 0     | 0    | 0          | 614   | 1066 | 5      | 0    | 1685       | 6666       |
| Apprch %         | 6.9   | 70.6 | 22.5   | 0    |            | 0.1   | 42.3 | 57.6  | 0    |            | 0     | 0    | 0     | 0    |            | 36.4  | 63.3 | 0.3    | 0    |            |            |
| Total %          | 3.7   | 37.6 | 12     | 0    | 53.2       | 0     | 9.1  | 12.4  | 0    | 21.5       | 0     | 0    | 0     | 0    | 0          | 9.2   | 16   | 0.1    | 0    | 25.3       |            |
| Cars             | 205   | 2462 | 778    | 0    | 3445       | 1     | 590  | 805   | 0    | 1396       | 0     | 0    | 0     | 0    | 0          | 507   | 1053 | 5      | 0    | 1565       | 6406       |
| % Cars           | 83.3  | 98.2 | 97.6   | 0    | 97.1       | 100   | 97.4 | 97.6  | 0    | 97.5       | 0     | 0    | 0     | 0    | 0          | 82.6  | 98.8 | 100    | 0    | 92.9       | 96.1       |
| Heavy Vehicles   | 3     | 44   | 19     | 0    | 66         | 0     | 16   | 19    | 0    | 35         | 0     | 0    | 0     | 0    | 0          | 3     | 13   | 0      | 0    | 16         | 117        |
| % Heavy Vehicles | 1.2   | 1.8  | 2.4    | 0    | 1.9        | 0     | 2.6  | 2.3   | 0    | 2.4        | 0     | 0    | 0     | 0    | 0          | 0.5   | 1.2  | 0      | 0    | 0.9        | 1.8        |
| RTOR             | 38    | 0    | 0      | 0    | 38         | 0     | 0    | 1     | 0    | 1          | 0     | 0    | 0     | 0    | 0          | 104   | 0    | 0      | 0    | 104        | 143        |
| % RTOR           | 15.4  | 0    | 0      | 0    | 1.1        | 0     | 0    | 0.1   | 0    | 0.1        | 0     | 0    | 0     | 0    | 0          | 16.9  | 0    | 0      | 0    | 6.2        | 2.1        |
|                  |       |      |        |      |            |       |      |       |      |            |       |      |       |      |            |       |      |        |      |            |            |

610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/E.2nd St Date: Thursday, June 12, 2008

Counter: LE

File Name : SM0611-1 Site Code : 00000000 Start Date : 6/12/2008



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/E.2nd St Date: Thursday, June 12, 2008

Counter: LE

File Name : SM0611-1 Site Code : 00000000 Start Date : 6/12/2008

|                  |          | Е        | . 2nd   | St        |            |          | N.   | Marke | t St |            |       | E    | E. 2nd | St   |            |       | N.   | Marke  | t St |            |            |
|------------------|----------|----------|---------|-----------|------------|----------|------|-------|------|------------|-------|------|--------|------|------------|-------|------|--------|------|------------|------------|
|                  |          | So       | uthbo   | und       |            |          | W    | estbo | und  |            |       | No   | rthbo  | und  |            |       | E    | astbou | ınd  |            |            |
| Start Time       | Right    | Thru     | Left    | Peds      | App. Total | Right    | Thru | Left  | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Int. Total |
| Peak Hour An     | alysis F | rom 06:  | :00 AM  | to 11:4   | 5 AM - 1   | Peak 1 o | of 1 |       |      |            |       |      |        |      |            |       |      |        |      |            |            |
| Peak Hour for    | Entire I | Intersec | tion Be | gins at ( | 07:30 AN   | Л        |      |       |      |            | ı     |      |        |      |            |       |      |        |      |            |            |
| 07:30 AM         | 14       | 145      | 25      | 0         | 184        | 0        | 8    | 28    | 0    | 36         | 0     | 0    | 0      | 0    | 0          | 21    | 38   | 0      | 0    | 59         | 279        |
| 07:45 AM         | 15       | 96       | 23      | 0         | 134        | 0        | 42   | 67    | 0    | 109        | 0     | 0    | 0      | 0    | 0          | 26    | 36   | 0      | 0    | 62         | 305        |
| 08:00 AM         | 3        | 63       | 21      | 0         | 87         | 0        | 23   | 42    | 0    | 65         | 0     | 0    | 0      | 0    | 0          | 27    | 30   | 0      | 0    | 57         | 209        |
| 08:15 AM         | 7        | 81       | 29      | 0         | 117        | 0        | 41   | 32    | 0    | 73         | 0     | 0    | 0      | 0    | 0          | 22    | 27   | 0      | 0    | 49         | 239        |
| Total Volume     | 39       | 385      | 98      | 0         | 522        | 0        | 114  | 169   | 0    | 283        | 0     | 0    | 0      | 0    | 0          | 96    | 131  | 0      | 0    | 227        | 1032       |
| % App. Total     | 7.5      | 73.8     | 18.8    | 0         |            | 0        | 40.3 | 59.7  | 0    |            | 0     | 0    | 0      | 0    |            | 42.3  | 57.7 | 0      | 0    |            |            |
| PHF              | .650     | .664     | .845    | .000      | .709       | .000     | .679 | .631  | .000 | .649       | .000  | .000 | .000   | .000 | .000       | .889  | .862 | .000   | .000 | .915       | .846       |
| Cars             | 24       | 378      | 93      | 0         | 495        | 0        | 111  | 166   | 0    | 277        | 0     | 0    | 0      | 0    | 0          | 57    | 130  | 0      | 0    | 187        | 959        |
| % Cars           | 61.5     | 98.2     | 94.9    | 0         | 94.8       | 0        | 97.4 | 98.2  | 0    | 97.9       | 0     | 0    | 0      | 0    | 0          | 59.4  | 99.2 | 0      | 0    | 82.4       | 92.9       |
| Heavy Vehicles   |          |          |         |           |            |          |      |       |      |            |       |      |        |      |            |       |      |        |      |            |            |
| % Heavy Vehicles | 2.6      | 1.8      | 5.1     | 0         | 2.5        | 0        | 2.6  | 1.8   | 0    | 2.1        | 0     | 0    | 0      | 0    | 0          | 0     | 0.8  | 0      | 0    | 0.4        | 1.9        |
| RTOR             | 14       | 0        | 0       | 0         | 14         | 0        | 0    | 0     | 0    | 0          | 0     | 0    | 0      | 0    | 0          | 39    | 0    | 0      | 0    | 39         | 53         |
| % RTOR           | 35.9     | 0        | 0       | 0         | 2.7        | 0        | 0    | 0     | 0    | 0          | 0     | 0    | 0      | 0    | 0          | 40.6  | 0    | 0      | 0    | 17.2       | 5.1        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/E.2nd St Date: Thursday, June 12, 2008

Counter: LE

File Name : SM0611-1 Site Code : 00000000 Start Date : 6/12/2008

|                  |          | _        | . 2nd<br>uthbo |           |            |         |      | Marke<br>estbo |      |            |       | _    | . 2nd<br>orthbo |      |            |       |      | Marke<br>astbou |      |            |            |
|------------------|----------|----------|----------------|-----------|------------|---------|------|----------------|------|------------|-------|------|-----------------|------|------------|-------|------|-----------------|------|------------|------------|
| Start Time       | Right    | Thru     | Left           | Peds      | App. Total | Right   | Thru | Left           | Peds | App. Total | Right | Thru | Left            | Peds | App. Total | Right | Thru | Left            | Peds | App. Total | Int. Total |
| Peak Hour Ana    | alysis F | rom 12:  | 00 PM          | to 05:1   | 5 PM - P   | eak 1 o | f 1  |                |      |            |       |      |                 |      |            |       |      |                 |      |            |            |
| Peak Hour for    | Entire I | ntersect | tion Be        | gins at ( | 03:00 PM   | 1       |      |                |      |            |       |      |                 |      |            |       |      |                 |      |            |            |
| 03:00 PM         | 18       | 152      | 58             | 0         | 228        | 0       | 41   | 42             | 0    | 83         | 0     | 0    | 0               | 0    | 0          | 40    | 56   | 0               | 0    | 96         | 407        |
| 03:15 PM         | 8        | 150      | 56             | 0         | 214        | 0       | 21   | 38             | 0    | 59         | 0     | 0    | 0               | 0    | 0          | 29    | 56   | 0               | 0    | 85         | 358        |
| 03:30 PM         | 34       | 150      | 62             | 0         | 246        | 0       | 32   | 58             | 0    | 90         | 0     | 0    | 0               | 0    | 0          | 24    | 47   | 0               | 0    | 71         | 407        |
| 03:45 PM         | 10       | 147      | 61             | 0         | 218        | 0       | 23   | 35             | 0    | 58         | 0     | 0    | 0               | 0    | 0          | 42    | 64   | 0               | 0    | 106        | 382        |
| Total Volume     | 70       | 599      | 237            | 0         | 906        | 0       | 117  | 173            | 0    | 290        | 0     | 0    | 0               | 0    | 0          | 135   | 223  | 0               | 0    | 358        | 1554       |
| % App. Total     | 7.7      | 66.1     | 26.2           | 0         |            | 0       | 40.3 | 59.7           | 0    |            | 0     | 0    | 0               | 0    |            | 37.7  | 62.3 | 0               | 0    |            |            |
| PHF              | .515     | .985     | .956           | .000      | .921       | .000    | .713 | .746           | .000 | .806       | .000  | .000 | .000            | .000 | .000       | .804  | .871 | .000            | .000 | .844       | .955       |
| Cars             | 65       | 589      | 230            | 0         | 884        | 0       | 116  | 167            | 0    | 283        | 0     | 0    | 0               | 0    | 0          | 134   | 221  | 0               | 0    | 355        | 1522       |
| % Cars           | 92.9     | 98.3     | 97.0           | 0         | 97.6       | 0       | 99.1 | 96.5           | 0    | 97.6       | 0     | 0    | 0               | 0    | 0          | 99.3  | 99.1 | 0               | 0    | 99.2       | 97.9       |
| Heavy Vehicles   |          |          |                |           |            |         |      |                |      |            |       |      |                 |      |            |       |      |                 |      |            |            |
| % Heavy Vehicles | 2.9      | 1.7      | 3.0            | 0         | 2.1        | 0       | 0.9  | 3.5            | 0    | 2.4        | 0     | 0    | 0               | 0    | 0          | 0     | 0.9  | 0               | 0    | 0.6        | 1.8        |
| RTOR             | 3        | 0        | 0              | 0         | 3          | 0       | 0    | 0              | 0    | 0          | 0     | 0    | 0               | 0    | 0          | 1     | 0    | 0               | 0    | 1          | 4          |
| % RTOR           | 4.3      | 0        | 0              | 0         | 0.3        | 0       | 0    | 0              | 0    | 0          | 0     | 0    | 0               | 0    | 0          | 0.7   | 0    | 0               | 0    | 0.3        | 0.3        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: Poplar St/ US 11 Date:Wednesday,June,11,2008

Tech. RZ

File Name : SM0611-3 Site Code : 00000000

Start Date : 6/11/2008

|                  |       |      |         |      |            |       |       | Groups | Printe | d- Cars -  | Heavy | Vehicl | les     |      |            |       |       |        |      |            |            |
|------------------|-------|------|---------|------|------------|-------|-------|--------|--------|------------|-------|--------|---------|------|------------|-------|-------|--------|------|------------|------------|
|                  |       |      | RTE 1   | 1    |            |       | POPLA | R ST   |        |            |       | RTE    | 11      |      |            |       | POPLA | R ST   |      |            |            |
|                  |       | Sc   | outhbou | ınd  |            |       | W     | estbou | nd     |            |       | N      | orthbou | und  |            |       | Е     | astbou | nd   |            |            |
| Start Time       | Right | Thru | Left    | Peds | App. Total | Right | Thru  | Left   | Peds   | App. Total | Right | Thru   | Left    | Peds | App. Total | Right | Thru  | Left   | Peds | App. Total | Int. Total |
| 06:00 AM         | 0     | 67   | 3       | 0    | 70         | 2     | 1     | 4      | 0      | 7          | 7     | 88     | 0       | 0    | 95         | 1     | 2     | 1      | 0    | 4          | 176        |
| 06:15 AM         | 0     | 98   | 3       | 0    | 101        | 3     | 1     | 2      | 0      | 6          | 2     | 98     | 0       | 0    | 100        | 4     | 1     | 1      | 1    | 7          | 214        |
| 06:30 AM         | 0     | 116  | 5       | 1    | 122        | 5     | 1     | 6      | 0      | 12         | 7     | 118    | 0       | 0    | 125        | 2     | 2     | 1      | 1    | 6          | 265        |
| 06:45 AM         | 0     | 107  | 9       | 0    | 116        | 1     | 2     | 5      | 0      | 8          | 8     | 69     | 0       | 0    | 77         | 5     | 5     | 0      | 1    | 11         | 212        |
| Total            | 0     | 388  | 20      | 1    | 409        | 11    | 5     | 17     | 0      | 33         | 24    | 373    | 0       | 0    | 397        | 12    | 10    | 3      | 3    | 28         | 867        |
| 07:00 AM         | 0     | 100  | 5       | 2    | 107        | 9     | 0     | 9      | 0      | 18         | 8     | 75     | 0       | 0    | 83         | 0     | 0     | 0      | 0    | 0          | 208        |
| 07:15 AM         | 0     | 104  | 15      | 0    | 119        | 12    | 0     | 3      | 0      | 15         | 8     | 84     | 0       | 0    | 92         | 0     | 0     | 0      | 0    | 0          | 226        |
| 07:30 AM         | 0     | 146  | 9       | 0    | 155        | 6     | 0     | 3      | 1      | 10         | 9     | 107    | 0       | 0    | 116        | 0     | 0     | 0      | 0    | 0          | 281        |
| 07:45 AM         | 0     | 115  | 12      | 0    | 127        | 3     | 0     | 10     | 0      | 13         | 7     | 115    | 0       | 0    | 122        | 0     | 0     | 0      | 0    | 0          | 262        |
| Total            | 0     | 465  | 41      | 2    | 508        | 30    | 0     | 25     | 1      | 56         | 32    | 381    | 0       | 0    | 413        | 0     | 0     | 0      | 0    | 0          | 977        |
| 08:00 AM         | 0     | 133  | 9       | 0    | 142        | 5     | 0     | 20     | 0      | 25         | 4     | 72     | 0       | 0    | 76         | 0     | 0     | 0      | 0    | 0          | 243        |
| 08:15 AM         | 0     | 118  | 4       | 0    | 122        | 9     | 0     | 13     | 0      | 22         | 3     | 97     | 0       | 0    | 100        | 0     | 0     | 0      | 0    | 0          | 244        |
| 08:30 AM         | 0     | 127  | 7       | 0    | 134        | 14    | 0     | 12     | 0      | 26         | 5     | 110    | 0       | 0    | 115        | 0     | 0     | 0      | 1    | 1          | 276        |
| 08:45 AM         | 0     | 130  | 13      | 0    | 143        | 11    | 0     | 6      | 2      | 19         | 4     | 95     | 0       | 1    | 100        | 0     | 0     | 0      | 2    | 2          | 264        |
| Total            | 0     | 508  | 33      | 0    | 541        | 39    | 0     | 51     | 2      | 92         | 16    | 374    | 0       | 1    | 391        | 0     | 0     | 0      | 3    | 3          | 1027       |
| *** BREAK *      | ***   |      |         |      |            |       |       |        |        |            |       |        |         |      |            |       |       |        |      |            |            |
| 02:30 PM         | 1     | 137  | 17      | 0    | 155        | 16    | 5     | 13     | 0      | 34         | 8     | 146    | 1       | 1    | 156        | 6     | 3     | 1      | 0    | 10         | 355        |
| 02:45 PM         | 2     | 141  | 14      | 1    | 158        | 12    | 6     | 17     | 0      | 35         | 9     | 125    | 5_      | 3    | 142        | 2     | 7     | 7      | 1    | 17         | 352        |
| Total            | 3     | 278  | 31      | 1    | 313        | 28    | 11    | 30     | 0      | 69         | 17    | 271    | 6       | 4    | 298        | 8     | 10    | 8      | 1    | 27         | 707        |
| 03:00 PM         | 1     | 143  | 12      | 2    | 158        | 24    | 10    | 14     | 1      | 49         | 10    | 145    | 3       | 0    | 158        | 5     | 13    | 7      | 0    | 25         | 390        |
| 03:15 PM         | 3     | 146  | 16      | 1    | 166        | 14    | 4     | 19     | 0      | 37         | 7     | 158    | 1       | 0    | 166        | 5     | 6     | 8      | 0    | 19         | 388        |
| 03:30 PM         | 1     | 159  | 19      | 0    | 179        | 26    | 9     | 21     | 2      | 58         | 9     | 159    | 3       | 0    | 171        | 9     | 9     | 5      | 1    | 24         | 432        |
| 03:45 PM         | 0     | 169  | 15      | 0    | 184        | 17    | 7     | 23     | 1_     | 48         | 9     | 176    | 2       | 0    | 187        | 9     | 11    | 8      | 3    | 31         | 450        |
| Total            | 5     | 617  | 62      | 3    | 687        | 81    | 30    | 77     | 4      | 192        | 35    | 638    | 9       | 0    | 682        | 28    | 39    | 28     | 4    | 99         | 1660       |
| 04:00 PM         | 4     | 140  | 7       | 1    | 152        | 17    | 10    | 44     | 0      | 71         | 6     | 136    | 7       | 0    | 149        | 3     | 10    | 6      | 2    | 21         | 393        |
| 04:15 PM         | 2     | 153  | 15      | 0    | 170        | 24    | 9     | 27     | 0      | 60         | 7     | 155    | 2       | 0    | 164        | 4     | 11    | 8      | 0    | 23         | 417        |
| 04:30 PM         | 0     | 204  | 8       | 0    | 212        | 22    | 16    | 27     | 0      | 65         | 7     | 192    | 6       | 0    | 205        | 6     | 7     | 4      | 0    | 17         | 499        |
| 04:45 PM         | 2     | 149  | 19      | 0    | 170        | 14    | 8     | 27     | 0      | 49         | 8     | 142    | 6       | 0    | 156        | 2     | 11    | 11     | 0    | 24         | 399        |
| Total            | 8     | 646  | 49      | 1    | 704        | 77    | 43    | 125    | 0      | 245        | 28    | 625    | 21      | 0    | 674        | 15    | 39    | 29     | 2    | 85         | 1708       |
| 05:00 PM         | 3     | 147  | 4       | 0    | 154        | 20    | 16    | 38     | 0      | 74         | 3     | 181    | 5       | 1    | 190        | 8     | 8     | 6      | 0    | 22         | 440        |
| 05:15 PM         | 0     | 155  | 8       | 0    | 163        | 9     | 2     | 24     | 0      | 35         | 3     | 156    | 1       | 0    | 160        | 4     | 7     | 8      | 0    | 19         | 377        |
| Grand Total      | 19    | 3204 | 248     | 8    | 3479       | 295   | 107   | 387    | 7      | 796        | 158   | 2999   | 42      | 6    | 3205       | 75    | 113   | 82     | 13   | 283        | 7763       |
| Apprch %         | 0.5   | 92.1 | 7.1     | 0.2  |            | 37.1  | 13.4  | 48.6   | 0.9    |            | 4.9   | 93.6   | 1.3     | 0.2  |            | 26.5  | 39.9  | 29     | 4.6  |            |            |
| Total %          | 0.2   | 41.3 | 3.2     | 0.1  | 44.8       | 3.8   | 1.4   | 5      | 0.1    | 10.3       | 2     | 38.6   | 0.5     | 0.1  | 41.3       | 1     | 1.5   | 1.1    | 0.2  | 3.6        |            |
| Cars             | 19    | 3102 | 224     | 8    | 3353       | 279   | 107   | 376    | 7      | 769        | 149   | 2894   | 42      | 6    | 3091       | 74    | 113   | 82     | 13   | 282        | 7495       |
| % Cars           | 100   | 96.8 | 90.3    | 100  | 96.4       | 94.6  | 100   | 97.2   | 100    | 96.6       | 94.3  | 96.5   | 100     | 100  | 96.4       | 98.7  | 100   | 100    | 100  | 99.6       | 96.5       |
| Heavy Vehicles   | 0     | 102  | 24      | 0    | 126        | 16    | 0     | 11     | 0      | 27         | 9     | 105    | 0       | 0    | 114        | 1     | 0     | 0      | 0    | 1          | 268        |
| % Heavy Vehicles | 0     | 3.2  | 9.7     | 0    | 3.6        | 5.4   | 0     | 2.8    | 0      | 3.4        | 5.7   | 3.5    | 0       | 0    | 3.6        | 1.3   | 0     | 0      | 0    | 0.4        | 3.5        |

610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: Poplar St/ US 11 Date:Wednesday,June,11,2008

Tech. RZ

File Name : SM0611-3 Site Code : 00000000 Start Date : 6/11/2008



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: Poplar St/ US 11 Date:Wednesday,June,11,2008

Tech. RZ

File Name : SM0611-3 Site Code : 00000000 Start Date : 6/11/2008

|                  |          |         |         |           |            |        |       |        |      |            |       |      |         |      |            |       |       |        |      |            | 1          |
|------------------|----------|---------|---------|-----------|------------|--------|-------|--------|------|------------|-------|------|---------|------|------------|-------|-------|--------|------|------------|------------|
|                  |          |         | RTE 11  | l         |            |        | POPLA | R ST   |      |            |       | RTE  | 11      |      |            | ]     | POPLA | R ST   |      |            |            |
|                  |          | Sc      | outhbou | nd        |            |        | W     | estbou | nd   |            |       | N    | orthbou | ınd  |            |       | Ε     | astbou | nd   |            |            |
| Start Time       | Right    | Thru    | Left    | Peds      | App. Total | Right  | Thru  | Left   | Peds | App. Total | Right | Thru | Left    | Peds | App. Total | Right | Thru  | Left   | Peds | App. Total | Int. Total |
| Peak Hour An     | alysis F | rom 06  | :00 AM  | to 11:4   | 5 AM - I   | Peak 1 | of 1  |        |      |            |       |      |         |      |            |       |       |        |      |            |            |
| Peak Hour for    | Entire I | ntersec | tion Be | gins at ( | 07:30 AN   | Л      |       |        |      |            |       |      |         |      |            |       |       |        |      |            |            |
| 07:30 AM         | 0        | 146     | 9       | 0         | 155        | 6      | 0     | 3      | 1    | 10         | 9     | 107  | 0       | 0    | 116        | 0     | 0     | 0      | 0    | 0          | 281        |
| 07:45 AM         | 0        | 115     | 12      | 0         | 127        | 3      | 0     | 10     | 0    | 13         | 7     | 115  | 0       | 0    | 122        | 0     | 0     | 0      | 0    | 0          | 262        |
| 08:00 AM         | 0        | 133     | 9       | 0         | 142        | 5      | 0     | 20     | 0    | 25         | 4     | 72   | 0       | 0    | 76         | 0     | 0     | 0      | 0    | 0          | 243        |
| 08:15 AM         | 0        | 118     | 4       | 0         | 122        | 9      | 0     | 13     | 0    | 22         | 3     | 97   | 0       | 0    | 100        | 0     | 0     | 0      | 0    | 0          | 244        |
| Total Volume     | 0        | 512     | 34      | 0         | 546        | 23     | 0     | 46     | 1    | 70         | 23    | 391  | 0       | 0    | 414        | 0     | 0     | 0      | 0    | 0          | 1030       |
| % App. Total     | 0        | 93.8    | 6.2     | 0         |            | 32.9   | 0     | 65.7   | 1.4  |            | 5.6   | 94.4 | 0       | 0    |            | 0     | 0     | 0      | 0    |            |            |
| PHF              | .000     | .877    | .708    | .000      | .881       | .639   | .000  | .575   | .250 | .700       | .639  | .850 | .000    | .000 | .848       | .000  | .000  | .000   | .000 | .000       | .916       |
| Cars             | 0        | 496     | 30      | 0         | 526        | 18     | 0     | 43     | 1    | 62         | 21    | 370  | 0       | 0    | 391        | 0     | 0     | 0      | 0    | 0          | 979        |
| % Cars           | 0        | 96.9    | 88.2    | 0         | 96.3       | 78.3   | 0     | 93.5   | 100  | 88.6       | 91.3  | 94.6 | 0       | 0    | 94.4       | 0     | 0     | 0      | 0    | 0          | 95.0       |
| Heavy Vehicles   |          |         |         |           |            |        |       |        |      |            |       |      |         |      |            |       |       |        |      |            |            |
| % Heavy Vehicles | 0        | 3.1     | 11.8    | 0         | 3.7        | 21.7   | 0     | 6.5    | 0    | 11.4       | 8.7   | 5.4  | 0       | 0    | 5.6        | 0     | 0     | 0      | 0    | 0          | 5.0        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: Poplar St/ US 11 Date:Wednesday,June,11,2008

Tech. RZ

File Name : SM0611-3 Site Code : 00000000 Start Date : 6/11/2008

|                  |           |         | RTE 11  | 1         |            |         | POPLA | R ST   |      |            |       | RTE  | 11      |      |            |       | POPLA | R ST   |      |            | ]          |
|------------------|-----------|---------|---------|-----------|------------|---------|-------|--------|------|------------|-------|------|---------|------|------------|-------|-------|--------|------|------------|------------|
|                  |           | So      | uthbou  | nd        |            |         | W     | estbou | nd   |            |       | N    | orthbou | ınd  |            |       | Е     | astbou | nd   |            |            |
| Start Time       | Right     | Thru    | Left    | Peds      | App. Total | Right   | Thru  | Left   | Peds | App. Total | Right | Thru | Left    | Peds | App. Total | Right | Thru  | Left   | Peds | App. Total | Int. Total |
| Peak Hour An     | alysis Fı | rom 12: | 00 PM   | to 05:1   | 5 PM - P   | eak 1 o | f 1   |        |      |            |       |      |         |      |            |       |       |        |      |            |            |
| Peak Hour for    | Entire I  | ntersec | tion Be | gins at ( | 03:45 PM   | I       |       |        |      |            | 1     |      |         |      |            |       |       |        |      |            |            |
| 03:45 PM         | 0         | 169     | 15      | 0         | 184        | 17      | 7     | 23     | 1    | 48         | 9     | 176  | 2       | 0    | 187        | 9     | 11    | 8      | 3    | 31         | 450        |
| 04:00 PM         | 4         | 140     | 7       | 1         | 152        | 17      | 10    | 44     | 0    | 71         | 6     | 136  | 7       | 0    | 149        | 3     | 10    | 6      | 2    | 21         | 393        |
| 04:15 PM         | 2         | 153     | 15      | 0         | 170        | 24      | 9     | 27     | 0    | 60         | 7     | 155  | 2       | 0    | 164        | 4     | 11    | 8      | 0    | 23         | 417        |
| 04:30 PM         | 0         | 204     | 8       | 0         | 212        | 22      | 16    | 27     | 0    | 65         | 7     | 192  | 6       | 0    | 205        | 6     | 7     | 4      | 0    | 17         | 499        |
| Total Volume     | 6         | 666     | 45      | 1         | 718        | 80      | 42    | 121    | 1    | 244        | 29    | 659  | 17      | 0    | 705        | 22    | 39    | 26     | 5    | 92         | 1759       |
| % App. Total     | 0.8       | 92.8    | 6.3     | 0.1       |            | 32.8    | 17.2  | 49.6   | 0.4  |            | 4.1   | 93.5 | 2.4     | 0    |            | 23.9  | 42.4  | 28.3   | 5.4  |            |            |
| PHF              | .375      | .816    | .750    | .250      | .847       | .833    | .656  | .688   | .250 | .859       | .806  | .858 | .607    | .000 | .860       | .611  | .886  | .813   | .417 | .742       | .881       |
| Cars             | 6         | 646     | 42      | 1         | 695        | 79      | 42    | 121    | 1    | 243        | 28    | 637  | 17      | 0    | 682        | 22    | 39    | 26     | 5    | 92         | 1712       |
| % Cars           | 100       | 97.0    | 93.3    | 100       | 96.8       | 98.8    | 100   | 100    | 100  | 99.6       | 96.6  | 96.7 | 100     | 0    | 96.7       | 100   | 100   | 100    | 100  | 100        | 97.3       |
| Heavy Vehicles   | _         |         |         | _         |            |         |       | _      | _    |            |       |      | _       | _    |            |       | _     |        | _    |            |            |
| % Heavy Vehicles | 0         | 3.0     | 6.7     | 0         | 3.2        | 1.3     | 0     | 0      | 0    | 0.4        | 3.4   | 3.3  | 0       | 0    | 3.3        | 0     | 0     | 0      | 0    | 0          | 2.7        |



www.TSTData.com

Street: PPL Driveway NB Location: Between Lot and Rt 11

Weather: Clear Counter: 3521

Site Code: 0612082 Station ID: 0612082

Latitude: 0' 0.000 Undefined

| NB       |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: | 0' 0.000 U | ndefined |
|----------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------------|----------|
| Start    |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not        |          |
| Time     | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe     | Total    |
| 06/12/08 | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 01:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 02:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 03:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 04:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 05:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 06:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 07:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 08:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 09:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 10:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 11:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          |          |
| 12 PM    |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| 13:00    | 0     | 7       | 1      | 0     | 3      | 2      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0          | 14       |
| 14:00    | 0     | 18      | 5      | 0     | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0        | 0          | 25       |
| 15:00    | 0     | 2       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 3        |
| 16:00    | 0     | 0       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 17:00    | 1     | 21      | 2      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 25       |
| 18:00    | 1     | 23      | 9      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 35       |
| 19:00    | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 20:00    | 1     | 3       | 0      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 5        |
| 21:00    | 0     | 9       | 7      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 16       |
| 22:00    | 0     | 5       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 6        |
| 23:00    | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 1_     | 0      | 0      | 0      | 0        | 0          | 2        |
| Total    | 3     | 89      | 27     | 0     | 8      | 2      | 0      | 1      | 2      | 0      | 0      | 0      | 0        | 0          | 132      |
| Percent  | 2.3%  | 67.4%   | 20.5%  | 0.0%  | 6.1%   | 1.5%   | 0.0%   | 0.8%   | 1.5%   | 0.0%   | 0.0%   | 0.0%   | 0.0%     | 0.0%       |          |
| AM       |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| Peak     |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| Vol.     |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| PM       | 17:00 | 18:00   | 18:00  |       | 13:00  | 13:00  |        | 14:00  | 13:00  |        |        |        |          |            | 18:00    |
| Peak     |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| Vol.     | 1     | 23      | 9      |       | 3      | 2      |        | 1      | 1      |        |        |        |          |            | 35       |

www.TSTData.com

Street: PPL Driveway NB Location: Between Lot and Rt 11

Weather: Clear Counter: 3521

Site Code: 0612082 Station ID: 0612082

Latitude: 0' 0.000 Undefined

| NB         |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: | 0' 0.000 U | ndefined |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------------|----------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 Axl | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not        |          |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe     | Total    |
| 06/13/08   | 0     | 0       | Ō      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 01:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 02:00      | 0     | 0       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 03:00      | 0     | 2       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 3        |
| 04:00      | 1     | 14      | 6      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 21       |
| 05:00      | 15    | 83      | 27     | 0     | 2      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 128      |
| 06:00      | 26    | 232     | 88     | 0     | 4      | 2      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0          | 353      |
| 07:00      | 5     | 51      | 13     | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 70       |
| 08:00      | 1     | 17      | 3      | 0     | 2      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 24       |
| 09:00      | 1     | 5       | 6      | 2     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 18       |
| 10:00      | 0     | 1       | 4      | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 8        |
| 11:00      | 0     | 12      | 4      | 0     | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0        | 0          | 17       |
| 12 PM      | 1     | 6       | 4      | 1     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 15       |
| 13:00      | 0     | 12      | 8      | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 23       |
| 14:00      | 0     | 14      | 2      | 0     | 0      | 1      | 0      | 1      | 0      | 0      | 0      | 0      | 0        | 0          | 18       |
| 15:00      | 0     | 1       | 2      | 0     | 0      | 0      | 0      | Ö      | 0      | 0      | 0      | 0      | 0        | 0          | 3        |
| 16:00      | 2     | 2       | 3      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1        | 0          | 8        |
| 17:00      | 0     | 20      | 2      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 22       |
| 18:00      | 1     | 9       | 3      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 13       |
| 19:00      | Ó     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 20:00      | 0     | 1       | 0      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 2        |
| 21:00      | 0     | Ó       | 0      | 0     | Ó      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 22:00      | 0     | 4       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | Ö          | 5        |
| 23:00      | Õ     | 0       | Ö      | 0     | 0      | 0      | 0      | 0      | Ō      | Ö      | 0      | 0      | Ö        | Ō          | Ō        |
| Total      | 53    | 486     | 178    | 3     | 23     | 5      | 0      | 2      | 1      | 0      | 0      | 0      | 1        | 0          | 752      |
| Percent    | 7.0%  | 64.6%   | 23.7%  | 0.4%  | 3.1%   | 0.7%   | 0.0%   | 0.3%   | 0.1%   | 0.0%   | 0.0%   | 0.0%   | 0.1%     | 0.0%       |          |
| AM         | 06:00 | 06:00   | 06:00  | 09:00 | 06:00  | 06:00  |        | 11:00  | 06:00  |        |        |        |          |            | 06:00    |
| Peak       |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| Vol.       | 26    | 232     | 88     | 2     | 4      | 2      |        | 1      | 1      |        |        |        |          |            | 353      |
| PM<br>Peak | 16:00 | 17:00   | 13:00  | 12:00 | 12:00  | 14:00  |        | 14:00  |        |        |        |        | 16:00    |            | 13:00    |
| Vol.       | 2     | 20      | 8      | 1     | 3      | 1      |        | 1      |        |        |        |        | 1        |            | 23       |

www.TSTData.com

Street: PPL Driveway NB Location: Between Lot and Rt 11

Weather: Clear Counter: 3521

Site Code: 0612082 Station ID: 0612082

Latituda, O' O OOO Lladafia

| Stort    | Coro 9 | 2 Aylo | 2 Avlo | 2 Avlo | 4 Avlo | -5 Avl | 5 Avio | >6 Avl | -6 Avl | 6 Avdo | SG AVI       | Nlat          |     |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------|---------------|-----|
| <b>;</b> |        |        |        |        |        |        |        |        |        | Lo     | ngitude: 0'  | 0.000 Undefir | ned |
|          |        |        |        |        |        |        |        |        |        | L      | _atitude: ∪′ | U.UUU Undefir | ned |

| NB         |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: ( | 0.000 Ui | ndefined |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|------------|----------|----------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl     | Not      |          |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi      | Classe   | Total    |
| 06/14/08   | 0     | 0       | ő      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0        |
| 01:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0        |
| 02:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0        |
| 03:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0        |
| 04:00      | 0     | 1       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 2        |
| 05:00      | 0     | 15      | 7      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 23       |
| 06:00      | 0     | 14      | 4      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 18       |
| 07:00      | 1     | 3       | 0      | 0     | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 5        |
| 08:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0        |
| 09:00      | 0     | 1       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 2        |
| 10:00      | 0     | 1       | 2      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 3        |
| 11:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 1        |
| 12 PM      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0        |
| 13:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 1        |
| 14:00      | 1     | 3       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 4        |
| 15:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0        |
| 16:00      | 1     | 4       | 0      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 6        |
| 17:00      | 0     | 17      | 4      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 21       |
| 18:00      | 0     | 12      | 3      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 15       |
| 19:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 1        |
| 20:00      | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 2        |
| 21:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 0        |
| 22:00      | 0     | 6       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 6        |
| 23:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 1        |
| Total      | 3     | 83      | 22     | 0     | 2      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0          | 0        | 111      |
| Percent    | 2.7%  | 74.8%   | 19.8%  | 0.0%  | 1.8%   | 0.0%   | 0.9%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%       | 0.0%     |          |
| AM<br>Peak | 07:00 | 05:00   | 05:00  |       | 05:00  |        | 07:00  |        |        |        |        |        |            |          | 05:00    |
| Vol.       | 1     | 15      | 7      |       | 1      |        | 1      |        |        |        |        |        |            |          | 23       |
| PM<br>Peak | 14:00 | 17:00   | 17:00  |       | 16:00  |        |        |        |        |        |        |        |            |          | 17:00    |
| Vol.       | 1     | 17      | 4      |       | 1      |        |        |        |        |        |        |        |            |          | 21       |

www.TSTData.com

Street: PPL Driveway NB Location: Between Lot and Rt 11

Weather: Clear Counter: 3521

Site Code: 0612082 Station ID: 0612082

Latitude: 0' 0.000 Undefined

| Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IB       |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: | 0' 0.000 U | ndefined |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------------|----------|
| Time   Bikes   Trailer   Long   Buses   6 Tire   Single   Single   Double   Double   Double   Multi   Multi   Multi   Classe   O6/15/08   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 Axl | 5 Axle | >6 Axl | <6 Axl | 6 Axle | >6 Axl   | Not        |          |
| 06/15/08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | Bikes | Trailer |        | Buses | 6 Tire | Sinale | Sinale | Double | Double | Double | Multi  | Multi  | Multi    | Classe     | Total    |
| 02:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06/15/08 | 0     | 0       |        |       |        |        |        | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 03:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01:00    | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 04.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02:00    | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 05:00 0 11 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03:00    | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 06:00 0 13 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04:00    | 0     | 3       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 4        |
| 07:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05:00    | 0     | 11      | 7      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 18       |
| 08:00 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06:00    | 0     | 13      | 0      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 15       |
| 09:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 2        |
| 10:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 2        |
| 11:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | _     |         |        | _     | -      |        | _      | -      | _      |        | _      |        |          | 0          | 0        |
| 12 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |         |        |       |        |        |        |        |        |        | _      |        |          |            | 0        |
| 13:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | _     | _       |        | _     | -      |        | _      | -      | -      |        | -      | -      | _        | _          | 0        |
| 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |         |        |       |        |        |        |        |        |        |        |        |          |            | 0        |
| 15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | _     | _       | 0      | _     | -      | -      | -      | -      | -      | _      | -      | -      | _        | -          | 0        |
| 16:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |         | 1      |       |        |        |        |        |        |        |        |        |          |            | 5        |
| 17:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 0     | _       | -      | _     | _      | _      | _      | -      | _      | _      | _      | _      | _        | _          | 0        |
| 18:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 1     |         |        |       |        |        |        |        |        |        |        |        |          |            | 5        |
| 19:00 0 6 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |         |        |       | _      |        |        |        |        |        | _      |        |          |            | 21       |
| 20:00         0         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td>               |          |       |         |        |       | 0      |        |        |        |        |        |        |        |          |            | 15       |
| 21:00 2 11 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       |         | •      |       | 1      |        |        |        |        |        |        |        |          |            | 8        |
| 22:00         0         7         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>2</td>              |          |       |         | 0      |       | 0      |        |        |        |        |        |        |        |          | 0          | 2        |
| 23:00         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>2</td> <td>11</td> <td>4</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>18</td> |          | 2     | 11      | 4      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 18       |
| Total 7 94 20 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | 7       | 1      | _     | 1      |        | _      | _      |        |        | _      | _      |          | 0          | 9        |
| Percent 5.6% 74.6% 15.9% 0.0% 4.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       | 1       |        |       |        |        |        |        |        |        |        |        |          |            | 1_       |
| AM 06:00 05:00 06:00<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       |         |        |       |        |        |        |        |        |        |        |        |          |            | 126      |
| Peak 06:00 05:00 06:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Percent  | 5.6%  | 74.6%   | 15.9%  | 0.0%  | 4.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%     | 0.0%       |          |
| Peak Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AM       |       | 06:00   | 05:00  |       | 06:00  |        |        |        |        |        |        |        |          |            | 05:00    |
| Vol. 13 7 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       | 13      | 7      |       | 2      |        |        |        |        |        |        |        |          |            | 18_      |
| PM 17:00 17:00 21:00 19:00<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 17:00 | 17:00   | 21:00  |       | 19:00  |        |        |        |        |        |        |        |          |            | 17:00    |
| Vol. 2 17 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 2     | 17      | 4      |       | 1      |        |        |        |        |        |        |        |          |            | 21       |

www.TSTData.com

Street: PPL Driveway NB Location: Between Lot and Rt 11 Weather: Clear Counter: 3521

Site Code: 0612082 Station ID: 0612082

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined

| NB            |       |                   |                |       |                  |                  |                  |                  |                  |                  |                 | Lo              | ngitude:        | 0' 0.000 U    | ndefined |
|---------------|-------|-------------------|----------------|-------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|---------------|----------|
| Start<br>Time | Bikes | Cars &<br>Trailer | 2 Axle<br>Long | Buses | 2 Axle<br>6 Tire | 3 Axle<br>Single | 4 Axle<br>Single | <5 Axl<br>Double | 5 Axle<br>Double | >6 Axl<br>Double | <6 Axl<br>Multi | 6 Axle<br>Multi | >6 Axl<br>Multi | Not<br>Classe | Total    |
| 06/16/08      | 0     | 0                 | 0              | 0     | 0                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 0        |
| 01:00         | 2     | 0                 | 0              | 0     | 0                | Ō                | 0                | 0                | 0                | Ō                | Ō               | Ō               | 0               | Ō             | 2        |
| 02:00         | 0     | 0                 | 1              | 0     | 0                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 1        |
| 03:00         | 0     | 1                 | 1              | 0     | 0                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 2        |
| 04:00         | 2     | 10                | 6              | 0     | 0                | 1                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 19       |
| 05:00         | 8     | 97                | 29             | 0     | 2                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 136      |
| 06:00         | 20    | 261               | 99             | 1     | 7                | 0                | 0                | 1                | 2                | 0                | 0               | 0               | 1               | 0             | 392      |
| 07:00         | 3     | 51                | 16             | 0     | 0                | 0                | 0                | 0                | 1                | 0                | 0               | 0               | 0               | 0             | 71       |
| 08:00         | 2     | 23                | 7              | 0     | 1                | 0                | 0                | 1                | 0                | 0                | 0               | 0               | 0               | 0             | 34       |
| 09:00         | 2     | 8                 | 5              | 0     | 2                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 17       |
| 10:00         | 1     | 4                 | 2              | 1     | 3                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 11       |
| 11:00         | 1     | 8                 | 5              | 0     | 1                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 15       |
| 12 PM         | 0     | 6                 | 3              | 1     | 1                | 1                | 0                | 0                | 0                | 1                | 0               | 0               | 0               | 0             | 13       |
| 13:00         | 0     | 8                 | 1              | 1     | 1                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 11       |
| 14:00         | 0     | 18                | 7              | 1     | 2                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 28       |
| 15:00         | 1     | 1                 | 1              | 0     | 0                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 3        |
| 16:00         | 0     | 2                 | 1              | Ō     | 1                | Ō                | 0                | Ō                | 0                | 0                | 0               | Ō               | 0               | 0             | 4        |
| 17:00         | 0     | 21                | 6              | 0     | 0                | 1                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 28       |
| 18:00         | Õ     | 11                | 4              | 0     | Ö                | Ö                | Ö                | Ö                | Ö                | ő                | Ö               | Ö               | Ö               | Ö             | 15       |
| 19:00         | 0     | 7                 | 4              | 0     | 1                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 12       |
| 20:00         | 0     | 2                 | 0              | 0     | 0                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 2        |
| 21:00         | 0     | 10                | 2              | 0     | 1                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 13       |
| 22:00         | 0     | 7                 | 1              | 0     | 0                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 8        |
| 23:00         | 0     | 0                 | 0              | 0     | 0                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 0        |
| Total         | 42    | 556               | 201            | 5     | 23               | 3                | 0                | 2                | 3                | 1                | 0               | 0               | 1               | 0             | 837      |
| Percent       | 5.0%  | 66.4%             | 24.0%          | 0.6%  | 2.7%             | 0.4%             | 0.0%             | 0.2%             | 0.4%             | 0.1%             | 0.0%            | 0.0%            | 0.1%            | 0.0%          |          |
| AM            | 06:00 | 06:00             | 06:00          | 06:00 | 06:00            | 04:00            |                  | 06:00            | 06:00            |                  |                 |                 | 06:00           |               | 06:00    |
| Peak          |       |                   |                |       |                  |                  |                  |                  |                  |                  |                 |                 |                 |               |          |
| Vol.          | 20    | 261               | 99             | 1     | 7                | 1                |                  | 1                | 2                |                  |                 |                 | 1               |               | 392      |
| PM<br>Peak    | 15:00 | 17:00             | 14:00          | 12:00 | 14:00            | 12:00            |                  |                  |                  | 12:00            |                 |                 |                 |               | 14:00    |
| Vol.          | 1     | 21                | 7              | 1     | 2                | 1                |                  |                  |                  | 1                |                 |                 |                 |               | 28       |

www.TSTData.com

Street: PPL Driveway NB Location: Between Lot and Rt 11

Weather: Clear Counter: 3521

Site Code: 0612082 Station ID: 0612082

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined

| NB         |       |         |        |       |        |        |        |        |        |        |        |        |        | 0' 0.000 Ui |       |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|-------|
| Start      |       | Cars &  | 2 Axle | _     | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl | Not         |       |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi  | Classe      | Total |
| 06/17/08   | 0     | 0       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 1     |
| 01:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 1     |
| 02:00      | 0     | 1       | 1      | 1     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 3     |
| 03:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 1     |
| 04:00      | 0     | 12      | 8      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 20    |
| 05:00      | 10    | 96      | 32     | 0     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 142   |
| 06:00      | 14    | 234     | 110    | 0     | 6      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0           | 365   |
| 07:00      | 3     | 58      | 15     | 1     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 79    |
| 08:00      | 1     | 26      | 11     | 0     | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 1      | 0           | 41    |
| 09:00      | 1     | 12      | 4      | 1     | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0           | 20    |
| 10:00      | 0     | 11      | 4      | 0     | 8      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 23    |
| 11:00      | 0     | 3       | 5      | 0     | 2      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0           | 11    |
| 12 PM      | 0     | 13      | 4      | 2     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 21    |
| 13:00      | 1     | 8       | 2      | 1     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 14    |
| 14:00      | 0     | 14      | 5      | 0     | 4      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 24    |
| 15:00      | 0     | 1       | 1      | 1     | 0      | Ö      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 3     |
| 16:00      | 0     | 4       | 2      | 0     | 1      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 8     |
| 17:00      | 0     | 8       | 6      | 0     | 2      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 17    |
| 18:00      | 0     | 9       | 4      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 13    |
| 19:00      | 0     | 7       | 5      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 13    |
| 20:00      | 0     | 0       | 0      | 0     | ó      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 0     |
| 21:00      | 1     | 9       | 2      | 0     | 1      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0           | 14    |
| 22:00      | 0     | 6       | 2      | 0     | Ó      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 8     |
| 23:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0           | 0     |
| Total      | 31    | 534     | 224    | 7     | 37     | 2      | 1      | 4      | 1      | 0      | 0      | 0      | 1      | 0           | 842   |
| Percent    | 3.7%  | 63.4%   | 26.6%  | 0.8%  | 4.4%   | 0.2%   | 0.1%   | 0.5%   | 0.1%   | 0.0%   | 0.0%   | 0.0%   | 0.1%   | 0.0%        | 0.2   |
| AM         | 06:00 | 06:00   | 06:00  | 02:00 | 10:00  |        |        | 06:00  |        |        |        |        | 08:00  |             | 06:00 |
| Peak       |       |         |        |       |        |        |        |        |        |        |        |        |        |             |       |
| Vol.       | 14    | 234     | 110    | 1     | 8      |        |        | 1      |        |        |        |        | 1      |             | 365   |
| PM<br>Peak | 13:00 | 14:00   | 17:00  | 12:00 | 14:00  | 14:00  | 16:00  |        | 21:00  |        |        |        |        |             | 14:00 |
| Vol.       | 1     | 14      | 6      | 2     | 4      | 1      | 1      |        | 1      |        |        |        |        |             | 24    |

www.TSTData.com

Street: PPL Driveway NB Location: Between Lot and Rt 11

12:00

Peak Vol.

14:00

20

12:00

8

12:00

14:00

Weather: Clear Counter: 3521

Site Code: 0612082 Station ID: 0612082

Latitude: 0' 0.000 Undefined

| NB       |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: | 0' 0.000 U | ndefined |
|----------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------------|----------|
| Start    |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not        |          |
| Time     | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe     | Total    |
| 06/18/08 | 0     | 0       | Ö      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 01:00    | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 2        |
| 02:00    | 0     | 0       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 03:00    | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 04:00    | 1     | 11      | 5      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 17       |
| 05:00    | 11    | 85      | 31     | 1     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 132      |
| 06:00    | 10    | 271     | 105    | 0     | 5      | 0      | 0      | 2      | 1      | 0      | 0      | 0      | 1        | 0          | 395      |
| 07:00    | 5     | 56      | 16     | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 78       |
| 08:00    | 3     | 23      | 4      | 1     | 5      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0        | 0          | 37       |
| 09:00    | 0     | 12      | 4      | 1     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 18       |
| 10:00    | 2     | 7       | 7      | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 19       |
| 11:00    | 0     | 5       | 1      | 1     | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 8        |
| 12 PM    | 1     | 10      | 8      | 0     | 3      | 0      | 0      | 1      | 0      | 0      | Ō      | 0      | 0        | 0          | 23       |
| 13:00    | 1     | 11      | 7      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 19       |
| 14:00    | 1     | 20      | 4      | 0     | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 26       |
| 15:00    | 0     | 6       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 6        |
| 16:00    | 0     | 3       | 1      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 6        |
| 17:00    | 1     | 13      | 6      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 21       |
| 18:00    | 0     | 7       | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 11       |
| 19:00    | 0     | 7       | 4      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 12       |
| 20:00    | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 21:00    | 0     | 11      | 2      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 14       |
| 22:00    | 0     | 9       | 2      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 11       |
| 23:00    | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| Total    | 36    | 572     | 211    | 4     | 28     | 2      | 0      | 4      | 1      | 0      | 0      | 0      | 1        | 0          | 859      |
| Percent  | 4.2%  | 66.6%   | 24.6%  | 0.5%  | 3.3%   | 0.2%   | 0.0%   | 0.5%   | 0.1%   | 0.0%   | 0.0%   | 0.0%   | 0.1%     | 0.0%       |          |
| AM       | 05:00 | 06:00   | 06:00  | 05:00 | 06:00  | 11:00  |        | 06:00  | 06:00  |        |        |        | 06:00    |            | 06:00    |
| Peak     |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| Vol.     | 11_   | 271     | 105    | 1_    | 5      | 1      |        | 2      | 1      |        |        |        | 1        |            | 395      |
|          | 12:00 | 14:00   | 12:00  |       | 12:00  | 14:00  |        | 12:00  |        |        |        |        |          |            | 14:00    |

12:00

14:00

26

www.TSTData.com

Street: PPL Driveway NB Location: Between Lot and Rt 11 Weather: Clear

Counter: 3521

Site Code: 0612082 Station ID: 0612082

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined

| NB<br>Ctort |       | Cama 9  | 2 4 4 - |       | 2 Aula | 2 Andr | 4 A .d = | √E Λ.:-l | E 0.41= | >C A!  | ∠C A!  | C Avis | >C A!  | Nat    |          |
|-------------|-------|---------|---------|-------|--------|--------|----------|----------|---------|--------|--------|--------|--------|--------|----------|
| Start       | ъ.,   | Cars &  | 2 Axle  | _     | 2 Axle | 3 Axle | 4 Axle   | <5 AxI   | 5 Axle  | >6 Axl | <6 AxI | 6 Axle | >6 Axl | Not    | <b>-</b> |
| Time        | Bikes | Trailer | Long    | Buses | 6 Tire | Single | Single   | Double   | Double  | Double | Multi  | Multi  | Multi  | Classe | Total    |
| 06/19/08    | 0     | 1       | 1       | 0     | 0      | 0      | 0        | 0        | 0       | 0      | 0      | 0      | 0      | 0      | 2        |
| 01:00       | 0     | 1       | 0       | 0     | 0      | 0      | 0        | 0        | 1       | 0      | 0      | 0      | 0      | 0      | 2        |
| 02:00       | 0     | 0       | 1       | 0     | 0      | 0      | 0        | 0        | 0       | 0      | 0      | 0      | 0      | 0      | 1        |
| 03:00       | 0     | 1       | 0       | 0     | 0      | 0      | 0        | 0        | 0       | 0      | 0      | 0      | 0      | 0      | 1        |
| 04:00       | 2     | 13      | 7       | 0     | 0      | 0      | 0        | 0        | 0       | 0      | 0      | 0      | 0      | 0      | 22       |
| 05:00       | 15    | 89      | 28      | 0     | 3      | 0      | 0        | 0        | 0       | 0      | 0      | 0      | 0      | 0      | 135      |
| 06:00       | 10    | 256     | 110     | 0     | 5      | 0      | 0        | 1        | 0       | 0      | 0      | 0      | 0      | 0      | 382      |
| 07:00       | 1     | 62      | 14      | 0     | 2      | 1      | 0        | 0        | 0       | 0      | 0      | 0      | 0      | 0      | 80       |
| 08:00       | 3     | 31      | 4       | 0     | 3      | 2      | 0        | 0        | 0       | 0      | 0      | 0      | 0      | 0      | 43       |
| 09:00       | 1     | 10      | 6       | 1     | 6      | 2      | 0        | 0        | 0       | 0      | 0      | 0      | 0      | 0      | 26       |
| 10:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 11:00       | *     | *       | *       | *     | ×      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 12 PM       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 13:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 14:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 15:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 16:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 17:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 18:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 19:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 20:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 21:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 22:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| 23:00       | *     | *       | *       | *     | *      | *      | *        | *        | *       | *      | *      | *      | *      | *      | *        |
| Total       | 32    | 464     | 171     | 1     | 19     | 5      | 0        | 1        | 1       | 0      | 0      | 0      | 0      | 0      | 694      |
| Percent     | 4.6%  | 66.9%   | 24.6%   | 0.1%  | 2.7%   | 0.7%   | 0.0%     | 0.1%     | 0.1%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |          |
| AM          | 05:00 | 06:00   | 06:00   | 09:00 | 09:00  | 08:00  |          | 06:00    | 01:00   |        |        |        |        |        | 06:00    |
| Peak        |       |         |         |       |        |        |          |          |         |        |        |        |        |        |          |
| Vol.        | 15    | 256     | 110     | 1     | 6      | 2      |          | 1        | 1       |        |        |        |        |        | 382      |
| PM<br>Peak  |       |         |         |       |        |        |          |          |         |        |        |        |        |        |          |
| Vol.        |       |         |         |       |        |        |          |          |         |        |        |        |        |        |          |
| Grand       | 207   | 2878    | 1054    | 20    | 145    | 19     | 2        | 14       | 9       | 1      | 0      | 0      | 4      | 0      | 4353     |
| Total       |       |         |         |       |        |        |          |          |         | 0.00/  |        |        |        |        |          |
| Percent     | 4.8%  | 66.1%   | 24.2%   | 0.5%  | 3.3%   | 0.4%   | 0.0%     | 0.3%     | 0.2%    | 0.0%   | 0.0%   | 0.0%   | 0.1%   | 0.0%   |          |

www.TSTData.com

Street: PPL Driveway SB Location: Between Lot and Rt 11

Weather: Clear Counter: 13360

Site Code: 0612081 Station ID: 0612081

| SB       |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: ( | 0.000 U | ndefined |
|----------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|------------|---------|----------|
| Start    |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl     | Not     |          |
| Time     | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi      | Classe  | Total    |
| 06/12/08 | *     | *       | 3      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 01:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 02:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 03:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 04:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 05:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 06:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 07:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 08:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 09:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 10:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 11:00    | *     | *       | *      | *     | *      | *      | *      | *      | ×      | *      | *      | *      | *          | *       | *        |
| 12 PM    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *          | *       | *        |
| 13:00    | 2     | 19      | 3      | 0     | 3      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0          | 0       | 28       |
| 14:00    | 3     | 72      | 16     | 0     | 5      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0       | 97       |
| 15:00    | 19    | 171     | 55     | 0     | 19     | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0          | 0       | 265      |
| 16:00    | 7     | 64      | 29     | 0     | 5      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0       | 105      |
| 17:00    | 1     | 32      | 11     | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0       | 46       |
| 18:00    | 8     | 33      | 14     | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0       | 58       |
| 19:00    | 2     | 9       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0       | 12       |
| 20:00    | 0     | 2       | 2      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0       | 4        |
| 21:00    | 0     | 1       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0       | 2        |
| 22:00    | 0     | 5       | 1      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0       | 7        |
| 23:00    | 0     | 13      | 2      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0       | 16       |
| Total    | 42    | 421     | 135    | 0     | 39     | 1      | 0      | 1      | 1      | 0      | 0      | 0      | 0          | 0       | 640      |
| Percent  | 6.6%  | 65.8%   | 21.1%  | 0.0%  | 6.1%   | 0.2%   | 0.0%   | 0.2%   | 0.2%   | 0.0%   | 0.0%   | 0.0%   | 0.0%       | 0.0%    |          |
| AM       |       |         |        |       |        |        |        |        |        |        |        |        |            |         |          |
| Peak     |       |         |        |       |        |        |        |        |        |        |        |        |            |         |          |
| Vol.     |       |         |        |       |        |        |        |        |        |        |        |        |            |         |          |
| PM       | 15:00 | 15:00   | 15:00  |       | 15:00  | 14:00  |        | 15:00  | 13:00  |        |        |        |            |         | 15:00    |
| Peak     |       |         |        |       |        |        |        |        |        |        |        |        |            |         |          |
| Vol.     | 19    | 171     | 55     |       | 19     | 1      |        | 1      | 1      |        |        |        |            |         | 265      |

www.TSTData.com

Street: PPL Driveway SB Location: Between Lot and Rt 11 Weather: Clear

Counter: 13360

Site Code: 0612081 Station ID: 0612081

| SB |  |
|----|--|

| SB             |       |         |        |       |        |        |        |        |        |        |        |        |        |        |         |
|----------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| Start          |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl | Not    |         |
| Time           | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi  | Classe | Total   |
| 06/13/08       | 0     | 0       | Ō      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0       |
| 01:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 1       |
| 02:00          | 0     | 1       | 2      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 3       |
| 03:00          | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 2       |
| 04:00          | 1     | 0       | 0      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 3       |
| 05:00          | 1     | 0       | 0      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 2       |
| 06:00          | 2     | 31      | 13     | 0     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 50      |
| 07:00          | 0     | 14      | 2      | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 19      |
| 08:00          | 0     | 4       | 1      | 0     | 5      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 10      |
| 09:00          | 1     | 8       | 2      | 1     | 2      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 15      |
| 10:00          | 0     | 11      | 4      | 1     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 20      |
| 11:00          | 3     | 20      | 6      | 0     | 3      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 33      |
| 12 PM          | 0     | 27      | 13     | 0     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 44      |
| 13:00          | 2     | 26      | 16     | 1     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 49      |
| 14:00          | 7     | 67      | 22     | 0     | 7      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0      | 0      | 105     |
| 15:00          | 23    | 153     | 46     | 0     | 13     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 235     |
| 16:00          | 2     | 40      | 14     | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 59      |
| 17:00          | 1     | 13      | 3      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 19      |
| 18:00          | 2     | 29      | 10     | 0     | 3      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 45      |
| 19:00          | 1     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1       |
| 20:00          | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1       |
| 21:00<br>22:00 | 0     | 4       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 4       |
| 23:00          | 0     | 4<br>10 | 1 4    | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 6<br>14 |
| Total          | 46    | 465     | 159    | 3     | 60     | 0      | 0      | 2      | 5      | 0      | 0      | 0      | 0      | 0      | 740     |
| Percent        | 6.2%  | 62.8%   | 21.5%  | 0.4%  | 8.1%   | 0.0%   | 0.0%   | 0.3%   | 0.7%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 740     |
|                |       |         |        |       |        |        |        |        |        |        |        |        |        |        |         |
| AM<br>Peak     | 11:00 | 06:00   | 06:00  | 09:00 | 08:00  |        |        | 11:00  | 01:00  |        |        |        |        |        | 06:00   |
| Vol.           | 3     | 31      | 13     | 1     | 5      |        |        | 1      | 1      |        |        |        |        |        | 50      |
| PM<br>Peak     | 15:00 | 15:00   | 15:00  | 13:00 | 15:00  |        |        | 14:00  | 14:00  |        |        |        |        |        | 15:00   |
| Vol.           | 23    | 153     | 46     | 1     | 13     |        |        | 1      | 1      |        |        |        |        |        | 235     |
|                |       |         |        |       |        |        |        |        |        |        |        |        |        |        |         |

www.TSTData.com

Street: PPL Driveway SB Location: Between Lot and Rt 11

Weather: Clear Counter: 13360

Site Code: 0612081 Station ID: 0612081

| • | D |  |  |
|---|---|--|--|

| SB             |       |         |        |       |        |        |        |        |        |        |        | LO     | ngitude. | 0.000 0 | lueillieu |
|----------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|---------|-----------|
| Start          |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 Axl | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not     |           |
| Time           | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe  | Total     |
| 06/14/08       | 0     | 0       | ő      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 01:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 02:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 03:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 04:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 05:00          | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 2         |
| 06:00          | 3     | 26      | 3      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 34        |
| 07:00          | 0     | 6       | 0      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 7         |
| 08:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 09:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 10:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0       | 1         |
| 11:00          | 0     | 4       | 0      | 0     | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0        | 0       | 6         |
| 12 PM          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 13:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 14:00          | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 1         |
| 15:00          | 0     | 4       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 4         |
| 16:00          | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 2         |
| 17:00          | 0     |         | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 1         |
| 18:00          | 0     | 15      | 5      | 0     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 24        |
| 19:00          | 0     | 3       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 4         |
| 20:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 21:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 22:00          | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0         |
| 23:00<br>Total | 3     | 8<br>72 | 10     | 0     | 0<br>8 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 9<br>95   |
| Percent        | 3.2%  | 75.8%   | 10.5%  | 0.0%  | 8.4%   | 0.0%   | 0.0%   | 1.1%   | 1.1%   | 0.0%   | 0.0%   | 0.0%   | 0.0%     | 0.0%    | 95        |
| Fercent        | 3.270 | 15.6%   | 10.5%  | 0.0%  | 0.476  | 0.0%   | 0.0%   | 1.170  | 1.170  | 0.076  | 0.076  | 0.076  | 0.076    | 0.076   |           |
| AM             |       |         |        |       |        |        |        |        |        |        |        |        |          |         |           |
| Peak           | 06:00 | 06:00   | 06:00  |       | 06:00  |        |        | 11:00  | 10:00  |        |        |        |          |         | 06:00     |
| Vol.           | 3     | 26      | 3      |       | 2      |        |        | 1      | 1      |        |        |        |          |         | 34        |
| PM             |       |         |        |       |        |        |        |        |        |        |        |        |          |         |           |
| Peak           |       | 18:00   | 18:00  |       | 18:00  |        |        |        |        |        |        |        |          |         | 18:00     |
| Vol.           |       | 15      | 5      |       | 4      |        |        |        |        |        |        |        |          |         | 24        |

www.TSTData.com

Street: PPL Driveway SB Location: Between Lot and Rt 11

Weather: Clear Counter: 13360

Site Code: 0612081 Station ID: 0612081

Latitude: 0' 0.000 Undefined

| Longitude: 0' 0.000 Undefined |
|-------------------------------|
| Latitude: 0 0.000 Undelined   |

| SB         |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: ( | 0' 0.000 U | ndefined |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|------------|------------|----------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl     | Not        |          |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi      | Classe     | Total    |
| 06/15/08   | 0     | 0       | Ō      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 01:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 02:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 03:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 04:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 05:00      | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 2        |
| 06:00      | 0     | 29      | 4      | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 36       |
| 07:00      | 0     | 4       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 4        |
| 08:00      | 0     | 3       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 3        |
| 09:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 10:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 11:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 12 PM      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 13:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 14:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 15:00      | 0     | 6       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 6        |
| 16:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 17:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 18:00      | 0     | 20      | 6      | 0     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 30       |
| 19:00      | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 2        |
| 20:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 21:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 22:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 23:00      | 1     | 5       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 7        |
| Total      | 1     | 77      | 11     | 0     | 7      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 96       |
| Percent    | 1.0%  | 80.2%   | 11.5%  | 0.0%  | 7.3%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%       | 0.0%       |          |
| AM<br>Peak |       | 06:00   | 06:00  |       | 06:00  |        |        |        |        |        |        |        |            |            | 06:00    |
| Vol.       |       | 29      | 4      |       | 3      |        |        |        |        |        |        |        |            |            | 36       |
| PM         | 23:00 | 18:00   | 18:00  |       | 18:00  |        |        |        |        |        |        |        |            |            | 18:00    |
| Peak       |       |         |        |       |        |        |        |        |        |        |        |        |            |            |          |
| Vol.       | 1     | 20      | 6      |       | 4      |        |        |        |        |        |        |        |            |            | 30       |

www.TSTData.com

Street: PPL Driveway SB Location: Between Lot and Rt 11

Weather: Clear Counter: 13360

Site Code: 0612081 Station ID: 0612081

| 2 | D |  |  |
|---|---|--|--|

| SB         |       |         |        |       |        |        |        |        |        |        |        |        | ngitado. | 0.000 0 | laoillio |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|---------|----------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not     |          |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe  | Total    |
| 06/16/08   | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0        |
| 01:00      | 0     | 0       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 1        |
| 02:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0        |
| 03:00      | 0     | 0       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 1        |
| 04:00      | 0     | 2       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 2        |
| 05:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 0        |
| 06:00      | 6     | 38      | 7      | 0     | 6      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 57       |
| 07:00      | 0     | 11      | 5      | 0     | 2      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0       | 20       |
| 08:00      | 1     | 5       | 2      | 1     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 9        |
| 09:00      | 0     | 3       | 3      | 0     | 3      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0       | 10       |
| 10:00      | 0     | 8       | 2      | 1     | 3      | 0      | 0      | 2      | 1      | 0      | 0      | 0      | 0        | 0       | 17       |
| 11:00      | 0     | 9       | 2      | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 14       |
| 12 PM      | 0     | 13      | 3      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 18       |
| 13:00      | 0     | 12      | 7      | 1     | 1      | 1      | 0      | 1      | 0      | 0      | 0      | 0      | 0        | 0       | 23       |
| 14:00      | 4     | 65      | 16     | 0     | 4      | Ö      | 0      | Ó      | 0      | Ō      | Ō      | 0      | Ō        | 0       | 89       |
| 15:00      | 7     | 209     | 69     | 1     | 19     | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0        | 0       | 306      |
| 16:00      | 2     | 66      | 22     | Ö     | 3      | Ö      | 0      | 0      | 0      | ő      | 0      | Õ      | 0        | Õ       | 93       |
| 17:00      | 2     | 29      | 13     | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 47       |
| 18:00      | 2     | 30      | 9      | Ö     | 3      | 0      | 0      | 0      | 0      | 0      | Ō      | Ō      | Ō        | Ō       | 44       |
| 19:00      | 0     | 6       | 2      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 9        |
| 20:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 1        |
| 21:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 1        |
| 22:00      | 0     | 2       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 3        |
| 23:00      | 1     | 11      | 4      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0       | 17       |
| Total      | 25    | 521     | 169    | 4     | 54     | 1      | 0      | 4      | 4      | 0      | 0      | 0      | 0        | 0       | 782      |
| Percent    | 3.2%  | 66.6%   | 21.6%  | 0.5%  | 6.9%   | 0.1%   | 0.0%   | 0.5%   | 0.5%   | 0.0%   | 0.0%   | 0.0%   | 0.0%     | 0.0%    |          |
| AM         | 06:00 | 06:00   | 06:00  | 08:00 | 06:00  |        |        | 10:00  | 07:00  |        |        |        |          |         | 06:00    |
| Peak       |       |         |        | 00.00 |        |        |        |        |        |        |        |        |          |         |          |
| Vol.       | 6     | 38      | 7      | 1     | 6      |        |        | 2      | 2      |        |        |        |          |         | 57       |
| PM<br>Peak | 15:00 | 15:00   | 15:00  | 13:00 | 15:00  | 13:00  |        | 13:00  |        |        |        |        |          |         | 15:00    |
| Vol.       | 7     | 209     | 69     | 1     | 19     | 1      |        | 1      |        |        |        |        |          |         | 306      |
|            |       |         |        |       |        |        |        |        |        |        |        |        |          |         |          |

www.TSTData.com

Street: PPL Driveway SB Location: Between Lot and Rt 11

Weather: Clear Counter: 13360

Site Code: 0612081 Station ID: 0612081

| - | D |  |  |
|---|---|--|--|

| SB         |       |         |        |       |        |        |        |        |        |        |        |        |        |        |       |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 Axl | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl | Not    |       |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi  | Classe | Total |
| 06/17/08   | 0     | 1       | Ö      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1     |
| 01:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1     |
| 02:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1     |
| 03:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| 04:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1     |
| 05:00      | 0     | 2       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 3     |
| 06:00      | 2     | 32      | 10     | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 47    |
| 07:00      | 1     | 10      | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 15    |
| 08:00      | 0     | 7       | 2      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 10    |
| 09:00      | 1     | 9       | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 14    |
| 10:00      | 1     | 9       | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 14    |
| 11:00      | 1     | 11      | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 16    |
| 12 PM      | 1     | 14      | 4      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 20    |
| 13:00      | 1     | 18      | 6      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 27    |
| 14:00      | 5     | 63      | 20     | 0     | 7      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 95    |
| 15:00      | 15    | 200     | 64     | 0     | 21     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 300   |
| 16:00      | 5     | 67      | 21     | 0     | 7      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 100   |
| 17:00      | 1     | 19      | 6      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 28    |
| 18:00      | 2     | 33      | 10     | 0     | 4      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 49    |
| 19:00      | 1     | 7       | 2      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 11    |
| 20:00      | 0     | 5       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 6     |
| 21:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1     |
| 22:00      | 0     | 3       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 4     |
| 23:00      | 1     | 9       | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 14    |
| Total      | 38    | 523     | 163    | 0     | 54     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 778   |
| Percent    | 4.9%  | 67.2%   | 21.0%  | 0.0%  | 6.9%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |       |
| AM<br>Peak | 06:00 | 06:00   | 06:00  |       | 06:00  |        |        |        |        |        |        |        |        |        | 06:00 |
| Vol.       | 2     | 32      | 10     |       | 3      |        |        |        |        |        |        |        |        |        | 47    |
| PM<br>Peak | 15:00 | 15:00   | 15:00  |       | 15:00  |        |        |        |        |        |        |        |        |        | 15:00 |
| Vol.       | 15    | 200     | 64     |       | 21     |        |        |        |        |        |        |        |        |        | 300   |
|            |       |         |        |       |        |        |        |        |        |        |        |        |        |        |       |

www.TSTData.com

Street: PPL Driveway SB Location: Between Lot and Rt 11

Weather: Clear Counter: 13360

Site Code: 0612081 Station ID: 0612081

Latitude: 0' 0.000 Undefined

| SB         |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: ( | 0' 0.000 U | ndefined |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|------------|------------|----------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl     | Not        |          |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi      | Classe     | Total    |
| 06/18/08   | 0     | 1       | ő      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 01:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 02:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 03:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 04:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 05:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 06:00      | 2     | 29      | 9      | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 43       |
| 07:00      | 1     | 13      | 4      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 19       |
| 08:00      | 1     | 11      | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 16       |
| 09:00      | 1     | 9       | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 14       |
| 10:00      | 1     | 9       | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 14       |
| 11:00      | 1     | 10      | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 15       |
| 12 PM      | 1     | 15      | 5      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 23       |
| 13:00      | 2     | 23      | 7      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 34       |
| 14:00      | 3     | 44      | 14     | 0     | 5      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 66       |
| 15:00      | 16    | 205     | 65     | 0     | 22     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 308      |
| 16:00      | 5     | 63      | 20     | 0     | 7      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 95       |
| 17:00      | 2     | 22      | 7      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 33       |
| 18:00      | 2     | 28      | 9      | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 42       |
| 19:00      | 1     | 13      | 4      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 19       |
| 20:00      | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 0        |
| 21:00      | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 1        |
| 22:00      | 0     | 3       | 1      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 4        |
| 23:00      | 1     | 13      | 4      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 19       |
| Total      | 40    | 515     | 161    | 0     | 53     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0          | 0          | 769      |
| Percent    | 5.2%  | 67.0%   | 20.9%  | 0.0%  | 6.9%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%       | 0.0%       |          |
| AM<br>Peak | 06:00 | 06:00   | 06:00  |       | 06:00  |        |        |        |        |        |        |        |            |            | 06:00    |
| Vol.       | 2     | 29      | 9      |       | 3      |        |        |        |        |        |        |        |            |            | 43       |
| PM<br>Peak | 15:00 | 15:00   | 15:00  |       | 15:00  |        |        |        |        |        |        |        |            |            | 15:00    |
| Vol.       | 16    | 205     | 65     |       | 22     |        |        |        |        |        |        |        |            |            | 308      |

www.TSTData.com

Street: PPL Driveway SB Location: Between Lot and Rt 11

Weather: Clear Counter: 13360

Site Code: 0612081 Station ID: 0612081

Latituda, O' O OOO Lladafiaad

| 3 | Longitude: 0' 0.000 Undefined |
|---|-------------------------------|
|   | Latitude: 0' 0.000 Undefined  |

| SB                 |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: | 0' 0.000 U | ndefined |
|--------------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------------|----------|
| Start              |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not        |          |
| Time               | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe     | Total    |
| 06/19/08           | 0     | 1       | ő      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 01:00              | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 02:00              | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 03:00              | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 04:00              | 0     | 1       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 1        |
| 05:00              | 0     | 0       | 0      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 0        |
| 06:00              | 2     | 30      | 10     | 0     | 3      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 45       |
| 07:00              | 1     | 10      | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 15       |
| 08:00              | 1     | 10      | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 15       |
| 09:00              | 0     | 7       | 2      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 10       |
| 10:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 11:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 12 PM              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 13:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 14:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 15:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 16:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 17:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 18:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 19:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 20:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 21:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 22:00              | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *        | *          | *        |
| 23:00              |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| Total              | 4     | 61      | 18     | 0     | 6      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 89       |
| Percent            | 4.5%  | 68.5%   | 20.2%  | 0.0%  | 6.7%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%     | 0.0%       |          |
| AM<br>Peak         | 06:00 | 06:00   | 06:00  |       | 06:00  |        |        |        |        |        |        |        |          |            | 06:00    |
| Vol.               | 2     | 30      | 10     |       | 3      |        |        |        |        |        |        |        |          |            | 45       |
| PM<br>Peak<br>Vol. | _     |         |        |       | J      |        |        |        |        |        |        |        |          |            |          |
| Grand<br>Total     | 199   | 2655    | 826    | 7     | 281    | 2      | 0      | 8      | 11     | 0      | 0      | 0      | 0        | 0          | 3989     |
| Percent            | 5.0%  | 66.6%   | 20.7%  | 0.2%  | 7.0%   | 0.1%   | 0.0%   | 0.2%   | 0.3%   | 0.0%   | 0.0%   | 0.0%   | 0.0%     | 0.0%       |          |

www.TSTData.com

Street: Rt 11 NB Location: Bween Confers Ln and Cnty Ln

Weather: Clear Counter: 10450

Site Code: 0611087 Station ID: 0611087

Latitude: 0' 0.000 Undefined

| ND          |         |             |        |            |          |              |              |             |        |        |          |        |              | 0.000 U |       |
|-------------|---------|-------------|--------|------------|----------|--------------|--------------|-------------|--------|--------|----------|--------|--------------|---------|-------|
| NB<br>Start |         | Cars &      | 2 Axle |            | 2 Axle   | 3 Axle       | 4 Axle       | <5 AxI      | 5 Axle | >6 Axl | <6 AxI   | 6 Axle | >6 Axl       | Not     |       |
| Time        | Bikes   | Trailer     | Long   | Buses      | 6 Tire   | Single       | Single       | Double      | Double | Double | Multi    | Multi  | Multi        | Classe  | Total |
| 06/11/08    | DIKES * | mailei<br>* | Long   | buses<br>* | <u> </u> | Sirigie<br>* | Jirigie<br>* | Double<br>* | *      |        | Willii * | WIGHT  | iviuiii<br>* | Classe  |       |
| 01:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 02:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 03:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 04:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 05:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 06:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 07:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 08:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 09:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 10:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 11:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 12 PM       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 13:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 14:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 15:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 16:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 17:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 18:00       | *       | *           | *      | *          | *        | *            | *            | *           | *      | *      | *        | *      | *            | *       | *     |
| 19:00       | 0       | 83          | 18     | 0          | 2        | 0            | 0            | 3           | 7      | 0      | 0        | 0      | 0            | 0       | 113   |
| 20:00       | 7       | 80          | 16     | 0          | 3        | 0            | 0            | 3           | 2      | 0      | 0        | 0      | 0            | 0       | 111   |
| 21:00       | 5       | 89          | 23     | 0          | 2        | 1            | 0            | 0           | 3      | 0      | 0        | 0      | 0            | 0       | 123   |
| 22:00       | 5       | 39          | 9      | 1          | 2        | 0            | 0            | 0           | 6      | 0      | 0        | 0      | 0            | 0       | 62    |
| 23:00       | 1       | 33          | 2      | 1          | 1        | 0            | 0            | 0           | 1      | 0      | 0        | 1      | 0            | 0       | 40    |
| Total       | 18      | 324         | 68     | 2          | 10       | 1            | 0            | 6           | 19     | 0      | 0        | 1      | 0            | 0       | 449   |
| Percent     | 4.0%    | 72.2%       | 15.1%  | 0.4%       | 2.2%     | 0.2%         | 0.0%         | 1.3%        | 4.2%   | 0.0%   | 0.0%     | 0.2%   | 0.0%         | 0.0%    | 440   |
| . 0.00      | 1.0 70  | / 0         | , .    | 0.1,0      | 2.270    | 0.270        | 0.0,0        | 11.070      | 1.270  | 0.070  | 0.070    | 0.270  | 0.070        | 0.070   |       |
| AM          |         |             |        |            |          |              |              |             |        |        |          |        |              |         |       |
| Peak        |         |             |        |            |          |              |              |             |        |        |          |        |              |         |       |
| Vol.        |         |             |        |            |          |              |              |             |        |        |          |        |              |         |       |
| PM          | 20:00   | 21:00       | 21:00  | 22:00      | 20:00    | 21:00        |              | 19:00       | 19:00  |        |          | 23:00  |              |         | 21:00 |
| Peak        | 20.00   |             |        | 22.00      | 20.00    | 21.00        |              |             | 19.00  |        |          | 23.00  |              |         |       |
| Vol.        | 7       | 89          | 23     | 1          | 3        | 1            |              | 3           | 7      |        |          | 1      |              |         | 123   |

www.TSTData.com

Street: Rt 11 NB Location: Bween Confers Ln and Cnty Ln

Weather: Clear Counter: 10450

Site Code: 0611087 Station ID: 0611087

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined

| NB         |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: | 0' 0.000 U | ndefined |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------------|----------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not        |          |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe     | Total    |
| 06/12/08   | 0     | 21      | 6      | 2     | 0      | 0      | 0      | 2      | 5      | 0      | 0      | 1      | 0        | 0          | 37       |
| 01:00      | 0     | 13      | 4      | 0     | 0      | 0      | 0      | 0      | 4      | 0      | 0      | 0      | 0        | 0          | 21       |
| 02:00      | 0     | 5       | 3      | 0     | 1      | 0      | 0      | 0      | 3      | 0      | 0      | 0      | 0        | 0          | 12       |
| 03:00      | 0     | 8       | 2      | 0     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0          | 11       |
| 04:00      | 1     | 29      | 11     | 1     | 2      | 0      | 0      | 0      | 4      | 0      | 0      | 0      | 0        | 0          | 48       |
| 05:00      | 16    | 93      | 43     | 1     | 4      | 6      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0          | 165      |
| 06:00      | 32    | 313     | 125    | 1     | 22     | 3      | 0      | 5      | 1      | 0      | 0      | 0      | 0        | 0          | 502      |
| 07:00      | 8     | 205     | 43     | 2     | 16     | 5      | 2      | 4      | 5      | 0      | 0      | 0      | 0        | 0          | 290      |
| 08:00      | 4     | 118     | 34     | 2     | 19     | 3      | 1      | 2      | 5      | 0      | 0      | 0      | 0        | 0          | 188      |
| 09:00      | 2     | 114     | 36     | 4     | 7      | 6      | 1      | 0      | 4      | 0      | 0      | 0      | 0        | 0          | 174      |
| 10:00      | 1     | 77      | 37     | 1     | 6      | 5      | 1      | 2      | 8      | 2      | 0      | 0      | 0        | 0          | 140      |
| 11:00      | 3     | 110     | 40     | 3     | 8      | 6      | 1      | 3      | 7      | 1      | 0      | 0      | 0        | 0          | 182      |
| 12 PM      | 3     | 119     | 34     | 2     | 15     | 3      | 2      | 4      | 5      | 0      | 0      | 0      | 0        | 0          | 187      |
| 13:00      | 13    | 122     | 40     | 6     | 7      | 5      | 0      | 3      | 2      | 0      | 0      | 0      | 0        | 0          | 198      |
| 14:00      | 3     | 146     | 53     | 1     | 9      | 5      | 0      | 5      | 4      | 0      | 0      | 0      | 0        | 0          | 226      |
| 15:00      | 3     | 169     | 45     | 5     | 6      | 4      | 0      | 2      | 5      | 0      | 0      | 0      | 0        | 0          | 239      |
| 16:00      | 11    | 195     | 44     | 6     | 8      | 2      | 0      | 2      | 6      | 0      | 0      | 0      | 0        | 0          | 274      |
| 17:00      | 12    | 172     | 51     | 1     | 11     | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0        | 0          | 249      |
| 18:00      | 7     | 120     | 40     | 2     | 5      | 0      | 0      | 2      | 6      | 0      | 0      | 0      | 0        | 0          | 182      |
| 19:00      | 0     | 106     | 26     | 0     | 3      | 0      | 0      | 1      | 4      | 0      | 0      | 0      | 0        | 0          | 140      |
| 20:00      | 1     | 82      | 21     | 0     | 1      | 1      | 0      | 0      | 3      | 0      | 0      | 0      | 0        | 0          | 109      |
| 21:00      | 1     | 94      | 17     | 0     | 3      | 1      | 0      | 0      | 7      | 0      | 0      | 0      | 0        | 0          | 123      |
| 22:00      | 2     | 40      | 10     | 1     | 2      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0        | 0          | 57       |
| 23:00      | 2     | 30      | 3      | 0     | 0      | 0      | 0      | 0      | 4      | 0      | 0      | 0      | 0        | 0          | 39       |
| Total      | 125   | 2501    | 768    | 41    | 155    | 55     | 8      | 39     | 97     | 3      | 0      | 1      | 0        | 0          | 3793     |
| Percent    | 3.3%  | 65.9%   | 20.2%  | 1.1%  | 4.1%   | 1.5%   | 0.2%   | 1.0%   | 2.6%   | 0.1%   | 0.0%   | 0.0%   | 0.0%     | 0.0%       |          |
| AM         | 06:00 | 06:00   | 06:00  | 09:00 | 06:00  | 05:00  | 07:00  | 06:00  | 10:00  | 10:00  |        | 00:00  |          |            | 06:00    |
| Peak       |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| Vol.       | 32    | 313     | 125    | 4     | 22     | 6      | 2      | 5      | 8      | 2      |        | 1      |          |            | 502      |
| PM<br>Peak | 13:00 | 16:00   | 14:00  | 13:00 | 12:00  | 13:00  | 12:00  | 14:00  | 21:00  |        |        |        |          |            | 16:00    |
| Vol.       | 13    | 195     | 53     | 6     | 15     | 5      | 2      | 5      | 7      |        |        |        |          |            | 274      |
|            |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |

www.TSTData.com

Street: Rt 11 NB Location: Bween Confers Ln and Cnty Ln

Weather: Clear Counter: 10450

Site Code: 0611087 Station ID: 0611087

Latitude: 0' 0.000 Undefined

| NB           |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: | 0' 0.000 U | ndefined |
|--------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------------|----------|
| Start        |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 Axl | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not        |          |
| Time         | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe     | Total    |
| 06/13/08     | 0     | 26      | 6      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 2      | 0        | 0          | 34       |
| 01:00        | 0     | 7       | 4      | 1     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0          | 14       |
| 02:00        | 0     | 7       | 5      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 12       |
| 03:00        | 0     | 8       | 3      | 0     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0          | 13       |
| 04:00        | 0     | 30      | 13     | 1     | 3      | 1      | 0      | 0      | 5      | 0      | 0      | 0      | 0        | 0          | 53       |
| 05:00        | 14    | 86      | 40     | 1     | 3      | 1      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0          | 147      |
| 06:00        | 24    | 266     | 119    | 2     | 18     | 4      | 1      | 4      | 4      | 0      | 0      | 0      | 0        | 0          | 442      |
| 07:00        | 3     | 164     | 51     | 2     | 8      | 8      | 5      | 1      | 4      | 0      | 0      | 0      | 0        | 0          | 246      |
| 08:00        | 2     | 95      | 20     | 1     | 8      | 5      | 1      | 2      | 5      | 1      | 0      | 0      | 0        | 0          | 140      |
| 09:00        | 3     | 80      | 30     | 5     | 7      | 11     | 2      | 1      | 10     | 0      | 0      | 0      | 0        | 0          | 149      |
| 10:00        | 2     | 91      | 43     | 0     | 8      | 9      | 0      | 3      | 7      | 0      | 0      | 0      | 0        | 0          | 163      |
| 11:00        | 3     | 113     | 35     | 3     | 7      | 9      | 1      | 2      | 6      | 1      | 0      | 0      | 0        | 0          | 180      |
| 12 PM        | 2     | 120     | 35     | 5     | 12     | 5      | 1      | 3      | 8      | 0      | 0      | 0      | 0        | 0          | 191      |
| 13:00        | 9     | 135     | 45     | 1     | 15     | 4      | 2      | 2      | 8      | 1      | 0      | 0      | 0        | 0          | 222      |
| 14:00        | 8     | 147     | 40     | 3     | 9      | 0      | 0      | 8      | 6      | 0      | 0      | 0      | 1        | 0          | 222      |
| 15:00        | 9     | 180     | 67     | 3     | 9      | 3      | 3      | 0      | 7      | 0      | 0      | 0      | 0        | 0          | 281      |
| 16:00        | 7     | 193     | 59     | 3     | 5      | 1      | 0      | 4      | 3      | 0      | 0      | 0      | 0        | 0          | 275      |
| 17:00        | 8     | 199     | 48     | 1     | 6      | 0      | 0      | 2      | 2      | 0      | 0      | 0      | 0        | 0          | 266      |
| 18:00        | 8     | 171     | 44     | 2     | 9      | 3      | 0      | 2      | 2      | 0      | 0      | 0      | 0        | 0          | 241      |
| 19:00        | 2     | 132     | 40     | 0     | 1      | 0      | 0      | 0      | 5      | Ö      | 0      | Ö      | 0        | 0          | 180      |
| 20:00        | 4     | 140     | 37     | Ō     | 6      | Ō      | 0      | 0      | 2      | 0      | 0      | ō      | 0        | Ō          | 189      |
| 21:00        | 1     | 108     | 30     | 0     | 2      | 1      | 0      | 0      | 5      | 0      | 0      | 0      | 0        | 0          | 147      |
| 22:00        | 1     | 72      | 13     | 1     | 1      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0          | 90       |
| 23:00        | 1     | 71      | 18     | 1     | 1      | 0      | 0      | 0      | 1      | 0      | 0      | 2      | 0        | 0          | 95       |
| Total        | 111   | 2641    | 845    | 36    | 138    | 65     | 16     | 34     | 98     | 3      | 0      | 4      | 1        | 0          | 3992     |
| Percent      | 2.8%  | 66.2%   | 21.2%  | 0.9%  | 3.5%   | 1.6%   | 0.4%   | 0.9%   | 2.5%   | 0.1%   | 0.0%   | 0.1%   | 0.0%     | 0.0%       |          |
| AM           | 06:00 | 06:00   | 06:00  | 09:00 | 06:00  | 09:00  | 07:00  | 06:00  | 09:00  | 08:00  |        | 00:00  |          |            | 06:00    |
| Peak<br>Vol. | 24    | 266     | 119    | 5     | 18     | 11     | 5      | 4      | 10     | 1      |        | 2      |          |            | 442      |
| PM           | 13:00 | 17:00   | 15:00  | 12:00 | 13:00  | 12:00  | 15:00  | 14:00  | 12:00  | 13:00  |        | 23:00  | 14:00    |            | 15:00    |
| Peak         |       |         |        |       |        |        |        |        |        | 10.00  |        |        | 14.00    |            |          |
| Vol.         | 9     | 199     | 67     | 5     | 15     | 5      | 3      | 8      | 8      | 1_     |        | 2      | 1        |            | 281      |

610-466-1469 www.TSTData.com

Street: Rt 11 NB Location: Bween Confers Ln and Cnty Ln

Vol

Weather: Clear Counter: 10450

Site Code: 0611087 Station ID: 0611087

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined NB Cars & 2 Axle 2 Axle 3 Axle 4 Axle <5 AxI 5 Axle >6 Axl <6 AxI 6 Axle >6 Axl Not Start Time Bikes Trailer Long **Buses** 6 Tire Single Single Double Double Double Multi Multi Multi Classe Total 06/14/08 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 O O O O 11:00 12 PM 13:00 Ω n 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 Total Percent 0.9% 74.1% 20.1% 0.5% 2.2% 0.2% 0.1% 0.7% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% AM 02:00 05:00 11:00 11:00 00:00 09:00 09:00 00:00 08:00 07:00 07:00 11:00 Peak Vol PM 12:00 12:00 15:00 15:00 12:00 17:00 15:00 12:00 12:00 Peak

610-466-1469 www.TSTData.com

Street: Rt 11 NB Location: Bween Confers Ln and Cnty Ln

Weather: Clear Counter: 10450

14:00

15:00

16:00

17:00

18:00

19:00

20:00

Vol.

Site Code: 0611087 Station ID: 0611087

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined NB >6 Axl Start Cars & 2 Axle 2 Axle 3 Axle 4 Axle <5 AxI 5 Axle >6 Axl <6 AxI 6 Axle Not Time **Bikes** Trailer Long **Buses** 6 Tire Single Single Double Double Double Multi Multi Multi Classe Total 06/15/08 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 Ω O 10:00 11:00 12 PM 13:00 

| 21:00   | 2     | 90    | 23    | 1     | 3     | 1     | 0    | 0     | 0     | 0    | 0     | 0    | 0    | 0    | 120   |
|---------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|-------|------|------|------|-------|
| 22:00   | 1     | 61    | 14    | 1     | 0     | 0     | 0    | 0     | 2     | 0    | 0     | 0    | 0    | 0    | 79    |
| 23:00   | 1     | 20    | 2     | 0     | 0     | 0     | 0    | 0     | 1     | 0    | 0     | 0    | 0    | 0    | 24    |
| Total   | 110   | 1815  | 434   | 12    | 38    | 4     | 0    | 25    | 37    | 0    | 1     | 0    | 0    | 0    | 2476  |
| Percent | 4.4%  | 73.3% | 17.5% | 0.5%  | 1.5%  | 0.2%  | 0.0% | 1.0%  | 1.5%  | 0.0% | 0.0%  | 0.0% | 0.0% | 0.0% |       |
|         |       |       |       |       |       |       |      |       |       |      |       |      |      |      |       |
| AM      | 09:00 | 11:00 | 07:00 | 04:00 | 06:00 | 09:00 |      | 04:00 | 07:00 |      |       |      |      |      | 11:00 |
| Peak    | 00.00 | 11.00 | 01.00 | 01.00 | 00.00 | 00.00 |      | 01.00 | 07.00 |      |       |      |      |      |       |
| Vol.    | 6     | 115   | 25    | 1     | 3     | 1     |      | 5     | 2     |      |       |      |      |      | 145   |
| PM      | 17:00 | 15:00 | 19:00 | 16:00 | 12:00 | 13:00 |      | 12:00 | 20:00 |      | 18:00 |      |      |      | 17:00 |
| Peak    | 17.00 | 15.00 | 19.00 | 10.00 | 12.00 | 13.00 |      | 12.00 | 20.00 |      | 16.00 |      |      |      | 17.00 |

Ω

www.TSTData.com

Street: Rt 11 NB Location: Bween Confers Ln and Cnty Ln

Weather: Clear Counter: 10450

Site Code: 0611087 Station ID: 0611087

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined

| NB         |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: ( | 0.000 U | ndefined |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|------------|---------|----------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl     | Not     |          |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi      | Classe  | Total    |
| 06/16/08   | 0     | 5       | 2      | 0     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0          | 0       | 9        |
| 01:00      | 0     | 5       | 1      | 1     | 2      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0          | 0       | 11       |
| 02:00      | 0     | 6       | 2      | 1     | 1      | 2      | 0      | 0      | 5      | 0      | 0      | 0      | 0          | 0       | 17       |
| 03:00      | 0     | 8       | 4      | 0     | 0      | 2      | 0      | 0      | 3      | 0      | 0      | 0      | 0          | 0       | 17       |
| 04:00      | 1     | 27      | 14     | 0     | 4      | 3      | 0      | 2      | 4      | 0      | 0      | 0      | 0          | 0       | 55       |
| 05:00      | 8     | 104     | 49     | 1     | 3      | 0      | 0      | 1      | 4      | 0      | 0      | 0      | 0          | 0       | 170      |
| 06:00      | 6     | 319     | 122    | 1     | 17     | 1      | 0      | 1      | 7      | 0      | 0      | 0      | 1          | 0       | 475      |
| 07:00      | 0     | 181     | 47     | 3     | 8      | 3      | 1      | 1      | 8      | 0      | 0      | 0      | 0          | 0       | 252      |
| 08:00      | 1     | 103     | 35     | 2     | 9      | 4      | 1      | 4      | 8      | 1      | 0      | 0      | 0          | 0       | 168      |
| 09:00      | 1     | 71      | 37     | 3     | 7      | 4      | 0      | 5      | 5      | 1      | 0      | 0      | 0          | 0       | 134      |
| 10:00      | 3     | 96      | 28     | 6     | 7      | 7      | 0      | 3      | 4      | 0      | 1      | 0      | 0          | 0       | 155      |
| 11:00      | 0     | 102     | 29     | 1     | 6      | 5      | 0      | 0      | 13     | 0      | 0      | 0      | 0          | 0       | 156      |
| 12 PM      | 4     | 118     | 33     | 7     | 14     | 4      | 1      | 1      | 4      | 0      | 0      | 0      | 0          | 0       | 186      |
| 13:00      | 2     | 99      | 41     | 5     | 4      | 3      | 0      | 2      | 8      | 0      | 0      | 0      | 0          | 0       | 164      |
| 14:00      | 1     | 119     | 45     | 3     | 8      | 5      | 0      | 6      | 9      | 0      | 0      | 0      | 0          | 0       | 196      |
| 15:00      | 1     | 165     | 44     | 1     | 10     | 2      | 1      | 2      | 4      | 1      | 0      | 0      | 0          | 0       | 231      |
| 16:00      | 1     | 195     | 58     | 2     | 10     | 1      | 0      | 0      | 8      | 1      | 0      | 0      | 0          | 0       | 276      |
| 17:00      | 4     | 160     | 37     | 0     | 11     | 0      | 0      | 3      | 4      | 0      | 0      | 0      | 0          | 0       | 219      |
| 18:00      | 0     | 96      | 26     | 0     | 7      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0          | 0       | 130      |
| 19:00      | 0     | 70      | 26     | 1     | 1      | 0      | 0      | 1      | 3      | 0      | 0      | 0      | 0          | 0       | 102      |
| 20:00      | 0     | 33      | 13     | 0     | 3      | 0      | 0      | 1      | 5      | 0      | 0      | 0      | 0          | 0       | 55       |
| 21:00      | 0     | 46      | 12     | 0     | 3      | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0          | 0       | 63       |
| 22:00      | 0     | 33      | 8      | 0     | 0      | 0      | 0      | 1      | 3      | 0      | 0      | 3      | 0          | 0       | 48       |
| 23:00      | 2     | 25      | 0      | 0     | 3      | 0      | 0      | 0      | 5      | 0      | 0      | 0      | 0          | 0       | 35       |
| Total      | 35    | 2186    | 713    | 38    | 138    | 47     | 4      | 34     | 120    | 4      | 1      | 3      | 1          | 0       | 3324     |
| Percent    | 1.1%  | 65.8%   | 21.5%  | 1.1%  | 4.2%   | 1.4%   | 0.1%   | 1.0%   | 3.6%   | 0.1%   | 0.0%   | 0.1%   | 0.0%       | 0.0%    |          |
| AM         | 05:00 | 06:00   | 06:00  | 10:00 | 06:00  | 10:00  | 07:00  | 09:00  | 11:00  | 08:00  | 10:00  |        | 06:00      |         | 06:00    |
| Peak       |       |         |        |       |        |        |        |        |        |        | 10.00  |        | 00.00      |         |          |
| Vol.       | 8     | 319     | 122    | 6     | 17     | 7      | 1      | 5      | 13     | 1      | 1      |        | 1          |         | 475      |
| PM<br>Peak | 12:00 | 16:00   | 16:00  | 12:00 | 12:00  | 14:00  | 12:00  | 14:00  | 14:00  | 15:00  |        | 22:00  |            |         | 16:00    |
| Vol.       | 4     | 195     | 58     | 7     | 14     | 5      | 1      | 6      | 9      | 1      |        | 3      |            |         | 276      |

www.TSTData.com

Street: Rt 11 NB Location: Bween Confers Ln and Cnty Ln

185

Vol.

60

9

15

3

Weather: Clear Counter: 10450

Site Code: 0611087 Station ID: 0611087

Latitude: 0' 0.000 Undefined

| NB               |            |                   |                |            |                      |                  |             |                  |                  |                  |                 | Lo              | ngitude:        | 0' 0.000 U    | ndefined |
|------------------|------------|-------------------|----------------|------------|----------------------|------------------|-------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|---------------|----------|
| Start<br>Time    | Bikes      | Cars &<br>Trailer | 2 Axle<br>Long | Buses      | 2 Axle<br>6 Tire     | 3 Axle<br>Single | 4 Axle      | <5 Axl<br>Double | 5 Axle<br>Double | >6 Axl<br>Double | <6 Axl<br>Multi | 6 Axle<br>Multi | >6 Axl<br>Multi | Not<br>Classe | Total    |
| 06/17/08         | Dikes<br>0 | 22                | 5              | 0 Duses    | 0 1110               | Sirigle<br>0     | Single<br>0 | 0<br>0           | Double           | 0                | 0               | 0               | 0               | Classe<br>0   |          |
| 01:00            | 0          | 10                | 1              | 2          | 0                    | 0                | 0           | 1                | 2                | 0                | 0               | 0               | 0               | 0             | 16       |
| 02:00            | 0          | 6                 | 2              | 2          | 1                    | 1                | 0           | 1                | 2                | 0                | 0               | 0               | 0               | 0             | 15       |
| 03:00            | 0          | 7                 | 3              | 0          | 0                    | 2                | 0           | 1                | 3                | 0                | 0               | 0               | 0               | Ō             | 16       |
| 04:00            | 1          | 36                | 14             | 1          | 7                    | 1                | 0           | 1                | 1                | 0                | 0               | 0               | 0               | 0             | 62       |
| 05:00            | 11         | 103               | 44             | 1          | 8                    | 2                | 0           | 0                | 2                | 1                | 0               | 0               | 0               | 0             | 172      |
| 06:00            | 11         | 313               | 136            | 2          | 15                   | 4                | 2           | 1                | 4                | 0                | 0               | 0               | 0               | 0             | 488      |
| 07:00            | 3          | 180               | 51             | 7          | 5                    | 2                | 2           | 3                | 3                | 1                | 0               | 0               | 0               | 0             | 257      |
| 08:00            | 0          | 104               | 35             | 4          | 7                    | 2                | 2           | 1                | 7                | 0                | 0               | 0               | 0               | 0             | 162      |
| 09:00            | 1          | 92                | 43             | 4          | 6                    | 3                | 1           | 2                | 10               | 0                | 0               | 0               | 0               | 0             | 162      |
| 10:00            | 0          | 79                | 37             | 2          | 9                    | 3                | 0           | 2                | 6                | 3                | 0               | 0               | 0               | 0             | 141      |
| 11:00            | 3          | 96                | 31             | 7          | 3                    | 4                | 0           | 1                | 8                | 0                | 0               | 0               | 0               | 0             | 153      |
| 12 PM            | 3          | 122               | 35             | 9          | 9                    | 0                | 0           | 3                | 4                | 0                | 0               | 0               | 0               | 0             | 185      |
| 13:00            | 0          | 114               | 37             | 3          | 6                    | 0                | 0           | 3                | 8                | 0                | 0               | 0               | 0               | 0             | 171      |
| 14:00            | 3          | 130               | 46             | 4          | 9                    | 2                | 0           | 3                | 9                | 0                | 0               | 0               | 0               | 0             | 206      |
| 15:00            | 2          | 171               | 38             | 5          | 4                    | 2                | 0           | 3                | 4                | 0                | 0               | 0               | 0               | 0             | 229      |
| 16:00            | 1          | 177               | 60             | 1          | 15                   | 3                | 0           | 3                | 7                | 0                | 0               | 0               | 0               | 0             | 267      |
| 17:00            | 3          | 185               | 37             | 1          | 15                   | 0                | 0           | 1                | 9                | 0                | 0               | 0               | 0               | 0             | 251      |
| 18:00            | 4          | 126               | 31             | 0          | 7                    | 0                | 0           | 2                | 7                | 0                | 0               | 0               | 0               | 0             | 177      |
| 19:00            | 1          | 102               | 23             | 1          | 4                    | 1                | 0           | 1                | 7                | 1                | 0               | 0               | 0               | 0             | 141      |
| 20:00            | 1          | 55                | 25             | 0          | 1                    | 0                | 0           | 2                | 4                | 0                | 0               | 0               | 0               | 0             | 88       |
| 21:00            | 1          | 59                | 24             | 1          | 2                    | 1                | 0           | 0                | 3                | 0                | 0               | 0               | 0               | 0             | 91       |
| 22:00            | 0          | 39                | 10             | 0          | 0                    | 0                | 0           | 0                | 5                | 0                | 0               | 0               | 0               | 0             | 54       |
| 23:00            | 2          | 17                | 3              | 0          | 0                    | 0                | 0           | 0                | 2                | 0                | 0               | 1_              | 0               | 0             | 25       |
| Total<br>Percent | 51<br>1.4% | 2345<br>65.9%     | 771<br>21.7%   | 57<br>1.6% | 133<br>3. <b>7</b> % | 33<br>0.9%       | 7<br>0.2%   | 35<br>1.0%       | 118<br>3.3%      | 6<br>0.2%        | 0<br>0.0%       | 0.0%            | 0<br>0.0%       | 0<br>0.0%     | 3557     |
| AM<br>Peak       | 05:00      | 06:00             | 06:00          | 07:00      | 06:00                | 06:00            | 06:00       | 07:00            | 09:00            | 10:00            |                 |                 |                 |               | 06:00    |
| Vol.             | 11         | 313               | 136            | 7          | 15                   | 4                | 2           | 3                | 10               | 3                |                 |                 |                 |               | 488      |
| PM<br>Peak       | 18:00      | 17:00             | 16:00          | 12:00      | 16:00                | 16:00            |             | 12:00            | 14:00            | 19:00            |                 | 23:00           |                 |               | 16:00    |
| 3.6-1            |            | 405               | 00             | •          | 4.5                  | •                |             | _                | _                |                  |                 |                 |                 |               | 007      |

3

267

www.TSTData.com

Street: Rt 11 NB Location: Bween Confers Ln and Cnty Ln

Weather: Clear Counter: 10450

Site Code: 0611087 Station ID: 0611087

Latitude: 0' 0.000 Undefined Longitude: 0' 0.000 Undefined

NR

| NB             |       |         |        |       |        |        |        |        |        |        |        |        | rigitado. | 0.000 0 | nacimica |
|----------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|---------|----------|
| Start          |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 Axl | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl    | Not     |          |
| Time           | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi     | Classe  | Total    |
| 06/18/08       | 0     | 23      | 5      | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0         | 0       | 28       |
| 01:00          | 0     | 11      | 0      | 2     | 1      | 2      | 0      | 1      | 2      | 0      | 0      | 0      | 0         | 0       | 19       |
| 02:00          | 0     | 5       | 2      | 0     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0         | 0       | 9        |
| 03:00          | 0     | 9       | 3      | 1     | 0      | 1      | 0      | 0      | 5      | 0      | 0      | 0      | 0         | 0       | 19       |
| 04:00          | 0     | 27      | 12     | 1     | 2      | 0      | 0      | 0      | 3      | 0      | 0      | 0      | 0         | 0       | 45       |
| 05:00          | 9     | 96      | 38     | 0     | 5      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0         | 0       | 150      |
| 06:00          | 6     | 310     | 129    | 2     | 16     | 3      | 0      | 2      | 5      | 0      | 0      | 0      | 0         | 0       | 473      |
| 07:00          | 0     | 186     | 48     | 2     | 12     | 4      | 0      | 0      | 2      | 0      | 0      | 0      | 0         | 0       | 254      |
| 08:00          | 2     | 125     | 29     | 5     | 11     | 3      | 1      | 3      | 7      | 2      | 0      | 0      | 0         | 0       | 188      |
| 09:00          | 1     | 89      | 37     | 5     | 11     | 4      | 1      | 3      | 8      | 0      | 0      | 0      | 0         | 0       | 159      |
| 10:00          | 1     | 81      | 27     | 1     | 4      | 7      | 1      | 3      | 6      | 1      | 0      | 0      | 1         | 0       | 133      |
| 11:00          | 3     | 142     | 49     | 3     | 7      | 5      | 1      | 3      | 18     | 0      | 0      | 0      | 0         | 0       | 231      |
| 12 PM          | 23    | 778     | 240    | 11    | 34     | 11     | 0      | 11     | 34     | 0      | 0      | 0      | 0         | 0       | 1142     |
| 13:00          | 23    | 797     | 246    | 12    | 35     | 12     | 0      | 12     | 35     | 0      | 0      | 0      | 0         | 0       | 1172     |
| 14:00          | 22    | 763     | 235    | 11    | 34     | 11     | 0      | 11     | 34     | 0      | 0      | 0      | 0         | 0       | 1121     |
| 15:00          | 20    | 678     | 209    | 10    | 30     | 10     | 0      | 10     | 30     | 0      | 0      | 0      | 0         | 0       | 997      |
| 16:00          | 15    | 526     | 162    | 8     | 23     | 8      | 0      | 8      | 23     | 0      | 0      | 0      | 0         | 0       | 773      |
| 17:00          | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *         | *       | *        |
| 18:00          | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *         | *       | *        |
| 19:00          | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *         | *       | *        |
| 20:00          | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *         | *       | *        |
| 21:00          | *     | *       | *      |       | *      | *      | *      | *      | *      | *      | *      | *      | *         | *       |          |
| 22:00<br>23:00 | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *         | *       | *        |
| 23.00<br>Total | 125   | 4646    | 1471   | 74    | 225    | 81     | 4      | 67     | 216    | 3      | 0      | 0      | 1         | 0       | 6913     |
| Percent        | 1.8%  | 67.2%   | 21.3%  | 1.1%  | 3.3%   | 1.2%   | 0.1%   | 1.0%   | 3.1%   | 0.0%   | 0.0%   | 0.0%   | 0.0%      | 0.0%    | 0913     |
| AM<br>Peak     | 05:00 | 06:00   | 06:00  | 08:00 | 06:00  | 10:00  | 08:00  | 08:00  | 11:00  | 08:00  |        |        | 10:00     |         | 06:00    |
| Vol.           | 9     | 310     | 129    | 5     | 16     | 7      | 1      | 3      | 18     | 2      |        |        | 1         |         | 473      |
| PM<br>Peak     | 12:00 | 13:00   | 13:00  | 13:00 | 13:00  | 13:00  |        | 13:00  | 13:00  |        |        |        |           |         | 13:00    |
| Vol.           | 23    | 797     | 246    | 12    | 35     | 12     |        | 12     | 35     |        |        |        |           |         | 1172     |
| Grand<br>Total | 598   | 18288   | 5566   | 272   | 892    | 291    | 42     | 258    | 729    | 19     | 2      | 11     | 4         | 0       | 26972    |
| Percent        | 2.2%  | 67.8%   | 20.6%  | 1.0%  | 3.3%   | 1.1%   | 0.2%   | 1.0%   | 2.7%   | 0.1%   | 0.0%   | 0.0%   | 0.0%      | 0.0%    |          |

Street: Rt 11 SB Location: Between Confers and Cnty Line

www.TSTData.com

Weather: Clear Counter: 20418

Site Code: 0611088 Station ID: 0611088

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined

| SB       |       |         |        |       |        |        |        |        |        |        |        |        |        | 0' 0.000 U | riadilito |
|----------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|-----------|
| Start    |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl | Not        |           |
| Time     | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi  | Classe     | Total     |
| 06/11/08 | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 01:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 02:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 03:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 04:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 05:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 06:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 07:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 08:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 09:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 10:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 11:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 12 PM    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 13:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 14:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 15:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 16:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 17:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 18:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *      | *          | *         |
| 19:00    | 5     | 61      | 23     | 1     | 3      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0      | 0          | 95        |
| 20:00    | 2     | 81      | 12     | 0     | 2      | 0      | 0      | 0      | 7      | 0      | 0      | 1      | 1      | 0          | 106       |
| 21:00    | 2     | 77      | 19     | 0     | 3      | 1      | 0      | 3      | 0      | 0      | 0      | 0      | 0      | 0          | 105       |
| 22:00    | 0     | 40      | 11     | 0     | 1      | o o    | 0      | 0      | 2      | 0      | 0      | 0      | 0      | 0          | 54        |
| 23:00    | 1     | 48      | 11     | 0     | 2      | Ö      | 0      | 0      | 1      | 0      | 0      | 1      | 0      | 0          | 64        |
| Total    | 10    | 307     | 76     | 1     | 11     | 1      | 0      | 3      | 12     | 0      | 0      | 2      | 1      | 0          | 424       |
| Percent  | 2.4%  | 72.4%   | 17.9%  | 0.2%  | 2.6%   | 0.2%   | 0.0%   | 0.7%   | 2.8%   | 0.0%   | 0.0%   | 0.5%   | 0.2%   | 0.0%       |           |
| AM       |       |         |        |       |        |        |        |        |        |        |        |        |        |            |           |
| Peak     |       |         |        |       |        |        |        |        |        |        |        |        |        |            |           |
| Vol.     |       |         |        |       |        |        |        |        |        |        |        |        |        |            |           |
| PM       | 19:00 | 20:00   | 19:00  | 19:00 | 19:00  | 21:00  |        | 21:00  | 20:00  |        |        | 20:00  | 20:00  |            | 20:00     |
| Peak     | 19.00 |         | 19.00  | 19.00 | 19.00  | 21.00  |        | 21.00  | 20.00  |        |        | 20.00  | 20.00  |            |           |
| Vol.     | 5     | 81      | 23     | 1     | 3      | 1      |        | 3      | 7      |        |        | 1      | 1      |            | 106       |

www.TSTData.com

Street: Rt 11 SB Location: Between Confers and Cnty Line

Weather: Clear Counter: 20418

Site Code: 0611088 Station ID: 0611088

| SB         |       |         |        |       |        |        |        |        |        |        |        |        | ingitudo. | 0 0.000 0 | naomioa |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|-----------|---------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 Axl | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl    | Not       |         |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi     | Classe    | Total   |
| 06/12/08   | 0     | 14      | 2      | 0     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0         | 0         | 18      |
| 01:00      | 0     | 23      | 5      | 1     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0         | 0         | 30      |
| 02:00      | 0     | 11      | 2      | 0     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0         | 0         | 15      |
| 03:00      | 0     | 12      | 3      | 1     | 1      | 0      | 0      | 0      | 6      | 0      | 0      | 0      | 0         | 0         | 23      |
| 04:00      | 0     | 24      | 5      | 0     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0         | 0         | 30      |
| 05:00      | 1     | 43      | 20     | 1     | 4      | 2      | 0      | 0      | 1      | 0      | 0      | 0      | 0         | 0         | 72      |
| 06:00      | 2     | 115     | 45     | 5     | 12     | 1      | 1      | 1      | 1      | 0      | 0      | 0      | 0         | 0         | 183     |
| 07:00      | 4     | 123     | 51     | 4     | 9      | 3      | 5      | 0      | 3      | 0      | 0      | 0      | 0         | 0         | 202     |
| 08:00      | 4     | 114     | 40     | 5     | 14     | 1      | 12     | 3      | 3      | 0      | 0      | 0      | 0         | 0         | 196     |
| 09:00      | 3     | 128     | 41     | 5     | 15     | 0      | 8      | 2      | 6      | 0      | 0      | 0      | 0         | 0         | 208     |
| 10:00      | 4     | 130     | 35     | 6     | 14     | 3      | 6      | 3      | 4      | 0      | 0      | 0      | 0         | 0         | 205     |
| 11:00      | 9     | 124     | 47     | 2     | 10     | 4      | 9      | 6      | 8      | 1      | 0      | 1      | 0         | 0         | 221     |
| 12 PM      | 9     | 159     | 43     | 5     | 9      | 5      | 9      | 2      | 6      | 0      | 0      | 1      | 0         | 0         | 248     |
| 13:00      | 7     | 138     | 48     | 1     | 9      | 2      | 6      | 2      | 8      | 0      | 0      | 0      | 0         | 0         | 221     |
| 14:00      | 12    | 195     | 64     | 5     | 8      | 3      | 5      | 3      | 2      | 2      | 0      | 0      | 0         | 0         | 299     |
| 15:00      | 24    | 293     | 103    | 1     | 15     | 2      | 4      | 3      | 5      | 0      | 0      | 0      | 0         | 0         | 450     |
| 16:00      | 10    | 242     | 71     | 2     | 21     | 1      | 2      | 1      | 8      | 0      | 0      | 0      | 0         | 0         | 358     |
| 17:00      | 11    | 160     | 43     | 1     | 4      | 2      | 0      | 1      | 3      | 0      | 0      | 0      | 0         | 0         | 225     |
| 18:00      | 5     | 112     | 36     | Ö     | 2      | 0      | 0      | Ö      | 3      | 0      | 0      | 0      | 0         | ő         | 158     |
| 19:00      | 4     | 96      | 20     | 0     | 4      | 2      | 0      | 0      | 2      | 0      | 0      | 0      | 0         | 0         | 128     |
| 20:00      | 2     | 79      | 33     | 0     | 5      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0         | 0         | 120     |
| 21:00      | 2     | 59      | 14     | 1     | 0      | 1      | 0      | 0      | 2      | 0      | 0      | 0      | 0         | 0         | 79      |
| 22:00      | 2     | 50      | 10     | 0     | 1      | 0      | 0      | 0      | 4      | 0      | 0      | 0      | 0         | 0         | 67      |
| 23:00      | 2     | 48      | 14     | 0     | 2      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0         | 0         | 68      |
| Total      | 117   | 2492    | 795    | 46    | 159    | 32     | 67     | 28     | 83     | 3      | 0      | 2      | 0         | 0         | 3824    |
| Percent    | 3.1%  | 65.2%   | 20.8%  | 1.2%  | 4.2%   | 0.8%   | 1.8%   | 0.7%   | 2.2%   | 0.1%   | 0.0%   | 0.1%   | 0.0%      | 0.0%      |         |
| AM<br>Peak | 11:00 | 10:00   | 07:00  | 10:00 | 09:00  | 11:00  | 08:00  | 11:00  | 11:00  | 11:00  |        | 11:00  |           |           | 11:00   |
| Vol.       | 9     | 130     | 51     | 6     | 15     | 4      | 12     | 6      | 8      | 1      |        | 1      |           |           | 221     |
| PM<br>Peak | 15:00 | 15:00   | 15:00  | 12:00 | 16:00  | 12:00  | 12:00  | 14:00  | 13:00  | 14:00  |        | 12:00  |           |           | 15:00   |
| Vol.       | 24    | 293     | 103    | 5     | 21     | 5      | 9      | 3      | 8      | 2      |        | 1      |           |           | 450     |
|            |       |         |        |       |        |        |        |        |        |        |        | •      |           |           |         |

www.TSTData.com

Street: Rt 11 SB Location: Between Confers and Cnty Line

Weather: Clear Counter: 20418

Site Code: 0611088 Station ID: 0611088

| SB            |       |                   |                |       |                  |                  |                  |                  |                  |                  |                 |                 | rigitado.       | 0.000 0       | i i doiii i da |
|---------------|-------|-------------------|----------------|-------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|---------------|----------------|
| Start<br>Time | Bikes | Cars &<br>Trailer | 2 Axle<br>Long | Buses | 2 Axle<br>6 Tire | 3 Axle<br>Single | 4 Axle<br>Single | <5 Axl<br>Double | 5 Axle<br>Double | >6 Axl<br>Double | <6 Axl<br>Multi | 6 Axle<br>Multi | >6 Axl<br>Multi | Not<br>Classe | Total          |
| 06/13/08      | 1     | 20                |                | 1     | 0                | 0                | 0                | 0                | 5                | 0                | 0               | 1               | 0               | 0             | 35             |
| 01:00         | 1     | 19                | 5              | 1     | 0                | 1                | 0                | 0                | 1                | 0                | 0               | 0               | 0               | 0             | 28             |
| 02:00         | Ö     | 23                | 3              | Ö     | 0                | 0                | 0                | 0                | 3                | 0                | 0               | 0               | 0               | Õ             | 29             |
| 03:00         | 0     | 23                | 2              | 0     | 1                | 0                | 0                | 0                | 2                | 1                | 0               | 0               | 0               | 0             | 29             |
| 04:00         | 0     | 12                | 5              | 0     | 3                | Õ                | 0                | 0                | 3                | 0                | 0               | 0               | 0               | ő             | 23             |
| 05:00         | 2     | 39                | 23             | 2     | 5                | 3                | 0                | 0                | 1                | 0                | 0               | 0               | 0               | 0             | 75             |
| 06:00         | 2     | 118               | 43             | 2     | 12               | 1                | 0                | 1                | 0                | 0                | 0               | 0               | 0               | 0             | 179            |
| 07:00         | 4     | 123               | 42             | 3     | 15               | 0                | 13               | 0                | 4                | 0                | 0               | 0               | 0               | 0             | 204            |
| 08:00         | 3     | 96                | 28             | 8     | 9                | 3                | 17               | 2                | 5                | 0                | 0               | 0               | 0               | 0             | 171            |
| 09:00         | 5     | 128               | 35             | 4     | 10               | 4                | 13               | 1                | 7                | 0                | 0               | 0               | 0               | 0             | 207            |
| 10:00         | 2     | 205               | 69             | 6     | 17               | 2                | 17               | 3                | 9                | 0                | 0               | 0               | 0               | 0             | 330            |
| 11:00         | 4     | 195               | 54             | 1     | 11               | 1                | 14               | 6                | 8                | 1                | 0               | 1               | 0               | 0             | 296            |
| 12 PM         | 9     | 168               | 54             | 3     | 7                | 1                | 12               | 3                | 6                | 0                | 0               | 1               | 0               | 0             | 264            |
| 13:00         | 14    | 151               | 64             | 2     | 13               | 2                | 4                | 7                | 9                | 0                | 0               | 0               | 0               | 0             | 266            |
| 14:00         | 17    | 208               | 60             | 2     | 8                | 3                | 2                | 4                | 10               | 0                | 0               | 0               | 0               | 0             | 314            |
| 15:00         | 16    | 294               | 87             | 2     | 12               | 1                | 0                | 1                | 2                | 0                | 0               | 0               | 0               | 0             | 415            |
| 16:00         | 5     | 225               | 65             | 4     | 8                | 0                | 0                | 2                | 1                | 0                | 0               | 0               | 0               | 0             | 310            |
| 17:00         | 8     | 160               | 49             | 0     | 6                | 2                | 0                | 1                | 9                | 0                | 0               | 1               | 0               | 0             | 236            |
| 18:00         | 6     | 144               | 34             | 1     | 2                | 0                | 0                | Ó                | 2                | 0                | 0               | ó               | 0               | ő             | 189            |
| 19:00         | 4     | 102               | 25             | 3     | 0                | 2                | 0                | 2                | 4                | 0                | 0               | 0               | 0               | 0             | 142            |
| 20:00         | 2     | 86                | 23             | 0     | 2                | 0                | 0                | 0                | 0                | 0                | 0               | 0               | 0               | 0             | 113            |
| 21:00         | 2     | 74                | 12             | 0     | 5                | 0                | 0                | 2                | 1                | 0                | 0               | 0               | 0               | 0             | 96             |
| 22:00         | 1     | 73                | 12             | 0     | 3                | 0                | 0                | 0                | 3                | 0                | 0               | 0               | 0               | 0             | 92             |
| 23:00         | 2     | 72                | 19             | 0     | 4                | 0                | 0                | 1                | 3                | 0                | 0               | 0               | 0               | 0             | 101            |
| Total         | 110   | 2758              | 820            | 45    | 153              | 26               | 92               | 36               | 98               | 2                | 0               | 4               | 0               | 0             | 4144           |
| Percent       | 2.7%  | 66.6%             | 19.8%          | 1.1%  | 3.7%             | 0.6%             | 2.2%             | 0.9%             | 2.4%             | 0.0%             | 0.0%            | 0.1%            | 0.0%            | 0.0%          |                |
| AM            | 09:00 | 10:00             | 10:00          | 08:00 | 10:00            | 09:00            | 08:00            | 11:00            | 10:00            | 03:00            |                 | 00:00           |                 |               | 10:00          |
| Peak          |       |                   |                |       |                  |                  |                  |                  |                  |                  |                 |                 |                 |               |                |
| Vol.          | 5     | 205               | 69             | 8     | 17               | 4                | 17               | 6                | 9                | 1                |                 | 1               |                 |               | 330            |
| PM<br>Peak    | 14:00 | 15:00             | 15:00          | 16:00 | 13:00            | 14:00            | 12:00            | 13:00            | 14:00            |                  |                 | 12:00           |                 |               | 15:00          |
| Vol.          | 17    | 294               | 87             | 4     | 13               | 3                | 12               | 7                | 10               |                  |                 | 1               |                 |               | 415            |

www.TSTData.com

Street: Rt 11 SB Location: Between Confers and Cnty Line

Weather: Clear Counter: 20418

Site Code: 0611088 Station ID: 0611088

| SB         |       |         |        |       |        |        |        |        |        |        |        | LO     | ngitud <del>e</del> . | 0.000 0 | nueimeu |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------------|---------|---------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl                | Not     |         |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi                 | Classe  | Total   |
| 06/14/08   | 1     | 24      | 5      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 2      | 0                     | 0       | 33      |
| 01:00      | 0     | 41      | 10     | 1     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0                     | 0       | 53      |
| 02:00      | 0     | 17      | 5      | 0     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0                     | 0       | 23      |
| 03:00      | 0     | 5       | 3      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0                     | 0       | 9       |
| 04:00      | 0     | 5       | 3      | 0     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0                     | 0       | 9       |
| 05:00      | 0     | 17      | 3      | 1     | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0                     | 0       | 22      |
| 06:00      | 3     | 61      | 12     | 0     | 2      | 1      | 2      | 0      | 1      | 0      | 0      | 0      | 0                     | 0       | 82      |
| 07:00      | 1     | 84      | 22     | 0     | 3      | 1      | 1      | 1      | 1      | 0      | 0      | 0      | 0                     | 0       | 114     |
| 08:00      | 0     | 70      | 34     | 1     | 6      | 0      | 0      | 0      | 3      | 0      | 0      | 0      | 0                     | 0       | 114     |
| 09:00      | 7     | 94      | 28     | 0     | 5      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0                     | 0       | 135     |
| 10:00      | 0     | 109     | 35     | 0     | 2      | 1      | 0      | 1      | 4      | 0      | 0      | 0      | 0                     | 0       | 152     |
| 11:00      | 0     | 123     | 40     | 0     | 5      | 0      | 0      | 1      | 2      | 1      | 0      | 0      | 0                     | 0       | 172     |
| 12 PM      | 4     | 112     | 25     | 0     | 2      | 4      | 0      | 0      | 3      | 0      | 0      | 0      | 0                     | 0       | 150     |
| 13:00      | 3     | 110     | 40     | 2     | 2      | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0                     | 0       | 159     |
| 14:00      | 6     | 127     | 34     | 0     | 4      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0                     | 0       | 172     |
| 15:00      | 4     | 110     | 37     | 0     | 3      | 1      | 0      | 0      | 2      | 0      | 0      | 0      | 0                     | 0       | 157     |
| 16:00      | 2     | 143     | 32     | 2     | 1      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0                     | 0       | 181     |
| 17:00      | 1     | 94      | 31     | 0     | 3      | 0      | 0      | 2      | 1      | 0      | 0      | 0      | 0                     | 0       | 132     |
| 18:00      | 4     | 106     | 29     | 2     | 1      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0                     | ő       | 143     |
| 19:00      | 0     | 85      | 27     | 1     | 1      | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0                     | 0       | 116     |
| 20:00      | 1     | 84      | 19     | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0                     | 0       | 105     |
| 21:00      | 1     | 72      | 11     | 0     | 1      | 0      | 0      | 1      | 2      | 0      | 0      | 0      | 0                     | 0       | 88      |
| 22:00      | 1     | 57      | 5      | 0     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0                     | 0       | 65      |
| 23:00      | 0     | 34      | 2      | 1     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0                     | 0       | 38      |
| Total      | 39    | 1784    | 492    | 11    | 48     | 11     | 3      | 7      | 26     | 1      | 0      | 2      | 0                     | 0       | 2424    |
| Percent    | 1.6%  | 73.6%   | 20.3%  | 0.5%  | 2.0%   | 0.5%   | 0.1%   | 0.3%   | 1.1%   | 0.0%   | 0.0%   | 0.1%   | 0.0%                  | 0.0%    |         |
| AM         | 09:00 | 11:00   | 11:00  | 01:00 | 08:00  | 05:00  | 06:00  | 07:00  | 10:00  | 11:00  |        | 00:00  |                       |         | 11:00   |
| Peak       |       |         |        |       |        |        |        |        |        |        |        |        |                       |         |         |
| Vol.       | 7     | 123     | 40     | 1     | 6      | 1_     | 2      | 1      | 4      | 1      |        | 2      |                       |         | 172     |
| PM<br>Peak | 14:00 | 16:00   | 13:00  | 13:00 | 14:00  | 12:00  |        | 17:00  | 12:00  |        |        |        |                       |         | 16:00   |
| Vol.       | 6     | 143     | 40     | 2     | 4      | 4      |        | 2      | 3      |        |        |        |                       |         | 181     |

www.TSTData.com

Street: Rt 11 SB Location: Between Confers and Cnty Line

Weather: Clear Counter: 20418

Site Code: 0611088 Station ID: 0611088

| SB         |       |         |        |       |        |        |        |        |        |        |        | LO     | ngitude. | 0 0.000 0 | nuemie |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|-----------|--------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not       |        |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe    | Total  |
| 06/15/08   | 0     | 21      | 9      | 0     | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0      | 0        | 0         | 32     |
| 01:00      | 0     | 26      | 9      | 1     | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0        | 0         | 37     |
| 02:00      | 0     | 14      | 1      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0         | 16     |
| 03:00      | 0     | 12      | 2      | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0         | 15     |
| 04:00      | 0     | 6       | 1      | 0     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0         | 8      |
| 05:00      | 0     | 12      | 2      | 0     | 0      | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0         | 16     |
| 06:00      | 1     | 40      | 12     | 0     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0         | 53     |
| 07:00      | 0     | 35      | 9      | 1     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0         | 47     |
| 08:00      | 1     | 51      | 14     | 0     | 5      | 1      | 0      | 1      | 1      | 0      | 0      | 0      | 0        | 0         | 74     |
| 09:00      | 5     | 106     | 27     | 1     | 1      | 1      | 0      | 4      | 2      | 0      | 0      | 0      | 0        | 0         | 147    |
| 10:00      | 0     | 122     | 28     | 1     | 1      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0        | 0         | 154    |
| 11:00      | 12    | 137     | 29     | 0     | 3      | 1      | 0      | 3      | 1      | 0      | 0      | 0      | 0        | 0         | 186    |
| 12 PM      | 8     | 120     | 30     | 2     | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0         | 162    |
| 13:00      | 14    | 148     | 21     | 0     | 4      | 0      | 0      | 3      | 2      | 0      | 0      | 0      | 0        | 0         | 192    |
| 14:00      | 14    | 112     | 29     | 0     | Ö      | 0      | 0      | 2      | 0      | 0      | 0      | 0      | 0        | Ö         | 157    |
| 15:00      | 9     | 122     | 36     | 0     | 5      | 0      | 0      | 3      | 1      | 0      | 0      | 0      | 0        | 0         | 176    |
| 16:00      | 8     | 103     | 27     | 0     | 3      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0         | 143    |
| 17:00      | 10    | 98      | 24     | 1     | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0        | 0         | 134    |
| 18:00      | 11    | 119     | 28     | ó     | 1      | 0      | 0      | 0      | 2      | Ö      | 0      | Ö      | 0        | Ö         | 161    |
| 19:00      | 4     | 89      | 18     | 0     | 1      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0         | 113    |
| 20:00      | 2     | 73      | 9      | 1     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0         | 87     |
| 21:00      | 2     | 63      | 14     | 0     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0         | 80     |
| 22:00      | 2     | 37      | 7      | 0     | 1      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0         | 49     |
| 23:00      | 1     | 28      | 2      | 0     | 2      | 0      | 0      | 1      | 1      | 0      | 0      | 0      | 0        | 0         | 35     |
| Total      | 104   | 1694    | 388    | 8     | 34     | 4      | 0      | 22     | 20     | 0      | 0      | 0      | 0        | 0         | 2274   |
| Percent    | 4.6%  | 74.5%   | 17.1%  | 0.4%  | 1.5%   | 0.2%   | 0.0%   | 1.0%   | 0.9%   | 0.0%   | 0.0%   | 0.0%   | 0.0%     | 0.0%      |        |
| AM         | 11:00 | 11:00   | 11:00  | 01:00 | 08:00  | 05:00  |        | 09:00  | 09:00  |        |        |        |          |           | 11:00  |
| Peak       |       |         |        |       |        |        |        |        |        |        |        |        |          |           |        |
| Vol.       | 12    | 137     | 29     | 1     | 5      | 1      |        | 4      | 2      |        |        |        |          |           | 186    |
| PM<br>Peak | 13:00 | 13:00   | 15:00  | 12:00 | 15:00  |        |        | 13:00  | 13:00  |        |        |        |          |           | 13:00  |
| Vol.       | 14    | 148     | 36     | 2     | 5      |        |        | 3      | 2      |        |        |        |          |           | 192    |

www.TSTData.com

Street: Rt 11 SB Location: Between Confers and Cnty Line

Weather: Clear Counter: 20418

Site Code: 0611088 Station ID: 0611088

Latitude: 0' 0.000 Undefined Longitude: 0' 0.000 Undefined

SB

| SB         |       |         |        |       |        |        |        |        |        |        |        |        | <u> </u> |        |       |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|-------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not    |       |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe | Total |
| 06/16/08   | 0     | 11      | 2      | 0     | 0      | 0      | 0      | 0      | 3      | 0      | 0      | 0      | 0        | 0      | 16    |
| 01:00      | 0     | 7       | 2      | 1     | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 11    |
| 02:00      | 0     | 6       | 2      | 0     | 1      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0      | 11    |
| 03:00      | 0     | 8       | 4      | 0     | 0      | 0      | 0      | 1      | 3      | 0      | 0      | 0      | 0        | 0      | 16    |
| 04:00      | 1     | 20      | 7      | 1     | 3      | 1      | 0      | 0      | 3      | 0      | 0      | 0      | 0        | 0      | 36    |
| 05:00      | 0     | 54      | 20     | 2     | 4      | 1      | 0      | 0      | 7      | 0      | 0      | 0      | 0        | 0      | 88    |
| 06:00      | 4     | 140     | 36     | 4     | 11     | 0      | 1      | 2      | 0      | 0      | 0      | 0      | 0        | 0      | 198   |
| 07:00      | 1     | 123     | 48     | 2     | 15     | 1      | 5      | 2      | 4      | 1      | 0      | 0      | 0        | 0      | 202   |
| 08:00      | 2     | 105     | 25     | 4     | 6      | 0      | 3      | 2      | 7      | 0      | 0      | 0      | 0        | 0      | 154   |
| 09:00      | 1     | 110     | 24     | 6     | 14     | 1      | 4      | 5      | 5      | 0      | 0      | 0      | 0        | 0      | 170   |
| 10:00      | 3     | 91      | 36     | 3     | 8      | 1      | 4      | 4      | 7      | 0      | 0      | 0      | 0        | 0      | 157   |
| 11:00      | 3     | 99      | 30     | 7     | 9      | 2      | 3      | 4      | 10     | 0      | 0      | 1      | 0        | 0      | 168   |
| 12 PM      | 1     | 116     | 31     | 0     | 13     | 1      | 3      | 3      | 11     | 0      | 0      | 1      | 0        | 0      | 180   |
| 13:00      | 1     | 136     | 39     | 4     | 4      | 2      | 2      | 2      | 7      | 0      | 0      | 0      | 1        | 0      | 198   |
| 14:00      | 4     | 151     | 49     | 1     | 11     | 1      | 4      | 3      | 7      | 0      | 0      | 0      | 0        | 0      | 231   |
| 15:00      | 7     | 339     | 110    | 2     | 14     | 0      | 4      | 1      | 8      | 0      | 1      | 0      | 0        | 0      | 486   |
| 16:00      | 1     | 218     | 71     | 4     | 18     | 6      | 1      | 1      | 7      | 0      | 0      | 0      | 0        | 0      | 327   |
| 17:00      | 2     | 161     | 36     | 0     | 5      | 3      | Ó      | 1      | 1      | 0      | 0      | 0      | 0        | 0      | 209   |
| 18:00      | 1     | 103     | 31     | 0     | 4      | 2      | 0      | 1      | 2      | 0      | 0      | 0      | 0        | ő      | 144   |
| 19:00      | 0     | 58      | 17     | 0     | 1      | 1      | 0      | 1      | 2      | 0      | Ō      | Ō      | 0        | Ō      | 80    |
| 20:00      | 0     | 51      | 12     | 0     | 0      | 2      | 0      | 1      | 1      | 0      | 0      | 0      | 0        | 0      | 67    |
| 21:00      | 0     | 51      | 10     | 1     | 1      | 0      | 0      | 0      | 5      | 0      | 0      | 1      | 0        | 0      | 69    |
| 22:00      | 0     | 27      | 12     | 0     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 1      | 0        | 0      | 42    |
| 23:00      | 0     | 46      | 8      | 0     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0      | 55    |
| Total      | 32    | 2231    | 662    | 42    | 143    | 25     | 34     | 34     | 105    | 1      | 1      | 4      | 1        | 0      | 3315  |
| Percent    | 1.0%  | 67.3%   | 20.0%  | 1.3%  | 4.3%   | 0.8%   | 1.0%   | 1.0%   | 3.2%   | 0.0%   | 0.0%   | 0.1%   | 0.0%     | 0.0%   |       |
| AM<br>Peak | 06:00 | 06:00   | 07:00  | 11:00 | 07:00  | 11:00  | 07:00  | 09:00  | 11:00  | 07:00  |        | 11:00  |          |        | 07:00 |
| Vol.       | 4     | 140     | 48     | 7     | 15     | 2      | 5      | 5      | 10     | 1      |        | 1      |          |        | 202   |
| PM<br>Peak | 15:00 | 15:00   | 15:00  | 13:00 | 16:00  | 16:00  | 14:00  | 12:00  | 12:00  |        | 15:00  | 12:00  | 13:00    |        | 15:00 |
| Vol.       | 7     | 339     | 110    | 4     | 18     | 6      | 4      | 3      | 11     |        | 1      | 1      | 1        |        | 486   |
|            |       |         |        |       |        |        |        |        |        |        |        |        |          |        |       |

www.TSTData.com

Street: Rt 11 SB Location: Between Confers and Cnty Line

Weather: Clear Counter: 20418

Site Code: 0611088 Station ID: 0611088

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined

| SB         |       |         |        |       |        |        |        |        |        |        |        | Lo     | ngitude: | 0' 0.000 U | ndefined |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------------|----------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl   | Not        |          |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi    | Classe     | Total    |
| 06/17/08   | 0     | 15      | 2      | 0     | 4      | 0      | 0      | 1      | 4      | 0      | 0      | 1      | 0        | 0          | 27       |
| 01:00      | 0     | 25      | 4      | 1     | 0      | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0        | 0          | 31       |
| 02:00      | 0     | 21      | 2      | 0     | 0      | 0      | 0      | 0      | 4      | 0      | 0      | 0      | 0        | 0          | 27       |
| 03:00      | 0     | 10      | 2      | 0     | 1      | 0      | 0      | 0      | 3      | 0      | 0      | 0      | 0        | 0          | 16       |
| 04:00      | 0     | 13      | 5      | 2     | 0      | 0      | 0      | 0      | 4      | 1      | 0      | 0      | 0        | 0          | 25       |
| 05:00      | 1     | 53      | 23     | 2     | 4      | 2      | 0      | 0      | 3      | 0      | 0      | 0      | 0        | 0          | 88       |
| 06:00      | 0     | 126     | 42     | 1     | 8      | 1      | 0      | 0      | 4      | 0      | 0      | 0      | 0        | 0          | 182      |
| 07:00      | 1     | 133     | 43     | 3     | 12     | 1      | 1      | 2      | 7      | 0      | 0      | 0      | 0        | 0          | 203      |
| 08:00      | 1     | 118     | 40     | 2     | 10     | 3      | 1      | 3      | 4      | 0      | 0      | 0      | 0        | 0          | 182      |
| 09:00      | 1     | 89      | 34     | 7     | 7      | 3      | 0      | 2      | 4      | 0      | 0      | 0      | 0        | 0          | 147      |
| 10:00      | 1     | 128     | 32     | 3     | 14     | 3      | 4      | 7      | 9      | 1      | 0      | 0      | 0        | 0          | 202      |
| 11:00      | 2     | 104     | 44     | 6     | 6      | 5      | 0      | 5      | 10     | 0      | 0      | 1      | 0        | 0          | 183      |
| 12 PM      | 1     | 124     | 37     | 13    | 2      | 0      | 1      | 6      | 15     | 0      | 0      | 0      | 0        | 0          | 199      |
| 13:00      | 1     | 109     | 35     | 0     | 5      | 0      | 0      | 3      | 5      | 0      | 0      | 0      | 0        | 0          | 158      |
| 14:00      | 7     | 172     | 50     | 2     | 11     | 3      | 1      | 2      | 8      | 1      | 0      | 0      | 0        | 0          | 257      |
| 15:00      | 14    | 316     | 116    | 1     | 14     | 2      | 0      | 3      | 5      | 0      | 0      | 0      | 0        | 0          | 471      |
| 16:00      | 6     | 233     | 66     | 4     | 12     | 4      | 1      | 0      | 5      | 0      | 0      | 0      | 0        | 0          | 331      |
| 17:00      | 7     | 153     | 35     | 0     | 4      | 1      | 0      | 3      | 3      | Ö      | 0      | 0      | 0        | 0          | 206      |
| 18:00      | 2     | 124     | 38     | 0     | 2      | 0      | 0      | 0      | 12     | 0      | 0      | 0      | 0        | 0          | 178      |
| 19:00      | 1     | 64      | 18     | 2     | 1      | 1      | 0      | 1      | 5      | 0      | 0      | 0      | 0        | 0          | 93       |
| 20:00      | 4     | 81      | 24     | 0     | 1      | 0      | 0      | 1      | 5      | 0      | 0      | 0      | 0        | 0          | 116      |
| 21:00      | 0     | 66      | 16     | 1     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0        | 0          | 85       |
| 22:00      | 2     | 47      | 12     | 2     | 0      | 0      | 0      | 1      | 5      | 0      | 0      | 0      | 0        | 0          | 69       |
| 23:00      | 1     | 55      | 10     | 0     | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0          | 67       |
| Total      | 53    | 2379    | 730    | 52    | 118    | 30     | 9      | 40     | 127    | 3      | 0      | 2      | 0        | 0          | 3543     |
| Percent    | 1.5%  | 67.1%   | 20.6%  | 1.5%  | 3.3%   | 0.8%   | 0.3%   | 1.1%   | 3.6%   | 0.1%   | 0.0%   | 0.1%   | 0.0%     | 0.0%       |          |
| AM<br>Peak | 11:00 | 07:00   | 11:00  | 09:00 | 10:00  | 11:00  | 10:00  | 10:00  | 11:00  | 04:00  |        | 00:00  |          |            | 07:00    |
| Vol.       | 2     | 133     | 44     | 7     | 14     | 5      | 4      | 7      | 10     | 1      |        | 1      |          |            | 203      |
| PM         | 15:00 | 15:00   | 15:00  | 12:00 | 15:00  | 16:00  | 12:00  | 12:00  | 12:00  | 14:00  |        |        |          |            | 15:00    |
| Peak       |       |         |        |       |        |        |        |        |        |        |        |        |          |            |          |
| Vol.       | 14    | 316     | 116    | 13    | 14     | 4      | 1      | 6      | 15     | 1      |        |        |          |            | 471      |

www.TSTData.com

Street: Rt 11 SB Location: Between Confers and Cnty Line

Weather: Clear Counter: 20418

Site Code: 0611088 Station ID: 0611088

| SB         |       |         |        |       |        |        |        |        |        |        |        | LO     | ngitua <del>e</del> . | 0.000 0 | naeimea |
|------------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------------|---------|---------|
| Start      |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl                | Not     |         |
| Time       | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi                 | Classe  | Total   |
| 06/18/08   | 1     | 13      | 2      | 0     | 0      | 0      | 0      | 0      | 3      | 0      | 0      | 0      | 0                     | 0       | 19      |
| 01:00      | 0     | 27      | 3      | 1     | 0      | 0      | 0      | 0      | 5      | 0      | 0      | 0      | 0                     | 0       | 36      |
| 02:00      | 0     | 13      | 1      | 0     | 0      | 1      | 0      | 0      | 4      | 0      | 0      | 0      | 0                     | 0       | 19      |
| 03:00      | 0     | 13      | 1      | 0     | 1      | 0      | 0      | 1      | 5      | 1      | 0      | 0      | 0                     | 0       | 22      |
| 04:00      | 0     | 18      | 4      | 0     | 3      | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0                     | 0       | 27      |
| 05:00      | 2     | 45      | 30     | 2     | 2      | 2      | 0      | 0      | 2      | 1      | 0      | 0      | 0                     | 0       | 86      |
| 06:00      | 2     | 107     | 38     | 1     | 12     | 0      | 3      | 1      | 0      | 0      | 0      | 0      | 0                     | 0       | 164     |
| 07:00      | 2     | 142     | 52     | 3     | 9      | 0      | 6      | 2      | 7      | 0      | 0      | 0      | 0                     | 0       | 223     |
| 08:00      | 1     | 128     | 33     | 3     | 17     | 3      | 4      | 3      | 3      | 0      | 0      | 0      | 0                     | 0       | 195     |
| 09:00      | 1     | 122     | 38     | 4     | 16     | 1      | 4      | 4      | 5      | 0      | 0      | 0      | 0                     | 0       | 195     |
| 10:00      | 4     | 147     | 36     | 2     | 10     | 2      | 6      | 2      | 5      | 0      | 0      | 1      | 0                     | 0       | 215     |
| 11:00      | 1     | 107     | 41     | 4     | 12     | 6      | 5      | 3      | 9      | 0      | 0      | 1      | 0                     | 0       | 189     |
| 12 PM      | 3     | 123     | 39     | 3     | 6      | 1      | 4      | 5      | 10     | 0      | 0      | 0      | 0                     | 0       | 194     |
| 13:00      | 0     | 139     | 37     | 5     | 9      | 1      | 5      | 8      | 3      | 0      | 0      | 0      | 0                     | 0       | 207     |
| 14:00      | 7     | 149     | 46     | 0     | 9      | 3      | 3      | 2      | 7      | 0      | 0      | 0      | 0                     | 0       | 226     |
| 15:00      | 7     | 355     | 126    | 3     | 19     | 3      | 1      | 1      | 10     | 0      | 0      | 0      | 0                     | 0       | 525     |
| 16:00      | ó     | 237     | 64     | 1     | 10     | 2      | Ó      | 1      | 9      | 0      | 0      | 0      | 0                     | 0       | 324     |
| 17:00      | 4     | 153     | 34     | 0     | 5      | 1      | 0      | 0      | 3      | 0      | 0      | 0      | 0                     | 0       | 200     |
| 18:00      | Ö     | 111     | 42     | Ö     | 2      | Ö      | Ö      | 4      | 3      | Ö      | Ō      | 0      | Ö                     | Ö       | 162     |
| 19:00      | 0     | 78      | 17     | 2     | 2      | 0      | 0      | 0      | 4      | 0      | 0      | 0      | 0                     | 0       | 103     |
| 20:00      | 0     | 74      | 19     | 0     | 2      | 1      | 0      | 2      | 4      | 0      | 0      | 0      | 0                     | 0       | 102     |
| 21:00      | 0     | 54      | 7      | 2     | 3      | 0      | 0      | 1      | 2      | 0      | 0      | 0      | 0                     | 0       | 69      |
| 22:00      | 0     | 43      | 9      | 0     | 2      | 1      | 0      | 0      | 5      | 0      | 0      | 0      | 0                     | 0       | 60      |
| 23:00      | 0     | 47      | 9      | 0     | 2      | 0      | 0      | 1      | 3      | 0      | 0      | 1      | 0                     | 0       | 63      |
| Total      | 35    | 2445    | 728    | 36    | 153    | 29     | 41     | 41     | 112    | 2      | 0      | 3      | 0                     | 0       | 3625    |
| Percent    | 1.0%  | 67.4%   | 20.1%  | 1.0%  | 4.2%   | 0.8%   | 1.1%   | 1.1%   | 3.1%   | 0.1%   | 0.0%   | 0.1%   | 0.0%                  | 0.0%    |         |
| AM         | 10:00 | 10:00   | 07:00  | 09:00 | 08:00  | 11:00  | 07:00  | 09:00  | 11:00  | 03:00  |        | 10:00  |                       |         | 07:00   |
| Peak       |       |         |        |       |        |        |        |        |        |        |        |        |                       |         |         |
| Vol.       | 4     | 147     | 52     | 4     | 17     | 6      | 6      | 4      | 9      | 1      |        | 1      |                       |         | 223     |
| PM<br>Peak | 14:00 | 15:00   | 15:00  | 13:00 | 15:00  | 14:00  | 13:00  | 13:00  | 12:00  |        |        | 23:00  |                       |         | 15:00   |
| Vol.       | 7     | 355     | 126    | 5     | 19     | 3      | 5      | 8      | 10     |        |        | 1      |                       |         | 525     |
|            |       |         |        |       |        |        |        |        |        |        |        |        |                       |         |         |

www.TSTData.com

Street: Rt 11 SB Location: Between Confers and Cnty Line

Weather: Clear Counter: 20418

Site Code: 0611088 Station ID: 0611088

Latitude: 0' 0.000 Undefined

Longitude: 0' 0.000 Undefined

| SB       |       |         |        |       |        |        |        |        |        |        |        | LO     | ngitua <del>e</del> . | 0 0.000 0 | nuennec |
|----------|-------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------------|-----------|---------|
| Start    |       | Cars &  | 2 Axle |       | 2 Axle | 3 Axle | 4 Axle | <5 AxI | 5 Axle | >6 Axl | <6 AxI | 6 Axle | >6 Axl                | Not       |         |
| Time     | Bikes | Trailer | Long   | Buses | 6 Tire | Single | Single | Double | Double | Double | Multi  | Multi  | Multi                 | Classe    | Total   |
| 06/19/08 | 1     | 16      | 2      | 0     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 1      | 0                     | 0         | 22      |
| 01:00    | 0     | 32      | 4      | 1     | 0      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0                     | 0         | 39      |
| 02:00    | 0     | 10      | 1      | 1     | 0      | 1      | 0      | 0      | 7      | 0      | 0      | 0      | 0                     | 0         | 20      |
| 03:00    | 0     | 7       | 0      | 0     | 1      | 0      | 0      | 0      | 3      | 0      | 0      | 0      | 0                     | 0         | 11      |
| 04:00    | 0     | 21      | 5      | 0     | 2<br>5 | 0      | 1      | 0      | 6      | 0      | 0      | 0      | 0                     | 0         | 35      |
| 05:00    | 0     | 50      | 25     | 4     | 5      | 0      | 0      | 0      | 2      | 0      | 0      | 0      | 0                     | 0         | 86      |
| 06:00    | 0     | 111     | 45     | 1     | 8      | 3      | 0      | 1      | 3      | 0      | 0      | 0      | 0                     | 0         | 172     |
| 07:00    | 3     | 131     | 42     | 2     | 8      | 0      | 0      | 1      | 2      | 0      | 0      | 0      | 0                     | 0         | 189     |
| 08:00    | 2     | 123     | 46     | 3     | 8      | 1      | 0      | 3      | 8      | 0      | 0      | 0      | 0                     | 0         | 194     |
| 09:00    | 1     | 100     | 40     | 6     | 17     | 1      | 2      | 2      | 8      | 0      | 0      | 0      | 0                     | 0         | 177     |
| 10:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 11:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 12 PM    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 13:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 14:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 15:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 16:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 17:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 18:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 19:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 20:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 21:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 22:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| 23:00    | *     | *       | *      | *     | *      | *      | *      | *      | *      | *      | *      | *      | *                     | *         | *       |
| Total    | 7     | 601     | 210    | 18    | 49     | 6      | 3      | 7      | 43     | 0      | 0      | 1      | 0                     | 0         | 945     |
| Percent  | 0.7%  | 63.6%   | 22.2%  | 1.9%  | 5.2%   | 0.6%   | 0.3%   | 0.7%   | 4.6%   | 0.0%   | 0.0%   | 0.1%   | 0.0%                  | 0.0%      |         |
| AM       | 07:00 | 07:00   | 08:00  | 09:00 | 09:00  | 06:00  | 09:00  | 08:00  | 08:00  |        |        | 00:00  |                       |           | 08:00   |
| Peak     |       |         |        |       |        |        |        |        |        |        |        |        |                       |           |         |
| Vol.     | 3     | 131     | 46     | 6     | 17     | 3      | 2      | 3      | 8      |        |        | 1      |                       |           | 194     |
| _PM      |       |         |        |       |        |        |        |        |        |        |        |        |                       |           |         |
| Peak     |       |         |        |       |        |        |        |        |        |        |        |        |                       |           |         |
| Vol.     |       |         |        |       |        |        |        |        |        |        |        |        |                       |           |         |
| Grand    | 507   | 16691   | 4901   | 259   | 868    | 164    | 249    | 218    | 626    | 12     | 1      | 20     | 2                     | 0         | 24518   |
| Total    |       |         |        |       |        |        |        |        |        |        |        |        |                       |           |         |
| Percent  | 2.1%  | 68.1%   | 20.0%  | 1.1%  | 3.5%   | 0.7%   | 1.0%   | 0.9%   | 2.6%   | 0.0%   | 0.0%   | 0.1%   | 0.0%                  | 0.0%      |         |

www.TSTData.com

Location: Columbia County, PA Intersection: US 11 / Orange St. Date:Thursday; June 12, 2008

Counter: JI

File Name: SM0612-4A Site Code : 00000000 Start Date : 6/12/2008

| Grouns I | Printad_ | Care - | Hagyy | Vahielas |
|----------|----------|--------|-------|----------|

|                      |          | Dŕ           | 11 / R          | t 03   |            |                                        |            | oco Sta       |        | i- Cars    | - 11cav | y ven        | Rt 11  | l    |            |       | D+ 03      | Oran        | ura St |            | Ī                 |
|----------------------|----------|--------------|-----------------|--------|------------|----------------------------------------|------------|---------------|--------|------------|---------|--------------|--------|------|------------|-------|------------|-------------|--------|------------|-------------------|
|                      |          |              | 11/ K<br>uthbou |        |            |                                        |            | estbou        |        |            |         | No           | rthboi |      |            |       |            | astbou      | 9      |            |                   |
| Start Time           | Right    | Thru         | Left            | Peds   |            | Right                                  | Thru       | Left          | Peds   |            | Right   | Thru         | Left   | Peds |            | Right | Thru       | Left        |        |            |                   |
| 06:00 AM             | Right 8  | 70           | 0               | Peas 0 | App. Total | Right                                  | 1 mru<br>0 | 0             | Peas   | App. Total | Right 2 | 1 mru<br>89  | 0      | Peas | App. Total | Right | 1 mru<br>0 | 11          | Peas   | App. Total | Int. Total        |
| 06:00 AM<br>06:15 AM | 10       | 90           | 1               | 0      | 101        | 0                                      | 0          | 0             | 0      | 0          | 2       | 86           | 0      | 0    | 88         | 0     | 1          | 14          | 0      | 15         | 204               |
|                      |          | 117          | 0               | 0      |            |                                        | 0          | 0             | 0      |            |         | 109          | 0      | 0    |            |       |            |             | 0      |            |                   |
| 06:30 AM             | 9        |              |                 | 0      | 126        | 1 3                                    |            | 2             | 0      | 1          | 4       | 78           | _      | 0    | 113        | 0     | 0          | 18          | 0      | 18         | 258               |
| 06:45 AM             | 14<br>41 | 88           | 3 4             | 0      | 105        | 4                                      | 0          | $\frac{2}{2}$ | 0      | <u>5</u>   | 11      | 362          | 0      | 0    | 81<br>373  | 0     | 3          | 18          | 0      | 20         | 211               |
| Total                | 41       | 365          | 4               | U      | 410        | 4                                      | U          | 2             | U      | 0          | 11      | 302          | U      | U    | 3/3        | U     | 3          | 61          | U      | 64         | 853               |
| 07:00 AM             | 10       | 98           | 0               | 0      | 117        |                                        | 0          | 0             | 0      | 0          |         | 77           | 0      | 0    | 80         | ١ ،   | 0          | 1.0         | 0      | 1.0        | 212               |
| 07:00 AM<br>07:15 AM | 19<br>15 | 103          | 0               | 0      | 117<br>118 | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ | $0 \\ 0$   | $0 \\ 1$      | 0      | 0          | 3       | 77<br>98     | 0      | 0    | 99         | 0     | 0 2        | 16<br>28    | 0      | 16<br>30   | 213<br>249        |
|                      |          |              |                 | -      |            |                                        |            |               |        | 2          |         |              |        | _    |            |       |            |             | -      |            |                   |
| 07:30 AM             | 15       | 148          | 1               | 0      | 164        | 0                                      | 2          | 0 2           | 0<br>0 | 2 2        | 2       | 83           | 0      | 0    | 85         | 0     | 1<br>0     | 18          | 0      | 19         | 270               |
| 07:45 AM             | 27       | 164          | 0               | 0      | 191        | 0                                      | 0<br>2     | 3             | 0      |            | 7       | 91<br>349    | 0      | 0    | 92         |       |            | 12          | 0      | 12         | 297               |
| Total                | 76       | 513          | 1               | 0      | 590        | 1                                      | 2          | 3             | U      | 6          | /       | 349          | 0      | 0    | 356        | 0     | 3          | 74          | 0      | 77         | 1029              |
| 00.00 434            | 1.0      | 100          | 0               | 0      | 10.4       |                                        | 0          | 0             | 0      | 0          |         | 100          | 0      | 0    | 110        | 0     | 0          | 1.0         | 0      | 10         | 252               |
| 08:00 AM             | 16       | 108          | 0               | 0      | 124        | 0                                      | _          | 0             | 0      | 0          | 2       | 108          | 0      | 0    | 110        | _     | 0          | 18          | 0      | 18         | 252               |
| 08:15 AM             | 20       | 131          | 2               | 0      | 153        | 1                                      | 0          | 1             | 0      | 2          | 1       | 111          | 0      | 0    | 112        | 0     | 1          | 28          | 0      | 29         | 296               |
| 08:30 AM             | 20       | 116          | 0               | 0      | 136        | 1                                      | 1          | 0             | 0      | 2          | 2       | 105          | 0      | 2    | 109        | 1     | 3          | 20          | 1      | 25         | 272               |
| 08:45 AM_            | 31       | 109          | 2               | 0      | 142        | 2                                      | 0          | 1             | 0      | 3          | 3       | 121          | 0      | 0    | 124        | 0     | 2          | 20          | 0      | 22         | 291               |
| Total                | 87       | 464          | 4               | 0      | 555        | 4                                      | 1          | 2             | 0      | 7          | 8       | 445          | 0      | 2    | 455        | 1     | 6          | 86          | 1      | 94         | 1111              |
|                      |          |              |                 |        |            |                                        |            |               |        |            |         |              |        |      |            |       |            |             |        |            |                   |
|                      |          |              |                 |        |            |                                        |            |               |        |            |         |              |        |      |            |       |            |             |        |            |                   |
| 02:30 PM             | 41       | 166          | 0               | 0      | 207        | 0                                      | 1          | 0             | 0      | 1          |         | 160          | 0      | 0    | 162        | 0     | 1          | 20          | 0      | 30         | 400               |
|                      | 41       | 166          | 0 2             | 0      | 207        | 0                                      | 1<br>0     | 0<br>1        |        | 1          | 0 3     | 162          | 0      | 0    |            |       | 1<br>1     | 29          |        | 30         |                   |
| 02:45 PM             | 43<br>84 | 137<br>303   | 2               | 0      | 182<br>389 | 1 1                                    | 1          | 1             | 0      | 3          | 3       | 151<br>313   | 0      | 0    | 154<br>316 | 1 1   | 2          | 28<br>57    | 0      | 60         | <u>368</u><br>768 |
| Total                | 04       | 303          | 2               | U      | 369        | 1                                      | 1          | 1             | U      | 3          | ) 3     | 313          | U      | U    | 310        | 1     | 2          | 37          | U      | 00         | /00               |
| 03:00 PM             | 52       | 204          | 3               | 0      | 259        | 1                                      | 0          | 2             | 0      | 3          | 4       | 178          | 0      | 0    | 182        | 0     | 0          | 22          | 0      | 22         | 466               |
| 03:00 FM<br>03:15 PM | 52       | 200          | 0               | 0      | 259        | 0                                      | 0          | 0             | 0      | 0          | 2       | 176          | 0      | 2    | 180        | 0     | 1          | 37          | 0      | 38         | 470               |
| 03:13 PM<br>03:30 PM | 73       | 180          | 0               | 0      | 252        | 0                                      | 0          | 0             | 0      | 0          | 1       | 185          | 0      | 0    | 186        | 0     | 1          | 34          | 0      | 35         | 474               |
| 03:45 PM             | 49       | 168          | 0               | 0      | 233        | 5                                      | 0          | 0             | 0      | 5          | 7       | 190          | 0      | 0    | 197        | 0     | 0          | 43          | 0      | 43         | 462               |
| Total                | 226      | 752          | 3               | 0      | 981        | 6                                      | 0          | 2             | 0      | 8          | 14      | 729          | 0      | 2    | 745        | 0     | 2          | 136         | 0      | 138        | 1872              |
| 10141                | 220      | 132          | 3               | U      | 901        | 0                                      | U          | 2             | U      | 0          | 14      | 129          | U      | 2    | 743        | ı U   | 2          | 130         | υ      | 136        | 10/2              |
| 04:00 PM             | 67       | 173          | 1               | 0      | 241        | 3                                      | 0          | 0             | 0      | 3          | 7       | 183          | 0      | 0    | 190        | 1     | 1          | 29          | 0      | 31         | 465               |
| 04:00 FM<br>04:15 PM | 59       | 184          | 1               | 0      | 244        | 0                                      | 0          | 1             | 0      | 1          | 2       | 160          | 0      | 0    | 162        | 0     | 1          | 48          | 1      | 50         | 457               |
| 04.13 FM<br>04:30 PM | 66       | 214          | 0               | 0      | 280        | 0                                      | 0          | 0             | 0      | 0          | 1       | 214          | 0      | 3    | 218        | 0     | 0          | 40          | 0      | 40         | 538               |
| 04:45 PM             | 54       | 174          | 0               | 0      | 228        | 1                                      | 0          | 1             | 0      | 2          | 5       | 177          | 0      | 0    | 182        | 0     | 0          | 31          | 0      | 31         | 443               |
| Total                | 246      | 745          | 2               | 0      | 993        | 4                                      | 0          | 2             | 0      | 6          | 15      | 734          | 0      | 3    | 752        | 1     | 2          | 148         | 1      | 152        | 1903              |
| 10141                | 240      | 743          | 2               | U      | 993        | 1 4                                    | U          | 2             | U      | U          | 13      | 134          | U      | 3    | 132        | 1     | 2          | 140         | 1      | 132        | 1703              |
| 05:00 PM             | 64       | 166          | 1               | 0      | 231        | 0                                      | 0          | 0             | 0      | 0          | 5       | 215          | 0      | 0    | 220        | 0     | 0          | 33          | 0      | 33         | 484               |
| 05:00 FM<br>05:15 PM | 47       | 162          | 0               | 0      | 209        | 2                                      | 0          | 0             | 0      | 2          | 0       | 169          | 0      | 0    | 169        | 0     | 0          | 33<br>47    | 0      | 33<br>47   | 427               |
| 05:30 PM             | 42       | 164          | 0               | 0      | 209        | 0                                      | 0          | 0             | 0      | 0          | 0       | 163          | 0      | 0    | 163        | 0     | 0          | 42          | 0      | 42         | 411               |
| 05.30 FM<br>05:45 PM | 39       | 154          | 0               | 0      | 193        | 1                                      | 0          | 1             | 0      | 2          | 0       | 155          | 0      | 0    | 155        | 0     | υ<br>1     | 39          | 0      | 40         | 390               |
| Total                | 192      | 646          | 1               | 0      | 839        | 3                                      | 0          | 1             | 0      | 4          | 5       | 702          | 0      | 0    | 707        | 0     | 1          | 161         | 0      | 162        | 1712              |
| 10111                | 192      | 040          | 1               | U      | 639        | 3                                      | U          | 1             | U      | 4          | ) 3     | 702          | U      | U    | /0/        | U     | 1          | 101         | U      | 102        | 1/12              |
| Grand Total          | 952      | 3788         | 17              | 0      | 4757       | 23                                     | 4          | 13            | 0      | 40         | 63      | 3634         | 0      | 7    | 3704       | 3     | 19         | 723         | 2      | 747        | 9248              |
|                      | 20       | 3788<br>79.6 | 0.4             | 0      | +/3/       | 57.5                                   | 10         | 32.5          | 0      | 40         | 1.7     | 98.1         | 0      | 0.2  | 3/04       | 0.4   | 2.5        | 96.8        | 0.3    | /4/        | 9240              |
| Apprch %             | 10.3     |              |                 | 0      | 51 A       | 0.2                                    | 0          | 32.5<br>0.1   | 0      | 0.4        | 0.7     | 39.3         | 0      | 0.2  | 40.1       | 0.4   | 0.2        | 96.8<br>7.8 | 0.5    | 0 1        |                   |
| Total %<br>Cars      | 939      | 41           | 0.2             | U      | 51.4       | U.Z                                    | U          | U. 1          | U      | 0.4        | U. /    |              | U      | 0.1  | 40.1       | U     | 0.2        | 7.8         | U      | 8.1        |                   |
| % Cars               | 98.6     | 3682<br>97.2 | 100             | 0      | 97.5       | 100                                    | 100        | 100           | 0      | 100        | 100     | 3520<br>96.9 | 0      | 100  | 96.9       | 100   | 100        | 98.9        | 100    | 98.9       | 97.4              |
|                      | 98.0     | 91.2         | 100             | U      | 91.3       | 100                                    | 100        | 100           | U      | 100        | 100     | 90.9         | U      | 100  | 90.9       | 100   | 100        | 98.9        | 100    | 90.9       | 97.4              |
| Heavy Vehicles       | 1.4      | 2.8          | 0               | 0      | 2.5        | 0                                      | 0          | 0             | 0      | 0          | 0       | 3.1          | 0      | 0    | 3.1        | 0     | 0          | 1.1         | 0      | 1.1        | 2.6               |
| % Heavy Vehicles     | 1.4      | 4.0          | U               | U      | 2.5        | ı U                                    | υ          | υ             | U      | U          | 0       | J.1          | U      | υ    | J.1        | U     | υ          | 1.1         | U      | 1.1        | 2.0               |

610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 / Orange St. Date:Thursday; June 12, 2008

Counter: JI

File Name : SM0612-4A Site Code : 00000000 Start Date : 6/12/2008



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 / Orange St. Date:Thursday; June 12, 2008

Counter: JI

File Name : SM0612-4A Site Code : 00000000 Start Date : 6/12/2008

|                  |        | Df       | 11 / R   | + 03     |            |       | Suna     | co Sta | tion |            |       |      | Rt 11  |      |            |       | D+ 03 | Orar   | ige St. |            | Ī          |
|------------------|--------|----------|----------|----------|------------|-------|----------|--------|------|------------|-------|------|--------|------|------------|-------|-------|--------|---------|------------|------------|
|                  |        |          | uthbov   |          |            |       |          | estbou |      |            |       | No   | rthboi |      |            |       |       | astbou | 0       |            |            |
| G                |        |          |          |          |            |       |          |        |      |            |       |      |        |      |            |       |       |        |         |            |            |
| Start Time       | Right  | Thru     | Left     | Peds     | App. Total | Right | Thru     | Left   | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Right | Thru  | Left   | Peds    | App. Total | Int. Total |
| Peak Hour Ar     | _      |          |          |          |            |       | к 1 of 1 |        |      |            |       |      |        |      |            |       |       |        |         |            |            |
| Peak Hour for    | Entire | e Inters | ection l | Begins . | at 07:45   | AM    |          |        |      |            |       |      |        |      |            |       |       |        |         |            |            |
| 07:45 AM         | 27     | 164      | 0        | 0        | 191        | 0     | 0        | 2      | 0    | 2          | 1     | 91   | 0      | 0    | 92         | 0     | 0     | 12     | 0       | 12         | 297        |
| 08:00 AM         | 16     | 108      | 0        | 0        | 124        | 0     | 0        | 0      | 0    | 0          | 2     | 108  | 0      | 0    | 110        | 0     | 0     | 18     | 0       | 18         | 252        |
| 08:15 AM         | 20     | 131      | 2        | 0        | 153        | 1     | 0        | 1      | 0    | 2          | 1     | 111  | 0      | 0    | 112        | 0     | 1     | 28     | 0       | 29         | 296        |
| _08:30 AM        | 20     | 116      | 0        | 0        | 136        | 1     | 1        | 0      | 0    | 2          | 2     | 105  | 0      | 2    | 109        | 1     | 3     | 20     | 1       | 25         | 272        |
| Total Volume     | 83     | 519      | 2        | 0        | 604        | 2     | 1        | 3      | 0    | 6          | 6     | 415  | 0      | 2    | 423        | 1     | 4     | 78     | 1       | 84         | 1117       |
| % App. Total     | 13.7   | 85.9     | 0.3      | 0        |            | 33.3  | 16.7     | 50     | 0    |            | 1.4   | 98.1 | 0      | 0.5  |            | 1.2   | 4.8   | 92.9   | 1.2     |            |            |
| PHF              | .769   | .791     | .250     | .000     | .791       | .500  | .250     | .375   | .000 | .750       | .750  | .935 | .000   | .250 | .944       | .250  | .333  | .696   | .250    | .724       | .940       |
| Cars             | 80     | 498      | 2        | 0        | 580        | 2     | 1        | 3      | 0    | 6          | 6     | 386  | 0      | 2    | 394        | 1     | 4     | 76     | 1       | 82         | 1062       |
| % Cars           | 96.4   | 96.0     | 100      | 0        | 96.0       | 100   | 100      | 100    | 0    | 100        | 100   | 93.0 | 0      | 100  | 93.1       | 100   | 100   | 97.4   | 100     | 97.6       | 95.1       |
| Heavy Vehicles   |        |          |          |          |            |       |          |        |      |            |       |      |        |      |            |       |       |        |         |            |            |
| % Heavy Vehicles | 3.6    | 4.0      | 0        | 0        | 4.0        | 0     | 0        | 0      | 0    | 0          | 0     | 7.0  | 0      | 0    | 6.9        | 0     | 0     | 2.6    | 0       | 2.4        | 4.9        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11 / Orange St. Date:Thursday; June 12, 2008

Counter: JI

File Name: SM0612-4A
Site Code: 00000000
Start Date: 6/12/2008

|                                                            | Rt 11 / Rt 93<br>Southbound |      |      |      | Sunoco Station<br>Westbound |       |      |      | Rt 11<br>Northbound |            |       |      | Rt 93 Orange St. |      |            |       |      |      |      |            |            |
|------------------------------------------------------------|-----------------------------|------|------|------|-----------------------------|-------|------|------|---------------------|------------|-------|------|------------------|------|------------|-------|------|------|------|------------|------------|
|                                                            |                             |      |      |      |                             |       |      |      |                     |            |       |      | Eastbound        |      |            |       |      |      |      |            |            |
| Start Time                                                 | Right                       | Thru | Left | Peds | App. Total                  | Right | Thru | Left | Peds                | App. Total | Right | Thru | Left             | Peds | App. Total | Right | Thru | Left | Peds | App. Total | Int. Total |
| Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1 |                             |      |      |      |                             |       |      |      |                     |            |       |      |                  |      |            |       |      |      |      |            |            |
| Peak Hour for Entire Intersection Begins at 03:45 PM       |                             |      |      |      |                             |       |      |      |                     |            |       |      |                  |      |            |       |      |      |      |            |            |
| 03:45 PM                                                   | 49                          | 168  | 0    | 0    | 217                         | 5     | 0    | 0    | 0                   | 5          | 7     | 190  | 0                | 0    | 197        | 0     | 0    | 43   | 0    | 43         | 462        |
| 04:00 PM                                                   | 67                          | 173  | 1    | 0    | 241                         | 3     | 0    | 0    | 0                   | 3          | 7     | 183  | 0                | 0    | 190        | 1     | 1    | 29   | 0    | 31         | 465        |
| 04:15 PM                                                   | 59                          | 184  | 1    | 0    | 244                         | 0     | 0    | 1    | 0                   | 1          | 2     | 160  | 0                | 0    | 162        | 0     | 1    | 48   | 1    | 50         | 457        |
| _04:30 PM                                                  | 66                          | 214  | 0    | 0    | 280                         | 0     | 0    | 0    | 0                   | 0          | 1     | 214  | 0                | 3    | 218        | 0     | 0    | 40   | 0    | 40         | 538        |
| Total Volume                                               | 241                         | 739  | 2    | 0    | 982                         | 8     | 0    | 1    | 0                   | 9          | 17    | 747  | 0                | 3    | 767        | 1     | 2    | 160  | 1    | 164        | 1922       |
| % App. Total                                               | 24.5                        | 75.3 | 0.2  | 0    |                             | 88.9  | 0    | 11.1 | 0                   |            | 2.2   | 97.4 | 0                | 0.4  |            | 0.6   | 1.2  | 97.6 | 0.6  |            |            |
| PHF                                                        | .899                        | .863 | .500 | .000 | .877                        | .400  | .000 | .250 | .000                | .450       | .607  | .873 | .000             | .250 | .880       | .250  | .500 | .833 | .250 | .820       | .893       |
| Cars                                                       | 238                         | 721  | 2    | 0    | 961                         | 8     | 0    | 1    | 0                   | 9          | 17    | 730  | 0                | 3    | 750        | 1     | 2    | 158  | 1    | 162        | 1882       |
| % Cars                                                     | 98.8                        | 97.6 | 100  | 0    | 97.9                        | 100   | 0    | 100  | 0                   | 100        | 100   | 97.7 | 0                | 100  | 97.8       | 100   | 100  | 98.8 | 100  | 98.8       | 97.9       |
| Heavy Vehicles                                             |                             |      |      |      |                             |       |      |      |                     |            |       |      |                  |      |            |       |      |      |      |            |            |
| % Heavy Vehicles                                           | 1.2                         | 2.4  | 0    | 0    | 2.1                         | 0     | 0    | 0    | 0                   | 0          | 0     | 2.3  | 0                | 0    | 2.2        | 0     | 0    | 1.3  | 0    | 1.2        | 2.1        |



610-466-1469 www.TSTData.com

Location: Columbia County,PA Intersection: Ida St/US 11

Date: Thursday, June 12,2008

Counter: CMK

File Name: SM0612-4B Site Code : 00000000

Start Date : 6/12/2008

|                  |      |             |          | Gr          | oups Printed | d- Cars - H | eavy Vel  | nicles      |            |          |                                          |            |             |
|------------------|------|-------------|----------|-------------|--------------|-------------|-----------|-------------|------------|----------|------------------------------------------|------------|-------------|
|                  |      | US          | 11       |             | •            | IDA         | ST        |             |            | US       |                                          |            |             |
|                  |      | Southb      | ound     |             |              | Westb       | ound      |             |            | North    | ound                                     |            |             |
| Start Time       | Thru | Left        | Peds     | App. Total  | Right        | Left        | Peds      | App. Total  | Right      | Thru     | Peds                                     | App. Total | Int. Total  |
| 06:00 AM         | 0    | 1           | 0        | 1           | 8            | 2           | 0         | 10          | 1          | 0        | 0                                        | 1          | 12          |
| 06:15 AM         | 0    | 0           | 0        | 0           | 8            | 2           | 2         | 12          | 0          | 0        | 0                                        | 0          | 12          |
| 06:30 AM         | 0    | 6           | 0        | 6           | 4            | 0           | 0         | 4           | 3          | 0        | 0                                        | 3          | 13          |
| 06:45 AM         | 0    | 1           | 0        | 1           | 5            | 3           | 1         | 9           | 0          | 0        | 0                                        | 0          | 10          |
| Total            | 0    | 8           | 0        | 8           | 25           | 7           | 3         | 35          | 4          | 0        | 0                                        | 4          | 47          |
| 07:00 AM         | 0    | 2           | 0        | 2           | 1            | 1           | 0         | 2           | 3          | 0        | 0                                        | 3          | 7           |
| 07:15 AM         | 0    | 2           | 0        | 2           | 3            | 0           | 2         | 5           | 1          | 0        | 0                                        | 1          | 8           |
| 07:30 AM         | 0    | 6           | 0        | 6           | 7            | 1           | 2         | 10          | 3          | 0        | 0                                        | 3          | 19          |
| 07:45 AM         | 0    | 3           | 0        | 3           | 4            | 0           | 3         | 7           | 1          | 0        | 0                                        | 1          | 11_         |
| Total            | 0    | 13          | 0        | 13          | 15           | 2           | 7         | 24          | 8          | 0        | 0                                        | 8          | 45          |
| 08:00 AM         | 0    | 4           | 0        | 4           | 4            | 2           | 3         | 9           | 3          | 0        | 0                                        | 3          | 16          |
| 08:15 AM         | 0    | 4           | 0        | 4           | 4            | 0           | 4         | 8           | 2          | 0        | 0                                        | 2          | 14          |
| 08:30 AM         | 0    | 0           | 0        | 0           | 3            | 2           | 3         | 8           | 2          | 0        | 1                                        | 3          | 11          |
| 08:45 AM         | 0    | 7           | 0        | 7           | 7            | 1           | 2         | 10          | 4          | 0        | 0                                        | 4          | 21_         |
| Total            | 0    | 15          | 0        | 15          | 18           | 5           | 12        | 35          | 11         | 0        | 1                                        | 12         | 62          |
| *** BREAK ***    |      |             |          |             |              |             |           |             |            |          |                                          |            |             |
| 02:30 PM         | 0    | 3           | 0        | 3           | 3            | 0           | 8         | 11          | 3          | 0        | 0                                        | 3          | 17          |
| 02:45 PM         | 0    | 11          | 1        | 12          | 8            | 1           | 3         | 12          | 5          | 0        | 0                                        | 5          | 29          |
| Total            | 0    | 14          | 1        | 15          | 11           | 1           | 11        | 23          | 8          | 0        | 0                                        | 8          | 46          |
| 03:00 PM         | 0    | 12          | 1        | 13          | 5            | 6           | 2         | 13          | 5          | 0        | 4                                        | 9          | 35          |
| 03:15 PM         | 0    | 6           | 0        | 6           | 11           | 0           | 4         | 15          | 8          | 0        | 1                                        | 9          | 30          |
| 03:30 PM         | 0    | 10          | 0        | 10          | 7            | 0           | 6         | 13          | 4          | 0        | 0                                        | 4          | 27          |
| 03:45 PM         | 0    | 6           | 0        | 6           | 8            | 1           | 2         | 11          | 5          | 0        | 0                                        | 5          | 22_         |
| Total            | 0    | 34          | 1        | 35          | 31           | 7           | 14        | 52          | 22         | 0        | 5                                        | 27         | 114         |
| 04:00 PM         | 0    | 9           | 0        | 9           | 12           | 4           | 4         | 20          | 6          | 0        | 2                                        | 8          | 37          |
| 04:15 PM         | 0    | 9           | 0        | 9           | 7            | 1           | 2         | 10          | 2          | 0        | 2                                        | 4          | 23          |
| 04:30 PM         | 0    | 7           | 3        | 10          | 3            | 1           | 5         | 9           | 9          | 0        | 0                                        | 9          | 28          |
| 04:45 PM         | 0    | 2           | 1        | 3           | 4            | 1           | 5         | 10          | 7          | 0        | 4                                        | 11         | 24          |
| Total            | 0    | 27          | 4        | 31          | 26           | 7           | 16        | 49          | 24         | 0        | 8                                        | 32         | 112         |
| 05:00 PM         | 0    | 3           | 0        | 3           | 7            | 1           | 5         | 13          | 3          | 0        | 0                                        | 3          | 19          |
| 05:15 PM         | 0    | 9           | 2        | 11          | 5            | 1           | 8         | 14          | 6          | 0        | 0                                        | 6          | 31          |
| Grand Total      | 0    | 123         | 8        | 131         | 138          | 31          | 76        | 245         | 86         | 0        | 14                                       | 100        | 476         |
| Appreh %         | 0    | 93.9        | 6.1      | 25.5        | 56.3         | 12.7        | 31        |             | 86         | 0        | 14                                       | ~.         |             |
| Total %          | 0    | 25.8        | 1.7      | 27.5        | 29           | 6.5         | 16        | 51.5        | 18.1       | 0        | 2.9                                      | 21         |             |
| Cars<br>% Cars   | 0    | 121<br>98.4 | 8<br>100 | 129<br>98.5 | 136<br>98.6  | 30<br>96.8  | 76<br>100 | 242<br>98.8 | 82<br>95.3 | $0 \\ 0$ | $\begin{array}{c} 14 \\ 100 \end{array}$ | 96<br>96   | 467<br>98.1 |
| Heavy Vehicles   | 0    | 2           | 0        | 2           | 2            | 1           | 0         | 3           | 4          | 0        | 0                                        | 4          | 9           |
| % Heavy Vehicles | 0    | 1.6         | 0        | 1.5         | 1.4          | 3.2         | 0         | 1.2         | 4.7        | 0        | 0                                        | 4          | 1.9         |

610-466-1469 www.TSTData.com

Location: Columbia County,PA Intersection: Ida St/US 11 Date: Thursday, June 12,2008

Counter: CMK

File Name : SM0612-4B Site Code : 00000000 Start Date : 6/12/2008



610-466-1469 www.TSTData.com

Location: Columbia County,PA Intersection: Ida St/US 11

Date: Thursday, June 12,2008

Counter: CMK

File Name: SM0612-4B Site Code : 00000000 Start Date : 6/12/2008

|                      |                     |             |           | IDA        | CT    |       |      |            |       |      |      |            |            |
|----------------------|---------------------|-------------|-----------|------------|-------|-------|------|------------|-------|------|------|------------|------------|
|                      | US 11<br>Southbound |             |           |            |       |       |      |            |       |      |      |            |            |
|                      |                     |             |           |            |       | Westb | ouna |            |       |      |      |            |            |
| Start Time           | Thru                | Left        | Peds      | App. Total | Right | Left  | Peds | App. Total | Right | Thru | Peds | App. Total | Int. Total |
| Peak Hour Analysis F | rom 06:00 A         | AM to 11:4: | 5 AM - Pe | eak 1 of 1 |       |       |      |            |       |      |      |            |            |
| Peak Hour for Entire | Intersection        | Begins at 0 | 8:00 AM   |            |       |       |      |            |       |      |      |            |            |
| 08:00 AM             | 0                   | 4           | 0         | 4          | 4     | 2     | 3    | 9          | 3     | 0    | 0    | 3          | 16         |
| 08:15 AM             | 0                   | 4           | 0         | 4          | 4     | 0     | 4    | 8          | 2     | 0    | 0    | 2          | 14         |
| 08:30 AM             | 0                   | 0           | 0         | 0          | 3     | 2     | 3    | 8          | 2     | 0    | 1    | 3          | 11         |
| 08:45 AM             | 0                   | 7           | 0         | 7          | 7     | 1     | 2    | 10         | 4     | 0    | 0    | 4          | 21_        |
| Total Volume         | 0                   | 15          | 0         | 15         | 18    | 5     | 12   | 35         | 11    | 0    | 1    | 12         | 62         |
| % App. Total         | 0                   | 100         | 0         |            | 51.4  | 14.3  | 34.3 |            | 91.7  | 0    | 8.3  |            |            |
| PHF                  | .000                | .536        | .000      | .536       | .643  | .625  | .750 | .875       | .688  | .000 | .250 | .750       | .738_      |
| Cars                 | 0                   | 15          | 0         | 15         | 18    | 5     | 12   | 35         | 10    | 0    | 1    | 11         | 61         |
| % Cars               | 0                   | 100         | 0         | 100        | 100   | 100   | 100  | 100        | 90.9  | 0    | 100  | 91.7       | 98.4       |
| Heavy Vehicles       | 0                   | 0           | 0         | 0          | 0     | 0     | 0    | 0          | 1     | 0    | 0    | 1          | 1          |
| % Heavy Vehicles     | 0                   | 0           | 0         | 0          | 0     | 0     | 0    | 0          | 9.1   | 0    | 0    | 8.3        | 1.6        |



610-466-1469 www.TSTData.com

Location: Columbia County,PA Intersection: Ida St/US 11

Date: Thursday, June 12,2008

Counter: CMK

File Name : SM0612-4B Site Code : 00000000 Start Date : 6/12/2008

|                      |              | US<br>Southb |             |            |       | IDA<br>Westb |      |            |       |      |      |            |            |
|----------------------|--------------|--------------|-------------|------------|-------|--------------|------|------------|-------|------|------|------------|------------|
| Start Time           | Thru         | Left         | Peds 1      | App. Total | Right | Left         | Peds | App. Total | Right | Thru | Peds | App. Total | Int. Total |
| Peak Hour Analysis F | rom 12:00 F  | M to 05:1:   | 5 PM - Peal | k 1 of 1   |       |              |      |            | _     |      |      |            |            |
| Peak Hour for Entire | Intersection | Begins at (  | )2:45 PM    |            |       |              |      |            |       |      |      |            |            |
| 02:45 PM             | 0            | 11           | 1           | 12         | 8     | 1            | 3    | 12         | 5     | 0    | 0    | 5          | 29         |
| 03:00 PM             | 0            | 12           | 1           | 13         | 5     | 6            | 2    | 13         | 5     | 0    | 4    | 9          | 35         |
| 03:15 PM             | 0            | 6            | 0           | 6          | 11    | 0            | 4    | 15         | 8     | 0    | 1    | 9          | 30         |
| 03:30 PM             | 0            | 10           | 0           | 10         | 7     | 0            | 6    | 13         | 4     | 0    | 0    | 4          | 27         |
| Total Volume         | 0            | 39           | 2           | 41         | 31    | 7            | 15   | 53         | 22    | 0    | 5    | 27         | 121        |
| % App. Total         | 0            | 95.1         | 4.9         |            | 58.5  | 13.2         | 28.3 |            | 81.5  | 0    | 18.5 |            |            |
| PHF                  | .000         | .813         | .500        | .788       | .705  | .292         | .625 | .883       | .688  | .000 | .313 | .750       | .864       |
| Cars                 | 0            | 39           | 2           | 41         | 31    | 7            | 15   | 53         | 21    | 0    | 5    | 26         | 120        |
| % Cars               | 0            | 100          | 100         | 100        | 100   | 100          | 100  | 100        | 95.5  | 0    | 100  | 96.3       | 99.2       |
| Heavy Vehicles       | 0            | 0            | 0           | 0          | 0     | 0            | 0    | 0          | 1     | 0    | 0    | 1          | 1          |
| % Heavy Vehicles     | 0            | 0            | 0           | 0          | 0     | 0            | 0    | 0          | 4.5   | 0    | 0    | 3.7        | 0.8        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/Union St. Date:Thursday, June 12, 2008

Counter:pb

File Name : SM0612-5 Site Code : 00000000 Start Date : 6/12/2008

Page No : 1

**Groups Printed- Cars - Heavy Vehicles** 

|       |                |       |      |        |      |            |       |      |         |      | d- Cars    | - Heav | y Vehic | eles   |      |            |       |      |        |      |            | -          |
|-------|----------------|-------|------|--------|------|------------|-------|------|---------|------|------------|--------|---------|--------|------|------------|-------|------|--------|------|------------|------------|
|       |                |       |      | US 11  |      |            | U     | NION | STRE    | ET   |            |        |         | US 11  | l    |            |       | UNI  | ON ST  | REET |            |            |
|       |                |       | So   | uthbou | ınd  |            |       | W    | 'estbou | nd   |            |        | No      | orthbo | und  |            |       | E    | astbou | nd   |            |            |
| Sta   | art Time       | Right | Thru | Left   | Peds | App. Total | Right | Thru | Left    | Peds | App. Total | Right  | Thru    | Left   | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Int. Total |
| 0     | 6:00 AM        | 2     | 31   | 0      | 0    | 33         | 1     | 2    | 1       | 0    | 4          | 1      | 32      | 5      | 0    | 38         | 31    | 4    | 28     | 0    | 63         | 138        |
| 0     | 6:15 AM        | 12    | 53   | 0      | 0    | 65         | 2     | 1    | 2       | 0    | 5          | 5      | 58      | 7      | 0    | 70         | 41    | 2    | 28     | 0    | 71         | 211        |
| 0     | 6:30 AM        | 5     | 47   | 0      | 0    | 52         | 1     | 1    | 2       | 0    | 4          | 1      | 42      | 10     | 0    | 53         | 37    | 2    | 37     | 0    | 76         | 185        |
| 0     | 6:45 AM        | 8     | 27   | 0      | 1    | 36         | 0     | 0    | 1       | 0    | 1          | 3      | 40      | 9      | 0    | 52         | 21    | 4    | 26     | 0    | 51         | 140        |
|       | Total          | 27    | 158  | 0      | 1    | 186        | 4     | 4    | 6       | 0    | 14         | 10     | 172     | 31     | 0    | 213        | 130   | 12   | 119    | 0    | 261        | 674        |
|       |                |       |      |        |      |            |       |      |         |      |            |        |         |        |      |            |       |      |        |      |            |            |
| 0     | 7:00 AM        | 7     | 43   | 0      | 0    | 50         | 0     | 3    | 2       | 0    | 5          | 1      | 56      | 11     | 0    | 68         | 23    | 4    | 38     | 0    | 65         | 188        |
| 0     | 7:15 AM        | 10    | 37   | 0      | 0    | 47         | 0     | 3    | 3       | 0    | 6          | 5      | 50      | 13     | 0    | 68         | 23    | 4    | 40     | 0    | 67         | 188        |
| 0     | 7:30 AM        | 23    | 41   | 0      | 1    | 65         | 0     | 4    | 4       | 0    | 8          | 3      | 52      | 25     | 0    | 80         | 25    | 9    | 32     | 0    | 66         | 219        |
| 0     | 7:45 AM        | 8     | 47   | 2      | 0    | 57         | 2     | 4    | 3       | 0    | 9          | 3      | 68      | 15     | 2    | 88         | 25    | 8    | 37     | 0    | 70         | 224        |
|       | Total          | 48    | 168  | 2      | 1    | 219        | 2     | 14   | 12      | 0    | 28         | 12     | 226     | 64     | 2    | 304        | 96    | 25   | 147    | 0    | 268        | 819        |
|       |                |       |      |        |      |            |       |      |         |      |            |        |         |        |      |            |       |      |        |      |            |            |
| 0     | 08:00 AM       | 14    | 37   | 2      | 0    | 53         | 0     | 7    | 4       | 0    | 11         | 3      | 34      | 14     | 1    | 52         | 17    | 8    | 16     | 0    | 41         | 157        |
| 0     | 8:15 AM        | 9     | 36   | 1      | 0    | 46         | 1     | 4    | 6       | 0    | 11         | 5      | 43      | 20     | 1    | 69         | 8     | 3    | 7      | 0    | 18         | 144        |
| 0     | 8:30 AM        | 9     | 40   | 1      | 0    | 50         | 1     | 4    | 9       | 0    | 14         | 7      | 48      | 21     | 0    | 76         | 31    | 9    | 33     | 2    | 75         | 215        |
| 0     | 8:45 AM        | 8     | 32   | 2      | 2    | 44         | 0     | 3    | 8       | 1    | 12         | 3      | 31      | 20     | 0    | 54         | 28    | 10   | 24     | 1    | 63         | 173        |
|       | Total          | 40    | 145  | 6      | 2    | 193        | 2     | 18   | 27      | 1    | 48         | 18     | 156     | 75     | 2    | 251        | 84    | 30   | 80     | 3    | 197        | 689        |
| ***   | BREAK *        | **    |      |        |      |            |       |      |         |      |            |        |         |        |      |            |       |      |        |      |            |            |
| 0     | 2:30 PM        | 13    | 42   | 1      | 1    | 57         | 5     | 8    | 8       | 1    | 22         | 4      | 49      | 32     | 0    | 85         | 24    | 5    | 16     | 0    | 45         | 209        |
| 0     | 2:45 PM        | 16    | 36   | 2      | 3    | 57         | 3     | 7    | 2       | 2    | 14         | 7      | 49      | 35     | 1    | 92         | 25    | 8    | 10     | 0    | 43         | 206        |
|       | Total          | 29    | 78   | 3      | 4    | 114        | 8     | 15   | 10      | 3    | 36         | 11     | 98      | 67     | 1    | 177        | 49    | 13   | 26     | 0    | 88         | 415        |
|       |                |       |      |        |      |            |       |      |         |      |            | 1      |         |        |      |            |       |      |        |      |            |            |
|       | 3:00 PM        | 17    | 45   | 2      | 0    | 64         | 3     | 8    | 9       | 0    | 20         | 8      | 44      | 45     | 0    | 97         | 24    | 8    | 11     | 0    | 43         | 224        |
|       | 3:15 PM        | 18    | 40   | 2      | 0    | 60         | 4     | 6    | 12      | 0    | 22         | 8      | 60      | 29     | 0    | 97         | 26    | 6    | 24     | 1    | 57         | 236        |
|       | 3:30 PM        | 18    | 48   | 2      | 1    | 69         | 0     | 11   | 6       | 2    | 19         | 10     | 77      | 48     | 6    | 141        | 27    | 13   | 26     | 0    | 66         | 295        |
| 0     | 3:45 PM        | 29    | 53   | 3      | 1    | 86         | 0     | 8    | 6       | 1    | 15         | 14     | 52      | 38     | 1    | 105        | 29    | 7    | 11     | 0    | 47         | 253        |
|       | Total          | 82    | 186  | 9      | 2    | 279        | 7     | 33   | 33      | 3    | 76         | 40     | 233     | 160    | 7    | 440        | 106   | 34   | 72     | 1    | 213        | 1008       |
|       |                | ı     |      |        |      |            |       |      |         |      |            | 1      |         |        |      |            | ı     |      |        |      |            | ı          |
|       | 4:00 PM        | 30    | 57   | 0      | 0    | 87         | 1     | 8    | 3       | 3    | 15         | 6      | 39      | 45     | 0    | 90         | 21    | 2    | 14     | 0    | 37         | 229        |
|       | 4:15 PM        | 21    | 72   | 3      | 0    | 96         | 1     | 5    | 6       | 2    | 14         | 3      | 57      | 62     | 0    | 122        | 28    | 5    | 20     | 0    | 53         | 285        |
|       | 4:30 PM        | 29    | 61   | 0      | 1    | 91         | 3     | 6    | 7       | 2    | 18         | 8      | 56      | 39     | 1    | 104        | 15    | 11   | 13     | 0    | 39         | 252        |
| 0     | 4:45 PM        | 41    | 54   | 1_     | 2    | 98         | 3     | 13   | 9       | 4    | 29         | 4      | 50      | 58     | 0    | 112        | 30    | 4    | 11     | 0    | 45         | 284        |
|       | Total          | 121   | 244  | 4      | 3    | 372        | 8     | 32   | 25      | 11   | 76         | 21     | 202     | 204    | 1    | 428        | 94    | 22   | 58     | 0    | 174        | 1050       |
|       |                |       |      |        |      |            |       | _    | _       | _    |            |        |         |        |      |            |       |      |        |      |            |            |
|       | 5:00 PM        | 48    | 61   | 1      | 1    | 111        | 0     | 6    | 5       | 2    | 13         | 6      | 55      | 47     | 4    | 112        | 20    | 4    | 12     | 0    | 36         | 272        |
|       | 5:15 PM        | 56    | 65   | 1      | 1    | 123        | 0     | 3    | 6       | 1    | 10         | 8      | 61      | 63     | 4    | 136        | 43    | 4    | 13     | 0    | 60         | 329        |
|       | rand Total     | 451   | 1105 | 26     | 15   | 1597       | 31    | 125  | 124     | 21   | 301        | 126    | 1203    | 711    | 21   | 2061       | 622   | 144  | 527    | 4    | 1297       | 5256       |
| Α     | Appreh %       | 28.2  | 69.2 | 1.6    | 0.9  |            | 10.3  | 41.5 | 41.2    | 7    |            | 6.1    | 58.4    | 34.5   | 1    |            | 48    | 11.1 | 40.6   | 0.3  |            |            |
|       | Total %        | 8.6   | 21   | 0.5    | 0.3  | 30.4       | 0.6   | 2.4  | 2.4     | 0.4  | 5.7        | 2.4    | 22.9    | 13.5   | 0.4  | 39.2       | 11.8  | 2.7  | 10     | 0.1  | 24.7       |            |
|       | Cars           | 441   | 1041 | 26     | 15   | 1523       | 31    | 123  | 123     | 21   | 298        | 124    | 1148    | 700    | 21   | 1993       | 611   | 141  | 514    | 4    | 1270       | 5084       |
|       | % Cars         | 97.8  | 94.2 | 100    | 100  | 95.4       | 100   | 98.4 | 99.2    | 100  | 99         | 98.4   | 95.4    | 98.5   | 100  | 96.7       | 98.2  | 97.9 | 97.5   | 100  | 97.9       | 96.7       |
|       | avy Vehicles   | 10    | 64   | 0      | 0    | 74         | 0     | 2    | 1       | 0    | 3          | 2      | 55      | 11     | 0    | 68         | 11    | 3    | 13     | 0    | 27         | 172        |
| 9/4 1 | Heavy Vehicles | 2.2   | 5.8  | 0      | 0    | 4.6        | 0     | 1.6  | 0.8     | 0    | 1          | 1.6    | 4.6     | 1.5    | 0    | 3.3        | 1.8   | 2.1  | 2.5    | 0    | 2.1        | 3.3        |

610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/Union St. Date:Thursday, June 12, 2008

Counter:pb

File Name : SM0612-5 Site Code : 00000000 Start Date : 6/12/2008

Page No : 2



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/Union St. Date:Thursday, June 12, 2008

Counter:pb

File Name : SM0612-5 Site Code : 00000000 Start Date : 6/12/2008

Page No : 3

|                  |          |          | US 11   |           |            | U        | NION         | STRE   | ET   |            |       |      | US 11  |      |            |       | UNI          | ON ST  | REET |            |            |
|------------------|----------|----------|---------|-----------|------------|----------|--------------|--------|------|------------|-------|------|--------|------|------------|-------|--------------|--------|------|------------|------------|
|                  |          | Sot      | uthbou  | nd        |            |          | $\mathbf{w}$ | estbou | nd   |            |       | No   | rthbou | ınd  |            |       | $\mathbf{E}$ | astbou | nd   |            |            |
| Start Time       | Right    | Thru     | Left    | Peds      | App. Total | Right    | Thru         | Left   | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Right | Thru         | Left   | Peds | App. Total | Int. Total |
| Peak Hour An     | alysis F | rom 06:  | 00 AM   | to 11:4   | 5 AM - 1   | Peak 1 o | of 1         |        |      |            |       |      |        |      |            |       |              |        |      |            |            |
| Peak Hour for    | Entire : | Intersec | tion Be | gins at ( | 07:00 AN   | Л        |              |        |      |            |       |      |        |      |            |       |              |        |      |            |            |
| 07:00 AM         | 7        | 43       | 0       | 0         | 50         | 0        | 3            | 2      | 0    | 5          | 1     | 56   | 11     | 0    | 68         | 23    | 4            | 38     | 0    | 65         | 188        |
| 07:15 AM         | 10       | 37       | 0       | 0         | 47         | 0        | 3            | 3      | 0    | 6          | 5     | 50   | 13     | 0    | 68         | 23    | 4            | 40     | 0    | 67         | 188        |
| 07:30 AM         | 23       | 41       | 0       | 1         | 65         | 0        | 4            | 4      | 0    | 8          | 3     | 52   | 25     | 0    | 80         | 25    | 9            | 32     | 0    | 66         | 219        |
| 07:45 AM         | 8        | 47       | 2       | 0         | 57         | 2        | 4            | 3      | 0    | 9          | 3     | 68   | 15     | 2    | 88         | 25    | 8            | 37     | 0    | 70         | 224        |
| Total Volume     | 48       | 168      | 2       | 1         | 219        | 2        | 14           | 12     | 0    | 28         | 12    | 226  | 64     | 2    | 304        | 96    | 25           | 147    | 0    | 268        | 819        |
| % App. Total     | 21.9     | 76.7     | 0.9     | 0.5       |            | 7.1      | 50           | 42.9   | 0    |            | 3.9   | 74.3 | 21.1   | 0.7  |            | 35.8  | 9.3          | 54.9   | 0    |            |            |
| PHF              | .522     | .894     | .250    | .250      | .842       | .250     | .875         | .750   | .000 | .778       | .600  | .831 | .640   | .250 | .864       | .960  | .694         | .919   | .000 | .957       | .914       |
| Cars             | 43       | 149      | 2       | 1         | 195        | 2        | 12           | 12     | 0    | 26         | 10    | 217  | 64     | 2    | 293        | 95    | 23           | 144    | 0    | 262        | 776        |
| % Cars           | 89.6     | 88.7     | 100     | 100       | 89.0       | 100      | 85.7         | 100    | 0    | 92.9       | 83.3  | 96.0 | 100    | 100  | 96.4       | 99.0  | 92.0         | 98.0   | 0    | 97.8       | 94.7       |
| Heavy Vehicles   |          |          |         |           |            |          |              |        |      |            |       |      |        |      |            |       |              |        |      |            |            |
| % Heavy Vehicles | 10.4     | 11.3     | 0       | 0         | 11.0       | 0        | 14.3         | 0      | 0    | 7.1        | 16.7  | 4.0  | 0      | 0    | 3.6        | 1.0   | 8.0          | 2.0    | 0    | 2.2        | 5.3        |



610-466-1469 www.TSTData.com

Location: Columbia County, PA Intersection: US 11/Union St. Date:Thursday, June 12, 2008

Counter:pb

File Name : SM0612-5 Site Code : 00000000 Start Date : 6/12/2008

Page No : 4

|                  |          |          | US 11   |         |            | т.      | NION | CTDE   | pr   |            |       |      | US 11  |      |            |       | TINIT | ON ST  | DEET |            | 1          |
|------------------|----------|----------|---------|---------|------------|---------|------|--------|------|------------|-------|------|--------|------|------------|-------|-------|--------|------|------------|------------|
|                  |          |          |         |         |            | ١       |      |        |      |            |       |      |        |      |            |       |       |        |      |            |            |
|                  |          | Soi      | uthbou  | nd      |            |         | W    | estbou | nd   |            |       | No   | rthbou | ınd  |            |       | E     | astbou | nd   |            |            |
| Start Time       | Right    | Thru     | Left    | Peds    | App. Total | Right   | Thru | Left   | Peds | App. Total | Right | Thru | Left   | Peds | App. Total | Right | Thru  | Left   | Peds | App. Total | Int. Total |
| Peak Hour An     | alysis F | rom 12:  | 00 PM   | to 05:1 | 5 PM - P   | eak 1 o | f 1  |        |      |            |       |      |        |      |            |       |       |        |      |            |            |
| Peak Hour for    | Entire I | Intersec | tion Be | gins at | 04:30 PM   | 1       |      |        |      |            |       |      |        |      |            |       |       |        |      |            |            |
| 04:30 PM         | 29       | 61       | 0       | 1       | 91         | 3       | 6    | 7      | 2    | 18         | 8     | 56   | 39     | 1    | 104        | 15    | 11    | 13     | 0    | 39         | 252        |
| 04:45 PM         | 41       | 54       | 1       | 2       | 98         | 3       | 13   | 9      | 4    | 29         | 4     | 50   | 58     | 0    | 112        | 30    | 4     | 11     | 0    | 45         | 284        |
| 05:00 PM         | 48       | 61       | 1       | 1       | 111        | 0       | 6    | 5      | 2    | 13         | 6     | 55   | 47     | 4    | 112        | 20    | 4     | 12     | 0    | 36         | 272        |
| 05:15 PM         | 56       | 65       | 1       | 1       | 123        | 0       | 3    | 6      | 1    | 10         | 8     | 61   | 63     | 4    | 136        | 43    | 4     | 13     | 0    | 60         | 329        |
| Total Volume     | 174      | 241      | 3       | 5       | 423        | 6       | 28   | 27     | 9    | 70         | 26    | 222  | 207    | 9    | 464        | 108   | 23    | 49     | 0    | 180        | 1137       |
| % App. Total     | 41.1     | 57       | 0.7     | 1.2     |            | 8.6     | 40   | 38.6   | 12.9 |            | 5.6   | 47.8 | 44.6   | 1.9  |            | 60    | 12.8  | 27.2   | 0    |            |            |
| PHF              | .777     | .927     | .750    | .625    | .860       | .500    | .538 | .750   | .563 | .603       | .813  | .910 | .821   | .563 | .853       | .628  | .523  | .942   | .000 | .750       | .864       |
| Cars             | 173      | 235      | 3       | 5       | 416        | 6       | 28   | 26     | 9    | 69         | 26    | 218  | 204    | 9    | 457        | 108   | 22    | 49     | 0    | 179        | 1121       |
| % Cars           | 99.4     | 97.5     | 100     | 100     | 98.3       | 100     | 100  | 96.3   | 100  | 98.6       | 100   | 98.2 | 98.6   | 100  | 98.5       | 100   | 95.7  | 100    | 0    | 99.4       | 98.6       |
| Heavy Vehicles   |          |          |         |         |            |         |      |        |      |            |       |      |        |      |            |       |       |        |      |            |            |
| % Heavy Vehicles | 0.6      | 2.5      | 0       | 0       | 1.7        | 0       | 0    | 3.7    | 0    | 1.4        | 0     | 1.8  | 1.4    | 0    | 1.5        | 0     | 4.3   | 0      | 0    | 0.6        | 1.4        |











Appendix A 74



Appendix A . 75-

KLD Engineering, P.C. Bell Bend Traffic Study TR-439 .Rev. 2





# **APPENDIX B**

CAPACITY ANALYSIS
EXISTING CONDITIONS

RT 11 and Union St Existing AM

|                     | •     | -     | €     | ←     | 1    | <b>†</b> | -     | <b>↓</b> |  |
|---------------------|-------|-------|-------|-------|------|----------|-------|----------|--|
| Lane Group          | EBL   | EBT   | WBL   | WBT   | NBL  | NBT      | SBL   | SBT      |  |
| Lane Configurations |       | 44    |       | 4     | J.   | f)       | J.    | f)       |  |
| Volume (vph)        | 147   | 25    | 12    | 14    | 64   | 226      | 2     | 168      |  |
| Turn Type           | Perm  |       | Perm  |       | Perm |          | Perm  |          |  |
| Protected Phases    |       | 4     |       | 8     |      | 2        |       | 6        |  |
| Permitted Phases    | 4     |       | 8     |       | 2    |          | 6     |          |  |
| Detector Phases     | 4     | 4     | 8     | 8     | 2    | 2        | 6     | 6        |  |
| Minimum Initial (s) | 8.0   | 8.0   | 8.0   | 8.0   | 14.0 | 14.0     | 14.0  | 14.0     |  |
| Minimum Split (s)   | 26.0  | 26.0  | 26.0  | 26.0  | 44.0 | 44.0     | 44.0  | 44.0     |  |
| Total Split (s)     | 26.0  | 26.0  | 26.0  | 26.0  | 44.0 | 44.0     | 44.0  | 44.0     |  |
| Total Split (%)     | 37.1% | 37.1% | 37.1% | 37.1% |      |          | 62.9% | 62.9%    |  |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0   | 3.0   | 3.0  | 3.0      | 3.0   | 3.0      |  |
| All-Red Time (s)    | 3.0   | 3.0   | 3.0   | 3.0   | 3.0  | 3.0      | 3.0   | 3.0      |  |
| Lead/Lag            |       |       |       |       |      |          |       |          |  |
| Lead-Lag Optimize?  |       |       |       |       |      |          |       |          |  |
| Recall Mode         | Max   | Max   | Max   | Max   | Max  | Max      | Max   | Max      |  |
| Act Effct Green (s) |       | 22.0  |       | 22.0  | 40.0 | 40.0     | 40.0  | 40.0     |  |
| Actuated g/C Ratio  |       | 0.31  |       | 0.31  | 0.57 | 0.57     | 0.57  | 0.57     |  |
| v/c Ratio           |       | 0.60  |       | 0.07  | 0.12 | 0.26     | 0.00  | 0.25     |  |
| Control Delay       |       | 23.4  |       | 16.4  | 7.6  | 8.2      | 6.5   | 7.2      |  |
| Queue Delay         |       | 0.0   |       | 0.0   | 0.0  | 0.0      | 0.0   | 0.0      |  |
| Total Delay         |       | 23.4  |       | 16.4  | 7.6  | 8.2      | 6.5   | 7.2      |  |
| LOS                 |       | С     |       | В     | Α    | Α        | Α     | Α        |  |
| Approach Delay      |       | 23.4  |       | 16.4  |      | 8.1      |       | 7.2      |  |
| Approach LOS        |       | С     |       | В     |      | Α        |       | Α        |  |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70 Control Type: Pretimed Maximum v/c Ratio: 0.60 Intersection Signal Delay: 12.8

Intersection Signal Delay: 12.8Intersection LOS: BIntersection Capacity Utilization 56.1%ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Rt 239/Union St & RT 11/Main St



RT 11 and Main St Existing AM

|                     | €     | Ť        | _     | <b>&gt;</b> | ¥        |
|---------------------|-------|----------|-------|-------------|----------|
| Lane Group          | WBL   | NBT      | NBR   | SBL         | SBT      |
| Lane Configurations | ¥     | <b>^</b> | 7     | ሻ           | <b>†</b> |
| Volume (vph)        | 30    | 158      | 13    | 54          | 193      |
| Turn Type           |       |          | Perm  | pm+pt       |          |
| Protected Phases    | 4     | 6        |       | 5           | 2        |
| Permitted Phases    |       |          | 6     | 2           |          |
| Detector Phases     | 4     | 6        | 6     | 5           | 2        |
| Minimum Initial (s) | 5.0   | 12.0     | 12.0  | 5.0         | 17.0     |
| Minimum Split (s)   | 10.2  | 21.4     | 21.4  | 10.4        | 22.4     |
| Total Split (s)     | 20.0  | 38.0     | 38.0  | 12.0        | 50.0     |
| Total Split (%)     | 28.6% | 54.3%    | 54.3% | 17.1%       | 71.4%    |
| Yellow Time (s)     | 4.1   | 4.2      | 4.2   | 4.2         | 4.2      |
| All-Red Time (s)    | 1.1   | 1.2      | 1.2   | 1.2         | 1.2      |
| Lead/Lag            |       | Lag      | Lag   | Lead        |          |
| Lead-Lag Optimize?  |       | Yes      | Yes   | Yes         |          |
| Recall Mode         | None  | None     | None  | None        | None     |
| Act Effct Green (s) | 11.5  | 17.1     | 17.1  | 18.3        | 24.0     |
| Actuated g/C Ratio  | 0.26  | 0.37     | 0.37  | 0.40        | 0.49     |
| v/c Ratio           | 0.24  | 0.26     | 0.02  | 0.11        | 0.24     |
| Control Delay       | 7.7   | 9.6      | 6.5   | 5.7         | 4.6      |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.0         | 0.0      |
| Total Delay         | 7.7   | 9.6      | 6.5   | 5.7         | 4.6      |
| LOS                 | Α     | Α        | Α     | Α           | Α        |
| Approach Delay      | 7.7   | 9.3      |       |             | 4.9      |
| Approach LOS        | Α     | Α        |       |             | Α        |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 39.7

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.26

Intersection Signal Delay: 6.9 Intersection LOS: A
Intersection Capacity Utilization 29.0% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Main St & RT 11



| TW                                               | O-WAY STOP                                                                                                                                                                  | CONTR                                                                                                              | OL SI                                            | JMN                 | /IARY               |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|---------------------|-------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u> </u>                                         |                                                                                                                                                                             | Site Ir                                                                                                            | nform                                            | natio               | on .                |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Christoph                                        | er Puglisi                                                                                                                                                                  | Interse                                                                                                            | ction                                            |                     |                     | PPL & Rt                                                                                  | 11               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                             | Jurisdi                                                                                                            | ction                                            |                     |                     |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7/3/2008                                         |                                                                                                                                                                             | Analys                                                                                                             | is Yea                                           | r                   |                     | 2008                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  | na/Bell Bend NPP                                                                                                                                                            |                                                                                                                    |                                                  |                     |                     |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     | 1                                                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                             | Study F                                                                                                            | Period                                           | (hrs)               | : 0.25              |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>nd Adjustme</u>                               |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     | 0 (11                                                                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                | _                                                                                                                                                                           | 1 o                                                                                                                | -                                                |                     | 4                   |                                                                                           | nd<br>T          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <del>                                     </del> |                                                                                                                                                                             |                                                                                                                    |                                                  |                     | 4                   |                                                                                           |                  | 6<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 268                                              |                                                                                                                                                                             | <u> </u>                                                                                                           |                                                  |                     | L .                 |                                                                                           |                  | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  |                                                                                                                                                                             | 1.00                                                                                                               |                                                  |                     | 1.00                |                                                                                           |                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 268                                              | 220                                                                                                                                                                         | 0                                                                                                                  |                                                  |                     | 0                   | 85                                                                                        |                  | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0                                                |                                                                                                                                                                             |                                                                                                                    |                                                  |                     | 0                   |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                                |                                                                                                                                                                             | Two V                                                                                                              | Vav Le                                           | ft Tu               | rn Lane             |                                                                                           | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                             | 0                                                                                                                  |                                                  |                     |                     |                                                                                           |                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                                | 1                                                                                                                                                                           | 0                                                                                                                  |                                                  |                     | 0                   | 1                                                                                         |                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L                                                | T                                                                                                                                                                           |                                                                                                                    |                                                  |                     |                     |                                                                                           |                  | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                  | 0                                                                                                                                                                           |                                                                                                                    |                                                  |                     |                     | 0                                                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  | Eastbound                                                                                                                                                                   | -                                                                                                                  |                                                  |                     |                     | Westbou                                                                                   | nd               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7                                                | 8                                                                                                                                                                           | 9                                                                                                                  |                                                  |                     | 10                  | 11                                                                                        |                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L                                                | Т                                                                                                                                                                           | R                                                                                                                  |                                                  |                     | L                   | Т                                                                                         |                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13                                               |                                                                                                                                                                             | 34                                                                                                                 |                                                  |                     |                     |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.00                                             | 1.00                                                                                                                                                                        | 1.00                                                                                                               | )                                                |                     | 1.00                | 1.00                                                                                      |                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13                                               | 0                                                                                                                                                                           | 34                                                                                                                 |                                                  |                     | 0                   | 0                                                                                         |                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                                | 0                                                                                                                                                                           | 0                                                                                                                  |                                                  |                     | 0                   | 0                                                                                         |                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                  | 0                                                                                                                                                                           |                                                                                                                    |                                                  |                     |                     | 0                                                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  | N                                                                                                                                                                           |                                                                                                                    |                                                  |                     |                     | N                                                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  | 0                                                                                                                                                                           |                                                                                                                    |                                                  |                     |                     | 0                                                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                             | 0                                                                                                                  |                                                  |                     |                     |                                                                                           |                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                                | 0                                                                                                                                                                           | 1                                                                                                                  |                                                  |                     | 0                   | 0                                                                                         |                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L                                                | 1                                                                                                                                                                           | R                                                                                                                  |                                                  |                     |                     |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ınd Level of Se                                  | rvice                                                                                                                                                                       |                                                                                                                    |                                                  |                     |                     | •                                                                                         | •                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                             | 1                                                                                                                  | Westbo                                           | ound                |                     | l E                                                                                       | Eastbound        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     | 9                   |                                                                                           |                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                  |                                                                                                                                                                             | •                                                                                                                  | ۳                                                |                     | _                   | -                                                                                         |                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     |                                                                                           |                  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     |                                                                                           |                  | 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     |                                                                                           |                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  |                                                                                                                                                                             |                                                                                                                    | <del>                                     </del> |                     |                     |                                                                                           |                  | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     |                                                                                           |                  | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     |                                                                                           |                  | 9.2<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     |                                                                                           | 44.0             | 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     | <u> </u>                                                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                                                                                                                                                             |                                                                                                                    |                                                  |                     |                     |                                                                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  | Christoph KLD Asso 7/3/2008 AM Peak 5 - Susquehanr Entrance North-South  Adjustme  1 L 268 1.00 268 0 1 L 1 L 13 1.00 13 0 11 L 268 Northbound 1 L 268 1346 0.20 0.74 8.3 A | Christopher Puglisi   KLD Associates   7/3/2008   AM Peak   5 - Susquehanna/Bell Bend NPP   Entrance   North-South | Christopher Puglisi                              | Christopher Puglisi | Christopher Puglisi | Christopher Puglisi   KLD Associates   7/3/2008   Am Peak   5 - Susquehanna/Bell Bend NPP | Site Information | Site Information   Christopher Puglisi   KLD Associates   7/3/2008   AM Peak   2008   Amalysis Year   2008   Ama |

KLD Engineering, P.C Bell Bend Traffic Study Appendix B HCS+TM Version 5.21

Generated: 8/22/2008 9:27 AM TR-439

Rev. 2

2nd St & Market St Existing AM

| Lane Group         WBL         WBT         WBR         NBL         NBT         SBT         SBR           Lane Configurations         \$\frac{1}{2}  \frac{1}{2}  \frac{1}{ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume (vph)         98         385         25         169         114         131         57           Turn Type         Perm         Perm         pm+pt         Perm           Protected Phases         8         5         2         6           Permitted Phases         8         2         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Turn TypePermPermpm+ptPermProtected Phases8526Permitted Phases8826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Protected Phases8526Permitted Phases8826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Permitted Phases 8 8 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Detector Phases 8 8 8 5 2 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Minimum Initial (s) 4.0 4.0 4.0 4.0 4.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Minimum Split (s) 21.0 21.0 21.0 8.0 20.5 20.5 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Split (s) 25.0 25.0 25.0 10.0 40.0 30.0 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total Split (%) 38.5% 38.5% 38.5% 15.4% 61.5% 46.2% 46.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Yellow Time (s) 3.5 3.5 3.0 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| All-Red Time (s) 1.5 1.5 0.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lead/Lag Lag Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lead-Lag Optimize? Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Recall Mode Max Max Max Max Max Max Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Act Effct Green (s) 21.0 21.0 36.0 36.0 26.0 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Actuated g/C Ratio 0.32 0.32 0.55 0.55 0.40 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| v/c Ratio 0.24 0.48 0.07 0.39 0.17 0.20 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Control Delay 17.6 19.3 6.4 3.9 1.3 13.6 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Queue Delay 0.0 0.0 0.0 0.1 0.3 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Delay 17.6 19.3 6.4 4.0 1.6 13.6 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LOS BBAAABA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Approach Delay 18.3 3.1 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Approach LOS B A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.48 Intersection Signal Delay: 12.3

Intersection Signal Delay: 12.3Intersection LOS: BIntersection Capacity Utilization 38.4%ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: 2nd Street & Market St



Front St & Market St Existing AM

|                     | -     | Ť       | _     | -     | ¥       |
|---------------------|-------|---------|-------|-------|---------|
| Lane Group          | EBT   | NBT     | NBR   | SBL   | SBT     |
| Lane Configurations | 4î.b  | <u></u> | 7     | 7     | <u></u> |
| Volume (vph)        | 289   | 273     | 72    | 58    | 162     |
| Turn Type           |       |         | Perm  | pm+pt |         |
| Protected Phases    | 4     | 2       |       | 1     | 6       |
| Permitted Phases    |       |         | 2     | 6     |         |
| Detector Phases     | 4     | 2       | 2     | 1     | 6       |
| Minimum Initial (s) | 4.0   | 3.0     | 3.0   | 3.0   | 3.0     |
| Minimum Split (s)   | 24.0  | 21.0    | 21.0  | 10.0  | 31.0    |
| Total Split (s)     | 29.0  | 26.0    | 26.0  | 10.0  | 36.0    |
| Total Split (%)     | 44.6% | 40.0%   | 40.0% | 15.4% | 55.4%   |
| Yellow Time (s)     | 3.2   | 4.0     | 4.0   | 3.0   | 4.0     |
| All-Red Time (s)    | 1.8   | 1.0     | 1.0   | 0.0   | 1.0     |
| Lead/Lag            |       | Lag     | Lag   | Lead  |         |
| Lead-Lag Optimize?  |       | Yes     | Yes   | Yes   |         |
| Recall Mode         | Max   | Max     | Max   | Max   | Max     |
| Act Effct Green (s) | 25.0  | 22.0    | 22.0  | 32.0  | 32.0    |
| Actuated g/C Ratio  | 0.38  | 0.34    | 0.34  | 0.49  | 0.49    |
| v/c Ratio           | 0.32  | 0.65    | 0.18  | 0.18  | 0.20    |
| Control Delay       | 12.5  | 24.1    | 4.6   | 10.7  | 10.8    |
| Queue Delay         | 0.0   | 0.0     | 0.0   | 0.0   | 0.6     |
| Total Delay         | 12.5  | 24.1    | 4.6   | 10.7  | 11.5    |
| LOS                 | В     | С       | Α     | В     | В       |
| Approach Delay      | 12.5  | 20.0    |       |       | 11.3    |
| Approach LOS        | В     | С       |       |       | В       |
|                     |       |         |       |       |         |

# Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 55
Control Type: Pretimed
Maximum v/c Ratio: 0.65
Intersection Signal Delay: 15.5

Intersection Signal Delay: 15.5 Intersection LOS: B
Intersection Capacity Utilization 38.4% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 6: Front St & Market St



RT 11 & LaSalle St Existing AM

|                     |       | •     | •           | *    |
|---------------------|-------|-------|-------------|------|
| Lane Group          | EBL   | WBL   | WBT         | SBR  |
| Lane Configurations | ሻ     | ሻ     | <b>↑</b> 1> | 7    |
| Volume (vph)        | 45    | 9     | 578         | 61   |
| Turn Type           | Prot  | Perm  |             | Free |
| Protected Phases    | 7     |       | 8           |      |
| Permitted Phases    |       | 8     |             | Free |
| Detector Phases     | 7     | 8     | 8           |      |
| Minimum Initial (s) | 1.0   | 4.0   | 4.0         |      |
| Minimum Split (s)   | 5.0   | 25.0  | 25.0        |      |
| Total Split (s)     | 25.0  | 45.0  | 45.0        | 0.0  |
| Total Split (%)     | 35.7% | 64.3% | 64.3%       | 0.0% |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0         |      |
| All-Red Time (s)    | 1.0   | 1.0   | 1.0         |      |
| Lead/Lag            | Lead  | Lag   | Lag         |      |
| Lead-Lag Optimize?  | Yes   | Yes   | Yes         |      |
| Recall Mode         | None  | None  | None        |      |
| Act Effct Green (s) | 7.0   | 5.9   | 5.9         | 13.4 |
| Actuated g/C Ratio  | 0.32  | 0.44  | 0.44        | 1.00 |
| v/c Ratio           | 0.09  | 0.01  | 0.46        | 0.05 |
| Control Delay       | 5.7   | 2.4   | 3.0         | 0.1  |
| Queue Delay         | 0.0   | 0.0   | 0.0         | 0.0  |
| Total Delay         | 5.7   | 2.4   | 3.0         | 0.1  |
| LOS                 | Α     | Α     | Α           | Α    |
| Approach Delay      |       |       | 3.0         |      |
| Approach LOS        |       |       | Α           |      |
|                     |       |       |             |      |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 13.4

Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.46

Intersection Signal Delay: 2.9 Intersection LOS: A Intersection Capacity Utilization 26.6% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 7: Int



|                       | •    | -    | •    | •    | -       | •    | •    | <b>†</b> | ~    | -     | ţ     | 4    |
|-----------------------|------|------|------|------|---------|------|------|----------|------|-------|-------|------|
| Lane Group            | EBL  | EBT  | EBR  | WBL  | WBT     | WBR  | NBL  | NBT      | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations   |      | f)   |      |      | <u></u> |      |      | 4        |      |       | 4     |      |
| Total Lost Time (s)   | 4.0  | 4.0  | 4.0  | 4.0  | 4.0     | 4.0  | 4.0  | 4.0      | 4.0  | 4.0   | 4.0   | 4.0  |
| Satd. Flow (prot)     | 0    | 1859 | 0    | 0    | 1863    | 0    | 0    | 1645     | 0    | 0     | 1777  | 0    |
| Flt Permitted         |      |      |      |      |         |      |      | 0.968    |      |       | 0.729 |      |
| Satd. Flow (perm)     | 0    | 1859 | 0    | 0    | 1863    | 0    | 0    | 1608     | 0    | 0     | 1358  | 0    |
| Satd. Flow (RTOR)     |      | 2    |      |      |         |      |      | 4        |      |       |       |      |
| Volume (vph)          | 0    | 393  | 6    | 0    | 551     | 0    | 1    | 0        | 3    | 76    | 2     | 0    |
| Peak Hour Factor      | 0.89 | 0.89 | 0.89 | 0.83 | 0.83    | 0.83 | 0.75 | 0.75     | 0.75 | 0.67  | 0.67  | 0.67 |
| Adj. Flow (vph)       | 0    | 442  | 7    | 0    | 664     | 0    | 1    | 0        | 4    | 113   | 3     | 0    |
| Lane Group Flow (vph) | 0    | 449  | 0    | 0    | 664     | 0    | 0    | 5        | 0    | 0     | 116   | 0    |
| Turn Type             |      |      |      |      |         |      | Perm |          | С    | ustom |       |      |
| Protected Phases      |      | 4    |      |      | 8       |      |      | 2        |      |       |       |      |
| Permitted Phases      |      |      |      |      |         |      | 2    |          |      | 6     | 6     |      |
| Total Split (s)       | 0.0  | 50.0 | 0.0  | 0.0  | 50.0    | 0.0  | 20.0 | 20.0     | 0.0  | 20.0  | 20.0  | 0.0  |
| Act Effct Green (s)   |      | 46.0 |      |      | 46.0    |      |      | 16.0     |      |       | 16.0  |      |
| Actuated g/C Ratio    |      | 0.66 |      |      | 0.66    |      |      | 0.23     |      |       | 0.23  |      |
| v/c Ratio             |      | 0.37 |      |      | 0.54    |      |      | 0.01     |      |       | 0.37  |      |
| Control Delay         |      | 6.4  |      |      | 8.5     |      |      | 15.2     |      |       | 27.0  |      |
| Queue Delay           |      | 0.0  |      |      | 0.0     |      |      | 0.0      |      |       | 0.0   |      |
| Total Delay           |      | 6.4  |      |      | 8.5     |      |      | 15.2     |      |       | 27.0  |      |
| LOS                   |      | Α    |      |      | Α       |      |      | В        |      |       | С     |      |
| Approach Delay        |      | 6.4  |      |      | 8.5     |      |      | 15.3     |      |       | 27.0  |      |
| Approach LOS          |      | Α    |      |      | Α       |      |      | В        |      |       | С     |      |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Control Type: Pretimed Maximum v/c Ratio: 0.54

Intersection Signal Delay: 9.5 Intersection LOS: A
Intersection Capacity Utilization 46.6% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: RT 11 &



RT 11 & Poplar St Existing AM

|                     | -     | €     | <b>←</b> | 1     | Ť     | _     |      |  |
|---------------------|-------|-------|----------|-------|-------|-------|------|--|
| Lane Group          | EBT   | WBL   | WBT      | NBL   | NBT   | NBR   | ø6   |  |
| Lane Configurations | ₽     | ነ ነ   | ₽        |       | र्स   | 7     |      |  |
| Volume (vph)        | 391   | 34    | 512      | 46    | 0     | 23    |      |  |
| Turn Type           |       | pm+pt |          | Perm  |       | Perm  |      |  |
| Protected Phases    | 4     | 3     | 8        |       | 2     |       | 6    |  |
| Permitted Phases    |       | 8     |          | 2     |       | 2     |      |  |
| Detector Phases     | 4     | 3     | 8        | 2     | 2     | 2     |      |  |
| Minimum Initial (s) | 1.0   | 4.0   | 20.0     | 2.0   | 2.0   | 2.0   | 1.0  |  |
| Minimum Split (s)   | 25.0  | 8.0   | 25.0     | 6.0   | 6.0   | 6.0   | 5.0  |  |
| Total Split (s)     | 28.0  | 17.5  | 45.5     | 24.5  | 24.5  | 24.5  | 24.5 |  |
| Total Split (%)     | 40.0% | 25.0% | 65.0%    | 35.0% | 35.0% | 35.0% | 35%  |  |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0  |  |
| All-Red Time (s)    | 2.0   | 0.0   | 2.0      | 1.0   | 1.0   | 1.0   | 1.0  |  |
| Lead/Lag            | Lag   | Lead  |          |       |       |       |      |  |
| Lead-Lag Optimize?  | Yes   | Yes   |          |       |       |       |      |  |
| Recall Mode         | Max   | Max   | Max      | Max   | Max   | Max   | Max  |  |
| Act Effct Green (s) | 24.0  | 41.5  | 41.5     |       | 20.5  | 20.5  |      |  |
| Actuated g/C Ratio  | 0.34  | 0.59  | 0.59     |       | 0.29  | 0.29  |      |  |
| v/c Ratio           | 0.79  | 0.08  | 0.54     |       | 0.17  | 0.07  |      |  |
| Control Delay       | 31.7  | 6.4   | 10.9     |       | 19.8  | 7.6   |      |  |
| Queue Delay         | 0.0   | 0.0   | 0.0      |       | 0.0   | 0.0   |      |  |
| Total Delay         | 31.7  | 6.4   | 10.9     |       | 19.8  | 7.6   |      |  |
| LOS                 | С     | Α     | В        |       | В     | Α     |      |  |
| Approach Delay      | 31.7  |       | 10.6     |       | 15.8  |       |      |  |
| Approach LOS        | С     |       | В        |       | В     |       |      |  |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 40 Control Type: Pretimed Maximum v/c Ratio: 0.79 Intersection Signal Delay: 19.6

Intersection Signal Delay: 19.6 Intersection LOS: B
Intersection Capacity Utilization 38.3% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: RT 11 & N Poplar St



RT 11 and Union St Existing PM

|                     | •     | -     | €     | ←     | 1    | <b>†</b> | -     | <b>↓</b> |  |
|---------------------|-------|-------|-------|-------|------|----------|-------|----------|--|
| Lane Group          | EBL   | EBT   | WBL   | WBT   | NBL  | NBT      | SBL   | SBT      |  |
| Lane Configurations |       | 44    |       | 4     | , j  | f)       | J.    | f)       |  |
| Volume (vph)        | 71    | 27    | 21    | 32    | 193  | 225      | 8     | 230      |  |
| Turn Type           | Perm  |       | Perm  |       | Perm |          | Perm  |          |  |
| Protected Phases    |       | 4     |       | 8     |      | 2        |       | 6        |  |
| Permitted Phases    | 4     |       | 8     |       | 2    |          | 6     |          |  |
| Detector Phases     | 4     | 4     | 8     | 8     | 2    | 2        | 6     | 6        |  |
| Minimum Initial (s) | 8.0   | 8.0   | 8.0   | 8.0   | 14.0 | 14.0     | 14.0  | 14.0     |  |
| Minimum Split (s)   | 26.0  | 26.0  | 26.0  | 26.0  | 44.0 | 44.0     | 44.0  | 44.0     |  |
| Total Split (s)     | 26.0  | 26.0  | 26.0  | 26.0  | 44.0 | 44.0     | 44.0  | 44.0     |  |
| Total Split (%)     | 37.1% | 37.1% | 37.1% | 37.1% |      |          | 62.9% | 62.9%    |  |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0   | 3.0   | 3.0  | 3.0      | 3.0   | 3.0      |  |
| All-Red Time (s)    | 3.0   | 3.0   | 3.0   | 3.0   | 3.0  | 3.0      | 3.0   | 3.0      |  |
| Lead/Lag            |       |       |       |       |      |          |       |          |  |
| Lead-Lag Optimize?  |       |       |       |       |      |          |       |          |  |
| Recall Mode         | Max   | Max   | Max   | Max   | Max  | Max      | Max   | Max      |  |
| Act Effct Green (s) |       | 22.0  |       | 22.0  | 40.0 | 40.0     | 40.0  | 40.0     |  |
| Actuated g/C Ratio  |       | 0.31  |       | 0.31  | 0.57 | 0.57     | 0.57  | 0.57     |  |
| v/c Ratio           |       | 0.50  |       | 0.14  | 0.44 | 0.29     | 0.02  | 0.36     |  |
| Control Delay       |       | 17.2  |       | 17.8  | 12.0 | 8.2      | 6.6   | 8.0      |  |
| Queue Delay         |       | 0.0   |       | 0.0   | 0.0  | 0.0      | 0.0   | 0.0      |  |
| Total Delay         |       | 17.2  |       | 17.8  | 12.0 | 8.2      | 6.6   | 8.0      |  |
| LOS                 |       | В     |       | В     | В    | Α        | Α     | Α        |  |
| Approach Delay      |       | 17.2  |       | 17.8  |      | 9.8      |       | 8.0      |  |
| Approach LOS        |       | В     |       | В     |      | Α        |       | Α        |  |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70
Control Type: Pretimed
Maximum v/c Ratio: 0.50
Intersection Signal Delay: 11.2

Intersection Signal Delay: 11.2Intersection LOS: BIntersection Capacity Utilization 54.6%ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Rt 239/Union St & RT 11/Main St



RT 11 and Main St Existing PM

|                     | €     | Ť        | _     | -     | ¥        |
|---------------------|-------|----------|-------|-------|----------|
| Lane Group          | WBL   | NBT      | NBR   | SBL   | SBT      |
| Lane Configurations | ¥     | <b>1</b> | 7     | ሻ     | <b>1</b> |
| Volume (vph)        | 20    | 261      | 56    | 115   | 24       |
| Turn Type           |       |          | Perm  | pm+pt |          |
| Protected Phases    | 4     | 6        |       | 5     | 2        |
| Permitted Phases    |       |          | 6     | 2     |          |
| Detector Phases     | 4     | 6        | 6     | 5     | 2        |
| Minimum Initial (s) | 5.0   | 12.0     | 12.0  | 5.0   | 17.0     |
| Minimum Split (s)   | 10.2  | 21.4     | 21.4  | 10.4  | 22.4     |
| Total Split (s)     | 20.0  | 38.0     | 38.0  | 12.0  | 50.0     |
| Total Split (%)     | 28.6% | 54.3%    | 54.3% | 17.1% | 71.4%    |
| Yellow Time (s)     | 4.1   | 4.2      | 4.2   | 4.2   | 4.2      |
| All-Red Time (s)    | 1.1   | 1.2      | 1.2   | 1.2   | 1.2      |
| Lead/Lag            |       | Lag      | Lag   | Lead  |          |
| Lead-Lag Optimize?  |       | Yes      | Yes   | Yes   |          |
| Recall Mode         | None  | None     | None  | None  | None     |
| Act Effct Green (s) | 10.2  | 17.1     | 17.1  | 24.8  | 27.9     |
| Actuated g/C Ratio  | 0.22  | 0.36     | 0.36  | 0.53  | 0.57     |
| v/c Ratio           | 0.31  | 0.48     | 0.11  | 0.21  | 0.03     |
| Control Delay       | 7.4   | 12.3     | 3.6   | 4.9   | 3.9      |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |
| Total Delay         | 7.4   | 12.3     | 3.6   | 4.9   | 3.9      |
| LOS                 | Α     | В        | Α     | Α     | Α        |
| Approach Delay      | 7.4   | 10.8     |       |       | 4.7      |
| Approach LOS        | Α     | В        |       |       | Α        |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 44.6

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.48

Intersection Signal Delay: 8.7 Intersection LOS: A Intersection Capacity Utilization 37.3% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Main St & RT 11



|                                                   | TW              | O-WAY STOP       | CONTR   | OL SI                                            | JMN   | /IARY      |          |                  |               |
|---------------------------------------------------|-----------------|------------------|---------|--------------------------------------------------|-------|------------|----------|------------------|---------------|
| General Informatio                                | n               |                  | Site Iı | nform                                            | atic  | on .       |          |                  |               |
| Analyst                                           | Christoph       | er Puglisi       | Interse | ction                                            |       |            | PPL & Rt | 11               |               |
| Agency/Co.                                        | KLD Asso        |                  | Jurisdi | ction                                            |       |            | Salem Tw |                  |               |
| Date Performed                                    | 7/3/2008        |                  | Analys  | is Yea                                           | r     |            | 2008     |                  |               |
| Analysis Time Period                              | PM Peak         |                  |         |                                                  |       |            |          |                  |               |
| Project Description 53                            |                 | na/Bell Bend NPP |         |                                                  |       |            |          |                  |               |
| East/West Street: PPL                             |                 |                  |         |                                                  |       | t: US Rt 1 | 1        |                  |               |
| Intersection Orientation:                         |                 |                  | Study F | Period                                           | (hrs) | : 0.25     |          |                  |               |
| Vehicle Volumes ar                                | nd Adjustme     |                  |         |                                                  |       |            | 0 (1)    |                  |               |
| Major Street                                      | 1               | Northbound       | 3       |                                                  |       | 4          | Southbou | na               | 6             |
| Movement                                          | + ;             | 2<br>T           | R       | -                                                |       | 4          | 5<br>T   |                  | 6<br>R        |
| Volume (veh/h)                                    | 2               | 227              |         |                                                  |       |            | 251      |                  | 1             |
| Peak-Hour Factor, PHF                             | 1.00            | 1.00             | 1.00    |                                                  |       | 1.00       | 1.00     |                  | 1.00          |
| Hourly Flow Rate, HFR<br>(veh/h)                  | 2               | 227              | 0       |                                                  |       | 0          | 251      |                  | 1             |
| Percent Heavy Vehicles                            | 0               |                  |         |                                                  |       | 0          |          |                  |               |
| Median Type                                       | 1               | -                | Two V   | Vay Le                                           | ft Tu | rn Lane    |          |                  |               |
| RT Channelized                                    |                 |                  | 0       |                                                  |       |            |          |                  | 0             |
| Lanes                                             | 1               | 1                | 0       |                                                  |       | 0          | 1        |                  | 0             |
| Configuration                                     | L               | T                |         |                                                  |       |            |          |                  | TR            |
| Upstream Signal                                   |                 | 0                |         |                                                  |       |            | 0        |                  |               |
| Minor Street                                      |                 | Eastbound        |         |                                                  |       |            | Westbou  | nd               |               |
| Movement                                          | 7               | 8                | 9       |                                                  |       | 10         | 11       |                  | 12            |
|                                                   | L               | Т                | R       |                                                  |       | L          | Т        |                  | R             |
| Volume (veh/h)                                    | 80              |                  | 220     |                                                  |       |            |          |                  |               |
| Peak-Hour Factor, PHF                             | 1.00            | 1.00             | 1.00    |                                                  |       | 1.00       | 1.00     |                  | 1.00          |
| Hourly Flow Rate, HFR<br>(veh/h)                  | 80              | 0                | 220     |                                                  |       | 0          | 0        |                  | 0             |
| Percent Heavy Vehicles                            | 0               | 0                | 0       |                                                  |       | 0          | 0        |                  | 0             |
| Percent Grade (%)                                 |                 | 0                |         |                                                  |       |            | 0        |                  |               |
| Flared Approach                                   |                 | N                |         |                                                  |       |            | Ν        |                  |               |
| Storage                                           |                 | 0                |         |                                                  |       |            | 0        |                  |               |
| RT Channelized                                    |                 |                  | 0       |                                                  |       |            |          |                  | 0             |
| Lanes                                             | 1               | 0                | 1       |                                                  |       | 0          | 0        |                  | 0             |
| Configuration                                     | L               |                  | R       |                                                  |       |            |          |                  |               |
| Delay, Queue Length, a                            | and Level of Se | ervice           |         |                                                  |       |            |          |                  |               |
| Approach                                          | Northbound      | Southbound       | 1       | Westbo                                           | ound  |            | Е        | Eastboun         | d             |
| Movement                                          | 1               | 4                | 7       | 8                                                |       | 9          | 10       | 11               | 12            |
| Lane Configuration                                | L               |                  |         |                                                  |       |            | L        |                  | R             |
| v (veh/h)                                         | 2               |                  |         |                                                  |       |            | 80       |                  | 220           |
| C (m) (veh/h)                                     | 1325            |                  |         |                                                  |       |            | 615      | 1                | 792           |
| v/c                                               | 0.00            |                  |         |                                                  |       |            | 0.13     |                  | 0.28          |
| 95% queue length                                  | 0.00            |                  |         |                                                  |       |            | 0.45     |                  | 1.14          |
| Control Delay (s/veh)                             | 7.7             |                  |         |                                                  |       |            | 11.7     |                  | 11.3          |
| LOS                                               |                 |                  |         | <del>                                     </del> |       |            | В        |                  | 11.3<br>B     |
|                                                   |                 |                  |         | <u> </u>                                         |       |            | <i>D</i> | 11 1             |               |
| Approach Delay (s/veh)                            |                 |                  |         |                                                  |       |            |          | 11.4             |               |
| Approach LOS<br>Copyright © 2005 University of Fl |                 |                  |         | CS+ <sup>TM</sup>                                |       |            | <u> </u> | B<br>rated: 8/22 | /2008 9:28 AM |

KLD Engineering, P.C Bell Bend Traffic Study  $\begin{array}{c} & \text{HCS+}^{TM} & \text{Version 5.21} \\ \text{Appendix B} & 12 \end{array}$ 

Generated: 8/22/2008 9:28 AM TR-439 Rev. 2

Front St and Market St Existing PM

|                     | -     | <b>†</b> | <b>/</b> | -     | ↓       |
|---------------------|-------|----------|----------|-------|---------|
| Lane Group          | EBT   | NBT      | NBR      | SBL   | SBT     |
| Lane Configurations | 4î>   | <u></u>  | 7        | 7     | <u></u> |
| Volume (vph)        | 580   | 276      | 134      | 87    | 332     |
| Turn Type           |       |          | Perm     | pm+pt |         |
| Protected Phases    | 4     | 2        |          | 1     | 6       |
| Permitted Phases    |       |          | 2        | 6     |         |
| Detector Phases     | 4     | 2        | 2        | 1     | 6       |
| Minimum Initial (s) | 4.0   | 3.0      | 3.0      | 3.0   | 3.0     |
| Minimum Split (s)   | 24.0  | 21.0     | 21.0     | 10.0  | 31.0    |
| Total Split (s)     | 29.0  | 26.0     | 26.0     | 10.0  | 36.0    |
| Total Split (%)     | 44.6% | 40.0%    | 40.0%    | 15.4% | 55.4%   |
| Yellow Time (s)     | 3.2   | 4.0      | 4.0      | 3.0   | 4.0     |
| All-Red Time (s)    | 1.8   | 1.0      | 1.0      | 0.0   | 1.0     |
| Lead/Lag            |       | Lag      | Lag      | Lead  |         |
| Lead-Lag Optimize?  |       | Yes      | Yes      | Yes   |         |
| Recall Mode         | Max   | Max      | Max      | Max   | Max     |
| Act Effct Green (s) | 25.0  | 22.0     | 22.0     | 32.0  | 32.0    |
| Actuated g/C Ratio  | 0.38  | 0.34     | 0.34     | 0.49  | 0.49    |
| v/c Ratio           | 0.67  | 0.45     | 0.22     | 0.23  | 0.46    |
| Control Delay       | 18.0  | 19.7     | 4.3      | 10.4  | 12.5    |
| Queue Delay         | 0.0   | 0.0      | 0.0      | 0.0   | 1.4     |
| Total Delay         | 18.0  | 19.7     | 4.3      | 10.4  | 13.9    |
| LOS                 | В     | В        | Α        | В     | В       |
| Approach Delay      | 18.0  | 14.7     |          |       | 13.2    |
| Approach LOS        | В     | В        |          |       | В       |
|                     |       |          |          |       |         |

# Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 55
Control Type: Pretimed
Maximum v/c Ratio: 0.67
Intersection Signal Delay: 15.9

Intersection Signal Delay: 15.9 Intersection LOS: B
Intersection Capacity Utilization 66.3% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 6: Front St & Market St



2nd St and Market St Existing PM

|                     | €     | -        | •     | 1     | Ť     | ¥     | 4     |
|---------------------|-------|----------|-------|-------|-------|-------|-------|
| Lane Group          | WBL   | WBT      | WBR   | NBL   | NBT   | SBT   | SBR   |
| Lane Configurations | 7     | <b>^</b> | 7     | ሻ     |       |       | 7     |
| Volume (vph)        | 201   | 484      | 57    | 144   | 106   | 223   | 105   |
| Turn Type           | Perm  |          | Perm  | pm+pt |       |       | Perm  |
| Protected Phases    |       | 8        |       | 5     | 2     | 6     |       |
| Permitted Phases    | 8     |          | 8     | 2     |       |       | 6     |
| Detector Phases     | 8     | 8        | 8     | 5     | 2     | 6     | 6     |
| Minimum Initial (s) | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0   | 4.0   |
| Minimum Split (s)   | 21.0  | 21.0     | 21.0  | 8.0   | 20.5  | 20.5  | 20.5  |
| Total Split (s)     | 25.0  | 25.0     | 25.0  | 10.0  | 40.0  | 30.0  | 30.0  |
| Total Split (%)     | 38.5% | 38.5%    | 38.5% | 15.4% | 61.5% | 46.2% | 46.2% |
| Yellow Time (s)     | 3.5   | 3.5      | 3.5   | 3.0   | 3.5   | 3.5   | 3.5   |
| All-Red Time (s)    | 1.5   | 1.5      | 1.5   | 0.0   | 1.0   | 1.0   | 1.0   |
| Lead/Lag            |       |          |       | Lead  |       | Lag   | Lag   |
| Lead-Lag Optimize?  |       |          |       | Yes   |       | Yes   | Yes   |
| Recall Mode         | Max   | Max      | Max   | Max   | Max   | Max   | Max   |
| Act Effct Green (s) | 21.0  | 21.0     | 21.0  | 36.0  | 36.0  | 26.0  | 26.0  |
| Actuated g/C Ratio  | 0.32  | 0.32     | 0.32  | 0.55  | 0.55  | 0.40  | 0.40  |
| v/c Ratio           | 0.40  | 0.48     | 0.12  | 0.31  | 0.13  | 0.35  | 0.17  |
| Control Delay       | 19.6  | 19.3     | 5.4   | 3.8   | 1.5   | 15.3  | 3.5   |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.1   | 0.0   | 0.0   | 0.0   |
| Total Delay         | 19.6  | 19.3     | 5.4   | 3.9   | 1.5   | 15.3  | 3.5   |
| LOS                 | В     | В        | Α     | Α     | Α     | В     | Α     |
| Approach Delay      |       | 18.3     |       |       | 2.9   | 11.5  |       |
| Approach LOS        |       | В        |       |       | Α     | В     |       |

#### Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.48 Intersection Signal Delay: 13.5

Intersection Signal Delay: 13.5Intersection LOS: BIntersection Capacity Utilization 66.3%ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: 2nd Street & Market St



RT 11 and LaSalle St Existing PM

|                     |      | •     | -    | *    |
|---------------------|------|-------|------|------|
| Lane Group          | EBL  | WBL   | WBT  | SBR  |
| Lane Configurations | ሻ    | ሻ     | ħβ   | 7    |
| Volume (vph)        | 76   | 15    | 879  | 136  |
| Turn Type           | Prot | Perm  |      | Free |
| Protected Phases    | 7    |       | 8    |      |
| Permitted Phases    |      | 8     |      | Free |
| Detector Phases     | 7    | 8     | 8    |      |
| Minimum Initial (s) | 1.0  | 4.0   | 4.0  |      |
| Minimum Split (s)   | 5.0  | 25.0  | 25.0 |      |
| Total Split (s)     | 25.0 | 45.0  | 45.0 | 0.0  |
| Total Split (%)     |      | 64.3% |      | 0.0% |
| Yellow Time (s)     | 3.0  | 3.0   | 3.0  |      |
| All-Red Time (s)    | 1.0  | 1.0   | 1.0  |      |
| Lead/Lag            | Lead | Lag   | Lag  |      |
| Lead-Lag Optimize?  | Yes  | Yes   | Yes  |      |
| Recall Mode         | None | None  | None |      |
| Act Effct Green (s) | 7.6  | 8.5   | 8.5  | 18.1 |
| Actuated g/C Ratio  | 0.31 | 0.47  | 0.47 | 1.00 |
| v/c Ratio           | 0.15 | 0.02  | 0.59 | 0.13 |
| Control Delay       | 7.6  | 2.9   | 4.6  | 0.2  |
| Queue Delay         | 0.0  | 0.0   | 0.0  | 0.0  |
| Total Delay         | 7.6  | 2.9   | 4.6  | 0.2  |
| LOS                 | А    | Α     | Α    | Α    |
| Approach Delay      |      |       | 4.6  |      |
| Approach LOS        |      |       | Α    |      |
|                     |      |       |      |      |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 18.1

Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.59

Intersection Signal Delay: 4.1 Intersection LOS: A Intersection Capacity Utilization 36.1% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 7: Rt 11/93 & LaSalle St



RT 11 & Orange St Existing PM

|                     | -     | -       | 1     | <b>†</b> | -      | ↓     |
|---------------------|-------|---------|-------|----------|--------|-------|
| Lane Group          | EBT   | WBT     | NBL   | NBT      | SBL    | SBT   |
| Lane Configurations | ĵ.    | <u></u> |       | 4        |        | 4     |
| Volume (vph)        | 734   | 745     | 4     | 0        | 148    | 2     |
| Turn Type           |       |         | Perm  |          | custom |       |
| Protected Phases    | 4     | 8       |       | 2        |        |       |
| Permitted Phases    |       |         | 2     |          | 6      | 6     |
| Detector Phases     | 4     | 8       | 2     | 2        | 6      | 6     |
| Minimum Initial (s) | 4.0   | 4.0     | 4.0   | 4.0      | 4.0    | 4.0   |
| Minimum Split (s)   | 20.0  | 20.0    | 20.0  | 20.0     | 20.0   | 20.0  |
| Total Split (s)     | 50.0  | 50.0    | 20.0  | 20.0     | 20.0   | 20.0  |
| Total Split (%)     | 71.4% | 71.4%   | 28.6% | 28.6%    | 28.6%  | 28.6% |
| Yellow Time (s)     | 3.5   | 3.5     | 3.5   | 3.5      | 3.5    | 3.5   |
| All-Red Time (s)    | 0.5   | 0.5     | 0.5   | 0.5      | 0.5    | 0.5   |
| Lead/Lag            |       |         |       |          |        |       |
| Lead-Lag Optimize?  |       |         |       |          |        |       |
| Recall Mode         | Max   | Max     | Max   | Max      | Max    | Max   |
| Act Effct Green (s) | 46.0  | 46.0    |       | 16.0     |        | 16.0  |
| Actuated g/C Ratio  | 0.66  | 0.66    |       | 0.23     |        | 0.23  |
| v/c Ratio           | 0.71  | 0.68    |       | 0.03     |        | 0.64  |
| Control Delay       | 11.7  | 11.1    |       | 18.3     |        | 35.6  |
| Queue Delay         | 0.0   | 0.0     |       | 0.0      |        | 0.0   |
| Total Delay         | 11.7  | 11.1    |       | 18.3     |        | 35.6  |
| LOS                 | В     | В       |       | В        |        | D     |
| Approach Delay      | 11.7  | 11.1    |       | 18.3     |        | 35.6  |
| Approach LOS        | В     | В       |       | В        |        | D     |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60 Control Type: Pretimed Maximum v/c Ratio: 0.71 Intersection Signal Delay: 13.9

Intersection Signal Delay: 13.9Intersection LOS: BIntersection Capacity Utilization 57.5%ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: W Front St (Rt 11) & Sunoco Station



|                     | •    | -     | •     | ←    | <b>1</b> | Ť    | _     | -     | ŧ    |  |
|---------------------|------|-------|-------|------|----------|------|-------|-------|------|--|
| Lane Group          | EBL  | EBT   | WBL   | WBT  | NBL      | NBT  | NBR   | SBL   | SBT  |  |
| Lane Configurations | 7    | ĵ.    | ¥     | f)   |          | ર્ન  | 7     |       | 4    |  |
| Volume (vph)        | 21   | 625   | 49    | 646  | 125      | 43   | 77    | 29    | 39   |  |
| Turn Type           | Perm |       | pm+pt |      | Perm     |      | Perm  | Perm  |      |  |
| Protected Phases    |      | 4     | 3     | 8    |          | 2    |       |       | 6    |  |
| Permitted Phases    | 4    |       | 8     |      | 2        |      | 2     | 6     |      |  |
| Detector Phases     | 4    | 4     | 3     | 8    | 2        | 2    | 2     | 6     | 6    |  |
| Minimum Initial (s) | 1.0  | 1.0   | 4.0   | 20.0 | 2.0      | 2.0  | 2.0   | 1.0   | 1.0  |  |
| Minimum Split (s)   | 25.0 | 25.0  | 8.0   | 25.0 | 6.0      | 6.0  | 6.0   | 5.0   | 5.0  |  |
| Total Split (s)     | 28.0 | 28.0  | 17.5  | 45.5 | 24.5     | 24.5 | 24.5  | 24.5  | 24.5 |  |
| Total Split (%)     |      |       |       |      | 35.0%    |      | 35.0% | 35.0% |      |  |
| Yellow Time (s)     | 3.0  | 3.0   | 3.0   | 3.0  |          | 3.0  | 3.0   | 3.0   | 3.0  |  |
| All-Red Time (s)    | 2.0  | 2.0   | 0.0   | 2.0  | 1.0      | 1.0  | 1.0   | 1.0   | 1.0  |  |
| Lead/Lag            | Lag  | Lag   | Lead  |      |          |      |       |       |      |  |
| Lead-Lag Optimize?  | Yes  | Yes   | Yes   |      |          |      |       |       |      |  |
| Recall Mode         | Max  | Max   | Max   | Max  | Max      | Max  | Max   | Max   | Max  |  |
| Act Effct Green (s) | 24.0 | 24.0  | 41.5  | 41.5 |          | 20.5 | 20.5  |       | 20.5 |  |
| Actuated g/C Ratio  | 0.34 | 0.34  | 0.59  | 0.59 |          | 0.29 | 0.29  |       | 0.29 |  |
| v/c Ratio           | 0.11 | 1.25  | 0.13  | 0.71 |          | 0.47 | 0.17  |       | 0.20 |  |
| Control Delay       | 17.4 | 149.8 | 6.7   | 14.7 |          | 25.0 | 5.7   |       | 17.2 |  |
| Queue Delay         | 0.0  | 0.0   | 0.0   | 0.0  |          | 0.0  | 0.0   |       | 0.0  |  |
| Total Delay         | 17.4 | 149.8 | 6.7   | 14.7 |          | 25.0 | 5.7   |       | 17.2 |  |
| LOS                 | В    | F     | Α     | В    |          | С    | Α     |       | В    |  |
| Approach Delay      |      | 145.6 |       | 14.1 |          | 18.9 |       |       | 17.2 |  |
| Approach LOS        |      | F     |       | В    |          | В    |       |       | В    |  |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 55
Control Type: Pretimed
Maximum v/c Ratio: 1.25
Intersection Signal Delay: 67.7

Intersection Signal Delay: 67.7 Intersection LOS: E
Intersection Capacity Utilization 63.2% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: RT 11 & N Poplar St



# APPENDIX C

Capacity Analysis
Future No Build Conditions

RT 11 & Poplar St AM Peak

|                       | •     | <b>→</b> | •    | •     | <b>←</b> | •    | 4     | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ    | 4    |
|-----------------------|-------|----------|------|-------|----------|------|-------|----------|-------------|----------|------|------|
| Lane Group            | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR         | SBL      | SBT  | SBR  |
| Lane Configurations   | J.    | f)       |      | ሻ     | <b>⊕</b> |      |       | ર્ન      | 7           |          | 4    |      |
| Total Lost Time (s)   | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0         | 4.0      | 4.0  | 4.0  |
| Satd. Flow (prot)     | 1810  | 1795     | 0    | 1719  | 1810     | 0    | 0     | 1719     | 1538        | 0        | 1810 | 0    |
| Flt Permitted         |       |          |      | 0.314 |          |      |       | 0.757    |             |          |      |      |
| Satd. Flow (perm)     | 1810  | 1795     | 0    | 568   | 1810     | 0    | 0     | 1370     | 1538        | 0        | 1810 | 0    |
| Satd. Flow (RTOR)     |       | 6        |      |       |          |      |       |          | 33          |          |      |      |
| Volume (vph)          | 0     | 412      | 23   | 35    | 540      | 0    | 49    | 0        | 23          | 0        | 0    | 0    |
| Peak Hour Factor      | 0.85  | 0.85     | 0.85 | 0.88  | 0.88     | 0.88 | 0.69  | 0.69     | 0.69        | 1.00     | 1.00 | 1.00 |
| Heavy Vehicles (%)    | 5%    | 5%       | 5%   | 5%    | 5%       | 5%   | 5%    | 5%       | 5%          | 5%       | 5%   | 5%   |
| Lane Group Flow (vph) |       | 512      | 0    | 40    | 614      | 0    | 0     | 71       | 33          | 0        | 0    | 0    |
| Turn Type             | Perm  |          |      | pm+pt |          |      | Perm  |          | Perm        | Perm     |      |      |
| Protected Phases      |       | 4        |      | 3     | 8        |      |       | 2        |             |          | 6    |      |
| Permitted Phases      | 4     |          |      | 8     |          |      | 2     |          | 2           | 6        |      |      |
| Minimum Split (s)     | 25.0  | 25.0     |      | 8.0   | 25.0     |      | 6.0   | 6.0      | 6.0         | 5.0      | 5.0  |      |
| Total Split (s)       | 40.0  | 40.0     | 0.0  | 13.0  | 53.0     | 0.0  | 17.0  | 17.0     | 17.0        | 17.0     | 17.0 | 0.0  |
| Total Split (%)       | 57.1% |          | 0.0% | 18.6% | 75.7%    | 0.0% | 24.3% |          |             | 24.3%    |      | 0.0% |
| Yellow Time (s)       | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0      | 3.0         | 3.0      | 3.0  |      |
| All-Red Time (s)      | 2.0   | 2.0      |      | 0.0   | 2.0      |      | 1.0   | 1.0      | 1.0         | 1.0      | 1.0  |      |
| Lead/Lag              | Lag   | Lag      |      | Lead  |          |      |       |          |             |          |      |      |
| Lead-Lag Optimize?    | Yes   | Yes      |      | Yes   |          |      |       |          |             |          |      |      |
| Act Effct Green (s)   |       | 36.0     |      | 49.0  | 49.0     |      |       | 13.0     | 13.0        |          |      |      |
| Actuated g/C Ratio    |       | 0.51     |      | 0.70  | 0.70     |      |       | 0.19     | 0.19        |          |      |      |
| v/c Ratio             |       | 0.55     |      | 0.07  | 0.48     |      |       | 0.28     | 0.11        |          |      |      |
| Control Delay         |       | 14.2     |      | 3.5   | 6.3      |      |       | 27.9     | 10.3        |          |      |      |
| Queue Delay           |       | 0.0      |      | 0.0   | 0.0      |      |       | 0.0      | 0.0         |          |      |      |
| Total Delay           |       | 14.2     |      | 3.5   | 6.3      |      |       | 27.9     | 10.3        |          |      |      |
| LOS                   |       | В        |      | Α     | Α        |      |       | С        | В           |          |      |      |
| Approach Delay        |       | 14.2     |      |       | 6.2      |      |       | 22.4     |             |          |      |      |
| Approach LOS          |       | В        |      |       | Α        |      |       | С        |             |          |      |      |

### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 40 Control Type: Pretimed Maximum v/c Ratio: 0.55

Intersection Signal Delay: 10.7 Intersection LOS: B
Intersection Capacity Utilization 39.1% ICU Level of Service A

Analysis Period (min) 15





TR-439

Rev. 2

Market St & 2nd St AM Peak

|                       | ۶    | <b>→</b> | $\rightarrow$ | €     | <b>←</b> | *     | 1     | †        | <i>&gt;</i> | <b>/</b> | ţ        | 4     |
|-----------------------|------|----------|---------------|-------|----------|-------|-------|----------|-------------|----------|----------|-------|
| Lane Group            | EBL  | EBT      | EBR           | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations   |      |          |               | ሻ     | <b>^</b> | 7     | ሻ     | <b>†</b> |             |          | <b>†</b> | 7     |
| Total Lost Time (s)   | 4.0  | 4.0      | 4.0           | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Satd. Flow (prot)     | 0    | 0        | 0             | 1787  | 3574     | 1599  | 1787  | 1881     | 0           | 0        | 1881     | 1599  |
| Flt Permitted         |      |          |               | 0.950 |          |       | 0.569 |          |             |          |          |       |
| Satd. Flow (perm)     | 0    | 0        | 0             | 1787  | 3574     | 1599  | 1070  | 1881     | 0           | 0        | 1881     | 1599  |
| Satd. Flow (RTOR)     |      |          |               |       |          | 37    |       |          |             |          |          | 69    |
| Volume (vph)          | 0    | 0        | 0             | 103   | 405      | 26    | 179   | 119      | 0           | 0        | 138      | 60    |
| Peak Hour Factor      | 1.00 | 1.00     | 1.00          | 0.70  | 0.70     | 0.70  | 0.65  | 0.65     | 0.65        | 0.87     | 0.87     | 0.87  |
| Heavy Vehicles (%)    | 1%   | 1%       | 1%            | 1%    | 1%       | 1%    | 1%    | 1%       | 1%          | 1%       | 1%       | 1%    |
| Lane Group Flow (vph) | 0    | 0        | 0             | 147   | 579      | 37    | 275   | 183      | 0           | 0        | 159      | 69    |
| Turn Type             |      |          |               | Perm  |          | Perm  | pm+pt |          |             |          |          | Perm  |
| Protected Phases      |      |          |               |       | 8        |       | 5     | 2        |             |          | 6        |       |
| Permitted Phases      |      |          |               | 8     |          | 8     | 2     |          |             |          |          | 6     |
| Minimum Split (s)     |      |          |               | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     |             |          | 20.5     | 20.5  |
| Total Split (s)       | 0.0  | 0.0      | 0.0           | 25.0  | 25.0     | 25.0  | 10.0  | 40.0     | 0.0         | 0.0      | 30.0     | 30.0  |
| Total Split (%)       | 0.0% | 0.0%     | 0.0%          | 38.5% | 38.5%    | 38.5% |       | 61.5%    | 0.0%        | 0.0%     | 46.2%    | 46.2% |
| Yellow Time (s)       |      |          |               | 3.5   | 3.5      | 3.5   | 3.0   | 3.5      |             |          | 3.5      | 3.5   |
| All-Red Time (s)      |      |          |               | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      |             |          | 1.0      | 1.0   |
| Lead/Lag              |      |          |               |       |          |       | Lead  |          |             |          | Lag      | Lag   |
| Lead-Lag Optimize?    |      |          |               | 24.0  | 0.1.0    | 0.4.0 | Yes   |          |             |          | Yes      | Yes   |
| Act Effct Green (s)   |      |          |               | 21.0  | 21.0     | 21.0  | 36.0  | 36.0     |             |          | 26.0     | 26.0  |
| Actuated g/C Ratio    |      |          |               | 0.32  | 0.32     | 0.32  | 0.55  | 0.55     |             |          | 0.40     | 0.40  |
| v/c Ratio             |      |          |               | 0.25  | 0.50     | 0.07  | 0.42  | 0.18     |             |          | 0.21     | 0.10  |
| Control Delay         |      |          |               | 17.7  | 19.6     | 6.3   | 4.5   | 1.6      |             |          | 13.8     | 4.1   |
| Queue Delay           |      |          |               | 0.0   | 0.0      | 0.0   | 0.1   | 0.3      |             |          | 0.0      | 0.0   |
| Total Delay           |      |          |               | 17.7  | 19.6     | 6.3   | 4.6   | 1.9      |             |          | 13.8     | 4.1   |
| LOS                   |      |          |               | В     | В        | Α     | Α     | A        |             |          | В        | А     |
| Approach Delay        |      |          |               |       | 18.6     |       |       | 3.6      |             |          | 10.8     |       |
| Approach LOS          |      |          |               |       | В        |       |       | Α        |             |          | В        |       |

### Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.50

Intersection Signal Delay: 12.6 Intersection LOS: B
Intersection Capacity Utilization 40.0% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: 2nd Street & Market St



Market St & Front St AM Peak

|                       | •     | -    | $\rightarrow$ | <    | <b>←</b> | •    | •    | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ        | 4    |
|-----------------------|-------|------|---------------|------|----------|------|------|----------|-------------|----------|----------|------|
| Lane Group            | EBL   | EBT  | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations   |       | सीके |               |      |          |      |      | <b>†</b> | 7           | , j      | <b>†</b> |      |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0           | 4.0  | 4.0      | 4.0  | 4.0  | 4.0      | 4.0         | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0     | 3353 | 0             | 0    | 0        | 0    | 0    | 1827     | 1553        | 1736     | 1827     | 0    |
| Flt Permitted         |       |      |               |      |          |      |      |          |             | 0.252    |          |      |
| Satd. Flow (perm)     | 0     | 3353 | 0             | 0    | 0        | 0    | 0    | 1827     | 1553        | 460      | 1827     | 0    |
| Satd. Flow (RTOR)     |       | 68   |               |      |          |      |      |          | 110         |          |          |      |
| Volume (vph)          | 1     | 306  | 90            | 0    | 0        | 0    | 0    | 289      | 75          | 62       | 171      | 0    |
| Peak Hour Factor      | 0.87  | 0.87 | 0.87          | 1.00 | 1.00     | 1.00 | 0.68 | 0.68     | 0.68        | 0.90     | 0.90     | 0.90 |
| Heavy Vehicles (%)    | 4%    | 4%   | 4%            | 4%   | 4%       | 4%   | 4%   | 4%       | 4%          | 4%       | 4%       | 4%   |
| Lane Group Flow (vph) |       | 456  | 0             | 0    | 0        | 0    | 0    | 425      | 110         | 69       | 190      | 0    |
| Turn Type             | Perm  |      |               |      |          |      |      |          | Perm        | pm+pt    |          |      |
| Protected Phases      |       | 4    |               |      |          |      |      | 2        |             | 1        | 6        |      |
| Permitted Phases      | 4     |      |               |      |          |      |      |          | 2           | 6        |          |      |
| Minimum Split (s)     | 24.0  | 24.0 |               |      |          |      |      | 21.0     | 21.0        | 10.0     | 31.0     |      |
| Total Split (s)       | 29.0  | 29.0 | 0.0           | 0.0  | 0.0      | 0.0  | 0.0  | 26.0     | 26.0        | 10.0     | 36.0     | 0.0  |
| Total Split (%)       | 44.6% |      | 0.0%          | 0.0% | 0.0%     | 0.0% | 0.0% |          |             | 15.4%    |          | 0.0% |
| Yellow Time (s)       | 3.2   | 3.2  |               |      |          |      |      | 4.0      | 4.0         | 3.0      | 4.0      |      |
| All-Red Time (s)      | 1.8   | 1.8  |               |      |          |      |      | 1.0      | 1.0         | 0.0      | 1.0      |      |
| Lead/Lag              |       |      |               |      |          |      |      | Lag      | Lag         | Lead     |          |      |
| Lead-Lag Optimize?    |       |      |               |      |          |      |      | Yes      | Yes         | Yes      |          |      |
| Act Effct Green (s)   |       | 25.0 |               |      |          |      |      | 22.0     | 22.0        | 32.0     | 32.0     |      |
| Actuated g/C Ratio    |       | 0.38 |               |      |          |      |      | 0.34     | 0.34        | 0.49     | 0.49     |      |
| v/c Ratio             |       | 0.34 |               |      |          |      |      | 0.69     | 0.18        | 0.20     | 0.21     |      |
| Control Delay         |       | 12.8 |               |      |          |      |      | 25.5     | 4.5         | 11.0     | 10.9     |      |
| Queue Delay           |       | 0.0  |               |      |          |      |      | 0.0      | 0.0         | 0.0      | 0.7      |      |
| Total Delay           |       | 12.8 |               |      |          |      |      | 25.5     | 4.5         | 11.0     | 11.6     |      |
| LOS                   |       | В    |               |      |          |      |      | С        | Α           | В        | В        |      |
| Approach Delay        |       | 12.8 |               |      |          |      |      | 21.2     |             |          | 11.4     |      |
| Approach LOS          |       | В    |               |      |          |      |      | С        |             |          | В        |      |

### Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 60 Control Type: Pretimed Maximum v/c Ratio: 0.69

Intersection Signal Delay: 16.1 Intersection LOS: B
Intersection Capacity Utilization 40.0% ICU Level of Service A

Analysis Period (min) 15





RT 11 & LaSalle St AM Peak

|                          | ۶          | <b>→</b> | •    | •     | <b>←</b>   | •         | 1      | †    | <i>&gt;</i> | <b>/</b> | ţ    | -√   |
|--------------------------|------------|----------|------|-------|------------|-----------|--------|------|-------------|----------|------|------|
| Lane Group               | EBL        | EBT      | EBR  | WBL   | WBT        | WBR       | NBL    | NBT  | NBR         | SBL      | SBT  | SBR  |
| Lane Configurations      | 7          |          |      | ሻ     | <b>↑</b> ↑ |           |        |      |             |          |      | 7    |
| Total Lost Time (s)      | 4.0        | 4.0      | 4.0  | 4.0   | 4.0        | 4.0       | 4.0    | 4.0  | 4.0         | 4.0      | 4.0  | 4.0  |
| Satd. Flow (prot)        | 1752       | 0        | 0    | 1752  | 3487       | 0         | 0      | 0    | 0           | 0        | 0    | 1596 |
| Flt Permitted            | 0.950      |          |      | 0.950 |            |           |        |      |             |          |      |      |
| Satd. Flow (perm)        | 1752       | 0        | 0    | 1752  | 3487       | 0         | 0      | 0    | 0           | 0        | 0    | 1596 |
| Satd. Flow (RTOR)        |            |          |      | 11    | 8          |           |        |      |             |          |      | 512  |
| Volume (vph)             | 47         | 0        | 0    | 9     | 610        | 20        | 0      | 0    | 0           | 0        | 0    | 65   |
| Peak Hour Factor         | 0.85       | 0.85     | 0.85 | 0.84  | 0.84       | 0.84      | 1.00   | 1.00 | 1.00        | 0.76     | 0.76 | 0.76 |
| Heavy Vehicles (%)       | 3%         | 3%       | 3%   | 3%    | 3%         | 3%        | 3%     | 3%   | 3%          | 3%       | 3%   | 3%   |
| Lane Group Flow (vph)    | 55         | 0        | 0    | 11    | 750        | 0         | 0      | 0    | 0           | 0        | 0    | 86   |
| Turn Type                | Prot       |          |      | Perm  |            |           |        |      |             |          |      | Free |
| Protected Phases         | 7          |          |      |       | 8          |           |        |      |             |          |      |      |
| Permitted Phases         |            |          |      | 8     |            |           |        |      |             |          |      | Free |
| Detector Phases          | 7          |          |      | 8     |            |           |        |      |             |          |      |      |
| Minimum Initial (s)      | 1.0        |          |      | 4.0   |            |           |        |      |             |          |      |      |
| Minimum Split (s)        | 5.0        |          |      | 25.0  | 25.0       |           |        |      |             |          |      |      |
| Total Split (s)          | 25.0       | 0.0      | 0.0  | 45.0  | 45.0       | 0.0       | 0.0    | 0.0  | 0.0         | 0.0      | 0.0  | 0.0  |
| Total Split (%)          | 35.7%      | 0.0%     | 0.0% | 64.3% | 64.3%      | 0.0%      | 0.0%   | 0.0% | 0.0%        | 0.0%     | 0.0% | 0.0% |
| Yellow Time (s)          | 3.0        |          |      | 3.0   | 3.0        |           |        |      |             |          |      |      |
| All-Red Time (s)         | 1.0        |          |      | 1.0   | 1.0        |           |        |      |             |          |      |      |
| Lead/Lag                 | Lead       |          |      | Lag   | Lag        |           |        |      |             |          |      |      |
| Lead-Lag Optimize?       | Yes        |          |      | Yes   | Yes        |           |        |      |             |          |      |      |
| Recall Mode              | None       |          |      | None  | None       |           |        |      |             |          |      |      |
| Act Effct Green (s)      | 7.0        |          |      | 6.1   | 6.1        |           |        |      |             |          |      | 13.6 |
| Actuated g/C Ratio       | 0.32       |          |      | 0.45  | 0.45       |           |        |      |             |          |      | 1.00 |
| v/c Ratio                | 0.10       |          |      | 0.01  | 0.48       |           |        |      |             |          |      | 0.05 |
| Control Delay            | 5.9        |          |      | 2.3   | 3.0        |           |        |      |             |          |      | 0.1  |
| Queue Delay              | 0.0        |          |      | 0.0   |            |           |        |      |             |          |      | 0.0  |
| Total Delay              | 5.9        |          |      | 2.3   | 3.0        |           |        |      |             |          |      | 0.1  |
| LOS                      | Α          |          |      | Α     |            |           |        |      |             |          |      | Α    |
| Approach Delay           |            |          |      |       | 3.0        |           |        |      |             |          |      |      |
| Approach LOS             |            |          |      |       | Α          |           |        |      |             |          |      |      |
| Intersection Summary     |            |          |      |       |            |           |        |      |             |          |      |      |
| Cycle Length: 70         |            |          |      |       |            |           |        |      |             |          |      |      |
| Actuated Cycle Length:   | 13.6       |          |      |       |            |           |        |      |             |          |      |      |
| Natural Cycle: 40        |            |          |      |       |            |           |        |      |             |          |      |      |
| Control Type: Actuated-  |            | dinated  |      |       |            |           |        |      |             |          |      |      |
| Maximum v/c Ratio: 0.4   | 8          |          |      |       |            |           |        |      |             |          |      |      |
| Intersection Signal Dela | ay: 2.9    |          |      |       | Intersect  |           |        |      |             |          |      |      |
| Intersection Capacity U  | tilization | 27.5%    |      |       | ICU Leve   | el of Ser | vice A |      |             |          |      |      |
| Analysis Daried (min) 1  | _          |          |      |       |            |           |        |      |             |          |      |      |

RT 11 & LaSalle St AM Peak



RT 11 & Main St AM Peak

|                        | •        | •       | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | <b>↓</b> |
|------------------------|----------|---------|----------|-------------|-------------|----------|
| Lane Group             | WBL      | WBR     | NBT      | NBR         | SBL         | SBT      |
| Lane Configurations    | W        |         | <u></u>  | 7           | 7           | <u></u>  |
| Total Lost Time (s)    | 4.0      | 4.0     | 4.0      | 4.0         | 4.0         | 4.0      |
| Satd. Flow (prot)      | 1592     | 0       | 1776     | 1509        | 1687        | 1776     |
| Flt Permitted          | 0.982    |         |          |             | 0.535       |          |
| Satd. Flow (perm)      | 1592     | 0       | 1776     | 1509        | 950         | 1776     |
| Satd. Flow (RTOR)      | 75       |         |          | 14          |             |          |
| Volume (vph)           | 30       | 54      | 164      | 13          | 55          | 201      |
| Peak Hour Factor       | 0.72     | 0.72    | 0.92     | 0.92        | 0.92        | 0.92     |
| Heavy Vehicles (%)     | 7%       | 7%      | 7%       | 7%          | 7%          | 7%       |
| Lane Group Flow (vph)  | 117      | 0       | 178      | 14          | 60          | 218      |
| Turn Type              |          |         |          | Perm        | pm+pt       |          |
| Protected Phases       | 4        |         | 6        |             | 5           | 2        |
| Permitted Phases       |          |         |          | 6           | 2           |          |
| Detector Phases        | 4        |         | 6        | 6           | 5           | 2        |
| Minimum Initial (s)    | 5.0      |         | 12.0     | 12.0        | 5.0         | 17.0     |
| Minimum Split (s)      | 10.2     |         | 21.4     | 21.4        | 10.4        | 22.4     |
| Total Split (s)        | 22.6     | 0.0     | 29.0     | 29.0        | 18.4        | 47.4     |
| Total Split (%)        | 32.3%    | 0.0%    | 41.4%    | 41.4%       | 26.3%       | 67.7%    |
| Yellow Time (s)        | 4.1      |         | 4.2      | 4.2         | 4.2         | 4.2      |
| All-Red Time (s)       | 1.1      |         | 1.2      | 1.2         | 1.2         | 1.2      |
| Lead/Lag               |          |         | Lag      | Lag         | Lead        |          |
| Lead-Lag Optimize?     |          |         | Yes      | Yes         | Yes         |          |
| Recall Mode            | None     |         | None     | None        | None        | None     |
| Act Effct Green (s)    | 11.3     |         | 16.9     | 16.9        | 18.3        | 24.0     |
| Actuated g/C Ratio     | 0.26     |         | 0.37     | 0.37        | 0.40        | 0.50     |
| v/c Ratio              | 0.25     |         | 0.27     | 0.02        | 0.11        | 0.24     |
| Control Delay          | 7.9      |         | 10.2     | 6.8         | 5.5         | 4.6      |
| Queue Delay            | 0.0      |         | 0.0      | 0.0         | 0.0         | 0.0      |
| Total Delay            | 7.9      |         | 10.2     | 6.8         | 5.5         | 4.6      |
| LOS                    | Α        |         | В        | Α           | Α           | Α        |
| Approach Delay         | 7.9      |         | 10.0     |             |             | 4.8      |
| Approach LOS           | Α        |         | Α        |             |             | Α        |
| Intersection Summary   |          |         |          |             |             |          |
| Cycle Length: 70       |          |         |          |             |             |          |
| Actuated Cycle Length: | 38.7     |         |          |             |             |          |
| Natural Cycle: 45      | 30.7     |         |          |             |             |          |
| Control Type: Actuated | Linguage | dinatad |          |             |             |          |

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.27

Intersection Signal Delay: 7.1 Intersection LOS: A
Intersection Capacity Utilization 29.1% ICU Level of Service A

Analysis Period (min) 15

RT 11 & Main St AM Peak

 RT 11 & Orange St AM Peak

|                       | ۶    | -            | $\rightarrow$ | •    | ←        | *    | 1     | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | 4    |
|-----------------------|------|--------------|---------------|------|----------|------|-------|----------|-------------|----------|----------|------|
| Lane Group            | EBL  | EBT          | EBR           | WBL  | WBT      | WBR  | NBL   | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations   |      | <del>(</del> |               |      | <b>1</b> |      |       | 4        |             |          | 4        |      |
| Total Lost Time (s)   | 4.0  | 4.0          | 4.0           | 4.0  | 4.0      | 4.0  | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0    | 1859         | 0             | 0    | 1863     | 0    | 0     | 1645     | 0           | 0        | 1775     | 0    |
| Flt Permitted         |      |              |               |      |          |      |       | 0.967    |             |          | 0.732    |      |
| Satd. Flow (perm)     | 0    | 1859         | 0             | 0    | 1863     | 0    | 0     | 1607     | 0           | 0        | 1364     | 0    |
| Satd. Flow (RTOR)     |      | 2            |               |      |          |      |       | 4        |             |          |          |      |
| Volume (vph)          | 0    | 415          | 6             | 0    | 581      | 0    | 1     | 0        | 3           | 81       | 2        | 0    |
| Peak Hour Factor      | 0.89 | 0.89         | 0.89          | 0.83 | 0.83     | 0.83 | 0.75  | 0.75     | 0.75        | 0.67     | 0.67     | 0.67 |
| Lane Group Flow (vph) | 0    | 473          | 0             | 0    | 700      | 0    | 0     | 5        | 0           | 0        | 124      | 0    |
| Turn Type             |      |              |               |      |          |      | Perm  |          |             | custom   |          |      |
| Protected Phases      |      | 4            |               |      | 8        |      |       | 2        |             |          |          |      |
| Permitted Phases      |      |              |               |      |          |      | 2     |          |             | 6        | 6        |      |
| Minimum Split (s)     |      | 20.0         |               |      | 20.0     |      | 20.0  | 20.0     |             | 20.0     | 20.0     |      |
| Total Split (s)       | 0.0  | 36.0         | 0.0           | 0.0  | 36.0     | 0.0  | 19.0  | 19.0     | 0.0         | 19.0     | 19.0     | 0.0  |
| Total Split (%)       | 0.0% | 65.5%        | 0.0%          | 0.0% | 65.5%    | 0.0% | 34.5% |          | 0.0%        | 34.5%    |          | 0.0% |
| Yellow Time (s)       |      | 3.5          |               |      | 3.5      |      | 3.5   | 3.5      |             | 3.5      | 3.5      |      |
| All-Red Time (s)      |      | 0.5          |               |      | 0.5      |      | 0.5   | 0.5      |             | 0.5      | 0.5      |      |
| Lead/Lag              |      |              |               |      |          |      |       |          |             |          |          |      |
| Lead-Lag Optimize?    |      |              |               |      |          |      |       |          |             |          |          |      |
| Act Effct Green (s)   |      | 32.0         |               |      | 32.0     |      |       | 15.0     |             |          | 15.0     |      |
| Actuated g/C Ratio    |      | 0.58         |               |      | 0.58     |      |       | 0.27     |             |          | 0.27     |      |
| v/c Ratio             |      | 0.44         |               |      | 0.65     |      |       | 0.01     |             |          | 0.33     |      |
| Control Delay         |      | 8.0          |               |      | 11.2     |      |       | 11.0     |             |          | 19.1     |      |
| Queue Delay           |      | 0.0          |               |      | 0.0      |      |       | 0.0      |             |          | 0.0      |      |
| Total Delay           |      | 8.0          |               |      | 11.2     |      |       | 11.0     |             |          | 19.1     |      |
| LOS                   |      | Α            |               |      | В        |      |       | В        |             |          | В        |      |
| Approach Delay        |      | 8.0          |               |      | 11.2     |      |       | 11.0     |             |          | 19.1     |      |
| Approach LOS          |      | А            |               |      | В        |      |       | В        |             |          | В        |      |

# Intersection Summary

Cycle Length: 55

Actuated Cycle Length: 55

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 50
Control Type: Pretimed
Maximum v/c Ratio: 0.65

Intersection Signal Delay: 10.8 Intersection LOS: B
Intersection Capacity Utilization 48.5% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: RT 11 &



RT 11 & Union St AM Peak

|                       | •     | -     | •    | <     | <b>←</b> | •    | 1     | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | 4    |
|-----------------------|-------|-------|------|-------|----------|------|-------|----------|----------|----------|----------|------|
| Lane Group            | EBL   | EBT   | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations   |       | 4     |      |       | 4        |      | ሻ     | f)       |          | , j      | f)       |      |
| Total Lost Time (s)   | 4.0   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0      | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0     | 1674  | 0    | 0     | 1754     | 0    | 1719  | 1797     | 0        | 1719     | 1750     | 0    |
| Flt Permitted         |       | 0.809 |      |       | 0.850    |      | 0.579 |          |          | 0.564    |          |      |
| Satd. Flow (perm)     | 0     | 1392  | 0    | 0     |          | 0    | 1048  | 1797     | 0        | 1021     | 1750     | 0    |
| Satd. Flow (RTOR)     |       | 42    |      |       | 3        |      |       | 6        |          |          | 34       |      |
| Volume (vph)          | 152   | 25    | 100  | 12    | 14       | 2    | 66    | 235      | 12       | 2        | 175      | 49   |
| Peak Hour Factor      | 0.96  | 0.96  | 0.96 | 0.78  | 0.78     | 0.78 | 0.88  | 0.88     | 0.88     | 0.85     | 0.85     | 0.85 |
| Heavy Vehicles (%)    | 5%    | 5%    | 5%   | 5%    | 5%       | 5%   | 5%    | 5%       | 5%       | 5%       | 5%       | 5%   |
| Lane Group Flow (vph) | 0     | 288   | 0    | 0     | 36       | 0    | 75    | 281      | 0        | 2        | 264      | 0    |
| Turn Type             | Perm  |       |      | Perm  |          |      | Perm  |          |          | Perm     |          |      |
| Protected Phases      |       | 4     |      |       | 8        |      |       | 2        |          |          | 6        |      |
| Permitted Phases      | 4     |       |      | 8     |          |      | 2     |          |          | 6        |          |      |
| Minimum Split (s)     | 26.0  | 26.0  |      | 26.0  | 26.0     |      | 44.0  | 44.0     |          | 44.0     | 44.0     |      |
| Total Split (s)       | 26.0  | 26.0  | 0.0  | 26.0  | 26.0     | 0.0  | 44.0  | 44.0     | 0.0      | 44.0     | 44.0     | 0.0  |
| Total Split (%)       | 37.1% |       | 0.0% | 37.1% |          | 0.0% | 62.9% |          | 0.0%     | 62.9%    |          | 0.0% |
| Yellow Time (s)       | 3.0   | 3.0   |      | 3.0   | 3.0      |      | 3.0   | 3.0      |          | 3.0      | 3.0      |      |
| All-Red Time (s)      | 3.0   | 3.0   |      | 3.0   | 3.0      |      | 3.0   | 3.0      |          | 3.0      | 3.0      |      |
| Lead/Lag              |       |       |      |       |          |      |       |          |          |          |          |      |
| Lead-Lag Optimize?    |       |       |      |       |          |      |       |          |          |          |          |      |
| Act Effct Green (s)   |       | 22.0  |      |       | 22.0     |      | 40.0  | 40.0     |          | 40.0     | 40.0     |      |
| Actuated g/C Ratio    |       | 0.31  |      |       | 0.31     |      | 0.57  | 0.57     |          | 0.57     | 0.57     |      |
| v/c Ratio             |       | 0.62  |      |       | 0.08     |      | 0.13  | 0.27     |          | 0.00     | 0.26     |      |
| Control Delay         |       | 24.1  |      |       | 16.4     |      | 7.7   | 8.3      |          | 6.5      | 7.3      |      |
| Queue Delay           |       | 0.0   |      |       | 0.0      |      | 0.0   | 0.0      |          | 0.0      | 0.0      |      |
| Total Delay           |       | 24.1  |      |       | 16.4     |      | 7.7   | 8.3      |          | 6.5      | 7.3      |      |
| LOS                   |       | С     |      |       | В        |      | Α     | Α        |          | Α        | Α        |      |
| Approach Delay        |       | 24.1  |      |       | 16.4     |      |       | 8.2      |          |          | 7.3      |      |
| Approach LOS          |       | С     |      |       | В        |      |       | Α        |          |          | Α        |      |

## Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70 Control Type: Pretimed Maximum v/c Ratio: 0.62

Intersection Signal Delay: 13.1 Intersection LOS: B
Intersection Capacity Utilization 57.3% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Rt 239/Union St & RT 11/Main St



|                                  | TW             | O-WAY STOP       | CONTR   | OL S   | UMMARY        |          |           |      |
|----------------------------------|----------------|------------------|---------|--------|---------------|----------|-----------|------|
| General Informatio               | n              |                  | Site Iı | nforn  | nation        |          |           |      |
| Analyst                          | Christoph      | ner Puglisi      | Interse | ection |               | PPL & Rt | 11        |      |
| Agency/Co.                       | KLD Ass        |                  | Jurisdi | ction  |               | Salem Tv | vp        |      |
| Date Performed                   | 7/3/2008       |                  | Analys  | is Yea | ır            | 2008     |           |      |
| Analysis Time Period             | AM Peak        |                  |         |        |               |          |           |      |
| Project Description 5            |                | na/Bell Bend NPI |         |        |               |          |           |      |
| East/West Street: PPL            |                |                  |         |        | Street: US Rt | 11       |           |      |
| Intersection Orientation:        | North-South    |                  | Study F | Period | (hrs): 0.25   |          |           |      |
| Vehicle Volumes a                | nd Adjustme    | ents             |         |        |               |          |           |      |
| Major Street                     |                | Northbound       |         |        |               | Southbou | ınd       |      |
| Movement                         | 1              | 2                | 3       |        | 4             | 5        |           | 6    |
|                                  | L              | T                | R       |        | L             | T_       |           | R    |
| Volume (veh/h)                   | 268            | 228              | 4.00    |        | 4.00          | 154      |           | 97   |
| Peak-Hour Factor, PHF            | 1.00           | 1.00             | 1.00    |        | 1.00          | 1.00     |           | 1.00 |
| Hourly Flow Rate, HFR<br>(veh/h) | 268            | 228              | 0       |        | 0             | 154      |           | 97   |
| Percent Heavy Vehicles           | 0              |                  |         |        | 0             |          |           |      |
| Median Type                      |                |                  | Two V   | Vay Le | ft Turn Lane  |          |           |      |
| RT Channelized                   |                |                  | 0       |        |               |          |           | 0    |
| Lanes                            | 1              | 1                | 0       |        | 0             | 1        |           | 0    |
| Configuration                    | L              | T                |         |        |               |          |           | TR   |
| Jpstream Signal                  |                | 0                |         |        |               | 0        |           |      |
| Minor Street                     |                | Eastbound        |         |        |               | Westbou  | nd        |      |
| Movement                         | 7              | 8                | 9       |        | 10            | 11       |           | 12   |
|                                  | L              | Т                | R       |        | ┙             | Т        |           | R    |
| Volume (veh/h)                   | 13             |                  | 34      |        |               |          |           |      |
| Peak-Hour Factor, PHF            | 1.00           | 1.00             | 1.00    |        | 1.00          | 1.00     |           | 1.00 |
| Hourly Flow Rate, HFR<br>(veh/h) | 13             | 0                | 34      |        | 0             | 0        |           | 0    |
| Percent Heavy Vehicles           | 0              | 0                | 0       |        | 0             | 0        |           | 0    |
| Percent Grade (%)                |                | 0                |         |        |               | 0        |           |      |
| Flared Approach                  |                | N                |         |        |               | N        |           |      |
| Storage                          |                | 0                |         |        |               | 0        |           |      |
| RT Channelized                   |                |                  | 0       |        |               |          |           | 0    |
| Lanes                            | 1              | 0                | 1       |        | 0             | 0        |           | 0    |
| Configuration                    | L              |                  | R       |        | -             | 1        |           |      |
| Delay, Queue Length,             | and Level of S | ervice           | •       |        |               | •        | -         |      |
| Approach                         | Northbound     | Southbound       | 1       | Vestb  | ound          | I F      | Eastbound | 1    |
| Movement                         | 1              | 4                | 7       | 8      |               | 10       | 11        | 12   |
| Lane Configuration               | L              | '                | •       | ٣      |               | L        |           | R    |
| / (veh/h)                        | 268            |                  |         |        |               | 13       |           | 34   |
| C (m) (veh/h)                    | 1326           |                  |         |        |               | 312      |           | 844  |
| //c                              | 0.20           |                  |         |        |               | 0.04     |           | 0.04 |
| 95% queue length                 | 0.76           |                  |         |        |               | 0.13     |           | 0.04 |
|                                  |                |                  |         |        | -             |          | -         |      |
| Control Delay (s/veh)            | 8.4            |                  |         |        |               | 17.0     |           | 9.4  |
| LOS                              | Α              |                  |         |        |               | С        | <u> </u>  | Α    |
| Approach Delay (s/veh)           |                |                  |         |        |               |          | 11.5      |      |
| Approach LOS                     |                |                  |         |        |               |          | В         |      |

Copyright © 2007 University of Florida, All Rights Reserved

 $\begin{array}{c} \text{Appendix } G_{ICS+^{TM}} \text{ } \text{Version 5.3} \\ \text{10} \end{array}$ 

Generated: 7/11/2008 10:41 AM

RT 11 & Poplar St PM Peak

|                       | ۶     | -    | $\rightarrow$ | •     | ←        | •    | 1     | <b>†</b> | <i>*</i> | <b>/</b> | <b>↓</b> | 4    |
|-----------------------|-------|------|---------------|-------|----------|------|-------|----------|----------|----------|----------|------|
| Lane Group            | EBL   | EBT  | EBR           | WBL   | WBT      | WBR  | NBL   | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations   | J.    | f)   |               | ሻ     | <b>₽</b> |      |       | ર્ન      | 7        |          | 4        |      |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0           | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0      | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 1770  | 1852 | 0             | 1770  | 1859     | 0    | 0     | 1796     | 1583     | 0        | 1789     | 0    |
| Flt Permitted         | 0.274 |      |               | 0.117 |          |      |       | 0.742    |          |          | 0.853    |      |
| Satd. Flow (perm)     | 510   | 1852 | 0             | 218   | 1859     | 0    | 0     | 1382     | 1583     | 0        | 1552     | 0    |
| Satd. Flow (RTOR)     |       | 5    |               |       | 2        |      |       |          | 95       |          | 14       |      |
| Volume (vph)          | 21    | 661  | 28            | 51    | 681      | 8    | 130   | 45       | 81       | 30       | 42       | 15   |
| Peak Hour Factor      | 0.82  | 0.82 | 0.82          | 0.83  | 0.83     | 0.83 | 0.85  | 0.85     | 0.85     | 0.84     | 0.84     | 0.84 |
| Lane Group Flow (vph) | 26    | 840  | 0             | 61    | 830      | 0    | 0     | 206      | 95       | 0        | 104      | 0    |
| Turn Type             | Perm  |      |               | pm+pt |          |      | Perm  |          | Perm     | Perm     |          |      |
| Protected Phases      |       | 4    |               | 3     | 8        |      |       | 2        |          |          | 6        |      |
| Permitted Phases      | 4     |      |               | 8     |          |      | 2     |          | 2        | 6        |          |      |
| Minimum Split (s)     | 25.0  | 25.0 |               | 8.0   | 25.0     |      | 6.0   | 6.0      | 6.0      | 5.0      | 5.0      |      |
| Total Split (s)       | 42.0  | 42.0 | 0.0           | 8.0   | 50.0     | 0.0  | 20.0  | 20.0     | 20.0     | 20.0     | 20.0     | 0.0  |
| Total Split (%)       | 60.0% |      | 0.0%          |       | 71.4%    | 0.0% | 28.6% |          |          |          | 28.6%    | 0.0% |
| Yellow Time (s)       | 3.0   | 3.0  |               | 3.0   | 3.0      |      | 3.0   | 3.0      | 3.0      | 3.0      | 3.0      |      |
| All-Red Time (s)      | 2.0   | 2.0  |               | 0.0   | 2.0      |      | 1.0   | 1.0      | 1.0      | 1.0      | 1.0      |      |
| Lead/Lag              | Lag   | Lag  |               | Lead  |          |      |       |          |          |          |          |      |
| Lead-Lag Optimize?    | Yes   | Yes  |               | Yes   |          |      |       |          |          |          |          |      |
| Act Effct Green (s)   | 38.0  | 38.0 |               | 46.0  | 46.0     |      |       | 16.0     | 16.0     |          | 16.0     |      |
| Actuated g/C Ratio    | 0.54  | 0.54 |               | 0.66  | 0.66     |      |       | 0.23     | 0.23     |          | 0.23     |      |
| v/c Ratio             | 0.09  | 0.83 |               | 0.26  | 0.68     |      |       | 0.65     | 0.22     |          | 0.28     |      |
| Control Delay         | 8.9   | 22.8 |               | 7.1   | 11.0     |      |       | 36.0     | 7.0      |          | 21.9     |      |
| Queue Delay           | 0.0   | 0.0  |               | 0.0   | 0.0      |      |       | 0.0      | 0.0      |          | 0.0      |      |
| Total Delay           | 8.9   | 22.8 |               | 7.1   | 11.0     |      |       | 36.0     | 7.0      |          | 21.9     |      |
| LOS                   | Α     | С    |               | Α     | В        |      |       | D        | Α        |          | С        |      |
| Approach Delay        |       | 22.4 |               |       | 10.7     |      |       | 26.8     |          |          | 21.9     |      |
| Approach LOS          |       | С    |               |       | В        |      |       | С        |          |          | С        |      |

### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.83

Intersection Signal Delay: 18.2 Intersection LOS: B
Intersection Capacity Utilization 65.3% ICU Level of Service C





Market St & 2nd St PM Peak

|                       | ۶    | <b>→</b> | •    | €     | <b>←</b> | *     | 1     | <b>†</b> | <b>/</b> | <b>/</b> | ļ        | 4    |
|-----------------------|------|----------|------|-------|----------|-------|-------|----------|----------|----------|----------|------|
| Lane Group            | EBL  | EBT      | EBR  | WBL   | WBT      | WBR   | NBL   | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations   |      |          |      | ሻ     | ተተ       | 7     | ሻ     | <b>1</b> |          |          | <b>†</b> | 7    |
| Total Lost Time (s)   | 4.0  | 4.0      | 4.0  | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0      | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0    | 0        | 0    | 1787  | 3574     | 1599  | 1787  | 1881     | 0        | 0        | 1881     | 1599 |
| Flt Permitted         |      |          |      | 0.950 |          |       | 0.449 |          |          |          |          |      |
| Satd. Flow (perm)     | 0    | 0        | 0    | 1787  | 3574     | 1599  | 845   | 1881     | 0        | 0        | 1881     | 1599 |
| Satd. Flow (RTOR)     |      |          |      |       |          | 67    |       |          |          |          |          | 129  |
| Volume (vph)          | 0    | 0        | 0    | 212   | 511      | 59    | 151   | 112      | 0        | 0        | 236      | 110  |
| Peak Hour Factor      | 1.00 | 1.00     | 1.00 | 0.88  | 0.88     | 0.88  | 0.81  | 0.81     | 0.81     | 0.85     | 0.85     | 0.85 |
| Heavy Vehicles (%)    | 1%   | 1%       | 1%   | 1%    | 1%       | 1%    | 1%    | 1%       | 1%       | 1%       | 1%       | 1%   |
| Lane Group Flow (vph) | 0    | 0        | 0    | 241   | 581      | 67    | 186   | 138      | 0        | 0        | 278      | 129  |
| Turn Type             |      |          |      | Perm  |          | Perm  | pm+pt |          |          |          |          | Perm |
| Protected Phases      |      |          |      |       | 8        |       | 5     | 2        |          |          | 6        |      |
| Permitted Phases      |      |          |      | 8     |          | 8     | 2     |          |          |          |          | 6    |
| Minimum Split (s)     |      |          |      | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     |          |          | 20.5     | 20.5 |
| Total Split (s)       | 0.0  | 0.0      | 0.0  | 25.0  | 25.0     | 25.0  | 10.0  | 40.0     | 0.0      | 0.0      | 30.0     | 30.0 |
| Total Split (%)       | 0.0% | 0.0%     | 0.0% | 38.5% | 38.5%    | 38.5% | 15.4% |          | 0.0%     | 0.0%     | 46.2%    |      |
| Yellow Time (s)       |      |          |      | 3.5   | 3.5      | 3.5   | 3.0   | 3.5      |          |          | 3.5      | 3.5  |
| All-Red Time (s)      |      |          |      | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      |          |          | 1.0      | 1.0  |
| Lead/Lag              |      |          |      |       |          |       | Lead  |          |          |          | Lag      | Lag  |
| Lead-Lag Optimize?    |      |          |      | 0.4.0 | 0.4.0    | 0.4.0 | Yes   |          |          |          | Yes      | Yes  |
| Act Effct Green (s)   |      |          |      | 21.0  | 21.0     | 21.0  | 36.0  | 36.0     |          |          | 26.0     | 26.0 |
| Actuated g/C Ratio    |      |          |      | 0.32  | 0.32     | 0.32  | 0.55  | 0.55     |          |          | 0.40     | 0.40 |
| v/c Ratio             |      |          |      | 0.42  | 0.50     | 0.12  | 0.34  | 0.13     |          |          | 0.37     | 0.18 |
| Control Delay         |      |          |      | 20.0  | 19.6     | 5.4   | 4.9   | 1.5      |          |          | 15.5     | 3.5  |
| Queue Delay           |      |          |      | 0.0   | 0.0      | 0.0   | 0.1   | 0.0      |          |          | 0.0      | 0.0  |
| Total Delay           |      |          |      | 20.0  | 19.6     | 5.4   | 5.1   | 1.5      |          |          | 15.5     | 3.5  |
| LOS                   |      |          |      | В     | B        | Α     | Α     | A        |          |          | B        | А    |
| Approach Delay        |      |          |      |       | 18.7     |       |       | 3.5      |          |          | 11.7     |      |
| Approach LOS          |      |          |      |       | В        |       |       | Α        |          |          | В        |      |

## Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.50

Intersection Signal Delay: 13.9 Intersection LOS: B
Intersection Capacity Utilization 69.8% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: 2nd Street & Market St



Market St & Front St PM Peak

|                       | •     | -           | $\rightarrow$ | <    | <b>←</b> | •    | •    | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ        | 4    |
|-----------------------|-------|-------------|---------------|------|----------|------|------|----------|-------------|----------|----------|------|
| Lane Group            | EBL   | EBT         | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations   |       | <b>€</b> 1Ъ |               |      |          |      |      | <b>†</b> | 7           | , j      | <b>†</b> |      |
| Total Lost Time (s)   | 4.0   | 4.0         | 4.0           | 4.0  | 4.0      | 4.0  | 4.0  | 4.0      | 4.0         | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0     | 3446        | 0             | 0    | 0        | 0    | 0    | 1881     | 1599        | 1787     | 1881     | 0    |
| Flt Permitted         |       |             |               |      |          |      |      |          |             | 0.392    |          |      |
| Satd. Flow (perm)     | 0     | 3446        | 0             | 0    | 0        | 0    | 0    | 1881     | 1599        | 737      | 1881     | 0    |
| Satd. Flow (RTOR)     |       | 75          |               |      |          |      |      |          | 142         |          |          |      |
| Volume (vph)          | 6     | 613         | 195           | 0    | 0        | 0    | 0    | 292      | 141         | 92       | 351      | 0    |
| Peak Hour Factor      | 0.87  | 0.87        | 0.87          | 1.00 | 1.00     | 1.00 | 0.99 | 0.99     | 0.99        | 0.81     | 0.81     | 0.81 |
| Heavy Vehicles (%)    | 1%    | 1%          | 1%            | 1%   | 1%       | 1%   | 1%   | 1%       | 1%          | 1%       | 1%       | 1%   |
| Lane Group Flow (vph) | 0     | 936         | 0             | 0    | 0        | 0    | 0    | 295      | 142         | 114      | 433      | 0    |
| Turn Type             | Perm  |             |               |      |          |      |      |          | Perm        | pm+pt    |          |      |
| Protected Phases      |       | 4           |               |      |          |      |      | 2        |             | 1        | 6        |      |
| Permitted Phases      | 4     |             |               |      |          |      |      |          | 2           | 6        |          |      |
| Minimum Split (s)     | 24.0  | 24.0        |               |      |          |      |      | 21.0     | 21.0        | 10.0     | 31.0     |      |
| Total Split (s)       | 29.0  | 29.0        | 0.0           | 0.0  | 0.0      | 0.0  | 0.0  | 26.0     | 26.0        | 10.0     | 36.0     | 0.0  |
| Total Split (%)       | 44.6% |             | 0.0%          | 0.0% | 0.0%     | 0.0% | 0.0% |          |             | 15.4%    |          | 0.0% |
| Yellow Time (s)       | 3.2   | 3.2         |               |      |          |      |      | 4.0      | 4.0         | 3.0      | 4.0      |      |
| All-Red Time (s)      | 1.8   | 1.8         |               |      |          |      |      | 1.0      | 1.0         | 0.0      | 1.0      |      |
| Lead/Lag              |       |             |               |      |          |      |      | Lag      | Lag         | Lead     |          |      |
| Lead-Lag Optimize?    |       |             |               |      |          |      |      | Yes      | Yes         | Yes      |          |      |
| Act Effct Green (s)   |       | 25.0        |               |      |          |      |      | 22.0     | 22.0        | 32.0     | 32.0     |      |
| Actuated g/C Ratio    |       | 0.38        |               |      |          |      |      | 0.34     | 0.34        | 0.49     | 0.49     |      |
| v/c Ratio             |       | 0.68        |               |      |          |      |      | 0.46     | 0.22        | 0.25     | 0.47     |      |
| Control Delay         |       | 18.3        |               |      |          |      |      | 19.8     | 4.3         | 10.4     | 12.5     |      |
| Queue Delay           |       | 0.0         |               |      |          |      |      | 0.0      | 0.0         | 0.0      | 1.5      |      |
| Total Delay           |       | 18.3        |               |      |          |      |      | 19.8     | 4.3         | 10.4     | 14.0     |      |
| LOS                   |       | В           |               |      |          |      |      | В        | А           | В        | В        |      |
| Approach Delay        |       | 18.3        |               |      |          |      |      | 14.8     |             |          | 13.2     |      |
| Approach LOS          |       | В           |               |      |          |      |      | В        |             |          | В        |      |

## Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 55 Control Type: Pretimed Maximum v/c Ratio: 0.68

Intersection Signal Delay: 16.1 Intersection LOS: B
Intersection Capacity Utilization 69.8% ICU Level of Service C





RT 11 & LaSalle St PM Peak

|                          | •          | <b>→</b> | •    | •     | +           | •         | •      | †    | <i>&gt;</i> | <b>\</b> | <b>+</b> | <b>√</b> |
|--------------------------|------------|----------|------|-------|-------------|-----------|--------|------|-------------|----------|----------|----------|
| Lane Group               | EBL        | EBT      | EBR  | WBL   | WBT         | WBR       | NBL    | NBT  | NBR         | SBL      | SBT      | SBR      |
| Lane Configurations      | ሻ          |          |      | ሻ     | <b>↑</b> 1≽ |           |        |      |             |          |          | 7        |
| Total Lost Time (s)      | 4.0        | 4.0      | 4.0  | 4.0   | 4.0         | 4.0       | 4.0    | 4.0  | 4.0         | 4.0      | 4.0      | 4.0      |
| Satd. Flow (prot)        | 1752       | 0        | 0    | 1752  | 3487        | 0         | 0      | 0    | 0           | 0        | 0        | 1596     |
| Flt Permitted            | 0.950      |          |      | 0.950 |             |           |        |      |             |          |          |          |
| Satd. Flow (perm)        | 1752       | 0        | 0    | 1752  | 3487        | 0         | 0      | 0    | 0           | 0        | 0        | 1596     |
| Satd. Flow (RTOR)        |            |          |      | 16    | 8           |           |        |      |             |          |          | 447      |
| Volume (vph)             | 80         | 0        | 0    | 15    | 927         | 30        | 0      | 0    | 0           | 0        | 0        | 143      |
| Peak Hour Factor         | 0.90       | 0.90     | 0.90 | 0.94  | 0.94        | 0.94      | 1.00   | 1.00 | 1.00        | 0.65     | 0.65     | 0.65     |
| Heavy Vehicles (%)       | 3%         | 3%       | 3%   | 3%    | 3%          | 3%        | 3%     | 3%   | 3%          | 3%       | 3%       | 3%       |
| Lane Group Flow (vph)    | 89         | 0        | 0    | 16    | 1018        | 0         | 0      | 0    | 0           | 0        | 0        | 220      |
| Turn Type                | Prot       |          |      | Perm  |             |           |        |      |             |          |          | Free     |
| Protected Phases         | 7          |          |      |       | 8           |           |        |      |             |          |          |          |
| Permitted Phases         |            |          |      | 8     |             |           |        |      |             |          |          | Free     |
| Detector Phases          | 7          |          |      | 8     | 8           |           |        |      |             |          |          |          |
| Minimum Initial (s)      | 1.0        |          |      | 4.0   | 4.0         |           |        |      |             |          |          |          |
| Minimum Split (s)        | 5.0        |          |      | 25.0  | 25.0        |           |        |      |             |          |          |          |
| Total Split (s)          | 25.0       | 0.0      | 0.0  | 45.0  | 45.0        | 0.0       | 0.0    | 0.0  | 0.0         | 0.0      | 0.0      | 0.0      |
| Total Split (%)          | 35.7%      | 0.0%     | 0.0% | 64.3% |             | 0.0%      | 0.0%   | 0.0% | 0.0%        | 0.0%     | 0.0%     | 0.0%     |
| Yellow Time (s)          | 3.0        |          |      | 3.0   | 3.0         |           |        |      |             |          |          |          |
| All-Red Time (s)         | 1.0        |          |      | 1.0   | 1.0         |           |        |      |             |          |          |          |
| Lead/Lag                 | Lead       |          |      | Lag   | Lag         |           |        |      |             |          |          |          |
| Lead-Lag Optimize?       | Yes        |          |      | Yes   | Yes         |           |        |      |             |          |          |          |
| Recall Mode              | None       |          |      | None  | None        |           |        |      |             |          |          |          |
| Act Effct Green (s)      | 7.8        |          |      | 9.0   | 9.0         |           |        |      |             |          |          | 18.6     |
| Actuated g/C Ratio       | 0.31       |          |      | 0.48  | 0.48        |           |        |      |             |          |          | 1.00     |
| v/c Ratio                | 0.16       |          |      | 0.02  | 0.60        |           |        |      |             |          |          | 0.14     |
| Control Delay            | 8.0        |          |      | 2.9   | 4.7         |           |        |      |             |          |          | 0.2      |
| Queue Delay              | 0.0        |          |      | 0.0   |             |           |        |      |             |          |          | 0.0      |
| Total Delay              | 8.0        |          |      | 2.9   | 4.7         |           |        |      |             |          |          | 0.2      |
| LOS                      | Α          |          |      | Α     | Α           |           |        |      |             |          |          | Α        |
| Approach Delay           |            |          |      |       | 4.6         |           |        |      |             |          |          |          |
| Approach LOS             |            |          |      |       | Α           |           |        |      |             |          |          |          |
| Intersection Summary     |            |          |      |       |             |           |        |      |             |          |          |          |
| Cycle Length: 70         |            |          |      |       |             |           |        |      |             |          |          |          |
| Actuated Cycle Length:   | 18.6       |          |      |       |             |           |        |      |             |          |          |          |
| Natural Cycle: 40        |            |          |      |       |             |           |        |      |             |          |          |          |
| Control Type: Actuated   | -Uncoor    | dinated  |      |       |             |           |        |      |             |          |          |          |
| Maximum v/c Ratio: 0.6   |            |          |      |       |             |           |        |      |             |          |          |          |
| Intersection Signal Dela | ay: 4.1    |          |      |       | Intersect   | ion LOS   | S: A   |      |             |          |          |          |
| Intersection Capacity U  | tilization | 37.7%    |      |       | ICU Lev     | el of Ser | vice A |      |             |          |          |          |

RT 11 & LaSalle St PM Peak



RT 11 & Main St PM Peak

|                        | •      | •    | <b>†</b>  | <i>&gt;</i> | <b>&gt;</b> | <b>↓</b> |
|------------------------|--------|------|-----------|-------------|-------------|----------|
| Lane Group             | WBL    | WBR  | NBT       | NBR         | SBL         | SBT      |
| Lane Configurations    | ¥      |      | <b>†</b>  | 7           | ሻ           | <b>1</b> |
| Total Lost Time (s)    | 4.0    | 4.0  | 4.0       | 4.0         | 4.0         | 4.0      |
| Satd. Flow (prot)      | 1608   | 0    | 1827      | 1553        | 1736        | 1827     |
| Flt Permitted          | 0.992  |      |           |             | 0.385       |          |
| Satd. Flow (perm)      | 1608   | 0    | 1827      | 1553        | 703         | 1827     |
| Satd. Flow (RTOR)      | 117    |      |           | 69          |             |          |
| Volume (vph)           | 20     | 103  | 271       | 58          | 119         | 232      |
| Peak Hour Factor       | 0.88   | 0.88 | 0.84      | 0.84        | 0.90        | 0.90     |
| Heavy Vehicles (%)     | 4%     | 4%   | 4%        | 4%          | 4%          | 4%       |
| Lane Group Flow (vph)  | 140    | 0    | 323       | 69          | 132         | 258      |
| Turn Type              |        |      |           | Perm        | pm+pt       |          |
| Protected Phases       | 4      |      | 6         |             | 5           | 2        |
| Permitted Phases       |        |      |           | 6           | 2           |          |
| Detector Phases        | 4      |      | 6         | 6           | 5           | 2        |
| Minimum Initial (s)    | 5.0    |      | 12.0      | 12.0        | 5.0         | 17.0     |
| Minimum Split (s)      | 10.2   |      | 21.4      | 21.4        | 10.4        | 22.4     |
| Total Split (s)        | 22.0   | 0.0  | 30.1      | 30.1        | 17.9        | 48.0     |
| Total Split (%)        | 31.4%  |      |           |             |             |          |
| Yellow Time (s)        | 4.1    |      | 4.2       | 4.2         | 4.2         | 4.2      |
| All-Red Time (s)       | 1.1    |      | 1.2       | 1.2         | 1.2         | 1.2      |
| Lead/Lag               |        |      | Lag       | Lag         | Lead        |          |
| Lead-Lag Optimize?     |        |      | Yes       | Yes         | Yes         |          |
| Recall Mode            | None   |      | None      | None        | None        | None     |
| Act Effct Green (s)    | 10.7   |      | 17.9      | 17.9        | 26.7        | 30.2     |
| Actuated g/C Ratio     | 0.22   |      | 0.37      | 0.37        | 0.56        | 0.61     |
| v/c Ratio              | 0.31   |      | 0.48      | 0.11        | 0.22        | 0.23     |
| Control Delay          | 7.9    |      | 14.4      | 4.2         | 4.5         | 4.4      |
| Queue Delay            | 0.0    |      | 0.0       | 0.0         | 0.0         | 0.0      |
| Total Delay            | 7.9    |      | 14.4      | 4.2         | 4.5         | 4.4      |
| LOS                    | Α.     |      | В         | Α           | A           | A        |
| Approach Delay         | 7.9    |      | 12.6      | , ,         | , ,         | 4.4      |
| Approach LOS           | Α.     |      | 12.0<br>B |             |             | A        |
| • •                    | - '    |      |           |             |             | , ,      |
| Intersection Summary   |        |      |           |             |             |          |
| Cycle Length: 70       |        |      |           |             |             |          |
| Actuated Cycle Length: | : 45.4 |      |           |             |             |          |
| Natural Cycle: 45      |        |      |           |             |             |          |

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.48

Intersection Signal Delay: 8.4 Intersection LOS: A Intersection Capacity Utilization 38.3% ICU Level of Service A

RT 11 & Main St PM Peak



RT 11 & Orange St PM Peak

|                       | •    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | 1     | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | 4    |
|-----------------------|------|----------|---------------|------|----------|------|-------|----------|----------|----------|----------|------|
| Lane Group            | EBL  | EBT      | EBR           | WBL  | WBT      | WBR  | NBL   | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations   |      | f)       |               |      | <b></b>  |      |       | 4        |          |          | 4        |      |
| Total Lost Time (s)   | 4.0  | 4.0      | 4.0           | 4.0  | 4.0      | 4.0  | 4.0   | 4.0      | 4.0      | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0    | 1857     | 0             | 0    | 1863     | 0    | 0     | 1722     | 0        | 0        | 1773     | 0    |
| Flt Permitted         |      |          |               |      |          |      |       | 0.855    |          |          | 0.722    |      |
| Satd. Flow (perm)     | 0    | 1857     | 0             | 0    | 1863     | 0    | 0     | 1521     | 0        | 0        | 1344     | 0    |
| Satd. Flow (RTOR)     |      | 3        |               |      |          |      |       | 4        |          |          |          |      |
| Volume (vph)          | 0    | 775      | 15            | 0    | 787      | 0    | 4     | 0        | 2        | 157      | 2        | 1    |
| Peak Hour Factor      | 0.87 | 0.87     | 0.87          | 0.89 | 0.89     | 0.89 | 0.50  | 0.50     | 0.50     | 0.77     | 0.77     | 0.77 |
| Lane Group Flow (vph) | 0    | 908      | 0             | 0    | 884      | 0    | 0     | 12       | 0        | 0        | 208      | 0    |
| Turn Type             |      |          |               |      |          |      | Perm  |          |          | custom   |          |      |
| Protected Phases      |      | 4        |               |      | 8        |      |       | 2        |          |          |          |      |
| Permitted Phases      |      |          |               |      |          |      | 2     |          |          | 6        | 6        |      |
| Minimum Split (s)     |      | 20.0     |               |      | 20.0     |      | 20.0  | 20.0     |          | 20.0     | 20.0     |      |
| Total Split (s)       | 0.0  | 39.0     | 0.0           | 0.0  | 39.0     | 0.0  | 21.0  | 21.0     | 0.0      | 21.0     | 21.0     | 0.0  |
| Total Split (%)       | 0.0% | 65.0%    | 0.0%          | 0.0% | 65.0%    | 0.0% | 35.0% | 35.0%    | 0.0%     | 35.0%    | 35.0%    | 0.0% |
| Yellow Time (s)       |      | 3.5      |               |      | 3.5      |      | 3.5   | 3.5      |          | 3.5      | 3.5      |      |
| All-Red Time (s)      |      | 0.5      |               |      | 0.5      |      | 0.5   | 0.5      |          | 0.5      | 0.5      |      |
| Lead/Lag              |      |          |               |      |          |      |       |          |          |          |          |      |
| Lead-Lag Optimize?    |      |          |               |      |          |      |       |          |          |          |          |      |
| Act Effct Green (s)   |      | 35.0     |               |      | 35.0     |      |       | 17.0     |          |          | 17.0     |      |
| Actuated g/C Ratio    |      | 0.58     |               |      | 0.58     |      |       | 0.28     |          |          | 0.28     |      |
| v/c Ratio             |      | 0.84     |               |      | 0.81     |      |       | 0.03     |          |          | 0.55     |      |
| Control Delay         |      | 19.6     |               |      | 18.1     |      |       | 13.7     |          |          | 24.6     |      |
| Queue Delay           |      | 0.0      |               |      | 0.0      |      |       | 0.0      |          |          | 0.0      |      |
| Total Delay           |      | 19.6     |               |      | 18.1     |      |       | 13.7     |          |          | 24.6     |      |
| LOS                   |      | В        |               |      | В        |      |       | В        |          |          | С        |      |
| Approach Delay        |      | 19.6     |               |      | 18.1     |      |       | 13.7     |          |          | 24.6     |      |
| Approach LOS          |      | В        |               |      | В        |      |       | В        |          |          | С        |      |

### Intersection Summary

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.84

Intersection Signal Delay: 19.4 Intersection LOS: B
Intersection Capacity Utilization 60.4% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: W Front St (Rt 11) & Sunoco Station



RT 11 & Union St PM Peak

|                       | ۶     | <b>→</b> | •    | •     | ←     | *    | 1     | <b>†</b> | <b>/</b> | <b>/</b> | ţ    | 4    |
|-----------------------|-------|----------|------|-------|-------|------|-------|----------|----------|----------|------|------|
| Lane Group            | EBL   | EBT      | EBR  | WBL   | WBT   | WBR  | NBL   | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations   |       | 4        |      |       | 4     |      | ሻ     | -<br>f   |          | ሻ        | f)   |      |
| Total Lost Time (s)   | 4.0   | 4.0      | 4.0  | 4.0   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0      | 4.0      | 4.0  | 4.0  |
| Satd. Flow (prot)     | 0     | 1703     | 0    | 0     | 1820  | 0    | 1770  | 1827     | 0        | 1770     | 1779 | 0    |
| Flt Permitted         |       | 0.866    |      |       | 0.852 |      | 0.476 |          |          | 0.534    |      |      |
| Satd. Flow (perm)     | 0     | 1500     | 0    | 0     | 1581  | 0    | 887   | 1827     | 0        | 995      | 1779 | 0    |
| Satd. Flow (RTOR)     |       | 81       |      |       | 2     |      |       | 17       |          |          | 51   |      |
| Volume (vph)          | 74    | 27       | 109  | 21    | 32    | 2    | 200   | 233      | 34       | 8        | 239  | 102  |
| Peak Hour Factor      | 0.77  | 0.77     | 0.77 | 0.81  | 0.81  | 0.81 | 0.84  | 0.84     | 0.84     | 0.88     | 0.88 | 0.88 |
| Lane Group Flow (vph) |       | 273      | 0    | 0     | 68    | 0    | 238   | 317      | 0        | 9        | 388  | 0    |
| Turn Type             | Perm  |          |      | Perm  |       |      | Perm  |          |          | Perm     |      |      |
| Protected Phases      |       | 4        |      |       | 8     |      |       | 2        |          |          | 6    |      |
| Permitted Phases      | 4     |          |      | 8     |       |      | 2     |          |          | 6        |      |      |
| Minimum Split (s)     | 26.0  | 26.0     |      | 26.0  | 26.0  |      | 44.0  | 44.0     |          | 44.0     | 44.0 |      |
| Total Split (s)       | 26.0  | 26.0     | 0.0  | 26.0  | 26.0  | 0.0  | 44.0  | 44.0     | 0.0      | 44.0     | 44.0 | 0.0  |
| Total Split (%)       | 37.1% |          | 0.0% | 37.1% |       | 0.0% | 62.9% |          | 0.0%     | 62.9%    |      | 0.0% |
| Yellow Time (s)       | 3.0   | 3.0      |      | 3.0   | 3.0   |      | 3.0   | 3.0      |          | 3.0      | 3.0  |      |
| All-Red Time (s)      | 3.0   | 3.0      |      | 3.0   | 3.0   |      | 3.0   | 3.0      |          | 3.0      | 3.0  |      |
| Lead/Lag              |       |          |      |       |       |      |       |          |          |          |      |      |
| Lead-Lag Optimize?    |       |          |      |       |       |      |       |          |          |          |      |      |
| Act Effct Green (s)   |       | 22.0     |      |       | 22.0  |      | 40.0  | 40.0     |          | 40.0     | 40.0 |      |
| Actuated g/C Ratio    |       | 0.31     |      |       | 0.31  |      | 0.57  | 0.57     |          | 0.57     | 0.57 |      |
| v/c Ratio             |       | 0.52     |      |       | 0.14  |      | 0.47  | 0.30     |          | 0.02     | 0.37 |      |
| Control Delay         |       | 17.7     |      |       | 17.8  |      | 12.6  | 8.3      |          | 6.6      | 8.2  |      |
| Queue Delay           |       | 0.0      |      |       | 0.0   |      | 0.0   | 0.0      |          | 0.0      | 0.0  |      |
| Total Delay           |       | 17.7     |      |       | 17.8  |      | 12.6  | 8.3      |          | 6.6      | 8.2  |      |
| LOS                   |       | В        |      |       | В     |      | В     | Α        |          | Α        | Α    |      |
| Approach Delay        |       | 17.7     |      |       | 17.8  |      |       | 10.1     |          |          | 8.2  |      |
| Approach LOS          |       | В        |      |       | В     |      |       | В        |          |          | Α    |      |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70 Control Type: Pretimed Maximum v/c Ratio: 0.52

Intersection Signal Delay: 11.5 Intersection LOS: B
Intersection Capacity Utilization 55.9% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Rt 239/Union St & RT 11/Main St



|                                  | TW             | O-WAY STOP       | CONTR        | OL SI                                            | JMMARY             |             |          |      |
|----------------------------------|----------------|------------------|--------------|--------------------------------------------------|--------------------|-------------|----------|------|
| General Informatio               | n              |                  | Site I       | nform                                            | ation              |             |          |      |
| Analyst                          | Christoph      | ner Puglisi      | Interse      | ection                                           |                    | PPL & Rt    | 11       |      |
| Agency/Co.                       | KLD Asse       |                  | Jurisdi      | iction                                           |                    | Salem Tv    | vp       |      |
| Date Performed                   | 7/3/2008       |                  | Analys       | sis Yea                                          | r                  | 2008        |          |      |
| Analysis Time Period             | PM Peak        |                  |              |                                                  |                    |             |          |      |
| Project Description 53           | 35 - Susquehan | na/Bell Bend NPF | <del>-</del> |                                                  |                    |             |          |      |
| East/West Street: PPL            |                |                  |              | South S                                          | treet: US Rt       | 11          |          |      |
| ntersection Orientation:         | North-South    |                  | Study I      | Period                                           | (hrs): <i>0.25</i> |             |          |      |
| Vehicle Volumes a                | nd Adiustme    | ents             |              |                                                  |                    |             |          |      |
| Major Street                     | 1              | Northbound       |              |                                                  |                    | Southbou    | ınd      |      |
| Movement                         | 1              | 2                | 3            |                                                  | 4                  | 5           |          | 6    |
|                                  | L              | Т                | R            |                                                  | L                  | Т           |          | R    |
| Volume (veh/h)                   | 2              | 236              |              |                                                  |                    | 260         |          | 1    |
| Peak-Hour Factor, PHF            | 1.00           | 1.00             | 1.00         |                                                  | 1.00               | 1.00        |          | 1.00 |
| Hourly Flow Rate, HFR<br>(veh/h) | 2              | 236              | 0            |                                                  | 0                  | 260         |          | 1    |
| Percent Heavy Vehicles           | 0              |                  |              |                                                  | 0                  |             |          |      |
| Median Type                      |                |                  | Two V        | Vay Let                                          | t Turn Lane        |             |          |      |
| RT Channelized                   |                |                  | 0            |                                                  |                    |             |          | 0    |
| _anes                            | 1              | 1                | 0            |                                                  | 0                  | 1           |          | 0    |
| Configuration                    | L              | Т                |              |                                                  |                    |             |          | TR   |
| Jpstream Signal                  |                | 0                |              |                                                  |                    | 0           |          |      |
| Minor Street                     |                | Eastbound        |              |                                                  |                    | Westbou     | nd       |      |
| Movement                         | 7              | 8                | 9            | <u> </u>                                         | 10                 | 11          | T T      | 12   |
|                                  | Ĺ              | T                | R            |                                                  | L                  | T           | $\neg$   | R    |
| Volume (veh/h)                   | 80             | <u> </u>         | 220          |                                                  |                    | <u> </u>    |          |      |
| Peak-Hour Factor, PHF            | 1.00           | 1.00             | 1.00         |                                                  | 1.00               | 1.00        | _        | 1.00 |
| Hourly Flow Rate, HFR<br>(veh/h) | 80             | 0                | 220          |                                                  | 0                  | 0           |          | 0    |
| Percent Heavy Vehicles           | 0              | 0                | 0            |                                                  | 0                  | 0           |          | 0    |
| Percent Grade (%)                | 1              | 0                |              |                                                  |                    | 0           | •        |      |
| Flared Approach                  |                | N                |              |                                                  |                    | N           |          |      |
| Storage                          | +              | 0                | 1            |                                                  |                    | 0           |          |      |
| RT Channelized                   |                | ·                | 0            |                                                  |                    | + -         |          | 0    |
|                                  | + ,            |                  | +            |                                                  | 0                  |             |          | 0    |
| Lanes<br>Configuration           | 1<br>L         | 0                | 1<br>R       |                                                  | 0                  | 0           |          | U    |
|                                  |                | <del></del>      |              |                                                  |                    |             |          |      |
| Delay, Queue Length,             |                |                  |              |                                                  |                    | <del></del> | - 41 1   |      |
| Approach                         | Northbound     | Southbound       |              | Westbo                                           |                    | +           | astbound | _    |
| Movement                         | 1              | 4                | 7            | 8                                                | 9                  | 10          | 11       | 12   |
| _ane Configuration               | L              |                  |              |                                                  |                    | L           |          | R    |
| / (veh/h)                        | 2              |                  |              |                                                  |                    | 80          |          | 220  |
| C (m) (veh/h)                    | 1315           |                  |              |                                                  |                    | 606         |          | 784  |
| //c                              | 0.00           |                  |              |                                                  |                    | 0.13        |          | 0.28 |
| 95% queue length                 | 0.00           |                  |              |                                                  |                    | 0.45        |          | 1.15 |
| Control Delay (s/veh)            | 7.7            |                  |              |                                                  | <del>-  </del>     | 11.8        |          | 11.4 |
| - ` ` ′                          |                |                  |              | <del>                                     </del> |                    | B           |          | B    |
| OS                               | Α              |                  |              |                                                  |                    |             | 14.5     | D    |
| Approach Delay (s/veh)           |                |                  |              |                                                  |                    | 1           | 11.5     |      |
| Approach LOS                     |                |                  | pendix G     |                                                  |                    |             | В        |      |

Appendix G<sub>HCS+TM</sub> Version 5.3

APPENDIX D

TRAFFIC ASSIGNMENT

#### APPENDIX D – TRAFFIC ASSIGNMENT

The traffic expected to arrive/depart on site is assigned to the study area intersections based on the spatial location of the trip origins/destinations. The region surrounding the site is divided into 8 directional sectors relative to the site: (North, North East, East, South East, South, South West, West and North West). For each of these directions, potential routes are identified and traffic is then assigned to the study area intersections based on their locations along these potential routes. The following section defines these routes and the resulting assignment.

#### Site Location and Access Routes

Based on the site location the major access routes to the site from different directions would be the following:

Table D-1 Direction and Potential Routes

| From                   | Path 1                | Path 2                | Comments            |
|------------------------|-----------------------|-----------------------|---------------------|
| North (N), North-West  | Route 239, Route 11   |                       |                     |
| (NW)                   |                       |                       |                     |
| North-East (NE)        | Route 11              |                       |                     |
| East (E)               | I-80, Route 93, Route | I-81, Route 29, Route | Each of the 2 paths |
|                        | 11                    | 11                    | is equally likely   |
| South-East (SE), South | I-80, Route 93, Route | I-80, Route 11        | Path 2 is twice as  |
| (S), South-West (SW)   | 11                    |                       | likely as Path 1    |
| West (W)               | I-80, Route 11        |                       |                     |

These routes are shown in Figure 1. Using these routes traffic from each direction (relative to the new site at Bell Bend) is assigned as follows:

#### North and North West

The traffic related to this direction is assigned through the following intersections

- RT 11 and RT 239 (Union Street)
  - o Traffic heading to the site will make a *right* from EB RT 239 onto SB RT 11
  - o Traffic coming from the site will make a *left* from NB RT 11 onto WB RT 239
- RT 11 and Main Street
  - o Traffic heading to the site will continue through along SB RT 11
  - o Traffic coming from the site will continue through along NB RT 11
- RT 11 and SSES Entrance
  - o Traffic heading to the site will continue through along SB RT 11

- o Traffic coming from the site will continue through along NB RT 11
- RT 11 and Bell Bend Entrance
  - o Traffic heading to the site will make a *right* from SB RT 11
  - o Traffic coming from the site will make a *left* onto NB RT 11

## North East

This direction related traffic is assigned through the following intersections

- RT 11 and RT 239 (Union Street)
  - o Traffic heading to the site will continue through along SB RT 11
  - o Traffic coming from the site will continue through along NB RT 11
- RT 11 and Main Street
  - o Traffic heading to the site will continue through along SB RT 11
  - o Traffic coming from the site will continue through along NB RT 11
- RT 11 and SSES Entrance
  - o Traffic heading to the site will continue through along SB RT 11
  - o Traffic coming from the site will continue through along NB RT 11
- RT 11 and Bell Bend Entrance
  - o Traffic heading to the site will make a *right* from SB RT 11
  - o Traffic coming from the site will make a *left* onto NB RT 11

#### <u>East</u>

Half (50%) of the traffic related to this direction is assigned through the following intersections assuming they took I-81 to RT 29 to RT 11

- RT 11 and RT 239 (Union Street)
  - o Traffic heading to the site will continue through along SB RT 11
  - o Traffic coming from the site will continue through along NB RT 11
- RT 11 and Main Street
  - o Traffic heading to the site will continue through along SB RT 11
  - o Traffic coming from the site will continue through along NB RT 11
- RT 11 and SSES Entrance
  - o Traffic heading to the site will continue through along SB RT 11
  - o Traffic coming from the site will continue through along NB RT 11
- RT 11 and Bell Bend Entrance
  - o Traffic heading to the site will make a *right* from SB RT 11
  - o Traffic coming from the site will make a *left* onto NB RT 11

The other half is of the traffic related to this direction is assigned to through the following intersections assuming they took I-80 to RT 93 onto RT 11:

- RT 11 (2<sup>nd</sup> Street, Front Street) and RT 93 (Market Street)
  - o Traffic heading to the site will make a right from RT 93 onto RT 11 going NB
  - o Traffic coming from the site will make a *left* from RT 11 SB onto RT 93
- RT 11 and Bell Bend Entrance
  - o Traffic heading to the site will make a *left* from NB RT 11
  - o Traffic coming from the site will make a *right* onto SB RT 11

### South-East

Two-third (66%) of the traffic related to this direction is assigned to through the following intersections assuming they took I-80 onto RT 11:

- RT 11 and Poplar Street
  - o Traffic heading to the site will continue through along NB RT 11
  - o Traffic coming from the site will continue through along SB RT 11
- RT 11 and RT 93 (Orange Street)
  - o Traffic heading to the site will continue through along NB RT 11
  - o Traffic coming from the site will continue through along SB RT 11
- RT 11 (2<sup>nd</sup> Street, Front Street) and RT 93 (Market Street)
  - o Traffic heading to the site will continue through along NB RT 11
  - o Traffic coming from the site will continue through along SB RT 11
- RT 11 and Bell Bend Entrance
  - o Traffic heading to the site will make a *left* from NB RT 11
  - o Traffic coming from the site will make a *right* onto SB RT 11

The remaining one-third of the traffic related to this direction is assigned to through the following intersections assuming they took I-80 to RT 93 onto RT 11:

- RT 11 (2<sup>nd</sup> Street, Front Street) and RT 93 (Market Street)
  - o Traffic heading to the site will make a right turn from RT 93 onto RT 11 going NB
  - o Traffic coming from the site will make a *left* turn from RT 11 SB onto RT 93
- RT 11 and Bell Bend Entrance
  - o Traffic heading to the site will make a *left* from NB RT 11
  - o Traffic coming from the site will make a *right* onto SB RT 11

### **South**

All traffic related to this direction is assumed to use RT 93 onto RT 11 through these intersections:

- RT 11 (2<sup>nd</sup> Street, Front Street) and RT 93 (Market Street)
  - o Traffic heading to the site will make a *right* turn from RT 93 onto RT 11 going NB
  - o Traffic coming from the site will make a *left* turn from RT 11 SB onto RT 93

- RT 11 and Bell Bend Entrance
  - o Traffic heading to the site will make a *left* from NB RT 11
  - o Traffic coming from the site will make a *right* onto SB RT 11

## South-West & West

All traffic related to this direction is assumed to use I80 onto RT 11 through these intersections:

- RT 11 and Poplar Street
  - o Traffic heading to the site will continue through along NB RT 11
  - o Traffic coming from the site will continue through along SB RT 11
- RT 11 and RT 93 (Orange Street)
  - o Traffic heading to the site will continue through along NB RT 11
  - o Traffic coming from the site will continue through along SB RT 11
- RT 11 (2<sup>nd</sup> Street, Front Street) and RT 93 (Market Street)
  - o Traffic heading to the site will continue through along NB RT 11
  - o Traffic coming from the site will continue through along SB RT 11
- RT 11 and Bell Bend Entrance
  - o Traffic heading to the site will make a *left* from NB RT 11
  - o Traffic coming from the site will make a *right* onto SB RT 11

Using these as a guide, the traffic from each direction is individually assigned to each intersection and the sum total of all directions by intersection is summarized in the next section.

### **Spatial Distribution of the Construction Work Force**

The construction workforce is estimated to be drawn from the major population centers around the site. Using the census data within 40 miles as a starting point, the spatial distribution of the population into 8 directions was identified as shown in Table D-2.

Figure D-1 - Site Location and Access Routes

Appendix D 6 KLD Engineering, P.C. Bell Bend Traffic Study

TR 439 Rev. 2

Table D-2 Spatial Distribution of Census Block Population

| Direction | 2000 Census Block Population* | Distribution (%) |
|-----------|-------------------------------|------------------|
| N         | 38,458                        | 3.8              |
| NW        | 19,451                        | 1.9              |
| W         | 117,235                       | 11.5             |
| SW        | 87,884                        | 8.6              |
| S         | 121,621                       | 11.9             |
| SE        | 158,518                       | 15.5             |
| Е         | 96,586                        | 9.8              |
| NE        | 380,169                       | 37.3             |

It appears from Table D-2 that most of the traffic will come from the North East (NE) and South East (SE) directions. These correspond to the Wilkes-Barre/Scranton region and Hazelton areas respectively. Using Table D-2 and the available routes, the construction and heavy vehicle traffic leaving the site and arriving on site, is assigned as shown in Figure D-2.

### **Spatial Distribution of the Operations Work Force**

Using the employee zip codes the spatial distribution of the workers on site is shown in Table 5. As shown in Table D-3, most of the current operations workforce is drawn from the west (Berwick). Using this distribution and the available routes, the operations traffic leaving the site is assigned as shown in Figure D-3.

Table D-3: Spatial Distribution of Current Employment on Site

| Direction | No. of Workers | Distribution (%) |
|-----------|----------------|------------------|
| N         | 77             | 6.19             |
| NW        | 60             | 4.83             |
| W         | 582            | 46.82            |
| SW        | 134            | 10.78            |
| S         | 31             | 2.49             |
| SE        | 105            | 8.45             |
| Е         | 119            | 9.57             |
| NE        | 135            | 10.86            |



# **Spatial Distribution of the Outage Work Force**

The distribution of the outage workforce is assumed to be similar to the operations work force. The traffic assignment is shown in Figure D-4.





# APPENDIX E

Capacity Analysis
Future Build Conditions

RT 11 & Poplar St AM Peak

|                       | •     | -    | •    | •     | <b>←</b> | •    | 4     | <b>†</b> | <b>/</b> | <b>/</b> | ţ    | 4    |
|-----------------------|-------|------|------|-------|----------|------|-------|----------|----------|----------|------|------|
| Lane Group            | EBL   | EBT  | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations   | ሻ     | f)   |      | ሻ     | <b>₽</b> |      |       | ર્ન      | 7        |          | 4    |      |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0  | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0      | 4.0      | 4.0  | 4.0  |
| Satd. Flow (prot)     | 1810  | 1795 | 0    | 1719  | 1810     | 0    | 0     | 1719     | 1538     | 0        | 1810 | 0    |
| Flt Permitted         |       |      |      | 0.302 |          |      |       | 0.757    |          |          |      |      |
| Satd. Flow (perm)     | 1810  | 1795 | 0    | 546   | 1810     | 0    | 0     | 1370     | 1538     | 0        | 1810 | 0    |
| Satd. Flow (RTOR)     |       | 6    |      |       |          |      |       |          | 33       |          |      |      |
| Volume (vph)          | 0     | 427  | 23   | 35    | 544      | 0    | 49    | 0        | 23       | 0        | 0    | 0    |
| Peak Hour Factor      | 0.85  | 0.85 | 0.85 | 0.88  | 0.88     | 0.88 | 0.69  | 0.69     | 0.69     | 1.00     | 1.00 | 1.00 |
| Heavy Vehicles (%)    | 5%    | 5%   | 5%   | 5%    | 5%       | 5%   | 5%    | 5%       | 5%       | 5%       | 5%   | 5%   |
| Lane Group Flow (vph) | 0     | 529  | 0    | 40    | 618      | 0    | 0     | 71       | 33       | 0        | 0    | 0    |
| Turn Type             | Perm  |      |      | pm+pt |          |      | Perm  |          | Perm     | Perm     |      |      |
| Protected Phases      |       | 4    |      | 3     | 8        |      |       | 2        |          |          | 6    |      |
| Permitted Phases      | 4     |      |      | 8     |          |      | 2     |          | 2        | 6        |      |      |
| Minimum Split (s)     | 25.0  | 25.0 |      | 8.0   | 25.0     |      | 6.0   | 6.0      | 6.0      | 5.0      | 5.0  |      |
| Total Split (s)       | 40.0  | 40.0 | 0.0  | 13.0  | 53.0     | 0.0  | 17.0  | 17.0     | 17.0     | 17.0     | 17.0 | 0.0  |
| Total Split (%)       | 57.1% |      | 0.0% | 18.6% | 75.7%    | 0.0% | 24.3% |          |          | 24.3%    |      | 0.0% |
| Yellow Time (s)       | 3.0   | 3.0  |      | 3.0   | 3.0      |      | 3.0   | 3.0      | 3.0      | 3.0      | 3.0  |      |
| All-Red Time (s)      | 2.0   | 2.0  |      | 0.0   | 2.0      |      | 1.0   | 1.0      | 1.0      | 1.0      | 1.0  |      |
| Lead/Lag              | Lag   | Lag  |      | Lead  |          |      |       |          |          |          |      |      |
| Lead-Lag Optimize?    | Yes   | Yes  |      | Yes   |          |      |       |          |          |          |      |      |
| Act Effct Green (s)   |       | 36.0 |      | 49.0  | 49.0     |      |       | 13.0     | 13.0     |          |      |      |
| Actuated g/C Ratio    |       | 0.51 |      | 0.70  | 0.70     |      |       | 0.19     | 0.19     |          |      |      |
| v/c Ratio             |       | 0.57 |      | 0.08  | 0.49     |      |       | 0.28     | 0.11     |          |      |      |
| Control Delay         |       | 14.6 |      | 3.5   | 6.4      |      |       | 27.9     | 10.3     |          |      |      |
| Queue Delay           |       | 0.0  |      | 0.0   | 0.0      |      |       | 0.0      | 0.0      |          |      |      |
| Total Delay           |       | 14.6 |      | 3.5   | 6.4      |      |       | 27.9     | 10.3     |          |      |      |
| LOS                   |       | В    |      | Α     | Α        |      |       | С        | В        |          |      |      |
| Approach Delay        |       | 14.6 |      |       | 6.2      |      |       | 22.4     |          |          |      |      |
| Approach LOS          |       | В    |      |       | Α        |      |       | С        |          |          |      |      |

## Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 40 Control Type: Pretimed Maximum v/c Ratio: 0.57

Intersection Signal Delay: 10.9 Intersection LOS: B
Intersection Capacity Utilization 39.1% ICU Level of Service A





Market St & 2nd St AM Peak

|                       | ۶    | <b>→</b> | •    | €     | <b>←</b> | *     | 1     | <b>†</b> | <b>/</b> | <b>/</b> | ļ        | 4    |
|-----------------------|------|----------|------|-------|----------|-------|-------|----------|----------|----------|----------|------|
| Lane Group            | EBL  | EBT      | EBR  | WBL   | WBT      | WBR   | NBL   | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations   |      |          |      | ሻ     | ተተ       | 7     | ሻ     | <b>1</b> |          |          | <b>†</b> | 7    |
| Total Lost Time (s)   | 4.0  | 4.0      | 4.0  | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0      | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0    | 0        | 0    | 1787  | 3574     | 1599  | 1787  | 1881     | 0        | 0        | 1881     | 1599 |
| Flt Permitted         |      |          |      | 0.950 |          |       | 0.569 |          |          |          |          |      |
| Satd. Flow (perm)     | 0    | 0        | 0    | 1787  | 3574     | 1599  | 1070  | 1881     | 0        | 0        | 1881     | 1599 |
| Satd. Flow (RTOR)     |      |          |      |       |          | 37    |       |          |          |          |          | 69   |
| Volume (vph)          | 0    | 0        | 0    | 104   | 409      | 26    | 179   | 119      | 0        | 0        | 138      | 60   |
| Peak Hour Factor      | 1.00 | 1.00     | 1.00 | 0.70  | 0.70     | 0.70  | 0.65  | 0.65     | 0.65     | 0.87     | 0.87     | 0.87 |
| Heavy Vehicles (%)    | 1%   | 1%       | 1%   | 1%    | 1%       | 1%    | 1%    | 1%       | 1%       | 1%       | 1%       | 1%   |
| Lane Group Flow (vph) | 0    | 0        | 0    | 149   | 584      | 37    | 275   | 183      | 0        | 0        | 159      | 69   |
| Turn Type             |      |          |      | Perm  |          | Perm  | pm+pt |          |          |          |          | Perm |
| Protected Phases      |      |          |      |       | 8        |       | 5     | 2        |          |          | 6        |      |
| Permitted Phases      |      |          |      | 8     |          | 8     | 2     |          |          |          |          | 6    |
| Minimum Split (s)     |      |          |      | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     |          |          | 20.5     | 20.5 |
| Total Split (s)       | 0.0  | 0.0      | 0.0  | 25.0  | 25.0     | 25.0  | 10.0  | 40.0     | 0.0      | 0.0      | 30.0     | 30.0 |
| Total Split (%)       | 0.0% | 0.0%     | 0.0% | 38.5% | 38.5%    | 38.5% | 15.4% | 61.5%    | 0.0%     | 0.0%     | 46.2%    |      |
| Yellow Time (s)       |      |          |      | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      |          |          | 3.5      | 3.5  |
| All-Red Time (s)      |      |          |      | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      |          |          | 1.0      | 1.0  |
| Lead/Lag              |      |          |      |       |          |       | Lead  |          |          |          | Lag      | Lag  |
| Lead-Lag Optimize?    |      |          |      |       |          |       | Yes   |          |          |          | Yes      | Yes  |
| Act Effct Green (s)   |      |          |      | 21.0  | 21.0     | 21.0  | 36.0  | 36.0     |          |          | 26.0     | 26.0 |
| Actuated g/C Ratio    |      |          |      | 0.32  | 0.32     | 0.32  | 0.55  | 0.55     |          |          | 0.40     | 0.40 |
| v/c Ratio             |      |          |      | 0.26  | 0.51     | 0.07  | 0.42  | 0.18     |          |          | 0.21     | 0.10 |
| Control Delay         |      |          |      | 17.8  | 19.7     | 6.3   | 4.5   | 1.6      |          |          | 13.8     | 4.1  |
| Queue Delay           |      |          |      | 0.0   | 0.0      | 0.0   | 0.1   | 0.3      |          |          | 0.0      | 0.0  |
| Total Delay           |      |          |      | 17.8  | 19.7     | 6.3   | 4.6   | 1.9      |          |          | 13.8     | 4.1  |
| LOS                   |      |          |      | В     | В        | Α     | Α     | A        |          |          | В        | А    |
| Approach Delay        |      |          |      |       | 18.7     |       |       | 3.6      |          |          | 10.8     |      |
| Approach LOS          |      |          |      |       | В        |       |       | Α        |          |          | В        |      |

## Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.51

Intersection Signal Delay: 12.7 Intersection LOS: B
Intersection Capacity Utilization 40.4% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 3: Int



Market St & Front St AM Peak

|                       | •     | -    | •    | <    | <b>←</b> | •    | •    | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ        | 4    |
|-----------------------|-------|------|------|------|----------|------|------|----------|-------------|----------|----------|------|
| Lane Group            | EBL   | EBT  | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations   |       | નીં∌ |      |      |          |      |      | <b>†</b> | 7           | , j      | <b>†</b> |      |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0  | 4.0  | 4.0      | 4.0  | 4.0  | 4.0      | 4.0         | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0     | 3357 | 0    | 0    | 0        | 0    | 0    | 1827     | 1553        | 1736     | 1827     | 0    |
| Flt Permitted         |       |      |      |      |          |      |      |          |             | 0.252    |          |      |
| Satd. Flow (perm)     | 0     | 3357 | 0    | 0    | 0        | 0    | 0    | 1827     | 1553        | 460      | 1827     | 0    |
| Satd. Flow (RTOR)     |       | 64   |      |      |          |      |      |          | 113         |          |          |      |
| Volume (vph)          | 1     | 321  | 90   | 0    | 0        | 0    | 0    | 289      | 77          | 62       | 172      | 0    |
| Peak Hour Factor      | 0.88  | 0.88 | 0.88 | 1.00 | 1.00     | 1.00 | 0.68 | 0.68     | 0.68        | 0.90     | 0.90     | 0.90 |
| Heavy Vehicles (%)    | 4%    | 4%   | 4%   | 4%   | 4%       | 4%   | 4%   | 4%       | 4%          | 4%       | 4%       | 4%   |
| Lane Group Flow (vph) |       | 468  | 0    | 0    | 0        | 0    | 0    | 425      | 113         | 69       | 191      | 0    |
| Turn Type             | Perm  |      |      |      |          |      |      |          | Perm        | pm+pt    |          |      |
| Protected Phases      |       | 4    |      |      |          |      |      | 2        | _           | 1        | 6        |      |
| Permitted Phases      | 4     |      |      |      |          |      |      |          | 2           | 6        |          |      |
| Minimum Split (s)     | 24.0  | 24.0 |      |      |          |      |      | 21.0     | 21.0        | 10.0     | 31.0     |      |
| Total Split (s)       | 29.0  | 29.0 | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 26.0     | 26.0        | 10.0     | 36.0     | 0.0  |
| Total Split (%)       | 44.6% |      | 0.0% | 0.0% | 0.0%     | 0.0% | 0.0% |          | 40.0%       |          |          | 0.0% |
| Yellow Time (s)       | 3.2   | 3.2  |      |      |          |      |      | 4.0      | 4.0         | 2.0      | 4.0      |      |
| All-Red Time (s)      | 1.8   | 1.8  |      |      |          |      |      | 1.0      | 1.0         | 0.0      | 1.0      |      |
| Lead/Lag              |       |      |      |      |          |      |      | Lag      | Lag         | Lead     |          |      |
| Lead-Lag Optimize?    |       |      |      |      |          |      |      | Yes      | Yes         | Yes      |          |      |
| Act Effct Green (s)   |       | 25.0 |      |      |          |      |      | 22.0     | 22.0        | 32.0     | 32.0     |      |
| Actuated g/C Ratio    |       | 0.38 |      |      |          |      |      | 0.34     | 0.34        | 0.49     | 0.49     |      |
| v/c Ratio             |       | 0.35 |      |      |          |      |      | 0.69     | 0.19        | 0.20     | 0.21     |      |
| Control Delay         |       | 13.1 |      |      |          |      |      | 25.5     | 4.5         | 11.0     | 11.0     |      |
| Queue Delay           |       | 0.0  |      |      |          |      |      | 0.0      | 0.0         | 0.0      | 0.7      |      |
| Total Delay           |       | 13.1 |      |      |          |      |      | 25.5     | 4.5         | 11.0     | 11.6     |      |
| LOS                   |       | В    |      |      |          |      |      | С        | Α           | В        | В        |      |
| Approach Delay        |       | 13.1 |      |      |          |      |      | 21.1     |             |          | 11.5     |      |
| Approach LOS          |       | В    |      |      |          |      |      | С        |             |          | В        |      |

## Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 60 Control Type: Pretimed Maximum v/c Ratio: 0.69

Intersection Signal Delay: 16.1 Intersection LOS: B
Intersection Capacity Utilization 40.4% ICU Level of Service A

Analysis Period (min) 15





TR-439

Rev. 2

RT 11 & LaSalle St AM Peak

| ۶       | <b>→</b>                                                                                                                 | •                                                                                                                                                     | •                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>†</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>&gt;</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>/</b>                                                                     | ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL     | EBT                                                                                                                      | EBR                                                                                                                                                   | WBL                                                                                                                                                                                              | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SBL                                                                          | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ሻ       |                                                                                                                          |                                                                                                                                                       | ሻ                                                                                                                                                                                                | <b>∱</b> ∱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.0     | 4.0                                                                                                                      | 4.0                                                                                                                                                   | 4.0                                                                                                                                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0                                                                          | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1752    | 0                                                                                                                        | 0                                                                                                                                                     | 1752                                                                                                                                                                                             | 3487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.950   |                                                                                                                          |                                                                                                                                                       | 0.950                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1752    | 0                                                                                                                        | 0                                                                                                                                                     | 1752                                                                                                                                                                                             | 3487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                          |                                                                                                                                                       | 11                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 47      | 0                                                                                                                        | 0                                                                                                                                                     | 9                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.86    | 0.86                                                                                                                     |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3%      | 3%                                                                                                                       | 3%                                                                                                                                                    |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3%                                                                           | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 55      | 0                                                                                                                        | 0                                                                                                                                                     | 11                                                                                                                                                                                               | 755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Prot    |                                                                                                                          |                                                                                                                                                       | Perm                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7       |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       | 8                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                          |                                                                                                                                                       | 8                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       | 4.0                                                                                                                                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 0.0                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                                                  | 45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 35.7%   | 0.0%                                                                                                                     | 0.0%                                                                                                                                                  | 64.3%                                                                                                                                                                                            | 64.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0%                                                                         | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.0     |                                                                                                                          |                                                                                                                                                       | 3.0                                                                                                                                                                                              | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.0     |                                                                                                                          |                                                                                                                                                       | 1.0                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lead    |                                                                                                                          |                                                                                                                                                       | Lag                                                                                                                                                                                              | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Yes     |                                                                                                                          |                                                                                                                                                       | Yes                                                                                                                                                                                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       | None                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                          |                                                                                                                                                       | 2.3                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Α       |                                                                                                                          |                                                                                                                                                       | Α                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13.6    |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -Uncoor | dinated                                                                                                                  |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8       | dinated                                                                                                                  |                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                  | Intersect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 4.0<br>1752<br>0.950<br>1752<br>47<br>0.86<br>3%<br>55<br>Prot<br>7<br>1.0<br>5.0<br>25.0<br>35.7%<br>3.0<br>1.0<br>Lead | EBL EBT  4.0 4.0 1752 0 0.950 1752 0 47 0 0.86 0.86 3% 3% 55 0 Prot 7 7 1.0 5.0 25.0 0.0 35.7% 0.0% 3.0 1.0 Lead Yes None 7.0 0.32 0.10 5.9 0.0 5.9 A | EBL EBT EBR  4.0 4.0 4.0 0 1752 0 0 0.950 1752 0 0 47 0 0 0.86 0.86 0.86 0.86 3% 3% 3% 3% 55 0 0 Prot 7 7 1.0 5.0 25.0 0.0 0.0 35.7% 0.0% 0.0% 3.0 1.0 Lead Yes None 7.0 0.32 0.10 5.9 0.0 5.9 A | EBL         EBT         EBR         WBL           4.0         4.0         4.0         4.0           1752         0         0         1752           0.950         0.950         1752           1752         0         0         1752           11         47         0         0         9           0.86         0.86         0.86         0.84         3%         3%         3%           55         0         0         11         Perm         7         8         7         8         1.0         4.0         5.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0         25.0 | EBL         EBT         EBR         WBL         WBT           4.0         4.0         4.0         4.0         4.0           1752         0         0         1752         3487           0.950         0.950         0         1752         3487           1752         0         0         1752         3487           11         8         47         0         9         614           0.86         0.86         0.84         0.84         38           3%         3%         3%         3%         3%           55         0         0         11         755           Prot         Perm         7         8         8           7         8         8         8           1.0         4.0         4.0         4.0           5.0         25.0         25.0         25.0           25.0         25.0         25.0         25.0           25.0         25.0         25.0         25.0           25.0         25.0         25.0         25.0           25.0         25.0         25.0         25.0           25.0         25.0         25.0 | EBL         EBT         EBR         WBL         WBT         WBR           4.0         4.0         4.0         4.0         4.0         4.0           1752         0         0         1752         3487         0           0.950         0         0.950         0         0.950         0         0           1752         0         0         1752         3487         0         0         0         11         8         0         0         11         8         4         20         0.86         0.86         0.84         0.84         0.84         0.84         3.84         3.8         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3%         3% | EBL         EBT         EBR         WBL         WBT         WBR         NBL           4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         1752         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | EBL         EBT         EBR         WBL         WBT         WBR         NBL         NBT           4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | EBL EBT EBR WBL WBT WBR NBL NBT NBR  4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 | EBI         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL           4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | EBL         EBT         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL         SBT           4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |

RT 11 & LaSalle St AM Peak



RT 11 & Main St AM Peak

|                                          | •     | •    | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | <b>↓</b> |
|------------------------------------------|-------|------|----------|-------------|-------------|----------|
| Lane Group                               | WBL   | WBR  | NBT      | NBR         | SBL         | SBT      |
| Lane Configurations                      | ¥     |      | <b>1</b> | 7           | ሻ           | <b>1</b> |
| Total Lost Time (s)                      | 4.0   | 4.0  | 4.0      | 4.0         | 4.0         | 4.0      |
| Satd. Flow (prot)                        | 1592  | 0    | 1776     | 1509        | 1687        | 1776     |
| Flt Permitted                            | 0.982 |      |          |             | 0.539       |          |
| Satd. Flow (perm)                        | 1592  | 0    | 1776     | 1509        | 957         | 1776     |
| Satd. Flow (RTOR)                        | 75    |      |          | 14          |             |          |
| Volume (vph)                             | 30    | 54   | 166      | 13          | 55          | 210      |
| Peak Hour Factor                         | 0.72  | 0.72 | 0.92     | 0.92        | 0.92        | 0.92     |
| Heavy Vehicles (%)                       | 7%    | 7%   | 7%       | 7%          | 7%          | 7%       |
| Lane Group Flow (vph)                    | 117   | 0    | 180      | 14          | 60          | 228      |
| Turn Type                                |       |      |          | Perm        | pm+pt       |          |
| Protected Phases                         | 4     |      | 6        |             | 5           | 2        |
| Permitted Phases                         |       |      |          | 6           | 2           |          |
| Detector Phases                          | 4     |      | 6        | 6           | 5           | 2        |
| Minimum Initial (s)                      | 5.0   |      | 12.0     | 12.0        | 5.0         | 17.0     |
| Minimum Split (s)                        | 10.2  |      | 21.4     | 21.4        | 10.4        | 22.4     |
| Total Split (s)                          | 22.0  | 0.0  | 30.0     | 30.0        | 18.0        | 48.0     |
| Total Split (%)                          | 31.4% |      |          |             | 25.7%       |          |
| Yellow Time (s)                          | 4.1   |      | 4.2      | 4.2         | 4.2         | 4.2      |
| All-Red Time (s)                         | 1.1   |      | 1.2      | 1.2         | 1.2         | 1.2      |
| Lead/Lag                                 |       |      | Lag      | Lag         | Lead        |          |
| Lead-Lag Optimize?                       |       |      | Yes      | Yes         | Yes         |          |
| Recall Mode                              | None  |      | None     | None        | None        | None     |
| Act Effct Green (s)                      | 11.1  |      | 16.7     | 16.7        | 18.0        | 23.7     |
| Actuated g/C Ratio                       | 0.26  |      | 0.37     | 0.37        | 0.41        | 0.51     |
| v/c Ratio                                | 0.25  |      | 0.27     | 0.02        | 0.11        | 0.25     |
| Control Delay                            | 8.0   |      | 10.3     | 6.8         | 5.5         | 4.7      |
| Queue Delay                              | 0.0   |      | 0.0      | 0.0         | 0.0         | 0.0      |
| Total Delay                              | 8.0   |      | 10.3     | 6.8         | 5.5         | 4.7      |
| LOS                                      | A     |      | В        | A           | A           | A        |
| Approach Delay                           | 8.0   |      | 10.0     | ,,          | , ,         | 4.8      |
| Approach LOS                             | A     |      | В        |             |             | A        |
| Intersection Summary                     |       |      |          |             |             |          |
|                                          |       |      |          |             |             |          |
| Cycle Length: 70                         | 07.0  |      |          |             |             |          |
|                                          | ۵/.۵  |      |          |             |             |          |
| Actuated Cycle Length: Natural Cycle: 45 | 31.6  |      |          |             |             |          |

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.27

Intersection Signal Delay: 7.1 Intersection LOS: A
Intersection Capacity Utilization 29.1% ICU Level of Service A

RT 11 & Main St AM Peak



RT 11 & Orange St AM Peak

|                       | ۶    | -     | $\rightarrow$ | •    | <b>←</b> | •    | 1     | <b>†</b> | <b>/</b> | <b>/</b> | ţ     | 4    |
|-----------------------|------|-------|---------------|------|----------|------|-------|----------|----------|----------|-------|------|
| Lane Group            | EBL  | EBT   | EBR           | WBL  | WBT      | WBR  | NBL   | NBT      | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations   |      | f)    |               |      | <b></b>  |      |       | 4        |          |          | 4     |      |
| Total Lost Time (s)   | 4.0  | 4.0   | 4.0           | 4.0  | 4.0      | 4.0  | 4.0   | 4.0      | 4.0      | 4.0      | 4.0   | 4.0  |
| Satd. Flow (prot)     | 0    | 1859  | 0             | 0    | 1863     | 0    | 0     | 1863     | 0        | 0        | 1775  | 0    |
| Flt Permitted         |      |       |               |      |          |      |       |          |          |          | 0.735 |      |
| Satd. Flow (perm)     | 0    | 1859  | 0             | 0    | 1863     | 0    | 0     | 1863     | 0        | 0        | 1369  | 0    |
| Satd. Flow (RTOR)     |      | 2     |               |      |          |      |       |          |          |          |       |      |
| Volume (vph)          | 0    | 430   | 6             | 0    | 585      | 0    | 0     | 0        | 0        | 81       | 2     | 0    |
| Peak Hour Factor      | 0.91 | 0.91  | 0.91          | 0.83 | 0.83     | 0.83 | 1.00  | 1.00     | 1.00     | 0.67     | 0.67  | 0.67 |
| Lane Group Flow (vph) | 0    | 480   | 0             | 0    | 705      | 0    | 0     | 0        | 0        | 0        | 124   | 0    |
| Turn Type             |      |       |               |      |          |      | Perm  |          | (        | custom   |       |      |
| Protected Phases      |      | 4     |               |      | 8        |      |       | 2        |          |          |       |      |
| Permitted Phases      |      |       |               |      |          |      | 2     |          |          | 6        | 6     |      |
| Minimum Split (s)     |      | 20.0  |               |      | 20.0     |      | 20.0  | 20.0     |          | 20.0     | 20.0  |      |
| Total Split (s)       | 0.0  | 36.0  | 0.0           | 0.0  | 36.0     | 0.0  | 19.0  | 19.0     | 0.0      | 19.0     | 19.0  | 0.0  |
| Total Split (%)       | 0.0% | 65.5% | 0.0%          | 0.0% | 65.5%    | 0.0% | 34.5% |          | 0.0%     | 34.5%    | 34.5% | 0.0% |
| Yellow Time (s)       |      | 3.5   |               |      | 3.5      |      | 3.5   | 3.5      |          | 3.5      | 3.5   |      |
| All-Red Time (s)      |      | 0.5   |               |      | 0.5      |      | 0.5   | 0.5      |          | 0.5      | 0.5   |      |
| Lead/Lag              |      |       |               |      |          |      |       |          |          |          |       |      |
| Lead-Lag Optimize?    |      |       |               |      |          |      |       |          |          |          |       |      |
| Act Effct Green (s)   |      | 32.0  |               |      | 32.0     |      |       |          |          |          | 15.0  |      |
| Actuated g/C Ratio    |      | 0.58  |               |      | 0.58     |      |       |          |          |          | 0.27  |      |
| v/c Ratio             |      | 0.44  |               |      | 0.65     |      |       |          |          |          | 0.33  |      |
| Control Delay         |      | 8.1   |               |      | 11.3     |      |       |          |          |          | 19.1  |      |
| Queue Delay           |      | 0.0   |               |      | 0.0      |      |       |          |          |          | 0.0   |      |
| Total Delay           |      | 8.1   |               |      | 11.3     |      |       |          |          |          | 19.1  |      |
| LOS                   |      | Α     |               |      | В        |      |       |          |          |          | В     |      |
| Approach Delay        |      | 8.1   |               |      | 11.3     |      |       |          |          |          | 19.1  |      |
| Approach LOS          |      | Α     |               |      | В        |      |       |          |          |          | В     |      |

## Intersection Summary

Cycle Length: 55

Actuated Cycle Length: 55

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 55
Control Type: Pretimed
Maximum v/c Ratio: 0.65

Intersection Signal Delay: 10.9 Intersection LOS: B
Intersection Capacity Utilization 42.0% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: RT 11 &



RT 11 & Union St AM Peak

|                       | •     | -     | •    | <     | <b>←</b> | •    | 1     | <b>†</b> | <b>/</b> | -     | ţ    | 4    |
|-----------------------|-------|-------|------|-------|----------|------|-------|----------|----------|-------|------|------|
| Lane Group            | EBL   | EBT   | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR      | SBL   | SBT  | SBR  |
| Lane Configurations   |       | 4     |      |       | 4        |      | ሻ     | f)       |          | J.    | f)   |      |
| Total Lost Time (s)   | 4.0   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0      | 4.0   | 4.0  | 4.0  |
| Satd. Flow (prot)     | 0     | 1674  | 0    | 0     | 1754     | 0    | 1719  | 1797     | 0        | 1719  | 1752 | 0    |
| Flt Permitted         |       | 0.812 |      |       | 0.849    |      | 0.574 |          |          | 0.561 |      |      |
| Satd. Flow (perm)     | 0     | 1396  | 0    | 0     |          | 0    | 1039  | 1797     | 0        | 1015  | 1752 | 0    |
| Satd. Flow (RTOR)     |       | 44    |      |       | 3        |      |       | 6        |          |       | 33   |      |
| Volume (vph)          | 152   | 25    | 104  | 12    | 14       | 2    | 67    | 236      | 12       | 2     | 180  | 49   |
| Peak Hour Factor      | 0.96  | 0.96  | 0.96 | 0.78  | 0.78     | 0.78 | 0.87  | 0.87     | 0.87     | 0.85  | 0.85 | 0.85 |
| Heavy Vehicles (%)    | 5%    | 5%    | 5%   | 5%    | 5%       | 5%   | 5%    | 5%       | 5%       | 5%    | 5%   | 5%   |
| Lane Group Flow (vph) | 0     | 292   | 0    | 0     | 36       | 0    | 77    | 285      | 0        | 2     | 270  | 0    |
| Turn Type             | Perm  |       |      | Perm  |          |      | Perm  |          |          | Perm  |      |      |
| Protected Phases      |       | 4     |      |       | 8        |      |       | 2        |          |       | 6    |      |
| Permitted Phases      | 4     |       |      | 8     |          |      | 2     |          |          | 6     |      |      |
| Minimum Split (s)     | 26.0  | 26.0  |      | 26.0  | 26.0     |      | 44.0  | 44.0     |          | 44.0  | 44.0 |      |
| Total Split (s)       | 26.0  | 26.0  | 0.0  | 26.0  | 26.0     | 0.0  | 44.0  | 44.0     | 0.0      | 44.0  | 44.0 | 0.0  |
| Total Split (%)       | 37.1% |       | 0.0% | 37.1% |          | 0.0% | 62.9% |          | 0.0%     | 62.9% |      | 0.0% |
| Yellow Time (s)       | 3.0   | 3.0   |      | 3.0   | 3.0      |      | 3.0   | 3.0      |          | 3.0   | 3.0  |      |
| All-Red Time (s)      | 3.0   | 3.0   |      | 3.0   | 3.0      |      | 3.0   | 3.0      |          | 3.0   | 3.0  |      |
| Lead/Lag              |       |       |      |       |          |      |       |          |          |       |      |      |
| Lead-Lag Optimize?    |       |       |      |       |          |      |       |          |          |       |      |      |
| Act Effct Green (s)   |       | 22.0  |      |       | 22.0     |      | 40.0  | 40.0     |          | 40.0  | 40.0 |      |
| Actuated g/C Ratio    |       | 0.31  |      |       | 0.31     |      | 0.57  | 0.57     |          | 0.57  | 0.57 |      |
| v/c Ratio             |       | 0.62  |      |       | 0.08     |      | 0.13  | 0.28     |          | 0.00  | 0.27 |      |
| Control Delay         |       | 24.1  |      |       | 16.4     |      | 7.7   | 8.4      |          | 6.5   | 7.4  |      |
| Queue Delay           |       | 0.0   |      |       | 0.0      |      | 0.0   | 0.0      |          | 0.0   | 0.0  |      |
| Total Delay           |       | 24.1  |      |       | 16.4     |      | 7.7   | 8.4      |          | 6.5   | 7.4  |      |
| LOS                   |       | С     |      |       | В        |      | Α     | Α        |          | Α     | Α    |      |
| Approach Delay        |       | 24.1  |      |       | 16.4     |      |       | 8.2      |          |       | 7.4  |      |
| Approach LOS          |       | С     |      |       | В        |      |       | Α        |          |       | Α    |      |

## Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70 Control Type: Pretimed Maximum v/c Ratio: 0.62

Intersection Signal Delay: 13.1 Intersection LOS: B
Intersection Capacity Utilization 57.5% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Rt 239/Union St & RT 11/Main St



| TW                                                 | O-WAY STOP                                                                                                                  | CONTRO              | OL SU               | MMARY               |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|----------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| n                                                  |                                                                                                                             | Site Ir             | nforma              | ation               |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Christopł                                          | ner Puglisi                                                                                                                 | Interse             | ction               |                     | PPL & Ri                                           | 11                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| KLD Asso                                           | ociates                                                                                                                     | Jurisdi             | ction               |                     |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 7/3/2008                                           |                                                                                                                             | Analys              | is Year             |                     | 2008                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| •                                                  |                                                                                                                             |                     |                     |                     |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                    | na/Bell Bend NPI                                                                                                            |                     |                     |                     |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                    |                                                                                                                             |                     |                     |                     | t 11                                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| North-South                                        |                                                                                                                             | Study F             | Period (h           | nrs): <i>0.25</i>   |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| nd Adjustme                                        | ents                                                                                                                        |                     |                     |                     |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                    |                                                                                                                             |                     |                     |                     |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1                                                  | 2                                                                                                                           |                     |                     |                     | 5                                                  |                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| _                                                  |                                                                                                                             | R                   |                     | L                   |                                                    |                                                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    |                                                                                                                             | 1.00                |                     | 4.00                | _                                                  |                                                  | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 7.00                                               | 1.00                                                                                                                        | 7.00                |                     | 7.00                | 7.00                                               |                                                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 268                                                | 234                                                                                                                         | 0                   |                     | 0                   | 198                                                |                                                  | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 0                                                  |                                                                                                                             |                     | <del>-  </del>      | 0                   |                                                    | <del>-  </del> -                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| +                                                  |                                                                                                                             | Two W               | /av Left            | Turn Lane           |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                    |                                                                                                                             | T 0                 |                     |                     |                                                    |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                  | 1                                                                                                                           |                     | _                   | 0                   | 1                                                  |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    |                                                                                                                             | Ť                   | _                   |                     | <del>'</del>                                       |                                                  | TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| <del>                                     </del>   |                                                                                                                             |                     |                     |                     | 0                                                  |                                                  | ,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <del>†                                      </del> |                                                                                                                             | <u> </u>            | <del>- i</del>      |                     | _                                                  | ınd                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 7                                                  | _                                                                                                                           | 9                   |                     | 10                  |                                                    | l l                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                    | _                                                                                                                           | +                   |                     |                     |                                                    |                                                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    | <u>'</u>                                                                                                                    |                     | _                   |                     | <del>† '</del>                                     | -+                                               | - ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                    | 1.00                                                                                                                        |                     |                     | 1.00                | 1.00                                               |                                                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 13                                                 | 0                                                                                                                           | 34                  |                     | 0                   | 0                                                  |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 0                                                  | 0                                                                                                                           | 0                   |                     | 0                   | 0                                                  |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    | 0                                                                                                                           |                     |                     |                     | 0                                                  | •                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                    | N                                                                                                                           |                     |                     |                     | N                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1                                                  | 0                                                                                                                           |                     |                     |                     | 0                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1                                                  |                                                                                                                             | 0                   | -+                  |                     | 1                                                  | -                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1                                                  | 0                                                                                                                           | _                   | <del>- +</del>      | 0                   | n                                                  | -+                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| i                                                  | <del> </del>                                                                                                                |                     | <del>-  </del>      |                     | <del>†                                      </del> | <del>-  </del> -                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                    | ervice                                                                                                                      |                     |                     |                     | <u> </u>                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                    |                                                                                                                             | \ <u>\</u>          | Mesthol             | ınd                 | 1                                                  | =asthound                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    |                                                                                                                             |                     |                     |                     | -                                                  |                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                    | 7                                                                                                                           | '                   |                     | 3                   |                                                    | <del>  ''</del>                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    |                                                                                                                             |                     |                     |                     |                                                    |                                                  | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    |                                                                                                                             |                     |                     |                     |                                                    | <del>                                     </del> | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                    |                                                                                                                             |                     |                     |                     |                                                    |                                                  | 798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                    |                                                                                                                             |                     |                     |                     | _                                                  | <u> </u>                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                    |                                                                                                                             |                     |                     |                     |                                                    |                                                  | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 8.6                                                |                                                                                                                             |                     |                     |                     | 17.4                                               |                                                  | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Λ                                                  |                                                                                                                             |                     |                     |                     | С                                                  |                                                  | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Α                                                  |                                                                                                                             |                     |                     |                     |                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                    |                                                                                                                             |                     |                     |                     |                                                    | 11.8                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                    | Christoph   KLD Asset   7/3/2008   AM Peak   25 - Susquehan   Entrance   North-South   1   L   268   1.00   268   0   1   L | Christopher Puglisi | Christopher Puglisi | Christopher Puglisi | Christopher Puglisi                                | Site Information                                 | Site Information   Christopher Puglisi   KLD Associates   T/3/2008   AM Peak   Durisdiction   Salem Twp   Analysis Year   2008   Analys |  |

Appendix F<sub>HCS+TM</sub> Version 5.3

|                                  | TW             | O-WAY STOP       | CONTR            | OL SI   | JMMARY        |              |           |      |  |  |  |  |
|----------------------------------|----------------|------------------|------------------|---------|---------------|--------------|-----------|------|--|--|--|--|
| General Informatio               | n              |                  | Site Information |         |               |              |           |      |  |  |  |  |
| Analyst                          | Christoph      | ner Puglisi      | Inters           | ection  |               | PPL & Rt     | 11        |      |  |  |  |  |
| Agency/Co.                       | KLD Asse       |                  | Jurisd           | iction  |               | Salem Tv     | vp        |      |  |  |  |  |
| Date Performed                   | 7/3/2008       |                  | Analys           | sis Yea | r             | 2008         |           |      |  |  |  |  |
| Analysis Time Period             | AM Peak        |                  |                  |         |               |              |           |      |  |  |  |  |
| Project Description 53           | 35 - Susquehan | na/Bell Bend NPF | <del>-</del>     |         |               |              |           |      |  |  |  |  |
| East/West Street: Bell           | Bend Entrance  |                  | North/           | South S | Street: US Rt | 11           |           |      |  |  |  |  |
| Intersection Orientation:        | North-South    |                  | Study            | Period  | (hrs): 0.25   |              |           |      |  |  |  |  |
| Vehicle Volumes a                | nd Adiustme    | ents             |                  |         |               |              |           |      |  |  |  |  |
| Major Street                     |                | Northbound       |                  |         |               | Southbou     | ınd       |      |  |  |  |  |
| Movement                         | 1              | 2                | 3                |         | 4             | 5            |           | 6    |  |  |  |  |
|                                  | L              | Т                | R                |         | L             | Т            |           | R    |  |  |  |  |
| Volume (veh/h)                   | 121            | 506              |                  |         |               | 189          |           | 44   |  |  |  |  |
| Peak-Hour Factor, PHF            | 1.00           | 1.00             | 1.00             | )       | 1.00          | 1.00         |           | 1.00 |  |  |  |  |
| Hourly Flow Rate, HFR<br>(veh/h) | 121            | 506              | 0                |         | 0             | 189          |           | 44   |  |  |  |  |
| Percent Heavy Vehicles           | 0              |                  |                  |         | 0             |              |           |      |  |  |  |  |
| Median Type                      |                |                  | Two l            | Vay Le  | ft Turn Lane  |              |           |      |  |  |  |  |
| RT Channelized                   |                |                  | 0                |         |               |              |           | 0    |  |  |  |  |
| Lanes                            | 1              | 1                | 0                |         | 0             | 1            |           | 0    |  |  |  |  |
| Configuration                    | L              | T                |                  |         |               |              |           | TR   |  |  |  |  |
| Jpstream Signal                  |                | 0                |                  |         |               | 0            |           |      |  |  |  |  |
| Minor Street                     |                | Eastbound        |                  |         |               | Westbou      | nd        |      |  |  |  |  |
| Movement                         | 7              | 8                | 9                |         | 10            | 11           | 1         | 12   |  |  |  |  |
|                                  | L              | T                | R                |         | L             | T            |           | R    |  |  |  |  |
| Volume (veh/h)                   | 6              |                  | 17               |         |               |              |           |      |  |  |  |  |
| Peak-Hour Factor, PHF            | 1.00           | 1.00             | 1.00             | ,       | 1.00          | 1.00         |           | 1.00 |  |  |  |  |
| Hourly Flow Rate, HFR<br>(veh/h) | 6              | 0                | 17               |         | 0             | 0            |           | 0    |  |  |  |  |
| Percent Heavy Vehicles           | 0              | 0                | 0                |         | 0             | 0            |           | 0    |  |  |  |  |
| Percent Grade (%)                |                | 0                |                  |         |               | 0            | •         |      |  |  |  |  |
| Flared Approach                  |                | N                |                  |         |               | N            |           |      |  |  |  |  |
| Storage                          |                | 0                |                  |         |               | 0            |           |      |  |  |  |  |
| RT Channelized                   |                | Ů                | 0                |         |               | Ť            |           | 0    |  |  |  |  |
|                                  | 1              |                  | +                |         | 0             |              |           |      |  |  |  |  |
| Lanes<br>Configuration           | 1<br>L         | 0                | 1<br>R           |         | 0             | 0            | _         | 0    |  |  |  |  |
|                                  |                | <del></del>      | ı ĸ              |         |               | 1            |           |      |  |  |  |  |
| Delay, Queue Length,             |                |                  |                  | 101 11  |               | <del>-</del> | 41        |      |  |  |  |  |
| Approach                         | Northbound     | Southbound       |                  | Westbo  |               | +            | Eastbound | T    |  |  |  |  |
| Movement                         | 1              | 4                | 7                | 8       | 9             | 10           | 11        | 12   |  |  |  |  |
| _ane Configuration               | L              |                  |                  |         |               | L            |           | R    |  |  |  |  |
| / (veh/h)                        | 121            |                  |                  |         |               | 6            |           | 17   |  |  |  |  |
| C (m) (veh/h)                    | 1346           |                  |                  |         |               | 357          |           | 834  |  |  |  |  |
| //c                              | 0.09           |                  |                  |         |               | 0.02         |           | 0.02 |  |  |  |  |
| 95% queue length                 | 0.30           |                  |                  |         |               | 0.05         |           | 0.06 |  |  |  |  |
| Control Delay (s/veh)            | 7.9            |                  |                  |         |               | 15.3         |           | 9.4  |  |  |  |  |
| - ` ` - '                        |                |                  |                  |         |               | -            |           | +    |  |  |  |  |
| _OS                              | Α              |                  |                  |         |               | С            | 40.0      | Α    |  |  |  |  |
| Approach Delay (s/veh)           |                |                  |                  |         |               | 1            | 10.9      |      |  |  |  |  |
| Approach LOS                     |                |                  | pendix 🗔         |         |               |              | В         |      |  |  |  |  |

Appendix F<sub>4CS+TM</sub> Version 5.3

RT 11 & Poplar St PM Peak

|                       | ۶     | -              | •    | •     | ←     | *    | •     | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ     | 4    |
|-----------------------|-------|----------------|------|-------|-------|------|-------|----------|-------------|----------|-------|------|
| Lane Group            | EBL   | EBT            | EBR  | WBL   | WBT   | WBR  | NBL   | NBT      | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations   | ሻ     | <del>(</del> Î |      | ሻ     | 1>    |      |       | ર્ન      | 7           |          | 4     |      |
| Total Lost Time (s)   | 4.0   | 4.0            | 4.0  | 4.0   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0         | 4.0      | 4.0   | 4.0  |
| Satd. Flow (prot)     | 1770  | 1852           | 0    | 1770  | 1859  | 0    | 0     | 1796     | 1583        | 0        | 1789  | 0    |
| Flt Permitted         | 0.251 |                |      | 0.115 |       |      |       | 0.742    |             |          | 0.853 |      |
| Satd. Flow (perm)     | 468   | 1852           | 0    | 214   | 1859  | 0    | 0     | 1382     | 1583        | 0        | 1552  | 0    |
| Satd. Flow (RTOR)     |       | 5              |      |       | 2     |      |       |          | 95          |          | 14    |      |
| Volume (vph)          | 21    | 663            | 28   | 51    | 709   | 8    | 130   | 45       | 81          | 30       | 42    | 15   |
| Peak Hour Factor      | 0.82  | 0.82           | 0.82 | 0.83  | 0.83  | 0.83 | 0.85  | 0.85     | 0.85        | 0.84     | 0.84  | 0.84 |
| Lane Group Flow (vph) | 26    | 843            | 0    | 61    | 864   | 0    | 0     | 206      | 95          | 0        | 104   | 0    |
| Turn Type             | Perm  |                |      | pm+pt |       |      | Perm  |          | Perm        | Perm     |       |      |
| Protected Phases      |       | 4              |      | 3     | 8     |      |       | 2        |             |          | 6     |      |
| Permitted Phases      | 4     |                |      | 8     |       |      | 2     |          | 2           | 6        |       |      |
| Minimum Split (s)     | 25.0  | 25.0           |      | 8.0   | 25.0  |      | 6.0   | 6.0      | 6.0         | 5.0      | 5.0   |      |
| Total Split (s)       | 42.0  | 42.0           | 0.0  | 8.0   | 50.0  | 0.0  | 20.0  | 20.0     | 20.0        | 20.0     | 20.0  | 0.0  |
| Total Split (%)       |       | 60.0%          | 0.0% | 11.4% | 71.4% | 0.0% | 28.6% |          |             |          |       | 0.0% |
| Yellow Time (s)       | 3.0   | 3.0            |      | 3.0   | 3.0   |      | 3.0   | 3.0      | 3.0         | 3.0      | 3.0   |      |
| All-Red Time (s)      | 2.0   | 2.0            |      | 0.0   | 2.0   |      | 1.0   | 1.0      | 1.0         | 1.0      | 1.0   |      |
| Lead/Lag              | Lag   | Lag            |      | Lead  |       |      |       |          |             |          |       |      |
| Lead-Lag Optimize?    | Yes   | Yes            |      | Yes   |       |      |       |          |             |          |       |      |
| Act Effct Green (s)   | 38.0  | 38.0           |      | 46.0  | 46.0  |      |       | 16.0     | 16.0        |          | 16.0  |      |
| Actuated g/C Ratio    | 0.54  | 0.54           |      | 0.66  | 0.66  |      |       | 0.23     | 0.23        |          | 0.23  |      |
| v/c Ratio             | 0.10  | 0.84           |      | 0.27  | 0.71  |      |       | 0.65     | 0.22        |          | 0.28  |      |
| Control Delay         | 9.1   | 23.0           |      | 7.1   | 11.7  |      |       | 36.0     | 7.0         |          | 21.9  |      |
| Queue Delay           | 0.0   | 0.0            |      | 0.0   | 0.0   |      |       | 0.0      | 0.0         |          | 0.0   |      |
| Total Delay           | 9.1   | 23.0           |      | 7.1   | 11.7  |      |       | 36.0     | 7.0         |          | 21.9  |      |
| LOS                   | Α     | С              |      | Α     | В     |      |       | D        | Α           |          | С     |      |
| Approach Delay        |       | 22.6           |      |       | 11.4  |      |       | 26.8     |             |          | 21.9  |      |
| Approach LOS          |       | С              |      |       | В     |      |       | С        |             |          | С     |      |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.84

Intersection Signal Delay: 18.4 Intersection LOS: B
Intersection Capacity Utilization 65.3% ICU Level of Service C



Market St & 2nd St PM Peak

|                       | •    | <b>→</b> | •    | •     | <b>←</b> | •     | •     | <b>†</b> | <b>/</b> | -    | ļ        | 4    |
|-----------------------|------|----------|------|-------|----------|-------|-------|----------|----------|------|----------|------|
| Lane Group            | EBL  | EBT      | EBR  | WBL   | WBT      | WBR   | NBL   | NBT      | NBR      | SBL  | SBT      | SBR  |
| Lane Configurations   |      |          |      | ሻ     | <b>^</b> | 7     | ሻ     | <b>†</b> |          |      | <b>†</b> | 7    |
| Total Lost Time (s)   | 4.0  | 4.0      | 4.0  | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0      | 4.0  | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0    | 0        | 0    | 1787  | 3574     | 1599  | 1787  | 1881     | 0        | 0    | 1881     | 1599 |
| Flt Permitted         |      |          |      | 0.950 |          |       | 0.453 |          |          |      |          |      |
| Satd. Flow (perm)     | 0    | 0        | 0    | 1787  | 3574     | 1599  | 852   | 1881     | 0        | 0    | 1881     | 1599 |
| Satd. Flow (RTOR)     |      |          |      |       |          | 67    |       |          |          |      |          | 128  |
| Volume (vph)          | 0    | 0        | 0    | 217   | 539      | 59    | 151   | 112      | 0        | 0    | 236      | 110  |
| Peak Hour Factor      | 1.00 | 1.00     | 1.00 | 0.88  | 0.88     | 0.88  | 0.81  | 0.81     | 0.81     | 0.86 | 0.86     | 0.86 |
| Heavy Vehicles (%)    | 1%   | 1%       | 1%   | 1%    | 1%       | 1%    | 1%    | 1%       | 1%       | 1%   | 1%       | 1%   |
| Lane Group Flow (vph) | 0    | 0        | 0    | 247   | 612      | 67    | 186   | 138      | 0        | 0    | 274      | 128  |
| Turn Type             |      |          |      | Perm  |          | Perm  | pm+pt |          |          |      |          | Perm |
| Protected Phases      |      |          |      |       | 8        |       | 5     | 2        |          |      | 6        |      |
| Permitted Phases      |      |          |      | 8     |          | 8     | 2     |          |          |      |          | 6    |
| Minimum Split (s)     |      |          |      | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     |          |      | 20.5     | 20.5 |
| Total Split (s)       | 0.0  | 0.0      | 0.0  | 25.0  | 25.0     | 25.0  | 10.0  | 40.0     | 0.0      | 0.0  | 30.0     | 30.0 |
| Total Split (%)       | 0.0% | 0.0%     | 0.0% | 38.5% | 38.5%    | 38.5% | 15.4% |          | 0.0%     | 0.0% | 46.2%    |      |
| Yellow Time (s)       |      |          |      | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      |          |      | 3.5      | 3.5  |
| All-Red Time (s)      |      |          |      | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      |          |      | 1.0      | 1.0  |
| Lead/Lag              |      |          |      |       |          |       | Lead  |          |          |      | Lag      | Lag  |
| Lead-Lag Optimize?    |      |          |      |       |          |       | Yes   |          |          |      | Yes      | Yes  |
| Act Effct Green (s)   |      |          |      | 21.0  | 21.0     | 21.0  | 36.0  | 36.0     |          |      | 26.0     | 26.0 |
| Actuated g/C Ratio    |      |          |      | 0.32  | 0.32     | 0.32  | 0.55  | 0.55     |          |      | 0.40     | 0.40 |
| v/c Ratio             |      |          |      | 0.43  | 0.53     | 0.12  | 0.33  | 0.13     |          |      | 0.36     | 0.18 |
| Control Delay         |      |          |      | 20.1  | 20.0     | 5.4   | 4.8   | 1.5      |          |      | 15.5     | 3.5  |
| Queue Delay           |      |          |      | 0.0   | 0.0      | 0.0   | 0.1   | 0.0      |          |      | 0.0      | 0.0  |
| Total Delay           |      |          |      | 20.2  | 20.0     | 5.4   | 4.9   | 1.5      |          |      | 15.5     | 3.5  |
| LOS                   |      |          |      | С     | В        | Α     | Α     | Α        |          |      | В        | А    |
| Approach Delay        |      |          |      |       | 19.0     |       |       | 3.5      |          |      | 11.7     |      |
| Approach LOS          |      |          |      |       | В        |       |       | Α        |          |      | В        |      |

#### Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.53

Intersection Signal Delay: 14.2 Intersection LOS: B
Intersection Capacity Utilization 70.6% ICU Level of Service C





Market St & Front St PM Peak

|                       | ۶     | <b>→</b>        | $\rightarrow$ | •    | <b>←</b> | •    | 4    | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | 4    |
|-----------------------|-------|-----------------|---------------|------|----------|------|------|----------|----------|----------|----------|------|
| Lane Group            | EBL   | EBT             | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations   |       | 4T <del>)</del> |               |      |          |      |      | <b>†</b> | 7        | ሻ        | <b>†</b> |      |
| Total Lost Time (s)   | 4.0   | 4.0             | 4.0           | 4.0  | 4.0      | 4.0  | 4.0  | 4.0      | 4.0      | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0     | 3446            | 0             | 0    | 0        | 0    | 0    | 1881     | 1599     | 1787     | 1881     | 0    |
| Flt Permitted         |       |                 |               |      |          |      |      |          |          | 0.392    |          |      |
| Satd. Flow (perm)     | 0     | 3446            | 0             | 0    | 0        | 0    | 0    | 1881     | 1599     | 737      | 1881     | 0    |
| Satd. Flow (RTOR)     |       | 75              |               |      |          |      |      |          | 142      |          |          |      |
| Volume (vph)          | 6     | 615             | 195           | 0    | 0        | 0    | 0    | 292      | 141      | 92       | 356      | 0    |
| Peak Hour Factor      | 0.87  | 0.87            | 0.87          | 1.00 | 1.00     | 1.00 | 0.99 | 0.99     | 0.99     | 0.82     | 0.82     | 0.82 |
| Heavy Vehicles (%)    | 1%    | 1%              | 1%            | 1%   | 1%       | 1%   | 1%   | 1%       | 1%       | 1%       | 1%       | 1%   |
| Lane Group Flow (vph) |       | 938             | 0             | 0    | 0        | 0    | 0    | 295      | 142      | 112      | 434      | 0    |
| Turn Type             | Perm  |                 |               |      |          |      |      |          | Perm     | pm+pt    |          |      |
| Protected Phases      |       | 4               |               |      |          |      |      | 2        |          | 1        | 6        |      |
| Permitted Phases      | 4     |                 |               |      |          |      |      |          | 2        | 6        |          |      |
| Minimum Split (s)     | 24.0  | 24.0            |               |      |          |      |      | 21.0     | 21.0     | 10.0     | 31.0     |      |
| Total Split (s)       | 29.0  | 29.0            | 0.0           | 0.0  | 0.0      | 0.0  | 0.0  | 26.0     | 26.0     | 10.0     | 36.0     | 0.0  |
| Total Split (%)       | 44.6% |                 | 0.0%          | 0.0% | 0.0%     | 0.0% | 0.0% | 40.0%    |          |          |          | 0.0% |
| Yellow Time (s)       | 3.2   | 3.2             |               |      |          |      |      | 4.0      | 4.0      | 2.0      | 4.0      |      |
| All-Red Time (s)      | 1.8   | 1.8             |               |      |          |      |      | 1.0      | 1.0      | 0.0      | 1.0      |      |
| Lead/Lag              |       |                 |               |      |          |      |      | Lag      | Lag      | Lead     |          |      |
| Lead-Lag Optimize?    |       |                 |               |      |          |      |      | Yes      | Yes      | Yes      |          |      |
| Act Effct Green (s)   |       | 25.0            |               |      |          |      |      | 22.0     | 22.0     | 32.0     | 32.0     |      |
| Actuated g/C Ratio    |       | 0.38            |               |      |          |      |      | 0.34     | 0.34     | 0.49     | 0.49     |      |
| v/c Ratio             |       | 0.68            |               |      |          |      |      | 0.46     | 0.22     | 0.24     | 0.47     |      |
| Control Delay         |       | 18.4            |               |      |          |      |      | 19.8     | 4.3      | 10.4     | 12.6     |      |
| Queue Delay           |       | 0.0             |               |      |          |      |      | 0.0      | 0.0      | 0.0      | 1.6      |      |
| Total Delay           |       | 18.4            |               |      |          |      |      | 19.8     | 4.3      | 10.4     | 14.2     |      |
| LOS                   |       | В               |               |      |          |      |      | В        | Α        | В        | В        |      |
| Approach Delay        |       | 18.4            |               |      |          |      |      | 14.8     |          |          | 13.4     |      |
| Approach LOS          |       | В               |               |      |          |      |      | В        |          |          | В        |      |

#### Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 55 Control Type: Pretimed Maximum v/c Ratio: 0.68

Intersection Signal Delay: 16.1 Intersection LOS: B
Intersection Capacity Utilization 70.6% ICU Level of Service C





RT 11 & LaSalle St PM Peak

|                          | ۶          | <b>→</b> | •    | •     | +          | •         | •      | †    | <i>&gt;</i> | <b>/</b> | ţ    | -√   |
|--------------------------|------------|----------|------|-------|------------|-----------|--------|------|-------------|----------|------|------|
| Lane Group               | EBL        | EBT      | EBR  | WBL   | WBT        | WBR       | NBL    | NBT  | NBR         | SBL      | SBT  | SBR  |
| Lane Configurations      | ሻ          |          |      | ሻ     | <b>↑</b> ↑ |           |        |      |             |          |      | 7    |
| Total Lost Time (s)      | 4.0        | 4.0      | 4.0  | 4.0   |            | 4.0       | 4.0    | 4.0  | 4.0         | 4.0      | 4.0  | 4.0  |
| Satd. Flow (prot)        | 1752       | 0        | 0    | 1752  | 3487       | 0         | 0      | 0    | 0           | 0        | 0    | 1596 |
| Flt Permitted            | 0.950      |          |      | 0.950 |            |           |        |      |             |          |      |      |
| Satd. Flow (perm)        | 1752       | 0        | 0    | 1752  | 3487       | 0         | 0      | 0    | 0           | 0        | 0    | 1596 |
| Satd. Flow (RTOR)        |            |          |      | 16    | 8          |           |        |      |             |          |      | 442  |
| Volume (vph)             | 80         | 0        | 0    | 15    | 955        | 30        | 0      | 0    | 0           | 0        | 0    | 143  |
| Peak Hour Factor         | 0.90       | 0.90     | 0.90 | 0.94  | 0.94       | 0.94      | 1.00   | 1.00 | 1.00        | 0.65     | 0.65 | 0.65 |
| Heavy Vehicles (%)       | 3%         | 3%       | 3%   | 3%    | 3%         | 3%        | 3%     | 3%   | 3%          | 3%       | 3%   | 3%   |
| Lane Group Flow (vph)    | 89         | 0        | 0    | 16    | 1048       | 0         | 0      | 0    | 0           | 0        | 0    | 220  |
| Turn Type                | Prot       |          |      | Perm  |            |           |        |      |             |          |      | Free |
| Protected Phases         | 7          |          |      |       | 8          |           |        |      |             |          |      |      |
| Permitted Phases         |            |          |      | 8     |            |           |        |      |             |          |      | Free |
| Detector Phases          | 7          |          |      | 8     |            |           |        |      |             |          |      |      |
| Minimum Initial (s)      | 1.0        |          |      | 4.0   |            |           |        |      |             |          |      |      |
| Minimum Split (s)        | 5.0        |          |      | 25.0  |            |           |        |      |             |          |      |      |
| Total Split (s)          | 25.0       | 0.0      | 0.0  | 45.0  | 45.0       | 0.0       | 0.0    | 0.0  | 0.0         | 0.0      | 0.0  | 0.0  |
| Total Split (%)          | 35.7%      | 0.0%     | 0.0% | 64.3% | 64.3%      | 0.0%      | 0.0%   | 0.0% | 0.0%        | 0.0%     | 0.0% | 0.0% |
| Yellow Time (s)          | 3.0        |          |      | 3.0   |            |           |        |      |             |          |      |      |
| All-Red Time (s)         | 1.0        |          |      | 1.0   | 1.0        |           |        |      |             |          |      |      |
| Lead/Lag                 | Lead       |          |      | Lag   |            |           |        |      |             |          |      |      |
| Lead-Lag Optimize?       | Yes        |          |      | Yes   | Yes        |           |        |      |             |          |      |      |
| Recall Mode              | None       |          |      | None  | None       |           |        |      |             |          |      |      |
| Act Effct Green (s)      | 7.8        |          |      | 9.4   |            |           |        |      |             |          |      | 18.9 |
| Actuated g/C Ratio       | 0.31       |          |      | 0.50  | 0.50       |           |        |      |             |          |      | 1.00 |
| v/c Ratio                | 0.16       |          |      | 0.02  |            |           |        |      |             |          |      | 0.14 |
| Control Delay            | 8.2        |          |      | 2.8   |            |           |        |      |             |          |      | 0.2  |
| Queue Delay              | 0.0        |          |      | 0.0   |            |           |        |      |             |          |      | 0.0  |
| Total Delay              | 8.2        |          |      | 2.8   |            |           |        |      |             |          |      | 0.2  |
| LOS                      | Α          |          |      | Α     |            |           |        |      |             |          |      | Α    |
| Approach Delay           |            |          |      |       | 4.7        |           |        |      |             |          |      |      |
| Approach LOS             |            |          |      |       | Α          |           |        |      |             |          |      |      |
| Intersection Summary     |            |          |      |       |            |           |        |      |             |          |      |      |
| Cycle Length: 70         |            |          |      |       |            |           |        |      |             |          |      |      |
| Actuated Cycle Length:   | 18.9       |          |      |       |            |           |        |      |             |          |      |      |
| Natural Cycle: 40        |            |          |      |       |            |           |        |      |             |          |      |      |
| Control Type: Actuated   |            | dinated  |      |       |            |           |        |      |             |          |      |      |
| Maximum v/c Ratio: 0.6   | 51         |          |      |       |            |           |        |      |             |          |      |      |
| Intersection Signal Dela | ay: 4.2    |          |      |       | Intersect  | ion LOS   | S: A   |      |             |          |      |      |
| Intersection Capacity U  | tilization | 38.5%    |      |       | ICU Leve   | el of Ser | vice A |      |             |          |      |      |

RT 11 & LaSalle St PM Peak



RT 11 & Main St PM Peak

|                       | €     | •    | <b>†</b> | <b>/</b> | -     | <b>↓</b> |
|-----------------------|-------|------|----------|----------|-------|----------|
| Lane Group            | WBL   | WBR  | NBT      | NBR      | SBL   | SBT      |
| Lane Configurations   | W     |      | <b>^</b> | 7        | ሻ     | <b></b>  |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0      | 4.0      | 4.0   | 4.0      |
| Satd. Flow (prot)     | 1608  | 0    | 1827     | 1553     | 1736  | 1827     |
| Flt Permitted         | 0.992 |      |          |          | 0.371 |          |
| Satd. Flow (perm)     | 1608  | 0    | 1827     | 1553     | 678   | 1827     |
| Satd. Flow (RTOR)     | 117   |      |          | 67       |       |          |
| Volume (vph)          | 20    | 103  | 295      | 59       | 119   | 233      |
| Peak Hour Factor      | 0.88  | 0.88 | 0.88     | 0.88     | 0.90  | 0.90     |
| Heavy Vehicles (%)    | 4%    | 4%   | 4%       | 4%       | 4%    | 4%       |
| Lane Group Flow (vph) | 140   | 0    | 335      | 67       | 132   | 259      |
| Turn Type             |       |      |          | Perm     | pm+pt |          |
| Protected Phases      | 4     |      | 6        |          | 5     | 2        |
| Permitted Phases      |       |      |          | 6        | 2     |          |
| Detector Phases       | 4     |      | 6        | 6        | 5     | 2        |
| Minimum Initial (s)   | 5.0   |      | 12.0     | 12.0     | 5.0   | 17.0     |
| Minimum Split (s)     | 10.2  |      | 21.4     | 21.4     | 10.4  | 22.4     |
| Total Split (s)       | 22.0  | 0.0  | 30.0     | 30.0     | 18.0  | 48.0     |
| Total Split (%)       | 31.4% | 0.0% | 42.9%    | 42.9%    | 25.7% | 68.6%    |
| Yellow Time (s)       | 4.1   |      | 4.2      | 4.2      | 4.2   | 4.2      |
| All-Red Time (s)      | 1.1   |      | 1.2      | 1.2      | 1.2   | 1.2      |
| Lead/Lag              |       |      | Lag      | Lag      | Lead  |          |
| Lead-Lag Optimize?    |       |      | Yes      | Yes      | Yes   |          |
| Recall Mode           | None  |      | None     | None     | None  | None     |
| Act Effct Green (s)   | 10.8  |      | 18.2     | 18.2     | 26.9  | 30.4     |
| Actuated g/C Ratio    | 0.22  |      | 0.37     | 0.37     | 0.56  | 0.61     |
| v/c Ratio             | 0.31  |      | 0.49     | 0.11     | 0.22  | 0.23     |
| Control Delay         | 8.0   |      | 14.5     | 4.3      | 4.5   | 4.4      |
| Queue Delay           | 0.0   |      | 0.0      | 0.0      | 0.0   | 0.0      |
| Total Delay           | 8.0   |      | 14.5     | 4.3      | 4.5   | 4.4      |
| LOS                   | Α     |      | В        | Α        | Α     | Α        |
| Approach Delay        | 8.0   |      | 12.8     |          |       | 4.4      |
| Approach LOS          | Α     |      | В        |          |       | Α        |
| Intersection Summary  |       |      |          |          |       |          |
| Cycle Length: 70      |       |      |          |          |       |          |
| Actuated Cycle Length | 45.5  |      |          |          |       |          |

Actuated Cycle Length: 45.5

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.49

Intersection Signal Delay: 8.5 Intersection LOS: A
Intersection Capacity Utilization 39.6% ICU Level of Service A

RT 11 & Main St PM Peak



|                       | ၨ    | -     | $\rightarrow$ | •    | <b>←</b> | •    | 1     | <b>†</b> | <b>/</b> | <b>/</b> | ţ     | 4    |
|-----------------------|------|-------|---------------|------|----------|------|-------|----------|----------|----------|-------|------|
| Lane Group            | EBL  | EBT   | EBR           | WBL  | WBT      | WBR  | NBL   | NBT      | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations   |      | f)    |               |      | <b>1</b> |      |       | 4        |          |          | 4     |      |
| Total Lost Time (s)   | 4.0  | 4.0   | 4.0           | 4.0  | 4.0      | 4.0  | 4.0   | 4.0      | 4.0      | 4.0      | 4.0   | 4.0  |
| Satd. Flow (prot)     | 0    | 1857  | 0             | 0    | 1863     | 0    | 0     | 1863     | 0        | 0        | 1773  | 0    |
| Flt Permitted         |      |       |               |      |          |      |       |          |          |          | 0.730 |      |
| Satd. Flow (perm)     | 0    | 1857  | 0             | 0    | 1863     | 0    | 0     | 1863     | 0        | 0        | 1358  | 0    |
| Satd. Flow (RTOR)     |      | 3     |               |      |          |      |       |          |          |          |       |      |
| Volume (vph)          | 0    | 777   | 15            | 0    | 815      | 0    | 0     | 0        | 0        | 157      | 2     | 1    |
| Adj. Flow (vph)       | 0    | 893   | 17            | 0    | 916      | 0    | 0     | 0        | 0        | 204      | 3     | 1    |
| Lane Group Flow (vph) | 0    | 910   | 0             | 0    | 916      | 0    | 0     | 0        | 0        | 0        | 208   | 0    |
| Turn Type             |      |       |               |      |          |      | Perm  |          | (        | custom   |       |      |
| Protected Phases      |      | 4     |               |      | 8        |      |       | 2        |          |          |       |      |
| Permitted Phases      |      |       |               |      |          |      | 2     |          |          | 6        | 6     |      |
| Minimum Split (s)     |      | 20.0  |               |      | 20.0     |      | 20.0  | 20.0     |          | 20.0     | 20.0  |      |
| Total Split (s)       | 0.0  | 39.0  | 0.0           | 0.0  | 39.0     | 0.0  | 21.0  | 21.0     | 0.0      | 21.0     | 21.0  | 0.0  |
| Total Split (%)       | 0.0% | 65.0% | 0.0%          | 0.0% | 65.0%    | 0.0% | 35.0% |          | 0.0%     | 35.0%    |       | 0.0% |
| Yellow Time (s)       |      | 3.5   |               |      | 3.5      |      | 3.5   | 3.5      |          | 3.5      | 3.5   |      |
| All-Red Time (s)      |      | 0.5   |               |      | 0.5      |      | 0.5   | 0.5      |          | 0.5      | 0.5   |      |
| Lead/Lag              |      |       |               |      |          |      |       |          |          |          |       |      |
| Lead-Lag Optimize?    |      |       |               |      |          |      |       |          |          |          |       |      |
| Act Effct Green (s)   |      | 35.0  |               |      | 35.0     |      |       |          |          |          | 17.0  |      |
| Actuated g/C Ratio    |      | 0.58  |               |      | 0.58     |      |       |          |          |          | 0.28  |      |
| v/c Ratio             |      | 0.84  |               |      | 0.84     |      |       |          |          |          | 0.54  |      |
| Control Delay         |      | 19.7  |               |      | 20.0     |      |       |          |          |          | 24.4  |      |
| Queue Delay           |      | 0.0   |               |      | 0.0      |      |       |          |          |          | 0.0   |      |
| Total Delay           |      | 19.7  |               |      | 20.0     |      |       |          |          |          | 24.4  |      |
| LOS                   |      | В     |               |      | В        |      |       |          |          |          | С     |      |
| Approach Delay        |      | 19.7  |               |      | 20.0     |      |       |          |          |          | 24.4  |      |
| Approach LOS          |      | В     |               |      | В        |      |       |          |          |          | С     |      |

# Intersection Summary

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60 Control Type: Pretimed Maximum v/c Ratio: 0.84

Intersection Signal Delay: 20.3 Intersection LOS: C
Intersection Capacity Utilization 58.4% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: W Front St (Rt 11) & Sunoco Station



RT 11 & Union St PM Peak

|                       | •    | -     | $\rightarrow$ | •     | •     | •    | •     | <b>†</b> | <b>/</b> | -     | ţ     | 4    |
|-----------------------|------|-------|---------------|-------|-------|------|-------|----------|----------|-------|-------|------|
| Lane Group            | EBL  | EBT   | EBR           | WBL   | WBT   | WBR  | NBL   | NBT      | NBR      | SBL   | SBT   | SBR  |
| Lane Configurations   |      | 44    |               |       | 4     |      |       | 4        |          |       | 4     |      |
| Total Lost Time (s)   | 4.0  | 4.0   | 4.0           | 4.0   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0      | 4.0   | 4.0   | 4.0  |
| Satd. Flow (prot)     | 0    | 1703  | 0             | 0     | 1820  | 0    | 0     | 1807     | 0        | 0     | 1788  | 0    |
| Flt Permitted         |      | 0.866 |               |       | 0.852 |      |       | 0.668    |          |       | 0.987 |      |
| Satd. Flow (perm)     | 0    | 1500  | 0             | 0     | 1581  | 0    | 0     | 1233     | 0        | 0     | 1767  | 0    |
| Satd. Flow (RTOR)     |      | 81    |               |       | 2     |      |       | 9        |          |       | 49    |      |
| Volume (vph)          | 74   | 27    | 109           | 21    | 32    | 2    | 210   | 248      | 34       | 8     | 239   | 102  |
| Peak Hour Factor      | 0.77 | 0.77  | 0.77          | 0.81  | 0.81  | 0.81 | 0.82  | 0.82     | 0.82     | 0.87  | 0.87  | 0.87 |
| Lane Group Flow (vph) | 0    | 273   | 0             | 0     | 68    | 0    | 0     | 599      | 0        | 0     | 401   | 0    |
| Turn Type             | Perm |       |               | Perm  |       |      | Perm  |          |          | Perm  |       |      |
| Protected Phases      |      | 4     |               |       | 8     |      |       | 2        |          |       | 6     |      |
| Permitted Phases      | 4    |       |               | 8     |       |      | 2     |          |          | 6     |       |      |
| Minimum Split (s)     | 26.0 | 26.0  |               | 26.0  | 26.0  |      | 44.0  | 44.0     |          | 44.0  | 44.0  |      |
| Total Split (s)       | 26.0 | 26.0  | 0.0           | 26.0  | 26.0  | 0.0  | 44.0  | 44.0     | 0.0      | 44.0  | 44.0  | 0.0  |
| Total Split (%)       |      | 37.1% | 0.0%          | 37.1% |       | 0.0% | 62.9% |          | 0.0%     | 62.9% |       | 0.0% |
| Yellow Time (s)       | 3.0  | 3.0   |               | 3.0   | 3.0   |      | 3.0   | 3.0      |          | 3.0   | 3.0   |      |
| All-Red Time (s)      | 3.0  | 3.0   |               | 3.0   | 3.0   |      | 3.0   | 3.0      |          | 3.0   | 3.0   |      |
| Lead/Lag              |      |       |               |       |       |      |       |          |          |       |       |      |
| Lead-Lag Optimize?    |      |       |               |       |       |      |       |          |          |       |       |      |
| Act Effct Green (s)   |      | 22.0  |               |       | 22.0  |      |       | 40.0     |          |       | 40.0  |      |
| Actuated g/C Ratio    |      | 0.31  |               |       | 0.31  |      |       | 0.57     |          |       | 0.57  |      |
| v/c Ratio             |      | 0.52  |               |       | 0.14  |      |       | 0.85     |          |       | 0.39  |      |
| Control Delay         |      | 17.7  |               |       | 17.8  |      |       | 26.4     |          |       | 8.5   |      |
| Queue Delay           |      | 0.0   |               |       | 0.0   |      |       | 0.0      |          |       | 0.0   |      |
| Total Delay           |      | 17.7  |               |       | 17.8  |      |       | 26.4     |          |       | 8.5   |      |
| LOS                   |      | В     |               |       | В     |      |       | С        |          |       | Α     |      |
| Approach Delay        |      | 17.7  |               |       | 17.8  |      |       | 26.4     |          |       | 8.5   |      |
| Approach LOS          |      | В     |               |       | В     |      |       | С        |          |       | Α     |      |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70
Control Type: Pretimed
Maximum v/c Ratio: 0.85

Intersection Signal Delay: 18.8 Intersection LOS: B
Intersection Capacity Utilization 71.4% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: Rt 239/Union St & RT 11/Main St



|                                  | TW                                               | O-WAY STOP       | CONTRO   | DL SI          | JMMARY        |                                                  |               |          |
|----------------------------------|--------------------------------------------------|------------------|----------|----------------|---------------|--------------------------------------------------|---------------|----------|
| General Informatio               | n                                                |                  | Site Ir  | nform          | ation         |                                                  |               |          |
| Analyst                          | Christoph                                        | ner Puglisi      | Interse  | ction          |               | PPL & Rt                                         | 11            |          |
| Agency/Co.                       | KLD Ass                                          | ociates          | Jurisdi  | ction          |               | Salem Tv                                         | vp            |          |
| Date Performed                   | 7/3/2008                                         |                  | Analys   | is Yea         | r             | 2008                                             |               |          |
| Analysis Time Period             | PM Peak                                          |                  |          |                |               |                                                  |               |          |
| Project Description 53           |                                                  | na/Bell Bend NPF |          |                |               |                                                  |               |          |
| East/West Street: PPL            |                                                  |                  |          |                | Street: US Rt | 11                                               |               |          |
| Intersection Orientation:        | North-South                                      |                  | Study F  | Period         | (hrs): 0.25   |                                                  |               |          |
| Vehicle Volumes a                | nd Adjustm                                       | ents             |          |                |               |                                                  |               |          |
| Major Street                     |                                                  | Northbound       |          |                |               | Southbou                                         | ınd           |          |
| Movement                         | 1                                                | 2                | 3        |                | 4             | 5                                                |               | 6        |
|                                  | L                                                | T                | R        |                | L             | T                                                |               | R        |
| Volume (veh/h)                   | 2                                                | 274              | 4.00     |                |               | 260                                              |               | 1        |
| Peak-Hour Factor, PHF            | 1.00                                             | 1.00             | 1.00     |                | 1.00          | 1.00                                             | _             | 1.00     |
| Hourly Flow Rate, HFR (veh/h)    | 2                                                | 274              | 0        |                | 0             | 260                                              |               | 1        |
| Percent Heavy Vehicles           | 0                                                |                  |          | <del>-  </del> | 0             |                                                  |               |          |
| Median Type                      |                                                  |                  | Тwo И    | /av Let        | t Turn Lane   | -                                                |               |          |
| RT Channelized                   |                                                  |                  | 0        | <u> </u>       |               |                                                  |               | 0        |
| Lanes                            | 1                                                | 1                | 0        | <del> </del>   | 0             | 1                                                |               | 0        |
| Configuration                    | $\frac{1}{i}$                                    | T                |          |                |               | •                                                |               | TR       |
| Upstream Signal                  | _                                                | 0                |          |                |               | 0                                                |               |          |
| Minor Street                     |                                                  | Eastbound        |          | _              |               | Westbou                                          | nd            |          |
| Movement                         | 7                                                | 8                | 9        | -              | 10            | 11                                               |               | 12       |
| Movement                         | <del>                                     </del> | T                | R        |                | L             | <del>                                     </del> |               | R        |
| Volume (veh/h)                   | 80                                               | <del> </del>     | 220      |                |               | <u> </u>                                         |               |          |
| Peak-Hour Factor, PHF            |                                                  | 1.00             | 1.00     |                | 1.00          | 1.00                                             |               | 1.00     |
| Hourly Flow Rate, HFR<br>(veh/h) | 80                                               | 0                | 220      |                | 0             | 0                                                |               | 0        |
| Percent Heavy Vehicles           | 0                                                | 0                | 0        |                | 0             | 0                                                |               | 0        |
| Percent Grade (%)                |                                                  | 0                |          |                |               | 0                                                |               |          |
| Flared Approach                  |                                                  | N                |          |                |               | N                                                |               |          |
| Storage                          |                                                  | 0                |          |                |               | 0                                                |               |          |
| RT Channelized                   |                                                  |                  | 0        | <u> </u>       |               |                                                  |               | 0        |
| Lanes                            | 1                                                | 0                | 1        |                | 0             | 0                                                |               | 0        |
| Configuration                    | L                                                |                  | R        |                |               |                                                  |               | _        |
| Delay, Queue Length,             | and Level of S                                   | ervice           |          |                |               |                                                  |               |          |
| Approach                         | Northbound                                       | Southbound       | V        | Vestbo         | und           | F                                                | astbound      | ı        |
| Movement                         | 1                                                | 4                | 7        | 8              | 9             | 10                                               | 11            | 12       |
| Lane Configuration               | L                                                | 7                | ,        | 0              | J             | L 10                                             | - 11          | R        |
|                                  | 2                                                |                  |          |                | _             |                                                  |               | -        |
| v (veh/h)                        |                                                  |                  |          |                |               | 80<br>500                                        |               | 220      |
| C (m) (veh/h)                    | 1315                                             |                  |          |                |               | 588                                              |               | 784      |
| v/c                              | 0.00                                             |                  |          |                |               | 0.14                                             |               | 0.28     |
| 95% queue length                 | 0.00                                             |                  |          |                |               | 0.47                                             |               | 1.15     |
| Control Delay (s/veh)            | 7.7                                              |                  |          |                |               | 12.1                                             |               | 11.4     |
| LOS                              | Α                                                |                  |          |                |               | В                                                |               | В        |
| Approach Delay (s/veh)           |                                                  |                  |          |                |               |                                                  | 11.6          |          |
| Approach LOS                     |                                                  |                  |          |                |               |                                                  | В             |          |
| Copyright © 2007 University of F | Iorida All Rights Ro                             | served An        | pendix 🖼 | ~c_TM √        | Iomion 5.2    | Genera                                           | ited: 7/11/20 | 08 10·50 |

Copyright © 2007 University of Florida, All Rights Reserved

Appendix E<sub>HCS+TM</sub> Version 5.3 21

Generated: 7/11/2008 10:50 AM

|                                                | TW                                               | O-WAY STOP       | CONTRO  | OL SU         | JMMARY      |                                                  |                 |      |  |  |  |
|------------------------------------------------|--------------------------------------------------|------------------|---------|---------------|-------------|--------------------------------------------------|-----------------|------|--|--|--|
| General Informatio                             | n                                                |                  | Site Ir | nform         | ation       |                                                  |                 |      |  |  |  |
| Analyst                                        | Christoph                                        | ner Puglisi      | Interse | ction         |             | PPL & Ri                                         | 11              |      |  |  |  |
| Agency/Co.                                     | KLD Ass                                          | ociates          | Jurisdi | ction         |             | Salem Tv                                         | vp              |      |  |  |  |
| Date Performed                                 | 7/3/2008                                         |                  | Analys  | is Year       | •           | 2008                                             |                 |      |  |  |  |
| Analysis Time Period                           | PM Peak                                          |                  |         |               |             |                                                  |                 |      |  |  |  |
| Project Description 53                         |                                                  | na/Bell Bend NPF |         |               |             |                                                  |                 |      |  |  |  |
| East/West Street: Bell                         |                                                  |                  |         |               | treet: US R | t 11                                             |                 |      |  |  |  |
| ntersection Orientation:                       | North-South                                      |                  | Study F | Period (      | (hrs): 0.25 |                                                  |                 |      |  |  |  |
| /ehicle Volumes a                              | nd Adjustme                                      |                  |         |               |             |                                                  |                 |      |  |  |  |
| Major Street                                   |                                                  | Northbound       |         |               |             | Southbou                                         | ınd             |      |  |  |  |
| Movement                                       | 1                                                | 2                | 3       |               | 4           | 5                                                |                 | 6    |  |  |  |
|                                                | L                                                | T                | R       | _             | L           | T 100                                            |                 | R    |  |  |  |
| /olume (veh/h)                                 | 1.00                                             | 238              | 1.00    | -             | 1.00        | 489                                              |                 | 0    |  |  |  |
| Peak-Hour Factor, PHF<br>Hourly Flow Rate, HFR | 7.00                                             | 1.00             | 1.00    | -             | 7.00        | 1.00                                             |                 | 1.00 |  |  |  |
| veh/h)                                         | 1                                                | 238              | 0       |               | 0           | 489                                              |                 | 0    |  |  |  |
| Percent Heavy Vehicles                         | 0                                                |                  |         | o             | 0           | <del></del>                                      |                 |      |  |  |  |
| Median Type                                    |                                                  | <b>I</b>         | Two W   | /av Lef       | t Turn Lane |                                                  |                 |      |  |  |  |
| RT Channelized                                 |                                                  |                  | 0       | 7             |             | Τ                                                |                 | 0    |  |  |  |
| anes                                           | 1                                                | 1                | 0       |               | 0           | 1                                                |                 | 0    |  |  |  |
| Configuration                                  | Ĺ                                                | T                |         |               |             | <del>                                     </del> |                 | TR   |  |  |  |
| Jpstream Signal                                | <del>-</del>                                     | 0                |         |               |             | 0                                                |                 |      |  |  |  |
| Minor Street                                   | <del>-                                    </del> | Eastbound        | •       |               |             | Westbou                                          | ınd             |      |  |  |  |
| Movement                                       | 7                                                | 8                | 9       |               | 10          | 11                                               |                 | 12   |  |  |  |
|                                                | L                                                | T                | R       |               | L           | T                                                |                 | R    |  |  |  |
| /olume (veh/h)                                 | 38                                               | <u> </u>         | 104     |               |             | <u> </u>                                         |                 |      |  |  |  |
| Peak-Hour Factor, PHF                          | 1.00                                             | 1.00             | 1.00    |               | 1.00        | 1.00                                             |                 | 1.00 |  |  |  |
| Hourly Flow Rate, HFR<br>veh/h)                | 38                                               | 0                | 104     |               | 0           | 0                                                |                 | 0    |  |  |  |
| Percent Heavy Vehicles                         | 0                                                | 0                | 0       |               | 0           | 0                                                |                 | 0    |  |  |  |
| Percent Grade (%)                              |                                                  | 0                |         |               |             | 0                                                |                 |      |  |  |  |
| lared Approach                                 |                                                  | N                |         |               |             | N                                                |                 |      |  |  |  |
| Storage                                        |                                                  | 0                |         |               |             | 0                                                |                 |      |  |  |  |
| RT Channelized                                 |                                                  |                  | 0       | o             |             | †                                                |                 | 0    |  |  |  |
| anes                                           | 1                                                | 0                | 1       | $\dashv$      | 0           | 0                                                |                 | 0    |  |  |  |
| Configuration                                  | i L                                              | <del> </del>     | R       | $\overline{}$ | <u> </u>    | <del>                                     </del> |                 |      |  |  |  |
| Delay, Queue Length, a                         | and Level of S                                   | envice           |         |               |             | _                                                |                 |      |  |  |  |
| Approach                                       | Northbound                                       | Southbound       | V       | Vestbo        | und         | 1 ,                                              | Eastbound       | 1    |  |  |  |
| Movement                                       | 1                                                | 4                | 7       | 8             | 9           | 10                                               | 11              | 12   |  |  |  |
| ane Configuration                              | L                                                | 7                | ,       |               |             | L                                                | <del>  ''</del> | R    |  |  |  |
|                                                | 1                                                |                  |         |               |             | -                                                | -               | _    |  |  |  |
| (veh/h)                                        | -                                                |                  |         |               |             | 38                                               |                 | 104  |  |  |  |
| C (m) (veh/h)                                  | 1085                                             |                  |         |               |             | 493                                              |                 | 583  |  |  |  |
| //c                                            | 0.00                                             |                  |         |               |             | 0.08                                             |                 | 0.18 |  |  |  |
| 95% queue length                               | 0.00                                             |                  |         |               |             | 0.25                                             |                 | 0.64 |  |  |  |
| Control Delay (s/veh)                          | 8.3                                              |                  |         |               |             | 12.9                                             |                 | 12.5 |  |  |  |
| .OS                                            | Α                                                |                  |         |               |             | В                                                |                 | В    |  |  |  |
| Approach Delay (s/veh)                         |                                                  |                  |         |               |             |                                                  | 12.6            |      |  |  |  |
|                                                |                                                  |                  |         |               |             |                                                  |                 |      |  |  |  |

Appendix E<sub>HCS+TM</sub> Version 5.3

# Appendix F

**Material Arrival Breakdown** 

| Civil Material                                 |                                     |        |           |
|------------------------------------------------|-------------------------------------|--------|-----------|
| Construction Equipment                         | 500 on+500 off                      | 1,000  | shipments |
| Concrete Material                              | 848,355 tons / 15 tons per shipment | 56,557 | shipments |
| Formwork                                       | 2393 tons/15 tons per shipment      | 160    | shipments |
| Rebar                                          | 55,331 tons/15 tons per shipment    | 3,689  | shipments |
| Structural Steel                               | 6,261 tons/15 tons per shipment     | 418    | shipments |
| Misc. Steel                                    | 1,016 tons/15 tons per shipment     | 68     | shipments |
| Mod Steel                                      | 225 tons/15 tons per shipment       | 15     | shipments |
| Steel Liner                                    | 1,412 tons/15 tons per shipment     | 94     | shipments |
| Embedded Steel                                 | 1903 tons/15 tons per shipment      | 127    | shipments |
| Siding & Roofing                               | 2056 tons/15 tons per shipment      | 137    | shipments |
| Pre engineered building                        | 60 tons/15 tons per shipment        | 4      | shipments |
| Construction Debris                            | 12,000 tons/15 tons per shipment    | 800    | shipments |
| Piping and Mechanical Material                 |                                     |        |           |
| Large and Small bore pipe                      | 7500 tons/15 tons per shipment      | 500    | shipments |
| Large bore hangers                             | 2788 tons/15 tons per shipment      | 186    | shipments |
| Nuclear Island EM package Equipment            | 15,377 tons/15 tons per shipment    | 1,025  | shipments |
| Turbine Island and BOP Mechanical<br>Equipment |                                     | 1,000  | shipments |
| Consumables                                    |                                     | 1,000  | shipments |
| Electrical Equipment                           |                                     |        |           |
| Conduit                                        | 1,356 tons/15 tons per shipment     | 90     | shipments |
| Cable Tray                                     | 73 tons/15 tons per shipment        | 49     | shipments |
| Power & Control wire                           | 4,406 tons/15 tons per shipment     | 294    | shipments |
| NI Electrical Equipment                        | 5,000 ton/15 tons per shipment      | 333    | shipments |
| TI Electrical Equipment                        | 5,000 ton/15 tons per shipment      | 333    | shipments |
|                                                |                                     |        |           |
| Grand Total                                    |                                     | 67,879 | shipments |

# **APPENDIX G**

CAPACITY ANALYSIS

CONSTRUCTION PEAK CONDITIONS

RT 11 & Union Street AM Peak

|                       | ۶     | <b>→</b> | •    | •    | <b>←</b> | •    | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ    | 4    |
|-----------------------|-------|----------|------|------|----------|------|-------|----------|-------------|-------------|------|------|
| Lane Group            | EBL   | EBT      | EBR  | WBL  | WBT      | WBR  | NBL   | NBT      | NBR         | SBL         | SBT  | SBR  |
| Lane Configurations   |       | 44       |      |      | 44       |      | 7     | f)       |             | 7           | f)   |      |
| Total Lost Time (s)   | 4.0   | 4.0      | 4.0  | 4.0  | 4.0      | 4.0  | 4.0   | 4.0      | 4.0         | 4.0         | 4.0  | 4.0  |
| Satd. Flow (prot)     | 0     | 1635     | 0    | 0    | 1754     | 0    | 1719  | 1797     | 0           | 1810        | 1800 | 0    |
| Flt Permitted         |       | 0.865    |      |      | 0.830    |      | 0.100 |          |             |             |      |      |
| Satd. Flow (perm)     | 0     | 1442     | 0    | 0    | 1493     | 0    | 181   | 1797     | 0           | 1810        | 1800 | 0    |
| Satd. Flow (RTOR)     |       | 105      |      |      | 1        |      |       | 6        |             |             | 4    |      |
| Volume (vph)          | 145   | 14       | 223  | 8    | 7        | 1    | 45    | 197      | 10          | 0           | 940  | 30   |
| Lane Group Flow (vph) | 0     | 434      | 0    | 0    | 23       | 0    | 51    | 232      | 0           | 0           | 1000 | 0    |
| Turn Type             | Perm  |          |      | Perm |          |      | Perm  |          |             | Perm        |      |      |
| Protected Phases      |       | 4        |      |      | 8        |      |       | 2        |             |             | 6    |      |
| Permitted Phases      | 4     |          |      | 8    |          |      | 2     |          |             | 6           |      |      |
| Detector Phases       | 4     | 4        |      | 8    | 8        |      | 2     | 2        |             | 6           | 6    |      |
| Minimum Initial (s)   | 8.0   | 8.0      |      | 8.0  | 8.0      |      | 14.0  | 14.0     |             | 14.0        | 14.0 |      |
| Minimum Split (s)     | 26.0  | 26.0     |      | 26.0 | 26.0     |      | 44.0  | 44.0     |             | 44.0        | 44.0 |      |
| Total Split (s)       | 26.0  | 26.0     | 0.0  | 26.0 | 26.0     | 0.0  | 44.0  | 44.0     | 0.0         | 44.0        | 44.0 | 0.0  |
| Total Split (%)       | 37.1% |          | 0.0% |      | 37.1%    | 0.0% | 62.9% |          | 0.0%        | 62.9%       |      | 0.0% |
| Yellow Time (s)       | 3.0   | 3.0      |      | 3.0  | 3.0      |      | 3.0   | 3.0      |             | 3.0         | 3.0  |      |
| All-Red Time (s)      | 3.0   | 3.0      |      | 3.0  | 3.0      |      | 3.0   | 3.0      |             | 3.0         | 3.0  |      |
| Lead/Lag              |       |          |      |      |          |      |       |          |             |             |      |      |
| Lead-Lag Optimize?    |       |          |      |      |          |      |       |          |             |             |      |      |
| Recall Mode           | Max   | Max      |      | Max  | Max      |      | Max   | Max      |             | Max         | Max  |      |
| Act Effct Green (s)   |       | 22.0     |      |      | 22.0     |      | 40.0  | 40.0     |             |             | 40.0 |      |
| Actuated g/C Ratio    |       | 0.31     |      |      | 0.31     |      | 0.57  | 0.57     |             |             | 0.57 |      |
| v/c Ratio             |       | 0.83     |      |      | 0.05     |      | 0.50  | 0.23     |             |             | 0.97 |      |
| Control Delay         |       | 32.5     |      |      | 16.7     |      | 30.4  | 7.9      |             |             | 38.8 |      |
| Queue Delay           |       | 0.0      |      |      | 0.0      |      | 0.0   | 0.0      |             |             | 0.0  |      |
| Total Delay           |       | 32.5     |      |      | 16.7     |      | 30.4  | 7.9      |             |             | 38.8 |      |
| LOS                   |       | С        |      |      | В        |      | С     | Α        |             |             | D    |      |
| Approach Delay        |       | 32.5     |      |      | 16.7     |      |       | 11.9     |             |             | 38.8 |      |
| Approach LOS          |       | С        |      |      | В        |      |       | В        |             |             | D    |      |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75
Control Type: Pretimed
Maximum v/c Ratio: 0.97
Intersection Signal Delay: 32.6

Intersection Signal Delay: 32.6Intersection LOS: CIntersection Capacity Utilization 83.8%ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 3: Rt 239/Union St & RT 11/Main St



RT 11 & Main Street AM Peak

|                       | €     | •    | Ť        | <b>/</b> | -     | ¥       |
|-----------------------|-------|------|----------|----------|-------|---------|
| Lane Group            | WBL   | WBR  | NBT      | NBR      | SBL   | SBT     |
| Lane Configurations   | ¥     |      | <b>^</b> | 7        | ሻ     | <b></b> |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0      | 4.0      | 4.0   | 4.0     |
| Satd. Flow (prot)     | 1617  | 0    | 1776     | 1509     | 1687  | 1776    |
| Flt Permitted         | 0.975 |      |          |          | 0.542 |         |
| Satd. Flow (perm)     | 1617  | 0    | 1776     | 1509     | 962   | 1776    |
| Satd. Flow (RTOR)     | 62    |      |          | 13       |       |         |
| Volume (vph)          | 43    | 41   | 154      | 11       | 58    | 1137    |
| Lane Group Flow (vph) | 127   | 0    | 179      | 13       | 64    | 1263    |
| Turn Type             |       |      |          | Perm     | pm+pt |         |
| Protected Phases      | 4     |      | 6        |          | 5     | 2       |
| Permitted Phases      |       |      |          | 6        | 2     |         |
| Detector Phases       | 4     |      | 6        | 6        | 5     | 2       |
| Minimum Initial (s)   | 5.0   |      | 12.0     | 12.0     | 5.0   | 17.0    |
| Minimum Split (s)     | 10.2  |      | 21.4     | 21.4     | 10.4  | 22.4    |
| Total Split (s)       | 22.6  | 0.0  | 30.4     | 30.4     | 17.0  | 47.4    |
| Total Split (%)       | 32.3% | 0.0% | 43.4%    | 43.4%    | 24.3% | 67.7%   |
| Yellow Time (s)       | 4.1   |      | 4.2      | 4.2      | 4.2   | 4.2     |
| All-Red Time (s)      | 1.1   |      | 1.2      | 1.2      | 1.2   | 1.2     |
| Lead/Lag              |       |      | Lag      | Lag      | Lead  |         |
| Lead-Lag Optimize?    |       |      | Yes      | Yes      | Yes   |         |
| Recall Mode           | None  |      | None     | None     | None  | None    |
| Act Effct Green (s)   | 11.4  |      | 38.2     | 38.2     | 43.6  | 45.1    |
| Actuated g/C Ratio    | 0.18  |      | 0.63     | 0.63     | 0.67  | 0.75    |
| v/c Ratio             | 0.37  |      | 0.16     | 0.01     | 0.09  | 0.95    |
| Control Delay         | 14.2  |      | 9.2      | 5.4      | 4.3   | 29.4    |
| Queue Delay           | 0.0   |      | 0.0      | 0.0      | 0.0   | 0.0     |
| Total Delay           | 14.2  |      | 9.2      | 5.4      | 4.3   | 29.4    |
| LOS                   | В     |      | Α        | Α        | Α     | С       |
| Approach Delay        | 14.2  |      | 8.9      |          |       | 28.2    |
| Approach LOS          | В     |      | Α        |          |       | С       |
|                       |       |      |          |          |       |         |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 60.4

Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.95

Intersection Signal Delay: 24.9 Intersection LOS: C
Intersection Capacity Utilization 71.4% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: Main St & RT 11



2nd St & Market Street AM Peak

|                       | ۶    | <b>→</b> | •    | €     | <b>←</b> | *    | 1     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ        | ∢    |
|-----------------------|------|----------|------|-------|----------|------|-------|----------|-------------|-------------|----------|------|
| Lane Group            | EBL  | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR         | SBL         | SBT      | SBR  |
| Lane Configurations   |      |          |      | 7     | <b>^</b> | 7    | ሻ     | <b></b>  |             |             | <b>^</b> | 7    |
| Total Lost Time (s)   | 4.0  | 4.0      | 4.0  | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0         | 4.0         | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0    | 0        | 0    | 1787  | 3574     | 1599 | 1787  | 1881     | 0           | 0           | 1881     | 1599 |
| Flt Permitted         |      |          |      | 0.950 |          |      | 0.549 |          |             |             |          |      |
| Satd. Flow (perm)     | 0    | 0        | 0    | 1787  | 3574     | 1599 | 1033  | 1881     | 0           | 0           | 1881     | 1599 |
| Satd. Flow (RTOR)     |      |          |      |       |          | 25   |       |          |             |             |          | 70   |
| Volume (vph)          | 0    | 0        | 0    | 72    | 330      | 20   | 108   | 86       | 0           | 0           | 162      | 62   |
| Lane Group Flow (vph) | 0    | 0        | 0    | 91    | 418      | 25   | 132   | 105      | 0           | 0           | 182      | 70   |
| Turn Type             |      |          |      | Perm  |          | Perm | pm+pt |          |             |             |          | Perm |
| Protected Phases      |      |          |      |       | 8        |      | 5     | 2        |             |             | 6        |      |
| Permitted Phases      |      |          |      | 8     |          | 8    | 2     |          |             |             |          | 6    |
| Detector Phases       |      |          |      | 8     | 8        | 8    | 5     | 2        |             |             | 6        | 6    |
| Minimum Initial (s)   |      |          |      | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      |             |             | 4.0      | 4.0  |
| Minimum Split (s)     |      |          |      | 21.0  | 21.0     | 21.0 | 8.0   | 20.5     |             |             | 20.5     | 20.5 |
| Total Split (s)       | 0.0  | 0.0      | 0.0  | 25.0  | 25.0     | 25.0 | 10.0  | 40.0     | 0.0         | 0.0         | 30.0     | 30.0 |
| Total Split (%)       | 0.0% | 0.0%     | 0.0% |       |          |      |       |          | 0.0%        | 0.0%        | 46.2%    |      |
| Yellow Time (s)       |      |          |      | 3.5   | 3.5      | 3.5  | 3.5   | 3.5      |             |             | 3.5      | 3.5  |
| All-Red Time (s)      |      |          |      | 1.5   | 1.5      | 1.5  | 0.0   | 1.0      |             |             | 1.0      | 1.0  |
| Lead/Lag              |      |          |      |       |          |      | Lead  |          |             |             | Lag      | Lag  |
| Lead-Lag Optimize?    |      |          |      |       |          |      | Yes   |          |             |             | Yes      | Yes  |
| Recall Mode           |      |          |      | Max   | Max      | Max  | Max   | Max      |             |             | Max      | Max  |
| Act Effct Green (s)   |      |          |      | 21.0  | 21.0     | 21.0 | 36.0  | 36.0     |             |             | 26.0     | 26.0 |
| Actuated g/C Ratio    |      |          |      | 0.32  | 0.32     | 0.32 | 0.55  | 0.55     |             |             | 0.40     | 0.40 |
| v/c Ratio             |      |          |      | 0.16  | 0.36     | 0.05 | 0.21  | 0.10     |             |             | 0.24     | 0.10 |
| Control Delay         |      |          |      | 16.7  | 18.0     | 7.2  | 2.3   | 1.6      |             |             | 14.1     | 4.1  |
| Queue Delay           |      |          |      | 0.0   | 0.0      | 0.0  | 0.0   | 0.0      |             |             | 0.0      | 0.0  |
| Total Delay           |      |          |      | 16.7  | 18.0     | 7.2  | 2.3   | 1.6      |             |             | 14.1     | 4.1  |
| LOS                   |      |          |      | В     | В        | Α    | Α     | Α        |             |             | В        | Α    |
| Approach Delay        |      |          |      |       | 17.3     |      |       | 2.0      |             |             | 11.3     |      |
| Approach LOS          |      |          |      |       | В        |      |       | Α        |             |             | В        |      |

#### Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.36 Intersection Signal Delay: 12.3

Intersection Signal Delay: 12.3Intersection LOS: BIntersection Capacity Utilization 75.6%ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Int



|                       | •    | -     | $\rightarrow$ | €    | •    | *    | 1    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|-----------------------|------|-------|---------------|------|------|------|------|----------|----------|-------------|----------|------|
| Lane Group            | EBL  | EBT   | EBR           | WBL  | WBT  | WBR  | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| Lane Configurations   |      | ની ફે |               |      |      |      |      | <b>†</b> | 7        | J.          | <b>†</b> |      |
| Total Lost Time (s)   | 4.0  | 4.0   | 4.0           | 4.0  | 4.0  | 4.0  | 4.0  | 4.0      | 4.0      | 4.0         | 4.0      | 4.0  |
| Satd. Flow (prot)     | 0    | 3426  | 0             | 0    | 0    | 0    | 0    | 1827     | 1553     | 1736        | 1827     | 0    |
| Flt Permitted         |      |       |               |      |      |      |      |          |          | 0.493       |          |      |
| Satd. Flow (perm)     | 0    | 3426  | 0             | 0    | 0    | 0    | 0    | 1827     | 1553     | 901         | 1827     | 0    |
| Satd. Flow (RTOR)     |      | 17    |               |      |      |      |      |          | 224      |             |          |      |
| Volume (vph)          | 2    | 953   | 87            | 0    | 0    | 0    | 0    | 182      | 527      | 68          | 142      | 0    |
| Lane Group Flow (vph) |      | 1121  | 0             | 0    | 0    | 0    | 0    | 207      | 599      | 71          | 148      | 0    |
| Turn Type             | Perm |       |               |      |      |      |      |          | Perm     | pm+pt       |          |      |
| Protected Phases      |      | 4     |               |      |      |      |      | 2        |          | 1           | 6        |      |
| Permitted Phases      | 4    |       |               |      |      |      |      |          | 2        |             |          |      |
| Detector Phases       | 4    | 4     |               |      |      |      |      | 2        | 2        |             | 6        |      |
| Minimum Initial (s)   | 4.0  | 4.0   |               |      |      |      |      | 3.0      | 3.0      |             | 3.0      |      |
| Minimum Split (s)     | 24.0 | 24.0  |               |      | 0.0  | 0.0  | 0.0  | 21.0     | 21.0     | 10.0        | 31.0     | 0.0  |
| Total Split (s)       | 29.0 | 29.0  | 0.0           | 0.0  | 0.0  | 0.0  | 0.0  | 26.0     | 26.0     | 10.0        | 36.0     | 0.0  |
| Total Split (%)       |      | 44.6% | 0.0%          | 0.0% | 0.0% | 0.0% | 0.0% |          |          | 15.4%       |          | 0.0% |
| Yellow Time (s)       | 3.2  | 3.2   |               |      |      |      |      | 4.0      | 4.0      | 2.0         | 4.0      |      |
| All-Red Time (s)      | 1.8  | 1.8   |               |      |      |      |      | 1.0      | 1.0      | 0.0         | 1.0      |      |
| Lead/Lag              |      |       |               |      |      |      |      | Lag      | Lag      | Lead        |          |      |
| Lead-Lag Optimize?    |      |       |               |      |      |      |      | Yes      | Yes      |             |          |      |
| Recall Mode           | Max  | Max   |               |      |      |      |      | Max      | Max      |             | Max      |      |
| Act Effct Green (s)   |      | 25.0  |               |      |      |      |      | 22.0     | 22.0     | 32.0        | 32.0     |      |
| Actuated g/C Ratio    |      | 0.38  |               |      |      |      |      | 0.34     | 0.34     | 0.49        | 0.49     |      |
| v/c Ratio             |      | 0.84  |               |      |      |      |      | 0.33     | 0.89     | 0.14        | 0.16     |      |
| Control Delay         |      | 25.6  |               |      |      |      |      | 18.0     | 31.1     | 8.7         | 8.7      |      |
| Queue Delay           |      | 0.0   |               |      |      |      |      | 0.0      | 0.0      | 0.0         | 0.0      |      |
| Total Delay           |      | 25.6  |               |      |      |      |      | 18.0     | 31.1     | 8.7         | 8.7      |      |
| LOS<br>Annuach Dalau  |      | C     |               |      |      |      |      | B        | С        | Α           | Α        |      |
| Approach Delay        |      | 25.6  |               |      |      |      |      | 27.7     |          |             | 8.7      |      |
| Approach LOS          |      | С     |               |      |      |      |      | С        |          |             | Α        |      |

#### Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 55 Control Type: Pretimed Maximum v/c Ratio: 0.89 Intersection Signal Delay: 24.7

Intersection Signal Delay: 24.7 Intersection LOS: C
Intersection Capacity Utilization 75.6% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 6: Int



RT 11 & LaSalle St AM Peak

|                          | ۶       | <b>→</b> | •    | •     | <b>←</b>   | •       | •    | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ    | 4    |
|--------------------------|---------|----------|------|-------|------------|---------|------|----------|-------------|-------------|------|------|
| Lane Group               | EBL     | EBT      | EBR  | WBL   | WBT        | WBR     | NBL  | NBT      | NBR         | SBL         | SBT  | SBR  |
| Lane Configurations      | ሻ       |          |      | ሻ     | <b>∱</b> Љ |         |      |          |             |             |      | 7    |
| Total Lost Time (s)      | 4.0     | 4.0      | 4.0  | 4.0   | 4.0        | 4.0     | 4.0  | 4.0      | 4.0         | 4.0         | 4.0  | 4.0  |
| Satd. Flow (prot)        | 1752    | 0        | 0    | 1752  | 3498       | 0       | 0    | 0        | 0           | 0           | 0    | 1596 |
| Flt Permitted            | 0.950   |          |      | 0.950 |            |         |      |          |             |             |      |      |
| Satd. Flow (perm)        | 1752    | 0        | 0    | 1752  | 3498       | 0       | 0    | 0        | 0           | 0           | 0    | 1596 |
| Satd. Flow (RTOR)        |         |          |      | 5     | 4          |         |      |          |             |             |      | 588  |
| Volume (vph)             | 55      | 0        | 0    | 4     | 458        | 7       | 0    | 0        | 0           | 0           | 0    | 31   |
| Lane Group Flow (vph)    | 63      | 0        | 0    | 5     | 547        | 0       | 0    | 0        | 0           | 0           | 0    | 41   |
| Turn Type                | Prot    |          |      | Perm  |            |         |      |          |             |             |      | Free |
| Protected Phases         | 7       |          |      |       | 8          |         |      |          |             |             |      |      |
| Permitted Phases         |         |          |      | 8     |            |         |      |          |             |             |      | Free |
| Detector Phases          | 7       |          |      | 8     | 8          |         |      |          |             |             |      |      |
| Minimum Initial (s)      | 1.0     |          |      | 4.0   | 4.0        |         |      |          |             |             |      |      |
| Minimum Split (s)        | 5.0     |          |      | 25.0  | 25.0       |         |      |          |             |             |      |      |
| Total Split (s)          | 25.0    | 0.0      | 0.0  | 45.0  | 45.0       | 0.0     | 0.0  | 0.0      | 0.0         | 0.0         | 0.0  | 0.0  |
| Total Split (%)          | 35.7%   | 0.0%     | 0.0% | 64.3% | 64.3%      | 0.0%    | 0.0% | 0.0%     | 0.0%        | 0.0%        | 0.0% | 0.0% |
| Yellow Time (s)          | 3.0     |          |      | 3.0   | 3.0        |         |      |          |             |             |      |      |
| All-Red Time (s)         | 1.0     |          |      | 1.0   | 1.0        |         |      |          |             |             |      |      |
| Lead/Lag                 | Lead    |          |      | Lag   | Lag        |         |      |          |             |             |      |      |
| Lead-Lag Optimize?       | Yes     |          |      | Yes   | Yes        |         |      |          |             |             |      |      |
| Recall Mode              | None    |          |      | None  | None       |         |      |          |             |             |      |      |
| Act Effct Green (s)      | 7.0     |          |      | 5.4   | 5.4        |         |      |          |             |             |      | 13.3 |
| Actuated g/C Ratio       | 0.32    |          |      | 0.36  | 0.36       |         |      |          |             |             |      | 1.00 |
| v/c Ratio                | 0.11    |          |      | 0.01  | 0.43       |         |      |          |             |             |      | 0.03 |
| Control Delay            | 5.1     |          |      | 3.0   | 3.2        |         |      |          |             |             |      | 0.0  |
| Queue Delay              | 0.0     |          |      | 0.0   | 0.0        |         |      |          |             |             |      | 0.0  |
| Total Delay              | 5.1     |          |      | 3.0   | 3.2        |         |      |          |             |             |      | 0.0  |
| LOS                      | Α       |          |      | Α     |            |         |      |          |             |             |      | Α    |
| Approach Delay           |         |          |      |       | 3.2        |         |      |          |             |             |      |      |
| Approach LOS             |         |          |      |       | Α          |         |      |          |             |             |      |      |
| Intersection Summary     |         |          |      |       |            |         |      |          |             |             |      |      |
| Cycle Length: 70         |         |          |      |       |            |         |      |          |             |             |      |      |
| Actuated Cycle Length:   | 13.3    |          |      |       |            |         |      |          |             |             |      |      |
| Natural Cycle: 40        |         |          |      |       |            |         |      |          |             |             |      |      |
| Control Type: Actuated-  | Uncoor  | dinated  |      |       |            |         |      |          |             |             |      |      |
| Maximum v/c Ratio: 0.4   |         |          |      |       |            |         |      |          |             |             |      |      |
| Intersection Signal Dela | ıy: 3.2 |          |      |       | Intersect  | ion LOS | S: A |          |             |             |      |      |
| 1                        | en - e  | 00.00/   |      |       |            |         |      |          |             |             |      |      |

Analysis Period (min) 15

Splits and Phases: 7: Int

Intersection Capacity Utilization 22.9%



ICU Level of Service A

RT 11 & Orange St AM Peak

|                       | ᄼ    | -     | •    | €     | <b>←</b> | •    | •     | <b>†</b> | <b>/</b> | <b>/</b> | Ţ     | 4    |
|-----------------------|------|-------|------|-------|----------|------|-------|----------|----------|----------|-------|------|
| Lane Group            | EBL  | EBT   | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations   |      | - ↑   |      |       | <u></u>  |      |       | 4        |          |          | 4     |      |
| Total Lost Time (s)   | 4.0  | 4.0   | 4.0  | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0      | 4.0      | 4.0   | 4.0  |
| Satd. Flow (prot)     | 0    | 1861  | 0    | 0     | 1863     | 0    | 0     | 1863     | 0        | 0        | 1777  | 0    |
| Flt Permitted         |      |       |      |       | 0.737    |      |       |          |          |          | 0.738 |      |
| Satd. Flow (perm)     | 0    | 1861  | 0    | 0     | 1373     | 0    | 0     | 1863     | 0        | 0        | 1375  | 0    |
| Satd. Flow (RTOR)     |      | 2     |      |       |          |      |       |          |          |          |       |      |
| Volume (vph)          | 0    | 994   | 11   | 3     | 434      | 0    | 0     | 0        | 0        | 84       | 4     | 0    |
| Lane Group Flow (vph) | 0    | 1116  | 0    | 0     | 521      | 0    | 0     | 0        | 0        | 0        | 130   | 0    |
| Turn Type             |      |       |      | Perm  |          |      | Perm  |          | (        | custom   |       |      |
| Protected Phases      |      | 4     |      |       | 8        |      |       | 2        |          |          |       |      |
| Permitted Phases      |      |       |      | 8     |          |      | 2     |          |          | 6        | 6     |      |
| Detector Phases       |      | 4     |      | 8     | 8        |      | 2     | 2        |          | 6        | 6     |      |
| Minimum Initial (s)   |      | 4.0   |      | 4.0   | 4.0      |      | 4.0   | 4.0      |          | 4.0      | 4.0   |      |
| Minimum Split (s)     |      | 20.0  |      | 20.0  | 20.0     |      | 20.0  | 20.0     |          | 20.0     | 20.0  |      |
| Total Split (s)       | 0.0  | 36.0  | 0.0  | 36.0  | 36.0     | 0.0  | 19.0  | 19.0     | 0.0      | 19.0     | 19.0  | 0.0  |
| Total Split (%)       | 0.0% | 65.5% | 0.0% | 65.5% |          | 0.0% | 34.5% |          | 0.0%     | 34.5%    |       | 0.0% |
| Yellow Time (s)       |      | 3.5   |      | 3.5   | 3.5      |      | 3.5   | 3.5      |          | 3.5      | 3.5   |      |
| All-Red Time (s)      |      | 0.5   |      | 0.5   | 0.5      |      | 0.5   | 0.5      |          | 0.5      | 0.5   |      |
| Lead/Lag              |      |       |      |       |          |      |       |          |          |          |       |      |
| Lead-Lag Optimize?    |      |       |      |       |          |      |       |          |          |          |       |      |
| Recall Mode           |      | Max   |      | Max   | Max      |      | Max   | Max      |          | Max      | Max   |      |
| Act Effct Green (s)   |      | 32.0  |      |       | 32.0     |      |       |          |          |          | 15.0  |      |
| Actuated g/C Ratio    |      | 0.58  |      |       | 0.58     |      |       |          |          |          | 0.27  |      |
| v/c Ratio             |      | 1.03  |      |       | 0.65     |      |       |          |          |          | 0.35  |      |
| Control Delay         |      | 50.6  |      |       | 12.6     |      |       |          |          |          | 19.3  |      |
| Queue Delay           |      | 0.0   |      |       | 0.0      |      |       |          |          |          | 0.0   |      |
| Total Delay           |      | 50.6  |      |       | 12.6     |      |       |          |          |          | 19.3  |      |
| LOS                   |      | D     |      |       | В        |      |       |          |          |          | В     |      |
| Approach Delay        |      | 50.6  |      |       | 12.6     |      |       |          |          |          | 19.3  |      |
| Approach LOS          |      | D     |      |       | В        |      |       |          |          |          | В     |      |

#### Intersection Summary

Cycle Length: 55

Actuated Cycle Length: 55

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70 Control Type: Pretimed Maximum v/c Ratio: 1.03 Intersection Signal Delay: 37.1

Intersection Signal Delay: 37.1 Intersection LOS: D
Intersection Capacity Utilization 64.5% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 4: RT 11 &



RT 11 & Poplar AM Peak

|                     | -     | €     | ←    | 1    | <b>†</b> | ~    | -     | ¥    |  |
|---------------------|-------|-------|------|------|----------|------|-------|------|--|
| Lane Group          | EBT   | WBL   | WBT  | NBL  | NBT      | NBR  | SBL   | SBT  |  |
| Lane Configurations | ĵ.    | ሻ     | ĵ»   |      | ર્ન      | 7    |       | 4    |  |
| Volume (vph)        | 978   | 35    | 456  | 23   | 3        | 28   | 1     | 7    |  |
| Turn Type           |       | pm+pt |      | Perm |          | Perm | Perm  |      |  |
| Protected Phases    | 4     | 3     | 8    |      | 2        |      |       | 6    |  |
| Permitted Phases    |       | 8     |      | 2    |          | 2    | 6     |      |  |
| Detector Phases     | 4     | 3     | 8    | 2    |          | 2    | 6     | 6    |  |
| Minimum Initial (s) | 1.0   | 4.0   | 20.0 | 2.0  |          | 2.0  | 1.0   | 1.0  |  |
| Minimum Split (s)   | 25.0  | 8.0   | 25.0 | 6.0  | 6.0      | 6.0  | 5.0   | 5.0  |  |
| Total Split (s)     | 40.0  | 13.0  | 53.0 | 17.0 | 17.0     | 17.0 | 17.0  | 17.0 |  |
| Total Split (%)     | 57.1% |       |      |      | 24.3%    |      | 24.3% |      |  |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0  | 3.0  | 3.0      | 3.0  | 3.0   | 3.0  |  |
| All-Red Time (s)    | 2.0   | 0.0   | 2.0  | 1.0  | 1.0      | 1.0  | 1.0   | 1.0  |  |
| Lead/Lag            | Lag   | Lead  |      |      |          |      |       |      |  |
| Lead-Lag Optimize?  | Yes   | Yes   |      |      |          |      |       |      |  |
| Recall Mode         | Max   | Max   | Max  | Max  | Max      | Max  | Max   | Max  |  |
| Act Effct Green (s) | 36.0  | 49.0  | 49.0 |      | 13.0     | 13.0 |       | 13.0 |  |
| Actuated g/C Ratio  | 0.51  | 0.70  | 0.70 |      | 0.19     | 0.19 |       | 0.19 |  |
| v/c Ratio           | 1.27  | 0.11  | 0.38 |      | 0.13     | 0.12 |       | 0.12 |  |
| Control Delay       | 148.8 | 4.0   | 5.3  |      | 25.3     | 10.0 |       | 17.0 |  |
| Queue Delay         | 0.0   | 0.0   | 0.0  |      | 0.0      | 0.0  |       | 0.0  |  |
| Total Delay         | 148.8 | 4.0   | 5.3  |      | 25.3     | 10.0 |       | 17.0 |  |
| LOS                 | F     | Α     | A    |      | С        | В    |       | В    |  |
| Approach Delay      | 148.8 |       | 5.2  |      | 17.5     |      |       | 17.0 |  |
| Approach LOS        | F     |       | Α    |      | В        |      |       | В    |  |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70 Control Type: Pretimed Maximum v/c Ratio: 1.27 Intersection Signal Delay: 99.5

Intersection Signal Delay: 99.5Intersection LOS: FIntersection Capacity Utilization 70.0%ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 4: RT 11 & N Poplar St



|                                  |                                                  | O-WAY STOP                                       | CONTR        | JL SUI    | VIWARY           |                                                  |           |      |
|----------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|-----------|------------------|--------------------------------------------------|-----------|------|
| General Information              | 1                                                |                                                  | Site I       | nforma    | tion             |                                                  |           |      |
| Analyst                          | Christoph                                        | er Puglisi                                       | Interse      | ction     |                  | PPL & Rt                                         | 11        |      |
| Agency/Co.                       | KLD Asso                                         |                                                  | Jurisdi      |           |                  | Salem Tw                                         | 'p        |      |
| Date Performed                   | 7/3/2008                                         |                                                  | Analys       | is Year   |                  | 2008                                             |           |      |
| Analysis Time Period             | AM Peak                                          |                                                  |              |           |                  |                                                  |           |      |
| Project Description 53           | 5 - Susquehanr                                   | na/Bell Bend NPP                                 | •            |           |                  |                                                  |           |      |
| East/West Street: PPL I          | Entrance                                         |                                                  | North/S      | outh Str  | eet: US Rt       | 11                                               |           |      |
| ntersection Orientation:         | North-South                                      |                                                  | Study F      | Period (h | rs): <i>0.25</i> |                                                  |           |      |
| /ehicle Volumes ar               | nd Adjustme                                      | nts                                              |              |           |                  |                                                  |           |      |
| Major Street                     |                                                  | Northbound                                       |              |           |                  | Southbou                                         | nd        |      |
| Movement                         | 1                                                | 2                                                | 3            |           | 4                | 5                                                |           | 6    |
|                                  | L                                                | Т                                                | R            |           | L                | Т                                                |           | R    |
| /olume (veh/h)                   | 58                                               | 210                                              |              |           |                  | 1095                                             |           | 21   |
| Peak-Hour Factor, PHF            | 1.00                                             | 1.00                                             | 1.00         |           | 1.00             | 1.00                                             |           | 1.00 |
| Hourly Flow Rate, HFR veh/h)     | 58                                               | 210                                              | 0            |           | 0                | 1095                                             |           | 21   |
| Percent Heavy Vehicles           | 0                                                |                                                  |              |           | 0                |                                                  |           |      |
| Median Type                      |                                                  |                                                  | Two V        | Vay Left  | Turn Lane        |                                                  |           |      |
| RT Channelized                   |                                                  |                                                  | 0            |           |                  |                                                  |           | 0    |
| _anes                            | 1                                                | 1                                                | 0            |           | 0                | 1                                                |           | 0    |
| Configuration                    | L                                                | T                                                |              |           |                  |                                                  |           | TR   |
| Jpstream Signal                  |                                                  | 0                                                |              |           |                  | 0                                                |           |      |
| Minor Street                     |                                                  | Eastbound                                        |              |           |                  | Westbou                                          | nd        |      |
| Movement                         | 7                                                | 8                                                | 9            |           | 10               | 11                                               |           | 12   |
|                                  | L                                                | Т                                                | R            |           | L                | T                                                |           | R    |
| /olume (veh/h)                   | 4                                                |                                                  | 11           |           |                  | <del>                                     </del> |           |      |
| Peak-Hour Factor, PHF            | 1.00                                             | 1.00                                             | 1.00         |           | 1.00             | 1.00                                             |           | 1.00 |
| Hourly Flow Rate, HFR<br>(veh/h) | 4                                                | 0                                                | 11           |           | 0                | 0                                                |           | 0    |
| Percent Heavy Vehicles           | 0                                                | 0                                                | 0            |           | 0                | 0                                                |           | 0    |
| Percent Grade (%)                | Ů                                                | 0                                                | <u> </u>     |           |                  | 0                                                |           |      |
| Flared Approach                  |                                                  | T N                                              | 1            |           |                  | T N                                              |           |      |
|                                  |                                                  | 0                                                | <del> </del> |           |                  | 0                                                |           |      |
| Storage                          | +                                                | U                                                | + -          |           |                  | U                                                |           |      |
| RT Channelized                   | <del>                                     </del> | <del>                                     </del> | 0            |           |                  | 1 -                                              |           | 0    |
| _anes                            | 1                                                | 0                                                | 1            |           | 0                | 0                                                |           | 0    |
| Configuration                    | <u>L</u>                                         |                                                  | R            |           |                  |                                                  |           |      |
| Delay, Queue Length, a           |                                                  |                                                  |              |           | _                |                                                  |           |      |
| Approach                         | Northbound                                       | Southbound                                       |              | Westbou   |                  |                                                  | Eastbound |      |
| Movement                         | 1                                                | 4                                                | 7            | 8         | 9                | 10                                               | 11        | 12   |
| _ane Configuration               | L                                                |                                                  |              |           |                  | L                                                |           | R    |
| / (veh/h)                        | 58                                               |                                                  |              |           |                  | 4                                                |           | 11   |
| C (m) (veh/h)                    | 633                                              |                                                  |              |           |                  | 249                                              | İ         | 258  |
| //c                              | 0.09                                             |                                                  |              |           |                  | 0.02                                             |           | 0.04 |
| 95% queue length                 | 0.30                                             |                                                  |              | 1         |                  | 0.05                                             | 1         | 0.13 |
|                                  |                                                  |                                                  |              |           | _                |                                                  |           | +    |
| Control Delay (s/veh)            | 11.3                                             |                                                  |              | 1         |                  | 19.7                                             |           | 19.6 |
| _OS                              | В                                                |                                                  |              |           |                  | С                                                |           | С    |
| Approach Delay (s/veh)           | -                                                |                                                  |              |           |                  |                                                  | 19.6      |      |
| Approach LOS                     |                                                  |                                                  | I            |           |                  |                                                  | С         |      |

KLD Engineering, P.C Bell Bend Traffic Study

Appendix G 9

TR-439 Rev. 2

| Camanal Infa                     |                    |                 | C:4 ·    | £           |                                                  |          |                                                  |      |
|----------------------------------|--------------------|-----------------|----------|-------------|--------------------------------------------------|----------|--------------------------------------------------|------|
| General Information              |                    |                 |          | formation   | on                                               |          |                                                  |      |
| Analyst                          | Christoph          |                 | Interse  |             |                                                  | PPL & Rt |                                                  |      |
| Agency/Co.                       | KLD Asso           | ciates          | Jurisdio |             |                                                  | Salem Tw | р                                                |      |
| Date Performed                   | 7/3/2008           |                 | Analys   | s Year      |                                                  | 2008     |                                                  |      |
| Analysis Time Period             | AM Peak            |                 |          |             |                                                  |          |                                                  |      |
| Project Description 53           | 5 - Susquehanr     | a/Bell Bend NPF |          | (1.0)       |                                                  |          |                                                  |      |
| East/West Street: Bell E         |                    |                 |          | outh Stree  |                                                  | 11       |                                                  |      |
| ntersection Orientation:         |                    |                 | Study P  | eriod (hrs) | : 0.25                                           |          |                                                  |      |
| Vehicle Volumes an               | <u>id Adjustme</u> |                 |          |             |                                                  |          |                                                  |      |
| Major Street                     |                    | Northbound      |          |             |                                                  | Southbou | nd <u>.</u>                                      |      |
| Movement                         | 1                  | 2               | 3        |             | 4                                                | 5        | _                                                | 6    |
|                                  | L                  | T               | R        |             | L                                                | T        |                                                  | R    |
| /olume (veh/h)                   | 1027               | 265             | 4.00     |             | 1.00                                             | 209      |                                                  | 397  |
| Peak-Hour Factor, PHF            | 1.00               | 1.00            | 1.00     |             | 1.00                                             | 1.00     | 1                                                | .00  |
| Hourly Flow Rate, HFR<br>veh/h)  | 1027               | 265             | 0        |             | 0                                                | 209      | 8                                                | 397  |
| Percent Heavy Vehicles           | 0                  |                 |          |             | 0                                                |          |                                                  |      |
| Median Type                      |                    |                 | Two V    | /ay Left Tu | rn Lane                                          |          |                                                  |      |
| RT Channelized                   |                    |                 | 0        |             |                                                  |          |                                                  | 0    |
| _anes                            | 1                  | 1               | 0        |             | 0                                                | 1        |                                                  | 0    |
| Configuration                    | L                  | T               |          |             |                                                  |          |                                                  | TR   |
| Jpstream Signal                  |                    | 0               |          |             |                                                  | 0        |                                                  |      |
| Minor Street                     |                    | Eastbound       |          |             |                                                  | Westbou  | nd                                               |      |
| Movement                         | 7                  | 8               | 9        |             | 10                                               | 11       |                                                  | 12   |
|                                  | L                  | Т               | R        |             | L                                                | Т        |                                                  | R    |
| /olume (veh/h)                   | 5                  |                 | 12       |             |                                                  |          |                                                  |      |
| Peak-Hour Factor, PHF            | 1.00               | 1.00            | 1.00     |             | 1.00                                             | 1.00     |                                                  | 1.00 |
| Hourly Flow Rate, HFR<br>(veh/h) | 5                  | 0               | 12       |             | 0                                                | 0        |                                                  | 0    |
| Percent Heavy Vehicles           | 0                  | 0               | 0        |             | 0                                                | 0        |                                                  | 0    |
| Percent Grade (%)                | -                  | 0               |          |             |                                                  | 0        |                                                  |      |
| Flared Approach                  |                    | T N             | 1        |             |                                                  | T N      |                                                  |      |
|                                  |                    | 0               |          |             |                                                  | 0        |                                                  |      |
| Storage                          |                    | U               | _        |             |                                                  | 0        |                                                  |      |
| RT Channelized                   |                    |                 | 0        |             |                                                  |          |                                                  | 0    |
| Lanes                            | 1                  | 0               | 1        |             | 0                                                | 0        |                                                  | 0    |
| Configuration                    | L                  |                 | R        |             |                                                  |          |                                                  |      |
| Delay, Queue Length, a           |                    |                 |          |             |                                                  |          |                                                  |      |
| Approach                         | Northbound         | Southbound      | <u> </u> | Vestbound   |                                                  |          | Eastbound                                        |      |
| Movement                         | 1                  | 4               | 7        | 8           | 9                                                | 10       | 11                                               | 12   |
| ane Configuration                | L                  |                 |          |             |                                                  | L        |                                                  | R    |
| / (veh/h)                        | 1027               |                 |          |             |                                                  | 5        |                                                  | 12   |
| C (m) (veh/h)                    | 639                |                 |          |             |                                                  | 1        |                                                  | 468  |
| //c                              | 1.61               |                 |          |             | <del>                                     </del> | +        | <del>                                     </del> | 0.03 |
|                                  |                    |                 | -        |             | -                                                | +        |                                                  | _    |
| 95% queue length                 | 55.45              |                 |          |             |                                                  | +        | -                                                | 0.08 |
| Control Delay (s/veh)            | 298.0              |                 |          |             |                                                  |          |                                                  | 12.9 |
| _OS                              | F                  |                 |          |             |                                                  |          |                                                  | В    |
| Approach Delay (s/veh)           |                    | -               |          |             |                                                  |          |                                                  |      |
| Approach LOS                     |                    |                 |          |             |                                                  |          |                                                  |      |

KLD Engineering, P.C Bell Bend Traffic Study

Appendix G 10

TR-439 Rev. 2 RT11 & Union PM Peak

| Lane Group EBL EBT WBL WBT NBL NBT SBL SBT  Lane Configurations  Volume (vph) 59 22 25 32 319 983 4 253  Turn Type Perm Perm Perm Perm  Protected Phases 4 8 2 6                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume (vph)         59         22         25         32         319         983         4         253           Turn Type         Perm         Perm         Perm         Perm           Protected Phases         4         8         2         6 |
| Turn Type Perm Perm Perm Perm Protected Phases 4 8 2 6                                                                                                                                                                                            |
| Protected Phases 4 8 2 6                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                   |
| Dame: 14 - 1 Diagram - 4                                                                                                                                                                                                                          |
| Permitted Phases 4 8 2 6                                                                                                                                                                                                                          |
| Detector Phases 4 4 8 8 2 2 6 6                                                                                                                                                                                                                   |
| Minimum Initial (s) 8.0 8.0 8.0 14.0 14.0 14.0 14.0                                                                                                                                                                                               |
| Minimum Split (s) 26.0 26.0 26.0 26.0 44.0 44.0 44.0                                                                                                                                                                                              |
| Total Split (s) 26.0 26.0 26.0 44.0 44.0 44.0 44.0                                                                                                                                                                                                |
| Total Split (%) 37.1% 37.1% 37.1% 62.9% 62.9% 62.9% 62.9%                                                                                                                                                                                         |
| Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0                                                                                                                                                                                                       |
| All-Red Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0                                                                                                                                                                                                      |
| Lead/Lag                                                                                                                                                                                                                                          |
| Lead-Lag Optimize?                                                                                                                                                                                                                                |
| Recall Mode Max Max Max Max Max Max Max Max                                                                                                                                                                                                       |
| Act Effct Green (s) 22.0 22.0 40.0 40.0 40.0                                                                                                                                                                                                      |
| Actuated g/C Ratio 0.31 0.57 0.57 0.57                                                                                                                                                                                                            |
| v/c Ratio 0.41 0.20 0.67 1.00 0.04 0.38                                                                                                                                                                                                           |
| Control Delay 13.8 17.2 18.8 44.0 7.8 8.1                                                                                                                                                                                                         |
| Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                               |
| Total Delay 13.8 17.2 18.8 44.0 7.8 8.1                                                                                                                                                                                                           |
| LOS B B D A A                                                                                                                                                                                                                                     |
| Approach Delay 13.8 17.2 37.9 8.1                                                                                                                                                                                                                 |
| Approach LOS B B D A                                                                                                                                                                                                                              |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80 Control Type: Pretimed Maximum v/c Ratio: 1.00 Intersection Signal Delay: 28.8

Intersection Signal Delay: 28.8Intersection LOS: CIntersection Capacity Utilization 87.5%ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 3: Rt 239/Union St & RT 11/Main St



RT11 & Main PM Peak

|                     | •     | <b>†</b> | <i>&gt;</i> | <b>\</b> | ļ       |
|---------------------|-------|----------|-------------|----------|---------|
| Lane Group          | WBL   | NBT      | NBR         | SBL      | SBT     |
| Lane Configurations | W     | <b></b>  | 7           | ሻ        | <b></b> |
| Volume (vph)        | 12    | 1170     | 42          | 138      | 216     |
| Turn Type           |       |          | Perm        | pm+pt    |         |
| Protected Phases    | 4     | 6        |             | 5        | 2       |
| Permitted Phases    |       |          | 6           | 2        |         |
| Detector Phases     | 4     | 6        | 6           | 5        | 2       |
| Minimum Initial (s) | 5.0   | 12.0     | 12.0        | 5.0      | 17.0    |
| Minimum Split (s)   | 10.2  | 21.4     | 21.4        | 10.4     | 22.4    |
| Total Split (s)     | 22.0  | 30.0     | 30.0        | 18.0     | 48.0    |
| Total Split (%)     | 31.4% | 42.9%    | 42.9%       | 25.7%    | 68.6%   |
| Yellow Time (s)     | 4.1   | 4.2      | 4.2         | 4.2      | 4.2     |
| All-Red Time (s)    | 1.1   | 1.2      | 1.2         | 1.2      | 1.2     |
| Lead/Lag            |       | Lag      | Lag         | Lead     |         |
| Lead-Lag Optimize?  |       | Yes      | Yes         | Yes      |         |
| Recall Mode         | None  | None     | None        | None     | None    |
| Act Effct Green (s) | 10.2  | 29.6     | 29.6        | 38.3     | 40.8    |
| Actuated g/C Ratio  | 0.18  | 0.55     | 0.55        | 0.68     | 0.75    |
| v/c Ratio           | 0.33  | 1.22     | 0.05        | 0.34     | 0.17    |
| Control Delay       | 8.1   | 132.0    | 6.2         | 5.6      | 3.7     |
| Queue Delay         | 0.0   | 0.0      | 0.0         | 0.0      | 0.0     |
| Total Delay         | 8.1   | 132.0    | 6.2         | 5.6      | 3.7     |
| LOS                 | Α     | F        | Α           | Α        | Α       |
| Approach Delay      | 8.1   | 127.7    |             |          | 4.4     |
| Approach LOS        | Α     | F        |             |          | Α       |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 54.1

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.22

Intersection Signal Delay: 92.3 Intersection LOS: F
Intersection Capacity Utilization 85.5% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 3: Main St & RT 11



2nd & Market PM Peak

|                     | <     | -        | •     | 1     | Ť        | ¥        | 4     |
|---------------------|-------|----------|-------|-------|----------|----------|-------|
| Lane Group          | WBL   | WBT      | WBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations | ሻ     | <b>^</b> | 7     | ሻ     | <b>†</b> | <b>†</b> | 7     |
| Volume (vph)        | 615   | 1088     | 59    | 151   | 111      | 233      | 109   |
| Turn Type           | Perm  |          | Perm  | pm+pt |          |          | Perm  |
| Protected Phases    |       | 8        |       | 5     | 2        | 6        |       |
| Permitted Phases    | 8     |          | 8     | 2     |          |          | 6     |
| Detector Phases     | 8     | 8        | 8     | 5     | 2        | 6        | 6     |
| Minimum Initial (s) | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)   | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     | 20.5     | 20.5  |
| Total Split (s)     | 25.0  | 25.0     | 25.0  | 10.0  | 40.0     | 30.0     | 30.0  |
| Total Split (%)     | 38.5% | 38.5%    | 38.5% | 15.4% | 61.5%    | 46.2%    | 46.2% |
| Yellow Time (s)     | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5      | 3.5   |
| All-Red Time (s)    | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      | 1.0      | 1.0   |
| Lead/Lag            |       |          |       | Lead  |          | Lag      | Lag   |
| Lead-Lag Optimize?  |       |          |       | Yes   |          | Yes      | Yes   |
| Recall Mode         | Max   | Max      | Max   | Max   | Max      | Max      | Max   |
| Act Effct Green (s) | 21.0  | 21.0     | 21.0  | 36.0  | 36.0     | 26.0     | 26.0  |
| Actuated g/C Ratio  | 0.32  | 0.32     | 0.32  | 0.55  | 0.55     | 0.40     | 0.40  |
| v/c Ratio           | 1.13  | 1.00     | 0.11  | 0.33  | 0.13     | 0.36     | 0.18  |
| Control Delay       | 104.9 | 51.3     | 5.5   | 4.7   | 1.6      | 15.4     | 3.5   |
| Queue Delay         | 190.4 | 0.0      | 0.0   | 0.1   | 0.0      | 0.0      | 0.0   |
| Total Delay         | 295.3 | 51.3     | 5.5   | 4.8   | 1.6      | 15.4     | 3.5   |
| LOS                 | F     | D        | Α     | Α     | Α        | В        | Α     |
| Approach Delay      |       | 134.9    |       |       | 3.4      | 11.6     |       |
| Approach LOS        |       | F        |       |       | А        | В        |       |

# Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 1.13
Intersection Signal Delay: 99.7

Intersection Signal Delay: 99.7Intersection LOS: FIntersection Capacity Utilization 89.1%ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 3: Int



Front & Market PM Peak

|                     | -          | Ť        | _     | -     | ¥        |
|---------------------|------------|----------|-------|-------|----------|
| Lane Group          | EBT        | NBT      | NBR   | SBL   | SBT      |
| Lane Configurations | <b>4</b> P | <b>1</b> | 7     | ሻ     | <b>†</b> |
| Volume (vph)        | 607        | 288      | 141   | 91    | 752      |
| Turn Type           |            |          | Perm  | pm+pt |          |
| Protected Phases    | 4          | 2        |       | 1     | 6        |
| Permitted Phases    |            |          | 2     | 6     |          |
| Detector Phases     | 4          | 2        | 2     | 1     | 6        |
| Minimum Initial (s) | 4.0        | 3.0      | 3.0   | 3.0   | 3.0      |
| Minimum Split (s)   | 24.0       | 21.0     | 21.0  | 10.0  | 31.0     |
| Total Split (s)     | 29.0       | 26.0     | 26.0  | 10.0  | 36.0     |
| Total Split (%)     | 44.6%      | 40.0%    | 40.0% | 15.4% | 55.4%    |
| Yellow Time (s)     | 3.2        | 4.0      | 4.0   | 2.0   | 4.0      |
| All-Red Time (s)    | 1.8        | 1.0      | 1.0   | 0.0   | 1.0      |
| Lead/Lag            |            | Lag      | Lag   | Lead  |          |
| Lead-Lag Optimize?  |            | Yes      | Yes   | Yes   |          |
| Recall Mode         | Max        | Max      | Max   | Max   | Max      |
| Act Effct Green (s) | 25.0       | 22.0     | 22.0  | 32.0  | 32.0     |
| Actuated g/C Ratio  | 0.38       | 0.34     | 0.34  | 0.49  | 0.49     |
| v/c Ratio           | 0.67       | 0.46     | 0.22  | 0.22  | 0.91     |
| Control Delay       | 18.0       | 19.7     | 4.3   | 9.7   | 27.0     |
| Queue Delay         | 0.0        | 0.0      | 0.0   | 0.0   | 147.7    |
| Total Delay         | 18.0       | 19.7     | 4.3   | 9.7   | 174.7    |
| LOS                 | В          | В        | Α     | Α     | F        |
| Approach Delay      | 18.0       | 14.6     |       |       | 157.0    |
| Approach LOS        | В          | В        |       |       | F        |
|                     |            |          |       |       |          |

# Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.91
Intersection Signal Delay: 74.7

Intersection Signal Delay: 74.7 Intersection LOS: E
Intersection Capacity Utilization 89.1% ICU Level of Service E



RT 11 & LaSalle PM Peak

|                     |      | •     | •           | *    |
|---------------------|------|-------|-------------|------|
| Lane Group          | EBL  | WBL   | WBT         | SBR  |
| Lane Configurations | ሻ    | ሻ     | <b>∱</b> 1≽ | 7    |
| Volume (vph)        | 80   | 15    | 1502        | 142  |
| Turn Type           | Prot | Perm  |             | Free |
| Protected Phases    | 7    |       | 8           |      |
| Permitted Phases    |      | 8     |             | Free |
| Detector Phases     | 7    | 8     | 8           |      |
| Minimum Initial (s) | 1.0  | 4.0   | 4.0         |      |
| Minimum Split (s)   | 5.0  | 25.0  | 25.0        |      |
| Total Split (s)     | 25.0 | 45.0  | 45.0        | 0.0  |
| Total Split (%)     |      | 64.3% |             | 0.0% |
| Yellow Time (s)     | 3.0  | 3.0   | 3.0         |      |
| All-Red Time (s)    | 1.0  | 1.0   | 1.0         |      |
| Lead/Lag            | Lead | Lag   | Lag         |      |
| Lead-Lag Optimize?  | Yes  | Yes   | Yes         |      |
| Recall Mode         | None | None  | None        |      |
| Act Effct Green (s) | 8.8  | 22.0  | 22.0        | 26.1 |
| Actuated g/C Ratio  | 0.27 | 0.84  | 0.84        | 1.00 |
| v/c Ratio           | 0.19 | 0.01  | 0.54        | 0.13 |
| Control Delay       | 13.7 | 2.1   | 4.4         | 0.2  |
| Queue Delay         | 0.0  | 0.0   | 0.0         | 0.0  |
| Total Delay         | 13.7 | 2.1   | 4.4         | 0.2  |
| LOS                 | В    | Α     | Α           | Α    |
| Approach Delay      |      |       | 4.4         |      |
| Approach LOS        |      |       | Α           |      |
|                     |      |       |             |      |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 26.1

Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.54

Intersection Signal Delay: 4.4 Intersection LOS: A Intersection Capacity Utilization 53.5% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 7: Rt 11/93 & LaSalle St



RT 11 & Orange PM Peak

|                     | -     | •     | •        | -      | ¥     |      |
|---------------------|-------|-------|----------|--------|-------|------|
| Lane Group          | EBT   | WBL   | WBT      | SBL    | SBT   | ø2   |
| Lane Configurations | f)    |       | <b>†</b> |        | 4     |      |
| Volume (vph)        | 768   | 2     | 1361     | 154    | 2     |      |
| Turn Type           |       | Perm  | (        | custom |       |      |
| Protected Phases    | 4     |       | 8        |        |       | 2    |
| Permitted Phases    |       | 8     |          | 6      | 6     |      |
| Detector Phases     | 4     | 8     | 8        | 6      | 6     |      |
| Minimum Initial (s) | 4.0   | 4.0   | 4.0      | 4.0    | 4.0   | 4.0  |
| Minimum Split (s)   | 20.0  | 20.0  | 20.0     | 20.0   | 20.0  | 20.0 |
| Total Split (s)     | 39.0  | 39.0  | 39.0     | 21.0   | 21.0  | 21.0 |
| Total Split (%)     | 65.0% | 65.0% | 65.0%    | 35.0%  | 35.0% | 35%  |
| Yellow Time (s)     | 3.5   | 3.5   | 3.5      | 3.5    | 3.5   | 3.5  |
| All-Red Time (s)    | 0.5   | 0.5   | 0.5      | 0.5    | 0.5   | 0.5  |
| Lead/Lag            |       |       |          |        |       |      |
| Lead-Lag Optimize?  |       |       |          |        |       |      |
| Recall Mode         | Max   | Max   | Max      | Max    | Max   | Max  |
| Act Effct Green (s) | 35.0  |       | 35.0     |        | 17.0  |      |
| Actuated g/C Ratio  | 0.58  |       | 0.58     |        | 0.28  |      |
| v/c Ratio           | 0.83  |       | 1.35     |        | 0.53  |      |
| Control Delay       | 19.1  |       | 181.6    |        | 24.1  |      |
| Queue Delay         | 0.0   |       | 0.0      |        | 0.0   |      |
| Total Delay         | 19.1  |       | 181.6    |        | 24.1  |      |
| LOS                 | В     |       | F        |        | С     |      |
| Approach Delay      | 19.1  |       | 181.6    |        | 24.1  |      |
| Approach LOS        | В     |       | F        |        | С     |      |

# Intersection Summary

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 130 Control Type: Pretimed Maximum v/c Ratio: 1.35 Intersection Signal Delay: 112.1

Intersection Signal Delay: 112.1Intersection LOS: FIntersection Capacity Utilization 88.6%ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 4: W Front St (Rt 11) & Sunoco Station



RT 11 & Poplar PM Peak

|                     | •     | -        | <     | <b>←</b> | 1     | <b>†</b> | <b>/</b> | -     | ţ     |
|---------------------|-------|----------|-------|----------|-------|----------|----------|-------|-------|
| Lane Group          | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | NBR      | SBL   | SBT   |
| Lane Configurations | ሻ     | <b>^</b> | ň     | f)       |       | ર્ન      | 7        |       | 4     |
| Volume (vph)        | 21    | 655      | 51    | 1258     | 29    | 39       | 15       | 130   | 44    |
| Turn Type           | Perm  |          | pm+pt |          | Perm  |          | Perm     | Perm  |       |
| Protected Phases    |       | 4        |       | 8        |       | 2        |          |       | 6     |
| Permitted Phases    | 4     |          | 8     |          | 2     |          | 2        | 6     |       |
| Detector Phases     | 4     | 4        | 3     | 8        | 2     | 2        | 2        | 6     | 6     |
| Minimum Initial (s) | 1.0   | 1.0      | 4.0   | 20.0     | 2.0   | 2.0      | 2.0      | 1.0   | 1.0   |
| Minimum Split (s)   | 25.0  | 25.0     | 8.0   | 25.0     | 6.0   | 6.0      | 6.0      | 5.0   | 5.0   |
| Total Split (s)     | 42.0  | 42.0     | 8.0   | 50.0     | 20.0  | 20.0     | 20.0     | 20.0  | 20.0  |
| Total Split (%)     | 60.0% | 60.0%    | 11.4% | 71.4%    | 28.6% | 28.6%    | 28.6%    | 28.6% | 28.6% |
| Yellow Time (s)     | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0      | 3.0   | 3.0   |
| All-Red Time (s)    | 2.0   | 2.0      | 0.0   | 2.0      | 1.0   | 1.0      | 1.0      | 1.0   | 1.0   |
| Lead/Lag            | Lag   | Lag      | Lead  |          |       |          |          |       |       |
| Lead-Lag Optimize?  | Yes   | Yes      | Yes   |          |       |          |          |       |       |
| Recall Mode         | Max   | Max      | Max   | Max      | Max   | Max      | Max      | Max   | Max   |
| Act Effct Green (s) | 38.0  | 38.0     | 46.0  | 46.0     |       | 16.0     | 16.0     |       | 16.0  |
| Actuated g/C Ratio  | 0.54  | 0.54     | 0.66  | 0.66     |       | 0.23     | 0.23     |       | 0.23  |
| v/c Ratio           | 0.25  | 0.83     | 0.24  | 1.14     |       | 0.23     | 0.05     |       | 0.85  |
| Control Delay       | 15.7  | 22.3     | 6.7   | 88.6     |       | 24.1     | 11.1     |       | 47.7  |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.0      |       | 0.0      | 0.0      |       | 0.0   |
| Total Delay         | 15.7  | 22.3     | 6.7   | 88.6     |       | 24.1     | 11.1     |       | 47.7  |
| LOS                 | В     | С        | Α     | F        |       | С        | В        |       | D     |
| Approach Delay      |       | 22.1     |       | 85.4     |       | 21.8     |          |       | 47.7  |
| Approach LOS        |       | С        |       | F        |       | С        |          |       | D     |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110
Control Type: Pretimed
Maximum v/c Ratio: 1.14
Intersection Signal Delay: 58.9

Intersection Signal Delay: 58.9Intersection LOS: EIntersection Capacity Utilization 94.5%ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 4: RT 11 & N Poplar St



|                                  | TW                        | O-WAY STOP       | CONTRO                                           | DL SI    | JMN    | IARY       |          |                                                  |               |
|----------------------------------|---------------------------|------------------|--------------------------------------------------|----------|--------|------------|----------|--------------------------------------------------|---------------|
| General Information              | n                         |                  | Site Ir                                          | nform    | natio  | n          |          |                                                  |               |
| Analyst                          |                           | er Puglisi       | Interse                                          | ction    |        |            | PPL & Rt | 11                                               |               |
| Agency/Co.                       | KLD Asso                  |                  | Jurisdi                                          |          |        |            | Salem Tw |                                                  |               |
| Date Performed                   | 7/3/2008                  |                  | Analys                                           | is Yea   | r      |            | 2008     |                                                  |               |
| Analysis Time Period             |                           |                  |                                                  |          |        |            |          |                                                  |               |
| Project Description 53           |                           | na/Bell Bend NPF | •                                                |          |        |            |          |                                                  |               |
| East/West Street: PPL            |                           |                  |                                                  |          |        | :: US Rt 1 | 1        |                                                  |               |
| Intersection Orientation:        | North-South               |                  | Study F                                          | Period   | (hrs): | 0.25       |          |                                                  |               |
| Vehicle Volumes aı               | nd Adjustme               | ents             |                                                  |          |        |            |          |                                                  |               |
| Major Street                     |                           | Northbound       |                                                  |          |        |            | Southbou | nd                                               |               |
| Movement                         | 1                         | 2                | 3                                                |          |        | 4          | 5        |                                                  | 6             |
|                                  | L                         | Т                | R                                                |          |        | L          | Т        |                                                  | R             |
| Volume (veh/h)                   | 6                         | 1152             |                                                  |          |        |            | 267      |                                                  | 2             |
| Peak-Hour Factor, PHF            | 1.00                      | 1.00             | 1.00                                             |          |        | 1.00       | 1.00     |                                                  | 1.00          |
| Hourly Flow Rate, HFR<br>(veh/h) | 6                         | 1152             | 0                                                |          |        | 0          | 267      |                                                  | 2             |
| Percent Heavy Vehicles           | 0                         |                  |                                                  |          |        | 0          |          |                                                  |               |
| Median Type                      |                           |                  | Two V                                            | Vay Le   | ft Tui | rn Lane    |          |                                                  |               |
| RT Channelized                   |                           |                  | 0                                                |          |        |            |          |                                                  | 0             |
| Lanes                            | 1                         | 1                | 0                                                |          |        | 0          | 1        |                                                  | 0             |
| Configuration                    | L                         | T                |                                                  |          |        |            |          |                                                  | TR            |
| Upstream Signal                  |                           | 0                |                                                  |          |        |            | 0        |                                                  |               |
| Minor Street                     |                           | Eastbound        |                                                  |          |        |            | Westbour | nd                                               |               |
| Movement                         | 7                         | 8                | 9                                                |          |        | 10         | 11       |                                                  | 12            |
|                                  | L                         | Т                | R                                                |          |        | L          | Т        |                                                  | R             |
| Volume (veh/h)                   | 27                        |                  | 73                                               |          |        |            |          |                                                  |               |
| Peak-Hour Factor, PHF            | 1.00                      | 1.00             | 1.00                                             |          |        | 1.00       | 1.00     |                                                  | 1.00          |
| Hourly Flow Rate, HFR<br>(veh/h) | 27                        | 0                | 73                                               |          |        | 0          | 0        |                                                  | 0             |
| Percent Heavy Vehicles           | 0                         | 0                | 0                                                |          |        | 0          | 0        |                                                  | 0             |
| Percent Grade (%)                |                           | 0                |                                                  |          |        |            | 0        |                                                  |               |
| Flared Approach                  |                           | N                |                                                  |          |        |            | N        |                                                  |               |
| Storage                          |                           | 0                |                                                  |          |        |            | 0        |                                                  |               |
| RT Channelized                   |                           |                  | 0                                                |          |        |            |          |                                                  | 0             |
| Lanes                            | 1                         | 0                | 1                                                |          |        | 0          | 0        |                                                  | 0             |
| Configuration                    | L                         |                  | R                                                |          |        |            |          |                                                  |               |
| Delay, Queue Length, a           | and Level of Se           | ervice           |                                                  |          |        |            |          |                                                  |               |
| Approach                         | Northbound                | Southbound       | ,                                                | Westb    | ound   |            | E        | astboun                                          | d             |
| Movement                         | 1                         | 4                | 7                                                | 8        |        | 9          | 10       | 11                                               | 12            |
| Lane Configuration               | L                         |                  |                                                  |          |        | _          | L        |                                                  | R             |
| v (veh/h)                        | 6                         |                  |                                                  |          |        |            | 27       |                                                  | 73            |
| C (m) (veh/h)                    | 1306                      |                  |                                                  |          |        |            | 246      |                                                  | 776           |
| v/c                              | 0.00                      |                  | <del>                                     </del> |          |        |            | 0.11     |                                                  | 0.09          |
| 95% queue length                 | 0.00                      |                  | <del>                                     </del> | $\vdash$ |        |            | 0.36     | <b>-</b>                                         | 0.31          |
| Control Delay (s/veh)            | 7.8                       | -                |                                                  | $\vdash$ |        |            | 21.4     | -                                                | 10.1          |
| LOS                              |                           |                  | -                                                |          |        | -          | C C      | <del>                                     </del> | _             |
|                                  | Α                         |                  |                                                  |          |        |            |          | 100                                              | В             |
| Approach Delay (s/veh)           |                           |                  |                                                  |          |        |            |          | 13.2                                             |               |
| Approach LOS                     | <br>Iorida All Rights Res | <u></u>          |                                                  | ICS_TM   |        |            |          | В                                                | 1/2008 1:46 A |

Copyright © 2005 University of Florida, All Rights Reserved

*HCS*+<sup>TM</sup> Version 5.21 Generated: 7/14/2008 1:46 AM

KLD Engineering, P.C Bell Bend Traffic Study Appendix G 18

TR-439 Rev. 2

|                                 |                                                  | O-WAY STOP       |              |            |                |                                                  |                  |       |
|---------------------------------|--------------------------------------------------|------------------|--------------|------------|----------------|--------------------------------------------------|------------------|-------|
| General Information             | 1                                                |                  | Site In      | formati    | on             |                                                  |                  |       |
| Analyst                         |                                                  | er Puglisi       | Intersed     |            |                | PPL & Rt                                         |                  |       |
| Agency/Co.                      | KLD Asso                                         | ociates          | Jurisdic     |            |                | Salem Tw                                         | p                |       |
| Date Performed                  | 7/3/2008                                         |                  | Analysi      | s Year     |                | 2008                                             |                  |       |
| Analysis Time Period            |                                                  |                  |              |            |                |                                                  |                  |       |
| Project Description 53          |                                                  | na/Bell Bend NPP |              |            |                |                                                  |                  |       |
| East/West Street: Bell E        |                                                  |                  |              |            | et: US Rt      | 11                                               |                  |       |
| ntersection Orientation:        | North-South                                      |                  | Study P      | eriod (hrs | ): <i>0.25</i> |                                                  |                  |       |
| Vehicle Volumes ar              | nd Adjustme                                      |                  |              |            |                |                                                  |                  |       |
| Major Street                    |                                                  | Northbound       |              |            |                | Southbou                                         | nd               |       |
| Movement                        | 1                                                | 2                | 3            |            | 4              | 5                                                |                  | 6     |
|                                 | L                                                | Т                | R            |            | L              | Т                                                |                  | R     |
| Volume (veh/h)                  | 3                                                | 275              | 4.00         |            | 1.00           | 341                                              |                  | 1     |
| Peak-Hour Factor, PHF           | 1.00                                             | 1.00             | 1.00         |            | 1.00           | 1.00                                             |                  | 1.00  |
| Hourly Flow Rate, HFR<br>veh/h) | 3                                                | 275              | 0            |            | 0              | 341                                              |                  | 1     |
| Percent Heavy Vehicles          | 0                                                |                  | <del> </del> | -+         | 0              | <del> </del>                                     |                  |       |
| Median Type                     |                                                  |                  | Two W        | ay Left Τι |                |                                                  |                  |       |
| RT Channelized                  | 1                                                |                  | 0            |            |                |                                                  |                  | 0     |
| _anes                           | 1                                                | 1                | 0            |            | 0              | 1                                                |                  | 0     |
| Configuration                   | L                                                | T                |              |            | U              |                                                  |                  | TR    |
| Upstream Signal                 |                                                  | 0                |              |            |                | 0                                                |                  | 773   |
| Minor Street                    | +                                                | Eastbound        |              |            |                | Westbou                                          | nd               |       |
| Movement                        | 7                                                | 8 Eastbound      | 9            |            | 10             | 11                                               | ilu              | 12    |
| Movement                        | <del>                                     </del> | T                | R            |            | L              | T                                                |                  | R     |
| Volume (veh/h)                  | 883                                              | <u>'</u>         | 988          |            | L              | <del>- </del>                                    |                  | 11    |
| Peak-Hour Factor, PHF           | 1.00                                             | 1.00             | 1.00         |            | 1.00           | 1.00                                             |                  | 1.00  |
| Hourly Flow Rate, HFR           |                                                  |                  |              |            |                |                                                  |                  |       |
| (veh/h)                         | 883                                              | 0                | 988          |            | 0              | 0                                                |                  | 0     |
| Percent Heavy Vehicles          | 0                                                | 0                | 0            |            | 0              | 0                                                |                  | 0     |
| Percent Grade (%)               |                                                  | 0                |              |            |                | 0                                                |                  |       |
| Flared Approach                 |                                                  | N                |              |            |                | N                                                |                  |       |
| Storage                         |                                                  | 0                |              |            |                | 0                                                |                  |       |
| RT Channelized                  | 1                                                | <del> </del>     | 0            |            |                | <del>                                     </del> |                  | 0     |
| Lanes                           | 1                                                | 0                | 1            |            | 0              | 0                                                | <del>-  </del> - | 0     |
| Configuration                   | <del>'</del>                                     |                  | R            | -          | J              | + -                                              | -                |       |
|                                 | mellesselet Ce                                   |                  |              |            |                |                                                  |                  |       |
| Delay, Queue Length, a          | Northbound                                       | Southbound       | 14           | Voothoune  | ۸              | т ,                                              | Eastbound        |       |
| Approach                        |                                                  |                  |              | Vestbound  |                |                                                  |                  |       |
| Movement                        | 1                                                | 4                | 7            | 8          | 9              | 10                                               | 11               | 12    |
| Lane Configuration              | L                                                |                  |              |            | 1              | L                                                |                  | R     |
| v (veh/h)                       | 3                                                |                  |              |            |                | 883                                              |                  | 988   |
| C (m) (veh/h)                   | 1228                                             |                  |              |            |                | 546                                              |                  | 705   |
| //c                             | 0.00                                             |                  |              |            |                | 1.62                                             |                  | 1.40  |
| 95% queue length                | 0.01                                             |                  |              |            | 1              | 48.90                                            |                  | 43.83 |
| Control Delay (s/veh)           | 7.9                                              |                  |              |            | 1              | 305.7                                            |                  | 207.1 |
| OS                              | A A                                              |                  |              |            | 1              | F                                                |                  | F     |
|                                 |                                                  |                  |              |            | <u> </u>       | + '-                                             | 252.6            | 1 '   |
| Approach Delay (s/veh)          |                                                  |                  |              |            |                | _                                                | 253.6            |       |
| Approach LOS                    |                                                  |                  |              |            |                |                                                  | F                |       |

KLD Engineering, P.C Bell Bend Traffic Study

Appendix G 19

TR-439 Rev. 2

# **APPENDIX H**

CAPACITY ANALYSIS

CONSTRUCTION PEAK WITH OUTAGE CONDITIONS

RT 11 & Union AM Peak

|                     | •     | -     | <     | •     | 1     | <b>†</b> | ↓     |
|---------------------|-------|-------|-------|-------|-------|----------|-------|
| Lane Group          | EBL   | EBT   | WBL   | WBT   | NBL   | NBT      | SBT   |
| Lane Configurations |       | 4     |       | 4     | 7     | f)       | f)    |
| Volume (vph)        | 145   | 14    | 8     | 7     | 51    | 206      | 1000  |
| Turn Type           | Perm  |       | Perm  |       | Perm  |          |       |
| Protected Phases    |       | 4     |       | 8     |       | 2        | 6     |
| Permitted Phases    | 4     |       | 8     |       | 2     |          |       |
| Detector Phases     | 4     | 4     | 8     | 8     | 2     | 2        | 6     |
| Minimum Initial (s) | 8.0   | 8.0   | 8.0   | 8.0   | 14.0  | 14.0     | 14.0  |
| Minimum Split (s)   | 26.0  | 26.0  | 26.0  | 26.0  | 44.0  | 44.0     | 44.0  |
| Total Split (s)     | 26.0  | 26.0  | 26.0  | 26.0  | 44.0  | 44.0     | 44.0  |
| Total Split (%)     | 37.1% | 37.1% | 37.1% | 37.1% | 62.9% | 62.9%    | 62.9% |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   |
| All-Red Time (s)    | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   |
| Lead/Lag            |       |       |       |       |       |          |       |
| Lead-Lag Optimize?  |       |       |       |       |       |          |       |
| Recall Mode         | Max   | Max   | Max   | Max   | Max   | Max      | Max   |
| Act Effct Green (s) |       | 22.0  |       | 22.0  | 40.0  | 40.0     | 40.0  |
| Actuated g/C Ratio  |       | 0.31  |       | 0.31  | 0.57  | 0.57     | 0.57  |
| v/c Ratio           |       | 0.97  |       | 0.05  | 0.53  | 0.23     | 1.07  |
| Control Delay       |       | 56.1  |       | 16.7  | 33.8  | 7.9      | 68.3  |
| Queue Delay         |       | 0.0   |       | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay         |       | 56.1  |       | 16.7  | 33.8  | 7.9      | 68.3  |
| LOS                 |       | Е     |       | В     | С     | Α        | Е     |
| Approach Delay      |       | 56.1  |       | 16.7  |       | 12.8     | 68.3  |
| Approach LOS        |       | Е     |       | В     |       | В        | Е     |
|                     |       |       |       |       |       |          |       |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80 Control Type: Pretimed Maximum v/c Ratio: 1.07 Intersection Signal Delay: 56.1

Intersection Signal Delay: 56.1Intersection LOS: EIntersection Capacity Utilization 89.2%ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 3: Rt 239/Union St & RT 11/Main St



RT 11 & Main AM Peak

|                     | €     | Ī        | <b>/</b> | -     | ¥        |
|---------------------|-------|----------|----------|-------|----------|
| Lane Group          | WBL   | NBT      | NBR      | SBL   | SBT      |
| Lane Configurations | Y     | <b>†</b> | 7        | ሻ     | <b>†</b> |
| Volume (vph)        | 43    | 170      | 11       | 57    | 1236     |
| Turn Type           |       |          | Perm     | pm+pt |          |
| Protected Phases    | 4     | 6        |          | 5     | 2        |
| Permitted Phases    |       |          | 6        | 2     |          |
| Detector Phases     | 4     | 6        | 6        | 5     | 2        |
| Minimum Initial (s) | 5.0   | 12.0     | 12.0     | 5.0   | 17.0     |
| Minimum Split (s)   | 10.2  | 21.4     | 21.4     | 10.4  | 22.4     |
| Total Split (s)     | 21.6  | 30.4     | 30.4     | 18.0  | 48.4     |
| Total Split (%)     | 30.9% | 43.4%    | 43.4%    | 25.7% | 69.1%    |
| Yellow Time (s)     | 4.1   | 4.2      | 4.2      | 4.2   | 4.2      |
| All-Red Time (s)    | 1.1   | 1.2      | 1.2      | 1.2   | 1.2      |
| Lead/Lag            |       | Lag      | Lag      | Lead  |          |
| Lead-Lag Optimize?  |       | Yes      | Yes      | Yes   |          |
| Recall Mode         | None  | None     | None     | None  | Max      |
| Act Effct Green (s) | 12.8  | 49.2     | 49.2     | 57.5  | 57.7     |
| Actuated g/C Ratio  | 0.16  | 0.64     | 0.64     | 0.71  | 0.75     |
| v/c Ratio           | 0.40  | 0.16     | 0.01     | 0.09  | 1.06     |
| Control Delay       | 14.4  | 8.5      | 5.4      | 4.1   | 58.1     |
| Queue Delay         | 0.0   | 0.0      | 0.0      | 0.0   | 0.0      |
| Total Delay         | 14.4  | 8.5      | 5.4      | 4.1   | 58.1     |
| LOS                 | В     | Α        | Α        | Α     | E        |
| Approach Delay      | 14.4  | 8.3      |          |       | 55.7     |
| Approach LOS        | В     | Α        |          |       | Е        |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 76.6

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.06

Intersection Signal Delay: 47.6 Intersection LOS: D
Intersection Capacity Utilization 76.6% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Main St & RT 11



2nd & Market \_\_\_\_\_ AM Peak

|                     | •     | <b>←</b> | •     | •     | <b>†</b> | ţ        | 4     |
|---------------------|-------|----------|-------|-------|----------|----------|-------|
| Lane Group          | WBL   | WBT      | WBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations | 7     | <b>^</b> | 7     | ሻ     | <b>†</b> | <b>^</b> | 7     |
| Volume (vph)        | 78    | 369      | 20    | 108   | 86       | 160      | 62    |
| Turn Type           | Perm  |          | Perm  | pm+pt |          |          | Perm  |
| Protected Phases    |       | 8        |       | 5     | 2        | 6        |       |
| Permitted Phases    | 8     |          | 8     | 2     |          |          | 6     |
| Detector Phases     | 8     | 8        | 8     | 5     | 2        | 6        | 6     |
| Minimum Initial (s) | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)   | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     | 20.5     | 20.5  |
| Total Split (s)     | 25.0  | 25.0     | 25.0  | 10.0  | 40.0     | 30.0     | 30.0  |
| Total Split (%)     | 38.5% | 38.5%    | 38.5% | 15.4% | 61.5%    | 46.2%    | 46.2% |
| Yellow Time (s)     | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5      | 3.5   |
| All-Red Time (s)    | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      | 1.0      | 1.0   |
| Lead/Lag            |       |          |       | Lead  |          | Lag      | Lag   |
| Lead-Lag Optimize?  |       |          |       | Yes   |          | Yes      | Yes   |
| Recall Mode         | Max   | Max      | Max   | Max   | Max      | Max      | Max   |
| Act Effct Green (s) | 21.0  | 21.0     | 21.0  | 36.0  | 36.0     | 26.0     | 26.0  |
| Actuated g/C Ratio  | 0.32  | 0.32     | 0.32  | 0.55  | 0.55     | 0.40     | 0.40  |
| v/c Ratio           | 0.16  | 0.38     | 0.05  | 0.20  | 0.10     | 0.24     | 0.10  |
| Control Delay       | 16.7  | 18.2     | 7.2   | 2.6   | 1.9      | 14.0     | 4.1   |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Delay         | 16.7  | 18.2     | 7.2   | 2.6   | 1.9      | 14.0     | 4.1   |
| LOS                 | В     | В        | Α     | Α     | Α        | В        | Α     |
| Approach Delay      |       | 17.5     |       |       | 2.3      | 11.3     |       |
| Approach LOS        |       | В        |       |       | Α        | В        |       |

#### Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.38 Intersection Signal Delay: 12.5

Intersection Signal Delay: 12.5Intersection LOS: BIntersection Capacity Utilization 88.9%ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 3: Int



2nd & Front AM Peak

|                     | -               | Ī        | _     | -     | ¥        |
|---------------------|-----------------|----------|-------|-------|----------|
| Lane Group          | EBT             | NBT      | NBR   | SBL   | SBT      |
| Lane Configurations | 4T <del>)</del> | <b>1</b> | 7     | ሻ     | <b>†</b> |
| Volume (vph)        | 1193            | 182      | 565   | 147   | 68       |
| Turn Type           |                 |          | Perm  | pm+pt |          |
| Protected Phases    | 4               | 2        |       | 1     | 6        |
| Permitted Phases    |                 |          | 2     | 6     |          |
| Detector Phases     | 4               | 2        | 2     | 1     | 6        |
| Minimum Initial (s) | 4.0             | 3.0      | 3.0   | 3.0   | 3.0      |
| Minimum Split (s)   | 24.0            | 21.0     | 21.0  | 10.0  | 31.0     |
| Total Split (s)     | 29.0            | 26.0     | 26.0  | 10.0  | 36.0     |
| Total Split (%)     | 44.6%           | 40.0%    | 40.0% | 15.4% | 55.4%    |
| Yellow Time (s)     | 3.2             | 4.0      | 4.0   | 2.0   | 4.0      |
| All-Red Time (s)    | 1.8             | 1.0      | 1.0   | 0.0   | 1.0      |
| Lead/Lag            |                 | Lag      | Lag   | Lead  |          |
| Lead-Lag Optimize?  |                 | Yes      | Yes   | Yes   |          |
| Recall Mode         | Max             | Max      | Max   | Max   | Max      |
| Act Effct Green (s) | 25.0            | 22.0     | 22.0  | 32.0  | 32.0     |
| Actuated g/C Ratio  | 0.38            | 0.34     | 0.34  | 0.49  | 0.49     |
| v/c Ratio           | 1.15            | 0.31     | 0.97  | 0.32  | 0.09     |
| Control Delay       | 97.3            | 17.7     | 50.1  | 10.4  | 8.4      |
| Queue Delay         | 0.0             | 0.0      | 0.0   | 0.5   | 0.0      |
| Total Delay         | 97.3            | 17.7     | 50.1  | 10.9  | 8.4      |
| LOS                 | F               | В        | D     | В     | Α        |
| Approach Delay      | 97.3            | 42.2     |       |       | 10.1     |
| Approach LOS        | F               | D        |       |       | В        |

# Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 1.15 Intersection Signal Delay: 71.8

Intersection Signal Delay: 71.8Intersection LOS: EIntersection Capacity Utilization 88.9%ICU Level of Service E



RT 11 & LaSalle AM Peak

|                     |       | •     | •          | *    |
|---------------------|-------|-------|------------|------|
| Lane Group          | EBL   | WBL   | WBT        | SBR  |
| Lane Configurations | ሻ     | ሻ     | <b>∱</b> } | 7    |
| Volume (vph)        | 55    | 4     | 495        | 31   |
| Turn Type           | Prot  | Perm  |            | Free |
| Protected Phases    | 7     |       | 8          |      |
| Permitted Phases    |       | 8     |            | Free |
| Detector Phases     | 7     | 8     | 8          |      |
| Minimum Initial (s) | 1.0   | 4.0   | 4.0        |      |
| Minimum Split (s)   | 5.0   | 25.0  | 25.0       |      |
| Total Split (s)     | 25.0  | 45.0  | 45.0       | 0.0  |
| Total Split (%)     | 35.7% | 64.3% | 64.3%      | 0.0% |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0        |      |
| All-Red Time (s)    | 1.0   | 1.0   | 1.0        |      |
| Lead/Lag            | Lead  | Lag   | Lag        |      |
| Lead-Lag Optimize?  | Yes   | Yes   | Yes        |      |
| Recall Mode         | None  | None  | None       |      |
| Act Effct Green (s) | 7.0   | 5.5   | 5.5        | 13.2 |
| Actuated g/C Ratio  | 0.32  | 0.37  | 0.37       | 1.00 |
| v/c Ratio           | 0.11  | 0.01  | 0.45       | 0.03 |
| Control Delay       | 5.3   | 3.0   | 3.2        | 0.0  |
| Queue Delay         | 0.0   | 0.0   | 0.0        | 0.0  |
| Total Delay         | 5.3   | 3.0   | 3.2        | 0.0  |
| LOS                 | Α     | Α     | Α          | Α    |
| Approach Delay      |       |       | 3.2        |      |
| Approach LOS        |       |       | Α          |      |
|                     |       |       |            |      |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 13.2

Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.45

Intersection Signal Delay: 3.2 Intersection LOS: A Intersection Capacity Utilization 23.9% ICU Level of Service A

Analysis Period (min) 15



RT11 & Orange AM Peak

| Lane Group         EBT         WBL         WBT         SBL         SBT         Ø2           Lane Configurations         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣         ♣                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume (vph)         1233         3         472         84         4           Turn Type         Perm         custom           Protected Phases         4         8         2           Permitted Phases         8         6         6           Detector Phases         4         8         8         6         6           Minimum Initial (s)         4.0         4.0         4.0         4.0         4.0         4.0           Minimum Split (s)         20.0         20.0         20.0         20.0         20.0         20.0           Total Split (s)         36.0         36.0         36.0         19.0         19.0         19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Volume (vph)         1233         3         472         84         4           Turn Type         Perm         custom           Protected Phases         4         8         2           Permitted Phases         8         6         6           Detector Phases         4         8         8         6         6           Minimum Initial (s)         4.0         4.0         4.0         4.0         4.0         4.0           Minimum Split (s)         20.0         20.0         20.0         20.0         20.0         20.0           Total Split (s)         36.0         36.0         36.0         19.0         19.0         19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Protected Phases         4         8         2           Permitted Phases         8         6         6           Detector Phases         4         8         8         6         6           Minimum Initial (s)         4.0         4.0         4.0         4.0         4.0           Minimum Split (s)         20.0         20.0         20.0         20.0         20.0         20.0           Total Split (s)         36.0         36.0         36.0         19.0         19.0         19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Permitted Phases         8         6         6           Detector Phases         4         8         8         6         6           Minimum Initial (s)         4.0         4.0         4.0         4.0         4.0         4.0           Minimum Split (s)         20.0         20.0         20.0         20.0         20.0         20.0           Total Split (s)         36.0         36.0         36.0         19.0         19.0         19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Detector Phases         4         8         8         6         6           Minimum Initial (s)         4.0         4.0         4.0         4.0         4.0           Minimum Split (s)         20.0         20.0         20.0         20.0         20.0         20.0           Total Split (s)         36.0         36.0         36.0         19.0         19.0         19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Minimum Initial (s)       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0         Minimum Split (s)       20.0       20.0       20.0       20.0       20.0       20.0       20.0         Total Split (s)       36.0       36.0       36.0       19.0       19.0       19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Minimum Split (s)         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0         20.0 |
| Total Split (s) 36.0 36.0 19.0 19.0 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Split (%) 65.5% 65.5% 65.5% 34.5% 34.5% 35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Yellow Time (s) 3.5 3.5 3.5 3.5 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| All-Red Time (s) 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lead/Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lead-Lag Optimize?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Recall Mode Max Max Max Max Max Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Act Effct Green (s) 32.0 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Actuated g/C Ratio 0.58 0.58 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| v/c Ratio 1.21 0.80 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Control Delay 120.2 19.2 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Queue Delay 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Delay 120.2 19.2 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LOS F B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Approach Delay 120.2 19.2 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Approach LOS F B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Intersection Summary

Cycle Length: 55

Actuated Cycle Length: 55

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 1.21 Intersection Signal Delay: 82.9

Intersection Signal Delay: 82.9Intersection LOS: FIntersection Capacity Utilization 77.1%ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 4: RT 11 &



RT11 & Poplar AM Peak

|                     | -     | •     | <b>←</b> | 1    | Ť     | _    | -    | ¥    |  |
|---------------------|-------|-------|----------|------|-------|------|------|------|--|
| Lane Group          | EBT   | WBL   | WBT      | NBL  | NBT   | NBR  | SBL  | SBT  |  |
| Lane Configurations | 1>    | ሻ     | ₽        |      | 4     | 7    |      | 4    |  |
| Volume (vph)        | 1217  | 35    | 493      | 23   | 3     | 27   | 1    | 7    |  |
| Turn Type           |       | pm+pt |          | Perm |       | Perm | Perm |      |  |
| Protected Phases    | 4     | 3     | 8        |      | 2     |      |      | 6    |  |
| Permitted Phases    |       | 8     |          | 2    |       | 2    | 6    |      |  |
| Detector Phases     | 4     | 3     | 8        | 2    | 2     | 2    | 6    | 6    |  |
| Minimum Initial (s) | 1.0   | 4.0   | 20.0     | 2.0  |       | 2.0  | 1.0  | 1.0  |  |
| Minimum Split (s)   | 25.0  | 8.0   | 25.0     | 6.0  | 6.0   | 6.0  | 5.0  | 5.0  |  |
| Total Split (s)     | 40.0  | 13.0  | 53.0     | 17.0 | 17.0  | 17.0 | 17.0 | 17.0 |  |
| Total Split (%)     | 57.1% |       |          |      | 24.3% |      |      |      |  |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0      | 3.0  |       | 3.0  | 3.0  | 3.0  |  |
| All-Red Time (s)    | 2.0   | 0.0   | 2.0      | 1.0  | 1.0   | 1.0  | 1.0  | 1.0  |  |
| Lead/Lag            | Lag   | Lead  |          |      |       |      |      |      |  |
| Lead-Lag Optimize?  | Yes   | Yes   |          |      |       |      |      |      |  |
| Recall Mode         | Max   | Max   | Max      | Max  | Max   | Max  | Max  | Max  |  |
| Act Effct Green (s) | 36.0  | 49.0  | 49.0     |      | 13.0  | 13.0 |      | 13.0 |  |
| Actuated g/C Ratio  | 0.51  | 0.70  | 0.70     |      | 0.19  | 0.19 |      | 0.19 |  |
| v/c Ratio           | 1.70  | 0.12  | 0.42     |      | 0.13  | 0.11 |      | 0.12 |  |
| Control Delay       | 341.2 | 4.0   | 5.7      |      | 25.3  | 10.1 |      | 17.0 |  |
| Queue Delay         | 0.0   | 0.0   | 0.0      |      | 0.0   | 0.0  |      | 0.0  |  |
| Total Delay         | 341.2 | 4.0   | 5.7      |      | 25.3  | 10.1 |      | 17.0 |  |
| LOS                 | F     | Α     | Α        |      | С     | В    |      | В    |  |
| Approach Delay      | 341.2 |       | 5.6      |      | 17.6  |      |      | 17.0 |  |
| Approach LOS        | F     |       | Α        |      | В     |      |      | В    |  |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150 Control Type: Pretimed Maximum v/c Ratio: 1.70 Intersection Signal Delay: 240.4

Intersection Signal Delay: 240.4Intersection LOS: FIntersection Capacity Utilization 82.6%ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 4: RT 11 & N Poplar St



|                                                | TW                                               | O-WAY STOP       | CONTR   | OL SUM    | MMARY            |                                                  |                |             |  |  |  |
|------------------------------------------------|--------------------------------------------------|------------------|---------|-----------|------------------|--------------------------------------------------|----------------|-------------|--|--|--|
| General Information                            | n                                                |                  | Site I  | nforma    | tion             |                                                  |                |             |  |  |  |
| Analyst                                        | Christoph                                        | er Puglisi       | Interse | ction     |                  | PPL & Rt                                         | 11             |             |  |  |  |
| Agency/Co.                                     | KLD Asso                                         |                  | Jurisdi |           |                  | Salem Tw                                         | 'p             |             |  |  |  |
| Date Performed                                 | 7/3/2008                                         |                  | Analys  | is Year   |                  | 2008                                             |                |             |  |  |  |
| Analysis Time Period                           | AM Peak                                          |                  |         |           |                  |                                                  |                |             |  |  |  |
|                                                |                                                  | na/Bell Bend NPP |         |           |                  |                                                  |                |             |  |  |  |
| East/West Street: PPL                          |                                                  |                  |         |           | eet: US Rt       | 11                                               |                |             |  |  |  |
| ntersection Orientation:                       |                                                  |                  | Study I | Period (h | rs): <i>0.25</i> |                                                  |                |             |  |  |  |
| Vehicle Volumes ar                             | nd Adjustme                                      |                  |         |           |                  |                                                  |                |             |  |  |  |
| Major Street                                   |                                                  | Northbound       |         |           |                  | Southbou                                         | nd             |             |  |  |  |
| Movement                                       | 1                                                | 2                | 3       |           | 4                | 5                                                |                | 6           |  |  |  |
| ( ) ( )                                        | L                                                | T                | R       |           | L                | T                                                |                | R           |  |  |  |
| /olume (veh/h)                                 | 337                                              | 210              | 1.00    |           | 4.00             | 1094                                             |                | 122<br>1.00 |  |  |  |
| Peak-Hour Factor, PHF<br>Hourly Flow Rate, HFR | 1.00                                             | 1.00             | 1.00    |           | 1.00             | 1.00                                             |                |             |  |  |  |
| veh/h)                                         | 337                                              | 210              | 0       |           | 0                | 1094                                             |                | 122         |  |  |  |
| Percent Heavy Vehicles                         | 0                                                |                  |         |           | 0                |                                                  |                |             |  |  |  |
| Median Type                                    |                                                  |                  | Two V   | Vay Left  | Turn Lane        |                                                  |                |             |  |  |  |
| RT Channelized                                 |                                                  |                  | 0       |           |                  |                                                  |                | 0           |  |  |  |
| _anes                                          | 1                                                | 1                | 0       |           | 0                | 1                                                |                | 0           |  |  |  |
| Configuration                                  | L                                                | T                |         |           |                  |                                                  |                | TR          |  |  |  |
| Jpstream Signal                                |                                                  | 0                |         |           |                  | 0                                                |                |             |  |  |  |
| Minor Street                                   |                                                  | Eastbound        |         |           |                  | Westbou                                          | nd             |             |  |  |  |
| Movement                                       | 7                                                | 8                | 9       |           | 10               | 11                                               |                | 12          |  |  |  |
|                                                | L                                                | Т                | R       |           | L                | Т                                                |                | R           |  |  |  |
| Volume (veh/h)                                 | 20                                               |                  | 55      |           |                  |                                                  |                |             |  |  |  |
| Peak-Hour Factor, PHF                          | 1.00                                             | 1.00             | 1.00    |           | 1.00             | 1.00                                             |                | 1.00        |  |  |  |
| Hourly Flow Rate, HFR                          | 20                                               | 0                | 55      |           | 0                | 0                                                |                | 0           |  |  |  |
| (veh/h)<br>Percent Heavy Vehicles              | 0                                                | 0                | 0       | _         | 0                | 0                                                |                | 0           |  |  |  |
| Percent Grade (%)                              | <del>                                     </del> | 0                | U       |           | U                | 0                                                |                | U           |  |  |  |
|                                                | +                                                | T N              | т -     |           |                  | -                                                | <del>- 1</del> |             |  |  |  |
| Flared Approach                                |                                                  |                  | _       |           |                  | N                                                |                |             |  |  |  |
| Storage                                        | _                                                | 0                | _       |           |                  | 0                                                |                |             |  |  |  |
| RT Channelized                                 |                                                  |                  | 0       |           |                  |                                                  |                | 0           |  |  |  |
| Lanes                                          | 1                                                | 0                | 1       |           | 0                | 0                                                |                | 0           |  |  |  |
| Configuration                                  | L                                                |                  | R       |           |                  |                                                  |                |             |  |  |  |
| Delay, Queue Length, a                         |                                                  |                  |         |           |                  | _                                                |                |             |  |  |  |
| Approach                                       | Northbound                                       | Southbound       |         | Westbou   | ınd              | I                                                | Eastbound      |             |  |  |  |
| Movement                                       | 1                                                | 4                | 7       | 8         | 9                | 10                                               | 11             | 12          |  |  |  |
| _ane Configuration                             | L                                                |                  |         |           |                  | L                                                |                | R           |  |  |  |
| / (veh/h)                                      | 337                                              |                  |         |           |                  | 20                                               |                | 55          |  |  |  |
| C (m) (veh/h)                                  | 581                                              |                  |         |           |                  | 111                                              |                | 242         |  |  |  |
| ı/c                                            | 0.58                                             |                  |         |           |                  | 0.18                                             |                | 0.23        |  |  |  |
| 95% queue length                               | 3.70                                             |                  |         | 1         |                  | 0.63                                             |                | 0.85        |  |  |  |
| Control Delay (s/veh)                          | 19.4                                             |                  |         |           | +                | 44.4                                             |                | 24.2        |  |  |  |
| OS                                             | 79.4<br>C                                        |                  |         |           |                  | E #4.4                                           |                | C 24.2      |  |  |  |
|                                                |                                                  |                  |         |           |                  | <del>                                     </del> |                | C           |  |  |  |
| Approach Delay (s/veh)                         |                                                  |                  |         |           |                  |                                                  | 29.6           |             |  |  |  |
| Approach LOS                                   |                                                  |                  | l       |           |                  | I                                                | D              |             |  |  |  |

|                                  | TW              | O-WAY STOP       | CONTRO                                           | DL SI    | UMN    | /IARY        |                                                  |         |              |  |  |
|----------------------------------|-----------------|------------------|--------------------------------------------------|----------|--------|--------------|--------------------------------------------------|---------|--------------|--|--|
| General Information              | <br>n           |                  | Site Ir                                          | nform    | natic  | n            |                                                  |         |              |  |  |
| Analyst                          | Christoph       | er Puglisi       | Interse                                          | ction    |        |              | PPL & Rt                                         | 11      |              |  |  |
| Agency/Co.                       | KLD Asso        |                  | Jurisdi                                          |          |        |              | Salem Tw                                         | p       |              |  |  |
| Date Performed                   | 7/3/2008        |                  | Analys                                           | is Yea   | ľ      | 2008         |                                                  |         |              |  |  |
| Analysis Time Period             | AM Peak         |                  |                                                  |          |        |              |                                                  |         |              |  |  |
| Project Description 53           |                 | na/Bell Bend NPP |                                                  |          |        |              |                                                  |         |              |  |  |
| East/West Street: Bell i         |                 |                  |                                                  |          |        | t: US Rt 1   | 1                                                |         |              |  |  |
| Intersection Orientation:        | North-South     |                  | Study F                                          | Period   | (hrs): | : 0.25       |                                                  |         |              |  |  |
| Vehicle Volumes a                | nd Adjustme     | nts              |                                                  |          |        |              |                                                  |         |              |  |  |
| Major Street                     |                 | Northbound       |                                                  |          |        |              | Southbou                                         | nd      |              |  |  |
| Movement                         | 1               | 2                | 3                                                |          |        | 4            | 5                                                |         | 6            |  |  |
|                                  | L               | T                | R                                                |          |        | L            | T                                                |         | R            |  |  |
| Volume (veh/h)                   | 1027            | 543              | 4.00                                             |          |        | 1.00         | 253                                              | _       | 897          |  |  |
| Peak-Hour Factor, PHF            | 1.00            | 1.00             | 1.00                                             |          |        | 1.00         | 1.00                                             | _       | 1.00         |  |  |
| Hourly Flow Rate, HFR<br>(veh/h) | 1027            | 543              | 0                                                |          |        | 0            | 253                                              |         | 897          |  |  |
| Percent Heavy Vehicles           | 0               |                  |                                                  |          |        | 0            |                                                  |         |              |  |  |
| Median Type                      |                 |                  | Two V                                            | Vay Le   | ft Tui | rn Lane      |                                                  |         |              |  |  |
| RT Channelized                   |                 |                  | 0                                                |          |        |              |                                                  |         | 0            |  |  |
| Lanes                            | 1               | 1                | 0                                                |          |        | 0            | 1                                                |         | 0            |  |  |
| Configuration                    | L               | T                |                                                  |          |        |              |                                                  |         | TR           |  |  |
| Upstream Signal                  |                 | 0                |                                                  |          |        |              | 0                                                |         |              |  |  |
| Minor Street                     |                 | Eastbound        |                                                  |          |        |              | Westbou                                          | nd      |              |  |  |
| Movement                         | 7               | 8                | 9                                                |          |        | 10           | 11                                               |         | 12           |  |  |
|                                  | L               | Т                | R                                                |          |        | L            | Т                                                |         | R            |  |  |
| Volume (veh/h)                   | 5               |                  | 12                                               |          |        |              |                                                  |         |              |  |  |
| Peak-Hour Factor, PHF            | 1.00            | 1.00             | 1.00                                             |          | -      | 1.00         | 1.00                                             |         | 1.00         |  |  |
| Hourly Flow Rate, HFR<br>(veh/h) | 5               | 0                | 12                                               |          |        | 0            | 0                                                |         | 0            |  |  |
| Percent Heavy Vehicles           | 0               | 0                | 0                                                |          |        | 0            | 0                                                |         | 0            |  |  |
| Percent Grade (%)                |                 | 0                |                                                  |          |        |              | 0                                                |         |              |  |  |
| Flared Approach                  |                 | N                |                                                  |          |        |              | N                                                |         |              |  |  |
| Storage                          |                 | 0                |                                                  |          |        |              | 0                                                |         |              |  |  |
| RT Channelized                   |                 |                  | 0                                                |          |        |              |                                                  |         | 0            |  |  |
| Lanes                            | 1               | 0                | 1                                                |          |        | 0            | 0                                                |         | 0            |  |  |
| Configuration                    | L               |                  | R                                                |          |        |              |                                                  |         |              |  |  |
| Delay, Queue Length,             | and Level of Se | ervice           | -                                                |          |        |              |                                                  |         |              |  |  |
| Approach                         | Northbound      | Southbound       | ,                                                | Westb    | ound   |              | Е                                                | Eastbou | nd           |  |  |
| Movement                         | 1               | 4                | 7                                                | 8        | 3      | 9            | 10                                               | 11      | 12           |  |  |
| Lane Configuration               | L               |                  |                                                  |          |        |              | L                                                |         | R            |  |  |
| v (veh/h)                        | 1027            |                  |                                                  |          |        |              | 5                                                |         | 12           |  |  |
| C (m) (veh/h)                    | 615             |                  |                                                  | $\vdash$ |        |              | <del>                                     </del> |         | 442          |  |  |
| v/c                              | 1.67            |                  |                                                  |          |        |              |                                                  |         | 0.03         |  |  |
| 95% queue length                 | 58.13           |                  | <del> </del>                                     | $\vdash$ |        | <del> </del> | <del>                                     </del> |         | 0.08         |  |  |
| Control Delay (s/veh)            | 326.3           |                  |                                                  |          |        |              |                                                  |         | 13.4         |  |  |
| LOS                              | 520.3<br>F      |                  | <del>                                     </del> |          |        |              | +                                                |         | 13.4<br>B    |  |  |
|                                  |                 |                  |                                                  |          |        |              |                                                  |         | Ь            |  |  |
| Approach Delay (s/veh)           |                 |                  | ļ                                                |          |        |              | -                                                |         |              |  |  |
| Approach LOS                     | -               |                  |                                                  |          |        | on 5 21      |                                                  |         | 14/2008 1:59 |  |  |

Copyright © 2005 University of Florida, All Rights Reserved

*HCS*+<sup>TM</sup> Version 5.21 Generated: 7/14/2008 1:59 AM

KLD Engineering, P.C. Bell Bend Traffic Study

Appendix H 10

TR-439 Rev. 2 RT11 & Union PM Peak

|                     | •     | <b>→</b> | •     | •     | 1     | <b>†</b> | -     | ţ     |  |
|---------------------|-------|----------|-------|-------|-------|----------|-------|-------|--|
| Lane Group          | EBL   | EBT      | WBL   | WBT   | NBL   | NBT      | SBL   | SBT   |  |
| Lane Configurations |       | 44       |       | 4     | 7     | f)       | 7     | f)    |  |
| Volume (vph)        | 59    | 22       | 25    | 32    | 338   | 1009     | 4     | 255   |  |
| Turn Type           | Perm  |          | Perm  |       | Perm  |          | Perm  |       |  |
| Protected Phases    |       | 4        |       | 8     |       | 2        |       | 6     |  |
| Permitted Phases    | 4     |          | 8     |       | 2     |          | 6     |       |  |
| Detector Phases     | 4     | 4        | 8     | 8     | 2     | 2        | 6     | 6     |  |
| Minimum Initial (s) | 8.0   | 8.0      | 8.0   | 8.0   | 14.0  | 14.0     | 14.0  | 14.0  |  |
| Minimum Split (s)   | 26.0  | 26.0     | 26.0  | 26.0  | 44.0  | 44.0     | 44.0  | 44.0  |  |
| Total Split (s)     | 26.0  | 26.0     | 26.0  | 26.0  | 44.0  | 44.0     | 44.0  | 44.0  |  |
| Total Split (%)     | 37.1% | 37.1%    | 37.1% | 37.1% | 62.9% | 62.9%    | 62.9% | 62.9% |  |
| Yellow Time (s)     | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | 3.0   |  |
| All-Red Time (s)    | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | 3.0   |  |
| Lead/Lag            |       |          |       |       |       |          |       |       |  |
| Lead-Lag Optimize?  |       |          |       |       |       |          |       |       |  |
| Recall Mode         | Max   | Max      | Max   | Max   | Max   | Max      | Max   | Max   |  |
| Act Effct Green (s) |       | 22.0     |       | 22.0  | 40.0  | 40.0     | 40.0  | 40.0  |  |
| Actuated g/C Ratio  |       | 0.31     |       | 0.31  | 0.57  | 0.57     | 0.57  | 0.57  |  |
| v/c Ratio           |       | 0.41     |       | 0.20  | 0.71  | 1.02     | 0.04  | 0.38  |  |
| Control Delay       |       | 13.7     |       | 17.2  | 21.2  | 50.8     | 7.8   | 8.2   |  |
| Queue Delay         |       | 0.0      |       | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   |  |
| Total Delay         |       | 13.7     |       | 17.2  | 21.2  | 50.8     | 7.8   | 8.2   |  |
| LOS                 |       | В        |       | В     | С     | D        | Α     | Α     |  |
| Approach Delay      |       | 13.7     |       | 17.2  |       | 43.5     |       | 8.2   |  |
| Approach LOS        |       | В        |       | В     |       | D        |       | Α     |  |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80 Control Type: Pretimed Maximum v/c Ratio: 1.02 Intersection Signal Delay: 32.7

Intersection Signal Delay: 32.7Intersection LOS: CIntersection Capacity Utilization 88.9%ICU Level of Service E

Analysis Period (min) 15



RT11 & Main PM Peak

|                     | •     | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> |
|---------------------|-------|----------|-------------|----------|----------|
| Lane Group          | WBL   | NBT      | NBR         | SBL      | SBT      |
| Lane Configurations | ¥     | <b>^</b> | 7           | ሻ        | <b>1</b> |
| Volume (vph)        | 12    | 1216     | 42          | 138      | 218      |
| Turn Type           |       |          | Perm        | pm+pt    |          |
| Protected Phases    | 4     | 6        |             | 5        | 2        |
| Permitted Phases    |       |          | 6           | 2        |          |
| Detector Phases     | 4     | 6        | 6           | 5        | 2        |
| Minimum Initial (s) | 1.8   | 12.0     | 12.0        | 5.0      | 17.0     |
| Minimum Split (s)   | 7.0   | 21.4     | 21.4        | 10.4     | 22.4     |
| Total Split (s)     | 22.6  | 29.4     | 29.4        | 18.0     | 47.4     |
| Total Split (%)     | 32.3% | 42.0%    | 42.0%       | 25.7%    | 67.7%    |
| Yellow Time (s)     | 4.1   | 4.2      | 4.2         | 4.2      | 4.2      |
| All-Red Time (s)    | 1.1   | 1.2      | 1.2         | 1.2      | 1.2      |
| Lead/Lag            |       | Lag      | Lag         | Lead     |          |
| Lead-Lag Optimize?  |       | Yes      | Yes         | Yes      |          |
| Recall Mode         | None  | None     | None        | None     | Max      |
| Act Effct Green (s) | 10.5  | 38.1     | 38.1        | 48.5     | 49.1     |
| Actuated g/C Ratio  | 0.16  | 0.59     | 0.59        | 0.72     | 0.76     |
| v/c Ratio           | 0.36  | 1.18     | 0.05        | 0.40     | 0.17     |
| Control Delay       | 8.0   | 111.1    | 5.4         | 5.7      | 3.5      |
| Queue Delay         | 0.0   | 0.0      | 0.0         | 0.0      | 0.0      |
| Total Delay         | 8.0   | 111.1    | 5.4         | 5.7      | 3.5      |
| LOS                 | Α     | F        | Α           | Α        | Α        |
| Approach Delay      | 8.0   | 107.5    |             |          | 4.4      |
| Approach LOS        | Α     | F        |             |          | Α        |

# Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 64.6

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.18

Intersection Signal Delay: 78.6 Intersection LOS: E
Intersection Capacity Utilization 87.9% ICU Level of Service E

Analysis Period (min) 15



2nd & Market PM Peak

| Lane Group WBL WBT WBR NBL NBT SBR                              |
|-----------------------------------------------------------------|
| Lane Configurations \$ \$\bar{\bar{\bar{\bar{\bar{\bar{\bar{\ba |
| Volume (vph) 632 1197 59 151 110 232 109                        |
| Turn Type Perm Perm pm+pt Perm                                  |
| Protected Phases 8 5 2 6                                        |
| Permitted Phases 8 8 2 6                                        |
| Detector Phases 8 8 8 5 2 6 6                                   |
| Minimum Initial (s) 4.0 4.0 4.0 4.0 4.0 4.0                     |
| Minimum Split (s) 21.0 21.0 21.0 8.0 20.5 20.5 20.5             |
| Total Split (s) 25.0 25.0 25.0 10.0 40.0 30.0 30.0              |
| Total Split (%) 38.5% 38.5% 38.5% 15.4% 61.5% 46.2% 46.2%       |
| Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5                         |
| All-Red Time (s) 1.5 1.5 0.0 1.0 1.0 1.0                        |
| Lead/Lag Lag Lag                                                |
| Lead-Lag Optimize? Yes Yes Yes                                  |
| Recall Mode Max Max Max Max Max Max Max                         |
| Act Effct Green (s) 21.0 21.0 36.0 36.0 26.0 26.0               |
| Actuated g/C Ratio 0.32 0.32 0.55 0.55 0.40 0.40                |
| v/c Ratio 1.16 1.10 0.11 0.33 0.13 0.36 0.19                    |
| Control Delay 116.6 83.3 5.5 4.7 1.5 15.5 3.7                   |
| Queue Delay 200.1 0.0 0.0 0.1 0.0 0.0 0.0                       |
| Total Delay 316.7 83.3 5.5 4.8 1.5 15.5 3.7                     |
| LOS F F A A B A                                                 |
| Approach Delay 158.9 3.4 11.6                                   |
| Approach LOS F A B                                              |

# Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 60 Control Type: Pretimed Maximum v/c Ratio: 1.16 Intersection Signal Delay: 118.9

Intersection Signal Delay: 118.9Intersection LOS: FIntersection Capacity Utilization 90.2%ICU Level of Service E

Analysis Period (min) 15



Front & Market PM Peak

|                     | -          | Ť        | _     | -     | ¥        |
|---------------------|------------|----------|-------|-------|----------|
| Lane Group          | EBT        | NBT      | NBR   | SBL   | SBT      |
| Lane Configurations | <b>4</b> P | <b>1</b> | 7     | ሻ     | <b>†</b> |
| Volume (vph)        | 613        | 288      | 141   | 91    | 769      |
| Turn Type           |            |          | Perm  | pm+pt |          |
| Protected Phases    | 4          | 2        |       | 1     | 6        |
| Permitted Phases    |            |          | 2     | 6     |          |
| Detector Phases     | 4          | 2        | 2     | 1     | 6        |
| Minimum Initial (s) | 4.0        | 3.0      | 3.0   | 3.0   | 3.0      |
| Minimum Split (s)   | 24.0       | 21.0     | 21.0  | 10.0  | 31.0     |
| Total Split (s)     | 29.0       | 26.0     | 26.0  | 10.0  | 36.0     |
| Total Split (%)     | 44.6%      | 40.0%    | 40.0% | 15.4% | 55.4%    |
| Yellow Time (s)     | 3.2        | 4.0      | 4.0   | 2.0   | 4.0      |
| All-Red Time (s)    | 1.8        | 1.0      | 1.0   | 0.0   | 1.0      |
| Lead/Lag            |            | Lag      | Lag   | Lead  |          |
| Lead-Lag Optimize?  |            | Yes      | Yes   | Yes   |          |
| Recall Mode         | Max        | Max      | Max   | Max   | Max      |
| Act Effct Green (s) | 25.0       | 22.0     | 22.0  | 32.0  | 32.0     |
| Actuated g/C Ratio  | 0.38       | 0.34     | 0.34  | 0.49  | 0.49     |
| v/c Ratio           | 0.68       | 0.46     | 0.22  | 0.22  | 0.92     |
| Control Delay       | 18.3       | 19.7     | 4.3   | 9.7   | 26.9     |
| Queue Delay         | 0.0        | 0.0      | 0.0   | 0.0   | 153.5    |
| Total Delay         | 18.3       | 19.7     | 4.3   | 9.7   | 180.4    |
| LOS                 | В          | В        | Α     | Α     | F        |
| Approach Delay      | 18.3       | 14.6     |       |       | 162.4    |
| Approach LOS        | В          | В        |       |       | F        |
|                     |            |          |       |       |          |

# Intersection Summary

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 76.9

Intersection Signal Delay: 76.9Intersection LOS: EIntersection Capacity Utilization 90.2%ICU Level of Service E

Analysis Period (min) 15





RT 11 & Lasalle PM Peak

|                     |       | •     | •          | *    |
|---------------------|-------|-------|------------|------|
| Lane Group          | EBL   | WBL   | WBT        | SBR  |
| Lane Configurations | ሻ     | ሻ     | <b>∱</b> } | 7    |
| Volume (vph)        | 80    | 15    | 1607       | 142  |
| Turn Type           | Prot  | Perm  |            | Free |
| Protected Phases    | 7     |       | 8          |      |
| Permitted Phases    |       | 8     |            | Free |
| Detector Phases     | 7     | 8     | 8          |      |
| Minimum Initial (s) | 1.0   | 4.0   | 4.0        |      |
| Minimum Split (s)   | 5.0   | 25.0  | 25.0       |      |
| Total Split (s)     | 25.0  | 45.0  | 45.0       | 0.0  |
| Total Split (%)     | 35.7% | 64.3% | 64.3%      | 0.0% |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0        |      |
| All-Red Time (s)    | 1.0   | 1.0   | 1.0        |      |
| Lead/Lag            | Lead  | Lag   | Lag        |      |
| Lead-Lag Optimize?  | Yes   | Yes   | Yes        |      |
| Recall Mode         | None  | None  | None       |      |
| Act Effct Green (s) | 9.2   | 25.5  | 25.5       | 33.2 |
| Actuated g/C Ratio  | 0.25  | 0.77  | 0.77       | 1.00 |
| v/c Ratio           | 0.21  | 0.01  | 0.63       | 0.13 |
| Control Delay       | 16.4  | 1.9   | 6.1        | 0.2  |
| Queue Delay         | 0.0   | 0.0   | 0.0        | 0.0  |
| Total Delay         | 16.4  | 1.9   | 6.1        | 0.2  |
| LOS                 | В     | А     | Α          | Α    |
| Approach Delay      |       |       | 6.1        |      |
| Approach LOS        |       |       | Α          |      |
|                     |       |       |            |      |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 33.2

Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.63

Intersection Signal Delay: 5.9 Intersection LOS: A Intersection Capacity Utilization 56.4% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 7: Rt 11/93 & LaSalle St



RT 11 & Orange PM Peak

|                     | -     | •     | •       | -      | ¥     |      |
|---------------------|-------|-------|---------|--------|-------|------|
| Lane Group          | EBT   | WBL   | WBT     | SBL    | SBT   | ø2   |
| Lane Configurations | ĵ»    |       | <u></u> |        | 4     |      |
| Volume (vph)        | 773   | 2     | 1468    | 154    | 2     |      |
| Turn Type           |       | Perm  | (       | custom |       |      |
| Protected Phases    | 4     |       | 8       |        |       | 2    |
| Permitted Phases    |       | 8     |         | 6      | 6     |      |
| Detector Phases     | 4     | 8     | 8       | 6      | 6     |      |
| Minimum Initial (s) | 4.0   | 4.0   | 4.0     | 4.0    | 4.0   | 4.0  |
| Minimum Split (s)   | 20.0  | 20.0  | 20.0    | 20.0   | 20.0  | 20.0 |
| Total Split (s)     | 39.0  | 39.0  | 39.0    | 21.0   | 21.0  | 21.0 |
| Total Split (%)     | 65.0% | 65.0% | 65.0%   | 35.0%  | 35.0% | 35%  |
| Yellow Time (s)     | 3.5   | 3.5   | 3.5     | 3.5    | 3.5   | 3.5  |
| All-Red Time (s)    | 0.5   | 0.5   | 0.5     | 0.5    | 0.5   | 0.5  |
| Lead/Lag            |       |       |         |        |       |      |
| Lead-Lag Optimize?  |       |       |         |        |       |      |
| Recall Mode         | Max   | Max   | Max     | Max    | Max   | Max  |
| Act Effct Green (s) | 35.0  |       | 35.0    |        | 17.0  |      |
| Actuated g/C Ratio  | 0.58  |       | 0.58    |        | 0.28  |      |
| v/c Ratio           | 0.84  |       | 1.45    |        | 0.53  |      |
| Control Delay       | 19.4  |       | 228.7   |        | 24.1  |      |
| Queue Delay         | 0.0   |       | 0.0     |        | 0.0   |      |
| Total Delay         | 19.4  |       | 228.7   |        | 24.1  |      |
| LOS                 | В     |       | F       |        | С     |      |
| Approach Delay      | 19.4  |       | 228.7   |        | 24.1  |      |
| Approach LOS        | В     |       | F       |        | С     |      |

# Intersection Summary

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150
Control Type: Pretimed
Maximum v/c Ratio: 1.45
Intersection Signal Delay: 142.7

Intersection Signal Delay: 142.7Intersection LOS: FIntersection Capacity Utilization 94.2%ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 4: W Front St (Rt 11) & Sunoco Station



RT11 & Poplar PM Peak

|                     | •     | <b>→</b> | <     | •     | 1     | <b>†</b> | /     | -     | ţ     |
|---------------------|-------|----------|-------|-------|-------|----------|-------|-------|-------|
| Lane Group          | EBL   | EBT      | WBL   | WBT   | NBL   | NBT      | NBR   | SBL   | SBT   |
| Lane Configurations | ሻ     | <b>^</b> | ሻ     | f)    |       | ર્ન      | 7     |       | 4     |
| Volume (vph)        | 21    | 659      | 51    | 1364  | 130   | 44       | 81    | 29    | 39    |
| Turn Type           | Perm  |          | pm+pt |       | Perm  |          | Perm  | Perm  |       |
| Protected Phases    |       | 4        | 3     | 8     |       | 2        |       |       | 6     |
| Permitted Phases    | 4     |          | 8     |       | 2     |          | 2     | 6     |       |
| Detector Phases     | 4     | 4        | 3     | 8     | 2     | 2        | 2     | 6     | 6     |
| Minimum Initial (s) | 1.0   | 1.0      | 4.0   | 20.0  | 2.0   | 2.0      | 2.0   | 1.0   | 1.0   |
| Minimum Split (s)   | 25.0  | 25.0     | 8.0   | 25.0  | 6.0   | 6.0      | 6.0   | 5.0   | 5.0   |
| Total Split (s)     | 42.0  | 42.0     | 8.0   | 50.0  | 20.0  | 20.0     | 20.0  | 20.0  | 20.0  |
| Total Split (%)     | 60.0% | 60.0%    | 11.4% | 71.4% | 28.6% | 28.6%    | 28.6% | 28.6% | 28.6% |
| Yellow Time (s)     | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | 3.0   | 3.0   |
| All-Red Time (s)    | 2.0   | 2.0      | 0.0   | 2.0   | 1.0   | 1.0      | 1.0   | 1.0   | 1.0   |
| Lead/Lag            | Lag   | Lag      | Lead  |       |       |          |       |       |       |
| Lead-Lag Optimize?  | Yes   | Yes      | Yes   |       |       |          |       |       |       |
| Recall Mode         | Max   | Max      | Max   | Max   | Max   | Max      | Max   | Max   | Max   |
| Act Effct Green (s) | 38.0  | 38.0     | 46.0  | 46.0  |       | 16.0     | 16.0  |       | 16.0  |
| Actuated g/C Ratio  | 0.54  | 0.54     | 0.66  | 0.66  |       | 0.23     | 0.23  |       | 0.23  |
| v/c Ratio           | 0.25  | 0.83     | 0.24  | 1.23  |       | 0.63     | 0.22  |       | 0.26  |
| Control Delay       | 15.7  | 22.7     | 6.7   | 129.4 |       | 34.6     | 7.0   |       | 21.5  |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.0   |       | 0.0      | 0.0   |       | 0.0   |
| Total Delay         | 15.7  | 22.7     | 6.7   | 129.4 |       | 34.6     | 7.0   |       | 21.5  |
| LOS                 | В     | С        | Α     | F     |       | С        | Α     |       | С     |
| Approach Delay      |       | 22.5     |       | 125.0 |       | 25.8     |       |       | 21.5  |
| Approach LOS        |       | С        |       | F     |       | С        |       |       | С     |

#### Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120
Control Type: Pretimed
Maximum v/c Ratio: 1.23
Intersection Signal Delay: 79.7

Intersection Signal Delay: 79.7Intersection LOS: EIntersection Capacity Utilization 95.1%ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 4: RT 11 & N Poplar St



|                                                | TW0             | O-WAY STOP       | CONTR          | OL SUN                                           | MARY             |              |           |           |
|------------------------------------------------|-----------------|------------------|----------------|--------------------------------------------------|------------------|--------------|-----------|-----------|
| General Informatio                             | า               |                  | Site I         | nforma                                           | tion             |              |           |           |
| Analyst                                        | Christoph       | er Puglisi       | Inters         | ection                                           |                  | PPL & Rt     | 11        |           |
| Agency/Co.                                     | KLD Asso        |                  | Jurisd         |                                                  |                  | Salem Tw     | ſρ        |           |
| Date Performed                                 | 7/3/2008        |                  | Analy          | sis Year                                         |                  | 2008         |           |           |
| Analysis Time Period                           | AM Peak         |                  |                |                                                  |                  |              |           |           |
|                                                |                 | na/Bell Bend NPP |                |                                                  |                  |              |           |           |
| East/West Street: PPL                          |                 |                  |                |                                                  | eet: US Rt       | 11           |           |           |
| ntersection Orientation:                       | North-South     |                  | Study          | Period (hi                                       | rs): <i>0.25</i> |              |           |           |
| Vehicle Volumes ar                             | nd Adjustme     |                  |                |                                                  |                  |              |           |           |
| Major Street                                   |                 | Northbound       |                |                                                  |                  | Southbou     | nd        |           |
| Movement                                       | 1               | 2                | 3              |                                                  | 4                | 5            |           | 6         |
|                                                | L               | T                | R              |                                                  | L                | T            |           | R         |
| Volume (veh/h)                                 | 13              | 1151             | 1.00           |                                                  | 1.00             | 266          |           | 5<br>1.00 |
| Peak-Hour Factor, PHF<br>Hourly Flow Rate, HFR | 1.00            | 1.00             | 1.00           | <del>′                                    </del> | 1.00             | 1.00         |           | 1.00      |
| (veh/h)                                        | 13              | 1151             | 0              |                                                  | 0                | 266          |           | 5         |
| Percent Heavy Vehicles                         | 0               |                  | <del>  -</del> |                                                  | 0                | <del> </del> |           |           |
| Median Type                                    |                 | •                | Two            | Nay Left                                         | Turn Lane        | •            | •         |           |
| RT Channelized                                 |                 |                  | 0              |                                                  |                  |              |           | 0         |
| _anes                                          | 1               | 1                | 0              |                                                  | 0                | 1            |           | 0         |
| Configuration                                  | L               | T                |                |                                                  |                  |              |           | TR        |
| Upstream Signal                                |                 | 0                |                |                                                  |                  | 0            |           |           |
| Minor Street                                   |                 | Eastbound        |                |                                                  |                  | Westbou      | nd        |           |
| Movement                                       | 7               | 8                | 9              |                                                  | 10               | 11           |           | 12        |
|                                                | L               | Т                | R              |                                                  | L                | Т            |           | R         |
| Volume (veh/h)                                 | 73              |                  | 200            | )                                                |                  |              |           |           |
| Peak-Hour Factor, PHF                          | 1.00            | 1.00             | 1.0            | )                                                | 1.00             | 1.00         |           | 1.00      |
| Hourly Flow Rate, HFR                          | 73              | 0                | 200            | ,                                                | 0                | 0            |           | 0         |
| (veh/h)                                        |                 |                  |                |                                                  |                  |              |           |           |
| Percent Heavy Vehicles                         | 0               | 0                | 0              |                                                  | 0                | 0            |           | 0         |
| Percent Grade (%)                              |                 | 0                |                |                                                  |                  | 0            |           |           |
| Flared Approach                                |                 | N                |                |                                                  |                  | N            |           |           |
| Storage                                        |                 | 0                |                |                                                  |                  | 0            |           |           |
| RT Channelized                                 |                 |                  | 0              |                                                  |                  |              |           | 0         |
| Lanes                                          | 1               | 0                | 1              |                                                  | 0                | 0            |           | 0         |
| Configuration                                  | L               |                  | R              |                                                  |                  |              |           |           |
| Delay, Queue Length, a                         | and Level of Se | ervice           |                |                                                  |                  |              |           |           |
| Approach                                       | Northbound      | Southbound       |                | Westbou                                          | nd               |              | Eastbound |           |
| Movement                                       | 1               | 4                | 7              | 8                                                | 9                | 10           | 11        | 12        |
| Lane Configuration                             | L               |                  |                |                                                  |                  | L            |           | R         |
| v (veh/h)                                      | 13              |                  |                | 1                                                | 1                | 73           |           | 200       |
| C (m) (veh/h)                                  | 1304            |                  |                | 1                                                |                  | 242          |           | 776       |
| //c                                            | 0.01            |                  |                | 1                                                |                  | 0.30         |           | 0.26      |
|                                                |                 |                  |                | +                                                | _                |              |           | _         |
| 95% queue length                               | 0.03            |                  |                | +                                                |                  | 1.22         |           | 1.03      |
| Control Delay (s/veh)                          | 7.8             |                  |                | <del>                                     </del> |                  | 26.2         |           | 11.2      |
| LOS                                            | Α               |                  |                |                                                  |                  | D            |           | В         |
| Approach Delay (s/veh)                         | -               |                  |                |                                                  |                  |              | 15.2      |           |
| Approach LOS                                   |                 |                  | I              |                                                  |                  |              | С         |           |

|                                                | TWO         | D-WAY STOP       | CONTR    | OL SU          | MMARY            |          |          |       |
|------------------------------------------------|-------------|------------------|----------|----------------|------------------|----------|----------|-------|
| General Informatio                             | 1           |                  | Site I   | nforma         | tion             |          |          |       |
| Analyst                                        | Christoph   | er Puglisi       | Inters   | ection         |                  | PPL & Rt | 11       |       |
| Agency/Co.                                     | KLD Asso    | ciates           | Jurisd   |                |                  | Salem Tw | р        |       |
| Date Performed                                 | 7/3/2008    |                  | Analy    | sis Year       |                  | 2008     |          |       |
| Analysis Time Period                           | PM Peak     |                  |          |                |                  |          |          |       |
|                                                |             | na/Bell Bend NPP |          |                |                  |          |          |       |
| East/West Street: BellE                        |             |                  |          |                | eet: US Rt       | 11       |          |       |
| ntersection Orientation:                       |             |                  | Study    | Period (h      | rs): <i>0.25</i> |          |          |       |
| /ehicle Volumes ar                             | nd Adjustme |                  |          |                |                  |          |          |       |
| Major Street                                   |             | Northbound       |          |                |                  | Southbou | nd       |       |
| Movement                                       | 1           | 2                | 3        |                | 4                | 5        |          | 6     |
|                                                | L           | T                | R        |                | L                | T        |          | R     |
| /olume (veh/h)                                 | 3           | 281              | 4.00     | $\leftarrow$   | 4.00             | 467      |          | 1     |
| Peak-Hour Factor, PHF<br>Hourly Flow Rate, HFR | 1.00        | 1.00             | 1.00     | <del>,  </del> | 1.00             | 1.00     |          | 1.00  |
| veh/h)                                         | 3           | 281              | 0        |                | 0                | 467      |          | 1     |
| Percent Heavy Vehicles                         | 0           |                  |          |                | 0                |          |          |       |
| Median Type                                    |             |                  | Two      | Nay Left       | Turn Lane        | _        |          |       |
| RT Channelized                                 |             |                  | 0        |                |                  |          |          | 0     |
| anes                                           | 1           | 1                | 0        |                | 0                | 1        |          | 0     |
| Configuration                                  | L           | Т                |          |                |                  |          |          | TR    |
| Jpstream Signal                                |             | 0                |          |                |                  | 0        |          |       |
| Minor Street                                   |             | Eastbound        |          |                |                  | Westbou  | nd       |       |
| Movement                                       | 7           | 8                | 9        |                | 10               | 11       |          | 12    |
|                                                | L           | Т                | R        |                | L                | Т        |          | R     |
| Volume (veh/h)                                 | 883         |                  | 988      |                |                  |          |          |       |
| Peak-Hour Factor, PHF                          | 1.00        | 1.00             | 1.00     | ) <u> </u>     | 1.00             | 1.00     |          | 1.00  |
| Hourly Flow Rate, HFR                          | 883         | 0                | 988      | ₃              | 0                | 0        |          | 0     |
| veh/h)<br>Percent Heavy Vehicles               | 0           | 0                | 0        | -              | 0                | 0        |          | 0     |
| Percent Grade (%)                              | · ·         | 0                | U        |                | U                | 0        |          | U     |
| · , ,                                          | -           | T N              | 1        |                |                  | T N      | <u> </u> |       |
| Flared Approach                                |             |                  |          |                |                  | _        |          |       |
| Storage                                        | _           | 0                | <u> </u> |                |                  | 0        |          |       |
| RT Channelized                                 |             |                  | 0        |                |                  |          |          | 0     |
| anes                                           | 1           | 0                | 1        |                | 0                | 0        |          | 0     |
| Configuration                                  | L           |                  | R        |                |                  |          |          |       |
| Delay, Queue Length, a                         |             |                  |          |                |                  | _        |          |       |
| Approach                                       | Northbound  | Southbound       |          | Westbou        |                  | E        | astbound | _     |
| Movement                                       | 1           | 4                | 7        | 8              | 9                | 10       | 11       | 12    |
| ane Configuration                              | L           |                  |          |                |                  | L        |          | R     |
| / (veh/h)                                      | 3           |                  |          |                |                  | 883      |          | 988   |
| C (m) (veh/h)                                  | 1104        |                  |          |                |                  | 486      |          | 599   |
| //c                                            | 0.00        |                  |          | 1              |                  | 1.82     |          | 1.65  |
| 95% queue length                               | 0.01        |                  |          | †              | +                | 55.58    | 1        | 55.32 |
| Control Delay (s/veh)                          | 8.3         |                  |          | +              |                  | 395.8    | -        | 317.8 |
| - ,                                            |             |                  |          | +              |                  |          |          |       |
| _OS                                            | Α           |                  |          |                |                  | F        | 05 ( 5   | F     |
| Approach Delay (s/veh)                         |             |                  |          |                |                  |          | 354.6    |       |
| Approach LOS                                   |             |                  |          |                |                  | 1        | F        |       |

# APPENDIX I

**MITIGATION MEASURES** 

# **Appendix I – Mitigation Measures**

Table I-1 summarizes the mitigation measures applied and the resulting LOS.

**Table I-1 Mitigation Measures** 

| Case         | Future<br>Build    | Consti                                        | cuction                                       | Construction                                                   | and Outage                                    |                                     |
|--------------|--------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-------------------------------------|
| Intersection | <b>PM</b>          | AM                                            | PM                                            | AM                                                             | PM                                            | Notes                               |
| Main St      |                    | Signal<br>Retiming,<br>Restriping<br>SB RT 11 | Signal<br>Retiming,<br>Restriping<br>NB RT 11 | Signal<br>Retiming,<br>Restriping SB<br>RT 11                  | Signal<br>Retiming,<br>Restriping<br>NB RT 11 | -                                   |
| Union St     |                    | Signal<br>Retiming,<br>Restriping<br>SB RT 11 | Signal<br>Retiming                            | Signal<br>Retiming,<br>Restriping EB<br>Union, and RT<br>11 SB | Signal<br>Retiming                            | -                                   |
| Bell Bend    |                    | Temporary<br>signal<br>during<br>Construction | Temporary<br>signal<br>during<br>Construction | Temporary signal during Construction                           | Temporary signal during Construction          | -                                   |
| 2nd St       |                    | Signal<br>Retiming                            | Signal<br>Retiming                            | Signal<br>Retiming                                             | Signal<br>Retiming                            | -                                   |
| Front St     |                    | Signal<br>Retiming,<br>Restriping<br>SB RT 11 | Signal<br>Retiming,<br>Restriping<br>EB RT 93 | Signal<br>Retiming,<br>Restriping SB<br>RT 11                  | Signal<br>Retiming,<br>Restriping<br>EB RT 93 | Mitigation attains LOS values shown |
|              |                    | LOS B                                         | LOS B                                         | LOS C                                                          | LOS B                                         | and not the Future No Build         |
| Poplar       |                    | Signal<br>Retiming                            | Signal<br>Retiming                            | Signal<br>Retiming                                             | Signal<br>Retiming                            | level of service,<br>LOS B.         |
|              |                    | LOS B                                         | LOS D                                         | LOS E                                                          | LOS D                                         | Any additional mitigation needs     |
| Orange St    | Signal<br>Retiming | Signal<br>Retiming                            | Signal<br>Retiming                            | Signal<br>Retiming                                             | Signal<br>Retiming                            | discussion                          |
|              | LOS B              | LOS B                                         | LOS C                                         | LOS B                                                          | LOS D                                         |                                     |

|                     | ၨ     | <b>→</b> | •     | <b>←</b> | 4     | <b>†</b> | ţ        |
|---------------------|-------|----------|-------|----------|-------|----------|----------|
| Lane Group          | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | SBT      |
| Lane Configurations |       | 44       |       | 4        | , j   | 4î       | <b>₽</b> |
| Volume (vph)        | 145   | 14       | 8     | 7        | 45    | 197      | 940      |
| Turn Type           | Perm  |          | Perm  |          | Perm  |          |          |
| Protected Phases    |       | 4        |       | 8        |       | 2        | 6        |
| Permitted Phases    | 4     |          | 8     |          | 2     |          |          |
| Detector Phases     | 4     | 4        | 8     | 8        | 2     | 2        | 6        |
| Minimum Initial (s) | 8.0   | 8.0      | 8.0   | 8.0      | 14.0  | 14.0     | 14.0     |
| Minimum Split (s)   | 26.0  | 26.0     | 26.0  | 26.0     | 44.0  | 44.0     | 44.0     |
| Total Split (s)     | 25.0  | 25.0     | 25.0  | 25.0     | 50.0  | 50.0     | 50.0     |
| Total Split (%)     | 33.3% | 33.3%    | 33.3% | 33.3%    | 66.7% | 66.7%    | 66.7%    |
| Yellow Time (s)     | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0      |
| All-Red Time (s)    | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0      |
| Lead/Lag            |       |          |       |          |       |          |          |
| Lead-Lag Optimize?  |       |          |       |          |       |          |          |
| Recall Mode         | Max   | Max      | Max   | Max      | Max   | Max      | Max      |
| Act Effct Green (s) |       | 21.0     |       | 21.0     | 46.0  | 46.0     | 46.0     |
| Actuated g/C Ratio  |       | 0.28     |       | 0.28     | 0.61  | 0.61     | 0.61     |
| v/c Ratio           |       | 0.92     |       | 0.06     | 0.51  | 0.21     | 0.90     |
| Control Delay       |       | 49.1     |       | 19.7     | 31.2  | 6.8      | 26.4     |
| Queue Delay         |       | 0.0      |       | 0.0      | 0.0   | 0.0      | 0.0      |
| Total Delay         |       | 49.1     |       | 19.7     | 31.2  | 6.8      | 26.4     |
| LOS                 |       | D        |       | В        | С     | Α        | С        |
| Approach Delay      |       | 49.1     |       | 19.7     |       | 11.2     | 26.4     |
| Approach LOS        |       | D        |       | В        |       | В        | С        |

Cycle Length: 75

Actuated Cycle Length: 75

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75
Control Type: Pretimed
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 29.5

Intersection Signal Delay: 29.5Intersection LOS: CIntersection Capacity Utilization 83.8%ICU Level of Service E

Analysis Period (min) 15



|                     | ٠     | -     | ✓     | <b>←</b> | 1     | <b>†</b> | ţ           |
|---------------------|-------|-------|-------|----------|-------|----------|-------------|
| Lane Group          | EBL   | EBT   | WBL   | WBT      | NBL   | NBT      | SBT         |
| Lane Configurations |       | 44    |       | 4        | 7     | £        | <b>€</b> 1₽ |
| Volume (vph)        | 145   | 14    | 8     | 7        | 45    | 197      | 940         |
| Turn Type           | Perm  |       | Perm  |          | Perm  |          |             |
| Protected Phases    |       | 4     |       | 8        |       | 2        | 6           |
| Permitted Phases    | 4     |       | 8     |          | 2     |          |             |
| Detector Phases     | 4     | 4     | 8     | 8        | 2     | 2        | 6           |
| Minimum Initial (s) | 8.0   | 8.0   | 8.0   | 8.0      | 14.0  | 14.0     | 14.0        |
| Minimum Split (s)   | 26.0  | 26.0  | 26.0  | 26.0     | 44.0  | 44.0     | 44.0        |
| Total Split (s)     | 25.0  | 25.0  | 25.0  | 25.0     | 50.0  | 50.0     | 50.0        |
| Total Split (%)     | 33.3% | 33.3% | 33.3% | 33.3%    | 66.7% | 66.7%    | 66.7%       |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | 3.0      | 3.0         |
| All-Red Time (s)    | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | 3.0      | 3.0         |
| Lead/Lag            |       |       |       |          |       |          |             |
| Lead-Lag Optimize?  |       |       |       |          |       |          |             |
| Recall Mode         | Max   | Max   | Max   | Max      | Max   | Max      | Max         |
| Act Effct Green (s) |       | 21.0  |       | 21.0     | 46.0  | 46.0     | 46.0        |
| Actuated g/C Ratio  |       | 0.28  |       | 0.28     | 0.61  | 0.61     | 0.61        |
| v/c Ratio           |       | 0.92  |       | 0.06     | 0.19  | 0.21     | 0.48        |
| Control Delay       |       | 49.1  |       | 19.7     | 8.6   | 6.8      | 8.8         |
| Queue Delay         |       | 0.0   |       | 0.0      | 0.0   | 0.0      | 0.0         |
| Total Delay         |       | 49.1  |       | 19.7     | 8.6   | 6.8      | 8.8         |
| LOS                 |       | D     |       | В        | Α     | Α        | Α           |
| Approach Delay      |       | 49.1  |       | 19.7     |       | 7.2      | 8.8         |
| Approach LOS        |       | D     |       | В        |       | Α        | Α           |

Cycle Length: 75

Actuated Cycle Length: 75

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70
Control Type: Pretimed
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 18.7

Intersection Signal Delay: 18.7Intersection LOS: BIntersection Capacity Utilization 69.9%ICU Level of Service C

Analysis Period (min) 15



|                     | •     | <b>→</b> | •     | <b>←</b> | 4     | <b>†</b> | <b>&gt;</b> | ţ     |
|---------------------|-------|----------|-------|----------|-------|----------|-------------|-------|
| Lane Group          | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | SBL         | SBT   |
| Lane Configurations |       | €        |       | 4        | ሻ     | f)       | ሻ           | ĵ»    |
| Volume (vph)        | 59    | 22       | 25    | 32       | 319   | 983      | 4           | 253   |
| Turn Type           | Perm  |          | Perm  |          | Perm  |          | Perm        |       |
| Protected Phases    |       | 4        |       | 8        |       | 2        |             | 6     |
| Permitted Phases    | 4     |          | 8     |          | 2     |          | 6           |       |
| Detector Phases     | 4     | 4        | 8     | 8        | 2     | 2        | 6           | 6     |
| Minimum Initial (s) | 8.0   | 8.0      | 8.0   | 8.0      | 14.0  | 14.0     | 14.0        | 14.0  |
| Minimum Split (s)   | 26.0  | 26.0     | 26.0  | 26.0     | 44.0  | 44.0     | 44.0        | 44.0  |
| Total Split (s)     | 25.0  | 25.0     | 25.0  | 25.0     | 55.0  | 55.0     | 55.0        | 55.0  |
| Total Split (%)     | 31.3% | 31.3%    | 31.3% | 31.3%    | 68.8% | 68.8%    | 68.8%       | 68.8% |
| Yellow Time (s)     | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0         | 3.0   |
| All-Red Time (s)    | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0         | 3.0   |
| Lead/Lag            |       |          |       |          |       |          |             |       |
| Lead-Lag Optimize?  |       |          |       |          |       |          |             |       |
| Recall Mode         | Max   | Max      | Max   | Max      | Max   | Max      | Max         | Max   |
| Act Effct Green (s) |       | 21.0     |       | 21.0     | 51.0  | 51.0     | 51.0        | 51.0  |
| Actuated g/C Ratio  |       | 0.26     |       | 0.26     | 0.64  | 0.64     | 0.64        | 0.64  |
| v/c Ratio           |       | 0.49     |       | 0.24     | 0.58  | 0.89     | 0.04        | 0.34  |
| Control Delay       |       | 20.7     |       | 23.2     | 13.4  | 24.1     | 6.8         | 6.5   |
| Queue Delay         |       | 0.0      |       | 0.0      | 0.0   | 0.0      | 0.0         | 0.0   |
| Total Delay         |       | 20.7     |       | 23.2     | 13.4  | 24.1     | 6.8         | 6.5   |
| LOS                 |       | С        |       | С        | В     | С        | Α           | Α     |
| Approach Delay      |       | 20.7     |       | 23.2     |       | 21.5     |             | 6.5   |
| Approach LOS        |       | С        |       | С        |       | С        |             | Α     |

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80
Control Type: Pretimed
Maximum v/c Ratio: 0.89
Intersection Signal Delay: 18.7

Intersection Signal Delay: 18.7Intersection LOS: BIntersection Capacity Utilization 87.5%ICU Level of Service E

Analysis Period (min) 15



| Lane GroupEBLEBTEBRWBLWBTNBLNBTSBTLane Configurations11111Volume (vph)1451426587512061000Turn TypePermPermPermPermPermProtected Phases4826Permitted Phases4482                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume (vph)         145         14         265         8         7         51         206         1000           Turn Type         Perm         Perm         Perm         Perm           Protected Phases         4         8         2         6 |
| Volume (vph)         145         14         265         8         7         51         206         1000           Turn Type         Perm         Perm         Perm         Perm           Protected Phases         4         8         2         6 |
| Protected Phases 4 8 2 6                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                    |
| Permitted Phases 4 4 8 2                                                                                                                                                                                                                           |
| Tomitted Thates                                                                                                                                                                                                                                    |
| Detector Phases 4 4 4 8 8 2 2 6                                                                                                                                                                                                                    |
| Minimum Initial (s) 8.0 8.0 8.0 8.0 14.0 14.0 14.0                                                                                                                                                                                                 |
| Minimum Split (s) 26.0 26.0 26.0 26.0 44.0 44.0 44.0                                                                                                                                                                                               |
| Total Split (s) 26.0 26.0 26.0 26.0 64.0 64.0 64.0                                                                                                                                                                                                 |
| Total Split (%) 28.9% 28.9% 28.9% 28.9% 71.1% 71.1% 71.1%                                                                                                                                                                                          |
| Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0                                                                                                                                                                                                        |
| All-Red Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0                                                                                                                                                                                                       |
| Lead/Lag                                                                                                                                                                                                                                           |
| Lead-Lag Optimize?                                                                                                                                                                                                                                 |
| Recall Mode Max Max Max Max Max Max Max Max                                                                                                                                                                                                        |
| Act Effct Green (s) 22.0 22.0 22.0 60.0 60.0 60.0                                                                                                                                                                                                  |
| Actuated g/C Ratio 0.24 0.24 0.24 0.67 0.67 0.67                                                                                                                                                                                                   |
| v/c Ratio 0.59 0.66 0.06 0.62 0.20 0.92                                                                                                                                                                                                            |
| Control Delay 38.7 25.4 26.0 45.6 6.1 27.3                                                                                                                                                                                                         |
| Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                |
| Total Delay 38.7 25.4 26.0 45.6 6.1 27.3                                                                                                                                                                                                           |
| LOS D C C D A C                                                                                                                                                                                                                                    |
| Approach Delay 30.4 26.0 13.6 27.3                                                                                                                                                                                                                 |
| Approach LOS C C B C                                                                                                                                                                                                                               |

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 0.92 Intersection Signal Delay: 26.0

Intersection Signal Delay: 26.0Intersection LOS: CIntersection Capacity Utilization 87.5%ICU Level of Service E

Analysis Period (min) 15



|                     | ٠     | -     | •     | •     | ←     | 1     | <b>†</b> | <b>↓</b>    |   |
|---------------------|-------|-------|-------|-------|-------|-------|----------|-------------|---|
| Lane Group          | EBL   | EBT   | EBR   | WBL   | WBT   | NBL   | NBT      | SBT         |   |
| Lane Configurations |       | र्स   | 7     |       | 44    | ሻ     | f)       | <b>€</b> 1} |   |
| Volume (vph)        | 145   | 14    | 265   | 8     | 7     | 51    | 206      | 1000        |   |
| Turn Type           | Perm  |       | Perm  | Perm  |       | Perm  |          |             |   |
| Protected Phases    |       | 4     |       |       | 8     |       | 2        | 6           |   |
| Permitted Phases    | 4     |       | 4     | 8     |       | 2     |          |             |   |
| Detector Phases     | 4     | 4     | 4     | 8     | 8     | 2     | 2        | 6           |   |
| Minimum Initial (s) | 8.0   | 8.0   | 8.0   | 8.0   | 8.0   | 14.0  | 14.0     | 14.0        | į |
| Minimum Split (s)   | 26.0  | 26.0  | 26.0  | 26.0  | 26.0  | 44.0  | 44.0     | 44.0        |   |
| Total Split (s)     | 26.0  | 26.0  | 26.0  | 26.0  | 26.0  | 64.0  | 64.0     | 64.0        | į |
| Total Split (%)     | 28.9% | 28.9% | 28.9% | 28.9% | 28.9% | 71.1% | 71.1%    | 71.1%       |   |
| Yellow Time (s)     | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0         | 1 |
| All-Red Time (s)    | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0         | 1 |
| Lead/Lag            |       |       |       |       |       |       |          |             |   |
| Lead-Lag Optimize?  |       |       |       |       |       |       |          |             |   |
| Recall Mode         | Max      | Max         |   |
| Act Effct Green (s) |       | 22.0  | 22.0  |       | 22.0  | 60.0  | 60.0     | 60.0        | 1 |
| Actuated g/C Ratio  |       | 0.24  | 0.24  |       | 0.24  | 0.67  | 0.67     | 0.67        |   |
| v/c Ratio           |       | 0.59  | 0.66  |       | 0.06  | 0.21  | 0.20     | 0.48        | • |
| Control Delay       |       | 38.7  | 25.4  |       | 26.0  | 8.4   | 6.1      | 8.2         |   |
| Queue Delay         |       | 0.0   | 0.0   |       | 0.0   | 0.0   | 0.0      | 0.0         | 1 |
| Total Delay         |       | 38.7  | 25.4  |       | 26.0  | 8.4   | 6.1      | 8.2         |   |
| LOS                 |       | D     | С     |       | С     | Α     | Α        | Α           |   |
| Approach Delay      |       | 30.4  |       |       | 26.0  |       | 6.5      | 8.2         |   |
| Approach LOS        |       | С     |       |       | С     |       | Α        | Α           |   |

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70
Control Type: Pretimed
Maximum v/c Ratio: 0.66
Intersection Signal Delay: 14.0

Intersection Capacity Utilization 63.7%

Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15



|                     | •     | <b>→</b> | •     | <b>←</b> | 4     | <b>†</b> | <b>&gt;</b> | <b>↓</b> |   |
|---------------------|-------|----------|-------|----------|-------|----------|-------------|----------|---|
| Lane Group          | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | SBL         | SBT      |   |
| Lane Configurations |       | 4        |       | 44       | 7     | ĵ»       | ሻ           | - 1>     | , |
| Volume (vph)        | 59    | 22       | 25    | 32       | 338   | 1009     | 4           | 255      |   |
| Turn Type           | Perm  |          | Perm  |          | Perm  |          | Perm        |          |   |
| Protected Phases    |       | 4        |       | 8        |       | 2        |             | 6        |   |
| Permitted Phases    | 4     |          | 8     |          | 2     |          | 6           |          |   |
| Detector Phases     | 4     | 4        | 8     | 8        | 2     | 2        | 6           | 6        |   |
| Minimum Initial (s) | 8.0   | 8.0      | 8.0   | 8.0      | 14.0  | 14.0     | 14.0        | 14.0     |   |
| Minimum Split (s)   | 26.0  | 26.0     | 26.0  | 26.0     | 44.0  | 44.0     | 44.0        | 44.0     |   |
| Total Split (s)     | 24.0  | 24.0     | 24.0  | 24.0     | 56.0  | 56.0     | 56.0        | 56.0     |   |
| Total Split (%)     | 30.0% | 30.0%    | 30.0% | 30.0%    | 70.0% | 70.0%    | 70.0%       | 70.0%    |   |
| Yellow Time (s)     | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0         | 3.0      | , |
| All-Red Time (s)    | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0         | 3.0      |   |
| Lead/Lag            |       |          |       |          |       |          |             |          |   |
| Lead-Lag Optimize?  |       |          |       |          |       |          |             |          |   |
| Recall Mode         | Max   | Max      | Max   | Max      | Max   | Max      | Max         | Max      |   |
| Act Effct Green (s) |       | 20.0     |       | 20.0     | 52.0  | 52.0     | 52.0        | 52.0     |   |
| Actuated g/C Ratio  |       | 0.25     |       | 0.25     | 0.65  | 0.65     | 0.65        | 0.65     |   |
| v/c Ratio           |       | 0.51     |       | 0.26     | 0.60  | 0.90     | 0.04        | 0.34     |   |
| Control Delay       |       | 21.7     |       | 24.2     | 13.4  | 23.9     | 6.5         | 6.1      |   |
| Queue Delay         |       | 0.0      |       | 0.0      | 0.0   | 0.0      | 0.0         | 0.0      |   |
| Total Delay         |       | 21.7     |       | 24.2     | 13.4  | 23.9     | 6.5         | 6.1      |   |
| LOS                 |       | С        |       | С        | В     | С        | Α           | Α        | Ĺ |
| Approach Delay      |       | 21.7     |       | 24.2     |       | 21.3     |             | 6.1      |   |
| Approach LOS        |       | С        |       | С        |       | С        |             | Α        |   |

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80
Control Type: Pretimed
Maximum v/c Ratio: 0.90
Intersection Signal Delay: 18.7

Intersection Signal Delay: 18.7Intersection LOS: BIntersection Capacity Utilization 88.9%ICU Level of Service E

Analysis Period (min) 15



|                     | €    | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> |
|---------------------|------|----------|----------|----------|----------|
| Lane Group          | WBL  | NBT      | NBR      | SBL      | SBT      |
| Lane Configurations | ¥    | <b>†</b> | 7        | ሻ        | <b>†</b> |
| Volume (vph)        | 43   | 154      | 11       | 58       | 1137     |
| Turn Type           |      |          | Perm     | pm+pt    |          |
| Protected Phases    | 4    | 6        |          | 5        | 2        |
| Permitted Phases    |      |          | 6        | 2        |          |
| Detector Phases     | 4    | 6        | 6        | 5        | 2        |
| Minimum Initial (s) | 5.0  | 12.0     | 12.0     | 5.0      | 17.0     |
| Minimum Split (s)   | 10.2 | 21.4     | 21.4     | 10.4     | 22.4     |
| Total Split (s)     | 11.0 | 58.6     | 58.6     | 10.4     | 69.0     |
| Total Split (%)     |      |          | 73.3%    |          | 86.3%    |
| Yellow Time (s)     | 4.1  | 4.2      | 4.2      | 4.2      | 4.2      |
| All-Red Time (s)    | 1.1  | 1.2      | 1.2      | 1.2      | 1.2      |
| Lead/Lag            |      | Lag      | Lag      | Lead     |          |
| Lead-Lag Optimize?  |      | Yes      | Yes      | Yes      |          |
| Recall Mode         | None | None     | None     | None     | None     |
| Act Effct Green (s) | 7.6  | 51.7     | 51.7     | 53.5     | 56.9     |
| Actuated g/C Ratio  | 0.11 | 0.77     | 0.77     | 0.75     | 0.84     |
| v/c Ratio           | 0.58 | 0.13     | 0.01     | 0.07     | 0.84     |
| Control Delay       | 36.8 | 4.3      | 2.2      | 1.9      | 11.9     |
| Queue Delay         | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      |
| Total Delay         | 36.8 | 4.3      | 2.2      | 1.9      | 11.9     |
| LOS                 | D    | Α        | Α        | Α        | В        |
| Approach Delay      | 36.8 | 4.2      |          |          | 11.4     |
| Approach LOS        | D    | Α        |          |          | В        |

Cycle Length: 80

Actuated Cycle Length: 67.4

Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.84

Intersection Signal Delay: 12.5 Intersection LOS: B
Intersection Capacity Utilization 71.4% ICU Level of Service C

Analysis Period (min) 15



|                     | €    | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> |
|---------------------|------|----------|----------|----------|----------|
| Lane Group          | WBL  | NBT      | NBR      | SBL      | SBT      |
| Lane Configurations | ¥    | <b>↑</b> | 7        |          | 414      |
| Volume (vph)        | 43   | 154      | 11       | 58       | 1137     |
| Turn Type           |      |          | Perm     | pm+pt    |          |
| Protected Phases    | 4    | 6        |          | 5        | 2        |
| Permitted Phases    |      |          | 6        | 2        |          |
| Detector Phases     | 4    | 6        | 6        | 5        | 2        |
| Minimum Initial (s) | 5.0  | 12.0     | 12.0     | 5.0      | 17.0     |
| Minimum Split (s)   | 10.2 | 21.4     | 21.4     | 10.4     | 22.4     |
| Total Split (s)     | 11.0 | 58.6     | 58.6     | 10.4     | 69.0     |
| Total Split (%)     |      | 73.3%    | 73.3%    |          |          |
| Yellow Time (s)     | 4.1  | 4.2      | 4.2      | 4.2      |          |
| All-Red Time (s)    | 1.1  | 1.2      | 1.2      | 1.2      | 1.2      |
| Lead/Lag            |      | Lag      | Lag      | Lead     |          |
| Lead-Lag Optimize?  |      | Yes      | Yes      | Yes      |          |
| Recall Mode         | None | None     | None     | None     | None     |
| Act Effct Green (s) | 7.5  | 38.1     | 38.1     |          | 38.1     |
| Actuated g/C Ratio  | 0.15 | 0.78     | 0.78     |          | 0.78     |
| v/c Ratio           | 0.46 | 0.13     | 0.01     |          | 0.54     |
| Control Delay       | 24.6 | 2.4      | 1.0      |          | 3.9      |
| Queue Delay         | 0.0  | 0.0      | 0.0      |          | 0.0      |
| Total Delay         | 24.6 | 2.4      | 1.0      |          | 3.9      |
| LOS                 | С    | Α        | Α        |          | Α        |
| Approach Delay      | 24.6 | 2.3      |          |          | 3.9      |
| Approach LOS        | С    | Α        |          |          | Α        |

Cycle Length: 80

Actuated Cycle Length: 49

Natural Cycle: 45

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.54

Intersection Signal Delay: 5.3 Intersection LOS: A Intersection Capacity Utilization 58.0% ICU Level of Service B

Analysis Period (min) 15



|                      | •     | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> |
|----------------------|-------|----------|----------|----------|----------|
| Lane Group           | WBL   | NBT      | NBR      | SBL      | SBT      |
| Lane Configurations  | ¥     | <u></u>  | 7        | ሻ        | <b>1</b> |
| Volume (vph)         | 12    | 1170     | 42       | 138      | 216      |
| Turn Type            |       |          | Perm     | pm+pt    |          |
| Protected Phases     | 4     | 6        |          | 5        | 2        |
| Permitted Phases     |       |          | 6        | 2        |          |
| Detector Phases      | 4     | 6        | 6        | 5        | 2        |
| Minimum Initial (s)  | 5.0   | 12.0     | 12.0     | 5.0      | 17.0     |
| Minimum Split (s)    | 10.2  | 21.4     | 21.4     | 10.4     | 22.4     |
| Total Split (s)      | 10.2  | 69.4     | 69.4     | 10.4     | 79.8     |
| Total Split (%)      | 11.3% | 77.1%    | 77.1%    | 11.6%    | 88.7%    |
| Yellow Time (s)      | 4.1   | 4.2      | 4.2      | 4.2      | 4.2      |
| All-Red Time (s)     | 1.1   | 1.2      | 1.2      | 1.2      | 1.2      |
| Lead/Lag             |       | Lag      | Lag      | Lead     |          |
| Lead-Lag Optimize?   |       | Yes      | Yes      | Yes      |          |
| Recall Mode          | None  | None     | None     | None     | None     |
| Act Effct Green (s)  | 6.9   | 60.8     | 60.8     | 64.0     | 68.0     |
| Actuated g/C Ratio   | 0.09  | 0.78     | 0.78     | 0.80     | 0.87     |
| v/c Ratio            | 0.52  | 0.85     | 0.04     | 0.64     | 0.15     |
| Control Delay        | 19.7  | 17.6     | 1.2      | 29.2     | 1.5      |
| Queue Delay          | 0.0   | 0.0      | 0.0      | 0.0      | 0.0      |
| Total Delay          | 19.7  | 17.6     | 1.2      | 29.2     | 1.5      |
| LOS                  | В     | В        | Α        | С        | Α        |
| Approach Delay       | 19.7  | 17.1     |          |          | 12.3     |
| Approach LOS         | В     | В        |          |          | В        |
| Intersection Summary |       |          |          |          |          |
| Cycle Length: 90     |       |          |          |          |          |

Actuated Cycle Length: 77.8

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 16.2 Intersection LOS: B
Intersection Capacity Utilization 85.5% ICU Level of Service E

Analysis Period (min) 15





Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.53

Intersection Signal Delay: 6.7 Intersection LOS: A Intersection Capacity Utilization 57.6% ICU Level of Service B

Analysis Period (min) 15



|                     | €     | <b>†</b> | /     | -     | <b>↓</b> |
|---------------------|-------|----------|-------|-------|----------|
| Lane Group          | WBL   | NBT      | NBR   | SBL   | SBT      |
| Lane Configurations | Y     | <b>^</b> | 7     | ሻ     | <b>†</b> |
| Volume (vph)        | 43    | 170      | 11    | 57    | 1236     |
| Turn Type           |       |          | Perm  | pm+pt |          |
| Protected Phases    | 4     | 6        |       | 5     | 2        |
| Permitted Phases    |       |          | 6     | 2     |          |
| Detector Phases     | 4     | 6        | 6     | 5     | 2        |
| Minimum Initial (s) | 5.0   | 12.0     | 12.0  | 5.0   | 17.0     |
| Minimum Split (s)   | 10.2  | 21.4     | 21.4  | 10.4  | 22.4     |
| Total Split (s)     | 10.2  | 69.4     | 69.4  | 10.4  | 79.8     |
| Total Split (%)     | 11.3% | 77.1%    | 77.1% | 11.6% | 88.7%    |
| Yellow Time (s)     | 4.1   | 4.2      | 4.2   | 4.2   | 4.2      |
| All-Red Time (s)    | 1.1   | 1.2      | 1.2   | 1.2   | 1.2      |
| Lead/Lag            |       | Lag      | Lag   | Lead  |          |
| Lead-Lag Optimize?  |       | Yes      | Yes   | Yes   |          |
| Recall Mode         | Max   | Max      | Max   | Max   | Max      |
| Act Effct Green (s) | 6.2   | 65.4     | 65.4  | 75.8  | 75.8     |
| Actuated g/C Ratio  | 0.07  | 0.73     | 0.73  | 0.84  | 0.84     |
| v/c Ratio           | 0.85  | 0.14     | 0.01  | 0.07  | 0.95     |
| Control Delay       | 72.2  | 4.1      | 1.8   | 1.3   | 21.8     |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      |
| Total Delay         | 72.2  | 4.1      | 1.8   | 1.3   | 21.8     |
| LOS                 | Е     | Α        | Α     | Α     | С        |
| Approach Delay      | 72.2  | 3.9      |       |       | 20.9     |
| Approach LOS        | Е     | Α        |       |       | С        |

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:SBTL, Start of Green

Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 0.95 Intersection Signal Delay: 22.6

Intersection Signal Delay: 22.6Intersection LOS: CIntersection Capacity Utilization 76.6%ICU Level of Service D

Analysis Period (min) 15



|                     | €     | Ť        | _     | -     | ¥     |
|---------------------|-------|----------|-------|-------|-------|
| Lane Group          | WBL   | NBT      | NBR   | SBL   | SBT   |
| Lane Configurations | ¥     | <b>↑</b> | 7     |       | 4₽    |
| Volume (vph)        | 43    | 170      | 11    | 57    | 1236  |
| Turn Type           |       |          | Perm  | pm+pt |       |
| Protected Phases    | 4     | 6        |       | 5     | 2     |
| Permitted Phases    |       |          | 6     | 2     |       |
| Detector Phases     | 4     | 6        | 6     | 5     | 2     |
| Minimum Initial (s) | 5.0   | 12.0     | 12.0  | 5.0   | 17.0  |
| Minimum Split (s)   | 10.2  | 21.4     | 21.4  | 10.4  | 22.4  |
| Total Split (s)     | 10.2  | 69.4     | 69.4  | 10.4  | 79.8  |
| Total Split (%)     | 11.3% | 77.1%    | 77.1% | 11.6% | 88.7% |
| Yellow Time (s)     | 4.1   | 4.2      | 4.2   | 4.2   | 4.2   |
| All-Red Time (s)    | 1.1   | 1.2      | 1.2   | 1.2   | 1.2   |
| Lead/Lag            |       | Lag      | Lag   | Lead  |       |
| Lead-Lag Optimize?  |       | Yes      | Yes   | Yes   |       |
| Recall Mode         | Max   | Max      | Max   | Max   | Max   |
| Act Effct Green (s) | 6.2   | 65.4     | 65.4  |       | 75.8  |
| Actuated g/C Ratio  | 0.07  | 0.73     | 0.73  |       | 0.84  |
| v/c Ratio           | 0.85  | 0.14     | 0.01  |       | 0.56  |
| Control Delay       | 72.2  | 4.1      | 1.8   |       | 3.0   |
| Queue Delay         | 0.0   | 0.0      | 0.0   |       | 0.0   |
| Total Delay         | 72.2  | 4.1      | 1.8   |       | 3.0   |
| LOS                 | Е     | Α        | Α     |       | Α     |
| Approach Delay      | 72.2  | 3.9      |       |       | 3.0   |
| Approach LOS        | Е     | Α        |       |       | Α     |
|                     |       |          |       |       |       |

ī

#### Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:SBTL, Start of Green

Natural Cycle: 45 Control Type: Pretimed Maximum v/c Ratio: 0.85 Intersection Signal Delay: 7.9

Intersection Signal Delay: 7.9 Intersection LOS: A
Intersection Capacity Utilization 60.7% ICU Level of Service B

Analysis Period (min) 15



|                     | €    | <b>†</b> | <b>/</b> | -     | ţ        |
|---------------------|------|----------|----------|-------|----------|
| Lane Group          | WBL  | NBT      | NBR      | SBL   | SBT      |
| Lane Configurations | ¥    | <b>†</b> | 7        | ሻ     | <b>↑</b> |
| Volume (vph)        | 12   | 1216     | 42       | 138   | 218      |
| Turn Type           |      |          | Perm     | pm+pt |          |
| Protected Phases    | 4    | 6        |          | 5     | 2        |
| Permitted Phases    |      |          | 6        | 2     |          |
| Detector Phases     | 4    | 6        | 6        | 5     | 2        |
| Minimum Initial (s) | 1.8  | 12.0     | 12.0     | 5.0   | 17.0     |
| Minimum Split (s)   | 7.0  | 21.4     | 21.4     | 10.4  | 22.4     |
| Total Split (s)     | 8.0  | 73.0     | 73.0     | 9.0   | 82.0     |
| Total Split (%)     | 8.9% | 81.1%    | 81.1%    | 10.0% | 91.1%    |
| Yellow Time (s)     | 4.1  | 4.2      | 4.2      | 4.2   | 4.2      |
| All-Red Time (s)    | 1.1  | 1.2      | 1.2      | 1.2   | 1.2      |
| Lead/Lag            |      | Lag      | Lag      | Lead  |          |
| Lead-Lag Optimize?  |      | Yes      | Yes      | Yes   |          |
| Recall Mode         | Max  | Max      | Max      | Max   | Max      |
| Act Effct Green (s) | 4.0  | 69.0     | 69.0     | 78.0  | 78.0     |
| Actuated g/C Ratio  | 0.04 | 0.77     | 0.77     | 0.87  | 0.87     |
| v/c Ratio           | 0.70 | 0.90     | 0.04     | 0.74  | 0.15     |
| Control Delay       | 33.7 | 19.5     | 0.9      | 33.4  | 1.1      |
| Queue Delay         | 0.0  | 0.0      | 0.0      | 0.0   | 0.0      |
| Total Delay         | 33.7 | 19.5     | 0.9      | 33.4  | 1.1      |
| LOS                 | С    | В        | Α        | С     | Α        |
| Approach Delay      | 33.7 | 18.9     |          |       | 13.6     |
| Approach LOS        | С    | В        |          |       | В        |

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:SBTL, Start of Green

Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 0.90 Intersection Signal Delay: 18.8

Intersection Signal Delay: 18.8Intersection LOS: BIntersection Capacity Utilization 87.9%ICU Level of Service E

Analysis Period (min) 15



|                     | €    | <b>†</b>   | -     | ţ       |
|---------------------|------|------------|-------|---------|
| Lane Group          | WBL  | NBT        | SBL   | SBT     |
| Lane Configurations | ¥    | <b>↑</b> Ъ | ሻ     | <b></b> |
| Volume (vph)        | 12   | 1216       | 138   | 218     |
| Turn Type           |      |            | pm+pt |         |
| Protected Phases    | 4    | 6          | 5     | 2       |
| Permitted Phases    |      |            | 2     |         |
| Detector Phases     | 4    | 6          | 5     | 2       |
| Minimum Initial (s) | 1.8  | 12.0       | 5.0   | 17.0    |
| Minimum Split (s)   | 7.0  | 21.4       | 10.4  | 22.4    |
| Total Split (s)     | 8.0  | 73.0       | 9.0   | 82.0    |
| Total Split (%)     | 8.9% | 81.1%      | 10.0% |         |
| Yellow Time (s)     | 4.1  | 4.2        | 4.2   | 4.2     |
| All-Red Time (s)    | 1.1  | 1.2        | 1.2   | 1.2     |
| Lead/Lag            |      | Lag        | Lead  |         |
| Lead-Lag Optimize?  |      | Yes        | Yes   |         |
| Recall Mode         | Max  | Max        | Max   | Max     |
| Act Effct Green (s) | 4.0  | 69.0       | 78.0  | 78.0    |
| Actuated g/C Ratio  | 0.04 | 0.77       | 0.87  | 0.87    |
| v/c Ratio           | 0.70 | 0.49       | 0.43  | 0.15    |
| Control Delay       | 33.7 | 4.6        | 4.8   | 1.1     |
| Queue Delay         | 0.0  | 0.0        | 0.0   | 0.0     |
| Total Delay         | 33.7 | 4.6        | 4.8   | 1.1     |
| LOS                 | С    | Α          | Α     | Α       |
| Approach Delay      | 33.7 | 4.6        |       | 2.5     |
| Approach LOS        | С    | Α          |       | Α       |

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:SBTL, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.70 Intersection Signal Delay: 6.2

Intersection Signal Delay: 6.2 Intersection LOS: A
Intersection Capacity Utilization 58.9% ICU Level of Service B

Analysis Period (min) 15



|                     | €     | ←        | •     | 1     | <b>†</b> | <b>↓</b> | 4     |
|---------------------|-------|----------|-------|-------|----------|----------|-------|
| Lane Group          | WBL   | WBT      | WBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations | 7     | <b>^</b> | 7     | , j   | <u></u>  | <u></u>  | 7     |
| Volume (vph)        | 72    | 330      | 20    | 108   | 86       | 162      | 62    |
| Turn Type           | Perm  |          | Perm  | pm+pt |          |          | Perm  |
| Protected Phases    |       | 8        |       | 5     | 2        | 6        |       |
| Permitted Phases    | 8     |          | 8     | 2     |          |          | 6     |
| Detector Phases     | 8     | 8        | 8     | 5     | 2        | 6        | 6     |
| Minimum Initial (s) | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)   | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     | 20.5     | 20.5  |
| Total Split (s)     | 26.0  | 26.0     | 26.0  | 15.0  | 39.0     | 24.0     | 24.0  |
| Total Split (%)     | 40.0% | 40.0%    | 40.0% | 23.1% | 60.0%    | 36.9%    | 36.9% |
| Yellow Time (s)     | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5      | 3.5   |
| All-Red Time (s)    | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      | 1.0      | 1.0   |
| Lead/Lag            |       |          |       | Lead  |          | Lag      | Lag   |
| Lead-Lag Optimize?  |       |          |       | Yes   |          | Yes      | Yes   |
| Recall Mode         | Max   | Max      | Max   | Max   | Max      | Max      | Max   |
| Act Effct Green (s) | 22.0  | 22.0     | 22.0  | 35.0  | 35.0     | 20.0     | 20.0  |
| Actuated g/C Ratio  | 0.34  | 0.34     | 0.34  | 0.54  | 0.54     | 0.31     | 0.31  |
| v/c Ratio           | 0.15  | 0.35     | 0.04  | 0.20  | 0.10     | 0.31     | 0.13  |
| Control Delay       | 15.9  | 17.1     | 6.8   | 5.2   | 4.3      | 19.1     | 5.6   |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Delay         | 15.9  | 17.1     | 6.8   | 5.2   | 4.3      | 19.1     | 5.6   |
| LOS                 | В     | В        | Α     | Α     | Α        | В        | Α     |
| Approach Delay      |       | 16.4     |       |       | 4.8      | 15.4     |       |
| Approach LOS        |       | В        |       |       | Α        | В        |       |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.35 Intersection Signal Delay: 13.5

Intersection Signal Delay: 13.5Intersection LOS: BIntersection Capacity Utilization 75.6%ICU Level of Service D

Analysis Period (min) 15





|                     | €     | <b>←</b> | •     | 1     | <b>†</b> | ţ       | 4     |
|---------------------|-------|----------|-------|-------|----------|---------|-------|
| Lane Group          | WBL   | WBT      | WBR   | NBL   | NBT      | SBT     | SBR   |
| Lane Configurations | ሻ     | <b>^</b> | 7     | 7     |          | <u></u> | 7     |
| Volume (vph)        | 615   | 1088     | 59    | 151   | 111      | 233     | 109   |
| Turn Type           | Perm  |          | Perm  | pm+pt |          |         | Perm  |
| Protected Phases    |       | 8        |       | 5     | 2        | 6       |       |
| Permitted Phases    | 8     |          | 8     | 2     |          |         | 6     |
| Detector Phases     | 8     | 8        | 8     | 5     | 2        | 6       | 6     |
| Minimum Initial (s) | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0     | 4.0   |
| Minimum Split (s)   | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     | 20.5    | 20.5  |
| Total Split (s)     | 36.0  | 36.0     | 36.0  | 8.0   | 29.0     | 21.0    | 21.0  |
| Total Split (%)     | 55.4% | 55.4%    | 55.4% | 12.3% | 44.6%    | 32.3%   | 32.3% |
| Yellow Time (s)     | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5     | 3.5   |
| All-Red Time (s)    | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      | 1.0     | 1.0   |
| Lead/Lag            |       |          |       | Lead  |          | Lag     | Lag   |
| Lead-Lag Optimize?  |       |          |       | Yes   |          | Yes     | Yes   |
| Recall Mode         | Max   | Max      | Max   | Max   | Max      | Max     | Max   |
| Act Effct Green (s) | 32.0  | 32.0     | 32.0  | 25.0  | 25.0     | 17.0    | 17.0  |
| Actuated g/C Ratio  | 0.49  | 0.49     | 0.49  | 0.38  | 0.38     | 0.26    | 0.26  |
| v/c Ratio           | 0.74  | 0.66     | 0.08  | 0.57  | 0.19     | 0.55    | 0.27  |
| Control Delay       | 19.8  | 14.6     | 3.0   | 24.5  | 9.9      | 25.7    | 10.7  |
| Queue Delay         | 11.0  | 0.0      | 0.0   | 0.3   | 0.0      | 0.0     | 0.0   |
| Total Delay         | 30.8  | 14.6     | 3.0   | 24.8  | 9.9      | 25.7    | 10.7  |
| LOS                 | С     | В        | Α     | С     | Α        | С       | В     |
| Approach Delay      |       | 19.9     |       |       | 18.5     | 20.9    |       |
| Approach LOS        |       | В        |       |       | В        | С       |       |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.74
Intersection Signal Delay: 19.9

Intersection Signal Delay: 19.9Intersection LOS: BIntersection Capacity Utilization 89.1%ICU Level of Service E

Analysis Period (min) 15



|                     | €     | <b>←</b> | •     | 1     | <b>†</b> | ţ       | 4     |
|---------------------|-------|----------|-------|-------|----------|---------|-------|
| Lane Group          | WBL   | WBT      | WBR   | NBL   | NBT      | SBT     | SBR   |
| Lane Configurations | 7     | <b>^</b> | 7     | ሻ     |          | <u></u> | 7     |
| Volume (vph)        | 78    | 369      | 20    | 108   | 86       | 160     | 62    |
| Turn Type           | Perm  |          | Perm  | pm+pt |          |         | Perm  |
| Protected Phases    |       | 8        |       | 5     | 2        | 6       |       |
| Permitted Phases    | 8     |          | 8     | 2     |          |         | 6     |
| Detector Phases     | 8     | 8        | 8     | 5     | 2        | 6       | 6     |
| Minimum Initial (s) | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0     | 4.0   |
| Minimum Split (s)   | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     | 20.5    | 20.5  |
| Total Split (s)     | 26.0  | 26.0     | 26.0  | 15.0  | 39.0     | 24.0    | 24.0  |
| Total Split (%)     | 40.0% | 40.0%    | 40.0% | 23.1% | 60.0%    | 36.9%   | 36.9% |
| Yellow Time (s)     | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5     | 3.5   |
| All-Red Time (s)    | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      | 1.0     | 1.0   |
| Lead/Lag            |       |          |       | Lead  |          | Lag     | Lag   |
| Lead-Lag Optimize?  |       |          |       | Yes   |          | Yes     | Yes   |
| Recall Mode         | Max   | Max      | Max   | Max   | Max      | Max     | Max   |
| Act Effct Green (s) | 22.0  | 22.0     | 22.0  | 35.0  | 35.0     | 20.0    | 20.0  |
| Actuated g/C Ratio  | 0.34  | 0.34     | 0.34  | 0.54  | 0.54     | 0.31    | 0.31  |
| v/c Ratio           | 0.15  | 0.36     | 0.04  | 0.20  | 0.10     | 0.31    | 0.13  |
| Control Delay       | 15.9  | 17.3     | 6.8   | 4.6   | 3.7      | 19.1    | 5.6   |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | 0.0   |
| Total Delay         | 15.9  | 17.3     | 6.8   | 4.6   | 3.7      | 19.1    | 5.6   |
| LOS                 | В     | В        | Α     | Α     | Α        | В       | Α     |
| Approach Delay      |       | 16.6     |       |       | 4.2      | 15.3    |       |
| Approach LOS        |       | В        |       |       | А        | В       |       |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 50 Control Type: Pretimed Maximum v/c Ratio: 0.36 Intersection Signal Delay: 13.5

Intersection Signal Delay: 13.5Intersection LOS: BIntersection Capacity Utilization 88.9%ICU Level of Service E

Analysis Period (min) 15



|                     | €     | •        | •     | 1     | <b>†</b> | ţ        | 4     |
|---------------------|-------|----------|-------|-------|----------|----------|-------|
| Lane Group          | WBL   | WBT      | WBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations | ሻ     | <b>^</b> | 7     | ሻ     | <b>†</b> | <b>†</b> | 7     |
| Volume (vph)        | 632   | 1197     | 59    | 151   | 110      | 232      | 109   |
| Turn Type           | Perm  |          | Perm  | pm+pt |          |          | Perm  |
| Protected Phases    |       | 8        |       | 5     | 2        | 6        |       |
| Permitted Phases    | 8     |          | 8     | 2     |          |          | 6     |
| Detector Phases     | 8     | 8        | 8     | 5     | 2        | 6        | 6     |
| Minimum Initial (s) | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)   | 21.0  | 21.0     | 21.0  | 8.0   | 20.5     | 20.5     | 20.5  |
| Total Split (s)     | 39.0  | 39.0     | 39.0  | 8.0   | 26.0     | 18.0     | 18.0  |
| Total Split (%)     | 60.0% | 60.0%    | 60.0% | 12.3% | 40.0%    | 27.7%    | 27.7% |
| Yellow Time (s)     | 3.5   | 3.5      | 3.5   | 3.5   | 3.5      | 3.5      | 3.5   |
| All-Red Time (s)    | 1.5   | 1.5      | 1.5   | 0.0   | 1.0      | 1.0      | 1.0   |
| Lead/Lag            |       |          |       | Lead  |          | Lag      | Lag   |
| Lead-Lag Optimize?  |       |          |       | Yes   |          | Yes      | Yes   |
| Recall Mode         | Max   | Max      | Max   | Max   | Max      | Max      | Max   |
| Act Effct Green (s) | 35.0  | 35.0     | 35.0  | 22.0  | 22.0     | 14.0     | 14.0  |
| Actuated g/C Ratio  | 0.54  | 0.54     | 0.54  | 0.34  | 0.34     | 0.22     | 0.22  |
| v/c Ratio           | 0.70  | 0.66     | 0.07  | 0.70  | 0.21     | 0.67     | 0.34  |
| Control Delay       | 16.0  | 12.9     | 2.5   | 40.4  | 13.8     | 33.3     | 14.9  |
| Queue Delay         | 1.6   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Delay         | 17.6  | 12.9     | 2.5   | 40.4  | 13.8     | 33.3     | 14.9  |
| LOS                 | В     | В        | Α     | D     | В        | С        | В     |
| Approach Delay      |       | 14.1     |       |       | 29.2     | 27.3     |       |
| Approach LOS        |       | В        |       |       | С        | С        |       |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.70
Intersection Signal Delay: 17.8

Intersection Signal Delay: 17.8Intersection LOS: BIntersection Capacity Utilization 90.2%ICU Level of Service E

Analysis Period (min) 15



|                     | <b>→</b> | <b>†</b> | <i>&gt;</i> | <b>/</b> | Ţ        |
|---------------------|----------|----------|-------------|----------|----------|
| Lane Group          | EBT      | NBT      | NBR         | SBL      | SBT      |
| Lane Configurations | 4î.b     | <b>†</b> | 7           | ¥        | <b>†</b> |
| Volume (vph)        | 953      | 182      | 527         | 68       | 142      |
| Turn Type           |          |          | Perm        | pm+pt    |          |
| Protected Phases    | 4        | 2        |             | 1        | 6        |
| Permitted Phases    |          |          | 2           | 6        |          |
| Detector Phases     | 4        | 2        | 2           | 1        | 6        |
| Minimum Initial (s) | 4.0      | 3.0      | 3.0         | 3.0      | 3.0      |
| Minimum Split (s)   | 24.0     | 21.0     | 21.0        | 10.0     | 31.0     |
| Total Split (s)     | 27.0     | 28.0     | 28.0        | 10.0     | 38.0     |
| Total Split (%)     | 41.5%    | 43.1%    | 43.1%       | 15.4%    | 58.5%    |
| Yellow Time (s)     | 3.2      | 4.0      | 4.0         | 2.0      | 4.0      |
| All-Red Time (s)    | 1.8      | 1.0      | 1.0         | 0.0      | 1.0      |
| Lead/Lag            |          | Lag      | Lag         | Lead     |          |
| Lead-Lag Optimize?  |          | Yes      | Yes         | Yes      |          |
| Recall Mode         | Max      | Max      | Max         | Max      | Max      |
| Act Effct Green (s) | 23.0     | 24.0     | 24.0        | 34.0     | 34.0     |
| Actuated g/C Ratio  | 0.35     | 0.37     | 0.37        | 0.52     | 0.52     |
| v/c Ratio           | 0.92     | 0.31     | 0.83        | 0.13     | 0.15     |
| Control Delay       | 33.6     | 16.2     | 23.5        | 8.0      | 7.9      |
| Queue Delay         | 0.0      | 0.0      | 0.0         | 0.0      | 0.0      |
| Total Delay         | 33.6     | 16.2     | 23.5        | 8.0      | 7.9      |
| LOS                 | С        | В        | С           | Α        | Α        |
| Approach Delay      | 33.6     | 21.6     |             |          | 7.9      |
| Approach LOS        | С        | С        |             |          | Α        |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 55
Control Type: Pretimed
Maximum v/c Ratio: 0.92
Intersection Signal Delay: 26.5

Intersection Signal Delay: 26.5Intersection LOS: CIntersection Capacity Utilization 75.6%ICU Level of Service D

Analysis Period (min) 15



|                     | -             | <b>†</b> | /     | -     | <b>↓</b> |
|---------------------|---------------|----------|-------|-------|----------|
| Lane Group          | EBT           | NBT      | NBR   | SBL   | SBT      |
| Lane Configurations | 4 <b>1</b> 13 | <b>1</b> | 7     | ሻ     | <b>1</b> |
| Volume (vph)        | 953           | 182      | 527   | 68    | 142      |
| Turn Type           |               |          | Perm  | pm+pt |          |
| Protected Phases    | 4             | 2        |       | 1     | 6        |
| Permitted Phases    |               |          | 2     | 6     |          |
| Detector Phases     | 4             | 2        | 2     | 1     | 6        |
| Minimum Initial (s) | 4.0           | 3.0      | 3.0   | 3.0   | 3.0      |
| Minimum Split (s)   | 24.0          | 21.0     | 21.0  | 10.0  | 31.0     |
| Total Split (s)     | 27.0          | 28.0     | 28.0  | 10.0  | 38.0     |
| Total Split (%)     | 41.5%         | 43.1%    | 43.1% | 15.4% | 58.5%    |
| Yellow Time (s)     | 3.2           | 4.0      | 4.0   | 2.0   | 4.0      |
| All-Red Time (s)    | 1.8           | 1.0      | 1.0   | 0.0   | 1.0      |
| Lead/Lag            |               | Lag      | Lag   | Lead  |          |
| Lead-Lag Optimize?  |               | Yes      | Yes   | Yes   |          |
| Recall Mode         | Max           | Max      | Max   | Max   | Max      |
| Act Effct Green (s) | 23.0          | 24.0     | 24.0  | 34.0  | 34.0     |
| Actuated g/C Ratio  | 0.35          | 0.37     | 0.37  | 0.52  | 0.52     |
| v/c Ratio           | 0.64          | 0.31     | 0.83  | 0.13  | 0.15     |
| Control Delay       | 19.1          | 16.2     | 23.5  | 8.0   | 7.9      |
| Queue Delay         | 0.0           | 0.0      | 0.0   | 0.0   | 0.0      |
| Total Delay         | 19.1          | 16.2     | 23.5  | 8.0   | 7.9      |
| LOS                 | В             | В        | С     | Α     | Α        |
| Approach Delay      | 19.1          | 21.6     |       |       | 7.9      |
| Approach LOS        | В             | С        |       |       | Α        |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.83
Intersection Signal Delay: 18.9

Intersection Signal Delay: 18.9 Intersection LOS: B
Intersection Capacity Utilization 66.8% ICU Level of Service C

Analysis Period (min) 15



|                     | <b>→</b> | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> |
|---------------------|----------|----------|-------------|----------|----------|
| Lane Group          | EBT      | NBT      | NBR         | SBL      | SBT      |
| Lane Configurations | 414      | <b>1</b> | 7           | ሻ        | <b>^</b> |
| Volume (vph)        | 607      | 288      | 141         | 91       | 752      |
| Turn Type           |          |          | Perm        | pm+pt    |          |
| Protected Phases    | 4        | 2        |             | 1        | 6        |
| Permitted Phases    |          |          | 2           | 6        |          |
| Detector Phases     | 4        | 2        | 2           | 1        | 6        |
| Minimum Initial (s) | 4.0      | 3.0      | 3.0         | 3.0      | 3.0      |
| Minimum Split (s)   | 24.0     | 21.0     | 21.0        | 10.0     | 31.0     |
| Total Split (s)     | 21.0     | 34.0     | 34.0        | 10.0     | 44.0     |
| Total Split (%)     | 32.3%    | 52.3%    | 52.3%       | 15.4%    | 67.7%    |
| Yellow Time (s)     | 3.2      | 4.0      | 4.0         | 2.0      | 4.0      |
| All-Red Time (s)    | 1.8      | 1.0      | 1.0         | 0.0      | 1.0      |
| Lead/Lag            |          | Lag      | Lag         | Lead     |          |
| Lead-Lag Optimize?  |          | Yes      | Yes         | Yes      |          |
| Recall Mode         | Max      | Max      | Max         | Max      | Max      |
| Act Effct Green (s) | 17.0     | 30.0     | 30.0        | 40.0     | 40.0     |
| Actuated g/C Ratio  | 0.26     | 0.46     | 0.46        | 0.62     | 0.62     |
| v/c Ratio           | 0.97     | 0.34     | 0.17        | 0.16     | 0.73     |
| Control Delay       | 46.8     | 12.5     | 2.8         | 8.9      | 17.2     |
| Queue Delay         | 0.0      | 0.0      | 0.0         | 0.0      | 14.6     |
| Total Delay         | 46.8     | 12.5     | 2.8         | 8.9      | 31.8     |
| LOS                 | D        | В        | Α           | Α        | С        |
| Approach Delay      | 46.8     | 9.3      |             |          | 29.4     |
| Approach LOS        | D        | Α        |             |          | С        |
|                     |          |          |             |          |          |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.97
Intersection Signal Delay: 32.5

Intersection Signal Delay: 32.5Intersection LOS: CIntersection Capacity Utilization 89.1%ICU Level of Service E





|                     | <b>→</b> | <b>†</b> | <i>&gt;</i> | -     | <b>↓</b> |
|---------------------|----------|----------|-------------|-------|----------|
| Lane Group          | EBT      | NBT      | NBR         | SBL   | SBT      |
| Lane Configurations | €Î}•     | <b>†</b> | 7           |       | 414      |
| Volume (vph)        | 607      | 288      | 141         | 91    | 752      |
| Turn Type           |          |          | Perm        | pm+pt |          |
| Protected Phases    | 4        | 2        |             | 1     | 6        |
| Permitted Phases    |          |          | 2           | 6     |          |
| Detector Phases     | 4        | 2        | 2           | 1     | 6        |
| Minimum Initial (s) | 4.0      | 3.0      | 3.0         | 3.0   | 3.0      |
| Minimum Split (s)   | 24.0     | 21.0     | 21.0        | 10.0  | 31.0     |
| Total Split (s)     | 26.0     | 29.0     | 29.0        | 10.0  | 39.0     |
| Total Split (%)     | 40.0%    | 44.6%    | 44.6%       | 15.4% | 60.0%    |
| Yellow Time (s)     | 3.2      | 4.0      | 4.0         | 2.0   | 4.0      |
| All-Red Time (s)    | 1.8      | 1.0      | 1.0         | 0.0   | 1.0      |
| Lead/Lag            |          | Lag      | Lag         | Lead  |          |
| Lead-Lag Optimize?  |          | Yes      | Yes         | Yes   |          |
| Recall Mode         | Max      | Max      | Max         | Max   | Max      |
| Act Effct Green (s) | 22.0     | 25.0     | 25.0        |       | 35.0     |
| Actuated g/C Ratio  | 0.34     | 0.38     | 0.38        |       | 0.54     |
| v/c Ratio           | 0.76     | 0.40     | 0.20        |       | 0.57     |
| Control Delay       | 22.3     | 16.7     | 3.6         |       | 16.6     |
| Queue Delay         | 0.0      | 0.0      | 0.0         |       | 2.9      |
| Total Delay         | 22.3     | 16.7     | 3.6         |       | 19.5     |
| LOS                 | С        | В        | Α           |       | В        |
| Approach Delay      | 22.3     | 12.4     |             |       | 19.5     |
| Approach LOS        | С        | В        |             |       | В        |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 55
Control Type: Pretimed
Maximum v/c Ratio: 0.76
Intersection Signal Delay: 19.3

Intersection Signal Delay: 19.3Intersection LOS: BIntersection Capacity Utilization 71.7%ICU Level of Service C





|                     | <b>→</b> | <b>†</b> | <i>&gt;</i> | -     | Ţ        |
|---------------------|----------|----------|-------------|-------|----------|
| Lane Group          | EBT      | NBT      | NBR         | SBL   | SBT      |
| Lane Configurations | 4î.b     | <b>†</b> | 7           | ሻ     | <b>†</b> |
| Volume (vph)        | 1193     | 182      | 565         | 147   | 68       |
| Turn Type           |          |          | Perm        | pm+pt |          |
| Protected Phases    | 4        | 2        |             | 1     | 6        |
| Permitted Phases    |          |          | 2           | 6     |          |
| Detector Phases     | 4        | 2        | 2           | 1     | 6        |
| Minimum Initial (s) | 4.0      | 3.0      | 3.0         | 3.0   | 3.0      |
| Minimum Split (s)   | 24.0     | 21.0     | 21.0        | 10.0  | 31.0     |
| Total Split (s)     | 30.0     | 25.0     | 25.0        | 10.0  | 35.0     |
| Total Split (%)     | 46.2%    | 38.5%    | 38.5%       | 15.4% | 53.8%    |
| Yellow Time (s)     | 3.2      | 4.0      | 4.0         | 2.0   | 4.0      |
| All-Red Time (s)    | 1.8      | 1.0      | 1.0         | 0.0   | 1.0      |
| Lead/Lag            |          | Lag      | Lag         | Lead  |          |
| Lead-Lag Optimize?  |          | Yes      | Yes         | Yes   |          |
| Recall Mode         | Max      | Max      | Max         | Max   | Max      |
| Act Effct Green (s) | 26.0     | 21.0     | 21.0        | 31.0  | 31.0     |
| Actuated g/C Ratio  | 0.40     | 0.32     | 0.32        | 0.48  | 0.48     |
| v/c Ratio           | 1.10     | 0.33     | 1.02        | 0.33  | 0.09     |
| Control Delay       | 79.3     | 18.6     | 62.1        | 11.1  | 9.0      |
| Queue Delay         | 0.0      | 0.0      | 0.0         | 0.3   | 0.0      |
| Total Delay         | 79.3     | 18.6     | 62.1        | 11.4  | 9.0      |
| LOS                 | Е        | В        | Е           | В     | Α        |
| Approach Delay      | 79.3     | 51.5     |             |       | 10.6     |
| Approach LOS        | Е        | D        |             |       | В        |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 90 Control Type: Pretimed Maximum v/c Ratio: 1.10 Intersection Signal Delay: 64.0

Intersection Signal Delay: 64.0 Intersection LOS: E
Intersection Capacity Utilization 88.9% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 6: Int



|                     | -            | <b>†</b> | <b>/</b> | /     | <b>↓</b> |
|---------------------|--------------|----------|----------|-------|----------|
| Lane Group          | EBT          | NBT      | NBR      | SBL   | SBT      |
| Lane Configurations | 4 <b>†</b> † | <b>†</b> | 7        | ሻ     | <b>†</b> |
| Volume (vph)        | 1193         | 182      | 565      | 147   | 68       |
| Turn Type           |              |          | Perm     | pm+pt |          |
| Protected Phases    | 4            | 2        |          | 1     | 6        |
| Permitted Phases    |              |          | 2        | 6     |          |
| Detector Phases     | 4            | 2        | 2        | 1     | 6        |
| Minimum Initial (s) | 4.0          | 3.0      | 3.0      | 3.0   | 3.0      |
| Minimum Split (s)   | 24.0         | 21.0     | 21.0     | 10.0  | 31.0     |
| Total Split (s)     | 30.0         | 26.0     | 26.0     | 9.0   | 35.0     |
| Total Split (%)     |              | 40.0%    | 40.0%    | 13.8% | 53.8%    |
| Yellow Time (s)     | 3.2          | 4.0      | 4.0      | 2.0   | 4.0      |
| All-Red Time (s)    | 1.8          | 1.0      | 1.0      | 0.0   | 1.0      |
| Lead/Lag            |              | Lag      | Lag      | Lead  |          |
| Lead-Lag Optimize?  |              | Yes      | Yes      | Yes   |          |
| Recall Mode         | Max          | Max      | Max      | Max   | Max      |
| Act Effct Green (s) | 26.0         | 22.0     | 22.0     | 31.0  | 31.0     |
| Actuated g/C Ratio  | 0.40         | 0.34     | 0.34     | 0.48  | 0.48     |
| v/c Ratio           | 0.77         | 0.31     | 1.00     | 0.34  | 0.09     |
| Control Delay       | 19.8         | 17.7     | 56.2     | 11.1  | 9.0      |
| Queue Delay         | 0.0          | 0.0      | 0.0      | 0.3   | 0.0      |
| Total Delay         | 19.8         | 17.7     | 56.2     | 11.4  | 9.0      |
| LOS                 | В            | В        | Е        | В     | Α        |
| Approach Delay      | 19.8         | 46.8     |          |       | 10.6     |
| Approach LOS        | В            | D        |          |       | В        |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 1.00
Intersection Signal Delay: 27.3

Intersection Signal Delay: 27.3 Intersection LOS: C
Intersection Capacity Utilization 78.1% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 6: Int



|                     | <b>→</b> | <b>†</b> | /     | <b>&gt;</b> | Ţ        |
|---------------------|----------|----------|-------|-------------|----------|
| Lane Group          | EBT      | NBT      | NBR   | SBL         | SBT      |
| Lane Configurations | 414      | <b>1</b> | 7     | ሻ           | <b>†</b> |
| Volume (vph)        | 613      | 288      | 141   | 91          | 769      |
| Turn Type           |          |          | Perm  | pm+pt       |          |
| Protected Phases    | 4        | 2        |       | 1           | 6        |
| Permitted Phases    |          |          | 2     | 6           |          |
| Detector Phases     | 4        | 2        | 2     | 1           | 6        |
| Minimum Initial (s) | 4.0      | 3.0      | 3.0   | 3.0         | 3.0      |
| Minimum Split (s)   | 24.0     | 21.0     | 21.0  | 10.0        | 31.0     |
| Total Split (s)     | 24.0     | 35.0     | 35.0  | 6.0         | 41.0     |
| Total Split (%)     | 36.9%    | 53.8%    | 53.8% | 9.2%        | 63.1%    |
| Yellow Time (s)     | 3.2      | 4.0      | 4.0   | 2.0         | 4.0      |
| All-Red Time (s)    | 1.8      | 1.0      | 1.0   | 0.0         | 1.0      |
| Lead/Lag            |          | Lag      | Lag   | Lead        |          |
| Lead-Lag Optimize?  |          | Yes      | Yes   | Yes         |          |
| Recall Mode         | Max      | Max      | Max   | Max         | Max      |
| Act Effct Green (s) | 20.0     | 31.0     | 31.0  | 37.0        | 37.0     |
| Actuated g/C Ratio  | 0.31     | 0.48     | 0.48  | 0.57        | 0.57     |
| v/c Ratio           | 0.84     | 0.32     | 0.17  | 0.19        | 0.80     |
| Control Delay       | 28.6     | 11.8     | 2.6   | 9.8         | 18.1     |
| Queue Delay         | 0.0      | 0.0      | 0.0   | 0.0         | 12.6     |
| Total Delay         | 28.6     | 11.8     | 2.6   | 9.8         | 30.7     |
| LOS                 | С        | В        | Α     | Α           | С        |
| Approach Delay      | 28.6     | 8.8      |       |             | 28.5     |
| Approach LOS        | С        | Α        |       |             | С        |
|                     |          |          |       |             |          |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.84
Intersection Signal Delay: 24.8

Intersection Signal Delay: 24.8Intersection LOS: CIntersection Capacity Utilization 90.2%ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 6: Int



|                     | <b>→</b> | <b>†</b> | /     | /     | Ţ     |
|---------------------|----------|----------|-------|-------|-------|
| Lane Group          | EBT      | NBT      | NBR   | SBL   | SBT   |
| Lane Configurations | 4î∌      | <b>†</b> | 7     |       | 414   |
| Volume (vph)        | 613      | 288      | 141   | 91    | 769   |
| Turn Type           |          |          | Perm  | pm+pt |       |
| Protected Phases    | 4        | 2        |       | 1     | 6     |
| Permitted Phases    |          |          | 2     | 6     |       |
| Detector Phases     | 4        | 2        | 2     | 1     | 6     |
| Minimum Initial (s) | 4.0      | 3.0      | 3.0   | 3.0   | 3.0   |
| Minimum Split (s)   | 24.0     | 21.0     | 21.0  | 10.0  | 31.0  |
| Total Split (s)     | 24.0     | 35.0     | 35.0  | 6.0   | 41.0  |
| Total Split (%)     | 36.9%    | 53.8%    | 53.8% | 9.2%  | 63.1% |
| Yellow Time (s)     | 3.2      | 4.0      | 4.0   | 2.0   | 4.0   |
| All-Red Time (s)    | 1.8      | 1.0      | 1.0   | 0.0   | 1.0   |
| Lead/Lag            |          | Lag      | Lag   | Lead  |       |
| Lead-Lag Optimize?  |          | Yes      | Yes   | Yes   |       |
| Recall Mode         | Max      | Max      | Max   | Max   | Max   |
| Act Effct Green (s) | 20.0     | 31.0     | 31.0  |       | 37.0  |
| Actuated g/C Ratio  | 0.31     | 0.48     | 0.48  |       | 0.57  |
| v/c Ratio           | 0.84     | 0.32     | 0.17  |       | 0.54  |
| Control Delay       | 28.6     | 11.8     | 2.6   |       | 11.4  |
| Queue Delay         | 0.0      | 0.0      | 0.0   |       | 1.7   |
| Total Delay         | 28.6     | 11.8     | 2.6   |       | 13.1  |
| LOS                 | С        | В        | Α     |       | В     |
| Approach Delay      | 28.6     | 8.8      |       |       | 13.1  |
| Approach LOS        | С        | Α        |       |       | В     |
|                     |          |          |       |       |       |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBT, Start of Green

Natural Cycle: 55
Control Type: Pretimed
Maximum v/c Ratio: 0.84
Intersection Signal Delay: 18.5

Intersection Signal Delay: 18.5Intersection LOS: BIntersection Capacity Utilization 72.3%ICU Level of Service C





|                     | -     | <b>←</b> | -      | ļ     |      |
|---------------------|-------|----------|--------|-------|------|
| Lane Group          | EBT   | WBT      | SBL    | SBT   | ø2   |
| Lane Configurations | ĵ.    | <b>↑</b> | •      | 4     |      |
| Volume (vph)        | 777   | 815      | 157    | 2     |      |
| Turn Type           |       | (        | custom |       |      |
| Protected Phases    | 4     | 8        |        |       | 2    |
| Permitted Phases    |       |          | 6      | 6     |      |
| Detector Phases     | 4     | 8        | 6      | 6     |      |
| Minimum Initial (s) | 4.0   | 4.0      | 4.0    | 4.0   | 4.0  |
| Minimum Split (s)   | 20.0  | 20.0     | 20.0   | 20.0  | 20.0 |
| Total Split (s)     | 40.0  | 40.0     | 20.0   | 20.0  | 20.0 |
| Total Split (%)     | 66.7% | 66.7%    | 33.3%  | 33.3% | 33%  |
| Yellow Time (s)     | 3.5   | 3.5      | 3.5    | 3.5   | 3.5  |
| All-Red Time (s)    | 0.5   | 0.5      | 0.5    | 0.5   | 0.5  |
| Lead/Lag            |       |          |        |       |      |
| Lead-Lag Optimize?  |       |          |        |       |      |
| Recall Mode         | Max   | Max      | Max    | Max   | Max  |
| Act Effct Green (s) | 36.0  | 36.0     |        | 16.0  |      |
| Actuated g/C Ratio  | 0.60  | 0.60     |        | 0.27  |      |
| v/c Ratio           | 0.82  | 0.82     |        | 0.57  |      |
| Control Delay       | 17.5  | 17.7     |        | 26.4  |      |
| Queue Delay         | 0.0   | 0.0      |        | 0.0   |      |
| Total Delay         | 17.5  | 17.7     |        | 26.4  |      |
| LOS                 | В     | В        |        | С     |      |
| Approach Delay      | 17.5  | 17.7     |        | 26.4  |      |
| Approach LOS        | В     | В        |        | С     |      |

Cycle Length: 60

Actuated Cycle Length: 60

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.82
Intersection Signal Delay: 18.5

Intersection Signal Delay: 18.5Intersection LOS: BIntersection Capacity Utilization 58.4%ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: W Front St (Rt 11) & Sunoco Station



|                     | <b>→</b> | ✓     | ←        | -      | <b>↓</b> |      |
|---------------------|----------|-------|----------|--------|----------|------|
| Lane Group          | EBT      | WBL   | WBT      | SBL    | SBT      | ø2   |
| Lane Configurations | ĵ»       |       | <b>†</b> |        | 4        |      |
| Volume (vph)        | 994      | 3     | 434      | 84     | 4        |      |
| Turn Type           |          | Perm  | (        | custom |          |      |
| Protected Phases    | 4        |       | 8        |        |          | 2    |
| Permitted Phases    |          | 8     |          | 6      | 6        |      |
| Detector Phases     | 4        | 8     | 8        | 6      | 6        |      |
| Minimum Initial (s) | 4.0      | 4.0   | 4.0      | 4.0    | 4.0      | 4.0  |
| Minimum Split (s)   | 20.0     | 20.0  | 20.0     | 20.0   | 20.0     | 20.0 |
| Total Split (s)     | 50.0     | 50.0  | 50.0     | 20.0   | 20.0     | 20.0 |
| Total Split (%)     | 71.4%    | 71.4% | 71.4%    | 28.6%  | 28.6%    | 29%  |
| Yellow Time (s)     | 3.5      | 3.5   | 3.5      | 3.5    | 3.5      | 3.5  |
| All-Red Time (s)    | 0.5      | 0.5   | 0.5      | 0.5    | 0.5      | 0.5  |
| Lead/Lag            |          |       |          |        |          |      |
| Lead-Lag Optimize?  |          |       |          |        |          |      |
| Recall Mode         | Max      | Max   | Max      | Max    | Max      | Max  |
| Act Effct Green (s) | 46.0     |       | 46.0     |        | 16.0     |      |
| Actuated g/C Ratio  | 0.66     |       | 0.66     |        | 0.23     |      |
| v/c Ratio           | 0.91     |       | 0.43     |        | 0.42     |      |
| Control Delay       | 24.0     |       | 7.1      |        | 27.8     |      |
| Queue Delay         | 0.0      |       | 0.0      |        | 0.0      |      |
| Total Delay         | 24.0     |       | 7.1      |        | 27.8     |      |
| LOS                 | С        |       | Α        |        | С        |      |
| Approach Delay      | 24.0     |       | 7.1      |        | 27.8     |      |
| Approach LOS        | С        |       | Α        |        | С        |      |

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70 Control Type: Pretimed Maximum v/c Ratio: 0.91 Intersection Signal Delay: 19.3

Intersection Signal Delay: 19.3Intersection LOS: BIntersection Capacity Utilization 64.5%ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 4: RT 11 &



|                     | <b>→</b> | €     | ←       | -      | Ţ     |      |
|---------------------|----------|-------|---------|--------|-------|------|
| Lane Group          | EBT      | WBL   | WBT     | SBL    | SBT   | ø2   |
| Lane Configurations | f)       |       | <u></u> |        | 4     |      |
| Volume (vph)        | 768      | 2     | 1361    | 154    | 2     |      |
| Turn Type           |          | Perm  |         | custom |       |      |
| Protected Phases    | 4        |       | 8       |        |       | 2    |
| Permitted Phases    |          | 8     |         | 6      | 6     |      |
| Detector Phases     | 4        | 8     | 8       | 6      | 6     |      |
| Minimum Initial (s) | 4.0      | 4.0   | 4.0     | 4.0    | 4.0   | 4.0  |
| Minimum Split (s)   | 20.0     | 20.0  | 20.0    | 20.0   | 20.0  | 20.0 |
| Total Split (s)     | 106.0    | 106.0 | 106.0   | 24.0   | 24.0  | 24.0 |
| Total Split (%)     | 81.5%    | 81.5% | 81.5%   | 18.5%  | 18.5% | 18%  |
| Yellow Time (s)     | 3.5      | 3.5   | 3.5     | 3.5    | 3.5   | 3.5  |
| All-Red Time (s)    | 0.5      | 0.5   | 0.5     | 0.5    | 0.5   | 0.5  |
| Lead/Lag            |          |       |         |        |       |      |
| Lead-Lag Optimize?  |          |       |         |        |       |      |
| Recall Mode         | Max      | Max   | Max     | Max    | Max   | Max  |
| Act Effct Green (s) | 102.0    |       | 102.0   |        | 20.0  |      |
| Actuated g/C Ratio  | 0.78     |       | 0.78    |        | 0.15  |      |
| v/c Ratio           | 0.62     |       | 1.00    |        | 0.98  |      |
| Control Delay       | 8.1      |       | 39.3    |        | 111.1 |      |
| Queue Delay         | 0.0      |       | 0.0     |        | 0.0   |      |
| Total Delay         | 8.1      |       | 39.3    |        | 111.1 |      |
| LOS                 | Α        |       | D       |        | F     |      |
| Approach Delay      | 8.1      |       | 39.3    |        | 111.1 |      |
| Approach LOS        | А        |       | D       |        | F     |      |

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 130
Control Type: Pretimed
Maximum v/c Ratio: 1.00
Intersection Signal Delay: 34.0

Intersection Signal Delay: 34.0Intersection LOS: CIntersection Capacity Utilization 88.6%ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 4: W Front St (Rt 11) & Sunoco Station



|                     | <b>→</b> | •     | ←        | -      | Ţ     |      |
|---------------------|----------|-------|----------|--------|-------|------|
| Lane Group          | EBT      | WBL   | WBT      | SBL    | SBT   | ø2   |
| Lane Configurations | f.       |       | <b>^</b> |        | 4     |      |
| Volume (vph)        | 1233     | 3     | 472      | 84     | 4     |      |
| Turn Type           |          | Perm  |          | custom |       |      |
| Protected Phases    | 4        |       | 8        |        |       | 2    |
| Permitted Phases    |          | 8     |          | 6      | 6     |      |
| Detector Phases     | 4        | 8     | 8        | 6      | 6     |      |
| Minimum Initial (s) | 4.0      | 4.0   | 4.0      | 4.0    | 4.0   | 4.0  |
| Minimum Split (s)   | 20.0     | 20.0  | 20.0     | 20.0   | 20.0  | 20.0 |
| Total Split (s)     | 72.0     | 72.0  | 72.0     | 18.0   | 18.0  | 18.0 |
| Total Split (%)     | 80.0%    | 80.0% | 80.0%    | 20.0%  | 20.0% | 20%  |
| Yellow Time (s)     | 3.5      | 3.5   | 3.5      | 3.5    | 3.5   | 3.5  |
| All-Red Time (s)    | 0.5      | 0.5   | 0.5      | 0.5    | 0.5   | 0.5  |
| Lead/Lag            |          |       |          |        |       |      |
| Lead-Lag Optimize?  |          |       |          |        |       |      |
| Recall Mode         | Max      | Max   | Max      | Max    | Max   | Max  |
| Act Effct Green (s) | 68.0     |       | 68.0     |        | 14.0  |      |
| Actuated g/C Ratio  | 0.76     |       | 0.76     |        | 0.16  |      |
| v/c Ratio           | 0.93     |       | 0.48     |        | 0.61  |      |
| Control Delay       | 23.2     |       | 5.5      |        | 49.0  |      |
| Queue Delay         | 0.0      |       | 0.0      |        | 0.0   |      |
| Total Delay         | 23.2     |       | 5.5      |        | 49.0  |      |
| LOS                 | С        |       | Α        |        | D     |      |
| Approach Delay      | 23.2     |       | 5.5      |        | 49.0  |      |
| Approach LOS        | С        |       | Α        |        | D     |      |

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90
Control Type: Pretimed
Maximum v/c Ratio: 0.93
Intersection Signal Delay: 19.4

Intersection Signal Delay: 19.4Intersection LOS: BIntersection Capacity Utilization 77.1%ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 4: RT 11 &



|                     | <b>→</b> | •     | ←       | -      | Ţ     |      |
|---------------------|----------|-------|---------|--------|-------|------|
| Lane Group          | EBT      | WBL   | WBT     | SBL    | SBT   | ø2   |
| Lane Configurations | f)       |       | <u></u> |        | 4     |      |
| Volume (vph)        | 773      | 2     | 1468    | 154    | 2     |      |
| Turn Type           |          | Perm  | (       | custom |       |      |
| Protected Phases    | 4        |       | 8       |        |       | 2    |
| Permitted Phases    |          | 8     |         | 6      | 6     |      |
| Detector Phases     | 4        | 8     | 8       | 6      | 6     |      |
| Minimum Initial (s) | 4.0      | 4.0   | 4.0     | 4.0    | 4.0   | 4.0  |
| Minimum Split (s)   | 20.0     | 20.0  | 20.0    | 20.0   | 20.0  | 20.0 |
| Total Split (s)     | 126.0    | 126.0 | 126.0   | 24.0   | 24.0  | 24.0 |
| Total Split (%)     | 84.0%    | 84.0% | 84.0%   | 16.0%  | 16.0% | 16%  |
| Yellow Time (s)     | 3.5      | 3.5   | 3.5     | 3.5    | 3.5   | 3.5  |
| All-Red Time (s)    | 0.5      | 0.5   | 0.5     | 0.5    | 0.5   | 0.5  |
| Lead/Lag            |          |       |         |        |       |      |
| Lead-Lag Optimize?  |          |       |         |        |       |      |
| Recall Mode         | Max      | Max   | Max     | Max    | Max   | Max  |
| Act Effct Green (s) | 122.0    |       | 122.0   |        | 20.0  |      |
| Actuated g/C Ratio  | 0.81     |       | 0.81    |        | 0.13  |      |
| v/c Ratio           | 0.60     |       | 1.04    |        | 1.13  |      |
| Control Delay       | 7.0      |       | 50.9    |        | 161.5 |      |
| Queue Delay         | 0.0      |       | 0.0     |        | 0.0   |      |
| Total Delay         | 7.0      |       | 50.9    |        | 161.5 |      |
| LOS                 | Α        |       | D       |        | F     |      |
| Approach Delay      | 7.0      |       | 50.9    |        | 161.5 |      |
| Approach LOS        | Α        |       | D       |        | F     |      |

Cycle Length: 150

Actuated Cycle Length: 150

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150
Control Type: Pretimed
Maximum v/c Ratio: 1.13
Intersection Signal Delay: 44.5

Intersection Signal Delay: 44.5Intersection LOS: DIntersection Capacity Utilization 94.2%ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 4: W Front St (Rt 11) & Sunoco Station



|                     | -    | ✓     | ←     | 4     | <b>†</b> | <b>/</b> | -     | <b>↓</b> |  |
|---------------------|------|-------|-------|-------|----------|----------|-------|----------|--|
| Lane Group          | EBT  | WBL   | WBT   | NBL   | NBT      | NBR      | SBL   | SBT      |  |
| Lane Configurations | f)   | ሻ     | f)    |       | र्स      | 7        |       | 4        |  |
| Volume (vph)        | 978  | 35    | 456   | 23    | 3        | 28       | 1     | 7        |  |
| Turn Type           |      | pm+pt |       | Perm  |          | Perm     | Perm  |          |  |
| Protected Phases    | 4    | 3     | 8     |       | 2        |          |       | 6        |  |
| Permitted Phases    |      | 8     |       | 2     |          | 2        | 6     |          |  |
| Detector Phases     | 4    | 3     | 8     | 2     | 2        | 2        | 6     | 6        |  |
| Minimum Initial (s) | 1.0  | 4.0   | 20.0  | 2.0   | 2.0      | 2.0      | 1.0   | 1.0      |  |
| Minimum Split (s)   | 25.0 | 8.0   | 25.0  | 6.0   | 6.0      | 6.0      | 5.0   | 5.0      |  |
| Total Split (s)     | 55.0 | 8.0   | 63.0  | 7.0   | 7.0      | 7.0      | 7.0   | 7.0      |  |
| Total Split (%)     |      | 11.4% | 90.0% | 10.0% | 10.0%    | 10.0%    | 10.0% | 10.0%    |  |
| Yellow Time (s)     | 3.0  | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   | 3.0      |  |
| All-Red Time (s)    | 2.0  | 0.0   | 2.0   | 1.0   | 1.0      | 1.0      | 1.0   | 1.0      |  |
| Lead/Lag            | Lag  | Lead  |       |       |          |          |       |          |  |
| Lead-Lag Optimize?  | Yes  | Yes   |       |       |          |          |       |          |  |
| Recall Mode         | Max  | Max   | Max   | Max   | Max      | Max      | Max   | Max      |  |
| Act Effct Green (s) | 51.0 | 59.0  | 59.0  |       | 3.0      | 3.0      |       | 3.0      |  |
| Actuated g/C Ratio  | 0.73 | 0.84  | 0.84  |       | 0.04     | 0.04     |       | 0.04     |  |
| v/c Ratio           | 0.89 | 0.16  | 0.31  |       | 0.45     | 0.37     |       | 0.44     |  |
| Control Delay       | 18.8 | 2.5   | 1.8   |       | 52.2     | 22.8     |       | 38.8     |  |
| Queue Delay         | 0.0  | 0.0   | 0.0   |       | 0.0      | 0.0      |       | 0.0      |  |
| Total Delay         | 18.8 | 2.5   | 1.8   |       | 52.2     | 22.8     |       | 38.8     |  |
| LOS                 | В    | Α     | Α     |       | D        | С        |       | D        |  |
| Approach Delay      | 18.8 |       | 1.8   |       | 37.1     |          |       | 38.8     |  |
| Approach LOS        | В    |       | А     |       | D        |          |       | D        |  |

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70
Control Type: Pretimed
Maximum v/c Ratio: 0.89
Intersection Signal Delay: 15.1

Intersection Signal Delay: 15.1Intersection LOS: BIntersection Capacity Utilization 70.0%ICU Level of Service C

Analysis Period (min) 15



|                     | •     | <b>→</b> | •     | <b>←</b> | •     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ     |
|---------------------|-------|----------|-------|----------|-------|----------|-------------|-------------|-------|
| Lane Group          | EBL   | EBT      | WBL   | WBT      | NBL   | NBT      | NBR         | SBL         | SBT   |
| Lane Configurations | 7     | ĵ»       | ሻ     | -<br>€   |       | ર્ન      | 7           |             | 4     |
| Volume (vph)        | 21    | 655      | 51    | 1258     | 29    | 39       | 15          | 130         | 44    |
| Turn Type           | Perm  |          | pm+pt |          | Perm  |          | Perm        | Perm        |       |
| Protected Phases    |       | 4        | 3     | 8        |       | 2        |             |             | 6     |
| Permitted Phases    | 4     |          | 8     |          | 2     |          | 2           | 6           |       |
| Detector Phases     | 4     | 4        | 3     | 8        | 2     | 2        | 2           | 6           | 6     |
| Minimum Initial (s) | 1.0   | 1.0      | 4.0   | 20.0     | 2.0   | 2.0      | 2.0         | 1.0         | 1.0   |
| Minimum Split (s)   | 25.0  | 25.0     | 8.0   | 25.0     | 6.0   | 6.0      | 6.0         | 5.0         | 5.0   |
| Total Split (s)     | 45.0  | 45.0     | 8.0   | 53.0     | 17.0  | 17.0     | 17.0        | 17.0        | 17.0  |
| Total Split (%)     | 64.3% | 64.3%    | 11.4% | 75.7%    | 24.3% | 24.3%    | 24.3%       | 24.3%       | 24.3% |
| Yellow Time (s)     | 3.0   | 3.0      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0         | 3.0         | 3.0   |
| All-Red Time (s)    | 2.0   | 2.0      | 0.0   | 2.0      | 1.0   | 1.0      | 1.0         | 1.0         | 1.0   |
| Lead/Lag            | Lag   | Lag      | Lead  |          |       |          |             |             |       |
| Lead-Lag Optimize?  | Yes   | Yes      | Yes   |          |       |          |             |             |       |
| Recall Mode         | Max   | Max      | Max   | Max      | Max   | Max      | Max         | Max         | Max   |
| Act Effct Green (s) | 41.0  | 41.0     | 49.0  | 49.0     |       | 13.0     | 13.0        |             | 13.0  |
| Actuated g/C Ratio  | 0.59  | 0.59     | 0.70  | 0.70     |       | 0.19     | 0.19        |             | 0.19  |
| v/c Ratio           | 0.24  | 0.77     | 0.19  | 1.07     |       | 0.29     | 0.06        |             | 1.03  |
| Control Delay       | 14.0  | 16.9     | 4.8   | 59.3     |       | 27.9     | 12.4        |             | 90.1  |
| Queue Delay         | 0.0   | 0.0      | 0.0   | 0.0      |       | 0.0      | 0.0         |             | 0.0   |
| Total Delay         | 14.0  | 16.9     | 4.8   | 59.3     |       | 27.9     | 12.4        |             | 90.1  |
| LOS                 | В     | В        | Α     | Е        |       | С        | В           |             | F     |
| Approach Delay      |       | 16.8     |       | 57.2     |       | 25.2     |             |             | 90.1  |
| Approach LOS        |       | В        |       | Е        |       | С        |             |             | F     |

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110
Control Type: Pretimed
Maximum v/c Ratio: 1.07
Intersection Signal Delay:

Intersection Signal Delay: 46.8 Intersection LOS: D
Intersection Capacity Utilization 94.5% ICU Level of Service F

Analysis Period (min) 15



| Lane Group         EBT         WBL         WBT         NBL         NBT         NBR         SBL         SBT           Lane Configurations         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Volume (vph)         1217         35         493         23         3         27         1         7           Turn Type         pm+pt         Perm         Perm         Perm         Perm           Protected Phases         4         3         8         2         6           Permitted Phases         8         2         2         6           Detector Phases         4         3         8         2         2         6           Minimum Initial (s)         1.0         4.0         20.0         2.0         2.0         1.0         1.0           Minimum Split (s)         25.0         8.0         25.0         6.0         6.0         6.0         5.0         5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Volume (vph)         1217         35         493         23         3         27         1         7           Turn Type         pm+pt         Perm         Perm         Perm         Perm           Protected Phases         4         3         8         2         6           Permitted Phases         8         2         2         6           Detector Phases         4         3         8         2         2         6         6           Minimum Initial (s)         1.0         4.0         20.0         2.0         2.0         2.0         1.0         1.0           Minimum Split (s)         25.0         8.0         25.0         6.0         6.0         6.0         5.0         5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Protected Phases       4       3       8       2       6         Permitted Phases       8       2       2       6         Detector Phases       4       3       8       2       2       6         Minimum Initial (s)       1.0       4.0       20.0       2.0       2.0       2.0       1.0       1.0         Minimum Split (s)       25.0       8.0       25.0       6.0       6.0       6.0       5.0       5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Permitted Phases       8       2       2       6         Detector Phases       4       3       8       2       2       2       6       6         Minimum Initial (s)       1.0       4.0       20.0       2.0       2.0       2.0       1.0       1.0         Minimum Split (s)       25.0       8.0       25.0       6.0       6.0       6.0       5.0       5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Detector Phases       4       3       8       2       2       2       6       6         Minimum Initial (s)       1.0       4.0       20.0       2.0       2.0       2.0       1.0       1.0         Minimum Split (s)       25.0       8.0       25.0       6.0       6.0       6.0       5.0       5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Minimum Initial (s) 1.0 4.0 20.0 2.0 2.0 2.0 1.0 1.0 Minimum Split (s) 25.0 8.0 25.0 6.0 6.0 5.0 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minimum Split (s) 25.0 8.0 25.0 6.0 6.0 5.0 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total Split (s) 56.0 8.0 64.0 6.0 6.0 6.0 6.0 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total Split (%) 80.0% 11.4% 91.4% 8.6% 8.6% 8.6% 8.6% 8.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| All-Red Time (s) 2.0 0.0 2.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lead/Lag Lag Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lead-Lag Optimize? Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Recall Mode Max Max Max Max Max Max Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Act Effct Green (s) 52.0 60.0 60.0 2.0 2.0 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Actuated g/C Ratio 0.74 0.86 0.86 0.03 0.03 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| v/c Ratio 1.18 0.19 0.35 0.67 0.46 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Control Delay 103.3 2.8 1.7 92.0 32.6 59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Delay 103.3 2.8 1.7 92.0 32.6 59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LOS F A A F C E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Approach Delay 103.3 1.7 61.9 59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Approach LOS F A E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150
Control Type: Pretimed
Maximum v/c Ratio: 1.18
Intersection Signal Delay: 75.5

Intersection Signal Delay: 75.5Intersection LOS: EIntersection Capacity Utilization 82.6%ICU Level of Service E

Analysis Period (min) 15



|                     | •     | -    | €     | ←    | 1     | <b>†</b> | /    | -     | ļ     |
|---------------------|-------|------|-------|------|-------|----------|------|-------|-------|
| Lane Group          | EBL   | EBT  | WBL   | WBT  | NBL   | NBT      | NBR  | SBL   | SBT   |
| Lane Configurations | ሻ     | ĵ»   | ¥     | f)   |       | ર્ન      | 7    |       | 4     |
| Volume (vph)        | 21    | 659  | 51    | 1364 | 130   | 44       | 81   | 29    | 39    |
| Turn Type           | Perm  |      | pm+pt |      | Perm  |          | Perm | Perm  |       |
| Protected Phases    |       | 4    | 3     | 8    |       | 2        |      |       | 6     |
| Permitted Phases    | 4     |      | 8     |      | 2     |          | 2    | 6     |       |
| Detector Phases     | 4     | 4    | 3     | 8    | 2     | 2        | 2    | 6     | 6     |
| Minimum Initial (s) | 1.0   | 1.0  | 4.0   | 20.0 | 2.0   | 2.0      | 2.0  | 1.0   | 1.0   |
| Minimum Split (s)   | 25.0  | 25.0 | 8.0   | 25.0 | 6.0   | 6.0      | 6.0  | 5.0   | 5.0   |
| Total Split (s)     | 48.0  | 48.0 | 8.0   | 56.0 | 14.0  | 14.0     | 14.0 | 14.0  | 14.0  |
| Total Split (%)     | 68.6% |      | 11.4% |      | 20.0% | 20.0%    |      | 20.0% | 20.0% |
| Yellow Time (s)     | 3.0   | 3.0  | 3.0   | 3.0  | 3.0   | 3.0      | 3.0  | 3.0   | 3.0   |
| All-Red Time (s)    | 2.0   | 2.0  | 0.0   | 2.0  | 1.0   | 1.0      | 1.0  | 1.0   | 1.0   |
| Lead/Lag            | Lag   | Lag  | Lead  |      |       |          |      |       |       |
| Lead-Lag Optimize?  | Yes   | Yes  | Yes   |      |       |          |      |       |       |
| Recall Mode         | Max   | Max  | Max   | Max  | Max   | Max      | Max  | Max   | Max   |
| Act Effct Green (s) | 44.0  | 44.0 | 52.0  | 52.0 |       | 10.0     | 10.0 |       | 10.0  |
| Actuated g/C Ratio  | 0.63  | 0.63 | 0.74  | 0.74 |       | 0.14     | 0.14 |       | 0.14  |
| v/c Ratio           | 0.24  | 0.72 | 0.17  | 1.09 |       | 1.02     | 0.31 |       | 0.55  |
| Control Delay       | 12.6  | 13.2 | 3.5   | 66.0 |       | 102.6    | 9.8  |       | 37.9  |
| Queue Delay         | 0.0   | 0.0  | 0.0   | 0.0  |       | 0.0      | 0.0  |       | 0.0   |
| Total Delay         | 12.6  | 13.2 | 3.5   | 66.0 |       | 102.6    | 9.8  |       | 37.9  |
| LOS                 | В     | В    | Α     | Е    |       | F        | Α    |       | D     |
| Approach Delay      |       | 13.2 |       | 63.8 |       | 73.1     |      |       | 37.9  |
| Approach LOS        |       | В    |       | Е    |       | Е        |      |       | D     |

Cycle Length: 70

Actuated Cycle Length: 70

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 120
Control Type: Pretimed
Maximum v/c Ratio: 1.09
Intersection Signal Delay: 48.4

Intersection Signal Delay: 48.4Intersection LOS: DIntersection Capacity Utilization 95.1%ICU Level of Service F

Analysis Period (min) 15



|                       | ۶     | •    | •     | <b>†</b> | <b>↓</b> | 4    |
|-----------------------|-------|------|-------|----------|----------|------|
| Lane Group            | EBL   | EBR  | NBL   | NBT      | SBT      | SBR  |
| Lane Configurations   | W     |      | ሻሻ    | <b>1</b> | <b>†</b> | 7    |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 1662  | 0    | 3433  | 1863     | 1863     | 1583 |
| Flt Permitted         | 0.986 |      | 0.409 |          |          |      |
| Satd. Flow (perm)     | 1662  | 0    | 1478  | 1863     | 1863     | 1583 |
| Satd. Flow (RTOR)     | 12    |      |       |          |          | 403  |
| Volume (vph)          | 5     | 12   | 1027  | 265      | 209      | 897  |
| Adj. Flow (vph)       | 5     | 12   | 1027  | 265      | 209      | 897  |
| Lane Group Flow (vph) | 17    | 0    | 1027  | 265      | 209      | 897  |
| Turn Type             |       |      | pm+pt |          |          | Free |
| Protected Phases      | 4     |      | 5     | 2        | 6        |      |
| Permitted Phases      |       |      | 2     |          |          | Free |
| Minimum Split (s)     | 20.0  |      | 8.0   | 20.0     | 20.0     |      |
| Total Split (s)       | 20.0  | 0.0  | 37.0  | 60.0     | 23.0     | 0.0  |
| Total Split (%)       | 25.0% | 0.0% | 46.3% | 75.0%    | 28.8%    | 0.0% |
| Yellow Time (s)       | 3.5   |      | 3.5   | 3.5      | 3.5      |      |
| All-Red Time (s)      | 0.5   |      | 0.5   | 0.5      | 0.5      |      |
| Lead/Lag              |       |      | Lead  |          | Lag      |      |
| Lead-Lag Optimize?    |       |      | Yes   |          | Yes      |      |
| Act Effct Green (s)   | 16.0  |      | 56.0  | 56.0     | 19.0     | 80.0 |
| Actuated g/C Ratio    | 0.20  |      | 0.70  | 0.70     | 0.24     | 1.00 |
| v/c Ratio             | 0.05  |      | 0.56  | 0.20     | 0.47     | 0.57 |
| Control Delay         | 16.7  |      | 6.5   | 4.6      | 30.4     | 1.5  |
| Queue Delay           | 0.0   |      | 0.0   | 0.0      | 0.0      | 0.0  |
| Total Delay           | 16.7  |      | 6.5   | 4.6      | 30.4     | 1.5  |
| LOS                   | В     |      | Α     | Α        | С        | Α    |
| Approach Delay        | 16.7  |      |       | 6.1      | 6.9      |      |
| Approach LOS          | В     |      |       | Α        | Α        |      |
|                       |       |      |       |          |          |      |

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 60 Control Type: Pretimed Maximum v/c Ratio: 0.57

Intersection Signal Delay: 6.6Intersection LOS: AIntersection Capacity Utilization 53.6%ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 4: Int



|                       | •     | •    | 4     | <b>†</b> | <b>↓</b> | 4    |
|-----------------------|-------|------|-------|----------|----------|------|
| Lane Group            | EBL   | EBR  | NBL   | NBT      | SBT      | SBR  |
| Lane Configurations   | ¥     |      | 44    | <b>1</b> | <b>1</b> | 7    |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 1662  | 0    | 3433  | 1863     | 1863     | 1583 |
| Flt Permitted         | 0.986 |      | 0.347 |          |          |      |
| Satd. Flow (perm)     | 1662  | 0    | 1254  | 1863     | 1863     | 1583 |
| Satd. Flow (RTOR)     | 12    |      |       |          |          | 425  |
| Volume (vph)          | 5     | 12   | 1027  | 543      | 253      | 897  |
| Adj. Flow (vph)       | 5     | 12   | 1027  | 543      | 253      | 897  |
| Lane Group Flow (vph) | 17    | 0    | 1027  | 543      | 253      | 897  |
| Turn Type             |       |      | pm+pt |          |          | Free |
| Protected Phases      | 4     |      | 5     | 2        | 6        |      |
| Permitted Phases      |       |      | 2     |          |          | Free |
| Minimum Split (s)     | 20.0  |      | 8.0   | 20.0     | 20.0     |      |
| Total Split (s)       | 20.0  | 0.0  | 33.0  | 55.0     | 22.0     | 0.0  |
| Total Split (%)       | 26.7% | 0.0% | 44.0% | 73.3%    | 29.3%    | 0.0% |
| Yellow Time (s)       | 3.5   |      | 3.5   | 3.5      | 3.5      |      |
| All-Red Time (s)      | 0.5   |      | 0.5   | 0.5      | 0.5      |      |
| Lead/Lag              |       |      | Lead  |          | Lag      |      |
| Lead-Lag Optimize?    |       |      | Yes   |          | Yes      |      |
| Act Effct Green (s)   | 16.0  |      | 51.0  | 51.0     | 18.0     | 75.0 |
| Actuated g/C Ratio    | 0.21  |      | 0.68  | 0.68     | 0.24     | 1.00 |
| v/c Ratio             | 0.05  |      | 0.61  | 0.43     | 0.57     | 0.57 |
| Control Delay         | 15.4  |      | 7.4   | 6.7      | 30.8     | 1.5  |
| Queue Delay           | 0.0   |      | 0.0   | 0.0      | 0.0      | 0.0  |
| Total Delay           | 15.4  |      | 7.4   | 6.7      | 30.8     | 1.5  |
| LOS                   | В     |      | Α     | Α        | С        | Α    |
| Approach Delay        | 15.4  |      |       | 7.1      | 7.9      |      |
| Approach LOS          | В     |      |       | Α        | Α        |      |

Cycle Length: 75

Actuated Cycle Length: 75

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 60
Control Type: Pretimed
Maximum v/c Ratio: 0.61

Intersection Signal Delay: 7.5Intersection LOS: AIntersection Capacity Utilization 55.9%ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 4: Int



|                       | •     | •    | 4     | <b>†</b> | <b>↓</b> | 4    |
|-----------------------|-------|------|-------|----------|----------|------|
| Lane Group            | EBL   | EBR  | NBL   | NBT      | SBT      | SBR  |
| Lane Configurations   | ሻ     | 7    | ሻ     | <b>^</b> | <b>†</b> | 7    |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 1770  | 1583 | 1770  | 1863     | 1863     | 1583 |
| Flt Permitted         | 0.950 |      | 0.334 |          |          |      |
| Satd. Flow (perm)     | 1770  | 1583 | 622   | 1863     | 1863     | 1583 |
| Satd. Flow (RTOR)     |       | 806  |       |          |          | 1    |
| Volume (vph)          | 883   | 988  | 3     | 275      | 341      | 1    |
| Adj. Flow (vph)       | 883   | 988  | 3     | 275      | 341      | 1    |
| Lane Group Flow (vph) | 883   | 988  | 3     | 275      | 341      | 1    |
| Turn Type             |       | Free | Perm  |          |          | Free |
| Protected Phases      | 4     |      |       | 2        | 6        |      |
| Permitted Phases      |       | Free | 2     |          |          | Free |
| Minimum Split (s)     | 5.0   |      | 5.0   | 5.0      | 5.0      |      |
| Total Split (s)       | 37.0  | 0.0  | 18.0  | 18.0     | 18.0     | 0.0  |
| Total Split (%)       | 67.3% | 0.0% | 32.7% | 32.7%    | 32.7%    | 0.0% |
| Yellow Time (s)       | 3.5   |      | 3.5   | 3.5      | 3.5      |      |
| All-Red Time (s)      | 0.5   |      | 0.5   | 0.5      | 0.5      |      |
| Lead/Lag              |       |      |       |          |          |      |
| Lead-Lag Optimize?    |       |      |       |          |          |      |
| Act Effct Green (s)   | 33.0  | 55.0 | 14.0  | 14.0     | 14.0     | 55.0 |
| Actuated g/C Ratio    | 0.60  | 1.00 | 0.25  | 0.25     | 0.25     | 1.00 |
| v/c Ratio             | 0.83  | 0.62 | 0.02  | 0.58     | 0.72     | 0.00 |
| Control Delay         | 18.3  | 1.9  | 16.0  | 23.7     | 29.6     | 0.0  |
| Queue Delay           | 0.0   | 0.0  | 0.0   | 0.0      | 0.0      | 0.0  |
| Total Delay           | 18.3  | 1.9  | 16.0  | 23.7     | 29.6     | 0.0  |
| LOS                   | В     | Α    | В     | С        | С        | Α    |
| Approach Delay        | 9.6   |      |       | 23.6     | 29.5     |      |
| Approach LOS          | Α     |      |       | С        | С        |      |
| 1. 1. 0.              |       |      |       |          |          |      |

Cycle Length: 55

Actuated Cycle Length: 55

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 55
Control Type: Pretimed
Maximum v/c Ratio: 0.83

Intersection Signal Delay: 13.9Intersection LOS: BIntersection Capacity Utilization 73.5%ICU Level of Service D





|                       | •     | •    | 4     | <b>†</b> | ļ        | 4    |
|-----------------------|-------|------|-------|----------|----------|------|
| Lane Group            | EBL   | EBR  | NBL   | NBT      | SBT      | SBR  |
| Lane Configurations   | ሻ     | 7    | ሻ     | <b>↑</b> | <b>1</b> | 7    |
| Total Lost Time (s)   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0      | 4.0  |
| Satd. Flow (prot)     | 1770  | 1583 | 1770  | 1863     | 1863     | 1583 |
| Flt Permitted         | 0.950 |      | 0.204 |          |          |      |
| Satd. Flow (perm)     | 1770  | 1583 | 380   | 1863     | 1863     | 1583 |
| Satd. Flow (RTOR)     |       | 682  |       |          |          | 1    |
| Volume (vph)          | 883   | 988  | 3     | 281      | 467      | 1    |
| Adj. Flow (vph)       | 883   | 988  | 3     | 281      | 467      | 1    |
| Lane Group Flow (vph) | 883   | 988  | 3     | 281      | 467      | 1    |
| Turn Type             |       | Free | Perm  |          |          | Free |
| Protected Phases      | 4     |      |       | 2        | 6        |      |
| Permitted Phases      |       | Free | 2     |          |          | Free |
| Minimum Split (s)     | 20.0  |      | 20.0  | 20.0     | 20.0     |      |
| Total Split (s)       | 41.0  | 0.0  | 24.0  | 24.0     | 24.0     | 0.0  |
| Total Split (%)       | 63.1% | 0.0% | 36.9% | 36.9%    | 36.9%    | 0.0% |
| Yellow Time (s)       | 3.5   |      | 3.5   | 3.5      | 3.5      |      |
| All-Red Time (s)      | 0.5   |      | 0.5   | 0.5      | 0.5      |      |
| Lead/Lag              |       |      |       |          |          |      |
| Lead-Lag Optimize?    |       |      |       |          |          |      |
| Act Effct Green (s)   | 37.0  | 65.0 | 20.0  | 20.0     | 20.0     | 65.0 |
| Actuated g/C Ratio    | 0.57  | 1.00 | 0.31  | 0.31     | 0.31     | 1.00 |
| v/c Ratio             | 0.88  | 0.62 | 0.03  | 0.49     | 0.82     | 0.00 |
| Control Delay         | 24.6  | 1.9  | 16.7  | 21.9     | 34.8     | 0.0  |
| Queue Delay           | 0.0   | 0.0  | 0.0   | 0.0      | 0.0      | 0.0  |
| Total Delay           | 24.6  | 1.9  | 16.7  | 21.9     | 34.8     | 0.0  |
| LOS                   | С     | Α    | В     | С        | С        | Α    |
| Approach Delay        | 12.6  |      |       | 21.8     | 34.7     |      |
| Approach LOS          | В     |      |       | С        | С        |      |
|                       |       |      |       |          |          |      |

Cycle Length: 65

Actuated Cycle Length: 65

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 65
Control Type: Pretimed
Maximum v/c Ratio: 0.88

Intersection Signal Delay: 17.5 Intersection LOS: B
Intersection Capacity Utilization 80.2% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 4: Int

