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8.0 ELECTRIC POWER

This chapter of the U.S. EPR Final Safety Analysis Report (FSAR) is incorporated by reference
with supplements as identified in the following sections.

8.1 INTRODUCTION

This section of the U.S. EPR FSAR is incorporated by reference with the following supplements.

8.1.1 OFFSITE POWER DESCRIPTION
The U.S. EPR FSAR includes the following COL Item in Section 8.1.1:

A COL applicant that references the U.S. EPR design certification will provide site-specific
information describing the interface between the offsite fransmission system, and the nuclear
unit, including switchyard interconnections.

This COL Item is addressed as follows:

{The BBNPP 500 kV transmission system consists of two offsite circuits, one circuit connects the
BBNPP site to the existing Susquehanna 500 kV Yard via a 500 kV, 4260 MVA line and one
circuit connects the BBNPP site to the Susquehanna 500 kV Yard 2 via a 500 kV, 4260 MVA line.
Each circuit is on individual towers. The general routing of the lines is shown on Figure 8.1-1.

The BBNPP is connected to the BBNPP switchyard by means of six overhead lines.}

The interface between the transmission system and the nuclear unit is further described in
Section 8.2.

8.1.2 ONSITE POWER SYSTEM DESCRIPTION

No departures or supplements.

8.1.3 SAFETY-RELATED LOADS
The U.S. EPR FSAR includes the following COL Item in Section 8.1.3:

A COL applicant that references the U.S. EPR design certification will identify site-specific
loading differences that raise the EDG or Class 1E battery loading and demonstrate the
electrical distribution system is adequately sized for the additional load.

This COL Item is addressed as follows:

The loads powered from the safety-related sources for the U.S. EPR are specified in U.S. EPR
FSAR Tables 8.3-4, 8.3-5, 8.3-6, and 8.3-7. {Additional site-specific loads powered from the
station EDGs are specified in Table 8.1-1, Table 8.1-2, Table 8.1-3, and Table 8.1-4. This
information supplements U.S. EPR FSAR Tables 8.3-4, 8.3-5, 8.3-6, and 8.3-7. The site-specific
loads are within the design margin of the EDGs. Onsite DC power system nominal load values
are specified in U.S. EPR FSAR Tables 8.3-12 through 8.3-15. Additional site-specific loads from
the Class 1E battery source include an additional feeder breaker on the 31/2/3/4BDD bus that
provides electrical power to the 6.9 kV to 480 V ESWEMS transformers. Each of these feeder
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breaker require steady state control power of 0.04 kW. The site-specific Class 1E control power
demand is within the design margin of the EUPS Battery Sizing Calculation and does not change
the DC load requirements specified in the U.S. EPR FSAR Tables 8.3-12 through 8.3-15.}

8.14 DESIGN BASES

8.1.4.1 Offsite Power System

No departures or supplements.

8.1.4.2 Onsite Power System

No departures or supplements.

8.1.4.3 Criteria, Regulatory Guides, Standards, and Technical Positions

No departures or supplements.

8.1.4.4 NRC Generic Letters
The U.S. EPR FSAR includes the following COL Item in Section 8.1.4.4:
The COL applicant that references the U.S. EPR design certification is responsible for

addressing the information presented in NRC generic letter 2006-02 as indicated in Section
8.2.1.1.

This COL Item is addressed as follows:

The information requested by the NRC in Generic Letter 2006-02 (NRC, 2006), as indicated in
U.S. EPR FSAR Section 8.2.1.1, is presented in Section 8.2.1.1.
8.1.5 REFERENCES

{NRC, 2006. Grid Reliability and the Impact on Plant Risk and Operability of Offsite Power, NRC
Generic Letter 2006-02, U.S. Nuclear Regulatory Commission, February 2006.}
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Table 8.1-1 {Division 1 Emergency Diesel Generator Nominal Loads}

. Operating
. . Alternate | Operating
Time Seq. Load Description Volts Rating Feed Load |Load LOOP Load DBA/
(s) (hp/kW) (kW) (kW) LOOP
(kW)
Load Step Group 1
15 Air conditioning unit for the ESWEMS
(Note 1) Pumphouse (1 per division, 46 kW each) 480 46 kw 46 46
15 Electric heating for ESWEMS
(Note 1) Pumphouse(2 per division, 25 kW each) 480 50 kW 0 0
15 . o
(Note 2) Estimated auxiliary loads 480 25 kW 0 0
15 Estimated site-specific load contribution 9 KW 9 9
from transformer and cable losses
Subtotal of Additional Loads for Load Step Group 1 55 55
Additional Manually Connected Loads
N/A
(Note 3) ESWEMS Pump 480 50 hp 0 0
Total of Additional Manually Connected Loads 0 0

Notes:

1. Cooling systems are assumed to be operating and heating systems are off.
2. Auxiliary loads (sumps, screens, MOVs, etc.) not included in load totals due to infrequent operation and short

duration of operation.
3. The emergency makeup pump is not required to run during the first 72 hours of a DBE.

Table 8.1-2 {Division 2 Emergency Diesel Generator Nominal Loads}

. Operating
. . Alternate | Operating
Time Seq. Load Description Volts Rating Feed Load |Load LOOP Load DBA/
(s) (hp/kW) (kW) (kW) LOOP
(kW)
Load Step Group 1
15 Air conditioning unit for the ESWEMS
(Note 1) Pumphouse (1 per division, 46 kW each) 480 46 kW 46 46
15 Electric heating for ESWEMS
(Note 1) Pumphouse (2 per division, 25 kW each) 480 50 kW 0 0
15( . o
Note 2) Estimated auxiliary loads 480 25 kW 0 0
15 Estimated site-specific load contribution 9 KW 9 9
from transformer and cable losses
Subtotal of Additional Loads for Load Step Group 1 55 55
Additional Manually Connected Loads
N/A
(Note 3) ESWEMS Pump 480 50 hp 0 0
Total of Additional Manually Connected Loads 0 0

Notes:

1. Cooling systems are assumed to be operating and heating systems are off.
2. Auxiliary loads (sumps, screens, MOVs, etc.) not included in load totals due to infrequent operation and short

duration of operation.
3. The emergency makeup pump is not required to run during the first 72 hours of a DBE.
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Table 8.1-3 {Division 3 Emergency Diesel Generator Nominal Loads}

. Operating
. . Alternate | Operating
Time Seq. Load Description Volts Rating Feed Load |Load LOOP Load DBA/
(s) (hp/kW) (kW) (kW) LOOP
(kW)
Load Step Group 1
15 Air conditioning unit for the ESWEMS
(Note 1) Pumphouse (1 per division, 46 kW each) 480 46 kw 46 46
15 Electric heating for ESWEMS
(Note 1) Pumphouse(2 per division, 25 kW each) 480 50 kW 0 0
15 . o
(Note 2) Estimated auxiliary loads 480 25 kW 0 0
15 Estimated site-specific load contribution 9 KW 9 9
from transformer and cable losses
Subtotal of Additional Loads for Load Step Group 1 55 55
Additional Manually Connected Loads
N/A
(Note 3) ESWEMS Pump 480 50 hp 0 0
Total of Additional Manually Connected Loads 0 0

Notes:

1. Cooling systems are assumed to be operating and heating systems are off.
2. Auxiliary loads (sumps, screens, MOVs, etc.) not included in load totals due to infrequent operation and short

duration of operation.
3. The emergency makeup pump is not required to run during the first 72 hours of a DBE.

Table 8.1-4 {Division 4 Emergency Diesel Generator Nominal Loads}

. Operating
. . Alternate | Operating
Time Seq. Load Description Volts Rating Feed Load |Load LOOP Load DBA/
(s) (hp/kW) (kW) (kW) LOOP
(kW)
Load Step Group 1
15 Air conditioning unit for the ESWEMS
(Note 1) Pumphouse (1 per division, 46 kW each) 480 46 kw 46 46
15 Electric heating for ESWEMS
(Note 1) Pumphouse (2 per division, 25 kW each) 480 50 kW 0 0
15 . o
(Note 2) Estimated auxiliary loads 480 25 kW 0 0
15 Estimated site-specific load contribution 9 KW 9 9
from transformer and cable losses
Subtotal of Additional Loads for Load Step Group 1 55 55
Additional Manually Connected Loads
N/A
(Note 3) ESWEMS Pump 480 50 hp 0 0
Total of Additional Manually Connected Loads 0 0

Notes:

1 Cooling systems are assumed to be operating and heating systems are off.
2. Auxiliary loads (sumps, screens, MOVs, etc.) not included in load totals due to infrequent operation and short

duration of operation.
3. The emergency makeup pump is not required to run during the first 72 hours of a DBE.
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8.2 OFFSITE POWER SYSTEM

This section of the U.S. EPR FSAR is incorporated by reference with the following supplements.
8.2.1 DESCRIPTION

8.21.1 Offsite Power
The U.S. EPR FSAR includes the following COL Item in Section 8.2.1.1.

A COL applicant that references the U.S. EPR design certification will provide site specific
information regarding the offsite transmission system and connections to the station
switchyard.

This COL Item is addressed as follows:
{The new BBNPP switchyard is connected to BBNPP by means of six overhead lines.

* One line connects to the plant main transformer and is used for power export to the
transmission system.

* Five lines connect to the auxiliary transformers. (Two emergency auxiliary transformers
(EATs) and three normal auxiliary transformers (NATS).)

In addition, two normally energized, physically independent transmission lines, designed and
located to minimize the likelihood of their simultaneous failure under operating, postulated
accident, and postulated adverse environmental conditions, including transmission line tower
failure or transmission line breaking; connect the BBNPP switchyard to the transmission system:

* One new approximately 0.7 mi (1.1 km) long overhead 500 kV transmission line connects
the new BBNPP switchyard to an expansion of the existing Susquehanna 500 kV Yard.

* One new approximately 1 mi (1.6 km) long overhead 500 kV transmission line connects
the new BBNPP switchyard to the new Susquehanna 500 kV Yard 2.

Design details of the two transmission lines that connect the BBNPP site to the PPL Electric
Utilities Corporation (PPL EU) transmission system are shown in the Table 8.2-1. Figure 8.2-1
depicts the 500 kV transmission configuration.

The two overhead 500 kV transmission lines provide the two preferred sources of power for the
reactor protection system and engineered safety features (ESFs) during normal, abnormal, and
accident conditions.

The BBNPP is located adjacent to the existing Susquehanna Steam Electric Station (SSES). As
such, significant transmission infrastructure exists within close proximity to the BBNPP site. In
addition to existing transmission infrastructure, PPL EU is developing a new 500 kV transmission
line from the existing Susquehanna 500 kV Yard to the Roseland Substation (New Jersey). This
expansion effort is a PJM Regional Transmission Expansion Plan (RTEP) initiative. PJM has
determined that this new 500 kV line is required for grid reliability in the region without
considering whether BBNPP is constructed. The in-service date of the Susquehanna-Roseland
RTEP project is planned for 2012 and is expected to precede the completion of construction of
the Bell Bend Nuclear Power Plant.
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BBNPP transmission lines will utilize one new on-site corridor and the on-site Susquehanna-
Roseland corridor for interconnections to the existing offsite power transmission grid as shown in
Figure 8.2-1. The two circuits are supported on separate structures, which are located to
minimize the likelihood of simultaneous failure. Transmission tower separation, line installation,
and clearances are consistent with the National Electrical Safety Code (NESC), PPL EU
transmission line standards, and PPL requirements. Basic tower structural design parameters,
including the number of conductors, height, materials, color, and finish are consistent with PPL
EU transmission line design standards. Adequate clearance will be provided to ensure that both
of these Bell Bend transmission lines will not be lost in the event of a tower collapse.

The transmission system consists of two circuits. One circuit consists of a single three-phase
500 kV transmission line from the BBNPP site to the Susquehanna 500 kV Yard via breakers CB
10 and 11. The other circuit consists of a single three-phase 500 kV transmission line from the
BBNPP site to the new Susquehanna 500 kV Yard 2 via breakers CB 7 and 8.

Both circuits in the new on-site corridor join the Susquehanna-Roseland corridor from the new
Susquehanna 500 kV Yard 2 as it turns east towards the existing Susquehanna 500 kV Yard, as
shown on Figure 8.2-1. The interconnection layout of these transmission lines is shown in
Figure 8.2-2.

The new BBNPP 500 kV Yard is described in Section 8.2.1.2, Station Switchyard. The
Susquehanna 500 kV Yard 2 is a new facility that will be located directly on the Susquehanna-
Roseland corridor. The existing Susquehanna 500 kV Yard will be expanded by two bays to
accommodate the new Bell Bend connection.}

The U.S. EPR FSAR includes the following COL Item in Section 8.2.1.1.

A COL applicant that references the U.S. EPR design certification will provide site specific
information regarding the communication agreements and protocols between the station and
the transmission system operator, independent system operator, or reliability coordinator and
authority. Additionally, the applicant will provide a description of the analysis tool used by the
transmission operator to determine, in real time, the impact the loss or unavailability of
various transmission system elements will have on the condition of the transmission system
to provide post-trip voltages at the switchyard. The information provided will be consistent
with information requested by the NRC in NRC generic letter 2006-02.

This COL Item is addressed as follows:

{The BBNPP site lies within the service territory of PPL EU. The plant will utilize transmission
facilities that are owned by PPL EU under the direction and control of the PJM interconnection.
PPL EU, PJM and the BBNPP operator will have formal agreements and protocols in place to
provide safe and reliable operation of the transmission system and equipment at BBNPP.

The addition of a large generating unit such as BBNPP requires completion of the PJM Large
Generator Interconnection Procedure (LGIP). This procedure requires that a series of
progressively refined studies be performed to identify transmission system modifications to
accommodate the new generating unit (combined turbine-generator-exciter) and the main step-
up transformer(s) including modifications to substations and switchyards.
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The reliability of the PJM system is continuously (real time) analyzed through PJM's Energy
Management System (EMS) program.

In accordance with PJM manual requirements that implement the Operating Agreement, both the
transmission owner (PPL EU) and PJM continuously monitor and evaluate grid reliability and
switchyard voltages. PPL EU will inform BBNPP of any grid instability or voltage inadequacies
and PPL EU will ensure local voltage requirements are maintained as required by the nuclear
plant. However, in special grid emergency situations warranting immediate, coordinated action,
PJM can initiate joint communications with the transmission owner (PPL EU), the marketing
operations center (PPL EnergyPlus generation dispatch center) and the plant operator (BBNPP).

BBNPP reviews the transmission system parameters and informs PPL EU (via the PPL
EnergyPlus generation dispatch center) immediately prior to initiating any plant activities that
may affect grid reliability. In addition, plant operators inform PPL EU via the generation dispatch
center of changes in generation ramp rates and notify them of any developing problems that may
impact generation.

A formal agreement between BBNPP and PJM will establish the requirements for transmission
system studies and analyses. PJM will perform short-term grid analyses to support BBNPP plant
startup and normal shutdown.

The agreement between PJM and BBNPP will establish protocols for the plant to remain
cognizant of grid vulnerabilities to make informed decisions regarding maintenance activities
critical to the electrical system. During plant operation, PPL EU and PJM continuously monitor
real-time power flows and assess contingencies. Operational planning studies are also
performed using offline power flow study tools to assess near term operating conditions under
varying load, generation, and transmission topology patterns.}

8.21.2 Station Switchyard
The U.S. EPR FSAR includes the following COL Item in Section 8.2.1.2:

A COL applicant that references the U.S. EPR design certification will provide site-specific
information for the switchyard layout design.

This COL Item is addressed as follows:

{The new 500 kV Gas Insulated Switchyard (GIS) for BBNPP has been designed and is sized
and configured to accommodate the output of BBNPP. The location of the BBNPP switchyard is
on the BBNPP site approximately 150 ft (46 m) east of BBNPP and approximately 2450 ft (747
m) west of the existing Susquehanna 500 kV Yard. The BBNPP 500 kV switchyard transmits
electrical power output from BBNPP to the transmission system. The BBNPP switchyard layout
and location are shown on Figure 8.2-1.

A single line of the BBNPP switchyard layout design, which incorporates a breaker-and-a-half /
double breaker scheme, is presented in Figure 8.2-2. Circuit breakers and disconnect switches
are sized and designed in accordance with IEEE Standard C37.06 (IEEE, 2000). All circuit
breakers are equipped with dual trip coils. The 500 kV circuit breakers in the switchyard are rated
according to the following criteria.
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» Circuit breaker continuous current ratings are chosen such that no single contingency in
the switchyard (e.g., a breaker being out for maintenance) will result in a load exceeding
100% of the nameplate continuous current rating of the breaker.

* Interrupting duties are specified such that no fault occurring on the system, operating in
steady-state conditions will exceed the breaker's nameplate interrupting capability.

* Momentary ratings are specified such that no fault occurring on the system, operating in
steady-state conditions will exceed the breaker's nameplate momentary rating.

* Voltage ratings are specified to be greater than the maximum expected operating voltage.

The design of the BBNPP switchyard includes six bays in the configuration. The breaker-and-a-
half/double breaker switchyard arrangement offers the operating flexibility to maintain the
anticipated operational containment integrity and other vital functions in the event of postulated
failures as described in the Failure Modes and Effects Analysis (FMEA) as described in Section
8.2.2.4 and U.S. EPR FSAR Section 8.2.2.4. Some of the specific advantages of the breaker-
and-a-half/double breaker switchyard arrangement are as follows.

» Any transmission line into the switchyard can be cleared either under normal or fault
conditions without affecting any other transmission line or bus.

» Either bus can be cleared under normal or fault conditions without interruption of any
transmission line or the other bus.

» Any circuit breaker can be isolated for maintenance or inspection without interruption of
any transmission line or bus.

* Afaultin a tie breaker or failure of the breaker to trip for a line fault results only in the loss
of its two adjacent circuits until it can be isolated by disconnect switches.

» Afaultin a bus side breaker or failure of the breaker to trip for a line or generator fault
results only in the loss of the adjacent circuits and the adjacent bus until it can be isolated
by disconnect switches.}

The U.S. EPR FSAR includes the following COL Item in Section 8.2.1.2:

A COL applicant that references the U.S. EPR design certification will provide site-specific
information regarding indication and control of switchyard components.

This COL Item is addressed as follows:

{A control house is located along the southern side of the switchyard to support control and
protection requirements. Control power for switchyard breakers required to connect or
disconnect any components of BBNPP from the transmission system is provided by the
switchyard batteries. There is a dual set of batteries located inside the switchyard control house.
Switchyard breakers operate to clear a fault on any auxiliary transformer and for system faults
such as bus differential or breaker failure. A switchyard DC system undervoltage condition is
alarmed in the main control room.

BBNPP owns and maintains all equipment in the Bell Bend 500kV Switchyard. However,
administrative control of the Bell Bend switchyard breakers is shared between BBNPP and PJM.
BBNPP has juridictional control and normally operates the breakers connecting the Main Step-
Up (MSU) transformers and the auxiliary transformers. PJM has jurisdictional control and has, via

BBNPP FSAR 8-9 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED




delegation to PPL EU, the ability to operate the breakers associated with the offsite (grid
interface) connecting transmission lines. One circuit from the BBNPP site to the existing
Susquehanna 500 kV Yard is via breakers CB 10 and 11. The other circuit is from the BBNPP site
to the new Susquehanna 500 kV Yard 2 via breakers CB 7 and 8. PJM will retain jurisdictional
control of these breakers to operate them as part of the network. Local tripping control is also
provided at the circuit breakers. Disconnect switches are provided to individually isolate each
circuit breaker from the switchyard bus and associated lines. This permits individual breaker
maintenance and testing to proceed while the switchyard and lines remain energized.}

The U.S. EPR FSAR includes the following COL Item in Section 8.2.1.2:

A COL applicant that references the U.S. EPR design certification will provide site-specific
information for the protective devices that control the switchyard breakers and other
switchyard relay devices.

This COL Item is addressed as follows:

{Electrical protection of circuits from the BBNPP switchyard is provided by a primary and
secondary relaying scheme. The current input for the protective relaying schemes come from
separate sets of circuit breaker bushing current transformers. Also, the control power for all
primary and secondary relaying schemes is supplied from separate switchyard 125 VDC battery
systems. These schemes are used for the following:

+ The scheme is used on each of the two 500 kV transmission circuits from the BBNPP 500
kV switchyard to the transmission system. The potential input for the primary and
secondary transmission circuit relaying systems is supplied from fused branch circuits
originating from a set of coupling capacitor potential devices connected to the associated
transmission circuit.

* The switchyard buses use a primary and backup scheme. The zone of protection of each
500 kV bus includes all the 500 kV circuit breakers adjacent to the protected bus.

* Line protection for the MSU transformer and auxiliary transformers use primary and
backup schemes.

In addition to the above described relaying systems, each of the 500 kV circuit breakers has an
associated circuit breaker failure relaying system. A circuit breaker failure scheme is provided in
the unlikely event a circuit breaker fails to trip. If a breaker fails to open coincident with a line
fault, tripping of all breakers adjacent to the failed breaker will occur. If the failed breaker is the
center breaker, then only the remaining bus breaker will trip resulting in the undesired loss of the
other line in the bay. If the failed breaker is a bus breaker then all breakers connected to the
same bus will be tripped. Assuming all bus and center breakers are normally closed, the
remaining bus will continue to supply all line elements.

For the two 125 VDC batteries located in the BBNPP 500 kV switchyard control house, each
battery has its own battery charger. Each battery charger is connected to separate 480 VAC
distribution panel boards also located in the control house. The switchyard 125 VDC battery
systems are independent of the BBNPP non-Class 1E and Class 1E battery systems.}
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8.2.1.3 Transformer Area

No departures or supplements.

8.2.2 ANALYSIS

No departures or supplements.

8.2.21 Compliance with GDC 2

No departures or supplements.

8.2.2.2 Compliance with GDC 4

No departures or supplements.

8.2.2.3 Compliance with GDC 5

No departures or supplements.

8.2.24 Compliance with GDC 17
The U.S. EPR FSAR includes the following COL Item in Section 8.2.2.4:

A COL applicant that references the U.S. EPR design certification will provide a site-specific
grid stability analysis. The results of the analysis will demonstrate that:

* The PPS is not degraded below a level that will activate EPSS degraded grid protection
actions after any of the following single contingencies:

* U.S. EPR turbine generator trip.

* Loss of the largest unit supplying the grid.

* Loss of the largest transmission circuit or inter-tie.
* Loss of the largest load on the grid.

» The transmission system will not subject the reactor coolant pumps to a sustained
frequency decay of greater than 3.5 Hz/sec as bounded by the decrease in reactor
coolant system flow rate transient and accident analysis described in Section 15.3.2.

This COL Item is addressed as follows:

{There are two relevant PJM studies for BBNPP; the preliminary Susquehanna 1600 MW R01-
RO2 Impact Study Re-study (SIS) (PJM, 2008a), and the PJM Preliminary Stability Study for R0O1-
R02, Bell Bend 500KV-1800MW (PSS) (PJM, 2008b.) The SIS projects the impact that BBNPP
will have on the network, including a brief description of the transmission lines and substations,
and the PSS shows that PJM Generator Interconnection for Bell Bend is stable for all tested
conditions.

The SIS states that the work will include the construction of a new 500kV switchyard, called
Susquehanna 500kV Yard 2. The yard will be breaker and a half construction with a north and
south bus, and room for 4 bays. The initial construction of this yard will be bay 2 and bay 4 with
bay 3 left vacant and bay 1 left open for expansion. The yard will have three new 500 kV circuit
breakers, associated disconnect switches, and controls.
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For both transmission lines from the BBNPP Switchyard, PPL EU will:

» Design and construct 500 kV single-circuit transmission lines on self-supporting steel H-
frame poles, each line, within a 200 ft R/W, using bundled 1590 ACAR. These lines will be
dedicated to only the Bell Bend NPP facility. These lines will be part of the PPL EU 500kV
network, and may have network flows on them. One of the lines will be connected into
the existing Susquehanna 500kV Yard at Bay 7N and the other line will be connected into
the new Susquehanna 500kV Yard 2 at Bay 4S.

* Install one "z-inch extra-high-strength (EHS) overhead ground wire (OHGW) on each
transmission line.

» Install one fiber optic grounding wire (OPGW) on each transmission line.

The Susquehanna-Roseland 500kV line, which is planned to be completed and in service during
2012, will be split near the new Susquehanna 500kV Yard 2, and re-terminate the lines into the
yard. The renamed Roseland-Susquehanna 500kV Yard 2 line will terminate at Susquehanna
500kV Yard 2 at bay position 2N. The renamed Susquehanna 500kV Yard 2-Susquehanna
500kV Yard line will terminate at Susquehanna 500kV Yard #2 bay position 2S.

The PSS analyzed transient stability for the addition of BBNPP, and was prepared using PJM's
planning criteria against the 2012 summer peak conditions load and identified design
requirements necessary to maintain the reliability of the transmission system. The criteria are
based upon PJM planning procedures, NERC Planning Standards, and RFC Regional Reliability
Council planning criteria. For the stability analysis, light loading (50% of peak loading) is utilized
with maximum generation.

The computer analysis was performed using the Siemens Power Technology International PSS/
E Software. The analysis examined conditions involving loss of the largest generating unit, loss
of the most critical transmission line, and multiple facility contingencies.

The results of the PSS conclude that with the additional generating capacity of BBNPP, the
transmission system remains stable under the analyzed conditions, preserving the grid
connection, and supporting the normal and shutdown requirements of BBNPP. There is no
restrictive output limitation during an outage of any one of the two transmission lines to BBNPP
switchyard. However, there is a design requirement identified in the PSS to ensure that the
system remains stable (i.e., dual-pilot relaying on the renamed Susquehanna Yard 2 -
Lackawanna line; both clearing times are contingent on the breaker at Lackawanna having right-
of-way to close first; a reclose time of 1 second is adequate at Lackawanna.) Lackawanna will
be the first substation on the renamed Susquehanna Yard 2 - Roseland 500 kV circuit.

The stability results tabulated in the conservative Bell Bend 1926MW (1800MW plus 7% stability
margin) Output Fault List and Results, show that PJM Generator Interconnection R02 "Bell Bend
500kV" is stable for all tested conditions. With the additional generating capacity of BBNPP, the
transmission system remains stable under the analyzed conditions, preserving the grid
connection, and supporting the normal and shutdown requirements of BBNPP.

The studies were run under 2012 light load conditions, with Bell Bend at 1800 MW (versus the
nominal 1600 MW) plus an additional 7% stability margin (1926 MW), and the new
Susquehanna-Roseland 500kV line operating in service. The PJM Stability Study does not
address the underlying need for the Susquehanna/Roseland 500 kV transmission line, which has
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been separately and independently determined as part of the PJM Regional Transmission
Expansion Plan (RTEP) process.

Based on the stability results, PJM recommended the installation of a maximum of a 3-cycle (3~)
breakers at both ends of the renamed Susquehanna-Lackawanna 500KV line to provide
adequate instantaneous clearing times.

Summary of PJM recommendations:

* 3-cycle (or less) breakers should be used at both ends of the line
* Dual-pilot relaying shall be required on the line

» Lackawanna breaker(s) shall have reclosing right of way on the Susquehanna-
Lackawanna 500kV line

* Avreclosing delay time of one (1) second (60~) or longer shall be used at Lackawanna

These modifications will be completed prior to initial fuel load.

A PJM System Voltage Study (PJM, 2008c) was performed to determine the maximum and
minimum voltage that the switchyard can maintain without any reactive support from BBNPP.
This study was prepared using the same reliability planning criteria as was used on the SIS.

The load flow was performed using the Siemens PSS/E Software. The load flow analysis
included the station service loads and multiple system contingencies.

The results of the study conclude that the new BBNPP substation 500 kV bus will operate within
an acceptable voltage range to satisfy PJM Planning Reliability Criteria for pre-contingency
conditions (500-550 kV) and post contingency conditions (5% max. voltage drop) with BBNPP at
zero reactive power output. During periods of instability, or analyzed switchyard voltages lower
than the allowed limit, the transmission operator will notify BBNPP. The PJM dispatcher can
request synchronous condensers and switchable capacitors to be placed in service, have
operating generators supply maximum MVAR or if needed manual load dump can be initiated.

The U.S. EPR FSAR states that the plant will operate with a transmission system operating
voltage range of +10%. However, based on the above site specific voltage study BBNPP may be
designed to operate with a -5%, +10% transmission system operating voltage range.

Based on the results of the System Voltage Study the grid will not be lost due to the loss of the
largest generating unit (i.e., BBNPP) or the loss of the most critical transmission line or the loss
of the largest load on the grid. The design (i.e., tap range & bus regulation voltage setting) of the
on-load tap changers for each EAT will ensure that the downstream EPSS 6.9 kV buses will have
sufficient voltage to preclude the degraded voltage protection scheme from separating the buses
from the preferred power source as described in the Section 8.3.1.1.3. A site specific system
calculation will be performed to confirm the design. See Chapter 16, Technical Specifications,
Section 3.3.1, for specific degraded grid voltage protection settings.

Grid availability in the region over the past 26 years was also examined and it was confirmed that
the system has been highly reliable with minimal forced outages. During these component
outage occurrences, the transmission grid as a whole has remained available for 99.65% of the
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time, with a total of 47 forced outages in the 26 year period. Most of the outages were due to
relay failure, system design, or unknown. Past operating experience, covering outage
information over a span of approximately 26 years, from June 8, 1981 through June 27, 2007,
which includes the North-East Black Out of August 14 2003, was reviewed and the conclusion
was that:

“None of the outages involved the simultaneous outage of more than one line, and the
BBNPP switchyards will be designed so that the loss of a single line does not result in the
loss of power to the station auxiliary power system."

During the North-East Black Out, the transmission grid transient in the afternoon of August 14
2003, the Susquehanna Steam Electric Station did not experience any adjustment in MW load on
either unit. Voltage fluctuations were observed on the grid, but they did not result in any
equipment problems and both Susquehanna units responded as designed.

Failure rates of individual transmission facilities are low in the PPL territory. PPL EU has and
continues to adhere to the planning and design standards associated with the bulk electric
system, as identified in the PPL EU Reliability Principles & Practices, and other PJM documents.
Consequently, the system is expected to be resilient to individual equipment outages cascading
into widespread system interruptions. A review of grid performance verifies that there have been
no widespread system interruptions. As viewed from the Susquehanna 500 kV switchyard, the
PPL EU transmission grid has been available for the entire period.

The PJM grid is maintained at 60Hz. During a system underfrequency condition, the Mid-Atlantic
region of PJM utilizes an automatic load shedding scheme which will drop load by 30% in 10%
increments at 59.3 Hz, 58.9 Hz & 58.5 Hz.

A review of the grid frequency data for the last five years (including the Northeast Blackout of
2003) indicates that the frequency decay rate during disturbances on the Eastern Interconnection
(which includes the PJM Territory) was much less than 3.5 Hz/sec. The worst decay rate during
this time period occurred on August 4, 2007 and was due to a 4400 MW generation loss event
(largest disturbance on the grid since August 2003 blackout) which resulted in a sustained decay
rate of 0.015 Hz/sec. As such, the reactor coolant pumps are not expected to be subject to a
sustained frequency decay greater than 3.5 Hz/sec.}

Failure Mode and Effects Analysis

A failure mode and effects analysis (FMEA) of the switchyard components has been performed
to assess the possibility of simultaneous failure of both circuits {for BBNPP} as a result of single
events, such as a breaker not operating during fault conditions, a spurious relay trip, a loss of a
control circuit power supply, or a fault in a switchyard bus or transformer. This FMEA
supplements the FMEA described in U.S. EPR FSAR Section 8.2.2.4.

{The 500 kV components addressed in this FMEA are as follows and a summary of the results of
this FMEA is presented below.

* Transmission System

¢ Transmission Line Towers
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» Transmission Line Conductors
»  Switchyard

+ Circuit Breakers

» Disconnect Switches

Transmission System Failure Mode Evaluation

The offsite power system is comprised and built with sufficient capacity and capability to assure
that design limits and design conditions, relative to the offsite power system, maintain their
function in the event of a postulated accident.

The transmission system associated with the BBNPP is designed and constructed so that no loss
of offsite power to the 500 kV switchyard is experienced with the occurrence of any of the
following events:

¢ Loss of one transmission circuit.
* Loss of a generator.

* A three phase fault occurring on any transmission circuit which is cleared by primary or
backup relaying.

The offsite electric power system supplies at least two preferred power circuits, which will be
physically independent and separate. These lines are located to minimize the likelihood of
simultaneous failure under operating, postulated accident, and postulated adverse environmental
conditions. The preferred circuits are maintained and connected to the BBNPP MSU transformer
via the BBNPP switchyard. Transmission tower separation, line installation, and clearances are
consistent with the National Electrical Safety Code (NESC), PPL EU transmission line standards,
and PPL requirements. Basic tower structural design parameters, including the number of
conductors, height, materials, color, and finish are consistent with PPL EU transmission line
design standards. Adequate clearance will be provided to ensure that both of the Bell Bend
transmission lines will not be lost in the event of a tower collapse.

Transmission Line Tower Failure Mode Evaluation

The new 500 kV towers will be designed and constructed using a transmission tower design
providing clearances consistent with the National Electrical Safety Code and PPL EU
engineering standards. All existing towers are grounded with either ground rods or a
counterpoise ground system. All new transmission line towers will be constructed and grounded
using the same methods.

Failure of any one tower or failure of any components within the tower structure, due to structural
failure can at most disrupt and cause a loss of one of the preferred sources of power. The
spacing of the towers between adjacent preferred sources is designed to account for the collapse
of any one tower.

Therefore, one of the preferred sources of power remains available for this failure mode in order
to maintain the containment integrity and other vital functions in the event of a postulated
accident.
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Transmission Line Conductors Failure Mode Evaluation

The new transmission lines will have conductors sized to accommodate the load as a result of
BBNPP.

All new 500 kV BBNPP transmission lines will be constructed to provide clearances consistent
with the National Electrical Safety Code and PPL EU engineering standards. At a minimum, all
clearances for high voltage conductors above grade would be equal to or exceed present
clearance minimums. High voltage conductor span lengths are engineered to establish the
required installation guidelines and tensions for each line. All transmission lines crossing roads
and railroads comply with the National Electrical Safety Code and PPL EU engineering
standards. The new transmission lines are configured to preclude the crossing of other preferred
transmission lines.

Failure of a line conductor would cause the loss of one preferred source of power but not more
than one. Therefore, a minimum of one preferred source of power remains available for this
failure mode in order to maintain the containment integrity and other vital functions in the event of
a postulated accident.

Switchyard Failure Mode Evaluation

As indicated in Figure 8.2-2, a breaker-and-a-half/double breaker scheme is incorporated in the
design of the 500 kV switchyard at BBNPP. The 500 kV equipment in the BBNPP switchyard is all
rated and positioned within the bus configuration according to the following criteria in order to
maintain load flow incoming and outgoing from the unit.

« Equipment continuous current ratings are chosen such that no single contingency in the
switchyard (e.g., a breaker being out of for maintenance) can result in current exceeding
100% of the continuous current rating of the equipment.

* Interrupting duties are specified such that no faults occurring on the system exceed the
equipment rating.

* Momentary ratings are specified such that no fault occurring on the system exceeds the
equipment momentary rating.

* Voltage ratings are specified to be greater than the maximum expected operating voltage.
The breaker-and-a-half /double breaker switchyard arrangement offers the following flexibility to
control a failed condition within the switchyard.

* Any faulted transmission line into the switchyard can be isolated without affecting any

other transmission line.

» Either bus can be isolated without interruption of any transmission line or other bus.

+ Each battery charger is connected to a separate 480 VAC distribution panel board located
in the 500 kV switchyard control house.

* A primary and secondary relaying system is included on each of the two 500 kV
transmission circuits from the 500 kV switchyard to the PPL EU grid. All relay schemes
used for protection of the offsite power circuits and the switching station equipment
include primary and backup protection features. All breakers are equipped with dual trip
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coils. Each protection system (i.e. primary and secondary) which supplies a trip signal is
connected to a separate trip coil.

Instrumentation and control circuits of the main power offsite circuit (i.e., normal preferred
power circuit) are separated from the instrumentation and control circuits for the reserve
power circuit (i.e., alternate preferred power circuit).

The current input for the primary and secondary transmission circuit relaying systems is
supplied from separate sets of circuit breaker bushing current transformers. The potential
input for the primary and secondary transmission circuit relaying systems is supplied from
fused branch circuits originating from a set of coupling capacitor potential devices
connected to the associated transmission circuit. The control power for the primary and
secondary transmission circuit relaying systems is supplied from separate 125 VDC
systems.

A primary and secondary relay system is included for protection of each of the 500 kV
switchyard buses. The zone of protection of each 500 kV bus protection system includes
all the 500 kV circuit breakers adjacent to the protected bus. The primary relay is the
instantaneous high impedance type used for bus protection to detect both phase and
ground faults. This relay is connected in conjunction with auxiliary relays and pilot wire
relaying to form a differential protection, instantaneous auxiliary tripping, and transferred
tripping relay system. The secondary relay system is a duplicate of the primary relay
system.

The current input for the primary and secondary 500 kV bus relaying systems is supplied
from separate sets of 500 kV circuit breaker bushing current transformers. The control
power for the relay terminals of the primary and secondary 500 kV bus relaying systems
located in the 500 kV switchyard control house is supplied from separate 125 VDC
systems.

A primary and secondary relay system is included on each of the circuits connecting the
MSU transformer, EATs and the NATs to their respective 500 kV switchyard position. The
zone of protection of the MSU associated circuit connection protection system includes
two associated circuit breakers at the 500 kV switchyard and the high side bushings of
the MSU transformer. The secondary relay system is a duplicate of the primary relay
system.

The current input for the primary and secondary windings of the MSU transformer, EATs
and the NATSs relaying systems are supplied from separate sets of bushing current
transformers. The current transformers are located on the circuit breaker bushings. The
control power for the relay terminals of the primary and secondary MSU circuit connection
relaying systems located in the 500 kV switchyard control house are supplied from
separate 125 VDC systems. The control power for the relay terminals of the primary and
secondary MSU, EATs and NATs circuit connection relaying systems located at the unit
relay room are supplied from the respective unit non-Class 1E 125 VDC battery systems.

Spurious relay operation within the switchyard that trips associated protection system will
not impact any primary or backup system.

Therefore, a minimum of one preferred source of power remains available for this failure mode in
order to maintain the containment integrity and other vital safety functions in the event of a
postulated accidents.
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Circuit Breakers Failure Mode Evaluation

As indicated in Figure 8.2-2, a breaker-and-a-half/double breaker scheme is incorporated in the
design of the 500 kV switchyard for BBNPP. The 500 kV equipment in the BBNPP switchyard is
rated and positioned within the bus configuration according to the following criteria in order to
maintain load flow incoming and outgoing from the units:

» Circuit breaker continuous current ratings are chosen such that no single contingency in
the switchyard (e.g., a breaker being out for maintenance) will result in a load exceeding
100% of the nameplate continuous current rating of the breaker.

* Interrupting duties are specified such that no fault occurring on the system, operating in
steady-state conditions will exceed the breaker's nameplate interrupting capability.

» Any circuit breaker can be isolated for maintenance or inspection without interruption of
any transmission line or bus.

« Afaultin a tie breaker or failure of the breaker to trip for a line or generator fault results
only in the loss of its two adjacent circuits until it can be isolated by disconnect switches.

» Afaultin a bus side breaker or failure of the breaker to trip for a line fault results only in
the loss of the adjacent circuits and the adjacent bus until it can be isolated by disconnect
switches.

In addition to the above described 500 kV BBNPP switchyard relaying systems, each of the 500
kV circuit breakers has a primary protection relay and a backup protection relay. The primary
relay scheme is a different type or manufacture from the backup relay scheme. This will preclude
common mode failure issues with the protection relays.

The primary and secondary relaying systems of the 500 kV switchyard for BBNPP are connected
to separate trip circuits in each 500 kV circuit breaker. The control power provided for the 500 kV
switchyard primary and secondary relaying protection and breaker control circuits consists of two
independent 125 VDC systems.

Disconnect Switch(s) Failure Mode Evaluation

All 500 kV disconnect switches have a momentary rating higher than the available short circuit
level. The disconnect switches are implemented into the switchyard configuration to isolate main
power circuits that have failed or are out for maintenance. A failure of the disconnect switch
results only in the loss of the circuit in which it is connected.

Therefore, a minimum of one preferred source of power remains available for this failure mode in
order to maintain the containment integrity and other vital functions in the event of a postulated
accident.

FMEA Conclusion

The finding of this FMEA analysis is that there are no single failures which would cause the
simultaneous failure of both preferred sources of offsite power.}
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8.2.25 Compliance with GDC 18
The U.S. EPR FSAR includes the following COL Item in Section 8.2.2.5:

A COL applicant that references the U.S. EPR design certification will provide site-specific
information for the station switchyard equipment inspection and testing plan.

This COL Item is addressed as follows:

{BBNPP shall establish an interface agreement that defines the interfaces and working
relationships between various BBNPP site organizations and PPL EU to ensure the offsite power
design requirements for the transmission facilities are maintained. The agreement defines the
necessary requirements for maintenance, calibration, testing and modification of transmission
lines, switchyards, and related equipment. The BBNPP and PPL EU are responsible for
maintaining these facilities.

For performance of maintenance, testing, calibration and inspection, PPL EU follows its own field
test manuals, vendor manuals and drawings, industry's maintenance practices and conforms to
Federal Energy Regulatory Commission (FERC) requirements.

Regular inspections and maintenance of the transmission system and right-of-ways will be
performed. These inspections and maintenance include patrols and maintenance of transmission
line hardware on a periodic and as-needed basis. Vegetation maintenance may include tree
trimming and application of herbicide. Maintenance of the proposed onsite corridors including
vegetation management will be implemented under the existing PPL EU Corporation procedure.

Multiple levels of inspection and maintenance are performed on the BBNPP and Susquehanna
500 kV switchyards and associated switchyards and substation facilities. This inspection and
maintenance is as follows.

»  Walk-throughs and visual inspections of each substation facility including, but not limited
to, reading and recording of equipment counters and meters, site temperature and
conditions, and equipment condition.

* Protective relay system testing including: visual inspection, calibration, verification of
current and potential inputs, functional trip testing, and correct operation of relay
communication equipment.

* Qil sampling of large power transformers. Qil samples are evaluated through the use of
gas chromatography and dielectric breakdown analysis.

» Several levels of inspection and maintenance for power circuit breakers. The frequency of
each is a function of the number of operations and the length of time in service. External
visual inspection of all functional systems, an external test, and an internal inspection.
Frequency of the various maintenance/inspection efforts is based on a combination of
operating history of the type of breaker, industry practice and manufacturer's
recommended maintenance requirements.

* Thermography is used periodically to identify potential thermal heating issues on buses,
conductors, connectors and switches.
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Maintenance of battery systems is performed on a periodic basis, including quarterly visual
inspections, verification of battery voltage, and verification of electrolyte level.}
8.2.2.6 Compliance with GDC 33, GDC 34, GDC 35, GDC 38, GDC 41, and GDC 44

No departures or supplements.

8.2.2.7 Compliance with 10 CFR 50.63
The U.S. EPR FSAR includes the following COL Item in Section 8.2.2.7:
A COL applicant that references the U.S. EPR design certification will provide site-specific

information that identifies actions necessary to restore offsite power and use available nearby
power sources when offsite power is unavailable.

This COL Item is addressed as follows:

{BBNPP} includes two redundant SBO diesel generators designed in accordance with 10 CFR
50.63 (CFR, 2008) and Regulatory Guide 1.155 (NRC, 1988). As such, reliance on additional
offsite power sources as an alternate AC source is not required. {There are no special local
power sources that can be made available to re-supply the plant following a loss of the offsite
power grid or an SBO. However, actions necessary to restore offsite power are identified as part
of the procedures and training provided to plant operators for an SBO event described in
response to the COL Item in Section 8.4.2.6.4.}

8.2.2.8 Compliance with 10 CFR 50.65(a)(4)

No departures or supplements.

8.2.29 Compliance with Branch Technical Position 8-3

No departures or supplements.

8.2.2.10 Compliance with Branch Technical Position 8-6

No departures or supplements.

8.2.3 REFERENCES
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Table 8.2-1 {PPL EU Transmission System Circuits Connected to the BBNPP Site}

NOMINAL APPROXIMATE
TERMINATION VOLTAGE THERMAL CAPACITY LENGTH
Susquehanna Yard 500 kV 4260 MVA 0.7 mi (1.1 km)
Susquehanna Yard 2 500 kV 4260 MVA 1 mi (1.6 km)
BBNPP FSAR 8-22 Rev. 0
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8.3 ONSITE POWER SYSTEMS

This section of the U.S. EPR FSAR is incorporated by reference with the following supplements.
8.3.1 ALTERNATING CURRENT POWER SYSTEMS

8.3.1.1 Description

Additional site-specific loads powered from the station EDGs are specified in Table 8.1-1, 8.1-2,
8.1-3, and 8.1-4. These tables supplement the information provided in U.S. EPR FSAR Tables
8.3-4, 8.3-5, 8.3-6, and 8.3-7.

Figure 8.3-1 {(Sheets 1 through 3)]and Figure 8.3-2 {(Sheets 1 through 4)} provide the site-
specific modifications to the Emergency and Normal Power Supply Systems Single Line
Diagrams. This information supplements U.S. EPR FSAR Figures 8.3-2 and 8.3-3. The site-
specific load analysis is provided in Section 8.1.3.

Table 8.3-1 identifies the nominal ratings for the site-specific AC power system main
components. This information supplements U.S. EPR FSAR Table 8.3-1.

8.3.1.11 Emergency Power Supply System

{There are four divisions of Emergency Power Supply System (EPSS) distribution equipment for
the Essential Service Water Emergency Makeup System (ESWEMS). The EPSS distribution
equipment for the ESWEMS is located in the Seismic Category ESWEMS Pumphouse. Each
division is functionally independent and physically separated from the other divisions.}

The site-specific EPSS distribution switchgear and nominal bus voltages are shown in Table 8.3-
2. This information supplements U.S. EPR FSAR Table 8.3-2.

8.3.1.1.2 Normal Power Supply System

{The site-specific Normal Power Supply System major distribution switchgear and nominal bus
voltages are shown in Table 8.3-3. U.S. EPR Table 8.3-3 lists 6.9 kV switchgear 33BBH for Train
3 and 6.9 kV switchgear 34BBHH for Train 4. Additional 6.9 kV switchgear 33BBG for Train 3
and 6.9 kV switchgear 34BBG for Train 4 are provided in the site-specific design. U.S. EPR
FSAR Table 8.3-3 also lists 480 V AC Load Centers 35BFB, 35BFC, and 35BFD for Train 5, and
480 V AC Load Centers 36BFB, 36BFC, and 36BFD for Train 6. These 480 V AC Load Centers
are not utilized in the site-specific design. The standard cooling tower electrical distribution
system is a conceptual design, and the changes are not considered a departure. The changes
resulted from BBNPP utilizing natural draft cooling towers rather than mechanical draft cooling
towers.}

8.3.1.1.3 Electric Circuit Protection and Coordination

No departures or supplements.

8.3.1.1.4  Onsite AC Power System Controls and Instrumentation

No departures or supplements.
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8.3.1.1.5 Standby AC Emergency Diesel Generators
The U.S. EPR FSAR includes the following COL ltem in Section 8.3.1.1.5:
A COL applicant that references the U.S. EPR design certification will monitor and maintain

EDG reliability during plant operations to verify the selected reliability level target is being
achieved as intended by RG 1.155.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall monitor and maintain EDG reliability to verify the selected reliability
level goal of 0.95 is being achieved as intended by Regulatory Guide 1.155 (NRC, 1988).
8.3.1.1.6 Station Blackout Diesel Generators

No departures or supplements.

8.3.1.1.7 Electrical Equipment Layout
The electrical distribution system components distribute power to safety-related and non-safety-
related site-specific loads located throughout the site.

{The EPSS 6.9kV switchgear, 480 V AC load centers, MCCs and distributions transformers for
the ESWEMS are located in the applicable division of the ESWEMS Pumphouse.}

8.3.1.1.8 Raceway and Cable Routing

{The EPSS distribution equipment for the ESWEMS is located in the applicable division of the
Seismic Category | ESWEMS Pumphouse.}

8.3.1.1.9 Independence of Redundant Systems

{The EPSS distribution equipment for the ESWEMS is located in the applicable division of the
Seismic Category | ESWEMS Pumphouse.}

8.3.1.1.10 Containment Electrical Penetrations

No departures or supplements.

8.3.1.1.11 Criteria for Class 1E Motors

No departures or supplements.

8.3.1.1.12 Overload Protection for Motor-Operated Safety-Related Valves

No departures or supplements.

8.3.1.1.13 Physical Identification of Safety-Related Equipment

No departures or supplements.

8.3.1.2 Analysis

No departures or supplements.No departures or supplements.
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8.3.1.21 Compliance with GDC 2

No departures or supplements.

8.3.1.2.2 Compliance with GDC 4

No departures or supplements.

8.3.1.2.3 Compliance with GDC 5

No departures or supplements.

8.31.24 Compliance with GDC 17

{The EPSS distribution equipment for the ESWEMS is located in the applicable division of the
Seismic Category | ESWEMS Makeup Water System Pumphouse. Each division is functionally
independent and physically separated from the other divisions.}

8.3.1.2.5 Compliance with GDC 18

No departures or supplements.

8.3.1.2.6  Compliance with GDC 33, GDC 34, GDC 35, GDC 38, GDC 41, and GDC 44

No departures or supplements.

8.3.1.2.7 Compliance with GDC 50

No departures or supplements.

8.3.1.2.8 Compliance with 10 CFR 50.63

No departures or supplements.

8.3.1.2.9 Compliance with 10 CFR 50.65(a)(4)

No departures or supplements.

8.3.1.2.10 Compliance with 10 CFR 50.34 Pertaining to Three Mile Island Action Plan
Requirements

No departures or supplements.

8.3.1.2.11 Branch Technical Positions

No departures or supplements.

8.31.3 Electrical Power System Calculations and Distribution System Studies for AC
Systems

The U.S. EPR FSAR includes the following conceptual design information in Section 8.3.1.3:

Figure 8.3-4 [[Typical Station Grounding Grid]]

The conceptural design information is addressed as follows:
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{The above U.S. EPR FSAR conceptual design information, including U.S. EPR FSAR Figure
8.3-4, is applicable to BBNPP}.

8.3.2 DC POWER SYSTEMS

No departures or supplements.

8.3.3 REFERENCES

{NRC, 1988. Station Blackout, Regulatory Guide 1.155, U.S. Nuclear Regulatory Commission,
August 1988. }
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Table 8.3-1 {BBNPP Onsite AC Power System Component Data Nominal Values}

Component Nominal Ratings
EPSS Distribution Drv Tvpe
Transformers v yp

31BMTO05, 32BMT05
33BMTO05, 34BMT05

60 Hz, three phase, air cooled
6.9 kV to 480 Vac
500 kVA

Table 8.3-2 {BBNPP EPSS Switchgear, Load Center, and Motor Control Center
Numbering and Nominal Voltage}

. Switchgear / Load
Nomlrllzlv\;(laltage Division Centgrl Motor
Control Center
480 V MCC 1 31BNG01(
480 V MCC 2 32BNG01("
480 V MCC 3 33BNG01("
480 V MCC 4 34BNG01("

(1) Equipment located in the respective divisional pump bay of the ESWEMS Pumphouse.

Table 8.3-3 {BBNPP Normal Power Supply System Switchgear Numbering and

Nominal Voltage }

Nominal Voltage

Train Bus / Load Center
Level
6.9 kV Switchgear 3 33B8BG(M
6.9 kV Switchgear 4 34BBG("

(1) Equipment located in the Circulating Water Makeup Intake Structure. U.S. EPR FSAR Table 8.3-3 lists 6.9 kV
switchgear 33BBH for Train 3 and 6.9 kV switchgear 34BBHH for Train 4. Additional 6.9 kV switchgear 33BBG and
34BBG are provided in the site-specific design for Trains 3 and 4, respectively.
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Figure 8.3-2 {BBNPP Normal Power Supply System Single Line Drawing}
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8.4  STATION BLACKOUT

This section of the U.S. EPR FSAR is incorporated by reference with the following supplements.

8.4.1 DESCRIPTION

No departures or supplements.

8.4.1.1 Station Blackout Diesel Generators

No departures or supplements.

8.4.1.2 Generator

No departures or supplements.

8.41.3 Alternate AC Power System Performance
The U.S. EPR FSAR includes the following COL Item in Section 8.4.1.3:

A COL applicant that references the U.S. EPR design certification will provide site-specific
information that identifies any additional local power sources and transmission paths that
could be made available to resupply the power plant following a LOOP.

This COL Item is addressed as follows:

{The BBNPP switchyard will be located less than 1 mi (1.6 km) from the existing Susquehanna
500 kV switchyard. There are no special local sources that can be made available to re-supply
power to the plant following loss of a grid or an SBO. However, the normal connections will
include one 500 kV connection to the existing Susquehanna 500 kV switchyard and one
connection to the new Susquehanna 500 kV Yard 2.}

8.41.4 Periodic Testing

No departures or supplements.

8.4.2 ANALYSIS

No departures or supplements.

8.4.2.1 10 CFR 50.2-Definitions and Introduction

No departures or supplements.

8.4.2.2 10 CFR 50.63-Loss of All Alternating Current Power

No departures or supplements.

8.4.2.3 10 CFR 50.65-Requirements for Monitoring the Effectiveness of Maintenance of
Nuclear Power Plants

No departures or supplements.
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8.4.24 Appendix A to 10 CFR 50, GDC for Nuclear Power Plants

No departures or supplements.

8.4.2.5 RG 1.9-Application Testing of Safety-Related Diesel Generators in Nuclear
Power Plants-Revision 4

No departures or supplements.

8.4.2.6 RG 1.155-Station Blackout

No departures or supplements.

8.4.2.6.1 RG 1.155 C.3.1-Minimum Acceptable Station Blackout Duration Capability
(Station Blackout Coping Duration)

U.S. EPR FSAR Section 8.4.2.6.1 includes the following option:

A COL applicant based on site-specific coping durations may propose coping durations less
than eight hours.

This option is addressed as follows:

{PPL Bell Bend, LLC} utilizes the coping analysis described in Section 8.4.2.6 of the U.S. EPR
FSAR.

8.4.2.6.2 RG 1.155 C.3.2-Evaluation of Plant-Specific Station Blackout Capability
(Station Blackout Coping Capability)

No departures or supplements.

8.4.2.6.3 RG 1.155 C.3.3-Modification to Cope with Station Blackout — AAC Power
Sources

No departures or supplements.

8.4.2.6.4 RG 1.155 C.3.4-Procedures and Training to Cope with Station Blackout
(Procedures and Training)

The U.S. EPR FSAR includes the following COL Item in Section 8.4.2.6.4:

A COL applicant that references the U.S. EPR design certification will address the RG 1.155
position C.3.4 related to procedures and training to cope with SBO.

This COL Item is addressed as follows:

Procedures and training shall include the operator actions necessary to cope with a station
blackout for at least the duration determined according to Regulatory Guide 1.155 (NRC, 1988),
Regulatory Position C.3.1, and shall include the operator actions necessary to restore normal
decay heat removal once AC power is restored.

Procedures shall be integrated with the plant-specific technical guidelines and emergency
operating procedure program, consistent with Supplement 1 to NUREG-0737 (NRC, 1982). The
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task analysis portion of the emergency operating procedure program shall include an analysis of
instrumentation adequacy during a station blackout.

8.4.2.7 Quality Assurance

No departures or supplements.

8.4.3 REFERENCES

{NRC, 1982. Supplement 1 to NUREG-0737 — Requirements for Emergency Response
Capability, Generic Letter 82-33, U.S. Nuclear Regulatory Commission, December 1982.

NRC, 1988. Station Blackout, Regulatory Guide 1.155, U.S. Nuclear Regulatory Commission,
August 1988.}
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