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3.0 DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT AND SYSTEMS

This chapter of the U.S. EPR FSAR is incorporated by reference, with the departures and
supplements described in the following sections.

3.1 COMPLIANCE WITH NUCLEAR REGULATORY COMMISSION GENERAL DESIGN
CRITERIA

This section of the U.S. EPR FSAR is incorporated by reference, with the supplements described
in the following sections.

3.1.1 OVERALL REQUIREMENTS

3.1.11 Criterion 1 — Quality Standards and Records

No departures or supplements.

311141 U.S. EPR Compliance
The U.S. EPR FSAR includes the following COL Item in Section 3.1.1.1.1:

A COL applicant that references the U.S. EPR design certification will identify the site-specific
QA Program Plan that demonstrates compliance with GDC 1.

This COL ltem is addressed as follows:
{The QA Program is described in Chapter 17.}

The QAPD is applicable to the siting, design, fabrication, construction (including pre-operational
testing), operation (including testing), maintenance and modification of the facility. The QAPD
demonstrates compliance with GDC 1.

3.1.1.2 Criterion 2 — Design Bases for Protection Against Natural Phenomena

No departures or supplements.

3.1.1.3 Criterion 3 — Fire Protection

No departures or supplements.

3114 Criterion 4 — Environmental and Missile Design Bases

No departures or supplements.

3.1.1.5 Criterion 5 — Sharing of Structures, Systems, and Components

No departures or supplements.

3.1.1.51 U.S. EPR Compliance

{BBNPP shares the following structures, systems, and components with Susquehanna Steam
Electric Station (SSES) Units 1 and 2:
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» Offsite transmission system — The BBNPP substation is electrically integrated with the
existing SSES Units 1 and 2, 500 kV substation. While the offsite transmission system is

shared between BBNPP and SSES Units 1 and 2, BBNPP has onsite AC and DC

systems that are dedicated to its use. The offsite AC power sources are described in
more detail in Section 8.2, and the onsite power sources are described in Section 8.3.

» Emergency Operations Facility (EOF) — The EOF is described in more detail in Part 5 of

the COL application.

* Rail Spur - The existing rail spur will be extended outside of the SSES protected area to

provide rail access for BBNPP.

The structures, systems, and components are designed such that an accident in one unit would

not impair their ability to perform their function for any other unit.}

3.1.2 PROTECTION BY MULTIPLE FISSION PRODUCT BARRIERS

No departures or supplements.

3.1.3 PROTECTION AND REACTIVITY CONTROL SYSTEMS

No departures or supplements.

3.1.4 FLUID SYSTEMS

No departures or supplements.

3.1.5 REACTOR CONTAINMENT

No departures or supplements.

3.1.6 FUEL AND REACTIVITY CONTROL

No departures or supplements.

3.1.7 REFERENCES

No departures or supplements.
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3.2 CLASSIFICATION OF STRUCTURES, SYSTEMS, AND COMPONENTS

This section of the U.S. EPR FSAR is incorporated by reference, with the supplements described
in the following sections.

3.21 SEISMIC CLASSIFICATION
The U.S. EPR FSAR includes the following COL Item in Section 3.2.1:

A COL applicant that references the U.S. EPR design certification will identify the seismic
classification of applicable site-specific SSCs that are not identified in U.S. EPR FSAR Table
3.2.21.

This COL Item is addressed as follows:

The seismic classifications for applicable site-specific structures, systems, and components
(SSC) are provided in Table 3.2-1.

{U.S. EPR FSAR Section 3.2.1 states: “The seismic classification of the U.S. EPR SSCs uses the
following categories: Seismic Category |, Seismic Category Il, radwaste seismic, conventional
seismic, and non-seismic.” As described in Section 3.2.1.2, BBNPP utilizes an additional seismic
classification: Seismic Category II-SSE. This classification is applicable to Fire Protection SSCs
that support equipment required to achieve safe shutdown following a seismic event.}

3.211 Seismic Category |

No departures or supplements.

3.21.2 Seismic Category Il

{In addition to the Seismic Category Il classification defined in U.S. EPR FSAR Section 3.2.1,
BBNPP utilizes a seismic classification of Seismic Category II-SSE. This designation is utilized
to address Fire Protection SSC that are required to remain functional during and following a
seismic event to support equipment required to achieve safe shutdown in accordance with
Regulatory Guide 1.189 (NRC, 2007). Section 3.7.2.8 and Section 3.7.3.12 discuss the methods
for analysis of these components.

Some SSCs that perform no safety-related function could, if they failed under seismic loading,
prevent or reduce the functional capability of a Seismic Category | SSC, Seismic Category II-
SSE SSC, or cause incapacitating injury to main control room occupants during or following an
SSE. These non-safety-related SSCs are classified as Seismic Category |II.

SSCs classified as Seismic Category Il are designed to withstand SSE seismic loads without
incurring a structural failure that permits deleterious interaction with any Seismic Category | SSC
or Seismic Category II-SSE SSC, or that could result in injury to main control room occupants.
The seismic design criteria that apply to Seismic Category Il SSCs are addressed in Section 3.7.}

3.21.3 Radwaste Seismic

No departures or supplements.
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3.214 Conventional Seismic

No departures or supplements.

3.21.5 Non-Seismic

No departures or supplements.

3.2.2 SYSTEM QUALITY GROUP CLASSIFICATION

The U.S. EPR FSAR includes the following COL Item in Section 3.2.2:
A COL applicant that references the U.S. EPR design certification will identify the quality
group classification of site-specific SSCs that are not identified in this table (U.S. EPR FSAR
Table 3.2.2-1).

This COL Item is addressed as follows:

The quality group classification of site-specific SSC is provided in Table 3.2-1.

3.2.3 REFERENCES

{NRC, 2007. Fire Protection for Nuclear Power Plants, Regulatory Guide 1.189, Revision 1, U.S.
Nuclear Regulatory Commission, March 2007.}
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3.3  WIND AND TORNADO LOADINGS

This section of the U.S. EPR FSAR is incorporated by reference, with the supplements described
in the following sections.

The U.S. EPR FSAR includes the following COL Item in Section 3.3:

A COL applicant that references the U.S. EPR design certification will determine site-specific
wind and tornado design parameters and compare these to the standard plant criteria. If the
site-specific wind and tornado parameters are not bounded, then the COL applicant will
evaluate the design for site-specific wind and tornado events and demonstrate that these
loadings will not adversely affect the ability of safety-related structures to perform their safety
functions during or after such events.

This COL Item is addressed as follows:

Table 2.0-1 provides a comparison of the wind and tornado parameters for the U.S. EPR FSAR
design and the site-specific values.

{The U.S. EPR FSAR design wind and tornado parameters bound the site-specific wind and
tornado parameters. Additional discussion regarding the derivation of the site-specific wind and
tornado parameters is provided in Section 2.3.1. Seismic Category | structures are designed to
withstand the effects of wind and tornado loadings. Wind and tornado parameters in U.S. EPR
FSAR Table 2.1-1 are used for design of Seismic Category | structures for BBNPP.}

3.3.1 WIND LOADINGS
The U.S. EPR FSAR includes the following COL Item in Section 3.3.1:

A COL applicant that references the U.S. EPR design certification will demonstrate that
failure of site-specific structures or components not included in the U.S. EPR standard plant
design, and not designed for wind loads, will not affect the ability of other structures to
perform their intended safety functions.

This COL Item is addressed as follows:

A discussion of site-specific structures not designed for wind or tornado loadings is provided in
Section 3.3.2.3.

3.3.11 Design Wind Velocity

{The Essential Service Water Emergency Makeup System (ESWEMS) Pumphouse is designed
to withstand the effect of severe and extreme wind phenomena encountered at the site.

The ESWEMS Pumphouse is in close proximity to the ESWEMS Retention Pond, the design
wind velocity for this structure is Category D in accordance with ASCE Standard Number 7-05
(ASCE, 2006), due to it being a flat and unobstructed area exposed to wind flowing over a large
body of water. While the ESWEMS Retention Pond is not large when compared to a major lake
or an ocean, the use of Category D is conservative. Category D is more stringent than applying
Category C per the U.S. EPR FSAR.}
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3.3.1.2 Determination of Applied Wind Forces

{Applied wind forces (W) on the ESWEMS Pumphouse structure are determined using ASCE 7-
05 and Table 6-3 of ASCE 7-05, in which a value of K,= 1.2 in lieu of 1.0 was used for the

Exposure Category D.}
3.3.1.21 Note on Values Used

No departures or supplements.

3.3.2 TORNADO LOADINGS

The U.S. EPR FSAR includes the following COL Item in Section 3.3.2:
A COL applicant that references the U.S. EPR design certification will demonstrate that
failure of site-specific structures or components not included in the U.S. EPR standard plant

design, and not designed for tornado loads, will not affect the ability of other structures to
perform their intended safety functions.

This COL Item is addressed as follows:

A discussion of site-specific structures not designed for wind or tornado loadings is provided in
Section 3.3.2.3.
3.3.21 Applicable Tornado Design Parameters

{The ESWEMS Pumphouse is considered as a partially enclosed concrete structure given wall
and roof openings or as a labyrinth for HVAC air ventilation or circulation. In accordance with
ASCE 7-05, Figure 6-5, the internal pressure coefficient, CC,= +/- 0.55 is used in the calculation

of effective tornado wind pressure load.}
3.3.2.2 Determination of Tornado Forces on Structures

No departures or supplements.

3.3.23 Effect of Failure of Structures or Components Not Designed for Tornado Loads

Non-safety-related structures located on the site and not included in U.S. EPR FSAR Section
3.3.2.3 include:

» Fire Protection Water Tanks

* Fire Protection Building

* {Warehouse Building}

* Central Gas Supply Building

»  Security Access Facility

+ Switchgear Building

» {Miscellaneous Structures in the Transformer and Switchyard Areas

« Circulating Water System Cooling Towers

BBNPP FSAR 3-15 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



» Circulating Water System Pumphouse

» Circulating Water System Makeup Water Intake Structure
+ Waste Water Retention Basin

» Structure for Demineralized Water Tanks

»  Water Treatment Building

* Meteorological Tower

* Grid Systems Control Building

* Administrative and Maintenance Buildings}

{These non-safety-related structures are miscellaneous steel and concrete structures, which are
not designed for high wind and tornado loadings. However, the Fire Water Storage Tanks and
the Fire Protection Building are designated as Seismic Category II-SSE structures, and are
designed to remain functional during and following a design basis seismic event. These
structures are located, such that their collapse from high winds or tornado loadings would not
result in an impact interaction with any safety-related structure. Missiles generated by the
collapse of these structures during high wind or tornado loadings are enveloped by the design
basis tornado missile loads described in U.S. EPR FSAR Section 3.5.1.4.

In addition, the monorail (a non-safety-related structural component) located on top of the
ESWEMS Pumphouse is designed as Seismic Category Il. Its failure shall not impact the
function of safety-related SSCs or become tornado generated missiles.}

3.3.3 REFERENCES

{ASCE, 2006. ASCE Standard No. 7-05, Minimum Design Loads for Buildings and Other
Structures, American Society of Civil Engineers, 2006.}
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3.4 WATER LEVEL (FLOOD) DESIGN

This section of the U.S. EPR FSAR is incorporated by reference with the departures and/or
supplements as described in the following sections.

Seismic Category | structures, systems and components (SSCs) can withstand the effects of
flooding due to natural phenomena or onsite equipment failures without losing the capability to
perform their safety-related functions. The maximum flood and ground water elevations for the
U.S. EPR are shown in U.S. EPR FSAR Table 2.1-1 and Table 2.0-1.

{The U.S. EPR FSAR flood and ground water design elevations bound the BBNPP site-specific
elevations, except for the ground water elevation in the area of the ESWEMS Pumphouse’s
pumpwell as described in Section 3.4.2. Calculations demonstrate that these loadings will not
adversely affect the ability of safety-related structures to perform their safety functions during or
after such events.}

3.41 INTERNAL FLOOD PROTECTION

No departures or supplements.

3.4.2 EXTERNAL FLOOD PROTECTION

{This section of the U.S. EPR FSAR is incorporated by reference with the departures described
below:

The U.S. EPR design requires ground water to be at least 3.3 ft (1 m) below grade. The ground
water elevations range from approximately 653 to 661 ft (199 to 202 m) in the power block area
(Section 2.4.12.5) and approximately 661 ft (202 m) in the area of the ESWEMS Pumphouse.
Ground water will be approximately 13 ft (4 m) below grade for all safety-related structures after
construction. The 5 ft (1.5 m) thick concrete base mat for the ESWEMS Pumphouse provides
adequate protection from water in-leakage of floor areas below grade. The concrete backfill also
provides adequate protection from water in-leakage for the below grade vertical surface of the
pumpwell wall. To reduce ground water in-leakage or water seepage from the ESWEMS
Retention Pond, at least 5 ft (1.5 m) thick of cohesive soil is placed in front of the vertical surface
of two side walls on the pumpwell structure.}

3.4.3 ANALYSIS OF FLOODING EVENTS

3.4.31 Internal Flooding Events
{This section of the U.S. EPR FSAR is incorporated by reference with the supplement described
below.

The ESWEMS Pumphouse floors are sloped and provided with trenches to route water leakage
above grade back into the pumpwell.}
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3.4.3.2 External Flooding Events
The U.S. EPR FSAR includes the following COL Item in Section 3.4.3.2:
A COL applicant that references the U.S. EPR design certification will confirm the potential

site-specific external flooding events are bounded by the U.S. EPR design basis flood values
or otherwise demonstrate that the design is acceptable.

This COL ltem is addressed in the following section as follows:

{U.S. EPR FSAR Section 3.4.3.2 states: “The Seismic Category | structures are not designed for
dynamic effects associated with external flooding (e.g., wind, waves, currents) because the
design basis flood level is below the finished yard grade.” The design of the BBNPP safety-
related structures, excluding the pumpwell structure for the ESWEMS Pumphouse, places the
design basis flood level below the finished yard grade. Flooding of the ESWEMS Pumphouse is
addressed in Section 3.4.3.10.}

3.4.3.3 Reactor Building Flooding Analysis

No departures or supplements.

3434 Safeguard Buildings Flooding Analysis

No departures or supplements.

3.4.3.5 Fuel Building Flooding Analysis

No departures or supplements.

3.4.3.6 Nuclear Auxiliary Building Flooding Analysis

No departures or supplements.

3.4.3.7 Radioactive Waste Building Flooding Analysis

No departures or supplements.

3.4.3.8 Emergency Power Generating Buildings Flooding Analysis

No departures or supplements.

3.4.3.9 Essential Service Water Pump Buildings and Essential Service Water Cooling
Tower Structures Flooding Analysis

No departures or supplements.

3.4.3.10 {ESWEMS Pumphouse} Flooding Analysis
The U.S. EPR FSAR includes the following COL ltem in Section 3.4.3.10:
A COL applicant that references the U.S. EPR design certification will perform a flooding

analysis for the ultimate heat sink makeup water intake structure based on the site-specific
design of the structure and the flood protection concepts provided herein.

BBNPP FSAR 3-18 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



This COL Item is addressed as follows:

{The function of the ESWEMS Pumphouse in Section 3.4.3.10 of the U.S. EPR FSAR is
performed by the ESWEMS Pumphouse at BBNPP. The extreme water level at the ESWEMS
Pumphouse location may reach Elevation 672.13 ft (204.87 m) msl in the pumpwell as a result of
a 72-hour Probable Maximum Precipitation (PMP) event, based upon an initial water level of 669
ft (204 m) msl. Wave run-up associated with the Probable Maximum Flood (PMF) is discussed in
Section 2.4.8.2.2.1. This resulting maximum water elevation of 673.43 ft (205.26 m) msl is below
the top of ESWEMS Pumphouse slab elevation of 674.5 ft msl (205.59 m). Accordingly, no flood
analysis is required for the above grade structure of the ESWEMS Pumphouse.

The effect of the maximum water level is localized to the pumpwell structure which has been
analyzed for the effect of the water surge and the wave force (Appendix 3E.4).}

3.4.3.11 Permanent Dewatering System
The U.S. EPR FSAR includes the following COL Item in Section 3.4.3.11:

A COL applicant that references the U.S. EPR design certification will define the need for a
site-specific permanent dewatering system.

This COL Item is addressed as follows:

{As described in Section 2.4.12.5, based on the ground water evaluation of post-construction
water table elevations, a permanent ground water dewatering system is not required for BBNPP.}

3.4.4 ANALYSIS PROCEDURES

No departures or supplements.

3.4.5 REFERENCES

{NRC, 1976. Ultimate Heat Sink for Nuclear Power Plants, Regulatory Guide 1.27, Revision 2,
U.S. Nuclear Regulatory Commission, January, 1976.}
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3.5 MISSILE PROTECTION

This section of the U.S. EPR FSAR is incorporated by reference with the supplements as
described in the following sections.

3.5.1 MISSILE SELECTION AND DESCRIPTION

No departures or supplements.

3.5.11 Internally Generated Missiles Outside Containment

No departures or supplements.

3.561.2 Internally Generated Missiles Inside Containment

No departures or supplements.

3.5.1.21 Credible Internally Generated Missile Sources Inside Containment

No departures or supplements.

3.5.1.2.2 Non-Credible Internally Generated Missile Sources Inside Containment

No departures or supplements.

3.51.23 Missile Prevention and Protection Inside Containment
The U.S. EPR FSAR includes the following COL Item in Section 3.5.1.2.3:

A COL applicant that references the U.S. EPR design certification will describe controls to
confirm that unsecured maintenance equipment, including that required for maintenance and
that are undergoing maintenance, will be removed from containment prior to operation,
moved to a location where it is not a potential hazard to SSCs important to safety, or
seismically restrained to prevent it from becoming a missile.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall establish plant procedural controls to ensure that unsecured
maintenance equipment, including that required for maintenance and that are undergoing
maintenance, will be removed from containment prior to operation, moved to a location where it
is not a potential hazard to SSC important to safety, or restrained to prevent it from becoming a
missile.

3.5.1.3 Turbine Missiles

The U.S. EPR FSAR includes the following COL Item in Section 3.5.1.3:
A COL applicant that references the U.S. EPR design certification will confirm the evaluation
of the probability of turbine missile generation for the selected turbine generator, P, is less
than 1E-4 for turbine generators favorably oriented with respect to containment.

This COL Item is addressed as follows:
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The turbine-generator design consists of a HP/IP turbine stage with three LP turbines as
described in U.S. EPR FSAR Section 10.2. A turbine missile analysis has been developed for the
selected turbine design. The analysis considers stress corrosion cracking (SCC), brittle fracture
and destructive overspeed as potential failure mechanisms. The analysis also addresses
inspection intervals in regard to the probability of failure. The turbine missile analysis calculates
the probability of turbine rotor failure consistent with the guidance in Regulatory Guide 1.115
(NRC, 1977) and in NUREG-0800 Section 3.5.1.3 (NRC, 2007b). The analysis includes charts on
missile generation probabilities versus service time for the HP/IP and LP turbine rotors.

The probability of reaching destructive overspeed is largely dictated by the probability of failure of
the governing and overspeed protection system. Turbine overspeed protection is described in
U.S. EPR FSAR Section 10.2. The steam turbine has two independent valves in series on each
steam inlet with failsafe hydraulic actuators. These valves are tripped by the redundant
overspeed protection system.

The inspection requirements for the turbine rotors during major overhauls ensure that indications
of SCC will be detected. The turbine rotor inspection program is described in U.S. EPR FSAR
Section 10.2 and is consistent with the turbine manufacturer’s recommended inspection intervals
required to meet the calculated failure probability of the turbine rotor.

The turbine missile analysis demonstrates that the probability of turbine rotor failure resulting in
an ejection of the turbine rotor (or internal structure) fragments through the turbine casing, P1, is
less than 1E-4 for a favorably oriented turbine with respect to the containment.

The turbine missile analysis is available for review.
The U.S. EPR FSAR also includes the following COL Item in Section 3.5.1.3:

A COL applicant that references the U.S. EPR design certification will assess the effect of
potential turbine missiles from turbine generators within other nearby or co-located facilities.

This COL Item is addressed as follows:

{SSES Units 1 and 2 FSAR Section 3.5.1.3 indicates that: “The intent of the maintenance and
inspection program is to ensure that the probability of generating a turbine missile (PI) is
maintained to less than 1.00E-5 per unit per year for an unfavorably oriented turbine with respect
to the reactor building...By managing the probability of generating a missile to less than 1.00E-5
(PI), the overall probability of turbine damage (P4) is maintained at less than or equal to 1.00E-7
per unit per year” (SSES, 2008). Since the SSES Units 1 and 2 turbines are managed to ensure
that the probability of turbine missile generation (P4) is less than 1.00E-5 per year, the probabiity

of turbine missile generation is below the threshold value of 1E-4 described in Regulatory Guide
1.115 (NRC, 1977). Therefore, BBNPP safety-related SSC are adequately protected from
potential SSES Unit 1 and Unit 2 turbine missiles.}

3.51.4 Missiles Generated by Tornadoes and Extreme Winds

The U.S. EPR FSAR includes the following COL Item in Section 3.5.1.4:
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A COL applicant that references the U.S. EPR design certification will evaluate the potential
for other missiles generated by natural phenomena, such as hurricanes and extreme winds,
and their potential impact on the missile protection design features of the U.S. EPR.

This COL Item is addressed as follows:

All Seismic Category | structures that make up the U.S. EPR standard design meet the most
stringent Region | tornado intensity requirements of Regulatory Guide 1.76 (NRC, 2007a). The
associated tornado wind speeds (230 mph (103 m/s) maximum) represent an exceedance
frequency of 1E-07 per year. Region | tornado missile parameters are reflected in U.S. EPR
FSAR Table 3.5-1 and are used in the standard design of all Seismic Category | structures.

{The BBNPP site is located in Luzerne County, Pennsylvania. BBNPP site is located in tornado

intensity Region | that represent an exceedance frequency of 1 x 1077 per year. On this basis,
the BBNPP site specific design-basis tornado wind and missile spectrum parameters are the
same as those used in the standard U.S. EPR design; therefore, the BBNPP site is enveloped by
the U.S. EPR standard design.

Regulatory Guide 1.76 (NRC, 2007a) does not address extreme winds such as hurricane winds
or the missiles associated with such winds. Therefore, additional site specific wind conditions
were considered as follows.

Summarizing from Section 2.3.1, the following meteorological data is specific to the BBNPP, and
provides a site-specific comparative justification for the use of the tornado design-basis missile
spectrum for other potentially extreme high wind conditions:

*  From 1950 to 1995 the annual average number of tornados in Pennsylvania is 10, with an
annual average of strong tornados (F2-F5) of 3, for the same time period. Based on
National Weather Service meteorological data from January 1, 1950 to August 31, 2007,
there have been 15 tornados reported in Luzerne County, Pennsylvania with estimated
minimum and maximum Fujita damage scales ranging from FO to F2, respectively. This
equates to estimated wind speeds ranging from 73 mph (117 km/hr) to a maximum of 157
mph (253 km/hr).

» Areview of the National Hurricane Center statistics list 52 tropical storms and hurricanes
that have passed within 100 statute miles (161 km) of BBNPP. Of these storms there
were two category 1 hurricanes that occurred in the month of October, with an estimated
maximum wind speed of 80 knots (92 mph (41 m/s)).

* Areview of the data from June 6, 1971 through August 25, 2007 identified 52 high wind
events. Wind speeds ranged from 50 to 175 knots (58 to 201 mph (26 to 90 m/s). The
highest value occurred on May 31, 1998

By comparison of the site specific meteorological data with the estimated strongest wind speed
classifications for tornados, it is reasonable to conclude that the Region | missile spectrum from
Regulatory Guide 1.76 is a conservative representation of those that could be generated by the
less intense extreme wind conditions anticipated at the BBNPP site.}

The U.S. EPR FSAR also includes the following COL Item in Section 3.5.1.4:
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For sites with surrounding ground elevations that are higher than plant grade, a COL
applicant that references the U.S. EPR design certification will confirm that automobile
missiles cannot be generated within a 0.5 miles radius of safety-related SSCs that would lead
to impact higher than 30 ft above plant grade.

This COL Item is addressed as follows:

The tornado missile spectrum requirements provided in Regulatory Guide 1.76 (NRC, 2007a)
describe three design-basis missiles; a pipe, sphere, and automobile. The pipe and sphere
missiles are assumed to impact applicable structures at all elevations. The automobile missile is
to be considered at all altitudes less than 30 ft (9.1 m) above all grade levels within 0.5 miles
(0.8 km) of the plant structures.

Category | structures within the Nuclear Island (NI) base mat which include the Reactor, Fuel,
and Safeguard Buildings (SB) 2 and 3 are protected by being housed in independent hardened
structures. Walls and roof slabs of the hardened structures are designed of heavily reinforced
concrete that envelopes the Region | tornado missile spectrum requirements. SB 1 and 4 are not
enclosed in hardened structures, due to the system redundancy provided by SB 2 and 3.
Although SB 1 and 4 are not housed in an independent hardened structure, they are constructed
of heavily reinforced concrete and all wall and roof slab sections meet the minimum acceptable
tornado missile barrier guidance identified in NUREG-0800, Section 3.5.3 (NRC, 2007b).

Likewise, the U.S. EPR standard design of all Category | structures outside the NI base mat are
constructed of reinforced concrete and all wall and roof slabs meet the Region | design-basis
missile spectrum, including the automobile missile guidance of Regulatory Guide 1.76 (NRC,
2007a) for all structural elevations. {The highest elevation within a 0.5 mi (0.8 km) radius at
BBNPP is at an approximate elevation of 880 ft (268 m). Adding the 30 ft (9 m) requirement, all
elements below Elevation 910 ft (277 m) require evaluation of the automobile missile. Normal
grade elevation at the location of the structures is approximately 674 ft (205 m). Therefore,
structural elements less than 216 ft (66 m) (890 ft (271 m) minus 674 ft (205 m)) require
automobile missile evaluation. The heights of all safety-related structures outside the NI base
mat are less than 216 ft (66 m) tall; therefore, all walls and roofs for Category | structures,
including the Essential Service Water Buildings (ESWBs), are designed for automobile missiles.
On this basis, the site-specific conditions are conservatively enveloped for all required
elevations.

Thus, by the standard U.S. EPR meeting the Region | tornado missile spectrum requirements for
all Category | structures, the site-specific conditions at BBNPP are in compliance with all
Regulatory Guide 1.76 (NRC, 2007a) tornado missile requirements.

The ESWEMS Pumphouse structural components, such as floors, walls, and the roof, are
designed with heavy reinforced concrete of 5,000 psi (34.5 MPa) at 28 days. Their thickness is
2'-0" (610 mm) minimum and considered structurally adequate to protect the inside safety-related
equipment from tornado generated missiles. In accordance with Table 3.5-2 of the U.S. EPR
FSAR, a thickness of 16 in (405 mm) and 17 in (432 mm) for reinforced concrete wall and roof,
respectively, with a minimum strength of 5,000 psi (34.5 MPa) is adequate to resist the impact of
tornado-generated missiles for both penetration and structural response. Openings are
protected by 2.0 ft (0.6 m) thick reinforced concrete labyrinths. The labyrinths will prevent direct
hit from the design basis missile to the openings. Steel gratings at the water intake will be
designed as security and missile barrier. They are classified as non-safety-related, Seismic
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Category Il, whose structural failure may not impact the safety-related function of the pumpwell
structural and mechanical components. Their overall response is determined in term of the
barrier's capability to absorb the impact energy without compromising the structural integrity.

The steel grating is partitioned into maximum 4.9 ft (1.5 m) long sections not to exceed 3,100 in?

(2.0 m2) in area. The grating size is 2 in (50.8 mm) x 0.375 in (9.525 mm) minimum bars spaced
at 0.875 in (22.225 mm) clear with cross bending bars at 4 in (101.6 mm) on center. All edges
will be banded for added rigidity. The concrete stop log gate covering a water intake opening
during maintenance is not designed for tornado generated missiles. The penetration of missiles
is prevented via the steel gratings discussed above.

The impact of tornado missiles on the EWEMS Retention Pond slope, bottom, and spill-way is
evaluated below. The evaluated missiles were:

* A massive high-kinetic-energy missile that deforms on impact, such as an automobile,

* Arrigid missile that tests penetration resistance, such as a 0.5 ft (0.15 m) diameter
Schedule 40 pipe, and

« A small rigid missile of a size that is sufficient to pass through openings in protective
barriers, such as a 1.0 in (2.54 cm) diameter solid steel sphere.

The projectiles are evaluated for their possible impact to the slope and bottom of the pond. Due
to the long travel path under water, an automobile missile would sink slowly enough to rest on the
pond bottom without causing a significant impact force.

Above Elevation 662 ft (201.8 m) msl, the riprap, in addition to 1.0 ft (0.3 m) of bedding, on top of
the engineered and compacted cohesive soil provides enough energy absorption to mitigate the
impact force from tornado generated missiles. There is no possibility that the projectile missiles
could penetrate through the riprap, bedding stones, and cohesive fill.

Below Elevation 662.0 ft (201.8 m) msl, tornado generated missiles are not a concern. In order to
impact the ESWEMS Retention Pond slope and bottom, projectiles must travel through at least
12 ft (3.7 m) of water, assuming the water at the lowest level, and then penetrate the cohesive fill
to Elevation 640.0 ft (195.1 m) msl where it would reach rock, and stop.

Between the bottom of the riprap at Elevation 662.0 ft (201.8 m) msl and bottom of the pond at
Elevation 651.5 ft (198.6 m) msl, the pipe or sphere would have to fall through water, and then
penetrate the cohesive fill to Elevation 640.0 ft (195.1 m) msl to reach the underlying rock and
possibly create a leak. There is at least 22.0 ft (6.71 m) of cohesive fill below the riprap on the
slope, and 12.0 ft (3.66 m) of compacted cohesive fill between the pond bottom and underlying
bedrock. Although the pipe or sphere may become embedded in the cohesive fill, the
combination of energy dissipation in the water and cohesive fill below will preventa 0.5 ft (0.15
m) pipe or 1 in (2.54 cm) steel sphere from creating a leak in the pond below Elevation 662.0 ft
(201.8 m) msl. The pond is constructed below the original ground surface. Although extremely
unlikely, a slope penetration initiated by missile impact would not compromise the water retaining
ability of the pond.

The missile impact on the reinforced concrete spillway for the ESWEMS Retention Pond is
evaluated. The concrete is idealized as slab on elastic foundation for absorbing the missile
impact. The analysis concludes that the reinforced concrete is capable of withstandng the

BBNPP FSAR 3-24 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



missile impact locally and globally within the permissible stresses and ductility. As shown in
Figure 3E.4-8, the top of the spillway crest is at Elevation 672.0 ft (204.8 m) msl. Its slope in the
pond side is sufficiently protected from tornado generated missiles with riprap and bedding to
Elevation 662.0 ft (201.8 m) msl. Moreover, the entire spillway and the connecting discharge
watercourse are excavations below the grade at Elevation 674.0 ft (205.4 m) msl. The spillway
discharges the excess water to the watercourse beginning at Elevation 667.0 ft (203.3 m) msl.
This elevation is three feet above the lowest water elevation of 664.0 ft (202.4 m) msl, at which
makeup water would be required to bring the water level back to normal at Elevation 669.0 ft
(203.9 m). Thus, a tornado generated missiles impacting the ESWEMS spillway system could
not cause a spillway deformation or reaction that could drain the pond water below the minimum
required water level of 664.0 ft (202.4 m) msl.}

3.51.5 Site Proximity Missiles (Except Aircraft)
The U.S. EPR FSAR includes the following COL Item in Section 3.5.1.5:
A COL applicant that references the U.S. EPR design certification will evaluate the potential

for site proximity explosions and missiles generated by these explosions for their potential
impact on missile protection design features.

This COL Item is addressed as follows.

In accordance with Regulatory Guide 1.206 (NRC, 2007c), the following missile sources have
been considered and are discussed in Section 2.2:

» Train explosions

» Truck explosions

»  Ship or barge explosions

* Industrial facilities

* Pipeline explosions

« Military facilities

Section 2.2 evaluates the effects of potential accidents in the vicinity of the site from present and
projected industrial, transportation, and military facilities and operations. Each transportation
mode and facility was evaluated with regard to the effects from potential accidents relating to
explosions, flammable vapor clouds (delayed ignition), and toxic chemicals (vapors or gases),
including liquid spills. Evaluation acceptance criteria for these hazards are in accordance with
Regulatory Guides 1.91 and 1.78 (NRC, 1978a and NRC, 2001, respectively).

{From Section 2.2, none of the potential site-specific external event hazards evaluated (except
aircraft hazards which are discussed below) resulted in an unacceptable affect important to the
safe operation of BBNPP. This conclusion is substantiated by each potential external hazard
being screened based on applicable regulatory guidance or the hazard was demonstrated to
have no effect on the safe operation of BBNPP.}

3.5.1.6  Aircraft Hazards
The U.S. EPR FSAR includes the following COL Item in Section 3.5.1.6:
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A COL applicant that references the U.S. EPR design certification will evaluate site-specific
aircraft hazards and their potential impact on plant SSCs.

This COL Item is addressed as follows:

In accordance with Regulatory Guide 1.70 (NRC, 1978b), Regulatory Guide 1.206 (NRC, 2007c),
and NUREG-0800, Section 3.5.1.6 (NRC, 2007b), the risks due to aircraft hazards should be
sufficiently low. Furthermore, aircraft accidents that could lead to radiological consequences in
excess of the exposure guidelines of 10 CFR 50.34(a)(1) (CFR, 2008) with a probability of
occurrence greater than an order of magnitude of 1E-7 per year should be considered in the
design of the plant.

Section 2.2 describes the site-specific aircraft and airway hazard evaluations. {Due to the
number of annual aircraft operations at two airports and close proximity of airways V499 and
V106, a probabilistic risk assessment (PRA) was performed to assess the core damage
frequency (CDF) effect from these hazards in Section 19.1.5. The NUREG-0800 acceptance
criterion is met when the frequency of a release exceeding 10 CFR 100 (CFR, 2007) limits is
realistically less than 1E-07 per year. Results of the BBNPP PRA state the total CDF (CDF
bounds large release frequency) from the site airplane crash scenarios was calculated to be
9.9E-08 per year. Therefore, the aircraft hazard meets the NUREG-0800 Section 3.5.1.6
acceptance criteria (refer to Section 19.1.5.4.4).

Thus, by compliance with the NUREG-0800 acceptance criteria, no additional design-basis
criteria for the standard U.S EPR design is required as a result of the site-specific aircraft hazard
for BBNPP.}

3.5.2 STRUCTURES, SYSTEMS, AND COMPONENTS TO BE PROTECTED FROM
EXTERNALLY GENERATED MISSILES

No departures or supplements.

3.5.3 BARRIER DESIGN PROCEDURES

No departures or supplements.
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3.6 PROTECTION AGAINST DYNAMIC EFFECTS ASSOCIATED WITH POSTULATED
RUPTURE OF PIPING

This section of the U.S. EPR FSAR is incorporated by reference with the supplements as

described in the following sections.

3.6.1 PLANT DESIGN FOR PROTECTION AGAINST POSTULATED PIPING FAILURES
IN FLUID SYSTEMS OUTSIDE OF CONTAINMENT

The U.S. EPR FSAR includes the following COL Item in Section 3.6.1:

A COL applicant that references the U.S. EPR design certification will perform the pipe break
hazards analysis and reconcile deviations in the as-built configuration to this analysis.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall perform a pipe break hazard analysis as part of the piping design. Itis
used to identify postulated break locations and layout changes, support design, whip restraint
design, and jet shield design. The final design for these activities shall be completed prior to
fabrication and installation of the piping and connected components. The as-built reconciliation of
the pipe break hazards analysis shall be completed prior to fuel load.

3.6.2 DETERMINATION OF RUPTURE LOCATIONS AND DYNAMIC EFFECTS
ASSOCIATED WITH THE POSTULATED RUPTURE OF PIPING

No departures or supplements.

3.6.2.1 Criteria Used to Define Break and Crack Location and Configuration
The U.S. EPR FSAR includes the following COL Item in Section 3.6.2.1:

A COL applicant that references the U.S. EPR design certification will perform the pipe break
hazards analysis and reconcile deviations in the as-built configuration to this analysis.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall perform a pipe break hazard analysis as part of the piping design. Itis
used to identify postulated break locations and layout changes, support design, whip restraint
design, and jet shield design. The final design for these activities shall be completed prior to
fabrication and installation of the piping and connected components. The as-built reconciliation of
the pipe break hazards analysis shall be completed prior to fuel load.

3.6.2.2 Guard Pipe Assembly Design Criteria

No departures or supplements.

3.6.2.3 Analytical Methods to Define Forcing Functions and Response Models

No departures or supplements.

3.6.2.4 Dynamic Analysis Methods to Verify Integrity and Operability

No departures or supplements.
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3.6.2.5 Implementation of Criteria Dealing with Special Features

3.6.2.5.1 Pipe Whip Restraints
The U.S. EPR FSAR includes the following COL Item in Section 3.6.2.5.1:
A COL applicant that references the U.S. EPR design certification will provide diagrams

showing the final as-designed configurations, locations, and orientations of the pipe whip
restraints in relation to break locations in each piping system.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall provide the diagrams showing the final as-designed configurations,
locations, and orientations of the pipe whip restraints in relation to break locations in each piping
system prior to fabrication and installation of the piping system.

3.6.2.5.2 Structural Barrier Design

No departures or supplements.

3.6.2.5.3 Evaluation of Pipe Rupture Environmental Effects

No departures or supplements.

3.6.2.6 References

No departures or supplements.

3.6.3 LEAK-BEFORE-BREAK EVALUATION PROCEDURES
The U.S. EPR FSAR includes the following COL Item in Section 3.6.3:

A COL applicant that references the U.S. EPR design certification will confirm that the design
LBB analysis remains bounding for each piping system and provide a summary of the results
of the actual as-built, plant-specific LBB analysis, including material properties of piping and
welds, stress analyses, leakage detection capability, and degradation mechanisms.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall confirm that the design Leak-Before-Break (LBB) analysis remains
bounding for each piping system. A summary of the results of the actual as-built, plant-specific
LBB analysis, including material properties of piping and welds, stress analyses, leakage
detection capability, and degradation mechanisms will be provided prior to fuel load.
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3.7  SEISMIC DESIGN

This section of the U.S. EPR FSAR is incorporated by reference with the supplements {and
departures} as described in the following sections.

3.71 SEISMIC DESIGN PARAMETERS

Section 3.7.1 describes the site-specific seismic parameters for {BBNPP and reconciles the
design of Seismic Category | standard plant structures with the Certified Seismic Design
response Spectra (CSDRS) (anchored at 0.3 g Peak Ground Acceleration (PGA)) and the 10
generic soil profiles used in the U.S. EPR FSAR. The Ground Motion Response Spectra (GMRS)
for BBNPP were developed using Regulatory Guide 1.165 (NRC, 1997) and Regulatory Guide
1.208 (NRC, 2007a). All Seismic Category | structures, including the site specific structures
listed below, must be designed to remain functional following a postulated Safe Shutdown
Earthquake (SSE). The site-specific Seismic Category | structures at BBNPP are the:

«  ESWEMS Pumphouse,
«  ESWEMS Retention Pond, and
» Buried Electrical Duct Banks and Pipes.

Figure 9.2-4 through Figure 9.2-10 and Figure 3E.4-4 through Figure 3E.4-12 provide plan views
and sections of the ESWEMS Pumphouse and the ESWEMS Retention Pond. The bottom of the
ESWEMS Pumphouse pumpwell intake is at Elevation 644.0 ft (196.3 m) msl.

The layout of the Seismic Category | buried electrical duct banks and Seismic Category | buried
piping is defined in Figure 3.8-1, Figure 3.8-2, Figure 3.8-3 and Figure 3.8-4.

The SSE at BBNPP is defined as the maximum GMRS on top of the Mahantango formation, at
approximate Elevation 640.0 ft msl (194.8 m). Section 2.5.2 describes the development of the
GMRS based on geologic and seismic information. Table 3.7-1 through Table 3.7-2 presents the
seismic input ground motion utilized in the seismic design of the Seismic Category | structural
components. Soil liquefaction is not considered a risk factor because the ESWEMS Pumphouse
base-mat and its pumpwell base are situated on concrete backfill overlying the Mahantango
formation.

3.711 Design Ground Motion

{The Ground Motion Response Spectra (GMRS) for BBNPP are not bounded by the Certified
Seismic Design Response Spectra (CSDRS) at all frequencies. This represents a departure from
the U.S. EPR FSAR. This departure is justified consistent with the seismic reconciliation
guidelines contained in the U.S. EPR FSAR Section 2.5.2.6 as described in Section 2.5.2.6 and
Section 3.7.1.1.1. The reconciliation provided in Section 3.7.1.1.1 and the remaining sections in
3.7 provides justification that the BBNPP SSCs will perform their intended safety function after a
design basis SSE and satisfy Criterion 2 of the General Design Criteria of 10 CFR 50 (CFR,
2008a) with respect to earthquakes when designed with this GMRS. The GMRS also satisfies
the requirements of 10 CFR 100.23 (CFR, 2008b) with respect to the development of the SSE.

Reactor Coolant System (RCS)
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The RCS is evaluated by comparing the RCS seismic loading resulting from the BBNPP site-
specific GMRS/FIRS and site-specific soil profiles with the U.S. EPR design certification RCS
seismic loads. Site-specific RCS seismic loads are developed from the site-specific GMRS/FIRS
time histories for the site-specific best estimate, lower bound, and upper bound soil profiles using
the same model, modal weighted damping values, and methodology used to develop the U.S.
EPR design certification RCS seismic loads. BBNPP site-specific time history analyses are
performed to approximately 40 seconds using input at 0.005 second intervals. Sensitivity
evaluation confirms the integration time step used, 0.0005 seconds, is adequate.

BBNPP site-specific RCS seismic loads are compared to the U.S. EPR design certification RCS
seismic loads at key locations:

* Reactor Pressure Vessel (RPV) support pads (all loops)

» Steam Generator vertical column supports (all loops)

» Steam Generator upper lateral supports (all loops)

* Reactor Coolant Pump vertical column supports (all loops)

* Pressurizer lower bracket support

+ Steam Generator snubbers (all loops)

» Steam Generator bumper (all loops)

* Reactor Coolant Pump upper lateral supports (all loops)

» Pressurizer upper horizontal bumper

*  Primary piping (all nozzles, all loops).
The BBNPP site-specific RCS seismic loads are confirmed to lie within the U.S. EPR design
certification RCS seismic loads envelope.

RPV Internals

The RPV internals are evaluated by comparing the RPV internals seismic loading resulting from
the BBNPP site-specific GMRS/FIRS and site-specific soil profiles with the U.S. EPR design
certification RPV internals seismic loads. Site-specific time histories are developed from the site-
specific GMRS/FIRS and the site-specific best estimate, lower bound, and upper bound soil
profiles. The BBNPP site-specific RPV internals seismic loads are confirmed to lie within the
U.S. EPR design certification RPV internals seismic loads envelope.

Control Rod Drive Mechanisms (CRDMs)

The CRDMs are evaluated by comparing the RPV nozzle centerline response spectra resulting
from the BBNPP site-specific GMRS/FIRS and site-specific soil profiles with the U.S. EPR design
certification RPV nozzle centerline response spectra. The BBNPP nozzle centerline response
spectra are enveloped at all frequencies and directions except for slight breakthroughs between
the 28-35 Hz range for the vertical acceleration case. Because the lowest natural frequencies in
the vertical direction are approximately 51 Hz and the breakthrough is not close to the natural
frequency, the breakthrough is considered insignificant.
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Fuel

Fuel is evaluated by comparing the fuel seismic impact loads resulting from the BBNPP site-
specific GMRS/FIRS and site-specific soil profiles with the U.S. EPR design certification fuel
seismic impact loads. Site-specific displacement time histories at the core plates are developed
from the site-specific GMRS/FIRS and the site-specific best estimate, lower bound, and upper
bound soil profiles. BBNPP site-specific fuel seismic impact loads are developed from these time
histories using the same model parameters used to develop the U.S. EPR design certification
fuel seismic impact loads; with the time histories extended to approximately 40 seconds. The
BBNPP site-specific fuel seismic impact loads are confirmed to lie within the U.S. EPR design
certification fuel seismic impact loads envelope.

Leak Before Break (LBB)

BBNPP site-specific application of LBB to the main coolant loop, surge line, and main steam line
is evaluated by comparing the loads resulting from the BBNPP site-specific GMRS/FIRS and
site-specific soil profiles combined with normal operating loads with the U.S. EPR LBB allowable
range of loadings.

Main coolant loop loads are compared at the RPV inlet nozzle, RPV outlet nozzle, steam
generator inlet nozzle, steam generator outlet nozzle, reactor coolant pump outlet nozzle, reactor
coolant pump inlet nozzle, hot leg piping, cold leg piping, and crossover leg piping. The most
highly loaded locations are the RPV outlet nozzle region and steam generator outlet nozzle
region; with maximum moments of approximately 26,400 in-kips and 18,100 in-kips, respectively.
The BBNPP site-specific main coolant loop loads are confirmed to lie within the U.S. EPR design
certification allowable load limit LBB curves.

Main steam line loads are compared at the steam generator outlet nozzle and main steam line
piping. The most highly loaded location is in the main steam line piping, with a maximum
moment of approximately 29,500 in-kips. The BBNPP site-specific main steam line loads are
confirmed to lie within the U.S. EPR design certification allowable load limit LBB curves.

Surge line loads are compared at the surge line nozzle at the pressurizer, surge line nozzle at the
hot leg, and surge line piping. The most highly loaded regions at these locations have maximum
moments of approximately 3,500 in-kips, 3,600 in-kips, and 4,200 in-kips, respectively. The
BBNPP site-specific surge line loads are confirmed to lie within the U.S. EPR design certification
allowable load limit LBB curves.

BBNPP site-specific application of LBB to the main coolant loop, surge line, and main steam line
is confirmed because the site-specific main coolant loop, surge line, and main steam line loads
are confirmed to lie within the U.S. EPR design certification allowable load limit LBB curves.

Piping

Design of BBNPP piping and pipe supports is performed using the BBNPP GMRS and the ISRS
described in Section 3.7.1.1.1. U.S. EPR FSAR Table 1.8-2 specifies that the design of piping
and pipe supports are actions performed by the COL Holder. Confirmation of the completion of
piping and pipe support design is addressed by the piping design ITAAC contained in U.S. EPR
FSAR Tier 1.
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Seismic Qualification of Equipment

BBNPP seismic qualification of equipment is performed using the BBNPP design ground motion
response spectra described in Section 3.7.1 and ISRS provided in Section 3.7.2. The seismic
qualification methods, criteria, and process for mechanical and electrical equipment described in
U.S. EPR FSAR Section 3.10 are used for BBNPP seismic qualification of equipment.

Seismic Category | Structures

Seismic Category | structures are evaluated for the BBNPP site-specific GMRS/FIRS and site-
specific soil profiles. Evaluations performed for the Reactor Containment Building, Reactor
Building internal structures, other Seismic Category | structures, and Seismic Category |
foundations are described in Section 3.8.1.3, Section 3.8.3.3, Section 3.8.4.3, and Section
3.8.5.5, respectively, and confirm that these structures are adequate for the BBNPP site.

Conclusion

Completion of the BBNPP seismic reconciliation and confirmation of the acceptability of the U.S.
EPR for the BBNPP site is demonstrated in accordance with the U.S. EPR FSAR Section 2.5.2.6
seismic reconciliation guidelines. This provides justification for the departures from the U.S. EPR
FSAR described in Section 3.7.1 for the site-specific GMRS, site-specific soil profile, and site-
specific ISRS. }

3.71.11 Design Ground Motion Response Spectra

{A comparison of the BBNPP GMRS versus the CSDRS for five percent damping anchored at
0.30g is shown in Figure 3.7-1 and Figure 3.7-2. As shown, the CSDRS are exceeded by the
BBNPP GMRS in both the horizontal and vertical directions. The exceedances are primarily in
the high frequency region. This represents a departure from the U.S. EPR FSAR. This departure
is justified consistent with the seismic reconciliation guidelines contained in the U.S. EPR FSAR
Sections 2.5.2.6 and 3.7.1.1.1, and as described here and in Section 2.5.2.6.

Appendix S of 10 CFR Part 50 (CFR, 2008c) requires that the horizontal component of the SSE
ground motion in the free-field at the foundation level of the structures must be an appropriate
response spectrum with a peak ground acceleration (PGA) of at least 0.1g, which is the 0.1g
European Utility Requirements (EUR) based CSDRS. A comparison of the GMRS versus the
0.1g EUR-based CSDRS curves in the horizontal direction is shown in Figure 3.7-3. The
horizontal GMRS exceeds the 0.1g EUR based CSDRS in the low and high frequency regions.
Therefore, the horizontal SSE for the Bell Bend site is defined as the envelope of the horizontal
GMRS and the 0.1g EUR based CSDRS in order to satisfy Appendix S of 10 CFR Part 50 (CFR,
2008). The vertical SSE is the vertical GMRS shown in Figure 3.7-2.

The design of BBNPP shall consider the GMRS as a design motion in combination with the site-
specific soil profiles, in addition to the CSDRS anchored at 0.3g PGA for the generic soil profiles
defined in the U.S. EPR FSAR.
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Seismic Reconciliation of CSDRS and GMRS for the Nuclear Island Common Base Mat
Structures, Emergency Power Generating Buildings, and Essential Service Water
Buildings in Accordance With Section 2.5.2.6

The BBNPP seismic design parameters are enveloped by the CSDRS and the generic site soil
profiles used in the certified design as described below (except as noted):

1. The PGA for the GMRS is 0.21g and 0.18 g (based on the spectral amplitude at 100 Hz)
in the horizontal and vertical directions, respectively, which is less than 0.3g, the PGA for
the CSDRS.

2. The Nuclear Island Common Base Mat is founded on top of the Mahantango Formation,
which has a low-strain, best-estimate shear wave velocity of approximately 6,900 fps
(2,103 mps). Since this shear wave velocity is greater than 1,000 fps (305 mps), the
BBNPP NI is founded on competent material as defined in NUREG 0800, Section 3.7.1
(NRC, 2007b).

3. The Foundation Input Response Spectra (FIRS) is the GMRS translated to the elevation
of the point that is being evaluated. The FIRS for the NI Common Base Mat structure is
defined at the bottom of the base mat at approximately 40 ft (12.2 m) below existing
grade. This depth is also where the GMRS is defined. The CSDRS is exceeded by the
BBNPP GMRS in both the horizontal and vertical directions, primarily in the high
frequency region. See Figure 3.7-1 and Figure 3.7-2. This represents a departure from
the U.S. EPR FSAR. This departure is justified consistent with the seismic reconciliation
guidelines contained in U.S. EPR FSAR Section 2.5.2.6, as described here and in
Section 2.5.2.6.

The FIRS for both the Emergency Power Generating Buildings (EPGB) and the Essential
Service Water Buildings (ESWB) are defined at the bottom of their respective base mats.
The bottom of the EPGB base mat is 5 ft (1.5 m) below grade, and the bottom of the
ESWB base mat is 22 ft (6.7 m) below grade. These FIRS also exceed the CSDRS
(Figure 3.7-4 through Figure 3.7-13). This represents a departure from the U.S. EPR
FSAR. This departure is justified consistent with the seismic reconciliation guidelines
contained in U.S. EPR FSAR Section 2.5.2.6, as described here and in Section 2.5.2.6.

4. Horizontal soil layering is confirmed for the BBNPP site-specific soil as discussed in
Section 2.5.4.3.3.

5. The range of shear wave velocities of the BBNPP strain-compatible soil profiles has
variations in the soil layering at the site from that of the generic soil profiles considered in
the U.S. EPR FSAR. Therefore, the BBNPP soil profiles cannot be concluded as being
bounded by the U.S. EPR FSAR soil profiles. This represents a departure from the U.S.
EPR FSAR. This departure is justified consistent with the seismic reconciliation
guidelines contained in U.S. EPR FSAR Section 2.5.2.6, as described here and in
Section 2.5.2.6.

6. Step 3 and Step 5 above are not met for the BBNPP site because the GMRS/FIRS
exceeded the CSDRS and the BBNPP site-specific idealized site soil profile does not
correspond directly to the 10 generic soil profiles used for the U.S. EPR. Because the
conditions are not met for BBNPP, seismic reconciliation is performed per Step 7 of U.S.
EPR FSAR Section 2.5.2.6.
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7. An SSI analysis of the NI Common Base Mat Structures is performed using the BBNPP
soil profiles and ground motion to determine the NI base mat response spectra.
Response spectra are also determined at the footprints of the EPGB and ESWB base
mats at the elevation of the NI base mat to simulate the structure-soil-structure interaction
(SSSI) effects from the NI. A comparison of these spectra with the corresponding spectra
in the U.S. EPR FSAR (Figure 3.7.2-68 through Figure 3.7.2-73), which are presented in
Figure 3.7-17 through Figure 3.7-37, shows that the BBNPP curves exceed the U.S. EPR
FSAR curves. Therefore, a site-specific analysis to determine In-Structure Response
Spectra (ISRS) is performed.

8. BBNPP site-specific SSI analyses are performed because the site-specific GMRS/FIRS
exceed the CSDRS at both low and high frequencies and the site-specific soil profile does
not correspond directly to the 10 generic soil profiles used for the U.S. EPR in terms of
soil layering. The analysis determined there are exceedances that are greater than 10%
by the site-specific floor ZPAs and ISRS over the corresponding U.S. EPR FSAR values.

9. As discussed in Step 8, there are exceedances that are greater than 10% by the site-
specific floor zero period accelerations (ZPAs) and ISRS over the corresponding U.S.
EPR FSAR values. Therefore, additional evaluations were performed for BBNPP.
Descriptions of the evaluation process of the structures, systems and components are
provided in U.S. EPR FSAR Section 2.5.2.6.

Site-Specific SSI Analyses
Soil Profiles

Table 3.7-1, Table 3.7-2 and Table 3.7-3 show the strain-compatible Best Estimate (BE), Lower
Bound (LB) and Upper Bound (UB) soil cases, respectively, used in the site-specific SSI analysis
for the NI Common Base Mat Structures. Since the EPGB and ESWB are at different elevations,
the soil profiles considered for these structures are different and include the structural fill from the
ground surface to the individual foundations of these structures. The EPGB is conservatively
surface founded (bottom of base mat at 5 ft (1.5 m) below grade) and the ESWB is embedded
about 22 ft (6.7 m).

Ground Motion

The BBNPP GMRS is used in the site-specific SSI analysis for the NI Common Base Mat
Structures. The ground motion for the SSI analysis of the EPGB and ESWB are based on the
FIRS developed by the site response analysis that account for the SSSI effects due to the NI's
influence on the EPGB and ESWB. The ground motions are defined as outcrop motions at the
foundation level of each structure.

SSI Analysis

For the NI Common Base Mat Structures, the SSI analysis methodology presented in U.S. EPR
FSAR is used for the current site-specific SSI analyses with some modifications in order to
address the high frequency content of the input ground motion. The following are the changes:

* An ANSYS dynamic finite element model (FEM) of the NI Common Base Mat structures
is developed based on the detailed static finite element model as discussed in Section
3.7.2.
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» The stick model of the NI Common Base Mat structures is used for computing the 6-
degrees-of-freedom (6-DOF) NI base mat motions from the SSI analysis using SASSI.

* An ANSYS modal superposition time history analysis of the fixed-base dynamic finite
element model of the NI Common Base Mat structures is performed using the 6-DOF NI
base mat motions from SASSI as the input motions as discuused in Section 3.7.2.

* ISRS and floor zero period accelerations (ZPAs) are developed from the modal
superposition time history analysis of the dynamic finite element model using ANSYS.

Details of the changes are discussed in Section 3.7.2.

SSI analyses for three soil cases, namely BBNPP strain-compatible BE, BBNPP strain-
compatible LB, and BBNPP strain-compatible UB, were performed using the GMRS/FIRS motion
as seismic input.

Response spectra for 5% damping in the three directions are generated at the following key
locations above plant grade:

* Reactor Building Internal Structure at Elevation 26.6 ft (5.15 m) and 64 ft (19.5 m)
« Safeguard Building 1 at Elevation 26.6 ft (8.1 m) and 68.9 ft (21.0 m)

» Safeguard Building 2/3 at Elevation 26.6 ft (8.1 m) and 50.5 ft (15.4 m)

» Safeguard Building 4 at Elevation 68.9 ft (21.0 m)

« Containment Building at Elevation 123.4 ft (37.6 m) and 190.3 ft (58.0 m)

* Emergency Power Generating Building at Elevation 0.0 ft (0.0 m)

» Essential Service Water Building at Elevation 63 ft (19.2 m) and 14 ft (4.27 m)

A comparison of the 5% damped ISRS for the BBNPP BE, LB and UB soil cases with the
corresponding peak broadened U.S. EPR FSAR ISRS (Figure 3.7-38 through Figure 3.7-73)
shows that the certified design ISRS are exceeded by the ISRS for BBNPP by more than 10% at
some of the key building locations. This includes the Reactor Building Internal Structure,
Safeguard Building 1, Safeguard Building 2/3, Emergency Power Generating Building, and
Essential Service Water Building (Figure 3.7-38 through Figure 3.7-73). This represents a
departure from the U.S. EPR FSAR. This departure is justified consistent with the seismic
reconciliation guidelines contained in U.S. EPR FSAR Section 2.5.2.6, as described in

Section 2.5.2.6.

The maximum zero period accelerations (ZPA) at various floor locations which are generated
from the SSI analysis are also compared with the U.S. EPR Design Certification ZPA. For the NI
Common Base Mat Structures, the BBNPP ZPAs are within the corresponding U.S. EPR FSAR
ZPAs except at one location of the Containment Building. At this location, the horizontal (y-
direction) ZPA of BBNPP exceeds that of the U.S. EPR FSAR by less than 10%. A comparison
of the BBNPP ZPAs for the EPGB and ESWB and U.S. EPR FSAR are reported in Table 3.7-4
and Table 3.7-5, respectively. As shown, the BBNPP ZPA at one location of the EPGB exceeds
the U.S. EPR FSAR ZPA by more than 10% as identified in Table 3.7-4.
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Foundation Input Response Spectra for Site-Specific Structures

Section 2.5.2 develops the site specific seismic design ground motion based on a Probabilistic
Seismic Hazard Assessment (PHSA) for the BBNPP site and the site response analysis.
Guidance from Regulatory Guide 1.208, "A Performance-Based Approach to Define the Site-
Specific Earthquake Ground Motion," (NRC, 2007a) was used to develop the Ground Motion
Response Spectrum (GMRS) at the BBNPP site. The GMRS defines the design ground motion
on top of a 10 ft (3 m) concrete layer at approximate Elevation 640.0 ft msl (195.1 m) overlaying
the Mahantango formation.

Free-field surface FIRS at Elevation 669.0 ft msl (203.9 m), the bottom of the ESWEMS
Pumphouse base mat, were obtained which envelope the GMRS at all frequencies. These FIRS
will be used for the design of the safety-related components of the ESWEMS Pumphouse. The
SSI analysis will utilize the free-field response spectra at the soil surface to define the control
motion. Figure 3.7-131 presents the horizontal and vertical FIRS utilized in the seismic
evaluation of the ESWEMS Pumphouse. In accordance with Regulatory Guide 1.208, these
spectra are based on uniform hazard spectra at hard rock amplified by mean frequency
dependent site amplification functions developed from site response analyses. The site
response analyses consider randomized soil columns and strain dependent shear modulus and
damping parameters. These free-field surface FIRS represent the design ground motion at
Elevation 669.0 ft msl (203.9 m).

The grade elevation at the ESWEMS Pumphouse is 5 ft (1.5 m) above the bottom of foundation
elevation of 669.0 ft (203.9 m) msl. The free-field surface FIRS at 669.0 ft (203.9 m) msl is taken
as the seismic input ground motion and is applied at the foundation level. Consistent with this
assumption, the analytical model for the soil structure interaction analysis ignores the soil above
the foundation level of the ESWEMS Pumphouse.

The horizontal and vertical design spectra at the soil surface exhibit PGA of about 0.21g and
0.18g. The shapes of the spectra illustrate the averaged effects of site soil column frequencies.
The peak spectral accelerations for the horizontal and vertical spectra are respectively, 0.54g
and 0.52g (Figure 3.7-131).}

The seismic design basis for the ESWEMS Retention Pond is covered by the slope stability
analysis described in Section 2.5.5, Section 3.8 and Section 3E.4. The dynamic analysis is
performed with maximum ground accelerations that correspond to the amplified motion
consistent with a Foundation Input Response Spectra the location of the pond slopes. The soil
strength parameters of the supporting media used for the dynamic analysis are discussed in
Section 2.5.5 and Section 2.5.4.

Seismic Category | and Category |I-SSE buried piping will have the seismic design basis of an
amplified ground motion obtained from a FIRS analysis. The recommended seismic design basis
will be the envelope FIRS of multiple soil column models analyzed at the site. This envelope has
a horizontal PGA of 0.30 g and a vertical of 0.32 g. Site specific input response spectra for
buried pipe analysis will correspond to design spectra built from the envelope of multiple
spectrums obtained for the seismic Category | facilities. This approach is adopted since buried
pipeline will be located at different elevations across the site. As described in Section 2.5.4.7.5,
the ground motion at the BBNPP site varies both with depth and horizontal location. Figure 3.7-
151 and Figure 3.7-152 provide the horizontal and vertical FIRS for buried pipe analysis. The
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cases used to build the envelope consider locations throughout the power block ESWEMS
facility areas. }

3.71.1.2 Design Ground Motion Time History

{A set of three synthetic ground motion time histories, two horizontal and one vertical, has been
developed for use in the ESWEMS Pumphouse seismic analysis. The procedure for generating
the synthetic time histories is based on modifying the frequency content of selected seed time
histories, which are consistent with the dominant seismic events contributing to the site seismic
hazard. A seed time history is an earthquake record that is modified so that its response spectra
matches certain properties. The response spectra of the resulting synthetic time histories match
the input ground motion response spectra, also called Target FIRS, in accordance with
Regulatory Guide 1.208 (NRC, 2007a).

Figure 3.7-132 through Figure 3.7-134 present the acceleration, velocity and displacement time
histories in the horizontal and vertical directions. Figure 3.7-135 through Figure 3.7-137 present
the comparison of the spectra computed from the time histories to the respective design spectra.
As seen from these figures, the computed spectra are comparable to the Target FIRS. In the
frequency range of interest the computed spectra are in the range of 0.9 to 1.3 times the Target
spectra. The time histories have a total duration of 24 seconds and a characteristic duration (5%
to 75% of Arias Intensity) of about 10 seconds.

3.71.2 Percentage of Critical Damping Values

{In accordance with Regulatory Guide 1.61, the damping value for reinforced concrete structure
for SSE level ground motion is 7% of the critical damping. However, the design of the ESWEMS
Pumphouse, conservatively uses a damping value of 5% of the critical damping. The damping
used for the foundation medium is discussed in U.S.EPR FSAR Section 3.7.1.2 and

Section 3.7.2.15 for the ESWEMS Pumphouse.}

3.71.3 Supporting Media for Seismic Category | Structures

{The supporting media for the NI Common Base Mat Structures for the seismic analysis is shown
in Figure 3.7-14 through Figure 3.7-16. The range of shear wave velocities of the site specific
soil profiles is bounded by those of the generic soil profiles 5u and 5a for the U.S. EPR FSAR.
Similarly, the supporting media for the EPGB and ESWB are also bounded by generic soil
profiles 5u and 5a when concrete fill is used, but are a departure from the U.S. EPR FSAR when
structural fill is used.

As described in Section 2.5.4, the subsurface at the ESWEMS Pumphouse consist of glacial
overburden soils underlain by the Mahantango Formation. The glacial overburden soils will be
excavated and replaced by concrete backfill prior to building the pumphouse foundation.

As shown in Figure 3E.4-4, the ESWEMS Pumphouse is supported on concrete backfill, which
extends from the top of the Mahantango formation at Elevation 669.0 ft (203.9 m) msl in average
to the bottom of the base mat. The bottom of deeper pumpwell base is also supported on a
concrete backfill at Elevation 641.0 ft msl (195.4 m) overlying the Mahantango formation.

Table 2.5-46, Table 2.5-48 and Table 2.5-49 present the static and dynamic design soll
parameters of the various foundation materials.}
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3.7.2 SEISMIC SYSTEM ANALYSIS
The U.S. EPR FSAR includes the following COL Item in Section 3.7.2:

A COL applicant that references the U.S. EPR design certification will confirm that the site-
specific seismic response is within the parameters of Section 3.7 of the U.S. EPR standard
design.

This COL Item is addressed as follows:

{The dynamic finite element model (ANSYS) of the NI Common Base Mat structures is generated
from the detailed static finite element model. The static finite element model is composed of a
variety of elements including solid and contact elements. For the dynamic model, the element
types are limited to shell, beam and mass elements. The static model includes the concrete
mass, but the dead loads and live loads are represented by static loads. These static loads are
converted to masses for the dynamic finite element model (Figure 3.7-86 through Figure 3.7-90).
Figure 3.7-91 shows the model for the Reactor Coolant System that is coupled to the dynamic
finite element model of the Reactor Building Internal Structure (RBIS). The compatibility check
between the dynamic and static finite element model is also included in Figure 3.7-99 through
Figure 3.7-116.

The existing stick model of the NI Common Base Mat structures is used in the SASSI analysis to
determine only the 6-DOF SSI response motions at the NI base mat. The 6-DOF base mat
motions from the SSI analysis of the NI are used as input motions to the modal superposition
time history analysis of the fixed-base dynamic finite element model of the NI. They are also
used as input motions for the seismic analysis of the coupled model between the fixed-base
RBIS stick model, the fixed-base Reactor Containment Building (RCB) stick model, and the
NSSS and other piping systems. For BBNPP, the NI base mat motions from the SSI analysis
contain high frequency content because of the GMRS. The section properties of both the RBIS
and RCB stick models are modified to capture the response due to high frequencies. The
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modifications are based on a comparison of the ISRS between the fixed-base, concrete-only
stick models, static finite element models and, in the case of the RCB, also the dynamic finite
element model. Input motion used for this purpose is a study motion, G1.1, that has high
frequency content similar to the BBNPP GMRS at the NI base mat elevation. G.1.1 is a response
spectrum similar to the BBNPP GMRS motion used to justify the model. Such comparison of the
ISRS at key locations of the RBIS and RCB between the concrete-only stick models and finite
element models is shown in Figure 3.7-74 through Figure 3.7-85.

The ESWB model has the same number of nodes and elements as the original model used for
the U.S. EPR FSAR, except for the node re-sequencing and the reshaping of elements. For the
EPGB, the SSI model is a refined finite element model (FEM). This represents a departure from
the U.S. EPR FSAR as part of the ISRS departure discussed below. The refined FEM was used
to account for the site specific soil profiles. Figure 3.7-92 presents the new FEM for the EPGB.

As a result of the high frequency content of the GMRS/FIRS, more refined SSI models were
developed for the Nuclear Island Common Base Mat Structures to capture the high frequency
response. Forthe EPGB structures, a 50 Hz cutoff frequency in the SSI analysis was considered
for the stiffer soil cases to address high frequencies. For the SSI analysis of the ESWB structure,
the SSI analysis cutoff frequency is a maximum of 26 Hz. While the FIRS extends beyond this
frequency, the 26 Hz cutoff frequency is deemed sufficient since the ESWB structural response is
governed by low frequency input motion and there is no high frequency sensitive equipment
currently identified for the ESWB. For structural design, 26 Hz is adequate since the seismic
motion at frequencies above 26 Hz has insufficient energy to generate higher seismic loads.

For equipment qualification, the high frequency content of the GMRS/FIRS is addressed during
the generation of the Required Response Spectra (RRS) as discussed in Section 3.10.1.4.

Using the 6-DOF response acceleration time histories for the center of the NI Common Base Mat
output from SASSI as input motions, a modal superposition time history analysis of the fixed-
base dynamic finite element model of the Nuclear Island Common Base Mat structures using
ANSYS is performed. The NI base mat response spectra and the response spectra at the
footprints of the EPGB and ESWB base mats at the elevation of the NI base mat are provided in
Figure 3.7-93 through Figure 3.7-98. Figure 3.7-117 through Figure 3.7-130 show the multi-
damping ISRS from the site-specific SSI analyses at those locations and directions where the 5%
damping ISRS from the site-specific analyses exceed the corresponding ISRS from the U.S.
EPR FSAR by more than 10% at any frequency (see Figure 3.7-38 through Figure 3.7-73 for the
ISRS comparison). As shown in Table 3.7-4, the site-specific worst maximum ZPAs exceed the
corresponding U.S. EPR FSAR results by more than 10% in only the vertical direction at the slab
at Elevation 68.0 ft (20.7 m) of the EPGB. Table 3.7-6 shows the site specific ZPAs of the EPGB
that are previously shown in Table 3.7-4. These site-specific NI base mat response spectra,
response spectra at the EPGB an ESWB footprints, ISRS and maximum accelerations represent
a departure from the U.S. EPR FSAR, as described in Section 3.7.1.1.1 and augment the
response spectra and maximum accelerations in the U.S. EPR FSAR.

3.7.21 Seismic Analysis Methods

{No departures or supplements.}
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3.7.211 Time History Analysis Method

{The seismic analysis of the ESWEMS Pumphouse including soil structure interaction is
performed in the frequency domain at selected analysis frequencies utilizing the program SASSI.
This analysis uses the three ground motion time histories described in above to represent the
design basis seismic ground motion in the three orthogonal directions. The time histories
represent the control motions at the free field soil surface of the soil-structure system.

The seismic analysis develops the following response parameters:

+ The SSE structural response accelerations at discrete elevations for subsequent
structural analysis and design.

* ISRS at the various slab elevations for equipment qualification (e.g., pumps).

Details of the analysis method are described in Section 3.7.2.4.

The seismic evaluation of the ESWEMS Retention Pond is based on slope stability analyses of
various sections of the sides of the ESWEMS Retention Pond. The slope stability analyses
include the effects of horizontal seismic acceleration on potential failure blocks. The slope
stability analysis and the factors of safety are reported in Section 2.5.4.}

3.7.21.2 Response Spectrum Method

{The seismic design evaluation for the ESWEMS Pumphouse is based on response spectrum
analysis. The analysis uses the calculated FIRS at 669 ft msl (203.9 m). Figure 3.7-1 presents
this response spectrum at 5% damping.

The response spectrum analysis uses GT-Strudl 3-D FEM model for the modal frequency and
Response Spectrum (RS) stress analysis. The 3D structural model is outlined in Figure 3E.4-2.
The base-mat founded on concrete backfill is modeled as roller supports. The building shear
keys, which are embedded in the Mahantango formation, are modeled as hinged supports. The
supporting media below the apron base is modeled as roller supports. Given partial embedment
of the pumpwell structure, the embedment effects are conservatively ignored.

The resulting modes, frequencies, and participation factors are utilized to develop the modal
responses, mode combinations, and directional combination of seismic responses. The design
seismic accelerations resulting from the response spectrum analysis are subsequently compared
with the seismic responses using the SASSI soil-structure-interaction analysis program in
Section 3.7.2.1.1 for the ESWEMS Pumphouse. Based on this comparison, it is concluded that
the dynamic responses from response spectrum method envelops the SASSI responses.}

3.7.21.3 Complex Frequency Response Analysis Method

{The analysis of the ESWEMS Pumphouse and the ESWEMS Retenion Pond does not use this
method, because the structure is adequately analyzed by other methods.}

3.7.21.4 Equivalent Static Load Method of Analysis

{The ESWEMS Pumphouse structural components, such as steel platforms, hangers, and/or
monorail, will be analyzed using the equivalent static method during detailed design. The
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equivalent static analysis uses accelerations determined directly from the soil-structure
interaction time history analysis.

This section is not applicable for the ESWEMS Retention Pond.}

3.7.2.2 {Natural Frequencies} and Response Loads

{Table 3.7-7 shows a comparison for selected representative critical locations of the effective
nodal accelerations based on the seismic loads implemented in the response spectrum method
with the maximum nodal accelerations resulting from the time history analysis method. The
nodal locations are shown on Figure 3.7-149 and Figure 3.7-150. The results from the time
history analysis method are given for three set of soil properties: lower bound, best estimate and
upper bound.

The seismic loads in the equivalent static analysis are calculated by applying accelerations
determined from the soil structure interaction time history analysis to the applicable masses in
the finite element model. A comparison of the nodal accelerations indicates that the response
accelerations resulting from the SASSI analysis are enveloped by the effective accelerations
used in the response spectrum method.

Maximum member forces and moments for critical sections, resulted from response spectrum
analysis, are tabulated in Table 3E.4-3 through Table 3E.4-6.

This section is not applicable for the ESWEMS Retention Pond.}

3.7.2.3 Procedures Used for Analytical Modeling

{No departures or supplements.}

3.7.2.31 Seismic Category | Structures — Nuclear Island Common Basemat

No departures or supplements.

3.7.2.3.2 Seismic Category | Structures — Not on Nuclear Island Common Basemat

{The EPGB and ESWB are not on the NI common base mat and are they not discussed here
because U.S. EPR FSAR Section 3.7.2.3.2 was followed exactly for the BBNPP seismic
reconciliation for these structures.

The ESWEMS Pumphouse and ESWEMS Retention Pond are Seismic Category | structures
situated outside the boundary of the NI.

The ESWEMS Pumphouse is a reinforced concrete shear wall structure supported by a
reinforced concrete base-mat. Section 3.8.4.1.11 provides a more detailed description of the
ESWEMS Pumphouse, while plan and elevation views shown on Figure 9.2-4 through

Figure 9.2-10 are utilized as the basis for development of the analytical finite element model of
the ESWEMS Pumphouse.

The design of the pumpwell wall facing the concrete backfill does not need to consider soil static
pressure as well as surcharge due to the building dead weight acting on the walls because the
high cohesion of the concrete block and its capability to carry the load directly to the Mahantango
formation. The pumpwell walls facing the pond are subjected to hydrostatic pressure with the
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water column height resulted from PMF plus water wave run-up and wind set-up wave. The
common interior walls of the pumpwell structure are evaluated for full hydrostatic load assuming
adjacent well is empty during maintenance.

The finite element model of the ESWEMS Pumphouse is developed in GT-Strudl. Itis utilized as
a basis for soil structure interaction time history analysis, as well as in the initial response
spectrum analysis to facilitate structural design. This model represents the reinforced concrete
base-mat, floor slabs, and walls using plate elements, which capture both in-plane and out-of-
plane effects from applied loads. The analysis model of the pumphouse is based on the un-
cracked section properties for the shear walls.

Figure 3.7-149 presents the overall 3D structural model. The building components are modeled
as shown in Figure 3E.4-1 and Figure 3E.4-2. The four piping trenches on the main base-mat
are not modeled. The trench is designed as a suspended structure hanging from the bottom of
the base mat. Itis isolated from building settlement loads using compressible or foam type
material around and underneath the trench.

Analytical Modeling for Response Spectrum Analysis

The model represents the supporting concrete backfill below the base mat and below the apron
as roller supports. The building shear keys are modeled as hinged supports. As such, the shear
keys would absorb all lateral reactions resulted from static and dynamic loadings. If the reaction
forces are beyond capability of the shear key to withstand, then lateral friction forces, which are
developed between the building foundation overlying concrete and the Mahantango formation,
will be taken into account to reduce the reaction forces.

Analytical Model for SASSI Soil-Structural Interaction Analysis

The subgrade within which the ESWEMS Pumphouse is founded is generally represented in the
SSI model with semi-infinite soil layers. The SSI model extends down to the Mahantango
Formation at Elevation 524.0 ft msl (159.7 m) a depth of about 145 ft (44.2 m) below the
ESWEMS Pumphouse foundation. Within this depth the subgrade is represented by specific
layers. This depth is underlain by an elastic half space. The water table is taken to be at
Elevation 664.0 ft msl (202.4 m), near the foundation of the ESWEMS Pumphouse.

The effective dynamic characteristics of the subgrade are represented by strain compatible shear
and compression wave velocities, damping and poisson's ratio for the various soil layers.
Consistent with the development of the FIRS, the SSI analysis considers three subgrade profiles
represented by upper bound, best estimate and lower bound soil and rock properties determined
from the site response analysis described in Section 2.5.2. These properties account for the
estimated seismic strains in the soil and rock layers as well as the statistics of the strain
compatible shear modulus and damping for the various layers. Figure 3.7-138 shows the low
strain shear wave velocity of the foundation material below the ESWEMS Pumphouse.

Figure 3.7-139 presents the strain compatible soil properties for the lower bound, best estimate
and the upper bound profiles.

Contained water mass is considered in accordance with ASCE 4-98 (ASCE, 1998) as well as
Newmark and Rossenblueth (Newmark, 1971), and utilized to develop the effects of the
hydrodynamic load due to water outside of the structure.
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The SSI model is based on the 3-D representation of the ESWEMS Pumphouse including the
pumpwell, walls, floor slabs, structural steel framing and major penetrations and openings in the
walls and slabs. For use in the SSI analysis the GT-STRUDL is augmented with representation
of the soil embedment, the excavated soil elements, the free-field soil profile and the effects of
the water inside and outside the pumpwell. The embedded portion of the structural model was
further refined to be compatible with a maximum soil layer thickness of about 3.8 ft (116 cm) so
that the effects of potential high frequency ground motion (up to about 100 Hz) are reflected in
the seismic SSI response.

The wing walls are modeled as retaining walls with soil up to Elevation 669.0 ft msl (203.9 m) on
one side and water on the other side. The hydrodynamic effects are represented as added
masses at nodes of the pumpwell wall. Similarly, the hydrodynamic effects on the wing walls are
represented as added nodal masses consistent with the constrained mass of water between the
wing walls as well as the sloshing component. The wing walls and the apron slab are truncated
to a distance of 24 ft (7.3 m) (on the X-axis) from the water wall of the pumpwell. The model is
terminated at this distance by a vertical retaining wall (parallel to the y-z plane), rigidly connected
to the apron slab but disconnected from the wing walls.

Because of the configuration of the ESWEMS Pumphouse relative to the major coordinate axes,
it was possible to take advantage of symmetry conditions and analyze the SSI model
implementing symmetric and anti-symmetric boundary conditions. The axis of symmetry is
oriented east west through the centerline of the ESWEMS Pumphouse.

Young's modulus and Poisson's ratio of the structural elements are based on the
recommendations of Section 3.1.2.1 of ASCE 4-98 (ASCE, 1986). The SSI model is calibrated
by comparing the predominant frequencies resulting from SASSI to those calculated from the
structural model. The dynamic behavior of the structure is characterized on the basis of a fixed
base modal analysis. The seismic mass includes the structure dead weight and major
equipment loads.}

3.7.2.3.3 Seismic Category Il Structures

{BBNPP utilizes a Seismic Classification of Seismic Category II-SSE. This designation is utilized
to address Fire Protection structures, systems, and components (SSC) that are required to
remain functional during and following a seismic event to support equipment required to achieve
safe shutdown in accordance with Regulatory Guide 1.189 (NRC, 2007a).}

3.7.234 Conventional Seismic (CS) Structures

No departures or supplements.

3.7.24 Soil-Structure Interaction

{Site-specific structures addressed in this section include the ESWEMS Pumphouse. This
section is not applicable for the ESWEMS Retention Pond. Section 2.5.5 provides a discussion
for the ESWEMS Retention Pond.

The seismic soil structure interaction analysis of the ESWEMS Pumphouse is performed utilizing
the program SASSI (ICEC, 2000). SASSI evaluates the dynamic characteristics of the structure
and of the supporting soil medium, and calculates the response of the soil-structure system

subjected to an earthquake ground motion. The solution is obtained in the frequency domain, i.e.
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for each of the several specified frequencies of analysis. The solution of the equations of motion
develops transfer functions relative to the control motion at the specified frequencies. The
solution for the entire input ground motion time history is developed in the frequency domain by
interpolating the solution at the specified frequencies.

SSI analyses are performed separately for three different directions of input motion, namely,
north-south, east-west and vertical. Each set of analyses is further performed for the lower
bound, best estimate and the upper bound soil properties. Thus a total of nine SSI analyses
develop the seismic response of the ESWEMS Pumphouse structure. Similar response from the
three directions of input motion is combined using square root of the sum of the square (SRSS)
technique. The resulting response in each of the north-south, east-west and the vertical
directions is first enveloped and then smoothed to provide the final design response.

The soil structure interaction analysis results in accelerations at node locations of the structural
model and the ISRS at selected locations in the structure. Table 3.7-7 presents the accelerations
in the North - South, East - West and Vertical directions at selected node locations. These nodal
accelerations are applied in an equivalent static analysis to compute internal forces and
moments in the structural components for design.

The global and local stress evaluation indicates that the seismic stress levels for the structural
components of the ESWEMS Pumphouse are relatively small (Table 3E.4-3 through Table 3E.4-
6). No structurally significant cracking of reinforced concrete components is expected.}

3.7.25 Development of Floor Response Spectra

{The only site-specific structure addressed in this section is the ESWEMS Pumphouse. For the
ESWEMS Pumphouse, the time history analysis provides seismic responses, including nodal
displacements, nodal accelerations, and ISRS.

ISRS are developed at several locations of the ESWEMS Pumphouse primarily at the first floor,
mezzanine and the roof levels.

The ISRS are developed in each of the three orthogonal directions due to the seismic input in the
north-south, east-west and vertical directions. The north-south response due to the north-south,
east-west and the vertical inputs are combined using the SRSS method to result in the combined
responses. The ISRS thus developed for the lower bound, best estimate and upper bound soil
properties are first enveloped and then smoothed and broadened + 15% in accordance with
Regulatory Guide 1.122 (NRC, 1978) and Standard Review Plan Section 3.7 (NUREG-0800)
(NRC, 2007b). Figure 3.7-140 through Figure 3.7-148 present the resulting ISRS in the north-
south, east-west and the vertical directions at selected locations of the ESWEMS Pumphouse.

The ISRS will be utilized for seismic equipment qualification and design of SSCs, such as piping,
cable trays and commodity supports. ISRS are generated for 1, 2, 3, 5, 7, and 10 percent
damping at various frequency intervals.}

3.7.2.6 Three Components of Earthquake Motion

{For the site-specific ESWEMS Pumphouse, three statistically independent time histories are
considered in the Soil Structure Interaction (SSI) analysis. The response spectrum analysis uses
the GT-Strudl finite element model. This analysis applies the inertia loads in all three directions,
and subsequently combines similar internal forces and moments using the ASCE 4-98 (ASCE,
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1986) "100-40-40" rule to calculate the overall seismic forces and moments for use in the design
evaluation of structural components.}

3.7.2.7 Combination of Modal Responses

{The time-history analysis considers three independent time-histories without combination of the
model responses. The response spectrum analysis is used for loading analysis and design of
the ESWEMS Pumphouse, in which modal responses combination is considered.}

3.7.2.8 Interaction of Non-Seismic Category | Structures with Seismic Category |
Systems

The U.S. EPR FSAR includes the following COL item and conceptual design information in
Section 3.7.2.8:

A COL applicant that references the U.S. EPR design certification will provide the site-
specific separation distances for the Access Building and Turbine Building.

[[The separation gaps between the AB and SBs 3 and 4 are 0.98 ft and 1.31 ft, respectively
(see Figure 3B-1).]]

[[The separation between the TB and NI Common Base mat Structures is approximately 30 ft
(see Figure 3B-1).1]

The COL item and the conceptual design information are addressed as follows:
The conceptual design information identified above is incorporated by reference.

The U.S. EPR FSAR includes the following COL Item and conceptual design information in
Section 3.7.2.8:

A COL applicant that references the U.S. EPR design certification will provide the seismic
design basis for the sources of fire protection water supply for safe plant shutdown in the
event of a SSE.

[[Fire Protection Storage Tanks and Buildings]]

[[The Fire Protection Storage Tanks and Buildings are classified as Conventional Seismic
Structures.]]

[[The fire protection storage tanks and building are designed to provide system pressure
integrity under SSE loading conditions. Seismic load combinations are developed in
accordance with the requirements of ASCE 43-05 using a limiting acceptance condition for
the structure characterized as essentially elastic behavior with no damage (i.e., Limit State D)
as specified in the Standard.]]

The COL Item and conceptual design information are addressed as follows:

Refer to Section 3.2.1 and U.S. EPR FSAR Section 3.2.1 for the definition of seismic
classifications used in this Section. {In addition, Section 3.2.1 categorizes Fire Protection SSC
into two categories:
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1. SSC that must remain functional during and after an SSE (i.e. Seismic Category II-SSE);

and

2. SSC that must remain intact after an SSE without deleterious interaction with Seismic
Category | or Seismic Category II-SSE (i.e., Seismic Category II).

Fire Protection SSC'’s that are required to remain functional during and following a safe shutdown
earthquake to support safe shutdown of the plant following a design basis seismic event are
designated as Seismic Class II-SSE. The following Fire Protection structures, systems, and
components are required to remain functional during and after a seismic event:

1.
2.
3.

Fire Water Storage Tanks;
Fire Protection Building;

Diesel driven fire pumps and their associated sub systems and components, including the
diesel fuel oil system;

Critical support systems for the Fire Protection Building, i.e., ventilation; and

The portions of the fire water piping system and components (including isolation valves)
which supply water to the stand pipes in buildings that house the equipment required for
safe shutdown of the plant following an SSE.

Manual actions may be required to isolate the portion of the Fire Protection piping system that is
not qualified as Seismic Category II-SSE.}

U.S. EPR FSAR Section 3.7.2.8 addresses the interaction of the following Non-Seismic Category
| structures with Seismic Category | structures:

Vent Stack

Nuclear Auxiliary Building

Access Building

Turbine Building

Radioactive Waste Processing Building

Fire Water Storage Tanks and Fire Protection Building

The following {BBNPP} Seismic Category Il, {Seismic Category II-SSE} and conventional seismic
SSC identified in Table 3.2-1 could also potentially interact with Seismic Category | SSC:

Buried and aboveground Seismic Category Il {and Seismic Category II-SSE Fire
Protection SSC,} other than those addressed in the U.S. EPR FSAR.

Conventional Seismic Switchgear Building,

{Conventional Seismic Grid Systems Control Building.

Conventional Seismic ESWEMS Pumphouse,

Conventional Seismic Circulating Water System (CWS) Cooling Towers,

Conventional Seismic CWS Makeup Water Intake Structure, and
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» Conventional Seismic Meteorological Tower.

The buried Seismic Category II-SSE Fire Protection SSC identified in Table 3.2-1 are seismically
analyzed using the design response spectra identified in Section 3.7.1.1.1 for use in the analysis
of the Seismic Category | site-specific buried utilities. The analysis of the buried Seismic
Category II-SSE fire protection SSC shall confirm they remain functional during and following an
SSE in accordance with NRC Regulatory Guide 1.189. Section 3.7.3.12 further defines the
methodology for the analysis of buried Fire Protection piping. Seismic Category II-SSE buried
piping is an embedded commodity that by its nature does not significantly interact with
aboveground Seismic Category | SSC.

The aboveground Seismic Category Il and Seismic Category II-SSE Fire Protection SSC
identified in Table 3.2-1 are seismically analyzed utilizing the appropriate design response
spectra. {The analysis of the aboveground Seismic Category II-SSE fire protection SSC shall
confirm they remain functional during and following an SSE in accordance with NRC Regulatory
Guide 1.189 (NRC, 2007a).}

The Conventional Seismic Switchgear Building, which is located adjacent to the conventional
seismic Turbine Building, is analyzed using the same methodology as that employed for the
Turbine Building.

{The Conventional Seismic Grid Systems Control Building is located in the Switchyard area. As
such, it is not located in the proximity of any Seismic Category | structures and, therefore, cannot
interact with Seismic Category | structures.

All non-safety related SSCs in the vicinity of the ESWEMS Pumphouse such as the monorail
platform are designed as Seismic Il structures to prevent these SSCs from falling and potentially
damaging safety related SSCs.

All buried duct banks and pipes tied to the ESWEMS Pumphouse are designed as safety related
Seismic Category | structures. Therefore, there are no adverse impacts from interaction between
safety and non-safety SSCs.

The CWS Cooling Towers, the CWS Makeup Water Intake Structure and the Meteorological
Tower were determined due to their locations to not interact with a Seismic Category | structure
were they to fall down at their planned locations onsite.}

3.7.29 Effects of Parameter Variations on Floor Response Spectra

{To account for uncertainties or variation in parameters, ISRS resulting from the time history
analyses for the ESWEMS Pumphouse are broadened +/- 15 percent in accordance with ASCE
4-98 (ASCE, 1986) and Regulatory Guide 1.122 (NRC, 1978).}

3.7.2.10 Use of Constant Vertical Static Factors

No departures or supplements.
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3.7.211 Method Used to Account for Torsional Effects

{For the ESWEMS Pumphouse, the conservatism in modeling the supporting boundary
conditions, especially at the shear keys, satisfies the accidental torsion per ASCE 4-98 (ASCE,
1986) requirements.}

3.7.212 Comparison of Responses

{As multiple seismic analysis methods are not employed for the ESWEMS Pumphouse, a
comparison of responses is not applicable.}

3.7.213 Methods for Seismic Analysis of Category | Dams

No departures or supplements.

3.7.2.14 Determination of Dynamic Stability of Seismic Category | Structures

{Refer to Section 3.8.5 for specific details related to overturning, sliding, and bearing stability for
the ESWEMS Pumphouse subjected to severe and extreme environment conditions.}

3.7.2.15 Analysis Procedure for Damping

{The EWSEMS Pumphouse is the only site specific structure addressed in this section. The Soil
Structure-interaction analysis uses a structural damping of 5% and low strain soil material
damping in the range of 0.5 to 1.0 percent. These damping values are directly applied to the
respective materials.

The response spectrum analysis utilizes to develop reasonably conservative design, in which
seismic loads is based on an envelope response spectrum associated with a damping of 5% of
the critical damping. Accordingly, all elements in the analytical model are assigned this damping
value.}

3.7.2.16 References

ASCE, 1986. Seismic Analysis of Safety-Related Nuclear Structures and Commentary, ASCE
Standard 4-98, American Society of Civil Engineers, September 1986.

Newmark, 1971. Fundamentals of Earthquake Engineering, N. Newmark, E. Rosenblueth
Prentice Hall: Englewood Cliffs. 1971.

NRC, 1978. Development of Floor Design Response Spectra for Seismic Design of Floor-
Supported equipment or Components, Regulatory Guide 1.122, U.S. Nuclear Regulatory
commission, February, 1978.

NRC, 2007a. Fire Protection for Nuclear Power Plants, Regulatory Guide 1.189, Revision 1, U.S.
Nuclear Regulatory Commission, March 2007.

NRC, 2007b. Standard Review Plan (SRP) for the Review of Safety Analysis Reports for
Nuclear Power Plants, NUREG-0800, U.S. Nuclear Regulatory Commission, March 2007.}

3.7.3 SEISMIC SUBSYSTEM ANALYSIS

No departures or supplements.
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3.7.31 Seismic Analysis Methods

No departures or supplements.

3.7.3.2 Determination of Number of Earthquake Cycles

No departures or supplements.

3.7.3.3 Procedures Used for Analytical Modeling

No departures or supplements.

3.7.3.4 Basis for Selection of Frequencies

No departures or supplements.

3.7.3.5 Analysis Procedure for Damping

No departures or supplements.

3.7.3.6 Three Components of Earthquake Motion

No departures or supplements.

3.7.3.7 Combination of Modal Responses

No departures or supplements.

3.7.3.8 Interaction of Other Systems with Seismic Category | Systems

No departures or supplements.

3.7.3.9 Multiple-Supported Equipment and Components with Distinct Inputs

No departures or supplements.

3.7.3.10 Use of Equivalent Vertical Static Factors

No departures or supplements.

3.7.3.11 Torsional Effects of Eccentric Masses

No departures or supplements.

3.7.3.12 Buried Seismic Category | Piping, Conduits, and Tunnels

{For BBNPP, a buried duct bank refers to multiple PVC or steel electrical conduits encased in
reinforced concrete.

The seismic analysis and design of Seismic Category | buried reinforced concrete electrical duct
banks is in accordance with IEEE 628-2001 (R2006) (IEEE, 2001), ASCE 4-98 (ASCE, 1986)
and ACI 349-01(AClI, 2001), including supplemental guidance of Regulatory Guide 1.142 (NRC,
2001). The use of ACI 349-01, in lieu of ACI 349-97 (ACI, 1997) as invoked in Subsection
4.9.4.15 of IEEE 628-2001 (R2006), is to provide a consistent design basis with all other Seismic
Category | structures.
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Side walls of electrical manholes are analyzed for seismic waves traveling through the
surrounding soil in accordance with the requirements of ASCE 4-98 (ASCE, 1986), including
dynamic soil pressures.

Seismic Category | buried Essential Service Water Pipes and Seismic Category Il and Seismic
Category II-SSE buried Fire Protection pipe are analyzed for the effects of seismic waves
traveling through the surrounding soil in accordance with the specific requirements of ASCE 4-98
(ASCE, 1986):

* Long, straight buried pipe sections, remote from bends or anchor points, are designed
assuming no relative motion between the flexible structure and the ground (i.e. the
structure conforms to the ground motion).

» The effects of bends and differential displacement at connections to buildings are
evaluated using equations for beams on elastic foundations, and subsequently combined
with the buried pipe axial stress.

For long straight sections of buried pipe, maximum axial strain and curvature are calculated per
equations contained in ASCE 4-98 (ASCE, 1986). These equations reflect seismic wave
propagation and incorporate the material’'s modulus of elasticity to determine the corresponding
maximum axial and bending stresses. The procedure combines stresses from compression,
shear and surface waves by the square root of the sum of the squares (SRSS) method.
Maximum stresses for each wave type are then combined using the SRSS method.
Subsequently, seismic stresses are combined with stresses from other loading conditions, e.g.,
long-term surcharge loading.

For straight sections of buried pipe, the transfer of axial strain from the soil to the buried structure
is limited by the frictional resistance developed. Consequently, axial stresses may be reduced by
consideration of such slippage effects, as appropriate.

The seismic analysis of bends of buried pipe is based on the equations developed for beams on
elastic foundations. Specifically, the transverse leg is assumed to deform as a beam on an elastic
foundation due to the axial force in the longitudinal leg. The spring constant at the bend depends
on the stiffness of the longitudinal and transverse legs as well as the degree of fixity at the bend
and ends of the legs.

Seismic analysis of restrained segments of buried pipe utilizes guidance provided in Appendix
VI, Procedures for the Design of Restrained Underground Piping, of ASME B31.1-2004 (ASME,
2004).}

3.7.3.13 Methods for Seismic Analysis of Category | Concrete Dams
The U.S. EPR FSAR includes the following COL ltem in Section 3.7.3.13:

A COL applicant that references the U.S. EPR design certification will provide a description of
methods for seismic analysis of site-specific Category | concrete dams, if applicable.

This COL Item is addressed as follows:

{No Seismic Category | dams will be utilized at BBNPP.}

BBNPP FSAR 3-51 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



3.7.3.14 Methods for Seismic Analysis of Aboveground Tanks

No departures or supplements.

3.7.3.15 References

{ACI, 1997. Code Requirements for Nuclear Safety-Related Concrete Structures, ACI 349-97,
American Concrete Institute, 1997.

ACI, 2001. Code Requirements for Nuclear Safety-Related Concrete Structures and
Commentary on Code Requirements for Nuclear Safety-Related Concrete Structures, ACI
349-01/349-R01, American Concrete Institute, 2001.

ASCE, 1986. Seismic Analysis of Safety-Related Nuclear Structures and Commentary, ASCE
4-98, American Society of Civil Engineers, September 1986.

ASME, 2004. Procedures for the Design of Restrained Underground Piping, Appendix VII, Power
Piping, ASME B31.1-2004, American Society of Mechanical Engineers, 2004.

IEEE, 2001. IEEE Standard Criteria for the Design, Installation, and Qualification of Raceway
Systems for Class 1E Circuits for Nuclear Power Generating Stations, IEEE 628-2001, IEEE,
2001.

NRC, 2001. Safety-Related Concrete Structures for Nuclear Power Plants (Other Than Reactor
Vessels and Containments), Regulatory Guide 1.142, U.S. Nuclear Regulatory Commission,
November 2001.}

3.7.4 SEISMIC INSTRUMENTATION

No departures or supplements.

3.7.41 Comparison with NRC Regulatory Guide 1.12

No departures or supplements.

3.74.2 Location and Description of Instrumentation
The U.S. EPR FSAR includes the following COL Item in Section 3.7.4.2:

A COL applicant that references the U.S. EPR design certification will determine whether
essentially the same seismic response from a given earthquake is expected at each of the
units in a multi-unit site or instrument each unit. In the event that only one unit is
instrumented, annunciation shall be provided to each control room.

This COL Item is addressed as follows:

{BBNPP is a single unit, U.S. EPR facility. It is located sufficiently distant from the existing
Susquehanna site such that the seismic response from the existing units will not affect the
BBNPP and the seismic response of the BBNPP will not effect the existing Susquehanna site.
Annunciation of the seismic instrumentation for BBNPP will be provided in the BBNPP main
control room.}
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3.74.21 Field Mounted Sensors
The U.S. EPR FSAR includes the following COL ltem in Section 3.7.4.2.1:

A COL applicant that references the U.S. EPR design certification will determine if a suitable
location exists for the free-field acceleration sensor. The mounting location must be such that
the effects associated with surface features, buildings, and components on the recordings of
ground motion are insignificant. The acceleration sensor must be based on material
representative of that upon which the Nuclear Island (NI) and other Seismic Category |
structures are founded.

This COL Item is addressed as follows:

{The specific location for the free-field acceleration sensor will be determined in accordance with
the guidance provided in Regulatory Guide 1.12. The location will be sufficiently distant from
nearby structures that may have significant influence on the recorded free-field seismic motion.
The free-field acceleration sensor will be located on a base mat that is founded on material that is
representative of that upon which the NI and other Seismic Category | structures are founded.

The sensor will be protected from accidental impact, and will be readily accessible for
surveillance, maintenance, and repair activities. The sensor will be rigidly mounted in alignment
with the orthogonal axes assumed for seismic analysis. To maintain occupational radiation
exposures ALARA, the free-field acceleration sensor location will be sufficiently distant from
radiation sources such that there is minimal occupational exposure expected during normal
operating modes.}

3.74.2.2 System Equipment Cabinet

No departures or supplements.

3.74.23 Seismic Recorder(s)

No departures or supplements.

3.74.24 Central Controller

No departures or supplements.

3.74.25 Power Supplies

No departures of supplements.

3.74.3 Control Room Operator Notification

No departures or supplements.

3.74.4 Comparison with Regulatory Guide 1.166

Post-earthquake actions and an assessment of the damage potential of the event using the
EPRI-developed OBE Exceedance Criteria follow the guidance of EPRI reports NP-5930 (EPRI,
1988) and NP-6695 (EPRI, 1989), as endorsed by the U.S. Nuclear Regulatory Commission in
Regulatory Guide 1.166 (NRC, 1997a) and Regulatory Guide 1.167 (NRC, 1997b). OBE
Exceedance Criteria is based on a threshold response spectrum ordinate check and a CAV
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check using recorded motions from the free-field acceleration sensor. If the respective OBE
ground motion is exceeded in a potentially damaging frequency range or significant plant
damage occurs, the plant must be shutdown following plant procedures.

3.74.5 Instrument Surveillance

No departures or supplements.

3.7.4.6 Program Implementation

No departures or supplements.

3.74.7 References

{ASCE, 2005. Seismic Design Criteria for Structures, Systems, and Components in Nuclear
Facilities, ASCE 43-05, American Society of Civil Engineers, January 2005.

EPRI, 1988. A Criterion for Determining Exceedance of the Operating Basis Earthquake, NP-
5930, Electric Power Research Institute, July 1988.

EPRI, 1989. Guidelines for Nuclear Plant Response to an Earthquake, NP-6695, Electric Power
Research Institute, December 1989.

NRC, 1997a. Pre-Earthquake Planning and Immediate Nuclear Power Plant Operator
Post-Earthquake Actions, Regulatory Guide 1.166, Revision 0, U. S. Nuclear Regulatory
Commission, March 1997.

NRC, 1997b. Restart of a Nuclear Power Plant Shut Down by a Seismic Event, Regulatory Guide
1.167, Revision 0, U. S. Nuclear Regulatory Commission, March 1997 .}
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Table 3.7-1 {Best Estimate Soil Modeling}

Best Estimate Soil (BBNPP Strain-Compatible Final Profile)

Minimum P-Wave Velocity of Submerged Layer (4800 fps)

1463 m/s

Average water table depth

Top of layer 1

Layer No. Layer Thk. | Wt. Dengity S-Wave Vel. | P-Wave Vel. S-Da!np P-Da.mp Poisssm's Freq Pass | Depth
(m) kN/m (m/s) (ml/s) Ratio Ratio Ratio (Hz) (m)
1 3.05 23.56 2201 3594 0.0082 | 0.0027 0.2 144 -3.05
2 3.05 26.7 2026 3844 0.0075 | 0.0025 0.31 133 -6.1
3 3.05 26.7 2026 3844 0.0075 | 0.0025 0.31 133 -9.14
4 3.05 26.7 2103 4499 0.0078 | 0.0026 0.36 138 -12.19
5 3.05 26.7 2103 4499 0.0078 | 0.0026 0.36 138 -15.24
6 3.05 26.7 2103 4499 0.0078 | 0.0026 0.36 138 -18.29
7 3.05 26.7 2103 4499 0.0078 | 0.0026 0.36 138 -21.34
8 3.35 26.7 2281 4831 0.0065 | 0.0022 0.36 136 -24.38
9 3.35 26.7 2281 4831 0.0065 | 0.0022 0.36 136 -27.74
10 3.35 26.7 2281 4831 0.0065 | 0.0022 0.36 136 -31.09
1 3.35 26.7 2281 4831 0.0065 | 0.0022 0.36 136 -34.44
12 3.35 26.7 2281 4831 0.0065 | 0.0022 0.36 136 -37.8
13 3.96 26.7 2575 4876 0.0074 | 0.0025 0.31 130 -41.15
14 3.96 26.7 2575 4876 0.0074 | 0.0025 0.31 130 -45.11
15 3.96 26.7 2575 4876 0.0074 | 0.0025 0.31 130 -49.07
16 3.96 26.7 2575 4876 0.0074 | 0.0025 0.31 130 -53.04
17 3.96 26.7 2575 4876 0.0074 | 0.0025 0.31 130 -57
18 3.81 26.7 2728 5105 0.007 | 0.0023 0.3 143 -60.96
19 3.81 26.7 2728 5105 0.007 | 0.0023 0.3 143 -64.77
20 3.81 26.7 2728 5105 0.007 | 0.0023 0.3 143 -68.58
21 3.81 26.7 2728 5105 0.007 | 0.0023 0.3 143 -72.39
22 4.57 26.7 2926 5136 0.007 | 0.0023 0.26 128 -76.2
23 4.57 26.7 2926 5136 0.007 | 0.0023 0.26 128 -80.77
24 4.57 26.7 2926 5136 0.007 | 0.0023 0.26 128 -85.34
25 4.57 26.7 2926 5136 0.007 | 0.0023 0.26 128 -89.92
N/A N/A 26.7 2926 5136 0.007 | 0.0023 0.26 N/A -94.49
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Table 3.7-2 {Lower Bound Soil Modeling}

Lower Bound Soil (BBNPP Strain-Compatible Final Profile)

Minimum P-Wave Velocity of Submerged Layer (4800 fps)

1463 m/s

Average water table depth

Top of layer 1

Layer No. Layer Thk. | Wt. Dengity S-Wave Vel. | P-Wave Vel. S-Da!np P-Da.mp Poisssm's Freq Pass | Depth
(m) kN/m (m/s) (ml/s) Ratio Ratio Ratio (Hz) (m)
1 3.05 23.56 1797 2934 0.01 0.0033 0.2 118 -3.05
2 3.05 26.7 1654 3139 0.01 0.0033 0.31 109 -6.1
3 3.05 26.7 1654 3139 0.01 0.0033 0.31 109 -9.14
4 3.05 26.7 1717 3673 0.011 | 0.0037 0.36 113 -12.19
5 3.05 26.7 1717 3673 0.011 | 0.0037 0.36 113 -15.24
6 3.05 26.7 1717 3673 0.011 | 0.0037 0.36 113 -18.29
7 3.05 26.7 1717 3673 0.011 | 0.0037 0.36 113 -21.34
8 3.35 26.7 1862 3944 0.009 0.003 0.36 111 -24.38
9 3.35 26.7 1862 3944 0.009 0.003 0.36 111 -27.74
10 3.35 26.7 1862 3944 0.009 | 0.003 0.36 111 -31.09
1 3.35 26.7 1862 3944 0.009 | 0.003 0.36 111 -34.44
12 3.35 26.7 1862 3944 0.009 | 0.003 0.36 111 -37.8
13 3.96 26.7 2102 3982 0.01 0.0033 0.31 106 -41.15
14 3.96 26.7 2102 3982 0.01 0.0033 0.31 106 -45.11
15 3.96 26.7 2102 3982 0.01 0.0033 0.31 106 -49.07
16 3.96 26.7 2102 3982 0.01 0.0033 0.31 106 -53.04
17 3.96 26.7 2102 3982 0.01 0.0033 0.31 106 -57
18 3.81 26.7 2227 4168 0.011 | 0.0037 0.3 117 -60.96
19 3.81 26.7 2227 4168 0.011 | 0.0037 0.3 117 -64.77
20 3.81 26.7 2227 4168 0.011 | 0.0037 0.3 117 -68.58
21 3.81 26.7 2227 4168 0.011 | 0.0037 0.3 117 -72.39
22 4.57 26.7 2389 4193 0.011 | 0.0037 0.26 105 -76.2
23 4.57 26.7 2389 4193 0.011 | 0.0037 0.26 105 -80.77
24 4.57 26.7 2389 4193 0.011 | 0.0037 0.26 105 -85.34
25 4.57 26.7 2389 4193 0.011 | 0.0037 0.26 105 -89.92
N/A N/A 26.7 2389 4193 0.011 | 0.0037 0.26 N/A -94.49
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Table 3.7-3 {Upper Bound Soil Modeling}

Upper Bound Soil (Bell Bend Strain-Compatible Final Profile)

Minimum P-Wave Velocity of Submerged Layer (4800 fps)

1463 m/s

Average water table depth

Top of layer 1

Layer No. Layer Thk. | Wt. Dengity S-Wave Vel. | P-Wave Vel. S-Da!np P-Da.mp Poisssm's Freq Pass | Depth
(m) kN/m (m/s) (ml/s) Ratio Ratio Ratio (Hz) (m)
1 3.05 23.56 2696 4402 0.0059 | 0.002 0.2 177 -3.05
2 3.05 26.7 2482 4708 0.0051 | 0.0017 0.31 163 -6.1
3 3.05 26.7 2482 4708 0.0051 | 0.0017 0.31 163 -9.14
4 3.05 26.7 2575 5510 0.0049 | 0.0016 0.36 169 -12.19
5 3.05 26.7 2575 5510 0.0049 | 0.0016 0.36 169 -15.24
6 3.05 26.7 2575 5510 0.0049 | 0.0016 0.36 169 -18.29
7 3.05 26.7 2575 5510 0.0049 | 0.0016 0.36 169 -21.34
8 3.35 26.7 2793 5916 0.0041 | 0.0014 0.36 167 -24.38
9 3.35 26.7 2793 5916 0.0041 | 0.0014 0.36 167 -27.74
10 3.35 26.7 2793 5916 0.0041 | 0.0014 0.36 167 -31.09
1 3.35 26.7 2793 5916 0.0041 | 0.0014 0.36 167 -34.44
12 3.35 26.7 2793 5916 0.0041 | 0.0014 0.36 167 -37.8
13 3.96 26.7 3153 5973 0.005 | 0.0017 0.31 159 -41.15
14 3.96 26.7 3153 5973 0.005 | 0.0017 0.31 159 -45.11
15 3.96 26.7 3153 5973 0.005 | 0.0017 0.31 159 -49.07
16 3.96 26.7 3153 5973 0.005 | 0.0017 0.31 159 -53.04
17 3.96 26.7 3153 5973 0.005 | 0.0017 0.31 159 -57
18 3.81 26.7 3341 6253 0.0047 | 0.0016 0.3 175 -60.96
19 3.81 26.7 3341 6253 0.0047 | 0.0016 0.3 175 -64.77
20 3.81 26.7 3341 6253 0.0047 | 0.0016 0.3 175 -68.58
21 3.81 26.7 3341 6253 0.0047 | 0.0016 0.3 175 -72.39
22 4.57 26.7 3584 6290 0.0047 | 0.0016 0.26 157 -76.2
23 4.57 26.7 3584 6290 0.0047 | 0.0016 0.26 157 -80.77
24 4.57 26.7 3584 6290 0.0047 | 0.0016 0.26 157 -85.34
25 4.57 26.7 3584 6290 0.0047 | 0.0016 0.26 157 -89.92
N/A N/A 26.7 3584 6290 0.0047 | 0.0016 0.26 N/A -94.49
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Table 3.7-6 {BBNPP Worst Case Maximum Accelerations - EPGB}

BBNPP EPGB - ENVELOP RESULTS

X-Acceleration

(9)

Y-Acceleration

(9)

Z-Acceleration

(9)

Slab at EL 68.0' 0.71 0.78 1.27
Slab at EL 51.5' 0.60 0.70 0.98
Slab at EL 19.25' 0.38 0.79 0.42
Slab at EL 0.0' 0.31 0.30 0.32
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Table 3.7-7 {Comparison of Nodal Accelerations for Selected Critical Locations in the
ESWEMS Pumphouse}

Joint No Response Spectrum Analysis Time History Analysis
Soil Parameters
N LB BE uB
GTStrud SASS| Response Direction Amax (g) Ao Ao Ao
(9) (9) (9)
S18 2858 E-W 0.736 0.174 0.175 0.174
2112 2863 E-W 0.691 0.169 0.167 0.167
w318 3002 E-W 0.922 0.198 0.214 0.224
w218 3146 E-W 0.972 0.199 0.217 0.227
zz31 3928 E-wW 1.097 0.246 0.258 0.263
M118 4007 E-W 1.063 0.358 0.388 0.404
M109 4124 E-W 1.058 0.371 0.406 0.414
TW200 5011 E-W 1.420 0.677 0.783 0.849
S180 5031 E-W 1.109 0.457 0.496 0.529
W3173 5150 E-W 1.072 0.483 0.533 0.564
W2173 5273 E-W 1.112 0.519 0.579 0.593
S18 2858 N-S 0.848 0.197 0.203 0.192
2112 2863 N-S 2.018 0.181 0.188 0.189
w318 3002 N-S 0.692 0.230 0.234 0.237
w218 3146 N-S 0.544 0.245 0.252 0.248
zz31 3928 N-S 1.096 0.376 0.397 0.416
M118 4007 N-S 1.171 0.405 0.405 0.423
M109 4124 N-S 0.816 0.422 0.439 0.442
TW200 5011 N-S 1.354 0.699 0.769 0.820
S180 5031 N-S 1.118 0.482 0.504 0.527
W3173 5150 N-S 0.906 0.498 0.545 0.624
W2173 5273 N-S 0.754 0.487 0.533 0.606
S18 2858 Vertical 0.232 0.207 0.211 0.211
2112 2863 Vertical 0.273 0.179 0.183 0.189
W318 3002 Vertical 0.315 0.235 0.245 0.250
w218 3146 Vertical 0.356 0.242 0.254 0.261
zz31 3928 Vertical 0.420 0.208 0.210 0.209
M118 4007 Vertical 2.006 0.463 0.500 0.530
M109 4124 Vertical 0.692 0.349 0.366 0.380
TW200 5011 Vertical 0.780 0.599 0.604 0.621
S180 5031 Vertical 0.373 0.242 0.250 0.252
W3173 5150 Vertical 0.522 0.347 0.365 0.379
W2173 5273 Vertical 0.616 0.363 0.385 0.413
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Figure 3.7-1 {Comparison of BBNPP GMRS and EUR CSDRS, 5% Damping

(Horizontal)}
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Figure 3.7-2 {Comparison of BBNPP GMRS and EUR CSDRS, 5% Damping (Vertical)}

Comparison of EPR (Standard Plant) and Bell Bend NPP Ground Design Spectra

Vertical Direction, 5% Damping
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Figure 3.7-3 {BBNPP Horizontal SSE Ground Motion and EUR CSDRS Anchored at

0.1g PGA Horizontal Direction, 5% Damping}
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Figure 3.7-4 {Comparison of BBNPP FIRS (EPGB 1 and 2) and EUR CSDRS, Horizontal

Direction, 5% Damping}
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Figure 3.7-5 {Comparison of BBNPP FIRS (EPGB 1 and 2) and EUR CSDRS, Vertical

Direction, 5% Damping}
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Figure 3.7-6 {Comparison of BBNPP FIRS (EPGB 3 and 4) and EUR CSDRS, Horizontal

Direction, 5% Damping}
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Figure 3.7-7 {Comparison of BBNPP FIRS (EPGB 3 and 4) and EUR CSDRS, Vertical

Direction, 5% Damping}
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Figure 3.7-8 {Comparison of BBNPP FIRS (ESWB 1 & 2) and EUR CSDRS, Horizontal

Direction, 5% Damping}
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Figure 3.7-9 {Comparison of BBNPP FIRS (ESWB 1 &2) and EUR CSDRS, Vertical

Direction, 5% Damping}
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Figure 3.7-10 {Comparison of BBNPP FIRS (ESWB 3) and EUR CSDRS, Horizontal

Direction, 5% Damping}
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Figure 3.7-11 {Comparison of BBNPP FIRS (ESWB 3) and EUR CSDRS, Vertical

Direction, 5% Damping}
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Figure 3.7-12 {Comparison of BBNPP FIRS (ESWB 4) and EUR CSDRS, Horizontal

Direction, 5% Damping}
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Figure 3.7-13 {Comparison of BBNPP FIRS (ESWB 4) and EUR CSDRS, Vertical

Direction, 5% Damping}
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Figure 3.7-14 {Shear Wave Velocity Profiles Below NI Base Mat for BBNPP}
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Figure 3.7-15 {EPR DC Soil Cases (Uniform) vs BBNPP Soil Cases for SSI Analysis of

NI}

Bell Bend NPP Vs EPR DC Soil Cases
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Figure 3.7-16 {EPR DC Soil Cases (Layered) vs BBNPP Soil Cases for SSI Analysis of

NI}
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Figure 3.7-17 {NI Base Mat (Node 417) X- Direction Response Spectra at 5% Damping}
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Figure 3.7-18 {NI Base Mat (Node 417) Y- Direction Response Spectra at 5%Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,

Center of NI Basemat, Y(N-S) Direction, 5% Damping
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Figure 3.7-19 {NI Base Mat (Node 417) Z- Direction Response Spectra at 5%Damping}
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Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,

Center of NI Basemat, Z(Vertical) Direction, 5% Damping
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Figure 3.7-20 {EPGB 1 & 2 Base Mat X- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,

Center of EPGB 1&2 Basemat, X(E-W) Direction, 5% Damping
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Figure 3.7-21 {EPGB 1 & 2 Base Mat Y- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of EPGB 1&2 Basemat, Y(N-S) Direction, 5% Damping
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Figure 3.7-22 {EPGB 1 & 2 Base Mat Z- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of EPGB 1&2 Basemat, Z(Vertical) Direction, 5% Damping
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Figure 3.7-23 {EPGB 3 & 4 Base Mat X- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of EPGB 3&4 Basemat, X(E-W) Direction, 5% Damping
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Figure 3.7-24 {EPGB 3 & 4 Base Mat Y- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of EPGB 3&4 Basemat, Y(N-S) Direction, 5% Damping
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Figure 3.7-25 {EPGB 3 & 4 Base Mat Z- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of EPGB 3&4 Basemat, Z(Vertical) Direction, 5% Damping
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Figure 3.7-26 {ESWB 1 Base Mat X- Direction Response Spectra at 5% Damping}
Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of ESWB 1 Basemat, X(E-W) Direction, 5% Damping
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Figure 3.7-27 {ESWB 1 Base Mat Y- Direction Response Spectra at 5% Damping}
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Figure 3.7-28 {ESWB 1 Base Mat Z- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,

Center of ESWB 1 Basemat, Z(Vertical) Direction, 5% Damping
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Figure 3.7-29 {ESWB 2 Base Mat X- Direction Response Spectra at 5% Damping}
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Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,

Center of ESWB 2 Basemat, X(E-W) Direction, 5% Damping
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Figure 3.7-30 {ESWB 2 Base Mat Y- Direction Response Spectra at 5% Damping}

1.60

1.40 1

1.20 1

Acceleration (g)
o N
o) o
o o

o
o}
S

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,

Center of ESWB 2 Basemat, Y(N-S) Direction, 5% Damping

I I I
——Envelope S2,M2,H2

1us
——1n2us

2snd4um
——2n3um
—2us
—2um
——3r3um

| —3um

4um
—4uh

| | —5uh

—>5ah

—Bell Bend - BE
| | —BellBend - LB
——Bell Bend - UB

) =
g
<5
4

—

iV | W\

=

A

© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED

0.40 % \\
V2V ki
P P d =
yoid _V N
020 /’ A A f—/
P il e
0.00 —
0.1 1.0 10.0 100.0
Frequency (Hz)
BBNPP FSAR 3-76 Rev. 0



Figure 3.7-31 {ESWB 2 Base Mat Z- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of ESWB 2 Basemat, Z(Vertical) Direction, 5% Damping
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Figure 3.7-32 {ESWB 3 Base Mat X- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of ESWB 3 Basemat, X(E-W) Direction, 5% Damping
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Figure 3.7-33 {ESWB 3 Base Mat Y- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of ESWB 3 Basemat, Y(N-S) Direction, 5% Damping
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Figure 3.7-34 {ESWB 3 Base Mat Z- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of ESWB 3 Basemat, Z(Vertical) Direction, 5% Damping
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Figure 3.7-35 {ESWB 4 Base Mat X- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,

Center of ESWB 4 Basemat, X(E-W) Direction, 5% Damping
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Figure 3.7-36 {ESWB 4 Base Mat Y- Direction Response Spectra at 5% Damping}
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Figure 3.7-37 {ESWB 4 Base Mat Z- Direction Response Spectra at 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-Structure Response Spectra,
Center of ESWB 4 Basemat, Z(Vertical) Direction, 5% Damping
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Figure 3.7-38 {Reactor Bldg Internal Structure, Elev. 5.15m, X (E-W) Direction, 5%
Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Reactor Building Internals, Elev. 5.15m, +15% Peak-Broadened, X(E-W) Direction, 5%

Damping
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Figure 3.7-39 {Reactor Bldg Internal Structure, Elev. 5.15m, Y (N-S) Direction,
5%Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Reactor Building Internals, Elev. 5.15m, #15% Peak-Broadened, Y(N-S) Direction, 5% Damping
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Figure 3.7-40 {Reactor Bldg Internal Structure, Elev. 5.15m, Z (Vert) Direction,
5%Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Reactor Building Internals, Elev. 5.15m, +15% Peak-Broadened, Z(Vert) Direction, 5%

Damping
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Figure 3.7-41 {Reactor Bldg Internal Structure, Elev. 19.5m, X (E-W) Direction,
5%Damping}
Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,

Reactor Building Internals, Elev. 19.50m, +15% Peak-Broadened, X(E-W) Direction, 5%
Damping
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Figure 3.7-42 {Reactor Bldg Internal Structure, Elev. 19.5m, Y (N-S) Direction,

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,

5%Damping}

Reactor Building Internals, Elev. 19.50m, ¥15% Peak-Broadened, Y(N-S) Direction, 5%

Damping
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Figure 3.7-43 {Reactor Bldg Internal Structure, Elev. 19.5m, Z (Vert) Direction, 5%

Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Reactor Building Internals, Elev. 19.50m, +15% Peak-Broadened, Z(Vert) Direction, 5%

Damping
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Figure 3.7-44 {Safeguard Building 1, Elev. 8.1m, X (E-W) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 1, 8.1m, £15% Peak-Broadened, X(E-W) Direction, 5% Damping
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Figure 3.7-45 {Safeguard Building 1, Elev. 8.1m, Y (N-S) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,

Safeguard Building 1, 8.1m, £15% Peak-Broadened, Y(N-S) Direction, 5% Damping
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Figure 3.7-46 {Safeguard Building 1, Elev. 8.1m, Z (Vert) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 1, 8.1m, ¥15% Peak-Broadened, Z(Vert) Direction, 5% Damping
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Figure 3.7-47 {Safeguard Building 1, Elev. 21.0m, X (E-W) Direction, 5% Damping}
Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 1, 21.0m, £15% Peak-Broadened, X(E-W) Direction, 5% Damping
4.00 T T T
—EPR 12-Case Env.
350 1 — Best Estimate (BE) /_\
—— Lower Bound (LB) \_
—— Upper Bound (UB) \—
3.00
250 1
2
c
2
® 2.00
K
[
< / A
<
1.50 /J \_\
1.00
\/
WESEER v
0.50
— 20 Rd A\
/
0.00 !
0.10 1.00 10.00 100.00
Frequency (Hz)
BBNPP FSAR 3-87 Rev. 0

© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



Figure 3.7-48 {Safeguard Building 1, Elev. 21.0m, Y (N-S) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 1, 21.0m, £15% Peak-Broadened, Y(N-S) Direction, 5% Damping
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Figure 3.7-49 {Safeguard Building 1, Elev. 21.0m, Z (Vert) Direction, 5% Damping}
Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 1, 21.0m, £15% Peak-Broadened, Z(Vert) Direction, 5% Damping
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Figure 3.7-50 {Safeguard Building 2/3, Elev. 8.1m, X (E-W) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 2/3, Elev. 8.1m, *15% Peak-Broadened, X(E-W) Direction, 5% Damping
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Figure 3.7-51 {Safeguard Building 2/3, Elev. 8.1m, Y (N-S) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 2/3, Elev. 8.1m, *15% Peak-Broadened, Y(N-S) Direction, 5% Damping
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Figure 3.7-52 {Safeguard Building 2/3, Elev. 8.1m, Z (Vert) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 2/3, Elev. 8.1m, *15% Peak-Broadened, Z(Vert) Direction, 5% Damping
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Figure 3.7-53 {Safeguard Building 2/3, Elev. 15.4m, X (E-W) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 2/3, Elev. 15.4m, £15% Peak-Broadened, X(E-W) Direction, 5% Damping

5.00 ‘ ‘ ‘
—EPR 12-Case Env.
4.50 +— — Best Estimate (BE)
—— Lower Bound (LB) (—‘\
4.00 4 ——Upper Bound (UB)
3.50

Acceleration (g)
N
a
o

1.50 ‘\ \
1.00 /_/ / V\Q\
0.50 B / / E/\‘\v% AN |
7 _/ |
L1 e
0.00 S
0.10 1.00 10.00 100.00
Frequency (Hz)
BBNPP FSAR 3-90 Rev. 0

© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



Figure 3.7-54 {Safeguard Building 2/3, Elev. 15.4m, Y (N-S) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 2/3, Elev. 15.4m, £15% Peak-Broadened, Y(N-S) Direction, 5% Damping
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Figure 3.7-55 {Safeguard Building 2/3, Elev. 15.4m, Z (Vert) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 2/3, Elev. 15.4m, *15% Peak-Broadened, Z(Vert) Direction, 5% Damping
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Figure 3.7-56 {Safeguard Building 4, Elev. 21.0m, X (E-W) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 4, Elev. 21.0m, +15% Peak-Broadened, X(E-W) Direction, 5% Damping
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Figure 3.7-57 {Safeguard Building 4, Elev. 21.0m, Y (N-S) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 4, Elev. 21.0m, £15% Peak-Broadened, Y(N-S) Direction, 5% Damping
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Figure 3.7-58 {Safeguard Building 4, Elev. 21.0m, Z (Vert) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Safeguard Building 4, Elev. 21.0m, £15% Peak-Broadened, Z(Vert) Direction, 5% Damping
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Figure 3.7-59 {Containment Building, Elev. 37.6m, X (E-W) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Containment Building, Elev. 37.60m, +15% Peak-Broadened, X(E-W) Direction, 5% Damping
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Figure 3.7-60 {Containment Building, Elev. 37.6m, Y (N-S) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Containment Building, Elev. 37.60m, +15% Peak-Broadened, Y(N-S) Direction, 5% Damping
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Figure 3.7-61 {Containment Building, Elev. 37.6m, Z (Vert) Direction, 5% Damping}
Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Containment Building, Elev. 37.60m, +15% Peak-Broadened, Z(Vert) Direction, 5% Damping
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Figure 3.7-62 {Containment Building, Elev. 58.0m, X (E-W) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Containment Building, Elev. 58.00m, 15% Peak-Broadened, X(E-W) Direction, 5% Damping
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Figure 3.7-63 {Containment Building, Elev. 58.0m, Y (N-S) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Containment Building, Elev. 58.00m, +15% Peak-Broadened, Y(N-S) Direction, 5% Damping
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Figure 3.7-64 {Containment Building, Elev. 58.0m, Z (Vert) Direction, 5% Damping}

Comparison of Bell Bend NPP versus US EPR Standard In-structure Response Spectra,
Containment Building, Elev. 58.00m, +15% Peak-Broadened, Z(Vert) Direction, 5% Damping
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Figure 3.7-65 {EPBG, Elev. 0.0m X (E-W) Direction, 5% Damping}
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Figure 3.7-68 {ESWB, Elev. 19.20m, X (E-W) Direction, 5% Damping}
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Figure 3.7-71 {ESWB, Elev. 4.27m, X (E-W) Direction, 5% Damping}
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Figure 3.7-73 {ESWB, Elev. 4.27m, Z (Vert) Direction, 5% Damping}
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Figure 3.7-74 {Stick vs. FEM Spectrum Comparison at Elev. 58.00m — Containment
Dome Apex (Without Polar Crane), 5% Damping X-Direction}

Reactor Containment Floor Response Spectra Elev 58.0m, X-Direction, 5% Damping
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Figure 3.7-75 {Stick vs. FEM Spectrum Comparison at Elev. 58.00m — Containment
Dome Apex (Without Polar Crane), 5% Damping Y-Direction}

Reactor Containment Floor Response Spectra Elev 58.0m, Y-Direction, 5% Damping
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Figure 3.7-76 {Stick vs. FEM Spectrum Comparison at Elev. 58.00m — Containment
Dome Apex (Without Polar Crane), 5% Damping Z-Direction}

Reactor Containment Floor Response Spectra Elev 58.0m, Z-Direction, 5% Damping
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Figure 3.7-77 {Stick vs. FEM Spectrum Comparison at Elev. 37.60m — Containment
Building (Without Polar Crane), 5% Damping X-Direction}

Reactor Containment Floor Response Spectra Elev 37.6m, X-Direction, 5% Damping
G1.1 Input Motion
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Figure 3.7-78 {Stick vs. FEM Spectrum Comparison at Elev. 37.60m — Containment
Building (Without Polar Crane), 5% Damping Y-Direction}

Reactor Containment Floor Response Spectra Elev 37.6m, Z-Direction, 5% Damping
G1.1 Input Motion
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Figure 3.7-79 {Stick vs. FEM Spectrum Comparison at Elev. 37.60m — Containment
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Figure 3.7-80 {Spectrum Comparison at Elev. 19.50m — Reactor Building Internal
Structure, 4% Damping X-Direction}

Acceleration (g)
[$]

Reactor Building Floor Response Spectra Elev 19.5m, X-Direction, 4% Damping

----- Static FEM (ANSYS)

Stick-1cg (GTStrudl)

Il — - —-G1.1 TH X-Component

0.1

Frequency (Hz)

10.0

100.0

Figure 3.7-81 {Spectrum Comparison at Elev. 19.50m — Reactor Building Internal
Structure, 4% Damping Y-Direction}
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Figure 3.7-82 {Spectrum Comparison at Elev. 19.50m — Reactor Building Internal
Structure, 4% Damping Z-Direction}
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Figure 3.7-83 {Spectrum Comparison at Elev. 5.15m — Reactor Building Internal
Structure, 4% Damping X-Direction}

Reactor Building Floor Response Spectra Elev 5.15m, X-Direction, 4% Damping
Input Motion: G1.1
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Figure 3.7-84 {Spectrum Comparison at Elev. 5.15m — Reactor Building Internal
Structure, 4% Damping Y-Direction}

Reactor Building Floor Response Spectra Elev 5.15m, Y-Direction, 4% Damping
Input Motion: G1.1
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Figure 3.7-85 {Spectrum Comparison at Elev. 5.15m — Reactor Building Internal
Structure, 4% Damping Z-Direction}
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Figure 3.7-86 {3D Finite Element Model of Balance of Nl Common Base Mat Structures
Perspective View}
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Figure 3.7-87 {Section Cutoff of Dynamic FE Model}
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Figure 3.7-88 {Balance of Nl Individual Component of Dynamic FE Model}
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Figure 3.7-89 {Reactor Building Internal Structure of Dynamic FE Model}
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Figure 3.7-90 {Reactor Containment Building of Dynamic FE Model}
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Figure 3.7-91 {Reactor Coolant System of Dynamic FE Model}
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Figure 3.7-92 {lsometric View of FEM for EPGB}
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Figure 3.7-93 {BBNPP Response Spectra at Nl Common Base Mat Structure (Node

Acceleration (g)

417) — 5% Damping, X - Direction}
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Figure 3.7-94 {BBNPP Response Spectra at Nl Common Base Mat Structure (Node

417) — 5% Damping, Y - Direction}
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Figure 3.7-95 {BBNPP Response Spectra at Nl Common Base Mat Structure (Node

417) — 5% Damping, Z — Direction}
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Figure 3.7-96 {BBNPP Response Spectra at Centers of Footprints of EPGB and ESWB
— 5% Damping, X - Direction}
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Figure 3.7-97 {BBNPP Response Spectra at Centers of Footprints of EPGB and ESWB
— 5% Damping, Y - Direction}
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Figure 3.7-98 {BBNPP Response Spectra at Centers of Footprints of EPGB and ESWB

— 5% Damping, Z - Direction}
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Figure 3.7-99 {Comparison of Response Spectra — Dynamic Versus Static Model,
Reactor Shield Building, X-Direction}
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Figure 3.7-100 {Comparison of Response Spectra — Dynamic Versus Static Model,
Reactor Shield Building, Y-Direction}
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Figure 3.7-101 {Comparison of Response Spectra — Dynamic Versus Static Model,
Reactor Shield Building, Z-Direction}

Comparison of Response Spectra — Dynamic Versus Static Model, Reactor Shield Building, Z-
Direction
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Figure 3.7-102 {Comparison of Response Spectra — Dynamic Versus Static Model,
Reactor Building Internal Structure, X-Direction}
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Figure 3.7-103 {Comparison of Response Spectra — Dynamic Versus Static Model,
Reactor Building Internal Structure, Y-Direction}
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Figure 3.7-104 {Comparison of Response Spectra — Dynamic Versus Static Model,

Reactor Building Internal Structure, Z-Direction}
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Figure 3.7-105 {Comparison of Response Spectra — Dynamic Versus Static Model,

Containment Building, X-Direction}
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Figure 3.7-106 {Comparison of Response Spectra — Dynamic Versus Static Model,
Containment Building, Y-Direction}
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Figure 3.7-107 {Comparison of Response Spectra — Dynamic Versus Static Model,
Containment Building, Z-Direction}
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Figure 3.7-108 {Comparison of Response Spectra — Dynamic Versus Static Model,
Safeguard Building 1, X-Direction}
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Figure 3.7-109 {Comparison of Response Spectra — Dynamic Versus Static Model,
Safeguard Building 1, Y-Direction}

Comparison of Response Spectra — Dynamic Versus Static Model, Safeguard Building 1, Y-
Direction
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Figure 3.7-110 {Comparison of Response Spectra — Dynamic Versus Static Model,
Safeguard Building 1, Z-Direction}

Comparison of Response Spectra — Dynamic Versus Static Model, Safeguard Building 1, Z-
Direction
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Figure 3.7-111 {Comparison of Response Spectra — Dynamic Versus Static Model,
Safeguard Buildings 2 and 3, X-Direction}

Comparison of Response Spectra — Dynamic Versus Static Model, Safeguard Buildings 2 and 3, X-
Direction
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Figure 3.7-112 {Comparison of Response Spectra — Dynamic Versus Static Model,
Safeguard Buildings 2 and 3, Y-Direction}

Comparison of Response Spectra — Dynamic Versus Static Model, Safeguard Buildings 2 and 3, Y-
Direction
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Figure 3.7-113 {Comparison of Response Spectra — Dynamic Versus Static Model,
Safeguard Buildings 2 and 3, Z-Direction}
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Figure 3.7-114 {Comparison of Response Spectra — Dynamic Versus Static Model,
Safeguard Building 4, X-Direction}

Comparison of Response Spectra — Dynamic Versus Static Model, Safeguard Building 4, X-
Direction

SB4 Spectrum (X Direction)

0.9 4

o o o
(=] ~ ©
=
T ——————
L
//

Acceleration (G)
o
(6]
e

: / .

0.2 4

R

0.1

L

0.1 1 10 100
Frequency (Hz)

——ENVELOPE 20m (Dynamic) — = ENVELOPE 20m (Static) |

BBNPP FSAR 3-138 Rev. 0

© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



Figure 3.7-115 {Comparison of Response Spectra — Dynamic Versus Static Model,
Safeguard Building 4, Y-Direction}

Comparison of Response Spectra — Dynamic Versus Static Model, Safeguard Building 4, Y-
Direction
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Figure 3.7-116 {Comparison of Response Spectra — Dynamic Versus Static Model,
Safeguard Building 4, Z-Direction}

Comparison of Response Spectra — Dynamic Versus Static Model, Safeguard Building 4, Z-
Direction
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Figure 3.7-117 {Spectrum Envelope of Reactor Bldg Internal Structure, Elev. 5.15m, X
(EW) Direction, 2%, 3%, 4%, 5%, 7%, and 10% Damping}
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Figure 3.7-118 {Spectrum Envelope of Reactor Bldg Internal Structure, Elev. 5.15m, Y
(N-S) Direction, 2%, 3%, 4%, 5%, 7%, and 10% Damping}
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Figure 3.7-119 {Spectrum Envelope of Safeguard Building 1, Elev. 8.1m, X (E-W)
Direction, 2%, 3%, 4%, 5%, 7%, and 10% Damping}
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Figure 3.7-120 {Spectrum Envelope of Safeguard Building 1, Elev. 8.1m, Y (N-S)
Direction, 2%, 3%, 4%, 5%, 7%, and 10% Damping}
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Figure 3.7-121 {Spectrum Envelope of Safeguard Building 2/3, Elev. 8.1m, X (E-W)
Direction, 2%, 3%, 4%, 5%, 7%, and 10% Damping}
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Figure 3.7-122 {Spectrum Envelope of EPGB, Elev. 0.0m, X (E-W) Direction, 2%, 3%,

4%, 5%, 7%, and 10% Damping}
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Figure 3.7-123 {Spectrum Envelope of EPGB, Elev. 0.0m, Y (N-S) Direction, 2%, 3%,

4%, 5%, 7%, and 10% Damping}
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Figure 3.7-124 {Spectrum Envelope of EPGB, Elev. 0.0m, Z (Vert) Direction, 2%, 3%,
4%, 5%, 7%, and 10% Damping}

2
Figure 3
Vertical Responses
Elevation 0.0° ™
Node 4523 | |
25

0.5% Damping
2% Dampoing | L
3% Damoing |
4% Damoing {
5% Damoing — ud
7% Damoing _'
10% Darmping | |

%]

1T

Spectral Acceleration (g)
o

0.5
a
0.1 0.2 0.3 04 050607 1 2 3 4 5 6 7 8910 20 30 40 50 607020 100
Frequency (cps)
BBNPP FSAR 3-146 Rev. 0

© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



Figure 3.7-125 {Spectrum Envelope of ESWB, Elev. 19.20m, X (E-W) Direction, 2%, 3%,

4%, 5%, 7%, and 10% Damping}
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Figure 3.7-126 {Spectrum Envelope of ESWB, Elev. 19.20m, Y (N-S) Direction, 2%, 3%,
4%, 5%, 7%, and 10% Damping}
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Figure 3.7-127 {Spectrum Envelope of ESWB, Elev. 19.20m, Z (Vert) Direction, 2%, 3%,
4%, 5%, 7%, and 10% Damping}
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Figure 3.7-128 {Spectrum Envelope of ESWB, Elev. 4.27m, X (E-W) Direction, 2%, 3%,

Spectral Acceleration (g)

4%, 5%, 7%, and 10% Damping}
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Figure 3.7-129 {Spectrum Envelope of ESWB, Elev. 4.27m, Y (N-S) Direction, 2%, 3%,
4%, 5%, 7%, and 10% Damping}
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Figure 3.7-130 {Spectrum Envelope of ESWB, Elev. 4.27m, Z (Vert) Direction, 2%, 3%,
4%, 5%, 7%, and 10% Damping}
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Figure 3.7-132 {N-S Direction Time Histories Matching ESWEMS Foundation Level

FIRS}
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Figure 3.7-133 {E-W Direction Time Histories Matching ESWEMS Foundation Level
FIRS}
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Figure 3.7-134 {Vertical Direction Time Histories Matching ESWEMS Foundation Level

FIRS}
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Figure 3.7-140 {In-Structure Floor Response Spectra in E-W Direction at First Floor
Level of the ESWEMS Pumphouse}
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Figure 3.7-141 {In-Structure Floor Response Spectra in N-S Direction at First Floor
Level of the ESWEMS Pumphouse}
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Figure 3.7-142 {In-Structure Floor Response Spectra in Vertical Direction at First Floor
Level of the ESWEMS Pumphouse}
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Figure 3.7-143 {In-Structure Floor Response Spectra in E-W Direction at Mezzanine
Level of the ESWEMS Pumphouse}
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Figure 3.7-144 {In-Structure Floor Response Spectra in N-S Direction at Mezzanine
Level of the ESWEMS Pumphouse}
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Figure 3.7-145 {In-Structure Floor Response Spectra in Vertical Direction at Mezzanine
Level of the ESWEMS Pumphouse}
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Figure 3.7-146 {In-Structure Floor Response Spectra in E-W Direction at Roof Level of
the ESWEMS Pumphouse}
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Figure 3.7-147 {In-Structure Floor Response Spectra in N-S Direction at Roof Level of
the ESWEMS Pumphouse}
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Figure 3.7-148 {In-Structure Floor Response Spectra in Vertical Direction at Roof Level
of the ESWEMS Pumphouse}
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Figure 3.7-149 {Isometric View of the ESWEMS Pumphouse GT-Strudl Finite Element
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Figure 3.7-150 {Ilsometric View of the ESWEMS Pumphouse GT-Strudl Finite Element

Model - Exterior Wall, Roof and Apron}
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3.8 DESIGN OF CATEGORY | STRUCTURES

This section of the U.S. EPR FSAR is incorporated by reference with the departures and/or
supplements as described in the following sections.

3.8.1 CONCRETE CONTAINMENT

No departures or supplements.

3.8.11 Description of the Containment

No departures or supplements.

3.8.1.2 Applicable Codes, Standards, and Specifications

No departures or supplements.

3.8.1.3 Loads and Load Combinations
The U.S. EPR FSAR includes the following COL Item in Section 3.8.1.3:
A COL applicant that references the U.S. EPR design certification will confirm that site-

specific loads lie within the standard plant design envelope for the RCB, or perform additional
analyses to verify structural adequacy.

This COL Item is addressed as follows:

{The Reactor Containment Building (RCB) design for BBNPP is the standard RCB design as
described in the U.S. EPR FSAR without departures, except for the loads resulting from the
seismic response spectra and soil profiles described in Section 3.7.1.

Site specific RCB design loads are confirmed to lie within the standard U.S. EPR design
certification envelope with the exception of design loads resulting from the BBNPP site specific
seismic response spectra and soil profiles described in 3.7.1. Additional confirmatory
evaluations for the site specific seismic response spectra were performed to confirm that the
RCB is acceptable for the BBNPP site. These evaluations confirmed:

* BBNPRP site specific Nuclear Island (NI) Common Base Mat Structure foundation soil
spring values are enveloped by the standard U.S. EPR design certification soil spring
values.

+ BBNPP site specific NSSS support loads are enveloped by the standard U.S. EPR design
certification NSSS support loads.

* The BBNPP site specific zero period acceleration (ZPA) values for the RCB are
enveloped by the standard U.S. EPR design certification ZPA values for the RCB.}

3.8.1.4 Design and Analysis Procedures

No departures or supplements.

3.8.1.5 Structural Acceptance Criteria

No departures or supplements.
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3.8.1.6 Materials, Quality Control, and Special Construction Techniques

No departures or supplements.

3.8.1.6.1 Concrete Materials

No departures or supplements.

3.8.1.6.2 Reinforcing Steel and Splice Materials

No departures or supplements.

3.8.1.6.3 Tendon System Materials

No departures or supplements.

3.8.1.6.4 Liner Plate System and Penetration Sleeve Materials

No departures or supplements.

3.8.1.6.5 Steel Embedments

No departures or supplements.

3.8.1.6.6 Corrosion Retarding Compounds

No departures or supplements.

3.8.1.6.7  Quality Control

The QA program for {this section} is discussed in Section 3.1.1.1.1.

3.8.1.6.8 Special Construction Techniques

No departures or supplements.

3.8.1.7 Testing and Inservice Inspection Requirements

No departures or supplements.

3.8.2 STEEL CONTAINMENT

No departures or supplements.

3.8.3 CONCRETE AND STEEL INTERNAL STRUCTURES OF CONCRETE
CONTAINMENT

3.8.31 Description of the Internal Structures

No departures or supplements.

3.8.3.2 Applicable Codes, Standards, and Specifications

No departures or supplements.
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3.8.3.3 Loads and Load Combinations
The U.S. EPR FSAR includes the following COL item in Section 3.8.3.3:
A COL applicant that references the U.S. EPR design certification will confirm that site-

specific loads lie within the standard design envelope for RB internal structures, or perform
additional analyses to verify structural adequacy.

This COL Item is addressed as follows:

{The Reactor Containment Building (RCB) internal structural design is the standard design as
described in the U.S. EPR FSAR without departures, with the exception of loads resulting from
the seismic response spectra and soil profiles described in Section 3.7.1.

Site specific RCB internal structures design loads have been confirmed to lie within the standard
U.S. EPR design certification envelope with the exception of design loads resulting from the
BBNPP site specific seismic response spectra and soil profiles described in Section 3.7.1.
Additional confirmatory evaluations for the site specific seismic response spectra have been
performed as noted below and confirm that the RCB internal structures are acceptable for the
BBNPP site:

+ BBNPRP site specific NI Common Base Mat Structure foundation soil spring values are
enveloped by the standard U.S. EPR design certification soil spring values.

* BBNPP site specific NSSS support loads are enveloped by the standard U.S. EPR design
certification NSSS support loads.

* The BBNPP site specific ZPA values for the RCB internal structures are enveloped by the
standard U.S. EPR design certification ZPA values for the RCB internal structures.

Site specific seismic conditions are addressed in Section 3.7.2.}

3.8.34 Design and Analysis Procedures

No departures or supplements.

3.8.3.5 Structural Acceptance Criteria

No departures or supplements.

3.8.3.6 Materials, Quality Control, and Special Construction Techniques

No departures or supplements.

3.8.3.7 Testing and Inservice Inspection Requirements

No departures or supplements.
3.84 OTHER SEISMIC CATEGORY | STRUCTURES

3.8.41 Description of the Structures
The U.S. EPR FSAR includes the following COL ltems in Section 3.8.4:

BBNPP FSAR 3-177 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



A COL applicant that references the U.S. EPR design certification will describe any
differences between the standard plant layout and design of Seismic Category | structures
required for site-specific conditions.

A COL applicant that references the U.S. EPR design certification will address site-specific
Seismic Category | structures that are not described in this section.

The COL Items are addressed as follows:

{For BBNPP, the standard plant layout and design of other Seismic Category | Structures is as
described in the U.S. EPR FSAR. The site-specific Seismic Category | structures at BBNPP are:

*  Buried Conduit and Duct banks (Section 3.8.4.1.8).
* Buried Pipe (Section 3.8.4.1.9).

» Essential Service Water Emergency Makeup System (ESWEMS) Pumphouse and
ESWEMS Retention Pond (Section 3.8.4.1.11).}

3.84.1.1 Reactor Shield Building and Annulus

No departures or supplements.

3.8.4.1.2 Fuel Building

No departures or supplements.

3.8.41.3  Safeguard Buildings

No departures or supplements.

3.841.4 Emergency Power Generating Buildings

No departures or supplements.

3.84.1.5 Essential Service Water Buildings

No departures or supplements.

3.8.4.1.6 Distribution System Supports

No departures or supplements.

3.8.4.1.7 Platforms and Miscellaneous Structures

No departures or supplements.

3.8.4.1.8 Buried Conduit and Duct Banks

The U.S. EPR FSAR includes the following COL Item and conceptual design information in
Section 3.8.4.1.8:

A COL applicant that references the U.S. EPR design certification will provide a description of
Seismic Category | buried conduit and duct banks.
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[[Buried conduits are steel while conduits in encased duct banks may be poly-vinyl-chloride
(PVC) or steel. Duct banks may be directly buried in the soil; encased in concrete, concrete,
or reinforced concrete. Concrete or reinforced concrete encased duct banks will be used in
heavy haul zones, under roadway crossings, or where seismic effects dictate the
requirement. Encasement in concrete may be used in areas not subject to trenching or
passage of heavy haul equipment, or where seismic effects on the conduit are not
significant.]]

{This COL Item is addressed as follows, and the conceptual design information is replaced with
site-specific information for BBNPP:

Figure 3E.4-5 provides a detail plan of Seismic Category | buried piping and duct banks
associated with the ESWEMS. Figure 3.8-1 provides a detail plan of Seismic Category | buried
duct banks in the vicinity of the NI. No Seismic Category | buried conduits outside of Seismic
Category | buried duct banks exist for BBNPP.

Seismic Category | buried electrical duct banks traverse between:
» Each ESWEMS Pumphouse bay to the respective Essential Service Water System

(ESWS) Cooling Tower, and

* From the Safeguards Buildings to the four Essential Service Water Buildings (ESWBSs)
and to both Emergency Power Generating Buildings (EPGBSs).

Class 1E conduits located outside the building envelope are buried in Seismic Category | duct
banks. There are two material types of conduits used: 1) polyvinyl chloride (PVC); or 2) steel.
Duct banks are encased in reinforced concrete as discussed in Section 3.7.3.12. The reinforced
concrete maintains conduit spacing/separation and protects the conduit.

Where buried Seismic Category | safety-related electrical duct banks share a common route with
the safety-related ESWS pipe connecting the ESWEMS Pumphouse and the four ESWBs, the
buried electrical duct banks are located below the pipes to facilitate future pipe maintenance. To
facilitate cable pulling and routing, electrical manholes are provided at strategic locations.}
3.84.1.9 Buried Pipe and Pipe Ducts

The U.S. EPR FSAR includes the following COL Item in Section 3.8.4.1.9:

A COL applicant that references the U.S. EPR design certification will provide a description of
Seismic Category | buried pipe and pipe banks.

This COL ltem is addressed as follows:

{Figure 3E.4-5 provides a detail plan of Seismic Category | buried piping and duct banks
associated with the ESWEMS. Pipes run beneath the final site grade. Buried pipe ducts are not
used at BBNPP.

The four ESW pipes emanate from the ESWEMS Pumphouse and terminate at the ESWBs.

Figure 3.8-2 provides a detail plan of Seismic Category | buried ESW pipe in the vicinity of the NI.
As illustrated in the figure, the Seismic Category | buried ESW piping consists of:
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» Large diameter supply and return pipes between the Safeguards Buildings and the
ESWBs.

+ Small diameter supply and return pipes from the EPGBs which tie into the large diameter
pipes.

Fire Protection pipe traverses from the ESWEMS Pumphouse to the vicinity of the NI, where a
loop is provided to all buildings. In accordance with Section 3.2.2, Fire Protection pipe to Seismic
Category | structures that is classified as: 1) Seismic Category Il is designed to maintain its
pressure boundary after an SSE event; and 2) Seismic Category II-SSE is designed to remain
functional following an SSE event.

Buried piping is buried directly in the soil (i.e., without concrete encasement) unless detailed
analysis indicates that additional protection is required. The depth of the cover is sufficient to
provide protection against frost, surcharge effects, and tornado missiles. Appropriate bedding
material is provided beneath the pipe. Soil surrounding the pipe is typically compacted structural
backfill. As an alternate, concrete may be used as discussed in Section 3.7.3.12.}

3.8.4.1.10 Masonry Walls

{No departures or supplements.}

3.8.41.11 {ESWEMS Pumphouse and ESWEMS Retention Pond
This section is added as a supplement to U.S. EPR FSAR Section 3.8.4.1.

The Seismic Category | ESWEMS Pumphouse and the ESWEMS Retention Pond contain
components associated with the ESWEMS, which provides emergency makeup water to the
ESWS Cooling Tower Basins for the shutdown of the plant following a design basis accident.
Figure 2.1-1 provides a site plan for the BBNPP, which shows the position of the ESWEMS
Pumphouse and ESWEMS Retention Pond relative to the Nuclear Island (NI).

The ESWEMS Retention Pond is the only reservoir on the site. The BBNPP ESWEMS Retention
Pond is excavated to a total depth of 22.5 ft (6.9 m) with side slopes of 3 horizontal to 1 vertical.
The storage capacity of the ESWEMS Retention Pond at the normal water level of Elevation 669

ft (204 m) msl is 76.7 acre-ft (94,611 m3). Starting at 72 hours following an accident, the
ESWEMS Retention Pond is utilized to supply makeup water to the ESWS cooling tower basins.

The Seismic Category | ESWEMS Pumphouse includes ESWEMS makeup pumps, intake bar
screens and strainers to preclude debris intake, and two reinforced concrete stop logs to facilitate
maintenance.

As illustrated in Figure 9.2-4 through Figure 9.2-10, and Figure 3E.4-4, the ESWEMS
Pumphouse is approximately 80 ft (24.4 m) long overall by 51 ft (15.5 m) wide by 24 ft (7.3 m)
high. It has a 5 ft (1.5 m) thick base mat. The structure houses a 76 ft (23.2 m) long by 11.7 ft
(3.5 m) wide by 30 ft (9.1 m) deep pumpwell portion. The entire ESWEMS Pumphouse is
constructed of reinforced concrete. Exterior walls for the ESWEMS Pumphouse are a minimum
of 2 ft (0.61 m) thick to withstand the extreme environmental event as listed in Section 3.8.4.3.1.
Key interior shear/bearing walls and labrynith are at least 2.0 ft (0.61 m) thick. Stop logs are
provided for the pumpwell openings. These logs will be used during maintenance only and are
not considered part of the structure.
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Main elevations include:
Elevation 674.5 ft (205.5 m) msl: Top of the main foundation base mat.
Elevation 698.5 ft (212.9 m) msl: Top of the concrete roof.
Elevation 686.5 ft (209.2 m) msl : Top of the mezzanine floor
Elevation 644.0 ft (196.2 m) msl: Top of the pumpwell foundation.}

3.84.2 Applicable Codes, Standards, and Specifications

No departures or supplements.

3.8.4.3 Loads and Load Combinations
The U.S. EPR FSAR includes the following COL Item in Section 3.8.4.3:

A COL applicant that references the U.S. EPR design certification will confirm that site-
specific loads lie within the standard design envelope for other Seismic Category | structures,
or perform additional analyses to verify structural adequacy.

This COL Item is addressed as follows:

{Table 2.0-1 provides a comparison of BBNPP site parameters to the parameters defining the
basis of the U.S. EPR FSAR design loads. Site parameters evaluated include: wind,
precipitation, tornado, seismic, flood, shear-wave velocity, potential for liquefaction, slope failure
potential, and importance factor. With the exception of the loads resulting from the site-specific
soil densities described in Section 2.5.4.2 and seismic response spectra and soil profiles
described in Section 3.7.1, the BBNPP site-specific parameters are bounded by the parameters
defined for the U.S. EPR.

The site-specific soil densities and the impact on the Lateral Earth Pressure Loads have been
evaluated and were determined to be acceptable for the NI Common Base Mat structures, the
ESWBs. The EPGBs are surface mounted structures with no walls below grade. Thus, no
additional evaluation is required for Lateral Earth Pressure Loads. Additional confirmatory
evaluation for the site-specific response spectra and soil profiles were performed and confirmed
that the other Seismic Category | Structures are acceptable for the BBNPP site.}

3.8.4.3.1 Design Loads
{The design loads evaluated for the ESWEMS Pumphouse include:

Severe Environmental Loads
* Normal wind load.
* Snow and water ponding on building roof.

Extreme Environmental Loads
* Tornado wind loading.
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+ Tornado Generated Missile

» Safe-Shutdown Earthquake.

* Load from wave surge up to Elevation 673.43 ft (205.27 m) msl.

* Peak positive overpressure of 1.0 psi due to postulated explosions.

The stability of slope and the reinforced concrete spillway of the EWSEMS Retention Pond is
analyzed and designed for the following environmental load conditions:

Normal Environmental Loads

» Construction loading until the end of construction.
* Normal pond water at Elevation 669.0 ft (203.91 m) msl

* Rapid drawdown from normal pond water at Elevation 669.0 ft (203.91 m) msl to empty
pond without pore water pressure dissipation.

* Normal hydrostatic pressure at Elevation 669.0 ft (203.91 m) in addition to a surcharge of
250 psf (11,970. pascal) and an 8 kips per linear foot live load within 1. ft (1. m) of the
pond edge.

Severe Environment Loads
» Severe hydrostatic pressure at the probable maximum precipitation (PMP) Elevation
672.13 ft (204.87 m) msl.

* Rapid drawdown from maximum to normal pond water without pore water pressure
dissipation

Extreme Environmental Loads

+ Safe-Shutdown Earthquake (SSE) load.

* Extreme hydrostatic pressure at PMP, including wave run-up and setup resulting from a
tornado up to Elevation 673.43 ft (205.27m) msl.

»  Structural impact from tornado generated missiles without compromising the pond safety-
related function.

No other building, except for the ESWEMS Pumphouse, is allowed to be located in the vicinity of
the pond edge closer than twice the pond depth.

The required Factor-of-Safety (FOS) for slope stability of the ESWEMS Retention Pond is
included in Table 3E.4-7. The actual FOS is tabulated in Table 3.8-2.

These design loads are discussed in Section 2.5.5

3.8.4.3.2 Loading Combinations

{The following additional factored load combinations apply for reinforced concrete design of the
ESWEMS Pumphouse:

BBNPP FSAR 3-182 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



Table 3E.4-1 and Table 3E.4-2 provide the description of the loading combinations and
the minimum required Factor-of-Safety for building stability, respectively.}
3.84.4 Design and Analysis Procedures

No departures or supplements.

3.8.4.41 General Procedures Applicable to Other Seismic Category | Structures
No departures or supplements.
3.8.4.4.2 Reactor Shield Building and Annulus, Fuel Building, and Safeguard Buildings

— NI Common Base Mat Structure [and] Other Seismic Category | Nuclear
Island Structures

No departures or supplements.

3.8.44.3 Emergency Power Generating Buildings

No departures or supplements.

3.844.4 Essential Service Water Buildings

No departures or supplements.

3.8.44.5 Buried Conduit and Duct Banks, and Buried Pipe and Pipe Ducts
The U.S. EPR FSAR includes the following COL Items in Section 3.8.4.4.5:

A COL applicant that references the U.S. EPR design certification will describe the design
and analysis procedures used for buried conduit and duct banks, and buried pipe and pipe
ducts.

A COL applicant that references the U.S. EPR design certification will use results from site-
specific investigations to determine the routing of buried pipe and pipe ducts.

A COL applicant that references the U.S. EPR design certification will perform geotechnical
engineering analyses to determine if the surface load will cause lateral or vertical
displacement of bearing soil for the buried pipe and pipe ducts and consider the effect of wide
or extra heavy loads.

The COL Items identified above are addressed as follows:

{The design of Seismic Category I, buried electrical duct banks and buried Essential Service
Water pipes (hereafter in this section referred to as buried duct banks and buried pipe) has been
confirmed to meet the requirements specified in Section 3.8.4.4.5 and the AREVA NP Topical
Report ANP-10264(NP) and demonstrates sufficient strength to accommodate:

« Strains imposed by seismic ground motion.

» Static surface surcharge loads due to vehicular loads (AASHTO HS-20 (AASHTO, 2002))
truck loading, minimum, or other vehicular loads, (including during construction) on
designated haul routes.

BBNPP FSAR 3-183 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



» Static surface surcharge loads during construction activities, e.g., for equipment laydown
or material laydown.

+ Tornado missiles and, within their zone of influence, turbine generated missiles.
+ Ground water effects.

Terrain topography and the results from the BBNPP geotechnical site investigation will be used
as design input to confirm the routing of buried pipe and duct banks reflected in Figure 3.8-1,
Figure 3.8-2 and Figure 3E.4-5.

The seismic design of buried duct banks and buried pipe is discussed in Section 3.7.3. Other
loads are addressed in this section, but are combined with seismic effects of the aforementioned
section.

Soil overburden pressures on buried duct banks typically do not induce significant bending or
shear effects, because the soil cover and elastic support below the duct bank are considered

effective and uniform over the entire length of the buried duct bank. When this is not the case,
vertical soil overburden pressure is determined by the Boussinesq method.

Transverse stirrups used to reinforce the concrete duct banks are open ended to mitigate
magnetic effects on the electrical conduits. Distribution of transverse and longitudinal steel
reinforcement is sufficient to maintain the structural integrity of the electrical duct bank, for all
imposed loads, in accordance with ACI 349-01 (ACI, 2001a).

Similar to buried duct banks, soil overburden pressures on buried pipes typically do not induce
significant bending or shear effects, since the soil cover and elastic support below the pipe are
considered effective and uniform over the entire length of a buried pipe. When this is not the
case, vertical soil overburden pressure is determined by the Boussinesq method.

As noted in Section 3.8.4.1.9, buried pipes are located such that the lower surface of the pipe is
below the site-specific frost depth, with additional depth used to mitigate the effects of surcharge
loads and tornado or turbine generated missiles. In lieu of depressing the pipes in the soil beyond
that required for frost protection, i.e., to obviate the risk of tornado or turbine generated missile
impacts, permanent protective steel plates, located at grade, may be designed.

Bending stresses in buried pipe due to surcharge loading are determined via manual
calculations, treating the flexible pipe as a beam on an elastic foundation. Resulting stresses are
combined with operational stresses, as appropriate.}

3.8.4.4.6 Design Report

No departures or supplements.

3.8.4.4.7 {ESWEMS Pumphouse and ESWEMS Retention Pond
This section is added as a supplement to U.S. EPR FSAR Section 3.8.4.4.

A GT STRUDL finite element model is created for the site-specific ESWEMS Pumphouse to:

* Provide accurate representation of the structure for a time history analysis (Refer to
Section 3.7.2 for additional information on the time history analysis).
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» Conduct response spectrum analysis of the structure components, including equivalent
static seismic loads, addressing building stability and structural integrity.

* Provide output for the design of reinforced concrete structural elements.

The finite element model consists of plate elements representing the load carrying reinforced
concrete walls and slabs which are suitable for capturing both the in-plane and out-of-plane
effects from the corresponding applied loads.

Figure 3E.4-1 and Figure 3E.4-2 depict the finite element model for the ESWEMS Pumphouse.

The loading evaluations represented in the ESWEMS Pumphouse response spectrum analysis,
include dead loads, live loads, snow loads, equipment loads, hydrostatic pressure, seismic SSE
loading, normal and tornado loads including tornado induced depressurization loads.

The results from the GT STRUDL response spectrum analysis are used to design reinforced
concrete shear walls and slabs in accordance with the provisions of ACI 349-01 (ACI, 2001a)
(with supplemental guidance of Regulatory Guide 1.142 (NRC, 2001)).

Local stress analyses was used to evaluate slabs and walls to resist external hazards (such as,
tornado generated missiles impact and water wave induced forces).

The ESWEMS Pumphouse is a partially embedded structure; however, the embedment effect is
conservatively ignored in the overturning stability analysis. Reinforced concrete shear walls and
slabs are designed in accordance with ACI 349-01 (ACI, 2001a) (with supplemental guidance of
Regulatory Guide 1.1.42 (NRC, 2001)).

The safety analysis for the ESWEMS Retention Pond includes a slope stability evaluation that
includes horizontal seismic loads. The pond slopes are a permanent design feature and were
evaluated using GSTABL7. Factor of safety for various sections is presented in Section 2.5.5.}

3.8.4.5 Structural Acceptance Criteria
The U.S. EPR FSAR includes the following COL Item in Section 3.8.4.5:

A COL applicant that references the U.S. EPR design certification will confirm that site-
specific conditions for Seismic Category | buried conduit, electrical duct banks, pipe, and pipe
ducts satisfy the criteria specified in Section 3.8.4.4.5 and those specified in AREVA NP Inc.,
U.S. EPR Piping Analysis and Support Design Topical Report.

This COL Item is addressed as follows:

Design of all safety-related, Seismic Category | buried electrical duct banks and pipe meet the
requirements specified in U.S. EPR FSAR Section 3.8.4.4.5 and the Areva NP Topical Report
ANP-10264(NP) (AREVA, 2006).

Acceptance criteria for the buried electrical duct banks are in accordance with IEEE 628-
2001(R2006) (IEEE, 2001), ASCE 4-98 (ASCE, 1998) and ACI 349-01 (ACI, 2001a), with
supplemental guidance of Regulatory Guide 1.142 (NRC, 2001). The use of ACI 349-01, in lieu of
ACI 349-97 (ACI, 1997) as invoked in Subsection 4.9.4.15 of IEEE 628-2001 (R2006), is to
provide a consistent design basis with all other Seismic Category | structures.
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{Acceptance criteria for the buried Essential Service Water System pipes are identical to those of
non-buried pipe. Member stresses are maintained lower than allowable stresses. When
allowable stresses are exceeded, joints are added as required to increase flexibility and hence,
to mitigate member stresses.

Soil properties to be used for design, including the coefficient of friction () and the coefficient of
lateral pressure at rest (K,) from the Final Geotechnical Site Investigation Report.

Figure 3E.4-4 and Figure 3E.4-8 and Figure 3E.4-9 provide the details for the following critical
structural components and their locations in the ESWEMS Pumphouse:

* Figure 3E.4-4. The ESWEMS Pumphouse critical section for excavation cut and backfill.

* Figure 3E.4-8: The ESWEMS Pumphouse critical section showing main load bearing/
shear walls, including the building base mat, pump well foundation and its shear keys.

* Figure 3E.4-9: The ESWEMS Pumphouse critical elevation showing the mezzanine floor
and roof structure.

3.8.4.6 Materials, Quality Control, and Special Construction Techniques

No departures or supplements.

3.8.4.6.1 Materials

{The ESWEMS Retention Pond at the BBNPP will be constructed primarily via excavation of
overburden soils and replacement of soils with cohesive fill material. The cohesive fill material
will compose the entirety of the earthen embankment sides of the ESWEMS Retention Pond.

The materials used in construction of the ESWEMS Pumphouse shall conform to the
requirements of applicable codes and standards, and comply with the established quality
assurance program for the project.

1. Concrete: Concrete shall be mix Class | with f'c = 5000 psi at 28 days for the structures
and 4000 psi at 28 days for buried duct banks and pipe. Minimum concrete modulus of
elasticity, Ec = 4000 ksi, shear modulus, G = 1600 ksi, and Poisson's ratio, y = 0.15 for
5000 psi concrete, and Ec = 3600 Ksi, shear modulus, G = 1560 Ksi and Poisson's ratio y
= 0.15 for 4000 psi concrete.

2. Reinforcement: Reinforcing steel shall be deformed billet steel conforming to ASTM
A615, Grade 60 (ASTM, 2008a). Minimum yield strength, fy = 60 ksi, Tensile strength, fu
= 90 ksi, and elongation from 6% to 9%. For standardization purpose, bar sizes are
specified for the common bars and at a typical 8" spacing, unless otherwise required by
the design.

3. Structural Steel: The steel shall conform to ASTM A36 (ASTM, 2008b), with minimum
tensile strength fu = 58 ksi, and minimum yield strength fy = 36 ksi or ASTM A572 (ASTM,
2008c) with minimum tensile strength of fu = 65 ksi and minimum vyield strength fy = 50
ksi.

4. Grout: Grout shall be non-shrink grout and conform to the requirements of ASTM C1107
(ASTM, 2008d), Grade B or C.
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5. Anchor bolts shall conform to ASTM A307 (ASTM, 2008e), ASTM A36 or ASTM A193
(ASTM, 2008f) Grade B7.

6. Fasteners shall conform to ASTM A307. High-strength bolts shall conform to ASTM A325
(ASTM, 2008g) or ASTM A490 (ASTM, 20089).

7. Concrete backfill of 5000 psi below the footprint of the building base mat minimizes water
in-leakage for the concrete slab and the pumpwell wall. In addition, a minimum five feet
(1.5 m) thick of clay backfill will be placed against the exterior sides of the walls of the
pumpwell structure to minimize water in-leakage. The clay backfill serves a non-safety-
related function to reduce housekeeping concerns related to ground water in-leakage.}
3.8.4.6.2 Quality Control

No departures or supplements.

3.8.4.6.3 Special Construction Techniques

{Special construction techniques are not expected to be used for the Emergency Power
Generating Buildings, Essential Service Water Buildings, ESWEMS Pumphouse, ESWEMS
Retention Pond or buried utilities.}

3.8.4.7 Testing and Inservice Inspection Requirements

{Inservice Inspection requirements which pertain to ground water chemistry and potential
degradation of below-grade concrete walls and buried duct banks are not applied in the BBNPP
ESWEMS Pumphouse and Retention Pond and its associated buried duct banks and pipes given
non-aggressive ground water condition at the site.}

3.8.5 FOUNDATIONS

3.8.5.1 Description of the Foundations
The U.S. EPR FSAR includes the following COL Item in Section 3.8.5.1:

A COL applicant that references the U.S. EPR design certification will describe site-specific
foundations for Seismic Category | structures that are not described in this section.

This COL ltem is addressed as follows:
{The foundation for the ESWEMS Pumphouse is discussed in Section 3.8.5.1.4.}

3.8.5.1.1 Nuclear Island Common Basement Structure Foundation Base Mat

No departures or supplements.

3.8.5.1.2 Emergency Power Generating Buildings Foundation Base Mats

No departures or supplements.

3.8.5.1.3 Essential Service Water Buildings Foundation Base Mats

No departures or supplements.
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3.8.5.14 {ESWEMS Pumphouse Base Mat

This section is added as a supplement to the U. S. EPR FSAR.

Plans, sections and details for the ESWEMS Pumphouse are provided in Figure 9.2-4 through
Figure 9.2-10, as applicable. A general description of the structures, including descriptions of all

functional levels, is provided in Section 3.8.4.1.11. Figure 2.1-1 provides a site plan for the
BBNPP, which shows the position of the ESWEMS Pumphouse relative to the NI.

The ESWEMS Pumphouse is a reinforced concrete structure consisting of reinforced concrete
slabs and roofs carried by reinforced concrete load bearing walls. The main reinforced concrete
base mat for the ESWEMS Pumphouse is nominally 80 ft (24.4 m) by 51 ft (15.5 m) by 5 ft (1.52
m) thick, including the pumpwell portion. For the structure, heavily reinforced concrete shear
walls, divider walls and earth retaining walls function as bearing walls to transfer vertical loads
from the slabs above.}

3.8.5.2 Applicable Codes, Standards, and Specifications

No departures or supplements.

3.8.5.3 Loads and Load Combinations

{Additional loads and load combinations include those defined in Section 3.8.4.3.1 and 3.8.4.3.2
and Table 3E.4-1 and Table 3E.4-2.}

3.8.54 Design and Analysis Procedures

No departures or supplements.

3.8.5.41 General Procedures Applicable to Seismic Category | Foundations

No departures or supplements.

3.8.5.4.2 Nuclear Island Common Base Mat Structure Foundation Base Mat

No departures or supplements.

3.8.5.4.3 Emergency Power Generating Buildings Foundation Base Mats

No departures or supplements.

3.8.54.4 Essential Service Water Buildings Foundation Base Mats

No departures or supplements.

3.8.54.5 Design Report

No departures or supplements.

3.8.546 {ESWEMS Pumphouse Base Mat}
{This section is added as a supplement to U.S. EPR FSAR Section 3.8.5.4.
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Although the dynamic response spectrum analysis for the ESWEMS Pumphouse envelops the
ICEC SASSI (V. 1.3) analysis results, the detail design of the base mat will be more refined and
involve a three step analytical process:

1. Time history analysis by ICEC SASSI (V. 1.3) to determine in-structure seismic
response spectra using a GT-STRUDL finite element model of both base mat and the
superstructure.

2. Static analysis via the GT-STRUDL (V. 29.1) finite element model for all applicable load
cases and design load combinations, including static seismic loads of the SSE, hydrostatic and
soil pressues.

3. Global design forces and moments are extracted from the GT-STRUDL (V. 29.1) static
analysis for the design of the base mat in accordance with the provisions of ACI 349-01 (AClI,
2001a) (with supplemental guidance of Regulatory Guide 1.142 (NRC, 2001)).

An isometric view of a segment of the model, including the base mat, exterior walls, and interior
divider walls, is provided in Figure 3.8-3 and Figure 3.8-4.

The finite element model representing the ESWEMS Pumphouse base mat consists of SBHQ6
rectangular plate elements, each with six degrees of freedom. This element type is capable of
capturing both in-plane and out-of-plane behavior.

During maintenance within the ESWEMS Pumphouse, stop logs are installed, and interior or
exterior cells may be empty. For an exterior wall, with the adjacent outer cell empty, wall
pressure, including soil and hydrostatic pressure from the maximum water column, is calculated.}

3.8.5.5 Structural Acceptance Criteria
The U.S. EPR FSAR includes the following COL Item in Section 3.8.5.5:

A COL applicant that references the U.S. EPR design certification will evaluate site-specific
methods for shear transfer between the foundation base mats and underlying soil for soil
parameters that are not within the envelope specified in Section 2.5.4.2.

This COL Item is addressed as follows:

{Site-specific parameters for underlying soil layers in contact with the foundations fall within the
U.S. EPR FSAR design limits as discussed in Section 3.7.1.

BBNPP Seismic Category | structures, not founded on the NI common base mat structure
foundation base mat, are founded on engineered fill that meets the requirements specified in
Section 2.5.4.2

For the U.S. EPR design of the Emergency Power Generating Buildings (EPGBs) and the
ESWEMS Pumphouse, the transfer of shear loads from the base mats to the underlying
Mahantango formation is via:

» Excavation of existing soil and replacement with concrete backfill overlying the
Mahantango formation.
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* Friction between the base mat and the concrete backfill overlying the Mahantango
formation.

* Friction between the pumpwell concrete base and the concrete backfill overlying the
Mahantango formation.

» Friction between the apron base and the concrete backfill and the underlying
Mahantango formation.

* The two shear keys that are embedded into the Mahantango formation.

For the ESWEMS, the static and dynamic coefficient of friction between the concrete base mat,
the concrete backfill and the underlying Mahantango formation is conservatively set at 0.6. }

3.8.5.5.1 Nuclear Island Common Base Mat Structure Foundation Base Mat

{U.S. EPR FSAR Section 2.5.4.2 provides acceptable limits and ranges of soil properties
underlying the foundation structure. The angle of internal friction for underlying soil layers in
contact with the foundation falls within the conservative limits assumed in the U.S. EPR FSAR.

The amount of sliding of the BBNPP NI, when subjected to a load combination with seismic
loading, was evaluated and determined to be negligible. Additionally, a nonlinear time history
analysis of the NI under seismic loads determined that the possible amount of uplift for the
BBNPP site-specific parameters is negligible and is enveloped by the U.S. EPR design. The
allowable bearing pressure of the soil underlying the NI common base mat is enveloped by the
U.S. EPR design.}

3.8.5.5.2 Emergency Power Generating Buildings Foundation Base Mats

{U.S. EPR FSAR Section 2.5.4.2 provides acceptable limits and ranges of soil properties
underlying the foundation structure. The allowable bearing capacity for the EPGB foundation
base mat is enveloped by the U.S. EPR design. The maximum bearing pressures under sliding
and overturning for the EPGB foundation base mat were determined to be acceptable for the
BBNPP site, and the applicable acceptance criteria are met. The allowable bearing capacity is
specified in Section 2.5.4.10.}

3.8.5.5.3 Essential Service Water Buildings Foundation Base Mats

{U.S. EPR FSAR Section 2.5.4.2 provides acceptable limits and ranges of soil properties
underlying the foundation structure. The allowable bearing capacity for the ESWB foundation
base mat is enveloped by the U.S. EPR design.}

3.8.5.54 {ESWEMS Pumphouse Base Mat
This section is added as a supplement to U.S. EPR FSAR Section 3.8.5.5.

Maximum soil bearing pressures under the ESWEMS Pumphouse foundation are provided in
Table 3.8-1. In the same table, calculated and allowable stability Factor-Of-Safety (FOS) are
provided for the governing extreme environmental events (SSE & tornado wind) and severe
design load combinations are provided. Bearing loads are less than the allowable bearing
stresses of 240 ksf and 360 ksf, for static and dynamic loading conditions, respectively. The
allowable static and dynamic soil bearing stresses carry a FOS of 3 for the static loading and 2
for dynamic loading against the ultimate soil bearing stresses.
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A finite element analysis of the entire ESWEMS Pumphouse indicates the maximum differential
settlement of the ESWEMS Pumphouse base mat to be less than the U.S. EPR design criteria of
1/1200 (or Y2 inch per 50 ft). Unfactored base mat bending moments confirm an uncracked
condition is maintained as the base mat is founded on top of a rigid concrete backfill block and
the underlying Mahantango formation.

The results of the static and dynamic load conditions for the ESWEMS Pumphouse and Base
mat and pump well foundation are provided in Table 3.8-1.}

3.8.5.6 Materials, Quality Control, and Special Construction Techniques

No departures or supplements.

3.8.5.6.1 Materials
The U.S. EPR FSAR includes the following COL Item in Section 3.8.5.6.1:

A COL applicant that references the U.S. EPR design certification will evaluate and identify
the need for the use of waterproofing membranes and epoxy coated rebar based on site-
specific ground water conditions.

{BBNPP water table maximum elevation at the Nuclear Island Common Base Mat is
approximately 664 ft (202 m) and the expected final grade elevation is 674.5 ft (205 m). This
yields that the water level is approximately 10 ft (3 m) below the Nuclear Island grade.

The U.S. EPR Nuclear Island Common Base Mat Structures foundation is embedded
approximately 40 ft (12 m) below site grade as discussed in the U.S. EPR FSAR; therefore,
approximately 30 ft (9.1 m) of the reinforced concrete NI foundation is submerged in water. The
ESWB foundation is embedded approximately 22 ft (6.7 m) below site grade and the EPGB
foundation is embedded approximately 5 ft (1.5 m) below site grade, as discussed in the U.S.
EPR FSAR. Therefore, approximately 12 ft (3.7 m) of the reinforced concrete ESWB foundation
is submerged in water, while the reinforced concrete foundation of the EPGB lies above the
maximum groundwater level. The ESWEMS Pumphouse is embedded approximately 5 ft (1.5
m) below site grade; therefore, approximately 1 ft (0.9 m) of the reinforced concrete ESWEMS
Pumphouse is submerged in water.

The maximum chloride content of 2 mg/L (ppm) for BBNPP is within limitations for nonaggressive
groundwater because it lies within the range of 0 to 500 ppm (NRC, 2007).

The maximum sulfate content for groundwater tested at the BBNPP site is 29 mg/L (ppm).
Because this falls between 0 and 1500 ppm, the sulfate exposure in the groundwater is
considered to be nonaggressive (NRC, 2007).

The pH range for the groundwater at the BBNPP site is between 5.7 and 5.81, which is
considered to be neutral and nonaggressive. A site which has a groundwater pH value > 5.5 has
nonaggressive groundwater (NRC, 2007).

Based on these findings, there is no concern for an aggressive chemical attack due to
groundwater at BBNPP. Therefore, the use of epoxy coated rebar and waterproofing membranes
for the resistance of corrosive materials is not required for the BBNPP site.
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Additional information regarding the ESWEMS Pumphouse is provided in Section 3.8.4.6.1.}

3.8.5.6.2  Quality Control

No departures or supplements.

3.8.5.6.3 Special Construction Techniques

{Special construction techniques are not expected to be used for the Emergency Power
Generating Buildings, Essential Service Water Buildings, ESWEMS Pumphouse or the
ESWEMS Retention Pond.}

3.8.5.7 Testing and Inservice Inspection Requirements
The U.S. EPR FSAR includes the following COL ltems in Section 3.8.5.7:

A COL applicant that references the U.S. EPR design certification will identify if any site-
specific settlement monitoring requirements for Seismic Category | foundations are required
based on site-specific soil conditions.

A COL applicant that references the U.S. EPR design certification will describe the program
to examine inaccessible portions of below-grade concrete structures for degradation and
monitoring of ground water chemistry.

These COL Items are addressed as follows:

{Although settlement and differential settlement of foundations are not likely to affect the
structures, systems, and components that make up the standard plant U.S. EPR due to the
robust design of all Seismic Category | structures, a site-specific settlement monitoring program
is provided as a prudent measure of confirmation between expected or predicted settlement and
actual field measured settlement values.

The settlement monitoring program employs conventional monitoring methods using standard
surveying equipment and concrete embedded survey markers. Survey markers are embedded in
the concrete structures during construction and located in conspicuous locations above grade for
measurement purposes throughout the service life of the plant as necessary. Actual field
settlement is determined by measuring the elevation of the marker relative to a reference
elevation datum. The reference datum selected is located away from areas susceptible to vertical
ground movement and loads. If field measured settlements are found to be trending greater than
expected values, an evaluation will be conducted.

The settlement monitoring program shall satisfy the requirements for monitoring the
effectiveness of maintenance specified in 10 CFR 50.65 (CFR, 2008) and Regulatory Guide
1.160 (NRC, 1997), as applicable to structures.

The BBNPP ground water monitoring program is established on the following bases:

* Recorded baseline concentrations and pH values of material chemical properties prior to
start of excavation.
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* Recorded concentrations and values of pertinent chemical properties after backfill is
completed and at six month intervals thereafter.

* One-year after backfill is completed:
* If no negative trend is identified, inspection intervals can be increased to once yearly.

* If a negative trend is identified, an inspection will be conducted and remediation
measures considered as indicated by results of the inspection.

The BBNPP ground water/soil is considered to be non-aggressive. The inservice testing program
follows intervals defined for non-aggressive soil/water conditions for inspecting normally
inaccessible below-grade concrete walls and foundations. This interval calls for:

» Examination of exposed portions of below-grade concrete for signs of degradation when
excavated for any reason; and

» Periodic monitoring of ground water chemistry to confirm that the the ground water
remains non-aggressive.}
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Commission, March 2007.}

BBNPP FSAR 3-194 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



Table 3.8-1 {ESWEMS Pumphouse Base Mat & Pump Well Foundation Summary
Table On the Building Stability}

Static Load Condition | Dynamic Load Condition
Requi ility |
equired Stability ltem Calculated| ), able| Calculated | Allowable
(Minimum)
Factor-Of-Safety Against Overturning 3.0 1.5 1.9 1.1
Factor-Of-Safety Against Sliding 3.0 1.5 2.0 1.1
Factor-Of-Safety Against Flotation 3.0 1.1 3.0 N/A
Soil Bearing Pressure (ksf) Based On Response Spectra 19.5 ( 1?2090 37 ( 362040
Analysis (934 KPa) KPa) (1772 KPA) KPa)
Building Global Sway in X Direction (inches) at Roof Level 0.02 N/A 0.18 N/A
Based On Required Response Spectra (RRS) Analysis (0.05 cm) (0.46 cm)
Building Global Settlement in Y (vertical) direction (inches) 0.02 1.0 0.03 1.0 (2.5 cm)
Based On RRS Analysis (0.05cm) | (2.5cm) (0.08 cm) T
Building Global Sway in Z Direction (inches) at Roof Level 0.01 N/A 0.20 N/A
Based On RRS Analysis (0.03 cm) (0.51 cm)
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Table 3.8-2 {ESWEMS Retention Pond - Summary of the Slope Stability}

Required Stability
Item

Static Load Condition

Dynamic Load Condition

Calculated
Minimum FOS

Required FOS

CalculatedMinimum

FOS

Required FOS

End of Construction

2.0

1.3

N/A N/A

Normal pond water
level

3.0

1.5

N/A N/A

Maximum pond water
level

4.0

1.4

N/A N/A

Rapid drawdown from
maximum to normal
pond water without
pore water pressure
dissipation

3.0

1.1

N/A N/A

Rapid drawdown from
normal pond to empty
pond without pore
water pressure dissi-
pation

2.0

1.1

N/A N/A

Normal pond water
level with designed
surcharge and line
load

2.0

1.4

N/A N/A

SSE Earthquake at
normal pond level

N/A

N/A

2.0 1.0
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Figure 3.8-1 {Schematic Site Plan of Seismic Category | Buried Utilities at the NI
(Electrical Duct Banks)}

This figure contains security related information and has been withheld under
10 CFR 2.390 (d)(1)

See Part 9 of the COLA Application

BBNPP FSAR 3-197 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



Figure 3.8-2 {Schematic Site Plan of Seismic Category | Buried Utilities at the NI
(Underground Piping)}

This figure contains security related information and has been withheld under
10 CFR 2.390 (d)(1)

See Part 9 of the COLA Application
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Figure 3.8-3 {lsometric View of the GT Strudl Finite Element Model for the ESWEMS
Pumphouse Structure (Partial View of Base Mat, Exterior Walls, and Interior Walls}
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Figure 3.8-4 {Ilsometric View of the GT Strudl Finite Element Model for the ESWEMS
Pumphouse Structure (Partial View of Pump Wells, Wing Walls and Apron}
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3.9 MECHANICAL SYSTEMS AND COMPONENTS

This section of the U.S. EPR FSAR is incorporated by reference with the supplements as
described in the following sections.

3.9.1 SPECIAL TOPICS FOR MECHANICAL COMPONENTS

No departures or supplements.

3.9.1.1 Design Transients

No departures or supplements.

3.9.1.2 Computer Programs Used in Analyses
The U.S. EPR FSAR includes the following COL ltems in Section 3.9.1.2;

Pipe stress and support analysis will be performed by a COL applicant that references the
U.S. EPR design certification.

A COL applicant that references the U.S. EPR design certification will either use a piping
analysis program based on the computer codes described in Section 3.9.1 and Appendix 3C
or will implement an NRC-approved benchmark program using methods specifically selected
for the U.S. EPR.

These COL Items are addressed as follows:

{PPL Bell Bend, LLC} shall perform the required pipe stress and support analysis and shall utilize
a piping analysis program based on the computer codes described in U.S. EPR FSAR Section
3.9.1 and U.S. EPR FSAR Appendix 3C.

3.9.1.3 Experimental Stress Analysis

No departures or supplements.

3914 Considerations for the Evaluation of the Faulted Condition

No departures or supplements.

3.9.1.5 References

No departures or supplements.

3.9.2 DYNAMIC TESTING AND ANALYSIS OF SYSTEMS, COMPONENTS, AND
EQUIPMENT

No departures or supplements.

3.9.21 Piping Vibration, Thermal Expansion, and Dynamic Effects

No departures or supplements.
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3.9.2.2 Seismic Analysis and Qualification of Seismic Category | Mechanical
Equipment

No departures or supplements.

3.9.23 Dynamic Response Analysis of Reactor Internals Under Operational Flow
Transients and Steady-State Conditions

No departures or supplements.

3.9.24 Preoperational Flow-Induced Vibration Testing of Reactor Internals
The U.S. EPR FSAR includes the following COL Item in Section 3.9.2.4:

A COL applicant that references the U.S. EPR design certification will submit the results from
the vibration assessment program for the U.S. EPR RPV internals, in accordance with
Regulatory Guide 1.20.

In addition, Section 3.9.2.4 of Regulatory Guide 1.206 (NRC, 2007b) requests the following
information for COL applicants with a prototype reactor:

For a prototype reactor, if the FIV testing of reactor internals is incomplete at the time the
COL application is filed, the applicant should provide documentation describing the
implementation program, including milestones, completion dates and expected conclusions.

The COL Item and Regulatory Guide 1.206 request are addressed as follows:

{The U. S. EPR FSAR designates the Reactor Pressure Vessel (RPV) internals as a prototype
design in accordance with the guidance of Regulatory Guide 1.20 (NRC, 2007a). The BBNPP
RPV internals are currently classified as the U.S. EPR prototype for RPV internals testing.
However, should a comprehensive vibration assessment program for an EPR unit other than
BBNPP be completed and approved by the U.S Nuclear Regulatory Commission prior to
initiation of start-up testing at BBNPP, BBNPP will be reclassified as a non-prototype Category |
RPV internals design and the associated experimental and/or analytical justification, including
any required changes to the comprehensive vibration assessment program, will be provided to
the U.S Nuclear Regulatory Commission for review and approval.

A methodology for the comprehensive vibration assessment program that the U.S. Nuclear
Regulatory Commission considers acceptable for use is provided in Regulatory Guide 1.20 and
shall be utilized at BBNPP. For BBNPP, performance of vibration testing during Hot Functional
Testing, and associated field testing, shall be as described in U.S. EPR FSAR Section 3.9.2.4
and in accordance with the Hot Functional Testing milestone identified in U.S. EPR FSAR Figure
14.2-1.

The visual inspection plan of the comprehensive vibration assessment program to be used for
the prototype RPV internals at BBNPP involves performance of visual inspections before and
after the preoperational tests of the RPV internals. These visual examinations are concerned with
the accessible areas of the RPV internals, and in particular the fastening devices, the bearings
surfaces, the interfaces between the RPV internals parts that are likely to experience relative
motions, and the inside of the RPV. The visual inspections of the lower and upper RPV internals
shall be performed at BBNPP as described in U.S. EPR FSAR Tables 3.9.2-1 through 3.9.2-5.
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The activities and milestones for implementation of the comprehensive vibration assessment
program at BBNPP are as follows.

* A summary of the vibration analysis program, including a description of the vibration
measurement and inspection phases, shall be provided to the U.S. Nuclear Regulatory
Commission at least 120 days prior to initiation of Hot Functional Testing (i.e., 15 months
prior to commercial operation).

» Visual inspections of the RPV internals shall be performed prior to initiation of Hot
Functional Testing.

* Vibration testing shall be performed during Hot Functional Testing (i.e., 11 months prior to
commercial operation).

» Visual inspections of the RPV internals shall be performed after completion of Hot
Functional Testing.

* The preliminary and final comprehensive vibration assessment reports, which together
summarize the results of the vibration analysis, measurement, and inspection programs
(including correlation of analysis and test results), shall be submitted to the U.S. Nuclear
Regulatory Commission at least 30 days prior to initial fuel loading (i.e., 9 months prior to
commercial operation) and at least 30 days prior to initial criticality (i.e., 7 months prior to
commercial operation), respectively. This schedule is within the Regulatory Guide 1.20
request to submit these reports within 60 and 180 days, respectively, following the
completion of vibration testing.

These milestones are aligned with the milestones set forth in U. S. EPR FSAR Section 14.2 for
the initial plant test program. The expected date for the start of commercial operation at BBNPP
is December, 2018.}

3.9.25 Dynamic System Analysis of the Reactor Internals Under Faulted Conditions

No departures or supplements.

3.9.2.6 Correlations of Reactor Internals Vibration Tests with the Analytical Results

No departures or supplements.

3.9.2.7 References

{NRC, 2007a. Comprehensive Vibration Assessment Program for Reactor Internals during
Preoperational And Initial Startup Testing, Regulatory Guide 1.20, Revision 3, U.S. Nuclear
Regulatory Commission, March 2007.

NRC, 2007b. Combined License Applications for Nuclear Power Plants, Regulatory Guide 1.206,
Revision 0, U. S. Nuclear Regulatory Commission, June 2007.}

3.9.3 ASME CODE CLASS 1, 2, AND 3 COMPONENTS, COMPONENT SUPPORTS,
AND CORE SUPPORT STRUCTURES
The U.S. EPR FSAR includes the following COL Item in Section 3.9.3:

A COL applicant that references the U.S. EPR design certification will prepare the design
specifications and design reports for ASME Class 1, 2, and 3 components, piping, supports,
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and core support structures that comply with and are certified to the requirements of Section
[l of the ASME Code.

This COL Item is addressed as follows.

{PPL Bell Bend, LLC} shall prepare the design specifications and design reports for ASME Class
1, 2, and 3 components that comply with and are certified to the requirements of Section Il of the
ASME Code (ASME, 2004). The design specifications shall be prepared prior to procurement of
the components while the ASME code reports shall be prepared during as-built reconciliation of
the systems and components conducted prior to fuel load.

3.9.3.1 Loading Combinations, System Operating Transients, and Stress Limits
The U.S. EPR FSAR includes the following COL Item in Section 3.9.3.1:

A COL applicant that references the U.S. EPR design certification will provide a summary of
the maximum total stress, deformation (where applicable), and cumulative usage factor
values for each of the component operating conditions for ASME Code Class 1 components.
For those values that differ from the allowable limits by less than 10 percent, the COL
applicant will provide the contribution of each of the loading categories (e.g., seismic, pipe
rupture, dead weight, pressure, and thermal) to the total stress for each maximum stress
value identified in this range.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC shall provide a summary of the maximum total stress, deformation (where
applicable), and cumulative usage factor values for each of the component operating conditions
for ASME Code Class 1 components. For those values that differ from the allowable limits by less
than 10 percent, PPL Bell Bend, LLC shall provide the contribution of each of the loading
categories (e.g., seismic, pipe rupture, dead weight, pressure, and thermal) to the total stress for
each maximum stress value identified in this range. This information shall be supplied prior to
procurement of the ASME Code Class 1 components.}

3.9.3.1.1 Loads for Components, Component Supports, and Core Support Structures
The U.S. EPR FSAR includes the following COL Item in Section 3.9.3.1.1:

As noted in ANP-10264(NP), should a COL applicant that references the U.S. EPR design
certification find it necessary to route Class 1, 2, and 3 piping not included in the U.S. EPR
design certification so that it is exposed to wind and tornadoes, the design must withstand the
plant design-bases loads for this event.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall route Class 1, 2, or 3 piping not included in the U.S. EPR design
certification in a manner so that it is not exposed to wind or tornadoes.

The U.S. EPR FSAR includes the following COL Items in Section 3.9.3.1.1:
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As noted in ANP-10264(NP), a COL applicant that references the U.S. EPR design
certification will confirm that thermal deflections do not create adverse conditions during hot
functional testing.

A COL applicant that references the U.S. EPR design certification will examine the feedwater
line welds after hot functional testing prior to fuel loading and at the first refueling outage, in
accordance with NRC Bulletin 79-13. A COL applicant that references the U.S. EPR design
certification will report the results of inspections to the NRC, in accordance with NRC Bulletin
79-13.

These COL Items are addressed as follows:
{PPL Bell Bend, LLC} shall:

» Confirm that thermal deflections do not create adverse conditions during hot functional
testing.

* Examine the feedwater line welds after hot functional testing prior to fuel loading and at
the first refueling outage, and will report the results of the inspections to the U.S. Nuclear
Regulatory Commission, in accordance with NRC Bulletin 79-13 (NRC, 1979).

3.9.3.1.2 Load Combinations and Stress Limits for Class 1 Components

No departures or supplements.

3.9.31.3 Load Combinations and Stress Limits for Class 2 and 3 Components

No departures or supplements.

3.9.3.1.4 Load Combinations and Stress Limits for Class 1 Piping

No departures or supplements.

3.9.3.1.5 Load Combinations and Stress Limits for Class 2 and 3 Piping

No departures or supplements.

3.9.3.1.6 Load Combinations and Stress Limits for Core Support Structures

No departures or supplements.

3.9.31.7 Load Combinations and Stress Limits for Class 1, 2 and 3 Component
Supports

No departures or supplements.

3.9.3.1.8 Load Combinations and Stress Limits for Class 1, 2 and 3 Pipe Supports

No departures or supplements.

3.9.31.9 Piping Functionality

No departures or supplements.
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3.9.3.2 Design and Installation of Pressure-Relief Devices

No departures or supplements.

3.9.33 Pump and Valve Operability Assurance

No departures or supplements.

3.9.34 Component Supports

No departures or supplements.

3.9.35 References

{ASME, 2004. Rules for Construction of Nuclear Facility Components, ASME Boiler and
Pressure Vessel Code, Section Ill, The American Society of Mechanical Engineers, 2004 edition.

NRC, 1979. Cracking in Feedwater System Piping, NRC Bulletin 79-13, Revision 2, U.S. Nuclear
Regulatory Commission, October 16, 1979.}

3.94 CONTROL ROD DRIVE SYSTEM

No departures or supplements.

3.9.5 REACTOR PRESSURE VESSEL INTERNALS

No departures or supplements.

3.9.6 FUNCTIONAL DESIGN, QUALIFICATION, AND INSERVICE TESTING
PROGRAMS FOR PUMPS, VALVES, AND DYNAMIC RESTRAINTS

The U.S. EPR FSAR includes the following COL Items in Section 3.9.6:

A COL applicant that references the U.S. EPR design certification will submit the PST
program and IST program for pumps, valves, and snubbers as required by 10 CFR 50.55a.

A COL applicant that references the U.S. EPR design certification will identify the
implementation milestones and applicable ASME OM Code for the preservice and inservice
examination and testing programs. These programs will be consistent with the requirements
in the latest edition and addenda of the OM Code incorporated by reference in 10 CFR
50.55a on the date 12 months before the date for initial fuel load.

These COL Items are addressed as follows:

{The ESWEMS is a site-specific safety-related system that is subject to preservice testing (PST)
and inservice testing (IST) program requirements identified in 10 CFR 50.55a. This system’s
pumps, valves and piping components included in these testing programs are provided in

Table 3.9-1 and Table 3.9-2. There are no snubbers in the ESWEMS.}

{PPL Bell Bend, LLC} shall submit the PST and IST programs prior to performing the tests and
following the start of construction and prior to the anticipated date of commercial operation,
respectively. The implementation milestones for these programs are provided in Table 13.4-1.
These programs shall include the implementation milestones and applicable ASME OM Code
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(ASME, 2004b) and shall be consistent with the requirements in the latest edition and addenda of
the OM Code incorporated by reference in 10 CFR 50.55a (CFR, 2008) on the date 12 months
before the date for initial fuel load.

3.9.6.1 Functional Design and Qualification of Pumps, Valves, and Dynamic Restraints

{The ESWEMS, including the individual components, the ESWEMS Pumphouse and ESWEMS
Retention Pond, are designed, manufactured, tested, and installed in such fashion as to ensure
and facilitate actual demonstration of design basis performance.

Component design considerations include function and performance requirements that support
the overall system performance, as well as materials of construction, wear tolerances, and
configuration that are selected to assure accommodation of service limits and the required
component longevity. In addition, provisions are designed in as necessary for measuring or
examining component characteristics such as vibration, bearing temperatures, or pressure
boundary thickness, using either permanent or temporary equipment, to demonstrate during
actual operating conditions that they are within the design tolerances.

Component manufacturing is accomplished in accordance with quality program requirements
that verify component physical and material requirements. Pre-approved performance test
procedures are used by the manufacturer to demonstrate/verify that actual component
capabilities meet design requirements.

The ESWEMS layout is completed with consideration of maintenance and repair efforts,
parameters to be monitored during operation, and periodic inspection and testing. Accordingly,
sufficient space is allocated around components, system test connections are accessible, and
the test bypass line is designed specifically for demonstration of the system’s maximum flow rate
at design conditions as specified in the plant accident analyses. There are no snubbers
incorporated into this system.

The ESWEMS pumps, valves and piping components will incorporate the necessary test and
monitoring connections to demonstrate the capacity of the pumps and valves to perform their
intended function through the full range of system differential pressures and flows at ambient
temperatures and available voltages.

Particular attention will be given to flow-induced loading in functional design and qualification to
degraded flow conditions to account for the presence of debris, impurities, and contaminants in
the fluid system.}

3.9.6.2 Inservice Testing Program for Pumps
The U.S. EPR FSAR includes the following COL Items in Section 3.9.6.2:

A COL applicant that references the U.S. EPR design certification will identify any additional
site-specific pumps in Table 3.9.6-1 to be included within the scope of the IST program.

This COL Item is addressed as follows:

Table 3.9-1 identifies the additional site-specific pumps that are included within the scope of the
IST program.
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3.9.6.3 Inservice Testing Program for Valves
The U.S. EPR FSAR includes the following COL ltems in Section 3.9.6.3:

A COL applicant that references the U.S. EPR design certification will identify any additional
site-specific valves in Table 3.9.6-2 to be included within the scope of the IST program.

This COL Item is addressed as follows:

Table 3.9-2 identifies the additional site-specific valves that are included within the scope of the
IST program.

In addition, the following supplement to U.S. EPR FSAR Section 3.9.6.3 is provided:

{The ESWEMS Class 3 site-specific valves (motor-operated, manually-operated, check, safety,
and relief valves) will be tested in accordance with ASME OMCode 2004, section ISTC (ASME,
2004b).}

3.9.6.3.1 Inservice Testing Program for Motor-Operated Valves

No departures or supplements.

3.9.6.3.2 Inservice Testing Program for Power-Operated Valves Other Than MOVs
{There are no power-operated valves in the ESWEMS, other than the MOVs.}

3.9.6.3.3 Inservice Testing Program for Check Valves

No departures or supplements.

3.9.6.3.4 Pressure Isolation Valve Leak Testing

No departures or supplements.

3.9.6.3.5 Containment Isolation Valve Leak Testing

{There are no Class 3 site-specific containment isolation valves in the ESWEMS.}

3.9.6.3.6 Inservice Testing Program for Safety and Relief Valves

No departures or supplements.

3.9.6.3.7 Inservice Testing Program for Manually Operated Valves

No departures or supplements.

3.9.6.3.8 Inservice Testing Program for Explosively Actuated Valves

{There are no Class 3 site-specific explosive valves in the ESWEMS.}

3.9.6.4 Inservice Testing Program for Dynamic Restraints
The U.S. EPR FSAR includes the following COL Item in Section 3.9.6.4:

BBNPP FSAR 3-208 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



A COL applicant that references the U.S. EPR design certification will provide a table
identifying the safety-related systems and components that use snubbers in their support
systems, including the number of snubbers, type (hydraulic or mechanical), applicable
standard, and function (shock, vibration, or dual-purpose snubber). For snubbers identified
as either a dual-purpose or vibration arrester type, the COL applicant shall indicate whether
the snubber or component was evaluated for fatigue strength. Per ASME Code Section I,
Subsection NF, the fatigue evaluation is not required for shock snubbers.

This COL Item is addressed as follows.

{PPL Bell Bend, LLC} shall provide a table identifying the safety-related systems and
components that use snubbers in their support systems, including the number of snubbers, type
(hydraulic or mechanical), applicable standard, and function (shock, vibration, or dual-purpose
snubber). For snubbers identified as either a dual-purpose or vibration arrester type, {PPL Bell
Bend, LLC} shall denote whether the snubber or component was evaluated for fatigue strength.
Per ASME Section lll, Subsection NF (ASME, 2004a), the fatigue evaluation shall not be
required for shock snubbers. This information shall be provided prior to installation of any of the
snubbers.

{The ESWEMS does not incorporate snubbers in the system design.}

3.9.6.5 Relief Requests and Alternative Authorizations to the OM Code

No departures or supplements.

3.9.6.6 References
{ASME, 2004a. Rules for Construction of Nuclear Facility Components, ASME Boiler and
Pressure Vessel Code, Section Ill, The American Society of Mechanical Engineers, 2004 edition.

ASME, 2004b. Code for Operation and Maintenance of Nuclear Power Plants, ASME OM Code,
The American Society of Mechanical Engineers, 2004 edition.

CFR, 2008. Codes and Standards, Title 10, Code of Federal Regulations, Part 50.55a, U. S.
Nuclear Regulatory Commission, 2008.}
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3.10 SEISMIC AND DYNAMIC QUALIFICATION OF MECHANICAL AND ELECTRICAL
EQUIPMENT

{This section of the U.S. EPR FSAR is incorporated by reference with the supplements and
departure as described in the following sections.

BBNPP seismic qualification of equipment is performed using the BBNPP design ground motion
response spectra described in Section 3.7.1 and ISRS provided in Section 3.7.2, instead of the
U.S. EPR design certification SSE (CSDRS) and ISRS.

For BBNPP, seismic and dynamic qualification of site-specific mechanical and electrical
equipment (identified in Table 3.10-1) includes equipment associated with the:

«  ESWEMS, including the ESWEMS Pumphouse and the ESWEMS Retention Pond; and

* Fire Protection System components that are required to protect equipment required to
achieve safe shutdown following an earthquake, including the Fire Protection Building
and Fire Water Storage Tanks.

Results of seismic and dynamic qualification of site-specific equipment by testing and/or analysis
were not available at the time of submittal of the original COL application. Thus, in conformance
with NRC Regulatory Guide 1.206 (NRC, 2007a), a seismic qualification implementation program
is provided. As depicted in Table 3.10-2, the qualification program will be implemented in five
major phases.

Phase | (Seismic Qualification Methodology) involves the development of a summary table for
site-specific equipment. This summary table shall:
» List site-specific equipment, along with the associated equipment identification number.

» Define the building in which each piece of equipment is located, along with the equipment
mounting elevation.

* Clarify whether the equipment is wall mounted, floor mounted, or line mounted.
* For mechanical equipment, identify if the equipment is active or passive.

* Provide a description of the intended mounting (e.g., skid mounted versus mounted
directly on the floor, welded versus bolted, etc.).

» List the applicable In-Structure Response Spectra or, for line mounted equipment, the
required input motion.

» Define operability and functionality requirements.

* Identify the acceptable qualification methods (i.e., analysis, testing, and/or a combination
of both).

*  When applicable, provide a requirement for environmental testing prior to seismic testing.

The basis and criteria established in Phase | shall be used as technical input to the Phase Il
(Specification Development) technical requirements that will be provided to bidders. In addition,
the specification will include the applicable seismic qualification requirements of the U.S. EPR
FSAR which are incorporated by reference in this section (e.g., invoking industry standard IEEE
344).
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The technical specification developed in Phase Il shall also outline the requirements for the
submittal (with each bidder’s proposal) of either a detailed seismic qualification methodology or,
for cases where seismic analysis and/or testing has previously been performed, the seismic
qualification report. The seismic qualification methodology for each bidder shall be required to
expand the information from Phase | to include specific details. As examples, the detailed
methodology shall be required to address:

»  Which portions of the equipment will be qualified by analysis, testing and/or a
combination of both, with technical justification.

* The technical justification when other than bi-axial, phase incoherent test input motions
(i.e., multiple input-motions in-phase and 180 degrees out-of-phase) are used for floor
mounted equipment.

Early in the Procurement Phase, Phase lll (Technical Bid Evaluations) shall be performed. The
scope of Phase Il will vary depending on whether the proposed seismic qualification for the
specific piece of equipment will utilize analysis and/or testing performed previously. For each
case where seismic qualification (by either analysis and/or testing) has not been performed, the
detailed methodology shall be compared with the technical specification requirements. For each
case where seismic qualification has been performed previously and the reports are submitted
with the proposal, the Technical Bid Evaluation shall consist of a detailed review of the seismic
qualification report, including a comparison of the detailed methodology employed to the
technical specification requirements. The technical review shall be performed expeditiously to
mitigate the potential for anomalies (e.g., those pertaining to test equipment calibration) to be
identified late in the Procurement cycle. When applicable, Requests for Clarification (RFC) shall
be provided to the bidder for resolution of anomalies. If, after vendor clarification, the existing
qualification report is determined to be insufficient technically, additional analysis and/or testing
may be required.

During Phase IV (New Seismic Analysis and/or Testing), the supplier shall perform new analysis
and/or testing, to either seismically qualify the equipment or, if a previously submitted
qualification report is determined to be insufficient, to supplement the previously submitted
seismic qualification. The analysis (or analysis portion of combined analysis and test seismic
qualification) shall be reviewed in detail, to assure compliance with the technical specification
requirements. Where testing is to be employed, a detailed review of the test procedure shall be
performed at least one month prior to the test. New testing will be independently observed to
assure conformance with the reviewed test procedure.

Phase V (Documentation of Results) shall consist of the preparation of a Seismic Qualification
Data Package (SQDP) for each piece of equipment seismically qualified. As a minimum, the
SQDP will include information required in the U.S. EPR FSAR, Appendix D, Attachment F.}
3.101 SEISMIC QUALIFICATION CRITERIA

3.10.1.1 Qualification Standards
This U.S. EPR FSAR includes the following COL Item in Section 3.10.1.1:

A COL applicant that references the U. S. EPR design certification will identify additional site-
specific components that need to be added to the equipment list in Table 3.10-1.

BBNPP FSAR 3-214 Rev. 0
© 2008 UniStar Nuclear Services, LLC. All rights reserved.
COPYRIGHT PROTECTED



This COL Item is addressed as follows:

A list of site-specific seismically and dynamically qualified mechanical, electrical, and
instrumentation and control equipment list is provided in Table 3.10-1. Table 3.10-1 also identifies
the type of environment to which the equipment is subjected.

3.10.1.2 Performance Requirements for Seismic Qualification

No departures or supplements.

3.10.1.3 Acceptance Criteria

No departures or supplements.

3.10.1.4 Input Motion

{This section of the U.S. EPR FSAR is incorporated by reference with the supplement as
described in the following section.

The seismic design basis for the EWSWEMS Pumphouse is based on a Foundation Input
Response Spectra (FIRS) analysis. The spectrum is based on a soil amplification model that
considers concrete fill that is placed between the foundation base mat and the top of bedrock.
The Peak Ground Acceleration (PGA) used for the ESWEMS Pumphouse is presented in
Section 2.5.4.7.5. The horizontal PGA is 0.21 g and the vertical PGA is 0.18 g.

The seismic design basis for the ESWEMS Retention Pond corresponds to the dynamic slope
stability analysis presented in Section 2.5.5.2.}

As a result of the high frequency content of the GMRS/FIRS, more refined SSI models were
developed for the Nuclear Island Common Base Mat Structures to capture the high frequency
response. Forthe EPGB structures, a 50 Hz cutoff frequency in the SSI analysis was considered
for the stiffer soil cases to address high frequencies. For the SSI analysis of the ESWB structure,
the SSI analysis cutoff frequency is a maximum of 26 Hz. While the FIRS extends beyond this
frequency, the 26 Hz cutoff frequency is deemed sufficient since the ESWB structural response is
governed by low frequency input motion and there is no high frequency sensitive equipment
currently identified for the ESWB. For structural design, 26 Hz is adequate since the seismic
motion at frequencies above 26 Hz has insufficient energy to generate higher seismic loads.

Additional refinement of the ESWB analysis models for the high frequency content of the GMRS/
FIRS for equipment qualification will be addressed during the generation of the Required
Response Spectra (RRS).

3.10.2 METHODS AND PROCEDURES FOR QUALIFYING MECHANICAL, ELECTRICAL
AND I&C EQUIPMENT

This U.S. EPR FSAR includes the following COL Item in Section 3.10.2:

If experience data are used to establish equipment qualification, a COL applicant that
references the U. S. EPR design certification will document the qualification methodology
and supporting data.

This COL Item is addressed as follows:
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{PPL Bell Bend, LLC} shall not use experience data to establish equipment qualification.

3.10.2.1 Seismic Qualification of Electrical Equipment and Instrumentation

No departures or supplements.

3.10.2.2 Seismic Qualification of Active Mechanical Equipment

No departures or supplements.

3.10.2.3 Seismic Qualification of Non-Active Mechanical Equipment

No departures or supplements.

3.10.3 METHODS AND PROCEDURES FOR QUALIFYING SUPPORTS OF
MECHANICAL AND ELECTRICAL EQUIPMENT AND INSTRUMENTATION

No departures or supplements.

3.10.4 TEST AND ANALYSIS RESULTS AND EXPERIENCE DATABASE
This U.S. EPR FSAR includes the following COL Items in Section 3.10.4:

A COL applicant that references the U. S. EPR design certification will create and maintain
the SQDP file during the equipment selection and procurement phase.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC shall create and maintain the SQDP file. This activity shall be initiated
during the equipment selection and procurement phase. The SQDP file shall be maintained for
the life of the plant.}

This U.S. EPR FSAR also includes the following COL Iltems in Section 3.10.4:

If the seismic and dynamic qualification testing is incomplete at the time of the COL
application, a COL applicant that references the U.S. EPR design certification will submit an
implementation program, including milestones and completion dates, for NRC review and
approval prior to installation of the applicable equipment.

This COL Item is addressed as follows:

The seismic and dynamic qualification implementation program, including milestones and
completion dates, shall be developed and submitted for U.S. Nuclear Regulatory Commission
approval prior to installation of the applicable equipment.

3.10.5 REFERENCES

{NRC, 2007. Combined License Applications for Nuclear Power Plants, Regulatory Guide 1.206,
Revision 0, U.S. Nuclear Regulatory Commission, June 2007}
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Table 3.10-2 Seismic Qualification Implementaiton Program

Phase Scope Definition Schedule
| Seismic Qualification Methodology Prior to Procurement
| Specification Development Prior to Procurement
i Technical Bid Evaluations Early in the Procurement Phase
v New Seismic Analysis and/or Testing (when required) Prior to Initial Pre-operational Testing
\") Documentation of Results Prior to Initial Pre-operational Testing
BBNPP FSAR 3-228 Rev. 0
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3.11 ENVIRONMENTAL QUALIFICATION OF MECHANICAL AND ELECTRICAL
EQUIPMENT

This section of the U.S. EPR FSAR is incorporated by reference with the supplements as
described in the following sections.

The U.S. EPR FSAR includes the following COL Item in Section 3.11:

A COL applicant that references the U.S EPR design certification will maintain the equipment
qualification test results and qualification status file during the equipment selection,
procurement phase and throughout the installed life in the plant.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall maintain the equipment qualification test results and qualification
status file during the equipment selection, procurement phase and throughout the installed life in
the plant.

3111 EQUIPMENT IDENTIFICATION AND ENVIRONMENTAL CONDITIONS

No departures or supplements.

3.11.1.1 Equipment Identification

No departures or supplements.

3.11.1.1.1  Nuclear Island

No departures or supplements.

3.11.1.1.2 Balance of Plant (BOP) and Turbine Island (TI)

No departures or supplements.

3.11.1.1.3 Equipment Review and Screening
The U.S. EPR FSAR includes the following COL Item in Section 3.11.1.1.3:

A COL applicant that references the U. S. EPR design certification will identify additional site-
specific components that need to be added to the environmental qualification list in Table
3.11-1.

This COL Item is addressed as follows:

Table 3.11-1 provides the list of additional site-specific components to add to the equipment list in
U.S. EPR FSAR Table 3.11-1. {It includes the safety-related and augmented quality items of the
site-specific portion of the ESWEMS and Fire Protection System.} The cable types listed are
typical of those which are anticipated to be utilized throughout the plant in safety-related
applications, including those which are site-specific. However, the function and location related
columns in the attached table entries are for site-specific applications only. The environmental
qualification parameters shown in the attached table are based on the criteria described in U.S.
EPR FSAR Section 3.11.
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Regulatory Guide 1.131, “Qualification Tests of Electric Cables and Field Splices for Light-Water-
Cooled Nuclear Power Plants” (NRC, 1984) endorses IEEE Std 383-1974, “Standard for Type
Test of Class 1E Electric Cables and Field Splices for Nuclear Power Generating Stations”
(IEEE,1974). These documents contain guidance for the environmental qualification of Class 1E
electric cables and field splices, and will be used in conjunction with Regulatory Guide 1.89
(NRC, 1977), as appropriate, for evaluating the environmental qualification of Class 1E electric
cables and field splices for site-specific portions of {ESWEMS} and Fire Protection System. Site-
specific safety-related cables and components will be procured in accordance with these
standards and regulations as appropriate.

There are six primary types of cable: Medium voltage power, low voltage power, low voltage
control, shielded instrumentation, thermocouple extension and fiber optic communication cable.
Medium and low voltage power cables, low voltage control cables and shielded instrumentation
cables will be rated at 90°C in accordance with ICEA Standards. Thermocouple extension cable
is intended for measuring service and will employ insulation rated at 300 VAC minimum.

Fiber optic communication cable may be employed in the safety-related site-specific portion of
the {ESWEMS}.

3.11.1.2 Definition of Environmental Conditions

No departures or supplements.

3.11.1.3 Equipment Operability Times

No departures or supplements.

3.11.2 QUALIFICATION TESTS AND ANALYSIS

No departures or supplements.

3.113 QUALIFICATION TEST RESULTS
This U.S. EPR FSAR includes the following COL Item in Section 3.11.3:

If the equipment qualification testing is incomplete at the time of the COL application, a COL
applicant that references the U. S. EPR design certification will submit an implementation
program, including milestones and completion dates, for NRC review and approval prior to
installation of the applicable equipment.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall develop and submit the equipment qualification testing program,
including milestones and completion dates, prior to installation of the applicable equipment.

3.11.4 LOSS OF VENTILATION

No departures or supplements.

3.11.5 ESTIMATED CHEMICAL AND RADIATION ENVIRONMENT

No departures or supplements.
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3.11.6 QUALIFICATION OF MECHANICAL EQUIPMENT

No departures or supplements.

3.11.7 REFERENCES

{IEEE, 1974. Standard for Type Test of Class 1E Electric Cables and Field Splices for Nuclear
Power Generating Stations, IEEE Std 383-1974, IEEE, 1974.

NRC, 1977. Qualification Tests of Electric Cables and Field Splices and Connections for Light-
Water-Cooled Nuclear Power Plants, Regulatory Guide 1.131, U.S. Nuclear Regulatory
Commission, August 1977.

NRC, 1984. Environmental Qualification of Certain Electric Equipment Important to Safety for
Nuclear Power Plants, Regulatory Guide 1.89, Revision 1, U.S. Nuclear Regulatory Commission,
June 1984.}
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3.12 ASME CODE CLASS 1, 2, AND 3 PIPING SYSTEMS, PIPING COMPONENTS, AND
THEIR ASSOCIATED SUPPORTS

This section of the U.S. EPR FSAR is incorporated by reference with the supplements as
described in the following sections.

3.121 INTRODUCTION

No departures or supplements.

3.12.2 CODES AND STANDARDS

No departures or supplements.

3.12.3 PIPING ANALYSIS METHODS

No departures or supplements.
3124 PIPING MODELING TECHNIQUES

3.12.41 Computer Codes

No departures or supplements.

3.12.4.2 Dynamic Piping Model
The U.S. EPR FSAR includes the following COL ltem in Section 3.12.4.2:

A COL applicant that references the U.S. EPR design certification will perform a review of the
impact of contributing mass of supports on the piping analysis following the final support
design to confirm that the mass of the support is no more than ten percent of the mass of the
adjacent pipe span.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall perform a review of the impact of contributing mass of supports on the
piping analysis following the final support design to confirm that the mass of the support is no
more than ten percent of the mass of the adjacent pipe span.

3.12.4.3 Piping Benchmark Program

The U.S. EPR FSAR includes the following COL ltem in Section 3.12.4.3:
If the COL applicant that references the U.S. EPR design certification chooses to use a piping
analysis program other than those listed in Section 5.1 of the referenced topical report, the

COL applicant will implement a NRC benchmark program using models specifically selected
for the U.S. EPR.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall use piping analysis programs listed in Section 5.1 of the topical report
ANP-10264(NP)(AREVA, 2006).
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3.12.4.4 Decoupling Criteria

No departures or supplements.
3.12.5 PIPING STRESS ANALYSIS CRITERIA

3.12.5.1 Seismic Input Envelope versus Site-specific Spectra
The U.S. EPR FSAR includes the following COL ltem in Section 3.12.5.1:

As indicated in Section 2.5.2, a COL applicant will confirm the site-specific seismic response
is within the parameters of Section 2.5.2.

This COL Item is addressed as follows:

The site specific seismic response {has been reconciled with Certified Design Response Spectra
(CSDRS) as discussed in Section 3.7.1.}

3.12.5.2 Design Transients

No departures or supplements.

3.12.5.3 Loadings and Load Combinations

No departures or supplements.

3.12.5.4 Damping Values

No departures or supplements.

3.12.5.5 Combination of Modal Responses

No departures or supplements.

3.12.5.6 High-Frequency Modes

No departures or supplements.

3.12.5.7 Fatigue Evaluation for ASME Code Class 1 Piping

No departures or supplements.

3.12.5.8 Fatigue Evaluation of ASME Code Class 2 and 3 Piping

No departures or supplements.

3.12.5.9 Thermal Oscillations in Piping Connected to the Reactor Coolant System

No departures or supplements.

3.12.5.10 Thermal Stratification

No departures or supplements.
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3.12.5.11 Safety Relief Valve Design, Installation, and Testing

No departures or supplements.

3.12.5.12 Functional Capability

No departures or supplements.

3.12.5.13 Combination of Inertial and Seismic Anchor Motion Effects

No departures or supplements.

3.12.5.14 Operating Basis Earthquake as a Design Load

No departures or supplements.

3.12.5.15 Welded Attachments

No departures or supplements.

3.12.5.16 Modal Damping for Composite Structures

No departures or supplements.

3.12.5.17 Minimum Temperature for Thermal Analyses

No departures or supplements.

3.12.5.18 Intersystem Loss-of-Coolant Accident

No departures or supplements.

3.12.5.19 Effects of Environment on Fatigue Design

No departures or supplements.

3.12.6 PIPING SUPPORT DESIGN CRITERIA

No departures or supplements.

3.12.7 REFERENCES

{AREVA, 2006. U. S. EPR Piping Analysis and Pipe Support Design, ANP-10264(NP), Revision
0, AREVA NP Inc., September, 2006.}
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3.13 THREADED FASTENERS (ASME CODE CLASS 1, 2, AND 3)

This section of the U.S. EPR FSAR is incorporated by reference with the supplements as
described in the following sections.

3.131 DESIGN CONSIDERATIONS

No departures or supplements.

3.13.2 INSERVICE INSPECTION REQUIREMENTS
The U.S. EPR FSAR includes the following COL Item in Section 3.13.2:

A COL applicant referencing the U.S. EPR design certification will submit the inservice
inspection plan for ASME Class 1, Class 2, and Class 3 threaded fasteners to the NRC prior
to performing the first inspection.

This COL Item is addressed as follows:

{PPL Bell Bend, LLC} shall submit the inservice inspection plan for ASME Class 1, Class 2, and

Class 3 threaded fasteners to the U.S. Nuclear Regulatory Commission prior to performing the

first inspection.

3A Criteria for Distribution System Analysis and Support

This section of the U.S. EPR FSAR is incorporated by reference.

3B Dimensional Arrangement Drawings

This section of the U.S. EPR FSAR is incorporated by reference.

3C Reactor Coolant System Structural Analysis Methods

This section of the U.S. EPR FSAR is incorporated by reference {with the following departure.

The BBNPP design ground motion response spectra are as described in Section 3.7.1, instead of
the U.S. EPR design certification SSE (CSDRS). }

3D Methodology for Qualifying Safety-Related Electrical and Mechanical Equipment

This section of the U.S. EPR FSAR is incorporated by reference {with the following departure for
Attachment E.

The BBNPP design ground motion response spectra are as described in Section 3.7.1, instead of
the U.S. EPR design certification SSE (CSDRS). }
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