TENNESSEE VALLEY AUTHORITY BROWNS FERRY NUCLEAR PLANT

Extended Power Uprate Steam Dryers

October 14, 2008

Agenda

- Status of Unit 1 and 2 Dryer Analyses
- Decision on Acoustic Side Branches
- Plan to Address SRV Resonance
- Changes in EIC Removal Method
- Unit 2 Noise Removal
- Submodeling Questions
- Review of RAI 19, 20 and 21 Responses
- Schedule

Status of Unit 1 and 2 Dryer Analyses

- TVA Decided not to Install Acoustic Side Branches (ASB)
 - No clear advantage
- Unit 1 and 2 Stress Reports (June 2008) Need to be Revised
 - SR-a > 2.7 at CLTP
 - Evaluates CLTP only
 - Unit 2 anomalous low flow (LF) signal (19% power)
 - Newer strain gage data now available
- Additional Strain Gage Data
 - Unit 1 startup August 2008
 - Unit 2 startup September 2008
- Unit 1 Stress Report Being Finalized
- Unit 2 Stress Report in Progress

Decision on Acoustic Side Branches

- 24-inch Quad Cities Design Chosen
 - Governed by clearance limitations
- Acoustic Design Relied on Damping Effect
 - Assumed to eliminate Safety Relief Valve (SRV) resonance
- Confirmation of ASB design by 1/8 Scale Model Test (SMT)
 - Damping effect less than expected
 - SRV resonance still present
- TVA Decided to Cancel ASB Modification
 - No clear advantage to Flow Induced Vibration (FIV)
- Requires Stress Analysis to Address EPU
 - Bump-up factor

Decision on Acoustic Side Branches

Plan to Address SRV Resonance

- 1/8 SMT Performed for each Unit's Configuration
 - Data at each strain gage location
 - Data at CLTP and EPU Mach numbers
- Bump-up Factors Calculated as a Function of Frequency by Equation:

 $BF = \sqrt{\frac{PSD_{EPU}}{PSD_{CLTP}}} At each frequency$

Applied to Plant CLTP Strain Gage Data to Predict EPU Load

$$P_{CLTP} = C_{CLTP} (CLTP - EIC_{CLTP}) - C_{LF} (LF - EIC_{LF})$$

$$P_{EPU} = BF \left[C_{CLTP} \left(CLTP - EIC_{CLTP} \right) - C_{LF} \left(LF - EIC_{LF} \right) \right]$$

P = Steam line unsteady pressure BF = Bump- up factor for SG location C = Coherence factor between upper and lower locationsEIC = Signal taken with zero excitation voltageLF = Low flow signal

TW

Changes in EIC Removal Method

- EIC Signal Taken by Removing Strain Gage Excitation Voltage
- Electrical Noise is Removed by Using EIC signal

Mechanical Component = SG Signal - EIC

- Additional EIC Signals on Units 1 & 2
- EIC now Matched with Companion CLTP and LF Signals $P_{CLTP} = C_{CLTP} (CLTP EIC_{CLTP}) C_{LF} (LF EIC_{LF})$

P = Steam line unsteady pressure

- C = Coherence factor between upper and lower locations
- EIC = Signal taken with zero excitation voltage

LF = Low flow signal

EIC Signals

EIC Signals

EIC Signals

EIC Signals

11

Unit 2 Noise Removal

- Additional Data Taken on Unit 2 to Confirm Signal Behavior
 - Electrical noise on Unit 2 varies with recirculation pump speed (VFD frequency)
 - Relationship is not well understood
 - 19% power signal originally used for noise removal was atypical
 - Composite 19% & 30% power signals replaced
- New LF signal at 5% Power and Companion 5% EIC Signal
 - All strain gages on MSL D lower damaged
 - Substituting MSL A for MSL D due to strain gage failures
 - CLTP signal and companion EIC signal unchanged

Unit 2 Noise Removal

PSD Signals

Unit 2 Noise Removal

PSD Signals

- Is the Stress Reduction Factor (SRF) accurate and unique? Would a different analyst get the same solution?
 - Limited, Specific Purpose
 - Avoid excess conservatism of shell model
 - Based on mechanistic behavior along weld line
 - CDI Shell Model => SIA Shell Submodel
 - Characteristic load matches CDI stress along the weld line
 - Drain Channel-to-skirt: Bending thru the joint See Figure 1
 - Hood Stiffener-to-Hood: Membrane in stiffener See Figure 2
 - SIA Shell Submodel => SIA Solid Submodel
 - Incorporates weld geometry
 - Applies characteristic loads
 - Accurately captures load transfer mechanism and stress distribution through weld
 - Submodel attributes (loads & boundary conditions) are not unique, but SRF is unique & accurate. So a different analyst would get the same result.

Submerged Skirt - Figure 1

Inner Hood Stiffener – Figure 2

- Are the submodel loads statically equivalent to the CDI model?
 - No not statically equivalent, nor required
 - Limited objective is to capture stress along weld line
 - Simple Example:

- Are the times used the ones which yield the largest stress intensity after application of the SRF?
 - Refer again to Figures 1 & 2
 - Alternating stress defined by either membrane or bending extrema
 - Extrema states produce maximum strain (i.e., fatigue usage)
 - SRF should be based on the extrema stress state
 - At other points in time, the product of stress intensity and SRF would have a lower value; i.e., be less conservative

- Demonstrate that the uncertainty in calculating the SRF is small
 - Approach produces high certainty that bounding stress of weld line is captured
 - Solid submodel mesh sensitivity study demonstrated convergence
 - Weld factor of 1.8 retained
 - Low level of uncertainty subsumed by bias and uncertainty applied to overall process

Π

- RAI 19
 - EMCB.147 (Unit 2 only)
 - New Unit 2 stress analysis
 - Revised response based on revised analysis
 - EMCB.192/150
 - SRV Resonance
 - EMCB.181 Follow-up (Unit 1 only)
 - 0 2 Hz mean filter
 - EMCB.182 Follow-up (Unit 1 only)
 - 。 EIC removal
 - EMCB.183 Follow-up (Unit 1 only)
 - SR-P values in table

- RAI 19 (continued)
 - EMCB.181 (Unit 1) & EMCB.147 (Unit 2) Follow-up
 PSD plot filtering
 - EMCB.186 & EMCB.187 Follow-up (Unit 1 only)
 Sub Modeling
- RAI 20
 - EMCB.194 (Unit 1 only)
 - 9% signal coherence
 - EMCB.195 (Unit 1 only)
 Fan noise

- RAI 20 (continued)
 - EMCB.196 (Unit 1 only)
 - EIC plots
 - EMCB.197/153
 - Strain gage penetration location
 - EMCB.154 (Unit 2 only)
 - o 9% signal coherence
 - EMCB.195
 - Extended frequency plots VFD

- RAI 21
 - EMCB.198 (Unit 1 only)
 - 。 EIC removal
 - EMCB.155 (Unit 2 only)
 - 。 EIC removal

Schedule

Item	Date
TVA response to RAI 21 on Channel Bow	10/17/08
TVA submit Unit 1 stress analysis & Unit 2 status	10/31/08
TVA submit Unit 2 stress analysis	11/14/08 Tentative
ACRS meetings	2/09-3/09
Unit 2 outage begins	4/09
NRC issue EPU Amendment for Units 1, 2, and 3	4/09
Unit 2 startup at EPU	5/09
Unit 1 implement EPU	6/09
Unit 3 implement EPU	Spring 2010