
U. S.IN REC
United States Nuclear Regulatory Commission

Protecting People and the Environment

[Programs for

ý5APHIMEý VoI. 7
[)ala LoadiHMg lMansual

NUREG/CR-6952
Vol. 7

IN L/EXT-05-00643

11

Office of Nuclear Regulatory Research

AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
http:iiwww. nrc.Qov/readinq,•-rrn.htrrl. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda;
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

U.S. Government Printing Office
Mail Stop SSOP
Washington, DC 20402-0001
Intemet: bookstore.gpo.gov
Telephone: 202-512-1800
Fax: 202-512-2250

2. The National Technical Information Service
Springfield, VA 22161-0002
www.ntis.gov
1-800-553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: U.S. Nuclear Regulatory Commission

Office of Administration
Mail, Distribution and Messenger Team
Washington, DC 20555-0001

E-mail: DISTRIBUTION@nrc.gov
Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address
http:/!vwjw.nrc.qov/readinq-rmidoc-collectionsinureqs

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at-

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from-

American National Standards Institute
11 West 4 2nd Street
New York, NY 10036-8002
www.ansi.org
212-642-4900

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series are
not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of
conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements
(NUREG/IA-XXXX), (4) brochures
(NUREG/BR-XXXX), and (5) compilations of legal
decisions and orders of the Commission and Atomic
and Safety Licensing Boards and of Directors'
decisions under Section 2.206 of NRC's regulations
(NUREG-0750).

are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was accessed,
the material available on the date cited may
subsequently be removed from the site.

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or ,
implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any
information, apparatus, product; or process disclosed in this publication, or represents that its use by such third
party would not infringe privately owned rights.

~US.NRCNUREG/CR-6952*U.S.NRC Vl
United States Nuclear Regulatory Commission INLJEXT-05-00643

Protecting People and the Environment

Systems Analysis
Programs for
Hands-on Integrated
Reliability Evaluations
(SAPHIRE) Vol. 7
Data Loading Manual

Manuscript Completed: October 2007
Date Published: September 2008

Prepared by
K.J. Kvarfordt, S.T. Wood, C.L. Smith

Idaho National Laboratory
Battelle Energy Alliance
Idaho Falls, ID 83415

D. O'Neal, NRC Project Manager

NRC Job Code N6203

Office of Nuclear Regulatory Research

PREVIOUS REPORTS

Smith, C. L., et al., Testing, Verifying, and Validating SAPHIRE Versions 6. 0 and 7. 0, NUREG/CR-
6688, October 2000.

K. D. Russell, et al. Systems Analysis Programs for Hands-on Reliability Evaluations (SAPHIRE)
Version 6.0 - System Overview Manual, NUREG/CR-6532, May 1999.

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 5.0, Volume 2 -
Reference Manual, NUREG/CR-6116, EGG-2716, July 1994.

K. D. Russell et al., Verification and Validation (V& V), Volume 9 - Reference Manual, NUREG/CR-
6116, EGG-2716, July 1994.

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 4. 0, Volume I -
Reference Manual, NUREG/CR-5813, EGG-2664, January 1992.

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 2.5 Reference
Manual, NUREG/CR-5300, EGG-2613, March 1991.

K. D. Russell, M. B. Sattison, D. M. Rasmuson, Integrated Reliability and Risk Analysis System
(IRRAS) - Version 2.0 User's Guide, NUREG/CR-51 11, EGG-2535, manuscript completed March
1989, published June 1990.

K. D. Russell, D. M. Snider, M. B. Sattison, H. D. Stewart, S.D. Matthews, K. L. Wagner, Integrated
Reliability and Risk Analysis System (IRRAS) User's Guide - Version 1.0 (DRAFT), NUREG/CR-4844,
EGG-2495, June 1987.

ii

ABSTRACT

*The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a
software application developed for performing a complete probabilistic risk assessment (PRA) using a
personal computer. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC)
and developed by the Idaho National Laboratory. This report is intended to assist the user to enter
PRA data into the SAPHIRE program using the built-in MAR-D ASCII-text file data transfer process.
Towards this end, a small sample database is constructed and utilized for demonstration. Where
applicable, the discussion includes how the data processes for loading the sample database relate to the
actual processes used to load a larger PRA models. The procedures described herein were developed
for use with SAPHIRE Version 6.0 and Version 7.0. In general, the data transfer procedures for
version 6 and 7 are the same, but where deviations exist, the differences are noted. The guidance
specified in this document will allow a user to have sufficient knowledge to both understand the data
format used by SAPHIRE and to carry out the transfer of data between different PRA projects.

iii

FOREWORD

The U.S. Nuclear Regulatory Commission has developed the Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE) software used to. perform probabilistic risk assessments
(PRAs) on a personal computer. SAPHIRE enables users to supply basic event data, create and solve fault
and event trees, perform uncertainty analyses, and generate reports. In that way, analysts can perform PRAs
for any complex system, facility, or process.

SAPHIRE can be used to model a plant's response to initiating events, quantify core damage frequencies,
.and identify important contributors to core damage (Level I PRA). The program can also be used to
evaluate containment failure and release models for severe accident conditions, given that core damage has
occurred (Level 2 PRA). In so doing, the analyst could build the PRA model assuming that the reactor is
initially at full power, low power, or shutdown. In addition, SAPHIRE can be used to analyze both internal
and external events, and it includes special features for transforming models built for internal event analysis
to models for external event analysis. It can also be used in a limited manner to quantify the frequency of
release consequences (Level 3 PRA). Because this software is a very detailed technical tool, users should be
familiar with PRA concepts and methods used to perform such analyses.

SAPHIRE has evolved with advances in computer technology. The versions currently in use (6 and 7) run
in the Microsoft Windows® environment. A user-friendly interface, Graphical Evaluation Module (GEM),
streamlines and automates selected SAPHIRE inputs and processes for performing event assessments.

SAPHIRE has also evolved with users' needs, and Versions 6 and 7 include new features and capabilities
for developing and using larger, more complex models. For example, Version 7 can solve up to 2 million
sequences and includes enhancements for cut set slicing, event tree rule linkage, and reporting options.

This NUREG-series report comprises seven volumes, which address SAPHIRE/GEM Versions 6 and 7.
Volume 1, "Overview/Summary," gives an overview of the functions available in SAPHIRE and presents
general instructions for using the software. Volume 2, "Technical Reference," discusses the theoretical
background behind the SAPHIRE functions. Volume 3, "SAPHIRE Users' Manual," provides installation
instructions and a step-by-step approach to using the program's features. Volume 4, "SAPHIRE Tutorial
Manual," provides an example of the overall process of constructing a PRA database. Volume 5,
"GEM/GEMDATA Reference Manual," discusses the use of GEM. Volume 6, "SAPHIRE Quality
Assurance (QA) Manual," discusses QA methods and tests. Lastly, Volume 7, "SAPHIRE Data Loading
Manual," assists the user in entering PRA data into SAPHIRE using the built-in MAR-D ASCII-text file
data transfer process.

Christiana H. Lui, Director
Division of Risk Analysis
Office of Nuclear Regulatory Research

v

CONTENTS

PREVIOUS REPORTS ... ii

ABSTRACT .. iii

FOREW ORD .. v

CONTENTS ... vii

EXECUTIVE SUM M ARY ix

ACRONYM S .. xi

1. INTRODUCTION ... 1

1.1 B ack g ro u n d ... I

1.2 Loading PRA Results Program Overview .. 2

1.3 Assumptions and Recommendations ... 3

2. OVERVIEW OF DATABASE CONCEPTS .. 5.

2.1 SAPHIRE Database Unit - The Project ... 5

2.2 Base Versus Current Case Concepts .. 5

2.3 File M anagement... 6

3. THE SAM PLE DATABASE ... 9

3.1 The Sample Database ... 9

3.2 The Sample Database Event Tree I .. 9

3.3 The Sample Database Fault Trees .. 11

3.4 The Sample Database Basic Events .. 14

3.5 Sample Database Fault Tree Cut Sets ... 16

3.6 Sample Database Sequence Cut Sets ... 17

3.7 Sample Database Recovery Actions ... 18

3.8 Sample Database Uncertainty ... 18

3.9 Sample Database Importance .. 19

4. LOADING THE SAMPLE DATABASE 21

4.1 Introduction .. 21

4.2 Adding and Selecting the Database Project .. 21

4.2.1 Adding the Project ... 22
4.2.2 Selecting the Project .. 22
4.2.3 Entering Project Information, Description, and Text 22
4.2.4 Extracting and Verifying the Project Data 23

4.3 Loading the Event Tree Data ... 24

4.3.1 . Entering the Event Tree Logic 26
4.3.2 Entering Sequence Names in Graphics .. 28
4.3.3 Entering Top Event Descriptions ... 28

vii

4.3.4 Entering Link (Substitution) Rules .. 30
4.3.5 Entering Event Tree Descriptions and Text ... 31
4.3.6 Generating and Verifying Event Tree Logic 32

4.4 Entering End State D ata ... 33

4.4.1 Entering End State Names in Graphics .. 34
4.4.2 Entering End States for Analysis ... 35
4.4.3 Entering End State Description and Text ... 35

4.5 Loading the Fault Tree Data ... 36

4.5.1 Entering Fault Tree Logic ... 37
4.5.2 Entering Fault Tree Descriptions and Text ... 42
4.5.3 Entering Gate Descriptions and Attributes ... 43
4.5.4 Generating Fault Tree Cut Sets .. 45
4.5.5 Verifying the Fault Tree Data .. 46

4.6 Loading B asic Event D ata 46

4.6.1 A dding B asic Events ... 48
4.6.2 Adding Basic Event Descriptions ... 48
4.6.3 Entering Basic Event Data ... 49

4.7 Loading Sequence Data .. 52

4.7.1 Generating Sequence Cut Sets 52
4.7.2 Entering the Sequence Description and Text ... 54

4 .8 R ecovery A ctions .. 55

4.9 A nalyzing U ncertainty ... 55

4.9.1 Generating Uncertainty for Fault Tree Cut Sets ... 56
4.9.2 Generating Uncertainty for Sequence Cut Sets .. 58
4.9.3 Generating Uncertainty for End States ... 58
4.9.4 Generating Uncertainty for Groups of Sequences or the Project 59

4 .10 A dditional F eatures .. 60

4.10.1 Use of Change Sets ... 60
4.10.2 Use of House Events 60
4.10.3 U se of Process Flags .. 61
4.10.4 Use of Mutually Exclusive Event Features .. 61
4 .10.5 U se of F lag Sets .. 6 1
4.10.6 Use of Importance Measures .. 63

Appendix A - Procedures for Database Loading .. A-1

Appendix B - General MAR-D Data Interchange Formats ... B-1

Appendix C - MAR-D Files for Sample Database ... C-1

Appendix D - Seismic Data Loading D-1

viii

EXECUTIVE SUMMARY

The Data Loading Manual contains an overview of functions for creating event trees and fault trees,
defining accident sequences and basic event failure data, solving system fault trees and accident
sequence event trees, quantifying cut sets, performing sensitivity and uncertainty analyses,
documenting the results, and generating reports. The process of creating a SAPHIRE project is
described in terms of the ASCII-formatted data structures available via the MAR-D option. MAR-D.is
a mechanism in SAPHIRE to import or export probabilistic risk assessment data - via a nonproprietary
text format - for use, modification, or storage outside of SAPHIRE.

In order to understand the data import/export functionality, one must understand the parts of a
SAPHIRE project. A project is any grouping of fault trees and event trees with their associated basic
events, cut sets, reliability data, and descriptions. Inside a project, SAPHIRE reserves storage areas for
the various types of information. For example, all basic event data is automatically placed in the base
case part of the database (the "current case" part of the database is used only when performing an
analysis). Note that basic fault tree and event tree logic remains the same for both current and base
cases.

The tutorial in this document leads the student through (a) the basic construction of event tree and fault
trees, (b) entering basic event data, and (c) generation and quantification of both fault tree and
sequence cut sets. Once the project is complete, the data structures related to the fault trees, event
trees, and basic events are discussed. The example that is used is one of modeling upset conditions
related to going to work. Consequently, a "going to work" event tree and associated fault trees are
used.

One application of the data files that are available from SAPHIRE is for use in quality assurance
practices. These text-formatted files may be exported, reviewed by an independent party, and stored
for later retrieval. Toward that end, the format for all information that may be entered into SAPHIRE
and later exported is defined. For example, one section describes how to load fault trees and associated
data in order to verify their accuracy.

The types of data that is defined and discussed in this document includes:

Project name and descriptions
Project attributes
Project text
Project event tree recovery rules
Project fault tree recovery rules
Project end state partition rules

Basic event names and descriptions
Basic event failure rates Basic event attributes Basic event transformations and compoundevents
Basic event compound information
Basic event notes

Fault tree graphics
Fault tree names and descriptions
Fault tree text
Fault tree attributes
Fault tree logic
Fault tree cut sets

ix

Fault tree recovery rules

Event tree graphics
Event tree names and descriptions
Event tree text
Event tree attributes
Event tree logic
Event tree rules
Event tree recovery rules
Event tree end state partition rules

End state names and descriptions
End state text
End state cut sets

Sequence names and descriptions
Sequence cut sets
Sequence attributes
Sequence text
Sequence logic
Sequence recovery rules
Sequence end state partition rules

Gate description
Gate attributes

Histogram attributes
Histogram descriptions
Histogram information

X

ACRONYMS

EMF enhanced metafile

FEP Fault Tree, Event Tree, and Piping and Instrumentation Diagram Editors

INEEL Idaho National Engineering and Environmental Laboratory

INL Idaho National Laboratory

IPE individual plant examination

IRRAS Integrated Reliability and Risk Analysis System

MAR-D Models and Results Database

NRC Nuclear Regulatory Commission

PC personal computer

PRA probabilistic risk analysis

RTF rich text format

SAPHIRE Systems Analysis Programs for Hands-on Integrated Reliability Evaluations

SARA System Analysis and Risk Assessment

SETS Set Equation Transformation System

WMF Windows metafile

xi

Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE)

Vol. 7 Data Loading Manual

1. INTRODUCTION

1.1 Background
The U.S. Nuclear Regulatory Commission (NRC) has developed a powerful personal computer (PC)
software application for performing probabilistic risk assessments (PRAs), called Systems Analysis
Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE).

Using SAPHIRE on a PC, an analyst can perform a PRA for any complex system, facility, or
process. Regarding nuclear power plants, SAPHIRE can be used to model a plant's response to
initiating events, quantify associated core damage frequencies and identify important contributors to
core damage (Level 1 PRA). It can also be used to evaluate containment failure and release models
for severe accident conditions, given that core damage has occurred (Level 2 PRA). It can be used
for a PRA assuming that the reactor is at full power, at low power, or at shutdown conditions.
Furthermore, it can be used to analyze both internal and external initiating events, and it has special
features for transforming models built for internal event analysis to models for external event
analysis. It can also be used in a limited manner to quantify risk for release consequences to both the
public and the environment (Level 3 PRA). For all of these models, SAPHIRE can evaluate the
uncertainty inherent in the probabilistic models.

SAPHIRE development and maintenance has been undertaken by the Idaho National Laboratory
(INL). The INL began development of a PRA software application on a PC in the mid 1980s when
the enormous potential of PC applications started being recognized. The initial version, Integrated
Risk and Reliability Analysis System (IRRAS), was released by the Idaho National Engineering
Laboratory (now Idaho National Laboratory) in February 1987. IRRAS was an immediate success,
because it clearly demonstrated the feasibility of performing reliability and risk assessments on a PC
and because of its tremendous need (Russell 1987). Development of IRRAS continued over the
following years. However, limitations to the state of the-art during those initial stages led to the
development of several independent modules to complement IRRAS capabilities (Russell 1990;
1991; 1992; 1994). These modules were known as Models and Results Database (MAR-D), System
Analysis and Risk Assessment (SARA), and Fault Tree, Event Tree, and Piping and Instrumentation
Diagram (FEP).

IRRAS was developed primarily for performing a Level I PRA. It contained functions for creating
event trees and fault trees, defining accident sequences and basic event failure data, solving system
fault trees and accident sequence event trees, quantifying cut sets, performing sensitivity and
uncertainty analyses, documenting the results, and generating reports.

MAR-D provided the means for loading and unloading PRA data from the IRRAS relational
database. MAR-D used a simple ASCII data format. This format allowed interchange of data
between PRAs performed with different types of software; data of PRAs performed by different
codes could be converted into the data format appropriate for IRRAS, and vice-versa.

1

SARA provided the capability to access PRA data and results (descriptive facility information,
failure data, event trees, fault trees, plant system model diagrams, and dominant accident sequences)
stored in MAR-D. With SARA, a user could review and compare results of existing PRAs. It also
provided the capability for performing limited sensitivity analyses. SARA was intended to provide
easier access to PRA results to users that did not have the level of sophistication required to use
IRRAS.

FEP provided common access to the suite of graphical editors. The fault tree and event tree editors
were accessible through FEP as well as through IRRAS, whereas the piping and instrumentation
diagram (P&ID) editor was only accessible through FEP. With these editors an analyst could
construct from scratch as well as modify fault tree, event tree, and plant drawing graphical
representations needed in a PRA.

Previous versions of SAPHIRE consisted of the suite of these modules. Taking advantage of the
Windows 95 (or Windows NT) environment, all of these modules were integrated into SAPHIRE
Version 6; more features were added; and the user interface was simplified.

With the release of SAPHIRE versions 5 and 6, INL included a separate module called the
Graphical Evaluation Module (GEM). GEM provides a highly specialized user interface with
SAPHIRE, automating SAPHIRE process steps for evaluating operational events at commercial
nuclear power plants. in particular, GEM implements many of the accident sequence precursor
(ASP) program analysis methods.- Using GEM, an analyst can estimate the risk associated with
operational events very efficiently and expeditiously.

This manual is designed to guide the user through the basic procedures necessary to enter PRA
data into the SAPHIRE program using SAPHIRE's MAR-D ASCII-text (or "flat file") data
formats. A simple sample database is presented in Section 3 that demonstrates the data loading
process. Where applicable, the discussion includes how the processes for loading the sample
database relate to the actual processes used to load a larger PRA or individual plant examination
(IPE) database. The procedures in the manual were developed for use with SAPHIRE, Version
6 and Version 7, and may not apply to past or future versions. Procedures for version 6 and 7
are the same, except Where noted. While this manual does provide guidance for efficient and
accurate data entry, it is not intended to stand-alone but is meant to supplement existing
documents. Therefore, this manual references the SAPHIRE User's Guide, the SAPHIRE
Technical Reference Manual, and the SAPHIRE Tutorial as information sources.

1.2 Loading PRA Results Program Overview

There is a continual need for nuclear plant risk information documented in PRAs and IPEs. The
INL has been under contract with the U.S. NRC to collect and load data and information for
internally generated events from PRAs and IPEs into databases. The NRC programs and projects
for which these databases are useful include (a) prioritization, evaluation, and resolution of generic
safety issues, (b) risk monitoring of plants, (c) assessment of operational events (i.e., event analysis),
and (d) evaluation of changes to technical specifications.

The databases were developed using SAPHIRE, which also were produced by the INL under con-
tract with the NRC. Prior to version 6, SAPHIRE was actually a suite of programs:

2

1. Integrated Reliability and Risk Analysis System (IRRAS)

2. System Analysis and Risk Assessment (SARA)

3. Models and Results Database (MAR-D)

4. Fault Tree, Event Tree, and Piping and Instrumentation Diagram Editors (FEP)

Starting with version 6, the combined functionality of these programs has been integrated into a
single, Windows based program called SAPHIRE. Note that SAPHIRE's data load and extract
functionality is still referred to as the MAR-D interface, but is embedded within SAPHIRE.

Some electronic data generated by other computer applications can also be directly loaded (in ASCII
format) into the SAPHIRE 6.0 and 7.0 software. For example, SAPHIRE can output and input data
in the Set Equation Transformation System (SETS) format.

1.3 Assumptions and Recommendations
We assume that the SAPHIRE software has been loaded as described in the SAPHIRE User's
Guide. We assume that the user is knowledgeable in the use of SAPHIRE. We also assume that the
user has a basic level of knowledge concerning the use of event trees and fault trees in a PRA.

It is recommended that the user read Sections 1 and 2 of the SAPHIRE User's Guide. These
sections provide an overview of SAPHIRE with discussions concerning how to get around in the
program menus, and SAPHIRE database concepts. These concepts will be discussed only briefly in
Section 2 of this document.

3

2. OVERVIEW OF DATABASE CONCEPTS

2.1 SAPHIRE Database Unit - The Project
The SAPHIRE analysis structure is divided into projects. Since access to any SAPHIRE database is
obtained through the appropriate project, a project is the first thing that must be created. A project is any
grouping of fault trees and event trees with their associated basic events, cut sets, reliability data, and
descriptions. When a database project is created, a corresponding Windows folder, usually located beneath
the Saf60 or Saphire7 folder, is also created (this assumes that SAPHIRE was installed in its default folder).
When multiple projects are created, it is necessary to select one project to work with at a time. The
procedures for adding and selecting a project in SAPHIRE are shown in Appendix A of this report.

SAPHIRE is structured so that major areas of functionality are grouped and accessed by main menu options.
These main menu options will be referred to frequently throughout this manual. The main menu functions
used predominantly in data loading are

X File - options to create and select various projects.

X Generate - options to-transfer base case event data to current case data.

X Fault Tree - options to create and modify fault tree logic, analyze and solve logic.

X Event Trees - options to create and modify event tree and sequence.logic.

X Modify - options to edit descriptive and rate information, add and delete items.

X Utility - options to extract. and load data using flat files

2.2 Base Versus Current Case Concepts

A database in SAPHIRE consists of both a current (or working case) and a base case. These two analysis
cases are not necessarily identical. When working in SAPHIRE, particularly in the report and utilities
modules, it is a common option to select whether to use the base or current case for a particular activity.
This concept is very important when dealing with cut set generation and quantification for both fault trees
and event trees. It is possible to have two sets of values for basic events, cut sets, and importance. This
option allows you to maintain a base case database that can be transferred to the current case (via the
Generate menu). Once in the current case, the data can be changed as necessary for analysis, without losing
the base-case data values and results.

All basic event data entered through the Modify menu is automatically placed in the base case database.
When loading values, SAPHIRE will allow information to be input to the base case and/or the current case
database. Unless otherwise selected during the process, any analysis performed using the SAPHIRE "
program defaults to values and/or cut sets drawn from the current case database. Note that basic fault tree
and event tree logic remains the same for both cases.

5

2.3 File Management
There are several types of external files important to SAPHIRE for storing and accessing database
information. All files associated with a particular database are stored in the subdirectory representing the
project. The project subdirectory is found in the Saf6O or Saphire7 Windows folder.

The external relation files reside in the project subdirectory. and maintain the permanent SAPHIRE
interactive database. This type of data includes project, basic, events, attributes, fault trees, event trees, end
states, accident sequences, etc. For each relation, the followifig-'relation files exist:

*.BLK
*DAT WN.,EX
*.DFL
*.IDX

These file types should never be deleted unless the project is to be removed permanently from the users hard
drive. Appendix A of the MAR-D User's Guide' contains a more detailed description of these database
relation files.

In addition to the relation files, SAPHIRE can also produce extemalflat or ASCII files. These can be
extracted or loaded to or from the Windows project subdirectory using SAPHIRE software. These flat files,
grouped according to the type of data they contain, are listed in Table 2-1. In version 6, extracted flat files
will always be located in the project subdirectory. To be loaded into a different project, they must first be
moved or copied (via Windows Explorer or similar method) into the destination project folder. In version 7,
flat files can be extracted to any Windows folder, and can be loaded into the current project from any
Windows folder as well.

Once the data contained in the flat files have been entered into the SAPHIRE database, they are stored
permanently in the relation files. Therefore, flat files can be deleted from the subdirectory to conserve disk
space and later extracted from the interactive database if necessary. For example, these flat files may be
used to verify data entry. Another important use of these MAR-D files is using an extracted file as a
template to add additional data to the database (i.e., via copy and paste type of editing functions).

There are two methods to create flat files. The first. is to enter data into the interactive database using the
Modify menu options. Once the data are entered manually, the flat files containing this information can be
extracted, as described in Appendix A. The second is to create and enter data into an ASCII flat file with the
correct format and file name (as shown in Appendix B). These files can then be loaded into the database, as
described in Appendix A.

SAPHIRE also produces external report files. Report options are available in many sections of the software.
The software allows the options to send reports to a printer, the computer screen, or to a file on any
directory. Version 7 provides additional report formats that are compatible with major word processing
software and browsers.

Note: Empty flat files can be extracted and serve as a template for the proper data entry format. These
templates are available for those files listed in Table 2-1.

6

Table 2-1 SAPHIRE database file names and descriptions
File name Version Description Applicable section in this

specific manual
Project Information

ProjectName.FAD 6,7 Project name and descriptions 4.2.3
ProjectName.FAA Project attributes 4.2.3
ProjectName.FAT 6,7 Project text 4.2.3
ProjectName.FAY Project event tree recovery rules -

ProjectName.FAS Project fault tree recovery rules
ProjectName.FAP Project end state partition rules

Basic Event Information
ProjectName.BED 6,7 Basic event names and descriptions 4.6.2
ProjectName.BEI Basic event failure rates 4.6.3
ProjectName.BEA Basic event attributes 4.6.3

ProjectName.BET 6,7 Event transformations and -
compound events

ProjectName.BEC 7 Basic event compound information -

ProjectName.BEN 7 Basic event notes

Basic Event Attributes

ProjectName.FMD Failure mode descriptions Appendix B

ProjectName.CTD Component type descriptions Appendix B
ProjectName.STD System type descriptions Appendix B
ProjectName.LCD Location descriptions Appendix B
ProjectName.TTD Train descriptions Appendix B

Fault Tree Information
FaultTree.DLS Fault tree graphics 4.5.1
ProjectName.FTD 6,7 Fault tree names and descriptions 4.5.2
FaultTree.FTT 6,7 Fault tree text 4.5.2
ProjectName.FTA Fault tree attributes Appendix B
ProjectName.FTL Fault tree logic 4.5.1
ProjectName.FTC Fault tree cut sets 4.5.4

FaultTree.FTY Fault tree recovery rules

FaultTree.PID Fault tree P&ID

Event Tree Information
EventTree.ETG Event tree graphics 4.3.1
ProjectName.ETD 6,7 Event tree names and descriptions 4.3.5
ProjectName.ETT 6,7 Event tree text 4.3.5
ProjectName.ETA Event tree attributes Appendix B
EventTree.ETL Event tree logic 4.3.1
ProjectName.ETR Event tree rules 4.3.4
EventTree.ETY Event tree recovery rules

7

EventTree.ETP Event tree end state partition rules

End State Information

ProjectName.ESD 6,7 End state names and descriptions 4.4.3

ProjectName.EST 6,7 End state text 4.4.3
ProjectName.ESC End state cut sets -

Sequence Information

ProjectName.SQD 6,7 Sequence names and descriptions 4.7.2
ProjectName.SQC Sequence cut sets 4.7.1
ProjectName.SQA Sequence attributes Appendix B
ProjectName.SQT 6,7 Sequence text 4.7.2
ProjectName.SQL Sequence logic 4.3.6
ProjectName.SQY Sequence recovery rules -
ProjectName.SQP Sequence end state partition rules -

Gate Information
ProjectName.GTD 6,7 Gate description 4.5.3
ProjectName.GTA Gate attributes 4.5.3

Change Set/Flag Set Information

ProjectName.CSD 6,7 Change/flag set description 4.10.1/Appendix A
ProjectName.CSI Change/flag set information 4.10.1/Appendix A

ProjectName.CSA 7 Change/flag set alternate names -

Histogram Information
ProjectName.HIA Histogram attributes
ProjectName.HID 6,7 Histogram descriptions

ProjectName.HII Histogram information
ProjectName.HIA 7 Histogram alternate name

Slice Information
ProjectName.SLA 7 Slice alternate names
ProjectName.SLB Slice basic event logic
ProjectName.SLD Slice description
ProjectName.SLI 6,7 Slice information (combo

importance values)

8

3. THE SAMPLE DATABASE

This section presents the sample database used to describe the data loading process in Section 4. Section 3.1
presents the basic assumptions concerning use of this manual. Sections 3.2 through 3.9 contain'the actual
data and a discussion of the sample database.

3.1 The Sample Database
Several assumptions concern the presentation of the sample database:

1. The SAPHIRE software has been loaded as described in the SAPHIRE User's Guide.

2. The user has a basic knowledge of using SAPHIRE to analyze event trees and fault trees.

3. The user has read the sections of the SAPHIRE User's Guide that provide an overview of
the use of the software and the program menus, modules, and database concepts.

In the SAPHIRE Tutorial, a simple example shows the quantification for the frequency of getting to work.
The tutorial leads the student through (a) the basic construction of event tree and fault trees, (b) entering
basic event data, and (c) generation and quantification of both fault tree and sequence cut sets. In this report,
we use a modification of the simple "getting to work" example to demonstrate the data loading process.
Sections 3.2 through 3.9 present the sample database in a fashion similar to that found in a typical PRA.
However, unlike most PRAs, the sample database contains only those data essential to constructing a
workable database in SAPHIRE.

3.2 The Sample Database Event Tree
Using failure-success logic, we developed an event tree to calculate the frequency that a worker will arrive
on time, be late, or miss a day of work. The event tree (WORK) is shown in Figure 3-1. It was determined
that the average working person is requited to work approximately 248 days a year. In the WORK event
tree, going to work was used as the initiating event (WORK). Initiating events are occurrences in a certain
length of time that initiate a sequence of events. In this case, being required to get to work initiates the
sequence of events leading to either getting to work on time, being late to work, or missing work completely.

The first event that should occur on a normal workday is that the alarm clock rings. Therefore, the first
question to ask is "did.the ALARM go off?" If it did not go off, then the worker will be late to work. If the
alarm successfully wakes the worker, then a personal reason (i.e., sickness) may.cause the worker to miss
work. Therefore, the second question to ask is "did a PERSONAL reason make the worker miss work?"
Thus, the ALARM may be successful but a PERSONAL reason may cause the worker to miss work. Now,
either the alarm succeeded in waking the worker or the alarm failed and the worker woke up late, and if no
personal circumstances cause the worker to miss work, then transportation problems may occur that causes
the worker to be even later to work. Therefore, the third question to ask is "did the available transportation
(TRNSPRT) fail?" Finally, if the alarm succeeded, no personal reasons interfered, and transportation was
available, then the worker will be successful in getting to work on time.

9

Figure 3-1 Going-to-work (WORK) event tree

We assume that the probability of public transportation (represented by the top event TRNSPRT) will
change depending on the time that the person attempts to use this service. This assumption implies that the
probability of failing TRNSPRT is conditional on the time that the service is needed. Therefore, if ALARM
fails then it is necessary to substitute a different fault tree or probability for the original TRNSPRT top event.
The database has another new fault tree called TRNSPRT-2. This fault tree will contain a different
probability for the basic event that represents the failure of the public transportation fault tree when the
demand for this service is later than the normal time to get to work.

The first four names along the topmost horizontal line of this figure represent the initiating event (WORK)
and the top events (ALARM, PERSONAL, and TRNSPRT). Using the event tree in an analysis will enable
the top events to be linked together. Standard practice depicts the initiating event as a horizontal line with
fault trees connected in a branching structure, where an up branch indicates success and the down branch
indicates failure. As the event tree logic is developed, a top event either can be passed (fault tree not
questioned) or questioned (fault tree either succeeds or fails). Therefore, each pathway through an event tree
has a combination of success, failure, or "pass" logic. This pathway of combinations is called a sequence.
For example, following through the WORK event tree, sequence three (SEQ 3) is described as the success of
ALARM, the failure of PERSONAL, and the pass of TRNSPRT.

10

3.3 The Sample Database Fault Trees

Each of the top events presented in the WORK event tree may be further developed as a fault tree or fault
tree logic. Fault tree analysis is a technique where many events (basic events) that interact to produce a
complex event (top event) can be related using logical relationships (AND, OR, etc.). This process permits
the methodical building of a structure that can be used to analyze possible failures and to calculate the
probability of failure. For this example, simple fault trees (shown in Figures 3-2 through 3-5) were
developed. These fault trees are used to determine the probability of each top event occurring and to
develop fault tree and sequence cut sets.

The ALARM faulttree (see Figure 3-2) is a representation of modeling alarm clock failure. Some common
reasons for alarm clock failure include setting the wrong time, failing to set the alarm, mechanical failure, or
power failure (either battery or commercial). The OR-gate ALARM has three inputs, one OR-gate, one
AND-gate, and one undeveloped event. The OR-gate ALARM-I has two basic events as input representing
the probability of setting the wrong time or failing to set the alarm. Either of these events, the alarm being
set to the wrong time [ALM-SWT (alarm-set wrong time)] or the alarm not being set [ALM-FTS (alarm fail
to set)], can fail the alarm clock. The undeveloped event under the OR-gate ALARM, ALM-MECH
(ALARM-mechanical failure), will represent the probability of any of the mechanical functions associated
with the alarm failing. Any mechanical failure will prevent the alarm from performing its function. The
AND-gate ALARM-2 has two basic events as inputs representing the probability that power has failed to the
alarm. It is necessary that both the commercial power [ALM-CPF (alarm-commercial power failure)] and
the battery [ALM-BPF (alarm-battery power failure)] not work to fail the alarm power.

The PERSONAL fault tree (Figure 3-3) is a simple representation modeling personal or human failure that
results in missing work. Two common reasons for failure include sickness or sickness in family. There are
also many additional reasons for personal failure that are less common occurrences than sickness related
failures. The OR-gate PERSONAL has three inputs; two basic events and one undeveloped event. The two
basic events will represent the probability of either missing work due to being sick (SICK) or family illness
[SICK-FAM (sickness in family)]. The undeveloped event OTHER represents the probability that other
personal reasons are responsible for failure.

11

Alanii clock
failure

Al A RN

ALM1-ITS ALI.-S~i' AI.M-BIT' AlKI-CIT

Figure 3-2 Alarm clock failure fault tree

Figure 3-3 Personal problems fault tree

12

PER-T RNS PLIB-TRN.S
PER-URNS PUB-IRNS

Figure 3-4 Transportation failure fault tree (normal time frame)

Figure 3-5 Transportation failure fault tree (late time frame)

The third fault tree TRNSPRT (Figure 3-4) is a simple representation modeling transportation failure. Two
common modes of transportation include personal (such as a car) and public (such as a bus or train). The
AND-gate TRNSPRT has two basic events as inputs. The two basic events will represent the probability of
public transportation [PUB-TRNS (public transportation)] and personal transportation [ER-TRNS (personal
transportation)] failure.

13

An additional fault tree TRNSPT-2 (Figure 3-5) is a modification of the TRNSPRT fault tree. Since the
probability of obtaining public transportation is dependent upon the time of day, this fault tree is a
representation modeling transportation at a time later than normal. In this situation, the probability of public
transportation failing is less due to the lower demand. Then, if ALARM fails, the worker needs public
transportation later than if the ALARM had succeeded. In this scenario, it is necessary to substitute a fault
tree for the TRNSPRT top event (TRANSPT-2) that contains the probability of failure of the public
transportation fault tree in a later period.

3.4 The Sample Database Basic Events

Information on the basic event values and descriptions for the sample problem is provided in Table 3-1 and
Table 3-2. The table provides the necessary basic event and initiating event information to duplicate the
analysis performed on this problem. Typically, PRAs contain more basic event information (e.g., fault tree
type, failure mode) that will need to be entered into the database to complete the analysis. Note that the
uncertainty value contained in Table 3-1 is the lognormal distribution error factor.

Basic event
ALM-BPF

ALM-CPF

ALM-FTS

ALM-MECH

ALM-SWT

Table 3-1 Basic event values for the sample problem
Distribution type Calculation type Mean value
Lognormal 1 9.OE&4

Lognormal 1 1.5E&2

MEDICINE

OTHER

PER-TRNS

PUB-TRNS

PUB-TRNS-LATE

SICK

SICK-FAM

WORK

Lognormal

Lognormal

Lognormal

Lognormal

Lognormal

Lognormal

Lognormal

Lognormal

Lognormal

Lognormal

Lognormal

1
1

1

1

1

1

1

1

1

I

5.5E&3

2.7E&4

2.7E&3

8.1 E&3

5.OE&I

5.5E-3

2.7E&3

2.OE&3

8.1E&3

4.OE&3

2.48E+2/yr

Uncertainty value
3

3

10

3

10

5

10

3

3

3

10

10

10

14

Basic event

ALM-BPF

ALM-CPF

ALM-FTS

ALM-MECH

ALM-SWT

MEDICINE

OTHER

PER-TRNS

PUB-TRNS

PUB-TRNS-LATE

SICK

SICK-FAM

WORK

Table 3-2 Basic event descriptions for the sample problem
Description

Alarm fails due to battery failure

Alarm fails due to commercial power failure

Alarm fails because worker failed to set alarm

Alarm fails due to mechanical failure

Alarm fails because worker set wrong time

Recovery for sickness preventing attending work

Other personal reasons that cause a failure to get to work

Personal transportation

Public transportation fails

Public transportation fails late time frame

Failed to get to work because of illness

Failed to get to work because of illness in family

Event tree (WORK) initiating event

Since the sample database is simplified compared to traditional PRA databases, no advanced external event
analysis features are covered. Consequently, fire, flood, and seismic analysis are not directly addressed by
way of the sample database. However, details for data loading and manipulation for seismic analysis are
presented in Appendix D.

15

3.5 Sample Database Fault Tree Cut Sets

Shown in Table 3-3 are the fault tree cut sets and minimal cut set (mincut) upper bound for those fault trees
contained in the sample database. The fault tree modeling of "personal failure due to sickness and other
reasons" has the greatest probability of occurring.

Table 3-3 Fault tree cut set results

Fault Tree: ALARM
Mincut Upper Bound: 2.705E.-3

Cut Total
No. (%)
1 99.8

2

3

4

100.0

100.0
100.0

Set
(%)
99.8
0.2

0.0

0.0

Set
(%)
40.3

40.3
19.9

Probability

2.7E&3

5.5E&6

2.7E&8

1.3E&9

Probability

8.1 E&3

8.1 E&3

4.OE&3

Cut sets

Fault Tree: PERSONAL
Mincut Upper Bound: 2.007E-2

Cut Total
No. (%)
1 40.3

ALM-SWT

ALM-FTS

ALM-MECH

ALM-BPF, ALM-CPF

Cut sets

OTHER

SICK

SICK-FAM

2

3

80.7
100.0

Fault Tree: TRNS-2
Mincut Upper Bound: 1.100E.5

Cut Total
No: (%)
1 100.0

Fault Tree: TRNSPRT
Mincut Upper Bound: 1.485.E-5

Cut Total
No. (%)
1 100.0

Set

100.0

Probability

1.1E&5

Cut sets

PER-TRNS, PUB-TRNS-
LATE

Set
1%)
100.0

Probability

1.4E&5

Cut sets

PER-TRNS, PUB-TRNS

16

3.6 Sample Database Sequence Cut Sets

Shown in Table 3-4 are the cut sets and frequencies for the sequences from the WORK event tree. Since
Sequence 1 represents successfully getting to work, it is not presented. Sequence 3 is the largest and only
contributor to missing work. Sequence 4 is the largest contributor to being late-to-work.

Table 3-4 Sequence cut set results

Sequence: 2 (calculated frequency = 3.68E-3/yr)
Cut set Frequency

I 3.7E&3

Cut set

WORK, PER-TRNS, PUB-TRNS

Sequence: 3 (calculated frequency = 3.99/yr)
Cut set Frequency

I 2.OE+O

Cut set

2

3

1.OE+O

9.9E& I

WORK, OTHER

WORK, SICK, MEDICINE

WORK, SICK-FAM

Sequence: 4 (calculated frequency*= 6.71E-1/yr
Cut set Frequency

1 6.7E&l

Cut set
ýut set

2

3

4

1.4E&3

6.7E&6

3.3E&7

WORK, ALM-SWT

WORK, ALM-FTS

WORK, ALM-MECH

WORK, ALM-BPF, ALM-CPF

Sequence: 5 (calculated frequency = 7.38.E-6/yr)
Cut set Frequency Cut set

1 7.4E&6 WORK, ALM-SWT, PER-TRNS, PUB-TRNS-LATE

2 1.5E&8 WORK, ALM-FTS, PER-TRNS, PUB-TRNS-LATE

3

4

7.4E& 1I

3.7E&12

WORK, ALM-MECH, PER-TRNS, PUB-TRNS-LATE
WORK, ALM-BPF, ALM-CPF, PER-TRNS, PUB-TRNS-LATE

17

3.7 Sample Database Recovery Actions
Sequence 3 shown in the sequence cut set list in Table 3-4 accounts for most of the days lost at work (4.0
times per year). Notice that a basic event, MEDICINE, has been added to the cut set containing sick. It was
anticipated that 50% of the time it might be possible that an individual will take medicine and feel well
enough to attend work. MEDICINE is a recovery action added after the sequence cut set generation.

3.8 Sample Database Uncertainty

The following tables summarize the sequence, fault tree, and end state uncertainty. All uncertainties were
performed using a Monte Carlo simulation with 1,000 samples (using seed 123). Table 3-5 lists the
uncertainty results for the fault trees, Table 3-6 lists the uncertainty results for each of the sequences, while
Table 3-7 list the uncertainty results for the end states.

Table 3-5 Fault Tree uncertainty values report
Fault Mean Min. Cut Median Std. Dev. 5 'h % 95th % Minimum Maximum
Tree Upper

Bound
ALARM 2.62E-03 2.71E-03 9,80E-04 5.09E-03 1.20E-04 1,05E-02 1.97E-05 6.27E-02
PERSONAL 1.97E-02 2.01E-02 1.26E-02 2.37E-02 2.75E-03 5.81E-02 3.61E-04 2.37E-01
TRNS-2 1.07E-05 1.1OE-05 5.31E-06 1.70E-05 7.18E-07 3.61E-05 1.42E-07 2.15E-04
TRNSPRT 1.44E-05 1.49E-05 7.16E-06 2.29E-05 9.69E-07 4.87E-05 1.92E-07 2.90E-04

Fable 3-6 Seuence uncerainty values report
Event Tree Mean Min. Cut Median Std. Dev. 5th % 95th % Min Max
Seq Upper

Bound
WORK 2 3.83E-03 3.68E-03 1.67E-03 7.1OE-03 2.14E-04 1.53E-02 6.50E-06 1.22E-01
WORK 3 3.46E+00 3.99E+O00 1,96E+00 4.88E+00 3.62E-01 1.10E+01 5.85E-02 6.80E+01
WORK 4 7.42E-01 6.71E-01 2.32E-01 2.05E+00 2.15E-02 2.73E+00 1.43E-03 2.84E+O1
WORK 5 6.73E-06 7.38E-06 1.26E-06 1.94E-05 5.33E-08 3.02E-05 8.89E-10 2.78E-04

Table 3-7 End state uncertainty values report
End State Mean Min. Cut Median Std. Dev. 5th % 95th % Min Max

Upper
Bound

LATE-TO-WORK 6.84E-01 6.75E-001 2.47E-01 1.49E+00 - 2.296E-02 2.56E+00 1.21E-03 2.21E+O1
MISS-WORK 3.46E+00 3.99E+000 1.96E+00 4.88E+00 3.619E-01 1.10E+01 5.85E-02 6.80E+0I

18

3.9 Sample Database Importance

The following is a report on the Fussell-Vesely importance measure for each basic event over the total end-
state database analysis. Table 3-8 shows the results of the importance analysis for the sample database.

Table 3-8 Results of sample database importance analysis
Basic Event Number of Probability Fussell-Vesely Risk Risk Increase

Occurrences Reduction Ratio
Ratio

WORK 12 2.480E+02 1.000E+00 ----------- 4.032E-03
OTHER 1 8.1OOE-03 4.276E-01 1.747E+00 5.337E+01
MEDICINE I 5.OO0E-01 2.129E-01 1.271E+00 1.213E+00

SICK 1 8.1OOE-03 2.129E-01 1.27IE+00 2.708E+01
SICK-FAM I 4.OOOE-03 2.103E-01 1.266E+00 5.337E+01
ALM-SWT 2 2.700E-03 1.437E-01 I. 168E+00 5.408E+01
PER-TRNS 5 5.500E-03 7.919E-04 1.001 E+00 I. 143E+00
PUB-TRNS I 2.700E-03 7.904E-04 1.001E+00 1.292E+00

ALM-FTS 2 5.500E-06 2.919E-04 1.OOOE+00 5.408E+01
PUB-TRNS-LATE 4 2.OOOE-03 1,584E-06 I,0003E+00 1,001E+00
ALM-MECH 2 2.700E-08 1.433E-06 1.000E+00 5.408E+OI

ALM-CPF 2 1.500E-02 7.166E-08 1.000E+00 1.000E+00
ALM-BPF 2 9.OOOE-08 7.166E-08 1.000E+00 1.796E+00

19

4. LOADING THE SAMPLE DATABASE

4.1 Introduction

This section describes the process of loading the sample database presented in Section 3. The section is
organized to reflect the methodology that has proven useful while working with actual PRA data. The
section organization is as follows:

Section 4.2 Adding and Selecting the Database Project

Section 4.3 Loading the Event Tree Data

Section 4.4 Entering End State Data

Section 4.5 Loading the Fault Tree Data

Section 4.6 Loading Basic Event Data

Section 4.7 Loading Sequence Data

Section 4.8 Recovery Actions

Section 4.9 Analyzing Uncertainty

Section 4.10 Additional Features

Each section presents methods used for entering a specific type of data (there may be several methods
possible). The merits of each data entry method are discussed and a brief overview of the actual steps used
to enter the data using this method is presented. Manuals and guides that may add useful information to the
method are also cited.

4.2 Adding and Selecting the Database Project

The necessary first step in loading a database is adding and/or selecting the project that will contain the
database. Adding and selecting the database project includes

1. Adding the project (Section 4.2.1)

2. Selecting the project (Section 4.2.2)

3.. Entering project information and text (Section 4,2.3)

4. Extracting and verifying the project flat files (Section 4.4.4).

21

4.2.1 Adding the Project

The SAPHIRE database structure is divided into projects. Since access to the SAPHIRE interactive database
is obtained through the appropriate project, a project is the first thing that must be added. A project is any
logical grouping of fault trees and event trees with their associated basic events, cut sets, reliability data, and
descriptions. The project concept allows for the separation of any number of distinct databases. When a
database project is created in one of the SAPHIRE programs, a corresponding Windows subfolder contained
in the Saf6O or Saphire7 subdirectory is also created.

To add a project, use the New Project option. The procedure is shown in detail in Appendix A. The
procedure requires giving the project a name and assigning the project to a folder.

4.2.2 Selecting the Project

Once a project has been added, it is automatically selected as the current project. It will remain the current
project until you select a different one. The procedure to select a project is shown in detail in Appendix A.

The procedure requires selecting the File ---* Open Project menu option, navigating to the desired project
folder, and selecting the project file name located in the project folder.

4.2.3 Entering Project Information, Description, and Text

Project description, information, and text can be entered into the database when the project is selected. To
add the project description ("This is a sample database") or the project text (text ("A simple example that
models the probability of getting to work on time"), choose the Modify --+ Project option from the
SAPHIRE main menu to open the Modify Project dialog (see Figure 4-1). Project information that can be
stored using this option includes location, company, type, design, vendor, tree type, seismic histograms,
operational date, qualification data, and mission time.

22

I~? X1.

Location'~jOEC~ Design

Compay * TNACVendor~
Description This is sample data base

Defult Loc 'ale

Site Hazard Curves -

Low Operational date

Medium , Qualification date r-- 7
High ~Mission time 240+0

Figure 4-1 Modify project dialog

Below are the available methods for entering project information, description, and text.

Interactive Modify Project Method

The first step is to use the interactive database to enter the data. The procedure for using the interactive
database is described above.

Load from Project Flat Files Method

Second, the .FAA, .FAD and .FAT project flat files can be extracted as shown in Table 4-1 and used as a
template to enter information using a text editor. The procedure for using extracted flat files is as follows:

1. Extract the project files, .FAA, FAD, and .FAT (the extract and load processes are described in
detail in Appendix A).

2. Use an editor to modify and add the project data to the extracted files. A detailed description of the
flat file format is available in Appendix B.

3. Load the finalized files back into the interactive database. The interactive database should now
contain the project data.

4.2.4 Extracting and Verifying the Project Data

It is often necessary to verify that data items are accurate. The SAPHIRE flat files are particularly useful for
this task. The flat files extracted from the sample database (shown in Table 4-2) can be used to verify the
project information entered in the interactive database. Notice that not all the possible entry fields (e.g.,
Design) have been filled. Many options are provided in SAPHIRE that may not be applicable to every
database, and, subsequently, some areas may be blank.

23

Table 4- 1 Extracted project flat files
File Extracted file information
.FAA SAMPLE =

* Name , Mission, NewSum, Company, Location, Typ, Design, Vendr, Arch Eng, OpDate,
QualDate
SAMPLE, 2.400E+001,------ E---,------

.FTD SAMPLE

.FAT SAMPLE =

Table 4- 2 Extracted project flat files
File Extracted file information
.FAA SAMPLE =

* Name , Mission, NewSum, Company, Location, Typ, Design, Vendr, Arch Eng, OpDate,
QualDate
SAMPLE, 2.40E+001, - E---, STANDARD, HOMETOWN -------

.FTD SAMPLE ,This is sample data base

.FAT SAMPLE =
A simple example that models the probability of getting to work on time.

4.3 Loading the Event Tree Data

The next step in loading a database is to enter the database event trees and verify their accuracy. The event-
tree data entry is complicated by the fact that the SAPHIRE software uses an interactive database.
Information entered during the process of graphical event tree construction will appear in other areas of the
program.

Those event trees that contain an initiating event will be listed in the Event Tree main menu option at all
times. Event trees without an initiating event will be included in the event tree list only when the Show Sub
Trees option is checked. Popup menu options may vary according to whether the Show Sub Trees option is
checked or not.

Top events can be found in the Fault Tree main menu option, as well as in the Modify Fault Trees main
menu option. Top events are also listed as developed basic events in the Modify main menu option, while
initiating events are only listed as basic events. The information in any of these internal lists can
subsequently be extracted into SAPHIRE flat files.

It is not necessary to enter the event trees at this point, but it has proved to be the most efficient method for
entering nuclear power plant PRAs. The sample database event tree to be loaded is shown in Figure 4- 2.

24

Figure 4- 2 Going to work event tree graphic

The process of loading an event tree includes

1. Entering the event tree structure (Section 4.3.1)

2. Entering sequence names in graphics (Section 4.3.2)

3. Entering top event descriptions.(Section 4.3.3)

4. Entering link (substitution) rules (Section 4.3.4)

5. Entering event tree descriptions and text (Section 4.3.5)

6. Generating and verifying the event tree logic (Section 4.3.6)

25

4.3.1 Entering the Event Tree Logic

In the sample database, event tree logic is used as the basis for linking system fault trees and generating
sequence logic to generate sequence cut sets. Some types of databases may not use event trees, but they are
typically used to varying degrees in PRA methodology. SAPHIRE was originally designed to handle the
more common type of approach, the large fault tree/small event tree approach, represented by the sample
database. Other databases may use the large event tree/small fault tree approach. SAPHIRE can also handle
the large event tree type of database. Note that SAPHIRE does not accept other software's event tree
graphics; therefore, each event tree will have to be created individually.

Below are the available methods for entering the event tree logic.

Event Tree Graphical Editor Method

The most efficient method to load event tree logic is to enter the event tree structural information into
SAPHIRE in the event tree graphical editor. It is straightforward to enter event tree logic into the
graphical editor. The process of entering and saving an event tree similar to the sample database is
discussed in detail in the SAPHIRE Tutorial.

The event tree creation procedure requires you to (a) select the Event Tree main menu option, (b) add an
event tree by right clicking to choose the Add Event Tree popup menu option, (c) invoke the event tree
graphical editor by right clicking to choose the Edit Graphics popup menu option, and (d) from there,
entering the event tree structure, as shown in Figure 4- 2.

Load from Event Tree Logic Flat File Method

It is possible, but may be difficult, to enter the event tree graphic logic into a flat file and then load this
file into SAPHIRE. As the development of the small WORK event tree is presented in the following
sections, it will be obvious that the more highly branched the event tree becomes, the more confusing the
resulting logic. Therefore, this method is not discussed.

Once an event tree is created, any of the flat files for this tree can be extracted. At this stage, many of the
extracted flat files shown in Table 2-1 (Section 2.4) will not contain data other than the event tree and project
name. The flat files that will contain data are the event tree graphics (.ETG) and the event tree logic (.ETL)
shown in Table 4-3. These two files are identical in SAPHIRE.

26

Table 4-3 Extracted event tree flat files (with logic and sequence names only)
Files Extracted file information
.ETG SAMPLE, WORK, IE-WORK =

^WINVER1. 0

and -TOPS

ALARM, PERSONAL; TRNSPRT

.ETL ALOGIC

+1 +2 +3

-3

-2 3

-1 2 +3

-3

A SEQUENCES

N, SEQUENCE-NAMES, Y, END-STATE-NAMES, N, Frequency, N, EXTRA-#I,

Y, A, Y, , Y, Y,

Y, B, Y, , Y, Y,

Y, C, Y, , Y, Y,

Y, D, Y, , Y, Y,

Y, E, Y, , Y, I Y,

^ PARMS

START 0.00, 300.00 WINDOW 0.00, 0.00, 600.00, 600.00

ASPECTRATIO 0.74

HEADER 499.50, 499.50, 625.50, 751.50

STRING E

DEFFONT 5

TOPWIDTH 10

TOPSIZE -13.00

TOPFONT 1

TOPFACE TimesNewRoman

TOPPITCH 2

TOPCOLOR 15

DESHITE 3

DESSIZE -13.00

DESFONT 5

DESFACE Times NewRoman

DESCOLOR 15

DESPITCH 2

NODEHITE 25.00

ENDSIZE -13.00

ENDFONT 1

ENDFACE Times New Roman

ENDPITCH 2

ENDCOLOR 15

BACKCOLOR 1

TOPBACKCOLOR 1

LINECOLOR 15

HILITECOLOR 1

LOCALE 1033

MODDATE 2003/10/08

27

Note:
X When saving an event tree graphics file, verify that the file name is the same name as the desired

event tree name.
X Remember that event trees cannot transfer to the middle of other event trees.
X When possible, for ease of identification, identify initiating events by prefixing their names with

the letters IE; for example, IE-xx.
X Give all event trees unique names for identification and tracking. It may be useful to include the

project name, the event tree name, and the document-related page number.

4.3.2 Entering Sequence Names in Graphics

Event tree sequence names are automatically and arbitrarily named in the graphical editor. Although the
user can modify these names, they are merely placeholders for editing purposes, and will not be used further
in any form by SAPHIRE, whether renamed by the user or not. Therefore, it is not recommended that the
user modify sequence names. Table 4-3 shows the event tree graphics flat files that include the
automatically named sequences (A, B, C, etc).

Sequences do not appear in the interactive database apart from the event tree graphical editor until the event
tree/sequence logic has been linked. The linking step occurs after the event tree logic has been created and
will be discussed in a later section. SAPHIRE generates a different, unique name for each event tree
sequence when the logic is linked.

4.3.3 Entering Top Event Descriptions

Descriptions of top events are commonly found, as was shown in Figure 4- 2. They normally appear above
the top event designator. Top event descriptions can either be added in the graphics option or the .ETG can
be modified using a text editor. Table 4-4 shows the event tree graphics flat files that include the top event
descriptions.

Table 4-4 Event tree file (with logic, sequence, end state name, and top event descriptions)
File Extracted file information
.ETG SAMPLE, WORK, I.E.,-WORK =

^WINVER1 .0

and ^TOPS

ALARM, PERSONAL, TRNSPRT

.ETL ^LOGIC
+1 +2 +3

-3

-2 3

-1 2 +3

-3

^SEQUENCES

N, SEQUENCE-NAMES, Y, END-STATE-NAMES, N, Frequency, N, EXTRA-#1,

Y, A, Y, OK, Y, , Y,

Y, B, Y, LATE-TO-WORK, Y, , Y,

Y, C, Y, MISS-WORK, Y, , Y,

Y, D, Y, LATE-TO-WORK, Y, , Y,

28

Y, E, Y, LATE-TO-WORK, Y, Y,

^TOPDESC

"Initiating ",

"event"

"Alarm " ,

"failure"

"Personal "

"failure"

"Transportation ",

"failure"

^PARMS

START 18.00, 300.00 WINDOW 63.00, -100.54, 609.00, 445.46

ASPECTRATIO 0.74

HEADER 427.50, 513.00, 553.50, 679.50

STRING DEFFONT

DEFFONT 5

TOPWIDTH 10

TOPSIZE -13.00

TOPFONT 1

TOPFACE TimesNew Roman

TOPPITCH 18

TOPCOLOR 0

DESHITE 3

DESSIZE -13.00

DESFONT 5

DESFACE TimesNew Roman

DESCOLOR 0

DESPITCH 18

NODEHITE 90.16

ENDSIZE -13.00

ENDFONT 1

ENDFACE TimesNewRoman

ENDPITCH 18

ENDCOLOR 0

BACKCOLOR 15

TOPBACKCOLOR 15

LINECOLOR 0

HILITECOLOR 1

LOCALE 1033

MODDATE 2003/10/08

Below are the available methods for entering top event descriptions.

29

Graphical Event Tree Editor

Top event descriptions are easily entered in the graphics editor. This is potentially the most time consuming
but the most straightforward. In this case, the event tree is finalized and files extracted without any
intermediate step.

The procedure for entering the top event description into event tree graphics is to (a) select thedesired top,
and (b) enter the top event descriptions in the appropriate text box. In depth procedures for adding top event
descriptions using the graphics editor is provided in the SAPHIRE Tutorial.

Load from Event Tree Logic Flat File

Top event descriptions also can be entered into the event tree flat file (.ETG or .ETL) that was extracted
from the SAPHIRE program using a text editor (see Table 4-4). After modification, both files must be
loaded as described in Appendix A. This may be the fastest method available but requires steps that are
more substantial and is prone to errors since the information needs to be reloaded. This method is not
discussed further.

4.3.4 Entering Link (Substitution) Rules

Substitutions of different fault trees or top event probabilities are very commonly used in event tree logic. In
this sample problem, for example, there may be a different probability of failure for the transportation,
depending on whether the alarm succeeds or fails. As discussed in Section 3, this is due to the increased
availability of later public transportation. SAPHIRE uses link rules to allow substitutions of event tree top
events. Table 4-5 shows the ETR file.

Link Rule Editor Method

Link rules can be entered from the Edit Rules menu option. This is the most straightforward and simplest,
particularly when the rules are short.

The procedure for entering the link rules is to (a) choose the Event Tree main menu option, (b) highlight the
desired event tree, (c) choose the Edit Rules option from the popup menu, and (d) enter the rule text.

Load from Event Tree Link Rule Flat File Method

Link rules can also be entered into an event tree rule flat file using the SAPHIRE format. After the file is
developed, it is necessary to load this file. (The loading procedure is discussed in Appendix A.)- This
method may be the fastest (particularly with a large group of rules) but requires more substantial steps and is
prone to errors since the rule information needs to be reloaded. This methodology is not presented. Note
that once a rule has been entered for an event tree, the .ETR flat file can be extracted for use as a template for
subsequent rules.

30

Table 4- 5 Extracted event tree rules flat file
File Extracted file information
.ETR SAPLE, WORK=

I rule to substitute TRNS-2 for TRNSPRT

if ALARM then

TRNSPRT = TRNS-2;

endif

4.3.5 Entering Event Tree Descriptions and Text

Many PRAs contain descriptions and extensive text concerning the event trees inthe analysis. The sample
database has an event tree description (WORK EVENT TREE) and text just for demonstration purposes.
Table 4- 6 shows the extracted flat files containing the descriptions and text.

Below are the available methods for entering event tree descriptions and text.

Interactive Modify Event Trees Method

Event tree descriptions and text can be entered in the Modify -- Event Tree main menu option. This is
perhaps the easiest method since there are usually a limited number of event trees and it is done entirely
within the SAPHIRE environment. Though it may be slower than the other method discussed here, it is
recommended for most situations. Procedures for adding descriptions and text are in the SAPHIRE User's
Guide.

The procedure for entering the event tree descriptions and text is to (a) select the Modify -- Event Tree main
menu option, (b) highlight the desired event tree, and (c) choose the Modify popup menu option to enter the
description, or press the Text button to enter the event tree text.

Load from Event Tree Description Flat File Method

The description data can be entered into the event tree description flat file (.ETD) extracted from the
SAPHIRE program, using a text editor. The event tree textual data can be entered into the event tree text flat
file (.ETT) using the SAPHIRE format. (This is also true of the .ETD). After modification or development,
both files must be loaded as described in Appendix A. This method is not discussed further.

Table 4- 6 Extracted event tree description and text flat files
File Extracted file information
.ETD SAMPLE

WORK ,WORK EVENT TREE

.ETT SAMPLE, WORK=

A FAIL-SUCCESS LOGIC WAS USED TO DEVELOP AN EVENT TREE TO CALCULATE THE FREQUENCY

THAT THE AVERAGE PERSON WILL ARRIVE ON TIME, BE LATE OR MISS A DAY OF WORK.

31

4.3.6 Generating and Verifying Event Tree Logic

Basic event tree logic is verified using either the graphics visual picture or by linking trees to generate
sequence logic and examining the results of the sequence generation process. We recommend that both
these processes be performed after creating an event tree and entering all the associated data. The sequence
logic flat file is shown in Table 4-7. The methods discussed below allow verification of all the data entered,
as described in the previous section.

Below are the available methods for generating and verifying event tree logic.

Review Graphical Output Method

A graphical output can be obtained for each event tree. This graphic output can be sent directly to a printer,
or to a Windows metafile (WMF), enhanced metafile (EMF) or rich text (RTF) file. Note that the graphical
output can be verified as accurate, but any link rules will need to be examined.

The procedure for obtaining a copy of the event tree graphic requires you (a) enter the event trees graphical
editor, and (b) select the Print option to print, or Save As option to create a WMF, EMF, or RTF file. To
print or save multiple event trees at once, (a) select the Report main menu option, (b) select the Event Tree
and Graphic radio buttons and press the Process button, then (c) select the desired event trees and press the
Print or Export button.

Link Trees Method

In the process of linking trees, sequence logic will be generated, and event tree logic can be verified. This
process produces the sequence logic that will be used by the interactive database to produce sequence cut
sets.

The procedure for generating sequences and obtaining a printout for verification requires the following:

1. Choose the Event Tree main menu option.

2. Select the event tree(s) to link.

3. Choose the Link Trees popup menu option to open the Event Tree - Sequence Logic

Generate dialog.

4. Select the Report Option to Send Report to Screen and choose the OK button.

The report will be similar to one shown in Figure 4-3.

32

Table 4-7 Extracted sequence logic flat files
File Extracted file information
.SQL SAMPLE, wORK, 2=

/ALARM /PERSONAL TRNSPRT
^EOS

SAMPLE, WORK, 3=

/ALARM PERSONAL

^EOS

SAMPLE, WORK, 4=

ALARM /TRNS-2
^EOS

SAMPLE, WORK, 5=

ALARM TRNS-2

Sequence Name ; Fault Tree . Fault Tree

Event Tree Name: WORK "
S5 1 ALARM I TRNSPRT

substitutes I I TRNS-2
end state: LATE-TO-WORM

4 ALARM I /TRNSPRT
end state: LATE-TO-WORK

3 1 /ALARM I PERSONAL
end state: MISS-WORM

2 1 /ALARM I /PERSONAL
I TRNSPRT

end state: LATE-TO-WORK

Saved Sequences: 4 Ualid Sequences: 4 Processed: 4

,.2 ".
Figure 4-3 Sequence generation logic report

4.4 Entering End State Data

This section describes entering the end state data so that end state data are included in both the graphics and
analysis portion of SAPHIRE. The following steps must be performed to actually load and verify the end
state data:

1. Enteriflg end state names in graphics (Section 4.4.1)

2. Entering end states for analysis (Section 4.4.2)

3. Entering the end state description and text (Section 4.4.3).

33

4.4.1 Entering End State Names in Graphics

End state data are used in a PRA analysis to group sequences that have similar outcomes for subsequent
entry into the level 2 analysis. The sample database has four sequences that are grouped into two end states
(late-to-work and miss-work). A subsequent analysis is possible on these two end states. Two flat files that
can be obtained that contain end state data are shown in Table 4-8.

Table 4-8 Extracted end state flat files
File Extracted file information
.ESD SAMPLE

LATE-TO-WORK , This end state represents being late to work

MISS-WORK , This end state represents missing work

.EST SAMPLE, LATE-TO-WORK=

THIS IS THE LATE TO WORK END STATE

Below are the available methods for entering end state names in graphics:

Event Tree Graphical Editor Method

End state names may be entered in the graphics editor. Using the graphics editor is potentially the most
time-consuming but the most straightforward method. In this case, the event tree could be finalized and files
extracted without any intermediate step. The event tree logic flat files shown in Table 4-4 contain end state
names. In depth procedures for adding end state and sequence names using the graphics editor is provided in
Appendix A. The SAPI-RE Tutorial contains details concerning this process.

The procedure for entering the end state name in the graphics editor requires the following:

1. Opening the event tree graphical editor.

2. Selecting a sequence/end state and right clicking it to bring up the Edit Sequence dialog.

3. Typing in the end state name.

4. If necessary, right clicking in the sequence header area and checking the end state display check
box.

Sequence/End State Editor Method

End state names also can be entered using the sequence editor. This is an easy method, provided the event
tree has already been constructed. Though it may be slower than the third method discussed here, it is
recommended for most situations. One potential problem is that the headers cannot be toggled on and off in
the sequence editor, and, even though end state or sequence names have been added, they may not
automatically appear in the graphics display. If necessary, use the step-by-step guide for entering end state
names provided in the tutorial.

34

The procedure for entering the end state name using the sequence editor requires the following:

1. Select the desired event tree and choose Edit End State from the popup menu option in the Event
Tree List dialog.

2. Select the Edit End States option.

3. Select the desired sequence and press the Line Edit button.

4. Enter the end state name data.

End state name data can be entered into the event tree flat file (.ETG or .ETL extracted from the SAPHIRE
program) using a text editor. After modification, the file must be loaded as described in Appendix A. This
may be the fastest method available but requires steps that are more substantial and, therefore, has potential
for error. This method is not presented.

4.4.2 Entering End States for Analysis

Like sequences, even though the end state names may appear in the graphics, they will not be available for
analysis until the sequences in the event tree are generated. Unlike sequences, the assigned end state names
will be preserved.

4.4.3 Entering End State Description and Text

Descriptions and text associated with event tree end states can also be entered, though it is unnecessary for
analysis. Below are the available methods for entering end state description and text.

Interactive Modify End States Method

End state data can be entered from the Modify -- End States main menu option. This is perhaps the easiest
method as there are usually not a large number of end states and it is done entirely within the SAPHIRE
environment. Though it may be slower than the other method discussed here, we recommend it for most
situations.

The procedure for entering the end state descriptions and text is to (a) select the Modify --) End State main
menu option, (b) highlight the desired end state, and (c) choose the Modify popup menu option to enter the
description, or press the Text button to enter the end state text.

Load from End State Flat Files Method

This data can be entered into the end state flat file (.ESD and/or .EST extracted from the SAPHIRE
program), using a text editor. After modification, the files must be loaded as described in Appendix A. This
method is not discussed further.

35

4.5 Loading the Fault Tree Data

This section describes loading the database fault trees and associated data and verifying their accuracy.
Again, it may be more appropriate to enter data in a different order, depending on the type of data. For
nuclear power plant PRAs, the order of data loading presented in this manual has been found to be the most
efficient. Fault trees are used in PRAs to represent system failure logic. The sample database has four fault
trees, each representing a different top event in the event trees as shown in the figures from Section 3.

The SAPIURE software contains an option for using the "alpha to graphics" feature to convert the
alphanumeric logic structure to a fault tree graphics file (.DLS). The alpha-to-graphics conversion will
automatically build the graphical fault tree using the fault tree logic (.FTL). It will recognize and place into
the fault tree graphic (1) the fault tree description (as found in the .FTD file), (2) the descriptions of any
basic events used in the logic (as found in the .BED file), and (3) all gate descriptions used in the logic (as
found in the .GTD file). If, at the time of conversion, this information is not loaded into the interactive
database, SAPHIRE will use default names or blanks. The alpha-to-graphics conversion procedure is
provided in Appendix A. The alpha-to-graphics conversion is a very powerful tool but will require some
familiarity before it is possible to take full advantage of its usefulness.

Note:

" A .DLS file will be generated during the alpha-to-graphics conversion process and will be located
in the project directory.

* Changes to gates and basic events can be made in the MODIFY BASIC EVENTS menu. An
alpha-to-graphics conversion performed on the fault tree after the change will implement the
change in the graphics.

" Fault tree, basic event, and gate descriptions will not appear in the graphics text boxes (the default
is blank) if the appropriate data have not been loaded into the database.

There are four methods to develop fault tree graphics that represent the logic, depending on whether the data

is available electronically or in hardcopy.

I. If hard copy data is available that contains the fault tree structure in graphics form,

a. Create the fault tree graphics files (.DLS) in either the SAPHIRE fault tree
graphical or logic editor, adding the basic event and gate names.

b. Add the basic event, fault tree, and gate descriptions through either editor, or

extract the necessary flat files to enter the basic event descriptions (.BED - Section
0), fault tree descriptions (.FTD -Section 0), and gate descriptions (.GTD - Section
0). Load these modified files and use the alpha-to-graphics conversion option
(Appendix A) to enter the data into the graphics.

2. If hard copy data contain the fault tree structures defined as logic,

36

a. Use a text editor to enter the logic in the fault tree logic file (.FTL) format.

b. Use a text editor to develop files that contain the basic event descriptions (.BED -
Section 0), fault tree descriptions (.FTD - Section 0), and gate descriptions (.GTD -
Section 0) in the correct formats.

c. Load these files into SAPHIRE (see Appendix A for the procedure.)

d. Use the alpha-to-graphics conversion to develop the graphical representation of the
fault trees (see Appendix A for procedure).

3. If electronic data contain fault tree logic structures that are compatible with SAPHIRE,
directly load the file into SAPHIRE.

4. If electronic data contain a fault tree defined as logic that is not compatible with SAPHIRE,

a. It may be possible to convert these files into a form that can be entered directly into
SAPHIRE using programming (e.g., BASIC, Fortran, C) or an editing tool with a
macro language (e.g., Excel or Multi-Edit). This requires either editing and/or
programming skills that are beyond the scope of this manual. If it is not possible to.
develop a program to convert the files, it may be possible to use available hard
copy graphics or print out logic and use the methods discussed above to enter the
data.

The following steps must be performed to actually load and verify all the fault tree data.

1. Entering the fault tree logic (section 4.5.1)

2. Entering the 'fault tree descriptions and text (section 4.5.2)

3. Entering the gate descriptions and attributes (section 4.5.3)

4. Generating fault tree cut sets (section 4.5.4).

4.5.1 Entering Fault Tree Logic

The fault tree data entry is complicated by the fact that SAPHIRE uses an interactive database. Information
entered in the process of graphical fault tree construction is used in many areas of the program. Graphical
data structure translated into logic and other information are entered into the interactive database using
internal lists. Such information includes the type of gates and basic events used, the textual descriptions
entered in gate and basic event boxes, and the textual descriptions added for a fault tree description. The
information on these internal lists can subsequently be extracted into SAPHIRE flat files. Conversely,
SAPHIRE can be used to build fault tree graphics from logic and descriptions entered in the database.

37

Note: When a new fault tree is saved, a .DLS file is automatically created in the project subdirectory.
The graphics file is translated into internal fault tree logic. Because of entering the fault tree graphics, the
.FTL, .FTD, .GTA, and .GTD (fault tree logic, fault tree description, fault tree gate attributes, and fault
tree gate descriptions, respectively) files can be extracted from the interactive database. SAPHIRE will
provide default gate and basic event names. Therefore, we recommend that both gate names and the basic
event names be entered at the time the fault tree is built.

There are different methods to enter fault tree logic, depending on what data type is available. The quickest
way is to enter existing files (either graphic or logic) if available and compatible. The next best method is to
enter the fault-tree structure information into SAPHIRE in the graphical editor or logiceditor. It is largely a
matter of personal preference as to which editor to use.

It is also possible, but may be difficult, to develop logic to enter into a flat file from a graphic and then load
this file into SAPHIRE. It is relatively straightforward to enter fault tree logic in the graphical or logic
editor. The process of entering and saving fault trees is discussed in detail in the tutorial. The fault tree flat
files that contain the graphics and logic information for the sample database are shown in Table 4-9. Below
are the available methods for entering fault tree logic.

Fault Tree Graphical Editor Method

If only hard copy data are available in graphics form, then create the fault tree graphics files (.DLS) in the
SAPHIRE graphical editor.

The fault tree creation procedure requires you to (a) select the Fault Tree main menu option, (b) add a fault
tree by right clicking to choose the Add Fault Tree popup menu option, (c) invoke the fault tree graphical
editor by right clicking to choose the Edit Graphics popup menu option, and (d) from there, entering the fault
tree structure, as shown in the fault tree figures from Section 3. An example display from the graphical
editor is shown in Figure 4-4.

38

''4,>w 5ia 44 EA> x

1.~j

j

ALM-FTS ALM-SWT ALM-BPF ALM-CPF

ALARM - Alarm clock failure 2003/10109

Figure 4- 4 Fault tree graphical editor.

39

Note:

X IMPORTANT: The fault tree top gate name must be named the same as the fault tree file name.

X The description of the top gate will be used for the fault tree, but only if the interactive database
does not already have a description for the fault tree.

X The .DLS file contains fault tree graphical information. To view and modify a fault tree, the
.DLS flat file for that fault tree must be available on the subdirectory. Once the graphics file has
been loaded into the interactive database, it is not necessary to have the graphics available (for cut
set generation and quantification). The .DLS files can be cleared and extracted using the Utility
-* Fault Tree -- Extract Graphics main menu option (see the SAPHIRE User's Guide). Also,
.DLS files can be extracted from the database as described in Appendix A.

X When building fault trees, ensure that there are no discontinuities in lines connecting gates,
events, and transfers. Discontinuities in these lines will interrupt fault tree logic.

X For ease of document control, consider including the project name, the fault tree name, the title,
and the document-related page number in the graphics, or use the Page Info preference option to
display some of this information.

X While building large fault trees, save them periodically to preyent loss of data due to a power
failure.

X IMPORTANT: SAPHIRE uses gates names to optimize solving fault trees. A unique gate name
must be used for each gate. Only when multiple gates share the identical inputs, may they also
share the same name. When this happens, it is good practice to turn the gate and its inputs into a
sub tree and reference it as a transfer, to minimize the possibility of differing inputs.

X A transfer is usually made to the top gate of another fault tree. However, you can transfer to a
gate on the same page but not to the middle of another fault tree.

X All fault trees are entered into the interactive database system listing as top gate fault trees. It is
up to the user to designate these as sub-trees in the Modify -* Fault Trees main menu option.
This does not affect the analysis except that the fault tree list displayed in the Fault Tree main
menu option can then be toggled via the Show Sub Trees check box to display either only top
level or all fault trees.

40

Fault Tree Logic Editor Method

Alternatively, if hard copy data are available that contain the fault tree structure in graphics form, you may
create the fault tree logic (and subsequently, the graphics files) using the SAPHIRE fault tree logic editor.

As with the graphical creation procedure, you must (a) select the Fault Tree main menu option and (b) add a
fault tree by right clicking to choose the Add Fault Tree popup menu option.

Then, invoke the fault-tree logic editor by right clicking to choose the Edit Logic popup menu option and (d)
from there, enter the fault tree logic. An example display from the logic editor is shown in Figure 4- 5. The
process of entering the logic into the editor is discussed in detail in the SAPHIRE User's Guide and the
SAPHIRE Tutorial.

Once the logic has been defined, the logic editor gives you the option to convert the logic into graphical
(.DLS) format.

ijitýaiullt':Ti PWI*gic - Aýl CA t

[-1, A1 alarm' OR' Alar lc dr
0 ALM-MECH (1 ,O00E+000) Alarm fails due to mechanical failure

C .I alarm-I OR Alarm clock setting failure

DO ALM-FT5 (1,000E+000) Alarm fails because worker fails to set
O ALM-5WT (1.000E+000) Alarm fails because worker set wrong time

F 71 alarm-2 AND Alarm clock power failure

(O ALM-BPF (1,000E+000) Alarm fails due to battery failure

(. ALM-CPF (1.000E+000) Alarm fails due to commerical power failure

Event. -.

ALARM
ALM-BPF
ALM-CPF
ALM-FTS
ALM-MECH
ALM-SVT

ALARM
ALARM-I
ALARM-2
PERSONAL
TEST
TRNS-2
4 ;••;f' '•: ": ' : 1 .

ALARM
PERSONAL
TEST
TRNS-2
TRNSPRT

.. -7,

Figure 4- 5 Fault tree logic editor.

Load Fault Tree Logic from Flat (.FTL) File Method

If hard copy data contain the fault tree structures defined as logic, then you may use a text editor to enter the
logic in the fault tree logic file (.FTL) format and load this file into SAPHIRE. An example of the .FTL file
format is shown in 4-9. This method is not discussed further.

41

File
Table 4- 9 Extracted fault tree logic and graphic flat files.
Extracted file information

.FTL SAMPLE, ALARM =
ALARM OR

ALARM-1 OR

ALARM-2 AND

^EOS

SAMPLE, PERSONAL

PERSONAL OR

^EOS

SAMPLE, TRNS-2 =

TRNS-2 AND

^EOS

SAMPLE, TRNSPRT =

TRNSPRT AND

.DLS Is not in ASCII format

ALARM-I ALARM-2 ALM-MECH

ALM-SWT ALM-FTS

ALM-CPF ALM-BPF

SICK SICK-FAM OTHER

PER-TRNS PUB-TRNS-LAT

PER-TRNS PUB-TRNS

and therefore cannot be viewed or edited.

Load Fault Tree Logic from Graphics (.DLS) File Method

If electronic data contain the fault tree structures defined as logic that are compatible with SAPHIRE,
directly load the file into SAPHIRE.

To load one or more DLS files into SAPHIRE, choose the Utility - Fault Trees - Load Graphics main
menu option. From there you may select the desired DLS files to load.

Graphics files can also be loaded via the Utility -+ Load and Extract main menu option. To use this option,
select the Load data action, the Fault Tree data type, Graphics file type, and press the Process button. From
there you may select the desired DLS files to load.

4.5.2 Entering Fault Tree Descriptions and Text

As with event trees, many PRAs will contain descriptions and in depth textual discussion on those fault trees
considered important to the analysis. The sample database has both description and text for all the fault trees
developed for demonstration. Table 4-10 contains the fault tree descriptions and text extracted. Below are
the available methods for entering the fault tree descriptions and text.

Table 4- 10 Extracted fault tree descriptions and text flat files.
File Extracted file information
.FTD SAMPLE

ALARM ,ALARM CLOCK FAILURE

PERSONAL ,PERSONAL PROBLEMS

TRNS-2 ,COMMERCIAL TRANSPORTATION FAILS AT A LATER TIME

TRNSPRT ,PERSONAL AND COMMERCIAL TRANSPORTATION FAIL

.FTT SAMPLE, ALARM=

The ALARM fault tree (Figure 3-2) is a simple representation modeling alarm clock

tfRIlure. Some comnmon reasons for alarm clock failure include setting the wrong

mechanical failure, or power failure (either battery or commercial).

42

Interactive Modify Fault Trees Method

Fault tree descriptions and text can be entered in the Modify - Fault Trees main menu option. Using this
module is perhaps the easiest method as it is done entirely within the SAPHIRE environment. Though it
may be slower than the other methods discussed here (depending on the number of fault trees), we
recommend it for most situations. Use of the SAPHIRE text editor is described in the SAPHIRE User's
Guide.

The procedure for entering the fault tree descriptions and text is to (a) select the Modify -- Fault Tree main
menu option, (b) highlight the desired fault tree, and (c) choose the Modify popup menu option to enter the
description, or press the Text button to enter the fault tree text.

Load from Fault Tree Flat File Method

Fault tree descriptions and text can also be entered into the fault tree flat file (.FTD) extracted from the
SAPHIRE program using a text editor. The fault tree textual data can be entered into the fault tree text flat
file (.FTT) using the SAPHIRE format. (This is also true of the .FTD). After modification or development,
both files must be loaded as described in Appendix A. This method is not discussed further.

4.5.3 Entering Gate Descriptions and Attributes

Gate descriptions are usually available in PRAs. They are useful and necessary for clarifying how the
system logic was developed for use in future analysis. For example, gate descriptions may designate where
certain train logic begins in the fault tree logic so that the branch can be eliminated for analysis. In the
sample database, descriptions are available even though they do not provide any additional information
concerning the analysis. Note that the SAPHIRE attribute is the type of gate, (i.e., OR, AND, and
TRANSFER). The gate name and this information should already be present in the Modify -- Gates main
menu option from entering the fault tree logic into the interactive database. Table 4-11 shows the fault tree
gate files extracted.

Below are the available methods for entering gate descriptions and attributes.

43

Table 4- 11 Extracted fault tree gate flat files.
xtracted file informationFile E

.GTD SAMPLE
ALARM

ALARM-i

ALARM-2

PERSONAL

TRNS-2

TRNSPRT
.GTA SAMPLE

* Name

ALARM

ALARM-2

ALARM-2

PERSONAL

TRNS-2

TRNSPRT

ALARM CLOCK FAILURE

ALARM CLOCK SETTING FAILURE

ALARM CLOCK POWER FAILURE

PERSONAL PROBLEMS

, COMMERCIAL TRANSPORTATION FAILS AT A LATER TIME

PERSONAL AND COMMERCIAL TRANSPORTATION FAILURE

Type

OR

OR

,AND

OR

,AND

,AND

Fault Tree Graphical or Logic Editor Method

Gate descriptions and attributes are easily entered into the graphics editor. This method is potentially the
most time consuming but the most straightforward. In this case, the fault tree could be finalized and files
extracted without any intermediate steps. Both the SAPHIRE Reference Manual and the SAPHIRE Tutorial
contain details concerning this process.

To enter the data using the graphical editor, select and right click on the desired gate and choose the Edit
popup menu option. To enter the data using the logical editor, select and right click on the desired gate and
choose the Modify popup menu option.

Interactive Modify Gates Method

Gate descriptions and attributes can be entered using the Modify - Gate main menu option and then
performing an alpha-to-graphics conversion to place the description in the graphics. This is perhaps the
easiest method as it is done entirely within the SAPHIRE environment.

A possible advantage of this method (and the following method) over the graphical or logical editor method,
is that descriptions need only be entered one time, whereas if a gate is referenced in multiple places in the
logic, you may end up typing the description in several times.

Though it may be slower than the final method discussed here, we recommend it for most situations. See
the SAPHIRE User's Manual for additional information.

The procedure for entering the gate descriptions is to (a) select the Modify --+ Gate main menu option, (b)
highlight the desired gate, and (c) choose the Modify popup menu option to enter the description.

When data entry is finalized, perform an alpha to graphic conversion (see Appendix A) to enter this
information into the fault tree graphics.

44

Load Gate Data from Flat File Method

Gate descriptions and attributes can be entered using a text editor into the gate description flat file (.GTD)
that was extracted from the SAPHIRE program. After modification, the file must be loaded as described in
Appendix A. The attribute file data will have been entered in the process of entering the fault tree logic. It
may be useful to extract the gate attribute flat file (.GTA) for some other purpose. This method is not
presented.

4.5.4 Generating Fault Tree Cut Sets

It has been noted that some PRAs provide in depth fault tree cut set information while others do not. Having
the original fault tree cut sets is very helpful in verifying that the correct logic has been entered into the
database. Since most PRAs comprised large system fault trees, it is possible to generate many more cut sets
than what may have been reported. In these cases, to duplicate the PRA fault tree cut sets, it may be
necessary to vary the probability cutoff used to generate them. In addition, for some databases, it may be
impossible to match the fault tree cut sets that are reported in the PRA with those generated in SAPHIRE.
This.can be due to many reasons, one of which is poor documentation for the original analysis performed. In
this case, it may be necessary to enter manually the cut sets into the database. For the sample database, the
fault tree cut sets were presented in Section 3. It is important to note that for cut set generation and
quantification, SAPHIRE uses only the logic and not the graphical representation of the fault tree. The
graphics are useful for easy visualization of the fault tree. Table 4-12 shows the system cut set flat files
extracted. Below are the available methods for creating fault tree cut sets.

Solve Fault Tree Logic Method

In the process of generating fault tree cut sets, fault tree logic can be verified. The SAPHIRE User's Guide
and the SAPHIRE Tutorial provide additional information on this process.

The procedure for generating fault tree cut sets and obtaining a report for verification requires the following:

a. Entering the Fault Tree Analysis module from the main menu.

b. Selecting the Analyze Systems option.

c. Highlighting the fault tree to analyze and select the Generate Cut Sets option. When
Generate Cut Sets is chosen, an intermediate screen will appear that queries Cut Set
Generation Cutoff Values. This is where the probability cutoff can be set to limit the
cut sets produced, or can be varied to duplicate the original PRA. See the SAPHIRE
User's Guide and the SAPHIRE Technical Reference Manual for a discussion of these
features.

d. Pressing enter after selecting the appropriate cutoff values.

e. Entering Display Results from the Fault Tree Analysis menu.

f. Highlighting a fault tree and selecting Cut sets to view cut sets and to produce a report.

45

Table 4- 12 Extracted fault tree cut sets flat files.
File Extracted file information
.FTC SAMPLE, ALA•M, 0001=

ALM-FTS +

ALM-MECH +

ALM-SWT +

ALM-BPF * ALM-CPF

^EOS

SAMPLE, PERSONAL, 0001=

OTHER +

SICK +

SICK-FAM

^EOS

SAMPLE, TRNS-2, 0001=

PER-TRNS * PUB-TRNS-LAT

^EOS

SAMPLE, TRNSPRT, 0001=

PER-TRNS * PUB-TRNS

Load from Fault Tree Cut Set Flat File Method

Cut set data can be entered by first using a text editor to edit the fault tree cut set flat file (.FTC) developed
using the SAPHIRE format. After development, the file must be loaded as described in Appendix A. This
would only be used in a case where it is impossible to match the database files with the generated cut sets.
(This may occur even when the fault tree graphics appear identical.) This is a slower method, and because it
requires more steps in the data entry process may be prone to errors. This method is not presented.

4.5.5 Verifying the Fault Tree Data

After the logic and data for each fault tree are entered, it is a necessary step to verify that the information
entered into the database is correct before proceeding. The recommended method to check the fault tree data
is to extract those flat files, reports, and graphics that are the most similar to what is presented in the
database.

4.6 Loading Basic Event Data

This section discusses loading the basic event information such as probabilities, calculation types, and
attributes. As event tree files (see Section 4.2) and fault tree files (see Section 4.5) are created or loaded,
SAPHIRE constructs an internal list of all basic events, undeveloped events, gates, initiating events, and top
events. These are added to the interactive database Basic Event list found in the Modify -* Basic Events
main menu option. This list will not be complete. You will still need to enter probability values,
descriptions, and other detailed information, as necessary. Additionally, new basic events may need to be
added to account for beta factors, recovery actions, and other factors. For more information on SAPHIRE
operation as it relates to basic event information, consult the reference and technical manuals.

46

SAPHIRE offers two main methods to add basic events and their associated information into the project:
using the Modify--+Basic Events main menu option, and using a flat.file to load text based files through the
Utility - Load (and Extract) main menu option.

To achieve the optimum combination of speed and accuracy, a combination of these methods may be
utilized. It is generally recommended that basic events be added using the interactive option, and modified
(when large numbers of events must be edited) by using the flat file method.

SAPHIRE basic events can contain a wide range of detail, including failure rate and uncertainty data, general
attributes, process flags, and compound and transformation data. It is beyond the scope of this manual to
address the details of the basic event data feature content. Appendix B enumerates the available field
options, which are discussed in more detail in the SAPHIRE Users Guide.

,Eýent-I Pob Flg iTemplate . .ransoaon 1Uoepount En[otes unceftainty

'Primary
Name

Descrption Alarm f ails due to blattery failure

Nrame -E *1
*,,Random FailureDatia ~.Uncertainty Data

rProbability 46 Type Fuse point valueo
MenFiueProbability 1OOOE+ooo

Lambda. TpJ Tc +0 OOQE000

Missýion Ti me ,<+ OO+0 Correlation class

'Calculated Probability J I OIJOE,000

Figure 4- 6 The Modify Event dialog.

47

The following steps must be performed to actually load and verify all the basic event data:

1. Adding basic events (Section 4.6.1)

2. Entering the basic event descriptions (Section 4.6.2)

3. Entering the basic event data (availability and uncertainty) (Section 4.6.3).

4.6.1 Adding Basic Events

Basic events not listed in either the fault tree or event tree may be necessary in a PRA to accommodate
special situation such as substitutions or recovery actions. The sample database requires the entry of one
recovery action basic event. This is shown in the basic event listing in Section 3. (Note that SAPHIRE will
also allow you to enter a new basic event in the Recovery Rule Editor.)

Below are the available methods for adding basic events.

Interactive Modify Basic Events Method

Basic events can be entered through the Modify - Basic Events main menu option. Using this method is
perhaps the easiest because it is done entirely within the SAPHIRE environment. Though it may be slower
than the other method discussed here, it is recommended for most situations. See the SAPHIRE User's
Guide and the SAPHIRE Tutorial for more information.

The procedure for entering the basic event requires you to (a) select the Modify -- Basic Events main menu
option, and (b) select Add or Modify from the right click popup menu option.

Load from Basic Event Flat File Method

Basic events also can be entered using a text editor by modifying the basic event flat file (.BED) that can be
extracted from the SAPHIRE program. After modification, the file must be loaded as described in Appendix
A. This may be the fastest method available but requires more substantial steps and may be prone to errors.
This method is not discussed further.

4.6.2 Adding Basic Event Descriptions

Basic event descriptions are commonly used in PRAs. When entered into the interactive database, the alpha-
to-graphics conversion can be used to place the descriptions into the fault tree graphics. Table 4-14 shows
the basic event description flat file extracted.

Below are the available methods for adding basic event descriptions.

Interactive Modify Basic Event Method

Basic events can be edited through the Modify -- Basic Events main menu option. This method is perhaps
the easiest because it is done entirely within the SAPHIRE environment, but it is not generally recommended
for most databases since the number of basic events is large. See the SAPHIRE User's Guide for more
information.

48

The procedure for entering the basic event requires you to (a) select the Modify - Basic Events main menu
option, (b) highlight the desired event, and (c) select Modify from the right click popup menu option.

Load from Basic Event Description Flat File Method.

Basic event descriptions can be entered using a text editor by modifying the basic event flat file (.BED) that
can be extracted from the SAPHIRE program. After modification, the file must be loaded as described in
Appendix A. This is fastest method available and, due to the large number of basic events common in most
PRAs, we recommend it over method A. This method is not discussed further.

Table 4- 13 Extracted basic event descriptions flat file.
File Extracted file information
.BED SAMPLE

<FALSE> ,System Generated Success Event

<PASS> ,System Generated Ignore Event

<TRUE> ,System Generated Failure Event

ALARM ,Alarm system fault tree

ALM-BPF ,Alarm fails due to battery failure

ALM-CPF ,Alarm fails due to commercial power failure

ALM-FTS ,Alarm fails because worker fails to set

ALM-MECH ,Alarm fails due to mechanical failure

ALM-SWT ,Alarm fails because worker set wrong time

MEDICINE ,Recovery for sick failure preventing, attending work

OTHER ,Other personal reasons that cause a failure to get to work

PER-TRNS ,Personal transportation

PERSONAL ,Personal reasons for failure system fault tree

PUB-TRNS ,Public transportation fails

PUB-TRNS-LAT ,Public transportation fails late time frame

SICK ,Failed to get to work because of illness

SICK-FAM ,Failed to get to work because of illness in project

TRNS-2 ,Transportation system fault tree-late time frame

TRNSPRT ,Transportation system fault tree

WORK ,Event tree (WORK) initiating event

4.6.3 Entering Basic Event Data

To determine the frequency of failure in a SAPHIRE analysis, it is necessary to enter the probability or
frequency of failure for each basic event. Most PRAs may have several calculation types, the most common
being failure on demand, failure over a mission time, and standby failure rates. In addition, PRAs generally
address uncertainty and will provide applicable uncertainty parameter information. It is beyond the scope of
this document to present all the possible applications available. The SAPHIRE Technical Reference Manual
provides a detailed discussion on many of the features available. The sample database contains limited
examples and is presented for illustration only. Table 4-15 shows the basic event data flat files extracted.

Below are the available methods for entering basic event data.

49

Interactive Modify Basic Event Data Method

Basic events can be edited through the Modify -- Basic Events main menu option. Using this method is
perhaps the most straightforward method, as it is done entirely within the SAPHIRE environment. However,
in this case we do not recommend method because of the many keystrokes that may be necessary. See the
SAPHIRE User's Guide for more information.

Table 4- 14 Extracted basic event data flat files.
File Extracted file information
.BEA SAMPLE

* Name AltName ,Typ,Sys,Fail,Loc,CompId, GroupName

,Train,Attributes

<FALSE> <FALSE>
,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

<PASS> ,<PASS> ,

,N,N,N,N, N, N,N,N,N,NN,N,N,N, N,N

<TRUE> <TRUE> f , , , ,

,N,N,N,N,N,NN,N,N,N,N,N,N,N,N,N

ALARM ,ALARM ,DE r I ,

,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

ALM-BPF ,ALM-BPF , I , I I
,N,N,N,N,N,N,N,N,N,N,N,N,NN,N,N

ALM-CPF ,ALM-CPF I I I I ,

,N,N,N,N,N,N,N,N,N,N,NN,N,NN,N

ALM-FTS ALM-FTS r I r I I
,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

ALM-MECH ,ALM-MECH I I I , I
,N,N,N,N,N,NN,N,N,N,N,N,N,N,N,N

ALM-SWT ,ALM-SWT I II I
,N,N,N,N,N,NN,N,N,N,N,N,N,N,N,N

MEDICINE ,MEDICING r I I

,N,N,N,N,N,N,N,N,N,N,N,NN,N,N,N

OTHER ,OTHER f I I I I
,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

PER-TRNS PER-TRNS , r I
,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

PERSONAL PERSONAL ,DE , f f f
,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

PUE-TRNS PUB-TRNS
,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

PUB-TRNS-LAT PUB-TRNS-LAT, , I , I
,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

50

SICK ,SICK I
,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

SICK-FAM ,SICK-FAM F ,
,N,N,N,N,N,N,N,N,N,NN,N,N,N,N,N

TRNS-2 ,TRNS-2 ,DE ,
,N,N,N,N,N,N,N,N,N,N,N,NN,N,N,N

TRNSPRT ,TRNSPRT ,DE ,
,N,N,N,N,N,N,NN,N,N,N,N,N,N,N,N

WORK ,WORK
,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N

,BEI SAMPLE

* Name

,Init

<FALSE>

* <PASS>

<TRUE>

ALARM

ALM-BPF

ALM-CPF

ALM-FTS

ALM-MECH

ALM-SWT

MEDICINE

OTHER

PER-TRNS

PERSONAL

PUB-TRNS

PUB-TRNS-LAT

SICK

SICK-FAM

TRNS-2

TRNSPRT

WORK

,FdT,UdC ,UdT,UdValue, Prob Lambda , Tau , Mission

,1,

,1,

,1,

,1,

,1,

,1,

,1,

,1,

,1,

,1,

1,

,1,

,1,

,1,

,1,

,1,

,1,

,1,

,1,

,L,

1.000E+000,+0.000E+000,+0.000E+000,+0.000E+000,+0.OOOE+000

1.000E+000,

1.000E+000,

1.000E+000,

3.000E+000,

3.000E+000,

1.000E+001,

3.OOOE+000,

1.000E+001,

5.000E+000,

1.000E+001,

5.000E+000,

1.0O0E+000,

3.000E+000,

3.000E+000,

1.000E+001,

1.000E+001,.

1.000E+000,

1.000E+000,

2.000E+000,

1.000E+000,+0.000E+000,+0.000E+000,+0.000E+000

1.000E+000,+0.OOOE+000,+0.000E+000,+0.000E+000

1.000E+000,+0.OOOE+000,+0.OOOE+000,+0.000E+000

9.000E-008,+0.OOOE+000,+0.000E+000,+0.OOOE+000

1.500E-002,+0.000E+000,+0.000E+000,+0.000E+000

5.500E-006,+0.000E+000,+0.000E+000,+0.000E+000

2.700E-008,+0.000E+000,+0.000E+000,+0.000E+000

2.700E-003,+0.000E+000,+0.000E+000,+0.000E+000

5.000E-001,+0.000E+000,+0.000E+000,+0.000E+000,R,

8.100E-003,+0.000E+000,+0.000E+000,+0.000E+000

5.500E-003,+0.000E+000,+0.000E+000,+0.000E+000,

1.000E+000,+0.000E+000,+O.0OOE+000,+0.00OE+000

2.700E-003,+0.000E+000,+0.000E+000,+0.000E+000

2.000E-003,+0.000E+000,+0.000E+000,+0.000E+000

8.100E-003,+O.OOOE+000,+0.OO0E+000,+0.OOE+000,

4.000E-003,+0.OOOE+000,+0.000E+000,+0.000E+000

1.000E+000,+0.OOOE+000,+0.000E+000,+0.000E+000

1.O0OE+000,+O.0OOE+000,+O.OOOE+000,+0.OOOE+000,

2.480E+002,+0.000E+000,+0.000E+000,+0.000E+000,I,

The procedure for entering the basic event requires you to (a) select the Modify - Basic Events main menu
option, (b) select Modify from the right click popup menu option, and (c) enter the basic event values and
press the OK button to save.

51

Load from Basic Event Information Flat File Method.

Basic event data also can be entered using a text editor by modifying the basic event information flat file
(.BEI) that can be extracted from the SAPHIRE program. After modification, the file must be loaded as
described in Appendix A. Using this technique is the recommended method (though the file will need to be
reloaded after modification) since it requires substantially fewer keystrokes and is the fastest method
available. This method is not discussed further.

Note:

" Not all the information for a basic event needs to be entered for calculation purposes. The
information required is the primary name, the initiating event indication, the calculation type, the
probability value, and the uncertainty distribution type and value (uncertainty is only necessary if
an uncertainty calculation is to be performed).

* When a basic event is added to the SAPHIRE internal list, it is assigned default values for
uncertainty and failure data.

" Important: remember to generate event data as described in Appendix A to obtain an updated
current case database. Any basic event values input into the Modify --+ Basic Events module
may appear only in the base case data (which is not used for analysis) until this procedure has
been performed. See the discussion on the base and current case in Section 2.

4.7 Loading Sequence Data

This section discusses the loading of sequence data, including cut sets, text, and descriptions. Sequences are
used in PRAs to develop the overall CDF value and to identify those scenarios of events that are of concern
to plant safety. Sequences with similar outcomes are grouped by end states for evaluation in the level 2 and
3 analysis. Most PRAs present the dominant (or greatest contributors to CDF) sequence cut sets.

The following steps must be performed to actually load and verify all the sequence data

1. Generating sequence cut sets (Section 4.7.1)

2. Entering the sequence description and text (Section 4.7.2).

4.7.1 Generating Sequence Cut Sets

Since some PRAs have event trees that link to large system fault trees, it is possible to generate a large
number of cut sets. The probability cutoff option and the size cutoff limits the number of cut sets to those
above a certain value and order. This cutoff can be manipulated so that the cut sets match those produced by
the PRA. For certain databases, it may be impossible to match the sequence cut sets that are reported in the
PRA with those generated by SAPHIRE. This difference can be due to many reasons, one of which is poor
documentation for the original analysis performed. In this case, it may be necessary to manually enter the
cut sets into the database.

52

The sequence cut sets for the sample database are reported in Section 3. There was no cutoff used for this
very simple problem. It is important to note that for cut set generation and quantification, SAPHIRE uses
only the logic and not the graphical representation of the fault tree. Table 4-16 shows the sample database
sequence cut sets.

Below are the available methods for generating sequence cut sets.

Solve Sequence Logic Method

To have SAPHIRE generate sequence cut sets, use the Analyze Sequences module. The SAPHIRE User's
Guide and the SAPHIRE Tutorial provide additional information on this process.

The procedure for solving sequence logic for cut sets requires you to

1. Select the Sequence main menu option.

2. Select the sequence(s) to solve.

3. Choose the Solve option from the popup menu to bring up the Cut Set Generation Cutoff Values
dialog. This is where the probability cutoff can be changed to limit the cut sets produced or can
be varied to duplicate the original PRA. See the SAPHIRE User's Guide and the SAPHIRE
Technical Reference Manual for a discussion of these features.

4. Select the Display--+Cut Sets popup menu option to view the cut sets and, if desired, create a
report.

Table 4- 15 Extracted sequence cut sets flat files.
File Extracted file information
.SQC SAMPLE, WORK, 2, 0001=

PER-TRNS * PUB-TRNS

^EOS

SAMPLE, WORK, 3, 0001=

OTHER +

SICK * MEDICINE +

SICK-FAM

^EOS

SAMPLE, WORK, 4, 0001=

ALM-FTS +

ALM-MECH +

AL.M-SWT +

ALM-BPF * ALM-CPF

"EOS

SAMPLE, WORK, 5, 0001=

ALM-FTS * PER-TRNS * PUB-TRNS-LAT +

ALM-MECH * PER-TRNS * PUB-TRNS-LAT +

ALM-SWT * PER-TRNS * PUB-TRNS-LAT +

ALM-BPF * ALM-CPF * PER-TRNS * PUB-TRNS-LAT

53

Load from Sequence Cut Set Flat File Method

Using a text editor, cut set data can be entered into a sequence cut set flat file (.SQC) format. After
development, the file must be loaded as described in Appendix A. This would only be used in a case where
it is impossible to match the database files with the generated cut sets. (This may occur even when the logic
appears identical.) This method will not be presented.

4.7.2 Entering the Sequence Description and Text

It is common that PRAs will discuss in detail the dominant sequences that were identified. The accident
scenarios and recovery actions applied may be described in detail. The sample database contains a brief
description and some text information for the sequences. Table 4-17 shows the sample database sequence
description and text flat files.

Below are the available methods for entering the sequence description and text.

Interactive Modify Event Tree Sequence Method

The sequence description and text can be entered in the Modify --* Event Tree. This technique is perhaps
the easiest method as it is done entirely within the SAPHIRE environment. Although it may be slower than
the other method discussed below, it is recommended for most situations. Additional information
concerning adding descriptions and text is contained in the SAPHIRE User's Guide.

The procedure for entering the sequence description and text requires

1. Choose the Modify -- Event Tree main menu option.

2. Highlight the event tree containing the desired sequence(s), and press the Sequences button. (Note
that sequences will appear her only if they have been previously generated using the Link Trees
method described earlier).

3. Select the sequence and choose Modify from the popup menu to add a description, or press the Text
button to add text.

Table 4- 16 Extracted sequence description and text flat files.
File Extracted file information
.SQD SAMPLE, WORK=

2 ,LATE-TO WORK

3 ,MISS-WORK

4 ,LATE-TO-WORK

5 ,LATE-TO-WORK

.SQT SAMPLE, WORK, 3=

Sequence 3 sample text.

54

Load from Sequence Flat File Method

Using a text editor, the sequence description can be entered into the sequence description flat file (.SQD)
format. The sequence textual data can be entered into the sequence text flat file (.SQT) using the SAPHIRE
format. After modification or development, both files must be loaded as described in Appendix A: This
method is not discussed further.

4.8 Recovery Actions

This section discusses the addition of recovery actions to sequence cut sets. PRAs often have recovery
actions applied to a specific scenario of events that may occur in a sequence or fault tree cut set. These
recovery actions are not directly modeled in either an event tree or fault tree and may be required to be added
to the cut sets to obtain a result comparable to the PRA. The sample database has a very simple recovery
action that will be applied to one sequence cut set. Recovery actions or recovery rules can be applied to fault
tree cut sets using Fault Tree and Fault Tree-Project Rules. Recovery actions can also be applied to event
tree sequence cut sets by using Project, Event Tree, and Sequence Rules. Methods used for both are similar.
An example of a Project Rule recovery action being applied to sequence cut sets would be the case of double
maintenance events not allowed by technical specifications. The sample database contains a simple example
of a recovery action applied to a sequence cut set.

The following method discusses how to use SAPHIRE to apply recovery actions from the Sequences main
menu option. The method will apply recovery actions to sequence cut sets, but fault tree cut set recovery
actions are similar. The SAPHIRE User's Guide and the SAPHIRE Tutorial provide additional information
on this process.

The procedure for applying recovery requires the following steps:

1. Select Sequences from the SAPHIRE main menu. The Sequences list will appear.

2. Highlight an event tree sequence, right click to invoke a pop up menu and choose the Cut Sets -*

Recover --*Edit Event Tree option. (Depending on the desired applicable scope of the rule, Edit
(sequence) Rule or Edit Project could also be selected.)

3. Type the recovery rule text into the rule editor and save it.

4. The recovery action MEDICINE can be viewed in sequence 3 in the Display Results option under
the Event Tree Analysis menu.

Detailed steps for adding recovery actions are described in Appendix A.

4.9 Analyzing Uncertainty

Uncertainty of the cut set and end state results is commonly reported in the PRAs. Both Monte Carlo and
Latin Hypercube options are available in SAPHIRE. It is sometimes difficult to compare SAPHIRE results
with those reported in a PRA, because there will be an expected variability between the uncertainty runs
depending on the algorithms used, the number of samples, and the seed numbers chosen.

55

The following steps must be performed to generate an uncertainty analysis for the database and verify it
against the PRA:

1. Generate uncertainty for fault tree cut sets (Section 4.9.1)

2. Generate uncertainty for sequence cut sets (Section 4.9.2)

3. Generate uncertainty for end states (Section 4.9.3)

4. Generate uncertainty for groups of sequences or the project (Section 4.9.4).

4.9.1 Generating Uncertainty for Fault Tree Cut Sets

It is usual to find that a fault tree uncertainty analysis was reported for those PRAs that provided fault tree
cut sets. The sample database provides the results to an uncertainty analysis. Uncertainty summary
information is shown in Table 4- 17. Uncertainty can only be produced after cut sets have been generated.
Further discussions on uncertainty analysis are found in both the reference and technical manuals.

The procedure for calculating fault tree uncertainty requires the following

I. Choose the Fault Trees main menu option.

2. Highlight the fault tree(s) and choose the Uncertainty option from the popup menu.

3. Select the uncertainty types and values to use in the Uncertainty Calculation Values dialog, then
click OK.

4. Wait for the calculation to complete and press OK.

5. To view the uncertainty stored in the database, select a fault tree and choose Display -- Uncertainty
from the popup menu. (Either the current case or both the current and base case uncertainty values
will be displayed, depending on whether a base case update has been performed. See Section 2 for a
discussion of the base case update feature.)

6. To view detailed quantile information, choose either the Current or Base Quantile Values button.

56

Table 4- 17 Extracted fault tree attributes (uncertainty) flat file.
File Extracted file information
.FTA SAMPLE, 0001 =

* Name , Level, Mission , MinCut , Def ProCut,Used ProCut,Sample,Seed,Siz,Sys,

Cuts,Events, UdValues, Def Flags, Used Flags,S QMethod, S QPasses, R QMethod, R

QPasses, Alt Name

ALARM ,0, 2.400E+001, 2.706E-003, ------ E -,- E----, 5000,

003,5, 1.032E-004, 1.018E-003, 2.577E-003, 9.309E-003, 4.912E-006,

7.906E+000, 1.032E+002, , , ,----, , 0,ALARM

PERSONAL ,0, 2.400E+001, 2.007E-002, -- - E ----,- E----, 5000,

002,3, 2.759E-003, 1.198E-002, 1.950E-002, 5.977E-002, 4.544E-004,

7.855E+000, 1.219E+002, , , M,----, , 0,PERSONAL

TRNS-2 ,0, 2.400E+001, 1.100E-005, -. . E ----,- E----, 5000,

005,2, 7.801E-007, 5.441E-006, 1.039E-005, 3.676E-005, 8.671E-008,

5.348E+000, 6.211E+001, , , M,----, , 0,TRNS-2

TRNSPRT ,0, 2.400E+001, 1.485E-005,-- -E ,---- E----, 5000,

005,2, 1.053E-006, 7.345E-006, 1.403E-005, 4.963E-005, 1.171E-007,

5.348E+000, 6.211E+001, , , M,----, , 0,TRNSPRT

4321,--, , 4,

1.228E-001, 5.489E-

4321,--, , 3,

6.530E-001, 2.731E-

4321,--, , 1,

3.369E-004, 1.549E-

4321,--, , 1,

4.548E-004, 2.092E-

57

4.9.2 Generating Uncertainty for Sequence Cut Sets

Most PRAs provide sequence cut set uncertainty. Again, it may be difficult to compare SAPHIRE results
with those reported in a PRA because there will be an expected variability between the uncertainty runs,
depending on the algorithms used, the number of samples, and the seed numbers chosen. The sample
database provides the seed number and was developed on SAPHIRE using the Monte Carlo algorithm and,
therefore, it should be possible to produce the same results.

Uncertainty can only be produced after cut sets have been generated. Further discussions on uncertainty

analysis are found in both the SAPHIRE User's Guide and the SAPHIRE Technical Reference Manual.

The procedure for generating sequence uncertainty requires the following:

1. Choose the Sequences main menu option.

2. Highlight a sequence and choose the Uncertainty option from the popup menu.

3. Select the uncertainty types and values to use in the Uncertainty Calculation Values dialog. If
several sequences are selected, choose the Single uncertainty type option to calculate uncertainty for
each sequence individually. Press OK to begin the uncertainty analysis.

4. Wait for the calculation to complete and press OK.

5. To view the uncertainty stored in the database, select a sequence (or all sequences for project
uncertainty) and choose Display -* Uncertainty from the popup menu. (Either the current case or
both the current and base case uncertainty values will be displayed, depending on whether a base
case update has been performed. See Section 2 for a discussion of the base case update feature.)

6. To view detailed quantile information, choose either the Current or Base Quantile Values button.

4.9.3 Generating Uncertainty for End States

Very few PRAs provide end state uncertainty. Again, it may be difficult to compare SAPHIRE results with
those reported in a PRA because there will be an expected variability between the uncertainty runs,
depending on the algorithms used, the number of samples, and the seed numbers chosen. The sample
database provides the seed number and was developed on SAPHIRE using the Monte Carlo algorithm and,
therefore, it should be possible to reproduce the uncertainty results. The flat file results for end state
uncertainty are shown in table x.

Uncertainty can only be produced after sequence and end state cut sets have been generated. Further
discussions on uncertainty analysis are found in both the SAPHIRE User's Guide and the SAPHIRE
Technical Reference Manual.

The procedure for generating end state uncertainty requires

1. Choose the End States main menu option.

2. Highlight the end state(s) and choose the Uncertainty option from the popup menu.

58

3. Select the uncertainty types and values to use in the Uncertainty Calculation Values dialog, then
click OK.

4. Wait for the calculation to complete and press OK.

5. To view the uncertainty stored in the database, select an end state and choose Display
Uncertainty from the popup menu. (Either the current case or both the current and base case
uncertainty values will be displayed, depending on whether a base case update has been performed.
See Section 2 for a discussion of the base case update feature.)

6. To view detailed quantile information, choose either the Current or Base Quantile Values button.

4.9.4 Generating Uncertainty for Groups of Sequences or the Project

Most PRAs provide sequence uncertainty, but only a few may perform uncertainties on groups of sequences
that are not grouped previously by end state. In addition, some PRAs provide the results of a project
uncertainty. The procedure is the same to generate either groups or project uncertainty and, therefore, is
presented together. It may be difficult to compare SAPHIRE results with those reported in a PRA because
there will be an expected variability between the uncertainty runs, depending on the algorithms used, the
number of samples, and the seed numbers chosen. The sample database provides the seed number and was
developed on SAPHIRE using the Monte Carlo algorithm and, therefore, it should be possible to produce the
same results.

Uncertainty can only be produced after sequence cut sets have been generated. Further discussions on
uncertainty analysis are found in both the SAPHIRE User's Guide and the SAPHIRE Technical Reference
Manual.

The procedure for generating sequence group or project uncertainty requires the following:

1. Choose the Sequences main menu option.

2. Highlight the group of sequences (or all sequences) and choose the Uncertainty option from the
popup menu.

3. Select the uncertainty types and values to use in the Uncertainty Calculation Values dialog. Choose
the group uncertainty type option. (Note that group uncertainty will not be stored in the database for
later reporting.) If all sequences in the project are selected for uncertainty analysis, an option to
perform project uncertainty analysis will be available. (Project analysis results will be stored in the
database for later reporting.) Press OK to begin the uncertainty analysis.

4. When the analysis is complete, the results will be displayed in a results dialog. If the group
uncertainty option was selected, this dialog is the only place where the group results will be
available. Press the OK button when finished viewing the results.

5. To view the project uncertainty stored in the database, select all sequences and choose Display --
Uncertainty from the popup menu. (Either the current case or both the current and base case
uncertainty values will be displayed, depending on whether a base case update has been performed.
See Section 2 for a discussion of the base case update feature.)

59

6. To view detailed quantile information, choose either the Current or Base Quantile Values button.

4.10 Additional Features

This section discusses additional features that may be necessary in the data loading process, such as house
events, change sets, mutually exclusive events, process flags, and importance measures.

The features in this section have proved useful for manipulation of the PRA databases. The sample database
is limited in the amount of additional features that can be demonstrated in it while maintaining its simplicity.
The features discussed briefly in this section include

1. Use of change sets (Section 4.10.1)

2. Use of house events (Section 4.10.2)

3. Use of process flags (Section 4.10.3)

4. Use of mutually exclusive event features (Section 4.10.4)

5. Use of flag sets (Section 4.10.5)

6. Use of importance measures (Section 4.10.6).

4.10.1 Use of Change Sets

Change sets are used to modify the current case basic event data to accommodate special situations (such as
sensitivity analysis) in the data analysis. Modifications made possible by change sets include individual
probability changes to a basic event and class probability changes to a group of basic events. A number of
different change sets can be added to a database and many combinations of change sets can be implemented.
These change sets, containing information about the probability/class changes, can be applied to basic events
during system or sequence analysis. Change set modifications are used most often for setting house events
with a calculation type F or T in the FAILURE DATA field and PROCESS FLAGS X and Y. A detailed
description and example of using a change set is provided in Appendix A.

4.10.2 Use of House Events

A house event is useful in tuming on and off sections of a fault tree. For example, often a system is modeled
with AC power available. Given that a PRA is modeling a scenario where the offsite power had failed, then
sections of the system may become unavailable for accident mitigation. A house event can be used to turn
on and off those applicable sections of a system fault tree to provide the correct model. See the SAPHIRE
Technical Reference Manual for a detailed description of how house events are used in SAPHIRE.

60

4.10.3 Use of Process Flags

The use of process flags allows the analyst to manipulate the evaluation of success and failure logic in the
event tree analysis. A detailed description of the use of both the "X" and "Y" flags is provided in Appendix
A.

4.10.4 Use of Mutually Exclusive Event Features

The Mutually Exclusive Top feature allows you to define impossible or undesired cut sets and automatically
remove them from sequence cut sets. This approach can be traceable and less tedious than using the cut set
editor. As an example to illustrate this feature, consider two pump trains in parallel, and each pump train has
a test and maintenance (TM) outage event modeled in the fault tree logic. If the technical specifications did
not allow both pumps to be in a TM outage during the operating mode represented in the event tree sequence
to be analyzed, then the cut sets produced by the fault tree logic that included the TM of both pumps would
not be correct and should be deleted.

SAPHIRE provides a variety of methods to remove mutually exclusive events. The preferred method,
discussed below, is to write a recovery rule to remove any cut sets containing the mutually exclusive events.
The other methods are discussed in the SAPHIRE User's Guide, Appendix G.

The recovery rules feature is so named because its initial purpose was to add appropriate recovery events to
cut sets. However, the recovery rule feature has the ability to manipulate cut sets in general. This includes
the removal of mutually exclusive events.

The following recovery rule could be written to remove the mutually exclusive events described in our
example:

I when two events named TMEVENT1 and TMEVENT2 occur in same cut set,
I delete that cut set.

if TMEVENT1 and TMEVENT2 then
DeleteRoot;

endif

Appendix A more fully discusses the recovery rules feature.

4.10.5 Use of Flag Sets

The Flag Set feature automates the ability to specify flag sets that are sequence specific. This feature allows
the same fault tree logic to work differently for various situations, depending on the particular setting of the
house events in the logic. To illustrate the usefulness of this feature, consider an event tree sequence where
the initiating event includes the loss of diesel power, and the fault trees called by the event tree include diesel
power dependencies. If the basic event for failure of the diesel to run is. DG-FR, then setting the DG-FR
calculation type to True (failed) will effectively ensure that the diesel is not credited with successful
operation even if there are other basic events that could also cause failure of the diesel generator. Without
the Flag Set feature, you would need to build a change set or modify the database with DG-FR set to True,
perform the Generate Changes option, and generate sequences cut sets for only the appropriate sequence or

61

sequences. For each sequence (or group of sequences) having special house event settings, these steps
would have to be repeated.

To use the Flag Set feature, you would build a flag set (it is very similar to a change set) using the following
process:

1. Choose the Modify --- Flag Set main menu option

2. Choose Add from the popup menu, and enter a name for the flag set. For this example, we will
name the flag set FLAGDG. Press OK to add the flag set to the database.

3. Then, with the flag set highlighted, press the Flags button, and choose Add from the popup menu.

4. Select one or more basic events (in our example, select DG-FR), then choose Add from the popup
menu.

5. Enter the desired house event type or process flag to assign to the selected basic event(s) (in our
example we set the calculation type to T for True, meaning guaranteed to fail) and press OK.

There are two ways to specify which event tree sequences should use the FLAGDG flag set. The first way is
to assign the flag set to the sequence using the Modify main menu option:

1. Choose the Modify -+Event Trees main menu option.

2. Select the event tree (WORK), and press the Sequences button.

3. Select the appropriate sequence and choose Modify from the popup menu.

4. Enter the name of the flag set (FLAGDG) into the flag set field and press OK.

The second way is to write a link rule that assigns the flag set to sequences that meet specified fault tree
success/failure criteria, such as the following rule:

I to any sequences in event tree named ET in which the fault tree
I named LOSS-DG fails, assign the flag set named FLAGDG.

if LOSS-DG then
eventree(ET) = flag(FLAGDG);

endif

The second method provides the advantage of retaining sequence - flag set relationships even when event
tree logic changes and must be re-linked to create modified sequence logic.

You can review the flag set names specified for each sequence in the Reports menu by generating a sequence
logic report. You can also use the MAR-D extract feature (in the Utilities menu) to extract or load the flag
set name using the sequence attribute file (SQA).

62

Using the Flag Set feature, all sequences in the project can be generated in one-step while still ensuring that
each sequence uses the proper house event settings. This method is traceable and involves less user
manipulation to ensure that cut sets for each sequence are generated with the proper house event settings.

4.10.6 Use of Importance Measures

Importance measures are sometimes included with the PRA documentation. Importance measures can be
used to help determine if sequence cut sets produced by the SAPHIRE database match the PRA document.
SAPHIRE importance measures can be compared to the PRA document to see if the number of occurrences
of each basic event in the PRA sequences is equal to those generated by SAPHIRE or if there is a mismatch.

63

Appendix A

Procedures for Database Loading

A. Procedures for Database Loading

Procedure: Create a Project

To Add a Project Named SAMPLE.

1. Select the File -- New Project option, as shown in Figure A- 1. Or, alternatively, click.the New toolbar
button. The New Project dialog will appear, as shown in Figure A- 2.

2. Click Yes when asked to create a new project. The New Project - Name Project dialog will appear, as shown
in Figure A- 3.

3. Type the project name, as shown in Figure A- 1. Click OK. The New Project - Directory Info dialog will
appear as shown in Figure A- 4.

Click OK to accept the default location for the project. Or, use the Browse button to select a different location for the
new project, and then press OK. The new project is then created and selected.

The project name and folder will appear on the title bar of the SAPHIRE window.

I New Prbject...'

A-3

Figure A- 4 New Project Directory Info dialog.

Procedure: Loading and Extracting Flat Files

This procedure describes loading and extracting flat files.

Extracting Files

You may extract flat files from the interactive database by using either MAR-D or SAPHIRE. All extracted
files will be sent to the subdirectory related to the project that is currently selected. The default names for
extracted files are shown in Section 2.

A-4

To extract a flat file:

1. Select the Utility - Load and Extract menu option, as shown in Figure A- 5. Or alternatively, click
the Utility toolbar button, followed by the MAR-D toolbar button. The Load and Extract Data
dialog will appear, as shown in Figure A- 6.

2. Select the Extract button located in the Data Action area at the top left of the dialog.

3. Select the desired extraction Data Type from the left side of the dialog. The File Type on the right
side of the dialog will change to show the available extraction options for the currently selected Data
Type. Figure A- 6 illustrates the available Basic Event File Type options.

4. Select the desired Data Type.

5. Click the Process button. For Data Types other than All (version 7 only) and Project, a list of the
selected Data Type items will be displayed. Figure A- 7 illustrates a Basic Events extraction dialog.

6. Mark one or more desired extraction items (Ctrl-A to select all).

7. Click the Extract button. The Get Output Destination dialog will be displayed, as shown for Basic
Event descriptions in Figure A- 8.

8. To accept the default file name, click the OK button. You may first rename the file, but the
extension should not be changed. In version 7 only, use the Browse button to select an alternative
folder in which to create the extracted file.

The selected data will be extracted to an ASCII flat file.

Caution: SAPHIRE will overwrite any existing file with the extracted file of the same name.

I Load and Extract...

Figure A- 5 Load and Extract menu option.

A-5

Figure A- 7 Example of a Basic Events extraction dialog.

A-6

Figure A- 8 Example of an output destination prompt.

Loading Files

You may also use the Load And Extract option to load data into a project. After creating flat files in an
ASCII format, you may load these files back into a database. In version 6 you must copy the flat files from
the project folder from which they were extracted into the project folder to which you want to load them. In
version 7, you may load flat files from any project folder.

To load a flat file:

I. Select the Utility --) Load and Extract menu option, as shown in Figure A- 5. Or alternatively, click
the Utility toolbar button, followed by the MAR-D toolbar button. The Load and Extract Data
dialog will appear, as shown in Figure A- 9. Select the Load button located in the Data Action area
at the top left of the dialog.

2. Select the desired load Data Type from the left side of the dialog. The File Type on the right side of
the dialog will change to show the available load options for the currently selected Data Type.
Figure A- 9 illustrates the available BasicEvent File Type options.

3. Select the desired Data Type and click the Process button.

a. In version 6, the Load File dialog will list the flat files in the current project folder
that are available to be loaded for the selected Data Type. See Figure A- 10.

b. In version 7, the Select an input file dialog will list the flat files available to be loaded
for the selected Data Type. Files from any folder can be selected for loading. See
Figure A- 11.

4. Select the desired flat file, and press Load (version 6), or Open (version 7).

A-7

-. 3..

I Sm l

Figure A- 10 Version 6 Load data prompt.

A-8

Inigure A- II Version 7 LoaG data prompt.

A-9

Procedure: Alpha to Graphics Conversion Process

This procedure describes the alpha to graphics conversion.

The fault tree data entry is complicated by the fact that SAPHIRE utilizes an interactive database.
Information entered in the process of graphical fault tree construction is implemented in many areas of the
program. Graphical data structure is translated into logic, and other information is entered into the
interactive database using internal lists. Such information includes the type of gates and basic events used,
the textual descriptions entered in gate and basic event boxes, and the textual descriptions added for a fault
tree description. The information on these internal lists can subsequently be extracted into SAPHIRE flat
files. Conversely, SAPHIRE can be used to build fault tree graphics from logic and descriptions entered in
the database using the alpha to graphics conversion.

It is important to note that for cut set generation and quantification, SAPHIRE uses only the logic and not the
graphical representation of the fault tree. SAPHIRE can create logic from any fault tree graphics that are
built, and the graphics are useful for easy visualization of the system.

When a newly developed fault tree is graphically saved, a .DLS file is automatically created in the project
folder. The graphics file is translated into internal fault tree logic. Fault tree descriptions, basic event names
and descriptions, and gate names, descriptions, and attributes are loaded into SAPHIRE internal database
format.

When a fault tree is initially created using the graphical editor and saved, SAPHIRE will place the textual
description of the top gate of the fault tree into the fault tree description., Thereafter, graphical editor
modifications to fault tree, gate, and event description will not be automatically transferred to the internal
lists.

If, however, an alpha to graphics conversion is done, SAPHIRE will use the fault tree, gate, and event
descriptions from the internal lists to create the graphical picture of fault tree logic.
The .DLS file contains fault tree graphical information. To view and modify a fault tree, the file (.DLS) for
that fault tree must be available on the subdirectory. Once the graphics logic has been loaded into the
interactive database, it is not necessary to have the graphics available (for cut set generation and
quantification). The .DLS files can be cleared and extracted utilizing the Extract Graphics option from the
Utility -) Fault Tree menu option.

To use the alpha to graphics conversion:

Load the fault tree, gate, and basic event files into the data base, including:
.FTD (fault tree descriptions)

FTL (fault tree logic)

.GTD (gate descriptions)

.BED (basic event descriptions)

Perform the alpha to graphics conversion:

A-10

1. From the main menu, choose Utility 0 Fault Tree 0 Alpha to Graphics (Figure A- 12). The
Alpha to Graphics dialog will be displayed (Figure A- 13).

2. Select the fault tree(s) to be converted.

3. Click the Convert button. SAPHIRE will prompt you concerning the use of tables and boxed
events. Press OK to continue.

I Fault Tree . . ýj Alpha to Graphics

Figure A- 12 Alpha to Graphics menu option.

A-11

ECS

Figure A- 13 Alpha to Graphics dialog.

A-12

.Procedure: Generate Event Data

This procedure describes the process of generating event data. This process will update the current case
Values with the base case values.

All basic event data entered in the SAPHIRE Modify Event database is automatically placed in the base case
database. When loading other values, SAPHIRE will allow information update to the base case and/or the
current case database. Unless queried during the process, any analysis performed using the SAPHIRE
program defaults to values and/or cut sets drawn from the current case database. Note that basic fault tree
and event tree logic remains the same for both cases.

To generate event data:

1. Select the Generate menu option from the main SAPHIRE window (Figure A- 14). The Generate
dialog will appear (Figure A- 15).

2. If necessary, modify the default mission time at the bottom of the dialog.

3. Click the Generate button. The dialog will close and the status bar of the main window will indicate
when the operation is complete.

SPIRE fo Widw * (APEprc

rigure A- 14 the tenerate menu option.

A-13

efau MI~~onT~m~ 2

Defaft slo- e 2.0E+0

Figure A- 15 The Generate dialog.

Procedure: Change Sets

This procedure describes the process of adding and marking a change set Called CS-1. Implementing a
change set allows you to perform'a sensitivity study. The event values in the base case data are, modified
during the generate changes processes for use in the current case data.

This process includes:

1. Adding the change set

2. Making a class change to. the CS-I change set and/or making a probability change to the CS-I
change set

3. Marking the CS-I change set and generating changes.

Change sets are used to manipulate the base case event data to examine the changes in the probabilities of
plant accidents and accident sequence failures based on basic events. You may also generate change sets to
be applied to basic events for later propagation through sequence cut sets generation.

IMPORTANT

SAPHIRE contains information in two databases, the current (or working case) and the base case. They are
not necessarily the same. You may copy the base case data into the current case for analysis without
modifying the base case data with a change set.

Current case data are ALWAYS used in any cut set quantifications.

Adding a Change Set

A-14

To add a change set named CS-I:

1. Select the Generate menu option from the main SAPHIRE window (Figure A- 14). The Generate
dialog will appear (Figure A-15).

2. Right click to invoke a pop up menu, and select the Add option. The Add Change Set dialog will
appear.

3. Type the change set name (CS-1) and a description of your choice in the fields provided.

4. Click the OK button. The change record name will now appear in the list on the Generate dialog.

Making a Class Change

This option allows you to change event data parameters for a specified grouping of events. The event class
is defined by entering data in the Event Attributes data fields. The more of these fields that are filled in, the
finer the class definition becomes.

To use this option, you must have already added a change set as described above.

To make a class change:

1. Select the change set (in this case CS-1) and press the Class button. The Edit Event Class dialog
will appear as shown in Figure A- 16.

2. Type NAME* in the Name field in the Event Attributes Mask section of the Class Change menu.
(The asterisk (*) is a wildcard that acts as a substitute representing a whole word or a group of
characters.)

3. Click on the Prob/Freq/Median Fail Accel field and type the new Probability.

4. Click OK. The dialog will close and the message "Class change added" will appear on the status
bar of the main window.

A-15

Making a Single Change

This option gives you the flexibility to experiment with setting different basic event failure and uncertainty
data. These data values may be set for a single event or for a specified group of events.

To use this option, you must have already added a change set as described above.

To make a probability change:

1. Select the change set (in this case CS-1) and press the Single button. The Change Set Events dialog
will appear as shown in Figure A- 17.

2. Right click to invoke a pop up menu, and select the Add option. The Select Change Event dialog
will appear (see Figure A- 18).

3. Select one or more basic events to include in the change set. Right click to invoke a pop up menu
and select the Add menu option. The Event Probability Changes dialog will appear, as shown in
Figure A- 19.

4. Click on the Mean Failure Probability field and type the new Probability.

A-16

5. Click the OK button. The selected events will appear in the Change Set Events list. (The letter "S"
will appear to the left of the event(s). Notice that the letter "C" is also present when a class change
also applies to the event. Note the symbol explanations at the bottom of the dialog.)

6. Click the Exit button to return to the Generate dialog.

Or

If you want to continue the probability change process, repeat steps #2 through #4 immediately after
step #4 since you are still in the Single Change mode.

SLF~ S'c C t-ý Dvcipin

SLF Event Usage Flags: S- -S~eqyep -ce cýt sets, L".Fault Treegl-±-qglc, F-Fault tree cut sets
inUused,4L b base l;seuc curreM, &.'Bat

SK Change Set F'Iog~y S~sinjeC class

Figure A- 17 Change Set Events dialog.

A-17

Seec Chng Evn (RgtI~ OU

<FALSEý,
elNIT>
-PASS>
4TRUE>
C-CV-A
C-CV-B
C-MOV-1
C-MOV-A
C-MOV-B
C-PUMP-A
C-PUMP-B
CCS
CCS-TRAIN-A
DO-A

System Generated Success Event
System Generated Initiating Event •
System Generated Ignore Event
System Generated Failure Event
CCS Train A pump discharge check v
CCS Train B pump discharge check v;.
CCS suction isolation valve
CCS Train A pump discharge isolation
CCS Train B pump discharge isolation
CCS Train A motor-driven pump
CCS Train B motor-driven pump
This is a cool english description

Emergency diesel generator A

Figure A- 18 Select Change Event dialog.

Figure A- 19 Event Probability Changes dialog.

A-18

Marking a Change Set

The mark option allows you to mark/unmark the change sets to be used during the generation process. 'If
more than one change set is marked, then the probability and class changes in the change sets marked with
the highest number will take precedence over any change from lower numbered change sets.

To use this option, you must have already added a change set as described above. Additionally, either a class
or probability change should be implemented.

To mark a change set (CS-1):

1. Select CS- I and right click to invoke a pop up menu. Select the Mark/Unmark menu option. (Or,
double click the CS-I change set.) A number (1) should appear in the far-left comer by the change
set. See Figure A- 20.

2. Click the Generate button. The dialog will close and the status bar of the main window will indicate
when the operation is complete.

IMPORTANT

The change set will remain marked until you unmark it by selecting the Mark/Unmark menu option from
the pop up menu or by double clicking the change set.
Marked sets are ALWAYS used to generate changes.

A-19

Procedure: X And Y Flags

This procedure describes the process of using the X and Y process flags.

Using the "Y" Process Flag

This section discusses the concept and use of the "Y" process flag. The Process Flag options appear in the

Modify Event menu (Figure A- 22).

1. Add and select a project called COINTOSS.

2. Once in this database, you will need to create the event tree shown in Figure A- 23. This event tree
will calculate the probability of combinations of heads (H) and tails (T) from tossing a coin twice.
Possible combinations that can occur are HI-HI, HT, TH, or Tr. This can be observed in the sequence
and end state names shown in Figure A- 24.

3. Since this is a simple problem, we can calculate by hand the probability for all possible end states.
As is shown in Figure A- 24',the probability of tossing two heads is 0.25, the probability of tossing a
head and a tail is 0.5 and the probability of tossing two tails is 0.25. This sums to 1.0 across all the
possible sequences.

4. Enter the top event values. In the process of creating this event tree, SAPHIRE has added IE-TOSS
as an initiating event and two top events (TOSS 1 and TOSS2) as developed events into the Basic
Event listing (under Modify Database -+ Basic Events). For calculation, it is necessary to enter the
probability of a failure for TOSS 1 and TOSS 2 as 0.5. Since SAPHIRE looks at failure space, this
will be the probability of a tail given an unbiased coin. Leave the process flag space blank. The
initiating event IE-TOSS should be 1.0 as default. Accept the default.

5. Generate changes (by clicking the Generate button from the Generate menu and dialog) to update
the probability values that you just entered into the base case to the current (or working) case.

6. Generate sequence logic (by selecting the Event Tree main menu option and invoking the Link
Trees popup menu item).

7. Generate sequence cut sets (by selecting the Sequence main menu option and invoking the Solve
popup menu item). Accept the SAPHIRE defaults and click OK.

8. View the results. As shown in Figure A- 24, the results are not what was anticipated. This is
because, by default, SAPHIRE will generate sequences utilizing both success and failure logic. This
will include either the developed event or fault tree (if one was associated with that top event). But
only the failure logic is presented and the failure probabilities are used in the quantification process.

9. Entering a process flag will allow you to indicate exactly how you want SAPHIRE to handle
developed events (and/or fault trees). The "Y" process flag uses the developed event value for the
probability of failure and 1 minus the probability of failure of the developed event for the success.

A-20

10. Enter a "Y" as the process flag for both TOSS 1 and TOSS2. Repeat steps 4 to 7 and view results.
As shown in Table A-2, the calculated results are now correct.

Toss Result

HH .25

HT .25

TH .25

TT .25

Figure A- 21. Expected coin toss results.

Figure A- 22. SAPHIRE 7.0 Modify Event / Process Flag tab.

A-21

IE-TOSS TOSS-I TOSS-2 # SEQUENCE END-STATE

I HH HH

2 HT HT

3 TH TH

4 Tr T7

I ____________ I _____________

rTOSSTREE. 22X03I09/I5 P. 2
2M3/09/15 PW 2

Figure A- 23. Tosstree event tree.

SEQUENCE CUT SETS REPORT
Project: COINTOSS
Analysis. RANDOM

E~entTree- 'JSq c ~%Total eq.7rb~f - ~
TOSSTREE.. 1 . 00 0 100.0 1 OE+00 .. PASS. .

TOSSTREE 2_ '100100.0 .. 5.0E-001 TOSS-2
TOSSTREE .. 3 100.0 100.0 5.OE-001 TOSS-I
TOSSTREE 4 100.0 100.0 .2.5E-001 TOSS-I1 TOSS-2

Figure A- 24 SAPHIRE sequence cut sets report using default process flags.

A-22

61F-Wrl Mr,

SEQUENCE CUT SETS REPORT
Project: COINTOSS
Analysis: RANDOM

U ot It`Sýet61,40 1 Seci ance I 1)ýJ 61: 1?i 1: 06b 4s
TOSTREE . 12 .. 10.0 .. 00.10-11_ 2.5E-001 . TOSS--i TOSS-2
TOSSTREE. 2 100.0 100.0 2.5E-001 iii S .S-

•TOSSTREE 43 100. O 100.0 2.5E-001 .TOSS-1 .TOSS-2
1TOSSTREE. A 0. 100.0 2E-O S-ITOS.S-2

Figure A- 25 SAPHIRE sequence cut sets report using "Y" process flags.

Using the "X" Process Flag

The "X" flag behaves in the following manner. With the process flag for an event tree top event set to "X",
SAPHIRE links in the associated system success and failure fault trees and solves the boolean logic. When
reporting the results, successful system basic events are ignored although they have been accounted for in
the logic.

Procedure: Recovery Rules

This procedure describes the process of developing and using the recovery rules.

This section discusses the concept, development, and use of the recovery rules. The Recovery Rules options
appear in the Fault Trees List popup menu (Figure A- 26) and in the Sequences list for event tree/sequence
rules. Recovery rules can be attached to a particular fault tree or across all fault trees in a project (Figure A-
27). Likewise, they can be attached to a particular sequence, a particular event tree, or across all event trees
in a project. The attachment level (or scope) of the rules determines the cut sets that may be affected by the
rules.

The discussion of recovery rules will be by way of a few simple examples of the rules alongwith a detailed
overview of the recovery rule keywords and symbols (see Table A-3).

The SAPHIRE recovery rules are "free-form" logic rules that allow you to alter or delete fault tree or
sequence cut sets. Although called "recovery rules," the recovery rules -have developed from the simple
addition of recovery events onto specified cut sets into a powerful rule-based system for cut setmanipulation. Thus, the "recovery rules" can now be used for advanced probabilistic risk assessment
techniques such as (1) the automated addition of sequence recovery events, (2) the addition of common-
cause cut sets, and (3) the elimination of mutually exclusive events (e.g. restricted or impossible
combinations of.events).

The rules are entered in a free-form text editor within SAPIURE (similar to Notepad or WordPad). The
rules have a very specific format and have certain command keywords that can be used. The structure of the
rules and the keywords that are available are discussed below. It should be pointed out that the rules can be
exported and loaded through MAR-D.

A-23

The rules follow a format similar to the structure that is found in traditional programming languages (e.g.,
BASIC, MODULA-2, or C). As such, the ability exists to define "macros" and "if...then" type of structures.
But, before discussing the particular structure of the rules, it is best if the keywords and symbols were
defined. Table A-3 contains a list of keywords and symbols that are used in rule editor. This table also
includes the definition and usage of each keyword and symbol. Within the "usage" column in Table A-3, the
particular keyword or symbol that is being presented is shown in bold face. Words or phrases that are
italicized are intended to represent a particular command or group of commands and, as such, should not be
included as part of the rule. Instead, an appropriate command (e.g., a specified search criteria, a keyword, or
a logic expression) should replace the italicized text.

Now that the keywords and symbols have been defined, the structure of the rules will be discussed. This
discussion will take place by way of specific examples.

I Recover -1ý I

Figure A- 26 Fault Tree recovery rule menu option.

A-24

Figure A- 28 Event tree recovery rules options.

A-25

Table A- 1. List of keywords or symbols used in the SAPHIRE recovery rules.

Keyword or symbol Definition Usage

if then

endif

always

recovery

inito)

Keyword pair that indicates that a search
criteria is being specified. Note that the
keywords are lower case.

Keyword that indicates the end of a
particular rule. Note that the keyword is
one word and is lower case.

Keyword that indicates that every cut set
that is being evaluated satisfies the search
criteria. Note that the keyword is lower
case.

Keyword that indicates that a recovery
event is going to be added to the cut set
being evaluated. Note that the keyword is
lower case.

Keyword used in the search criteria to
indicate that a sequence cut set has a
particular initiating event. Note that the
keyword is lower case.

Symbol used in the search criteria to
indicate that a particular event will not be
in the cut set that is being evaluated.

Symbol used to represent a complemented
event (i.e., the success of a failure basic
event).

Symbol used to represent a comment
contained in the rules. Everything on a
line to the right of this symbol will be
ignored by the rule compiler.

if "search criteria" then
perform some action on each cut

set...;
endif

if "search criteria" then
perform some action on each cut

set...;
endif

if always then
perform some action on each cut

set...;
endif

if "search criteria" then
recovery = NAME-OF-

RECOVERY-EVENT;
endif

if init(INITIATOR-NAME) "and
other search criteria" then

perform some action on each cut
set...;
endif

if (-SEARCH-CRITERIA) "and
other search criteria" then

The search criteria will be satisfied
for all cut sets that do not contain
SEARCH-CRITERIA (and also
contains the optional "other search
criteria"). SEARCH-CRITERIA may
be either an initiating event, basic
event, macro, or logic expression.

if (/BASIC-EVENT) "and other
search criteria" then

The search criteria will be satisfied
for all cut sets that contain the
complement of BASIC-EVENT (and
also contains the optional "other
search criteria").

Place your comments here!

I Note that blank lines are also
permissible!

A-26

Table A- 1. List of keywords or symbols used in the SAPHIRE recovery rules.

Keyword or symbol Definition
Symbol to indicate the end of a macro line
or a line that modifies the cut set being
evaluated.

Usage
I usage for a macro command
MACRO-NAME = "search criteria";

usage for a cut set modification line
recovery = RECOVERY-EVENT;

Symbol to indicate the logical AND
command.

if SEARCH-CRITERIA1 *
SEARCH-CRITERIA2 then

The search criteria will be satisfied
for all cut sets that match SEARCH-
CRITERIAI and SEARCH-
CRITERIA2. The SEARCH-
CRITERIA# may be either an
initiating event, basic event, macro, or
logic expression.

+ Symbol to indicate the logical OR
command.

if SEARCH-CRITERIA 1 +
SEARCH-CRITERIA2 then

()

AddEvent =

DeleteEvent =

NewCutset;

Symbols to indicate a specific grouping of
items.

Key word that indicates that an event will
be added to the cut set being evaluated.
Note the particular capitalization of the
keyword.

Keyword that indicates that an event will
be deleted from the cut set being
evaluated. Note the particular
capitalization of the keyword.

Keyword that indicates that a new, empty
cut set will be added to the list of cut sets.
This new cut set will then become the cut
set that is being evaluated. Note the
particular capitalization of the keyword.

Keyword that indicates that the original

The search criteria will be satisfied
for all cut sets that match either
SEARCH-CRITERIA I or SEARCH-
CRITERIA2. The SEARCH-
CRITERIA# may be either an
initiating event, basic event, macro, or
logic expression.

if(A + B) * (C + D) then

The search criteria above would
return all cut sets that contain:
[A * C], [A * D], [B * C], or [B * D].

if "search criteria" then
AddEvent = EVENT-NAME;

endif

if "search criteria" then
DeleteEvent = EVENT-NAME;

endif

if "search criteria" then
NewCutset;
now make additions to the empty

cut set...
endif

DeleteRoot: if "search criteria" then

A-27

Table A- 1. List of keywords or symbols used in the SAPHIRE recovery rules.

Kevword or symbol Definition
cut set (i.e., the cut set that satisfied the
search criteria) will be deleted. Note the
particular capitalization of the keyword.

Usage
DeleteRoot;

endif

CopyCutset;

CopyRoot;

Keyword that indicates that the cut set
being evaluated will be copied and added
to the list of cut sets. This copied cut set
will then become the cut set that is being
evaluated. Note the particular
capitalization of the keyword.

Keyword that indicates that the original
cut set (i.e., the cut set that satisfied the
search criteria) will be copied. This
copied cut set will then become the cut set
that is being evaluated. Note the
particular capitalization of the keyword.

A macro is a user-definable keyword that
specifies specified search criteria. Note
that the macro name must be all upper-
case, must be 24 characters or less, and
must not include any of the SAPHIRE-
restricted characters (e.g., a space, *, ?, \,
/). The macro definition line can wrap
around to more than one line, but the end
of the macro must be indicated with a
semicolon.

if "search criteria" then
CopyCutset;
now make modification to a copy of

the cut set...
endif

if "search criteria" then
CopyRoot;
now make modifications to a copy

of the original cut set...
endif

MACRO-NAME = SEARCH-
CRITERIA;

if MACRO-NAME "and other search
criteria" then

perform some action on each cut
set...;
endif

The SEARCH-CRITERIA may be
either an initiating event, basic event,
macro, or logic expression.

MACROS

A-28

Example: Add a recovery event to all cut sets.

The example shown in Table A- 2 demonstrates how the recovery rules can be used to add recovery actions.
The rule in this example adds the recovery action NRAC- 1 2HR to every cut set for a particular sequence.
Consequently, this rule would have to be typed into the event tree sequence rule editor for the sequence of
interest.

In addition, from within the rule editor, putting the cursor on NRAC-I 2HR and pressing <ALT>R will add
the event into the database as a recovery action.

Table A- 2 Example: Add a recovery event to every cut set in a sequence.

I A rule to apply NRAC- 1 2HR recovery event to all

cut sets in the sequence.

if always then

recovery = NRAC-12HR;

endif

Example: Add a recovery event to certain cut sets.

The second example (Table A- 3) demonstrates how recovery actions can be added to certain cut sets based
on the attributes of the cut set and sequence. This example will be added as an event tree project rule
(meaning it may affect all sequences in the project), but will key on only one of two different initiating
events. Also, this example will demonstrate the use of a macro (the macro is called KEY-ON-INIT).

A-29

Table A- 3 Example: Add a recovery event to each cut set havinu a specified initiator.

I Define a macro in order to pick up only those

I sequences that have LOSP or SBO as initiators.

KEY-ON-INIT = init(LOSP) + init(SBO);

Search on either the LOSP or SBO and basic events.

I DG-A or DG-B.

if KEY-ON-INIT * (DG-A + DG-B) then

recovery = NRAC- I2HR;

endif

Example: Add common cause failure cut sets.

The third example (Table A- 4) demonstrates how the "recovery" rules could be used to add common-cause
events to the cut sets. Example 3 defines a search criterion that identifies the failure combination of two
auxiliary feedwater pumps (pump A and pump B). If these two basic events are found in a cut set, then a
new cut set will be created that substitutes the independent failures of the two pumps with a single common-
cause basic event. Note that the original cut set will be retained, since the two failures could still be
independent. This rule could be placed in either (or both) the fault tree project rules or the event tree project
rules.

A-30

Table A- 4 Example: add common cause failure cut sets.

Define a macro in order to pick up only those cut sets that

have combinations of AFW-PUMP-A and AFW-PUMP-B.

CCF-AFW-PUMPS = AFW-PUMP-A * AFW-PUMP-B;

I Search for the AFW pump basic events and replace

I with a CCF event.

if CCF-AFW-PUMPS then

First make a copy of the original cut set.

CopyRoot;

I Now remove the two independent failure events.

DeleteEvent = AFW-PUMP-A;

DeleteEvent = AFW-PUMP-B;

I Now add the CCF event.

AddEvent = AFW-PUMP-CCF;

endif

Example: Remove a cut set.

The last example (Table A- 5) demonstrates how a particular cut set could be completely removed from the
cut set list. There may be instances in which a cut set should be removed because the combination of basic
events should not occur (say for example, two diesel generators out for maintenance at the same time). This
rule could be placed in either (or both) the fault tree project rules or the event tree project rules.

A-31

Table A- 5 Example: Remove a cut set.

I Define a macro in order to pick up only those cut sets that

I have combinations of two diesel generators out for maintenance.

DIESELS-IN-MAINT = DG-A-MAINT * DG-B-MAINT

Search for the maintenance events and then delete cut set.

if DIESELS-IN-MAINT then

I Delete the cut set.

DeleteRoot;

endif

The List menu option is a timesaving feature of the rule editor. It provides the ability to select and insert
items from the database directly into the rule. To use this feature choose the Lists --- Events menu option to
open a list of events in the database. Place the cursor where the event is to be inserted in the rule, then select
the desired event in the list and double click it. To add an event that does not yet exist in the database, right
click on the event list to invoke a popup menu, and select the add option. You will be prompted to create an
event, which will then appear in the event list.

In summary, the recovery rules provide a powerful rule-based method to modify fault tree or sequence cut
sets. The keywords and symbols for the rules were defined in Table A- 1. The examples presented above
suggest the potential applications that can be performed using the SAPHIRE rule.

A-32

Appendix B

General MAR-D Data Interchange Formats

B. General MAR-D Data Interchange Formats
This appendix enumerates the formats for each of the various data interchange formats as of August 2005.

Except where noted, file formats are the same for SAPHIRE versions 6 and 7. The primary version
differences occur in the name and description files. This is because version 7 has the capability to provide
an alternate name and description for each data type. In addition, descriptions in version 6 are 60 characters
long, whereas in version 7, they are 120 characters long.

The file formats are backward compatible: version 6 files can be successfully loaded into version 7. It is not
recommended that version 7 files be loaded into version 6, due to the presence of subtle format and content
changes.

General Format Rules

1. All name references (project names, event names, etc.) must be upper-case alphanumeric. All
lower-case characters will be converted to upper-case. Any alpha fields that are longer than the
format specified will be truncated. No spaces are allowed in the middle of names.

2. Descriptions can have both upper-case and lower-case characters. No character checking will be
done. No commas are allowed in the description.

3. Commas are used as field delimiters in most formats and can be used as placeholders for unknown
fields& Any number of leading and trailing field spaces can be inserted. Exceptions to this format
are detailed as needed.

4. Text rules:

1. File is standard ASCII text, single spaced, upper- and lower-case.
2. ^EOS signals the End of Section so that multiple names in the same project can be collected

in one file.

These rules apply to all files unless specifically stated otherwise.

B-3

Project (Plant) Information

Project Names and Descriptions (Version 6)

File Name:
xxxxxx.FAD
File Format:
name,description
where

Name
description

24 character
60 character

Project name
Project description

Project Names and Descriptions (Version 7)

File Name:
xxxxxx.FAD
File Format:
name,description[,A]
where

name
description
A

24 character
120 character
1 character

Project name
Project description
If included indicates alternate description

Project Attribute File

File Name:
xxxxxx.FAA
File Format:
project=
name,mission,newSum,co,loc,type,design,vendor,AE,OpDateQualDate
where

name
mission
newSum
Co
Loc
type
design
vendor
AE
OpDate

24 character
Floating point
Floating point
10 character
16 character
3 character
10 character
5 character
10 character
(yyyy/mnmdd)

Project name
Default mission time in hours
New sequence frequency sum
Company name
Location name
Facility type
Facility design
Vendor name
Architectural Engineer
Operational date

B-4

QualDate (yyyy/mm/dd) Qualification date

Project Recovery Rules

File Name:
xxxxxxxx.FAY
File Format:
project =
-- recovery rule text --

where
project 24 character Project name

System (Fault Tree) Recovery Rules

File Name:
xxxxxxxx.FAS
File Format:
project =
-- recovery rule text --

where
project 24 character Project name

Project Partition Rules

File Name:
xxxxxxxx.FAP
File Format:
project =
-- partition rule text --

where
project 24 character Project name

Project Textual Information (Version 6)

File Name:
xxxxxx.FAT
File Format:
Project =
-- text --
where

project 24 character Project name

B-5

Project Textual Information (Version 7)

File Name:
xxxxxx.FAT
File Format: .
Project [,A] =
-- text --

where
project
A

24 character
1 character

Project name
If included indicates alternate description

Basic Event Information

Event Names and Descriptions (Version 6)

File Name:
xxxxxx.BED
File Format:
project =
name,description
. . I ...==

where
project
name
description

*24 character

24 character
120 character

Project name
Event primary name
Alphanumeric description

Event Names and Descriptions (Version 7)

File Name:
xxxxxx.BED
File Format:
project =
name,description[,A]
. . I ...=•

where
project
name
description
A

24 character
24 character
120 character
I character

Project name
Event primary name
Alphanumeric description
If included indicates alternate description

B-6

Basic Event Rate Information (Version 6)

File Name:
xxxxxx.BEI
File Format:
project =
name, calc, udC, udT, udV, prob, lambda, tau, mission, Mit, Flag, udV2

where
Project 24 character Project name
Name 24 character Basic event name
Calc I character Calculation type

1 Probability
2 same as type 3
3 1 Exp(Lambda * Mission Time)
4 same as type 5
5 Operating component with full repair
6 same as type 7
7 1+(EXP(Lambda*Tau) 1.0)/(Lambda*Tau)
T Set to House Event (Failed, Prob=1.0)
F Set to House Event (Successful,Prob=0.0)
I Set to ignore
S Use fault tree min cut upper bound
E Use end state min cut upper bound
G Seismic event - Enter g level for screening
H Seismic event - Use medium site hazard curve for screening

UdC 4 characters Uncertainty correlation class
Events in same class are 100% correlated.

UdT 1 character Uncertainty distribution type

L Log normal, error factor
N Normal, standard deviation
B Beta, b of Beta(a,b)
D Dirichlet, b of Dirichlet(b)
G Gamma, a Gamma(a)
C Chi-squared, degrees of freedom
E Exponential, none
U Uniform, Upper end pt.
H Histogram
M Maximum entropy
S Seismic Log Normal
0 Constrained non-informative

B-7

UdV
Prob
Lambda
Tau
Mission
init
Flag
udV2

Floating point
Floating point
Floating point
Floating point
Floating point
Boolean
1 -character
Floating point

Uncertainty distribution value
Probability value
Basic event failure rate per hr.
Time to repair in hours
Mission time
Initiating event flag (YIN)
process flag
Uncertainty distribution value #2

General Rules:

1. The name field is mandatory.

Basic Event Rate Information (Version 7)

File Name:
xxxxxx.BEI
File Format:
project =
name, calc, udC, udT, udV, prob, lambda, tau, mission, init, Flag, udV2

where
Project
Name
Calc

24 character
24 character
1 character

Project name
Basic event name
Calculation type

I
V
3
5
7
T
F
I
C
S

E
G
H

Probability
Value event (input to compound event)
1 Exp(Lambda * Mission Time)
Operating component with full repair
1 +(EXP(Lambda*Tau) 1.0)/(Lambda*Tau)
Set to House Event (Failed, Prob=1.0)
Set to House Event (Successful,Prob=0.0)
Set to ignore
Compound event
Use fault tree min cut upper bound
Use end state tree min cut upper bound
Seismic event - Enter g level for screening
Seismic event - Use medium site hazard curve for screening

UdC

UdT

24 characters

1 character

Uncertainty correlation class
Events in same class are 100% correlated.
Uncertainty distribution type

L
N
B

Log normal, error factor
Normal, standard deviation
Beta, b of Beta(a,b)

B-8

D
G
C
E
U
H
M
S
0
T

Dirichlet, b of Dirichlet(b)
Gamma, a Gamma(a)
Chi-squared, degrees of freedom
Exponential, none
Uniform, Upper end pt.
Histogram
Maximum entropy
Seismic Log Normal
Constrained non-informative
Triangular, mode, upper end of Triangular(m, u)

UdV
Prob
Lambda
Tau
Mission
Init
Flag
UdV2

Floating point
Floating point
Floating point
Floating point
Floating point
Boolean
1-character
Floating point

Uncertainty distribution value
Probability value
Basic event failure rate per hr.
Time to repair in hours
Mission time
Initiating event flag (YIN)
process flag
Uncertainty distribution value #2

General Rules:

1. The name field is mandatory.

Basic Event Attribute Codes

Basic event attributes are entered through MODIFY--Basic Event and stored in Event.

File Name:
xxxxxx.BEA
File Format:
project =
name,Aname,type,sys,fail,loc,complD,Gname,train,attl ,..,attl 6

where
project 24 character
name 24 character
Aname 24 character
type 3 character

sys 3 character
fail 3 character
loc 3 character

complD 7 character
Gname 24 character

train 3 character
attl..attl6 Class attribute

Project name
Event name
Alternate event name
Event component type
Event component system
Failure mode
Component location
Component ID
Event group identifier
Train identifier
16 values of Y or N (yes or no) indicate whether the

B-9

flags attribute described in the class attribute file is
applicable.

General Rules:

1. The name field is mandatory.

Basic Event Transformations (Version 6)

In SAPHIRE version 6.0, both transformation and compound information are extracted into and loaded from
this file type.

File Name:
xxxxxx.BET
File Format:
project =
namel,level,type, library, procedure
benamel, bename2,...,
... , benameN
AEOS

name2,level,type, library, procedure
benamel, bename2,...,
... , benameN
AEOS

where
project 24 character Project name
name 24 character Event name
level 3 character Transformation level (0..99)
type 4 character Transformation type (AND, OR, ZOR, COM, blank)
library 60 character name of plug in library (for COM events)
procedure 60 character name of procedure in plug in library (for COM

events)
bename 1..N 24 character Event name

Basic Event Transformations (Version 7)

File Name:
xxxxxx.BET
File Format:
project =
namel,level,type
benamel, bename2,...,

benameN
AEOS
name2,level,type
benamel, bename2,...,

B-10

... , benameN
AEOS

where
project
name
level
type
benamel..N

24 character
24 character
3 character
4 character
24 character

Project name
Event name
Transformation level (0..99)
Transformation type (AND, OR, ZOR, blank)
Event name

Basic Event Compound Information (Version 7 only)

In SAPHIRE version 7.0, compound information is extracted into its own file type.
still be loaded from .BET files (where version 6.0 extracts compound information).

Compound events can

File Name:
xxxxxx.BEC
File Format:
project =
namel,level,type
benamel, bename2,...,
... , benameN
AEOS
name2,level,type, library, procedure
benamel, bename2,...,
.... benameN
AEOS
where

project
name
level
type
library
procedure
benamel..N

24 character
24 character
3 character
4 character
60 character
60 character
24 character

Project name
Event name
0 or blank
COM
name of plug in library
name of procedure from plug in library
Event name

B-11

Event Attribute Descriptions

Failure Mode Descriptions (Version 6)

File Name:
xxxxxx.FMD
File Format:
project =
fail, description
. . I . ..= ,

where
project
Fail
description

24 character
3 character
60 character

Project name
Failure mode primary identifier
Failure mode description

Failure Mode Descriptions (Version 7)

File Name:
xxxxxx.FMD
File Format:
project =
fail,altFail,description[,A]
. . I . ..= •

where
project
Fail
altFail
description
A

24 character
5 character
5 character
120 character
1 character

Project name
Failure mode primary identifier
Failure mode alternate identifier
Failure mode description
If included indicates alternate description

Component Type Descriptions (Version 6)

File Name:
xxxxxx.CTD
File Format:
project =
comp, description

where
project
comp

24 character
3 character

Project name
Component type primary identifier

B-12

description 60 character Component type description

Component Type Descriptions (Version 7)

File Name:
xxxxxx.CTD
File Format:
project =
comp, altComp, description [,A]

where
project
comp
altComp
description
A

24 character
5 character
5 character
120 character
I character

Project name
Component type primary identifier
Component type alternate identifier
Component type description
If included indicates alternate description

System Type Descriptions (Version 6)

File Name:
xxxxxx.STD
File Format:
project =
sys,description

where
project
sys
description

24 character
5 character
60 character

Project name
System primary identifier
System description

System Type Descriptions (Version 7)

File Name:
xxxxxx.STD
File Format:
project =
sys,altSys,description [,A]

where
project
sys
altSys

24 character
5 character
5 character

Project name
System primary identifier
System alternate identifier

B-13

description
A

120 character
I character

System description
If included indicates alternate description

Location Descriptions (Version 6)

File Name:
xxxxxx.LCD
File Format:
project =
loc,description

where
project
loc
description

24 character
3 character
60 character

Project name
Location primary identifier
Location description

Location Descriptions (Version 7)

File Name:
xxxxxx.LCD
File Format:
project =
loc,altLoc,description [,A]
. . . I . . .

where
project
loc
altLoc
description
A

24 character
5 character
5 character
120 character
I character

Project name
Location primary identifier
Location alternate identifier
Location description
If included indicates alternate description

Class Attribute Descriptions (Version 6)

File Name:
xxxxxx.TTD
File Format:
project =
attr,description

where
project
Attr

24 character
3 character

Project name
Class attribute primary name

B-14

description 60 character Class attribute description

Class Attribute Descriptions (Version 7)

File Name:
xxxxxx.TTD
File Format:
project =
attr,altAttr,description[,A]
. . I . ..• •

where
project
Attr
altAttr
description
A

24 character
5 character
5 character
120 character
1 character

Project name
Class attribute primary name
Class attribute alternate name
Class attribute description
If included indicates alternate description

B-15

Fault Tree Information

Fault Tree Names and Descriptions (Version 6)

File Name:
xxxxxx.FTD

File Format:
project =
name,description[,s]

where
project
Name
description
S

24 character
24 character
60 character
I character

Project name
Fault tree primary name
Fault tree description
If included indicates fault tree is a sub-tree

Fault Tree Names and Descriptions (Version 7)

File Name:
xxxxxx.FTD
File Format:
project =
name,description[,s][,A]
.her I e .
where

project
Name
description
S
A

24 character
24 character
120 character
I character
1 character

Project name
Fault tree primary name
Fault tree description
If included indicates fault tree is a sub-tree
If included indicates alternate description

Fault Tree Graphics

Fault tree graphics are stored in the block data file of the Graphics relation. The MAR-D file (.DLS) is a
display list sequence for the graphics in a binary format. It is loaded and output as is with no conversion
performed.

File Name:
xxxxxx.DLS

File Format:
IRRAS 2.5/4.0/5.0, SAPHIRE 6.0/7.0 Fault Tree Graphics file (DLS format)

Fault Tree Logic (Version 6)

B- 16

Fault tree logic is stored in the block data file of the System relation.

File Name:
xxxxxx.FTL
File Format:
project, fault tree =
* gatenamel ,description
gatenamel gatetype input1

* gatenamen,description

gatenamen gatetype input1

where

input2 ... inputn

input2... inputn

Project
fault tree
Gatename
Gatetype

Input
description

24 character
24 character
24 character
4 character

AND
OR
TBL
TRAN
NAND
NOR
N/M
CONT

Project name
Fault tree name
Gate name
Gate type

logical AND
logical OR
table of events
transfer followed by a 24-character fault tree name
logical NOT AND
logic NOT OR
N out of M logic gate
continuation of inputs to the previous gate

inputs to the gate (event or gate names)
gate name descriptions included as comment

24 character
60 character

General Rules:

1. A gate definition cannot exceed 255 characters. (Use the CONT gate to break up definitions.)

2. A line beginning with an asterisk (*) is a comment.

3. For each gate name a comment should be included giving the gate description.

B- 17

Fault Tree Logic (Version 7)

Fault tree logic is stored in the block data file of the System relation.

File Name:
xxxxxx.FTL
File Format:
project, fault tree =
* gatenamel,description

gatenamel gatetype input1 input2... inputn

* gatenamen,description

gatenamen gatetype input1 input2 ... inputn

where
Project
fault tree
Gatename
Gatetype

Input
description

24 character
24 character
24 character
4 character

AND
OR
TBL
TRAN
NAND
NOR
N/M
CONT

Project name
Fault tree name
Gate name
Gate type

logical AND
logical OR
table of events
transfer followed by a 24-character fault tree name
logical NOT AND
logic NOT OR
N out of M logic gate
continuation of inputs to the previous gate

inputs to the gate (event or gate names)
gate name descriptions included as comment

24 character
120 character

General Rules:

1. A gate definition cannot exceed 255 characters. (Use the CONT gate to break up definitions.)

2. A line beginning with an asterisk (*) is a comment.

3. For each gate name a comment should be included giving the gate description.

B-18

Fault Tree Cut Sets

File Name:
xxxxx.FTC

File Format:
project, fault tree, analysis =

eventname * eventname +
eventname * eventname * eventname *

eventname +
eventname * eventname.
AEOS

project, fault tree2 =
where

project 24 character Project name
fault tree 24 character Fault tree name
analysis I character Analysis type
I Random
2 Fire
3 Flood
4 Seismic
5 through 8 Reserved
9 through 16 user-defined
eventname 24 character Event names in the cut set

General Rules:

1. An asterisk (*) separates cut set events. Spaces are ignored.

2. A plus sign (+) separates cut sets.

3. A period (.) denotes the end of a sequence.

4. A slash (/) precedes complemented events.

5. Event names are a maximum of 4 characters including the "/".

6. A line beginning with an asterisk (*) is a comment.

B-19

Fault Tree Attributes

File Name:
xxxxx.FTA
File Format:
project, analysis
name,level,mission,mincut, proCut,sample,seed,sizCut,sys,cuts, events,valuel,..,v
alue9
S... I ... I ... I ... I

where
project
analysis
1
2
3
4
5 through 8
9 through 16
name
level
mission
mincut
proCut
sample
seed
sizecut
sys
cuts
events
value

24 character Project name
I character Analysis type

Random
Fire
Flood
Seismic
Reserved
user-defined

24 character Fault tree name
Integer 2 0 = top level tree
Floating point Mission time
Floating point Mincut upper bound
Floating point Probability cut off value
Integer 4 Sample size
Integer 8 Random number seed
Integer 2 Size cut off value
3 character System identifier
Integer 5 Base number of cut sets
Integer 5 Base number of events

Floating pointBase uncertainty values

Fault Tree Recovery Rules

File Name:
xxxxxxxx.FTY
File Format:
project =
-- recovery rule text
where

proj ect 24 character Project name
Fault Tree Textual Information (Version 6)

File Name:
xxxxxx.FTT

B-20

File Format:
project, fault tree =

-- text --
AEOS

project, fault tree2 =

where
project
fault tree

- 24 character
- 24 character

Project name
Fault tree name

Fault Tree Textual Information (Version 7)

File Name:
xxxxxx.FTT
File Format:
project, fault tree [,A]=
-- text --
AEOS

project, fault tree2 =

where
project

fault tree
A

24 character
24 character
1 character

Project name
Fault tree name
If included indicates alternate text

Fault Tree Graphical P&ID

The piping and instrumentation diagrams is a graphics file in binary format. It will be loaded and output as-
is: no conversion will be performed.

File Name:
xxxxxxxx.PID
File Format:

IRRAS 4.0/5.0, SAPHIRE 6.0 and 7.0 P&ID Graphics file (PID Format)

B-21

Event Tree Information

Event Tree Names and Descriptions (Version 6)

File Name:
xxxxxx.ETD

File Format:
project
name,description[,s]

where
Project
Name
Description
S

24 character
24 character
60 character
1 character

Project name
Event tree name
Event tree description
If included indicates event tree is a transfer tree

Event Tree Names and Descriptions (Version 7)

File Name:
xxxxxx.ETD
File Format:
project =
name,description[,s][,A]
... w I..
where

Project
Name
Description
S
A

24 character
24 character
120 character
1 character
1 character

Project name
Event tree name
Event tree description
If included indicates event tree is a transfer tree
If included indicates alternate description

Event Tree Attributes

File Name:
xxxxxx.ETA
File Format:
project =
name,init
. . I • . ..

where
project 24 character Project name

B-22

name
init event

24 character
24 character

Event tree name
Initiating Event

Event Tree Graphics

The SAPHIRE Event Tree Graphics file (*.ETG) is a display list sequence for the graphics. Its format and
contents are the same as the Event Tree Logic File.

File Name:
xxxxxx.ETG
File Format:
See file format for the Event Tree Logic

SAMPLE GRAPHICAL EVENT TREE

ABCDE BCDEF CDEFG DEFGH

+4
+2 3

-+1 -4

+3 4

-2 - +4

-3
-4

-+2 3 4
+4

+3
-4

-2 -4
-4

-3 4

EFGHI
+5

-5

5

5

+5

-5

5
5
5

5Transfer
5
5

5

B-23

Event Tree Logic

File Name:
xxxxxx.ETL
File Format:
project, event tree, !nit event [,T] =
ATOPS
* 1 2 I 3 I 4 I 5 I this is a comment

ABCDE BCDEF CDEFG DEFGH EFGHI
ALOGIC

+1+23+4+5
5

45
2+345
3 +4+5

5
45

1 +2345
2 +3+45
45
45
45
345

ASEQUENCES
Y/N, header# 1,
Y/N, sequence#1,
Y/N, sequence#2,
Y/N, sequence#3,
Y/N, sequence#4,
Y/N, sequence#5,
Y/N, sequence#6,
Y/N, sequence#7,
Y/N, sequence#8,
Y/N, sequence#9,
Y/N, sequence# 10,
Y/N, sequence# 11,
Y/N, sequence# 12,
Y/N, sequence# 13,

Y/N, header#2,
Y/N, end state#1,
Y/N, end state#2,
YIN, end state#3,
Y/N, end state#4,
Y/N, end state#5,
Y/N, end state#6,
Y/N, end state#7,
YIN, end state#8,
YIN, tran file#9,
Y/N, end state# 10,
YIN, end state# 11,
Y/N, end state#12,
Y/N, end state# 13,

Y/N, header#3,
Y/N, xdata 1# 1,
YN, xdatal#2,
YiN, xdata 1 #3,
Y/N, xdata 1 #4,
YN, xdatal#5,
Y/N, xdatal #6,
Y/N, xdatal#7,
Y/N, xdataf1#8,
Y/N, xdata 1 #9,
Y/N, xdatal#10,
Y/N, xdatal # 11,
Y/N, xdatal#12,
Y/N, xdatal#13,

Y/Nheader#4
Y/Nxdata2#1
Y/Nxdata2#2
Y/Nxdata2#3
Y/Nxdata2#4
YINxdata2#5
Y/Nxdata2#6
Y/Nxdata2#7
Y/Nxdata2#8
Y/N,xdata2#9, T
Y/N,xdata2# 10
Y/N,xdata2# 11
Y/N,xdata2# 12
Y/N,xdata2# 13

ATEXT
SIZE s
JUSTj
COLOR j
XY xvalue,yvalue
"120 character line of text"
XY xvalue, yvalue

B-24

"120 character line of text"
"120 character line of text"

APARMS

START yvalue
WINDOW xl.,yl,x2,y2
HEADER xl,x2,x3,x4
AEOS

project, event tree2 =
(additional event trees)
where

Project
Name
init event
[,T]

TOPS
Y/N
Header

Sequence
Endstate
tran file
xdatal
xdata2

24 character
24 character
24 character
I character

24 character
Boolean
24 character
24 character
24 character
24 character
24 character
24 character

Project name
Event tree name
Initiating Event
Optional flag indicating init event name is a Top
event fault tree
Top event/fault tree names

End state text displayed?
Sequence header

Sequence name
End state name
Name of transfer file
Information (optional)
Information (optional)

General Rules:

1. A line beginning with an asterisk (*) is a comment.

2. Literal "^TOPS", "ALOGIC", "^SEQUENCES" labels must be present.

3. Logic is built according to the position of the top event in the definition.

Plus sign (+)---the specified top event succeeded.

Minus sign ()---the specified top event failed.

Blank () ---the response of the indicated top event did not matter.

4. Header, Sequence name, End State name, Xdatal, Xdata fields associated with each sequence.
"Y/N" indicates whether the specified field is visible. A "T" at the end indicates the sequence
transfers to another tree.

5. User text is input following the ^TEXT command. Parameters include the size, justification,
color, and location of the text block.

6. The ^PARMS command allows input of program control parameters.

B-25

Event Tree Rules

File Name:
xxxxxxxx.ETR
File Format:
project, event tree =
-- event tree rule text

^EOS
project, event tree2
where:

Project
Name
Tops

24 character
24 character
24 character

Project name
Event tree name
Top event/fault tree names

Event Tree Textual Information (Version 6)

File Name:
xxxxxx.ETT

File Format:
project, event tree =

-- text--
AEOS

project, event tree2
-- text --

where

project
event tree

24 character
24 character

Project name
Event tree name

Event Tree Textual Information (Version 7)

File Name:
xxxxxx.ETT
File Format:
project, event tree [,A]=
-- text --
AEOS

project, event tree2 =

-- text--
where

project
event tree
A

24 character
24 character
I character

Project name
Event tree name
If included indicates alternate description

B-26

Event Tree Recovery Rules

File Name:
xxxxxxxx.ETY
File Format:
project, event tree =
-- recovery rule text --
AEOS

project, event tree2 =
where

project 24 character Project name
event tree 24 character Event tree name

Event Tree Partition Rules

File Name:
xxxxxxxx.ETP
File Format:
project, event tree =
-- partition rule text --
AEOS

project, event tree2 =
where

project 24 character Project name
event tree 24 character Event tree name

End State Information

Each sequence can be tied to a single plant damage state. The cut sets for a sequence can be partitioned to
map to separate end state. The name and description data are loaded with the SARA *.PDS file.

End State Names and Descriptions (Version 6)

File Name:
xxxxxx.ESD

File Format:
project =
name,description

where
project 24 character Project primary name
name 24 character End state primary name
description 60 character End state description

B-27

End State Names and Descriptions (Version 7)

File Name:
xxxxxx.ESD
File Format:
project =
name,description[,A]

where
project
name
description
A

24 character
24 character
120 character
1 character

Project primary name
End state primary name
End state description
If included indicates alternate description

End State Information

File Name:
xxxxxx.ESI
File Format:
project =
project =
Name, E-QMethod, E-QPasses, R-QMethod, R-QPasses,
..... I I I
where

project
name
e-Qmethod
e-Qpasses
r-QMethod
r-Qpasses

24 character
24 character
1 character
Integer 3
1 character
Integer 3

Project name
End state name
End state default quantification method
End state default min/max quantification passes
Quantification method used for current results
Min/max quantification passes used for current
results

End State Textual Information (Version 6)

File Name:
xxxxxx.EST

File Format:
project, end state =

-- text --
AEOS

project, end state2 =

where
project
end state

24 character
24 character

Project name
End state name

End State Textual Information (Version 7)

B-28

File Name:
end-state.EST
File Format:
project, end state[, A]=
-- text --
where

project 24 character Project name

end state 24 character End state name
A 1 character If included indicates alternate description

End State Cut sets

The end state cut sets are the minimal cut sets for end state logic as derived from the fault tree logic. The cut
sets are stored in the block data file of the Endstate relation.

The MAR-D end state cut sets are in a format similar to that of the fault tree cut sets.

File Name:
xxxxxx.ENC
File Format:
project, event tree, end state =
eventname * eventname +
eventname * eventname * eventname *

eventname +
eventname * eventname.
AEOS

project, event tree2, end state =
where

Project 24 character Project name
event tree 24 character Event tree name
end state 24 character End state name
Eventname 24 character Event names in the cut set

General Rules:

1. An asterisk (*) separates events in a cut set. Spaces are ignored.

2. A plus sign (+) separates cut sets.

3. A period (.) denotes the end of the end state cut sets.

4. A slash (/) precedes complemented events.

5. Event names have a maximum of 24 characters including the "/" character for complemented
events.

6. A line beginning with an asterisk (*) is a comment.

Sequence Information

B-29

Sequence Names and Descriptions (Version 6)

File Name:
xxxxxx.SQD

File Format:
project,eventree =
name,description

AEOS

where
project
event tree
name
description

24 character
24 character
24 character
60 character

Project name
Event tree name
Sequence name
Sequence description

Sequence Names and Descriptions (Version 7)

File Name:
xxxxxx.SQD
File Format:
project,eventree =
name,description[,A]
. . .i | I ..

AEOS
where

project
event tree
name
description
A

24 character
24 character
24 character
120 character
1 character

Project name
Event tree name
Sequence name
Sequence description
If included indicates alternate description

B-30

Sequence Cut sets

The sequence cut sets are the minimal cut sets for sequence logic as derived from the fault tree logic. The cut
sets are stored in the block data file of the Sequence relation.

The MAR D sequence cut sets (.SQC) are in a format similar to that of the fault tree cut sets.

File Name:
xxxxxx.SQC
File Format:
project, event tree, sequence, analysis =
eventname * eventname +hjn
eventname * eventname * eventname *

eventname +
eventname * eventname.
AEOS

project, event tree2, sequence2 =
where

project 24 character Project name
event tree 24 character Event tree name
sequence 24 character Sequence name
analysis 1 character Analysis type
I Random
2. Fire
3 Flood
4 Seismic
5 through 8 Reserved
9 through 16 user-defined
eventname 24 character Event names in the cut set

General Rules:

1. An asterisk (*) separates events in a cut set. Spaces are ignored.

2. A plus sign (+) separates cut sets.

3. A period (.) denotes the end of the sequence.

4. A slash (/) precedes complemented events.

5. Event names have a maximum of 24 characters including the "/" character for complemented
events.

6. A line beginning with an asterisk (*) is a comment.

B-31

Sequence Attributes

File Name:
xxxxxx.SQA
File Format:
project, event tree, analysis =
name,endstate,mincut,mission,procut,sample,seed,size,cuts,
events,valuel, ,value9,default flags, used flags

^EOS

project, event tree2
where

project
event tree
analysis

24 character
24 character
I character

Project name
Event tree name
Analysis type

1
2
3
4
5 through 8
9 through 16

Random
Fire
Flood
Seismic
Reserved
user-defined

name
endstate
mincut
mission
procut
sample
seed
size
cuts
events
value

24 character
24 character
Floating point
Floating point
Floating point
Integer 4
Integer 8
Integer 2
Integer 5
Integer 5
Floating point

Sequence name
End State name
Mincut upper bound
Mission time in hours
Probability cut off value
Sample size
Random number seed
Size cut off value
Base number of cut sets
Base number of events
Base uncertainty values

value 1
value2
value3
value4
value5
value6
value7
value8
value9

5 th percentile

Median
Mean
95th percentile
Minimum sample
Maximum sample
Standard deviation
Skewness
Kurtosis

Default flags
Used flags

24 character
24 character

Default flag set for this sequence
Flag set used to generate these cut sets

B-32

Sequence Logic

File Name:
xxxxxxxx.SQL
File Format:
project, event tree, sequence=
sysl sys2 /sys3 sys4

^EOS

project, event tree2, sequence2=
where

Project
event tree
Sequence
Sys

24 character
24 character

24 character
24 character

Project name
Event tree name

Sequence name
Fault tree name

Sequence Textual Information (Version 6)

File Name:
xxxxxx.SQT

File Format:
project, event tree, sequence=
--- text ---
AEOS

project, event tree2, sequence2=
--- text ---

where
project
sequence
event tree
A

24 character
24 character
24 character
I character

Project name
Sequence name
Event tree name
If included indicates alternate description

B-33

Sequence Textual Information (Version 7)

File Name:
xxxxxx.SQT
File Format:
project, event tree, sequence[, A]=
--- text ---
AEOS
project, event tree2, sequence2=
--- text ---
where

project 24 character Project name
sequence 24 character Sequence name
event tree 24 character Event tree name
A I character If included indicates alternate description

Sequence Recovery Rules

File Name:
xxxxxxxx.SQY
File Format:
project, event tree, sequence =
-- recovery rule text --
AEOS

project, event tree, sequence2 =
where

project 24 character Project name
event tree 24 character Event tree name
sequence 24 character Sequence name

Sequence Partition Rules

File Name:
xxxxxxxx.SQP
File Format:
project, event tree, sequence =
-- partition rule text --
AEOS

project, event tree, sequence2 =
where

Project 24 character Project name
event tree 24 character Event tree name
Sequence 24 character Sequence name

B-34

Gates

Gate Description (Version 6)

File Name:
xxxxxx.GTD

File Format:
project=
name,description

where

Project
Name
description

24 character
24 character
120 character

Project name
Gate name
Gate description

Gate Description (Version 7)

File Name:
xxxxxx.GTD
File Format:
project=
name,description[,A]
where

Project
Name
description
A

24 character
24 character
120 character
I character

Project name
Gate name
Gate description
If included indicates alternate description

Gate Attributes

File Name:
xxxxxx.GTA
File Format
project=
name,attribute
where

Project
Name
Attribute

24 character
24 character
4 character

Project name
Gate name
Gate type

Change Sets

B-35

Change Set Description (Version 6)

File Name: .
xxxxxx.CSD

File Format:
project=
name,description

where

project
name
description

24 character
24 character
60 character

Project name
Change set name

Change set description

Change Set Description (Version 7)

File Name:
xxxxxx.CSD
File Format:
project=
name,description[,A]

where
project
name
description
A

24 character
24 character
120 character
1 character

Project name
Change set name
Change set description
If included indicates alternate description

B-36

Change Set Information (Version 6)

File Name:
xxxxxx.CSI

File Format:
project,change=
APROBABILITY
eventname,calc,udT,prob,lambda,tau,udV,udC,mission,init
^CLASS
eventname,group,compType,compld,system,location,failMode,train,init,attl ,..att2
4
calcType, udT, prob,lambda,tau,udV, udC,mission, nit
AEOS

project,change2=

where
change
eventname
group
compType
compld
system
location
failMode
train
init
attl..attl6

.24 character
24 character
24 characters
7 characters
3 characters
3 characters
3 characters
2 characters
2 characters
1 character
Class attribute
flags

1 character

change set name
name mask
event group mask
component type mask
component ID mask
system mask
location mask
failure mode mask
train mask
initiating event (Y/N)
16 values of Y or N (yes or no) indicate whether the
attribute described in the class attribute file is
applicable.
Calculation typecalc

1
2
3
4
5
6
7
8
9
T
F
I
S
E

Probability
same as type 3
1 Exp(-Lambda * Mission Time)
same as type 5
Operating component with full repair
same as type 7
1 +(EXP(Lambda*Tau) 1.0)/(Lambda*Tau)
Base Probability * Probability
Base Probability * Probability
Set to House Event (Failed, Prob=1.0)
Set to House Event (Successful,Prob=0.0)
Set to ignore
Use fault tree min cut upper bound
Use end state min cut upper bound

B-37

G
H

Seismic event - Enter g level for screening
Seismic event - Use medium site hazard curve for screening

udT I character Uncertainty distribution type

P
L
N
B
D
G
C
E
U
H
M
S
0

use point estimate
Log normal, error factor
Normal, standard deviation
Beta, b of Beta(a,b)
Dirichlet, b of Dirichlet
Gamma, a Gamma(a)
Chi-squared, degrees of freedom
Exponential, none
Uniform, Upper end pt.
Histogram
Maximum entropy
Seismic log normal, betaR, betaU
Constrained non-informative

prob
lambda
tau
udV
udC

mission
init

Floating point
Floating point
Floating point
Floating point
4 characters

Floating point
Boolean (T/F)

Probability value
Basic event failure rate per hr.
Time to repair in hours
Uncertainty distribution value
Uncertainty correlation class. Events in same class
are 100% correlated.
Mission time
Initiating event

B-38

Change Set Information (Version 7)

File Name:
xxxxxx.CSl
File Format:
project,change=
APROBABILITY
eventname,calc,udT,prob,lambda,tau,udV,udC,mission,init
ACLASS

eventname,group,com pType,compld,system,location,failMode,train,init,attl ,..attl
6
calcType,udT,prob,lambda,tau,udV,udC,mission,init
AEOS

project,change2=
where

change
eventname
group
compType
compld
system
location
failMode
train
init
attl..attl6

24 character
24 character
24 characters
7 characters
3 characters
3 characters
3 characters
2 characters
2 characters
1 character
Class attribute
flags

change set name
name mask
event group mask
component type mask
component ID mask
system mask
location mask
failure mode mask
train mask
initiating event (Y/N)
16 values of Y or N (yes or no) indicate whether the
attribute described in the class attribute file is
applicable.
Calculation typecalc I character

1
3
5
7
8
9
T
F
I
S
E
G
H
B

Probability
1 Exp(-Lambda * Mission Time)
Operating component with full repair
1 +(EXP(Lambda*Tau) 1.0)/(Lambda*Tau)
Base Probability * Probability
Base Probability * Probability
Set to House Event (Failed, Prob=1.0)
Set to House Event (Successful,Prob=0.0)
Set to ignore
Use fault tree min cut upper bound
Use end state min cut upper bound
Seismic event - Enter g level for screening
Use medium site hazard curve
Use base case (even if prior marked change sets have altered the
value)

B-39

udT 1 character. Uncertainty distribution type

P
L
N
B
D
G
C
E
U
H
M
S
0

Use point estimate
Log normal, error factor
Normal, standard deviation
Beta, b of Beta(a,b)
Dirichlet, b of Dirichlet(a,b)
Gamma, a of Gamrna(a)
Chi-squared, degrees of freedom
Exponential, none
Uniform, Upper end pt.
Histogram
Maximum entropy
Seismic log normal, betaR, betaU
Constrained non-informative

prob
lambda
tau
udV

udC

mission
init

Floating point
Floating point
Floating point
Floating point
24 characters

Floating point
Boolean (T/F)

Probability value
Basic event failure rate per hr.
Time to repair in hours
Uncertainty distribution value
Uncertainty correlation class. Events in same class
are 100% correlated.
Mission time
Initiating event

Change Set Attributes (Version 7 only)

File Name:
xxxxxx.CSA
File Format:
project=
name,altName

where
project
name
altName

24 character
24 character
24 character

Project name
Change set primary name
Change set alternate name

B-40

Histograms

Histogram Description (Version 6)

File Name:
xxxxxxxx.HID

File Format:
project =

name,type,subtype,description

where
project
name
type
H
U
F
subtype
P
A
R
H
Description

24 character
24 character
I character

Project name
Histogram primary name
Histogram type

Hazard
Uncertainty
Fragility

1 character Histogram subtype
Percent
Area
Range
Hazard

60 character Histogram description

Histogram Description (Version 7)

File Name:
xxxxxxxx.HID
File Format:
project =
name, type, subtype, description[, A]
where

project 24 character Project name
name 24 character Histogram primary name
type 1 character Histogram type
H
U
F
subtype I character Histogram subtype
P
A
R

Hazard
Uncertainty
Fragility

Percent
Area
Range

B-41

H
Description
A

Hazard
120 character Histogram description
1 character If included indicates

alternate description

Histogram Information

File Name:
xxxxxxxx.1HiI
File Format:
project, namel=
type, subtype
bin1 valuel, bin1 value2
bin2 valuel, bin2 value2

bin20 valuel, bin2O value2

AEOS

project, name2=
where

Project
NameN
Type
H
U
F
Subtype
P
A
R
H

24 character
24 character
I character

Project name
Histogram primary name
Histogram type

Hazard

Uncertainty
Fragility

I character Histogram subtype
Percent
Area
Range
Hazard

bin value I Exponential
bin value2 Exponential

first value for bin
second value for bin

B-42

Histogram Attributes (Version 7 only)

File Name:
xxxxxxxx.HII
File Format:
project =
name, type, subtype, altName
where

project
name
type
H
U
F
subtype
P
A
R
H
aItName

24 character
24 character
I character

Project name
Histogram primary name

Histogram type

I character Histogram subtype

Hazard
Uncertainty
Fragility

Percent
Area
Range
Hazard

24 character Histogram alternate name

Slices

Slice Descriptions (Version 6)

File Name:
xxxxxxxx.SLD
File Format:
project =
name, description
where

project
name
description

24 character
24 character
60 character

Project name
Slice name
Slice description

Slice Descriptions (Version 7)

File Name:
xxxxxxxx.SLD
File Format:
project =
name, description[, A]
where

project 24 character Project name

B-43

name
description
A

24 character
120 character
1 character

Slice name
Slice description
If included indicates alternate description

Slice Basic Events

File Name:
xxxxxxxx.SLB
File Format:
project, slice =
eventname + eventname + eventname +.
AEOS

project, slice2 =

where
project
slice
eventname
+ or *

24 character

24 character
24 character
1 character

Project name
Slice name
Event names in the slice
Slice logic: +=or, *= and

General Rules:

1. A plus symbol (+) or asterisk (*) between event names represent the logic in a slice. Spaces are
ignored. All logic must be the same in a slice.

2. A period (.) denotes the end of the slice.

3. A slash (/) precedes complemented events.

4. Event names have a maximum of 24 characters including the "/" character for complemented
events.

5. A line beginning with an asterisk (*) is a comment.

Slice Basic Information

File Name:
xxxxxxxx.SLI
File Format:
project, slice =
eventname , delta, factor

AEOS

project, slice2 =
where

project
slice
eventname

24 character
24 character
24 character

Project name
Slice name
Event names in the slice

B-44

delta
factor

Floating point
1 character

Delta value that is factored
Factor flag: F=multiply, Blank=add

Slice Basic Attributes (Version 7 only)

File Name:
xxxxxx.SLA
File Format:
project=
name,altName

where
project
name
altName

24 character
24 character
24 character

Project name
Slice primary name
Slice alternate name

SETS FORMAT

Sequences (SETS)

Sequence Cut sets

File Name:
xxxxxx.DNF.

The format of the SETS output cut sets file (.DNF) is dependent upon the command issued within SETS.
The factored form is

A * (B + C)

The disjunctive normal form is

A*B+A*C.

ONLY the disjunctive normal form is accepted by SAPHIRE at this time.

File Format:
sequence-name =
eventName * eventName +
eventName * eventName.
where

B-45

General Rules:

1. An asterisk (*) separates event names. Spaces are ignored.

2. A plus sign (+) separates cut sets.

3. A period (.) denotes the.end of a sequence.

4. An asterisk (*) in the first column denotes a comment.

Fault Trees (SETS)

Fault Tree Logic

File Name:
xxxxxx.SET.
File Format:
FAULT TREE$ fault tree name.
COMMENT$ descriptive material $
gate type $ gate name. IN$ input 1, input 2, .. ., input n.

OUT$ output 1, output 2, ... , output n.
event type $event name. OUT$ output 1, . ..output n.
where

fault tree name
gate type
AG
OG
EOR
EAG
SG
gate name

output n

event type
BE
CE
UE
DE
EE
COMMENT$

The name of the fault tree.
The type of gate being defined.
= AND gate
= OR gate
= Exclusive OR gate (converted to SG)
= Exclusive AND gate (converted to SG)
= Special Gate
The name of the gate being defined (16 characters) input n
The names of the gates or primary events that are the immediate
inputs to the gate being defined (16 characters)
The names of the gates that are the immediate outputs of the gate or
primary event being defined (16 characters).
The type of primary event being defined.

= Basic Event

= Conditional Event
= Undeveloped Event
= Developed Event
= External Event
Defines a comment. Must follow a "." delimiter.

B-46

Fault Tree Cut sets

The fault tree cutsets are stored in the System relation in the block data file. The format of the cutset
file (.DNF) is given above.

Basic Events (SETS)

Basic Event Descriptions

File Name:
xxxxxxx.DES.
File Format:
name $ description $
name $ description $
where

name event name
name list description of event

Basic Event Failure Rates

File Name:
xxxxxxx.VBK.
File Format:

VALUE BLOCK$ value-block-name

prob $ name-list$

prob $ name-list$

where
prob point value probability estimate
name list list of event names separated by commas

B-47

Appendix C

MAR-D Files for Sample Database

C. MAR-D Files for Sample Database

SAPHIRE Version 6 MAR-D formats for the Sample Database are presented. Version 6 results were
selected for presentation since they can be loaded into both versions 6 and version 7.

Note that these examples are shown in a document created by a word processor. Actual MAR-D files should
be edited in a text editor, such as Notepad, so that formatting codes are not embedded into the text.
SAPHIRE handles only ASCII text characters.

In this document, some line wrapping occurs so that entire lines can be displayed. Where this occurs in this
document, the wrapped line will appear indented.

PROJECT FILES

These are examples of files (or partial files) in MAR-D formats for the Sample database. These formats are
as of August 2005.

Project Names and Description File (.FAD)

SAMPLE ,This is a sample data base

Project Attribute File (.FAA)

SAMPLE , 0001 =
* Name , Mission , NewSum , Company , Location ,Typ,

Design ,Vendr, Arch Eng , OpDate , QualDate
SAMPLE , 2.400E+00l,+0.000E+000,STANDARD ,HOMETOWN

Project Text File (.FAT)

SAMPLE
A simple example that models the probability of getting to work on time.

SAMPLE
A simple example that models the probability of getting to work on time.

C-3

BASIC EVENT FILES

Basic Event Names and Description File (.BED)

SAMPLE
ALARM
ALM-BPF
ALM-CPF
ALM-FTS
ALM-MECH
ALM-SWT
MEDICINE
OTHER
PER-TRNS
PERSONAL
PUB-TRNS
PUB-TRNS-LATE
SICK
SICK-FAM
TRNS-2
TRNSPRT
WORK

,ALARM CLOCK FAILURE
,Alarm fails due to battery failure
,Alarm fails due to commercial power failure
,Alarm fails because worker fails to set
,Alarm fails due to mechanical failure
,Alarm fails because worker set wrong time
,Recovery for sick failure preventing attending work
,Other personal reasons that cause a failure to get to work
Personal transportation
PERSONAL PROBLEMS

,Public transportation fails.
,Public transportation fails late time frame
,Failed to get to work because of illness
,Failed to get to work because of illness in project
,COMMERCIAL TRANSPORTATION FAILS AT A LATER TIME
,PERSONAL AND COMMERCIAL TRANSPORTATION FAIL
,Event tree (WORK) initiating event

Basic Event Rate Information File (.BEI)

SAMPLE
* Name ,FdT,UdC,UdT, UdValue , Prob , Lambda

Mission ,Cat,PF, UdValue2
ALARM ,i, L, 1.OOOE+000, 1.OOOE+000,+O.OOOE+000,

+O.OOOE+000,+O.OOOE+000, , +O.OOOE+000

ALM-BPF fi, L, 3.OO0E+000, 9.OOOE-008,+O.OOOE+000,
+O.OOOE+000,+O.OOOE+000, , +O.OOOE+000

ALM-CPF fi, L, 3.OOOE+000, 1.500E-002,+0.000E+000,
+O.OOOE+000,+O.OOOE+000, , +O.OOOE+000

ALM-FTS fi, L, 1.OOOE+001, 5.500E-006,+O.OOOE+000,
+O.OOE+000,+O.OOOE+000, , +O.OOOE+000

ALM-MECH fi, L, 3.OOOE+000, 2.700E-008,+O.OOE+000,
+0.000E+000,+0.000E+000, , +O.OOOE+000

ALM-SWT pi, L, 1.OOOE+001, 2.700E-003,+O.OOOE±OOO,
+O.OOOE+000,+O.OOOE+000, , +O.OOOE+000

MEDICINE ,i, L, 5.OOOE+000, 5.OOOE-001,+O.OOOE+000,
+O.OOOE+000,+O.OOOE+000,R, +O.OOOE+000

OTHER fi, L, 1.OOOE+001, 8.100E-003,+O.OOE+000,
+O.OOOE+000,+O.OOOE+000, , +O.OOOE+000

PER-TRNS fi, L, 5.OOOE+000, 5.500E-003,+O.OOOE+000,
+O.OOOE+000,+O.OOOE+000, , +O.OOOE+000

PERSONAL ir ,L, 1.000E+000, i.000E+000,+0.000E+000,
+O.OOOE+000,+O.OOOE+000, , +O.OOOE+000

PUB-TRNS fr ,L, 3.OOOE+000, 2.700E-003,+O.OOOE+000,
+O.OOOE+00,+O.OOOE+000C , +O.OOOE+000

PUB-TRNS-LATE fr ,L, 3.OOOE+000, 2.OOOE-003,+O.OOOE+000,
+O.OOOE+00,+O.OOOE+000 , +O.OOOE+000

SICK /t ,L, 1.000E+001, 8.!00E-003,+O.QOOE+000,
+O.OOOE+000,+O.OO0E+000, , +O.OOOE+000

SICK-FAM fr ,L, 1.OOOE+001, 4.OOOE-003,+O.OOOE+000,
+O.OOOE+000,+O.OOOE+000C , +0.OOOE+000

TRNS-2 fr ,L, 1.OOOE+000, 1.OOOE+000,+O.OOOE+000,
+0.OOOE+000,+O.OOOE+000, , +O.OOOE+000

. Tau

C-4

TRNSPRT ,i, ,L, 1.OO0E+000, 1.000E+000,+0.000E+000,
+O.OOOE+000,+O.OOOE+000, , ,+O.OOOE+000

WORK ,i, ,L, 2.OOOE+000, 2.480E+002,+O.OOOE+000,
+O.OOOE+000,+O.OOOE+000,I, ,+0.000E+000

Basic Event Attribute File (.BEA)

SAMPLE

* Name AltName , Typ, Sys, Fail, Loc, CompId, Train,-

Attributes ,Tempiate Name ,Use
TemplateFlags ,Shape

ALARM ALARM DE , , ,

,Y, N, N, N, N, N, N, N, N, N, N, N, N, NN, N, N,
,F, F,F, F, F, F, F, F, F, F, F, F, F,

ALM-BPF ALM-BPF f , , f
,Y, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
,F, F,

ALM-CPF ,ALM-CPF f, , ,

,Y, N, N, N, N, NNN,N, N, N,N, N, N, N, N, N,
, F, F, F, F, F, F, F, F, F, F, F, FF, F, F, FF, F, F, F, F, F, F, F, F, F, F, F, F, F, F,

ALM-FTS ,ALM-FTS , , ,

Y, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,F,F, F, F,F, F, FF, F, F, F, F, F, FF, F,

ALM-MECH , ALM-MECH , f ,

,Y, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
, F, F, F, F, F, F, F, F, F, F, F, F, FF, F, F, F, F, F, F, F, F, F, FF, F, F, F, F, F, F,

ALM-SWT ,ALM-SWT , I , I

,Y, N, N,N, N, N, N, N, N, N, N, N, N, N, N, N, N,
,F, F,

MEDICINE ,MEDICINE , f I I

,Y, N, N, N, N, N, N, N, N, N, N, N, NN, N, N, N,
F, F,

OTHER , OTHER , , , ,

,Y, NN,N, N, N, N, N,N, N, N, N, N, N, N, N, N,
, F,

PER-TRNS PER-TRNS r I I I
Y, N, N, N, N, N, N, N, N, N, N, N, NN, N, N, N,

, F, B
PERSONAL PERSONAL DE

,Y, N, N, N,N, N, N, N, N, N, N, N, N, N, N, N, N,
, F,

PUB-TRNS PUB-TRNS , I , I
,Y, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F , F, F, F, F, F, F, F, F, F, F, F, F, F, F, F,

PUB-TRNS-LATE PUB-TRNS-LATE I r , I
,Y, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, ,
,F, F, F, F, F, F, F, F, F, F, FF, B

sICK SICK , , I I

,Y, N, N, N, N, N, N, NN, N, N, N, N, N, N, N, N,
F, F,

SICK-FAM SICK-FAM , I , r
,Y,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,
,F, F,

TRNS-2 ,TRNS-2 ,DE , I I ,

,Y, N, N, N, N, N, N, N, N, N, N, N, NN, N, N, N,
, F,

TRNSPRT ,TRNSPRT ,DE , , f

,Y, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
, F, F,F, F,

C-5

WORK ,WORK , , , ,

,Y, N, N, N, N, N, N, N, N, N, N, N, N,N, N, N, N,
,F, F,

FAULT TREE FILES

Fault Tree Names and Description File (.FTD)

,ALARM CLOCK FAILURE
AL ,PERSONAL PROBLEMS

,COMMERCIAL TRANSPORTATION FAILS AT A LATER TIME
T ,PERSONAL AND COMMERCIAL TRANSPORTATION FAIL

Fault Tree Logic File (.FTL)

SAMPLE
ALARM
PERSON
TRNS-2
TRNSPR

SAMPLE, ALARM
ALARM
ALARM-I
ALARM-2
^EOS
SAMPLE, PERSONAL =

PERSONAL
^EOS

SAMPLE, TRNS-2 =

TRNS-2
^EOS
SAMPLE, TRNSPRT =

TRNSPRT

OR ALARM-I ALARM-2 ALM-MECH
OR ALM-FTS ALM-SWT
*AND ALM-BPF ALM-CPF

OR OTHER SICK SICK-FAM

AND PER-TRNS PUB-TRNS-LATE

AND PER-TRNS PUB-TRNS

Fault Tree Graphics File (.DLS)

NOT IN ASCII FORMAT

C-6

Fault Tree Cut Sets File (.FTC)

SAMPLE, ALARM, 0001=
ALM-BPF * ALM-CPF +
ALM-FTS +
ALM-MECH +
ALM-SWT
^EOS
SAMPLE, PERSONAL, 0001=
OTHER +
SICK +
SICK-FAM
^EOS
SAMPLE, TRNS-2, 0001=
PER-TRNS * PUB-TRNS-LATE

EOS
SAMPLE, TRNSPRT, 0001=
PER-TRNS * PUB-TRNS

Fault Tree Attribute File (.FTA)

SAMPLE, 0001 =
* Name , Level, Mission , MinCut , Def ProCut,Used

ProCut,Sample,Seed,Siz,Sys,Cuts,Events, UdValues,
Def Flags, Used Flags, S QMethod, S QPasses, R
QMethod, R QPasses

ALARM ,0, 2.400E+001, 2.706E-003, -------E --- , E --- , , , ,--
-- -- - - - - - - -E ---- f -- -- -- E --- --- --,E --- -f, -- - E -- - - - - E - --

,E ----f ------E • -- - - - - E ---- ------. E ----.,
,-,-...,M, 0

PERSONAL ,0, 2.400E+001, 2.007E-002, -------E--- , E ----- -
--- --- E -- - - - - E --- --- -- E - - - - --E F----- - - -E -

,E ----- ---- E -- - - - - E ----- ------. E ----.,

, , ---- ,M, 0
TRNS-2 ,0, 2.400E+001, 1.100E-005, ------ E --- , ---- -

-- - - - -E - - - - --E - - - - --E - - - - --E - - - ---- E ---
,E ----, ------E -- - - - - E ----f, -- - E -- -

I I ----. M, 0
TRNSPRT ,0, 2.400E+001, 1.485E-005, ------- E E,----- -

- -- -- -- -- - -- -- E -- -f - - - E -- - - - - E - - - - --E ----- -- -- --. E ---
,E -- --- - - E -- - - - - E , --- - - - -E --- -.,

, , .---- ,M, 0

Fault Tree Text File (.FTT)

SAMPLE, ALARM=
The ALARM fault tree is a simple representation modeling alarm clock failure.
Some common reasons for alarm clock failure include settingthe wrong time,
mechanical failure, or power failure (either battery or commercial).

C-7

EVENT TREE FILES

Event Tree Names and Descriptions File (.ETD)

SAMPLE
WORK. ,WORK EVENT TREE

Event Tree Graphics File (.ETG)

SAMPLE, WORK, WORK -

^WINVER1.0
^TOPS
ALARM, PERSONAL, TRNSPRT
^LOGIC
+1 +2 +3

-3
-2 3

-1 2 +3
-3

^SEQUENCES

Y, SEQUENCE, N, Y, N, STATE, N, N,
N, N, N, OK, Y, A, Y, OK,
Y, B, Y, LATE-TO-WORK, Y, , Y, ,
Y, C, Y, MISS-WORK, Y, , Y, ,
Y, D, Y, LATE-TO-WORK, Y, Y, ,
Y, E, Y, LATE-TO-WORK, Y, , Y, ,
^TOPDESC

"INITIATING EVENT"

"ALARM FAILURE"

"PERSONAL FAILURE"

"TRANSPORTATION",

"FAILURE"

^PARMS
START 52.00, 809.60 WINDOW 132.00, 363.50, 1043.00, 1274.50
ASPECTRATIO 0.74
HEADER 972.00, 1224.00, 1476.00, 1728.00
STRING E
DEFFONT 5
TOPWIDTH 16
TOPSIZE -15.00
TOPFONT 1
TOPFACE Times New Roman
TOPPITCH 2
TOPCOLOR 15
DESHITE 3
DESSIZE -10.00
DESFONT 5
DESFACE TimesNewRoman
DESCOLOR 15
DESPITCH 2
NODEHITE 20.00
ENDSIZE -15.00
ENDFONT 1
ENDFACE Times New Roman
ENDPITCH 2
ENDCOLOR 15

C-8

BACKCOLOR 1
TOPBACKCOLOR 1
LINECOLOR 15
HILITECOLOR .1
LOCALE 1033
MODDATE 2003/09/23

Event Tree Logic File (.ETL)

SAME AS THE .ETG FILE SECTION.C.5.2

Event Tree Attribute File (.ETA)

SAMPLE
* Name , Init Event

WORK , WORK

Event Tree Rules File (.ETR)

SAMPLE, WORK=
I rule to substitute TRNS-2 for TRNSPRT
if ALARM then

TRNSPRT = TRNS-2;
endif

Event Tree Recovery Rules (.ETY)

SAMPLE, WORK=
I rule to add recovery potential to the cut sets
if SICK then

recovery = MEDICINE;
endif

Event Tree Text File (.ETT)

SAMPLE, WORK=
A FAIL-SUCCESS LOGIC WAS USED TO DEVELOP AN EVENT TREE TO CALCULATE THE
FREQUENCY THAT THE AVERAGE PERSON WILL ARRIVE ON TIME, BE LATE, OR MISS A DAY
OF WORK.

C-9

END STATE FILES

End State Names and Description File (.ESD)

SAMPLE
LATE-TO-WORK , This end state represents being late to work
MISS-WORK , This end state represents missing work

End State Text File (.EST)

SAMPLE, LATE-TO-WORK=
THIS IS THE LATE TO WORK END STATE.

SEQUENCE FILES

Sequence Names and Description File (.SQD)

SAMPLE, WORK=
2 ,LATE TO WORK
3 ,MISS WORK
4 ,LATE TO WORK
5 ,LATE TO WORK

Sequence Cut Set File (.SQC)

SAMPLE, WORK, 2, 0001=
PER-TRNS * PUB-TRNS
^EOS
SAMPLE, WORK, 3, 0001=
OTHER +
SICK * MEDICINE +
SICK-FAM
^EOS
SAMPLE, WORK, 4, 0001=
ALM-BPF * ALM-CPF +
ALM-FTS +
ALM-MECH +
ALM-SWT
^EOS
SAMPLE, WORK, 5, 0001=
ALM-BPF * ALM-CPF * PER-TRNS * PUB-TRNS-LATE +
ALM-FTS * PER-TRNS * PUB-TRNS-LATE +
ALM-MECH * PER-TRNS * PUB-TRNS-LATE +
ALM-SWT * PER-TRNS * PUB-TRNS-LATE

C-10

Sequence Cut Set Attribute File (.SQA)

SAMPLE, WORK, 0001=
* Name , End State , MinCut , Mission , ProCut

,Sample,Seed,Siz,Cuts,Events, UdValues, Def Flags, Used FlagsS QMethod,
S QPasses, R QMethod, R QPasses

2 ,LATE-TO-WORK , 3.683E-003, 2.400E+001, -.-- -- E----, 1000,40777,--,
1, 3, ------- E , - E ----,------ ---- , E ----- ,------ E ----
--- E - -7 -- , -..... E ,-- - - - - E -- - - - - E ---- , r , , ... -- -,M , 0

3 ,MISS-WORK , 3.985E+000, 2.400E+001, ------- E----, 1000,46267,--,
3 , 5,- -- - E ,-- -- - - E -- - - - - E -- - - - - E -- -, - - - E- - ---

4 E ,----RK -- E -.- --- --, E ,-E-....--- ----,E , 10 ,5 7, -M, 0
4 ,LATE-TO-WORK , 6.710E-001, 2.400E+001, -------E----, 1000,52257,--,

Sequence Logic File (.SQL)

SAMPLE, WORK, 2=
/ALARM /PERSONAL TRNSPRT

SAMPLE, WORK, 3=
/ALARM PERSONAL

SAMPLE, WORK, 4=

ALARM /TRNSPRT
^ EOS
SAMPLE, WORK, 5=

ALARM TRNS-2

Sequence Text File (.SQT)

SAMPLE, WORK, 3=

Sequence 3 is the event tree sequence that is used to demonstrate the use of
recovery rules or recovery actions.

C-1l

GATE FILES

Gate Description File (.GTD)

SAMPLE
ALARM *, ALARM CLOCK FAILURE
ALARM-I , ALARM CLOCK SETTING FAILURE
ALARM-2 , ALARM CLOCK POWER FAILURE
PERSONAL , PERSONAL PROBLEMS
TRNS-2 , COMMERCIAL TRANSPORTATIONFAILS AT A LATER TIME
TRNSPRT , PERSONAL AND COMMERCIAL TRANSPORTATION FAILURE

Gate Attributes File (.GTA)

SAMPLE
* Name , Type

ALARM OR
ALARM-I OR
ALARM-2 , AND
PERSONAL OR
TRNS-2 AND
TRNSPRT AND

C-12

Appendix D

Seismic Data Loading

D. Seismic Data Loading

INTRODUCTION

This appendix discusses the features and basic data loading processes of the seismic module in SAPHIRE
5.0. The seismic data loading process assumes the availability of internal-events PRA or database (i.e. a
SAPHIRE data base implementing analysis with random failures within a particular system). The
procedures necessary for seismic data loading using the SAPHIRE code are described in the following
subsections.

SAPHIRE SEISMIC CAPABILITIES

The SAPHIRE seismic analysis capabilities are designed to function directly from the internal-events PRA.
Thus, internal basic events, system fault tree models, accident sequences, and initiating events have all been
defined and developed for the system of interest. The SAPHIRE seismic analysis consists of taking the

* internal basic events (having random failures) and converting them into seismic basic events that represent
seismic-induced failures. SAPHIRE performs transformations in the form of Boolean identities that allows
the user to build on an internal-events analysis when developing a seismic model. After seismic
vulnerabilities have been identified, they are incorporated into an existing internal-events analysis using a set
of basic event transformations that substitute in seismic-induced failures that are used to generate seismic
sequence or system cut sets.

BUILDING AND LOADING THE SEISMIC SAPHIRE MODEL

Hazard Curves

The hazard curve represents a range of possible earthquake magnitudes. The curve is usually found in the
form of a probability of exceedence curve, with the earthquake ground acceleration on the horizontal axis
and the probability of exceeding that acceleration on the vertical axis. (Sources of hazard curve data and
information include NUREG-1488 and NUREG-4550.) SAPHIRE uses this information in the form of a
histogram or a discreet probability density distribution. For a more detailed description of hazard curves and
the methodology on theiruse during seismic analysis, see the SAPHIRE Technical Reference Manual.

The hazard curve (or histogram) that will be used in the seismic analysis is developed or modified by
selecting the desired seismic hazard curve in the SAPHIRE program. This is done by selecting Modify
Project main menu option. Under the heading "Site Hazard Curves", there are three fields: "Low",
"Medium", and "High". The histogram listed in the "Medium" field will be the one used during analysis. If
a seismic hazard curve is not available, then one must be added in order to generate quantified cut sets.
A seismic hazard curve (or histogram) can be added (or loaded) into the SAPHIRE database using two
methods. The histogram can be added and the discrete data points input from the Modify-- Histograms
main menu option or it can be loaded from a histogram flat file (.HII) through the Utility - Load and
Extract main menu option. The procedures for both methods are discussed below.

D-3

Loading the Seismic Histogram through the Modify main menu option

To add a seismic histogram, the following steps are required:

1. Select Modify -- Histogram main menu option.

2. Right click to invoke a popup menu, and from it select Add.

3. Choose the Hazard histogram format.

4. Enter the name and description of the seismic histogram.

5. Enter the acceleration rates and frequencies. The acceleration rate is the peak ground
acceleration (i.e., magnitude of the earthquake). The frequency is the probability that an
earthquake that exceeds the ground acceleration will occur.

6. Press the OK button to save the new histogram.

Next, assign the histogram to the project's site hazard curve:

1. Select Modify - Project main menu option to bring up the Edit Project dialog.

2. Under the heading "Site Hazard Curves", type in the name of the seismic histogram for the
"Medium" field.

Loading the Seismic Histogram Through the MAR-D Interface

The hazard curve (or histogram) may also be loaded into the SAPHIRE database using the Utility -+ Load
and Extract main menu option (also known as the MAR-D interface). The histogram is represented in an
ASCII text file and loaded into the SAPHIRE database as discussed in Appendix A. The two flat file types
that are required to load the histogram using MAR-D are discussed below.

Histogram Description File (.HID)

The MAR-D flat file format for the SAPHIRE version 6 histogram description file (.HID) is shown below.
(The version 7 format is the same, but can accommodate up to 24 character names, and 120 character
descriptions.)

D-4

File Name:
xxxxxxxx.HID

File Format:
project =
name, type, subtype, description[, A]

where
project 16 character Project name
name 16 character Histogram primary name
type 1 character Histogram type
H

U
F
subtype I character Histogram subtype

P
A
R
H

Hazard

Uncertainty
Fragility

Percent
Area
Range
Hazard

Description
A

60 character
1 character

Histogram description
If included indicates
alternate description

An example of a histogram description file in MAR-D format is as follows:

SAMPLE
SEISMIC , H, H, Histogram for Seismic Analysis

Histogram Information File (.HII)

The MAR-D data format for the SAPHIRE version 6 histogram information file (.HII) is shown below. (The
version 7 format is the same, but can accommodate up to 24 character names.)

D-5

File Name:
xxxxxxxx.HII

File Format:
project, namel=
type, subtype
bin1 valuel, bin1 value2
bin2 valuel, bin2 value2

bin20 valuel, bin20 value2

AEOS

project, name2 =
where

Project 16 character Project name
.NameN 16 character Histogram primary name
Type 1 character Histogram type
H Hazard
U Uncertainty
F Fragility
Subtype 1 character Histogram subtype
P Percent
A Area
R Range
H Hazard
bin value 1 Exponential first value for bin
bin value2 Exponential second value for bin

An example of a histogram information file in MAR-D format is shown below. For this example, the flat
file will load seven bins with seismic hazard histogram data. For all HiI files containing seismic data, "bin I
valuel" or column 1 is the earthquake frequency (per yr) and "bin I value2" or column 2 is the mean failure
acceleration of the earthquake.

SAMPLE, SEISMIC =

H, H
3.680E-003, .OOOE-001
2.980E-004, 2.000E-00 1
7.200E-005, 3.OOOE-001
2.620E-005, 4.OOOE-00 I
1. 170E-005, 5.OOOE-001
6.OOOE-006, 6.OOOE-001
3.360E-006, 7.OOOE-001

Event Trees

The creation of a seismic analysis model in SAPHIRE requires the development of a seismic event tree. The
seismic event tree can be designed to incorporate the seismic analysis by two methods. The first method
utilizes the internal basic events and fault trees assumed already present in the database. This method
prioritizes and links the seismic-induced internal events and fault trees and will generate seismic sequence
cut sets from the internal basic events. The second method utilizes separated seismic fault tree logic that
may incorporate internal events or separate seismic events to generate the seismic cut sets. For both

D-6

methods, the seismic event tree begins with a generic seismic-initiating event set to a value of 1.0 (True
Event). The actual magnitude and frequency of the earthquake of interest are identified by the user and
factored into the analysis when the cut sets are generated and quantified.

The top events for the seismic event tree are those events or systems that have the potential to be induced by
an earthquake. They are listed in order of severity, with the more severe-induced initiators listed first. This
also addresses the potential pitfall of over-counting core damage sequences where, for example, a single
earthquake induces both a large LOCA and a small LOCA at the same time. During the seismic analysis, the
event tree top events are treated as seismic events with the associated seismic fragility data.

The procedure for loading or adding event trees to SAPHIRE database was discussed in Section 4.3.
Identical procedures are required for the loading of the seismic, event tree and any sub trees.

Fault Trees

The seismic system models (i.e., fault trees) can be created in SAPHIRE either as independent, stand-alone
seismic fault trees, or they can also be integrated with the internal events analysis. To integrate seismic
analysis into the internal events analysis, transformations need to be defined that convert random failures to
seismic-induced failures.

Because the internal fault trees do not include several seismic related basic events, they must be added to the
internal fault trees or independent seismic fault trees must be created. The procedures for loading or adding
system fault trees were discussed in Section 4.5.

Basic Event Data

In most instances, seismic basic events are transformed internal basic events where the seismic
considerations are implemented after the transformations. Seismic failure data are usually characterized by a
median fragility and two uncertainty terms representing the random uncertainty and confidence uncertainty
(Beta-R and Beta-U, respectively). See the SAPHIRE Technical Reference Manual for a more in depth
discussion of seismic fragility and component failure probabilities.

The necessary steps in loading seismic basic events into the SAPHIRE program are:

1. Add the seismic event to the database including any basic event attribute data.

2. Enter the seismic failure acceleration data.

3. Enter the seismic uncertainty data.

4. Modify any internal basic events that are determined to have seismic vulnerabilities to
include a seismic susceptibility "flag". This will allow for the internal basic event to be
transformed into a new seismic event.

5. Enter the transformation definition to the internal basic event that is seismic susceptible.

These steps are further discussed in the following sections.

D-7

Adding Seismic Basic Events

Before the internal basic event transformation can be created, the seismic basic events must be defined. In
most cases, the newly created seismic event has a different name than the internal basic event name that it is
transformed from originally. For example, if the internal basic event HPI-MOV-FO-108A is determined to
be seismic susceptible, then it must be transformed into a seismic event. The new seismic event could be
named S-HPI-MOV-FO- I 08A and must be added to the database.

The procedure for adding seismic basic events and their descriptions is identical to that of internal basic
events and is discussed in Section 4.6.

Loading the Seismic Failure Acceleration Data

Loading of the seismic failure data is similar to the procedures discussed for loading failure data discussed in
Section 4.6. Two methods can be used to load seismic failure acceleration data. The data can be. entered in
the Modify -- Basic Event main menu option or from basic event flat file (.BEI) and loaded through the
Utility -+ Load and Extract main menu option as described in Appendix A. Differences between loading
seismic data and the procedures discussed in Section 4.6 are outlined below.

Loading Through the Modify --- Basic Event main menu option.

To enter seismic data into a seismic basic event record, go to the "Failure Data Calculation Type". Enter a
"G" or an "H", which defines the basic event as a seismic basic event. Entering a "G" allows you to input an
assumed g-level (earthquake strength) for use in initially generating cut sets. The "H" tells SAPHIRE to use
the hazard curve identified in the "Medium" hazard curve in the Modify -+ Project option.

Loading Through the MAR-D Interface.

The loading of seismic failure data through the MAR-D interface is similar to the procedures described in
Section 4.6 for load internal basic event failure rates. The seismic basic event flat file (.BEI) data format is
similar to that in Appendix B except for the following:

1. Set the calculation type (calc) to "G" or "H" to define the basic event as a seismic event.

2. Place the Seismic Failure value in the BEI "prob" position.

3. If a calculation type of "G" is used, specify an earthquake. "G-Level". Place it in the .BEI
"Lambda" position.

Loading the Seismic Uncertainty Data

Loading of the seismic uncertainty data is similar to the procedures discussed in Section 4.6. Two methods
can be used to load seismic uncertainty data. The data can be entered in the Modify --+ Basic Events main
menu option or from a basic event flat file (.BEI) and loaded through MAR-D as described in Appendix A.
Differences between loading seismic data and the procedures discussed in Section 4.6 are outlined below.

D-8

Loading Through the Modify--- Basic Events main menu option

To enter seismic uncertainty data into a seismic basic event record, go to the "Uncertainty Data Calculation
Type". Enter an "S", which defines the basic event as a seismic basic event. Enter the Beta-R and the Beta-
U in their respected blocks.

Loading Through the MAR-D Interface.

The loading of seismic uncertainty data through the MAR-D interface is similar to the procedures described
in Section 4.6 for loading internal basic event uncertainties. The seismic basic event flat file (.BEI) data
format is similar to that described in Appendix B except for the following:.

1. Set the uncertainty type (UdT) to "S" to allow for the implementation of seismic
uncertainties.

2. Specify the seismic uncertainty term representing the random uncertainty, Beta-R. Place
this value in the .BEI UdValue position. Specify the confidence uncertainty term, Beta-U,
and place it in the .BEI UdValue2 position.

Defining Internal Event Susceptibility to Seismic Activity

In order to integrate the internal event analysis with a seismic analysis, the internal basic event must be
transformed into the new seismic event. This process first involves defining the internal basic event as
seismically susceptible. Basic event susceptibility can be entered into the SAPHIRE database through either
the Modify --* Basic Events main menu option or by way of a basic event attribute flat file (.BEA) loaded
through the Utility -- Load and Extract main menu option. Both methods are discussed below.

Defining Susceptibility Through the Modify--+ Basic Events main menu option.

An internal event that is determined to be seismically vulnerable is defined in SAPHIRE as seismically
susceptible. This is done under the Modify --+ Basic Events main menu option. Highlight the desired
internal event and chose Modify from the popup menu. Select the Attributes tab and check the Seismic box
in the Susceptibilities area. This will identify the basic event as susceptible to seismic initiators.

Defining Susceptibility Through MAR-D.

An internal basic event flat file (.BEA) can be generated from MAR-D as is described in Appendix A. The
file format of the .BEA is described in Appendix B. To define a basic event as seismic susceptible, attribute
4 (att4) must be changed from "N" to "Y". Reloading this .BEA file with the seismic susceptible attribute is
described in Appendix A.

D-9

Defining the Internal Basic Event Transformations

A transformation is a replacement or addition inside the fault tree logic. An internal event that is determined
to be seismically vulnerable needs to be transformed into a new seismic event in SAPHIRE. During the
transformation process, the internal basic event is replaced with a seismic basic event or a series of seismic
events.

SAPJI-RE utilizes three types of transformations: (1) AND, (2) OR, and (3) ZOR. An "AND" type
transformation replaces the event being transformed with an AND gate having any transformed events as
inputs. An "OR" type transformation replaces the event being transformed with an OR gate having any
transformed events as inputs. A "ZOR" type transformation implies that if any transformed events from the
original transformed event fail, then all events fail. Since for seismic analysis, an internal random basic
event is transformed into one new seismic basic event, the transformation type should be "OR". This will
prevent the random event and the seismic event from being "ANDed" together during the seismic analysis.

Basic event transformation also requires a "transformation level" that indicates the level of substitution for
the transformation. The transformation is an integer between 0 and 255. For seismic analysis, the
transformation level is generally either 0 or 1.

Transformation data can be entered into the SAPHIRE database using either the Modify --* Basic Events
main menu option or from a basic event transformation flat file (.BET) loaded through the Utility -* Load
and Extract main menu option. Both methods are discussed below.

Loading Seismic Transformations Using the Modify --+ Basic Event main menu

Basic event transformation is accomplished in SAPHIRE through the "Modify ---, Basic Events main menu
option. This is done by with the following steps:

1. Highlight the desired internal event and choose "Modify" from the popup menu.
2. Select the Transformations tab.
3. Choose the transformation type (usually "OR") and enter the transformation level (usually 0 or 1).
4. From the "All Events" list located on the left side of the dialog, highlight one or more seismic events

you wish to transform the original event, and click the Add button. The selected transformation
events will appear on the right side of the dialog in the "Selected Event" area. Repeat this process
until all desired seismic events have been included.

5. Choose the OK button to save the changes

Loading Seismic Transformations with the MAR-D Utility

Basic event transformation may also be loaded into SAPHIRE through a MAR-D file (.BET). Below is the
MAR-D file format for the SAPHIRE version 6 basic event transformation file (.BET). (The version 7
format is the same, but can accommodate up to 24 character names.)

D-10

File Name:
xxxxxx.BET

File Format:
project =
namel ,level,type
benamel, bename2,...,
... , benameN
AEOS

name2,Ievel,type
benamel, bename2,...,
... , benameN
^EOS

Where
Project 16 character Project name
Name 16 character Event name
Type 4 character Transformation type
Level 3 character Transformation level
bename 1..N 16 character Event name

The loading of a MAR-D flat file into SAPHIRE is described in detail in Appendix A.

GENERATING AND QUANTIFYING SEISMIC CUT SETS

Generating and quantifying seismic cut sets at both the fault tree level and the sequence level is similar to
that for internal (random) analysis described in Sections 4.5.4 and 4.5.7, respectively. The few minor
differences are noted below.

Generating Seismic Cut sets

When generating seismic cut sets during both fault tree and sequence analysis, you must specify that seismic
analysis is desired. This is accomplished in both the "Fault Trees" and "Sequences" main menu options of
SAPHIRE. To change from "Random" analysis to "Seismic" analysis, you have two options:

I . Open the Define Constants dialog found under the Utility - Define Constants main menu option.
On the "General" tab, select "Seismic" from the analysis type combo box.

2. Open the "Fault Trees" or "Sequences" dialogs found under the corresponding main menu options.
Select "Seismic" from the analysis type combo box located in the dialog.

Quantifying Seismic Cut sets

When quantifying seismic cut sets during both fault tree and sequence analysis, you should confirm that the
"Analysis type" is set to "Seismic". In addition, after selecting "Quantify" from the popup menu option, you
must choose the "G-Level" for which quantification is to be performed. The options available for "G-level"
quantification include:

D-11

1. Selecting one of the g-level bins that contain a non-zero value obtained from the hazard
histogram identified for use with the current project.

2. Selecting "ALL COMBINED". This gives an overall value obtained by adding the data
using all bins in the histogram.

3. Selecting "ALL SEPARATE". This quantifies the cut sets at each g-level bin that contains
a non-zero value obtained from the hazard histogram used with the current Family. It
should be noted that after quantification using the "ALL SEPARATE" option, the cut set
list for each g-level is not maintained. When quantification is completed, only the last
quantification performed (at that specific g-level) is available. However, numerical results
are stored and are available for each individual g-level that was calculated. These
individual results are generally used during uncertainty analysis.

D-12

NRC FORM 335 U.S. NUCLEAR REGULATORY L. REPORT NUMBER
COMMISSION (Assigned by NRC, Add Vol.,

(2-89) Supp., Rev., and Addendum

NRCM 1102, BIBLIOGRAPHIC DATA SHEET Numbers, if any.)
3201. 3202 (See Instructions on the reverse) NUREG/CR-6952

INL/EXT-05-00643

2. TITLE AND SUBTITLE 3. DATE REPORT PUBLISHED

Systems Analysis Programs for Hands-on Integrated Reliability Evaluations MONTH YEAR

(SAPHIRE) Vol. 7 Data Loading Manual
September 2008

4, FIN OR GRANT NUMBER

N6203

5. AUTHOR(S) 6. TYPE OF REPORT

Technical

K. J. Kvarfordt, S. T. Wood, C. L. Smith 7. PERIOD COVERED (Inclusive Dates)

8. tK.PUKMINU Ui%.UANILAITUN - NAME AND ADRKESS (INRC, provide Division, Ottice or Region, U.S. Nuclear Regulatory Commission, and
mailing address; if contractor, provide name and mailing address.)

Idaho National Laboratory
Battelle Energy Alliance
P.O. Box 1625
Idaho Falls, ID 83415-3850

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (IfNRC, type "Same as above"; If contractor, provide NRC Division, Office or Region,
U.S. Nuclear Regulatory Commission, and mailing address.)

Division of Risk Analysis
Office of Nuclear Regulatory Research

U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES

D. O'Neal, NRC Project Manager

11. ABSTRACT (200 words or less)

The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application
developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE is primarily
funded by the U.S. Nuclear Regulatory Commission (NRC) and developed by the Idaho National Laboratory. This report is
intended to assist the user to enter PRA data into the SAPHIRE program using the built-in MAR-D ASCII-text file data transfer
process. Towards this end, a small sample database is constructed and utilized for demonstration. Where applicable, the
discussion includes how the data processes for loading the sample database relate to the actual processes used to load a larger
PRA models. The procedures described herein were developed for use with SAPHIRE Version 6.0 and Version 7.0. In general,
the data transfer procedures for version 6 and 7 are the same, but where deviations exist, the differences are noted, The guidance
specified in this document will allow a user to have sufficient knowledge t6 both understand the data format used by SAPHIRE
and to carry out the transfer of data between different PRA projects.

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT
Unlimited

SAPHIRE, software, reliability, risk, safety, PRA, data, MAR-D 14. SECURITY CLASSIFICATION

(This page)

Unclassified
(This report)

Unclassified
15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (2-89)

A
Federal Recycling Pmrogrm

(SAPHIRE) Vol. 7 Data Loading Manual
I

UNITED STATES
NUCLEAR REGULATORY COMMISSION

WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS

