¥ USNRC

INL/EXT-05-00655

United States Nuclear Regulatory Commission

Protecting People and the Environment

Systems Analysis
Programs for |
Hands-on Integrated
Reliability Evaluations
(SAPHIRE) Vol. 6

Quality Assurance Manual

Office of Nuclear Regulatory Research

AVAILABILITY OF REFERENCE MATERIALS
.IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
hitpiiiwww.nre.gov/reading-rm.himl. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda;
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

U.S. Government Printing Office

Mail Stop SSOP

Washington, DC 20402-0001

Internet: bookstore.gpo.gov

Telephone: 202-512-1800

Fax: 202-512-2250
2. The National Technical Information Service

Springfield, VA 22161-0002

www.ntis.gov

1-800-553-6847 or, locally, 703—605~-6000

A single copy of each NRC draft report for comment is

available free, to the extent of supply, upon written

request as follows:

Address: U.S. Nuclear Regulatory Commission
Office of Administration
Mail, Distribution and Messenger Team
Washington, DC 20555-0001

E-mail: DISTRIBUTION@nrc.gov

Facsimile: 301—415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address

hitp:/iwww.nrc. govireading-rm/doc-coliections/nureqs
are updated periodically and may differ from the last
printed version. Although references to material found

on a Web site bear the date the material was accessed,

the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—
The NRC Technical Library
> Two White Flint North
11545 Rockville Pike
Rockville, MD 208522738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from—

American National Standards Institute

11 West 42™ Street

New York, NY. 10036-8002

www.ansi.org

212-642-4900

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series are
not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the -
staff (NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of
conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements_
(NUREG/IA-XXXX), (4) brochures
(NUREG/BR-XXXX), and (5) compilations of legal
decisions and orders of the Commission and Atomic
and Safety Licensing Boards and of Directors’
decisions under Section 2.206 of NRC's regulations
(NUREG-0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any
information, apparatus, product, or process disclosed in this pubhcatlon or represents that its use by such third

party would not infringe privately owned rights.

®USNRC _

INL/EXT-05-00655

United States Nuclear Regulatory Commission

Protecting People and the Environment

Systems Analysis
Programs for

Hands-on Integrated
Reliability Evaluations
(SAPHIRE) Vol. 6 |
Quality Assurance Manual

Manuscript Completed: October 2007
Date Published: September 2008

Prepared by
C.L. Smith, R. Nims, K.J. Kvarfordt, C. Wharton

Idaho National Laboratory
Battelle Energy Alliance
Idaho Falls, ID 83415

D. O’Neal, NRC Project Manager

NRC Job Code N6203

Office of Nuclear Regulatory Research

PREVIOUS REPORTS

Srmth C. L., et al., Testing, Verifying, and Validating SAPHIRE Versions 6.0 and 7.0, NUREG/CR-
6688, October 2000. :

K. D Russell, et al. Systems Analysis Programs for Hands-on Reliability Evaluallons (SAPHIRE)
Version 6.0 - System Overview Manual, NUREG/CR-6532, May 1999.

K. D. Russell et al., Integrated Reliability and Risk Analyszs System (IRRAS) Version 5.0, Volume 2 -
Reference Manual, NUREG/CR-6116, EGG-2716, July 1994.

K. D. Russell et al., Verification and Validation (V&V) Volume 9 — Reference Manual, NUREG/CR-
6116, EGG-2716, July 1994. .

K. D. Russell et al. , Integrated Reliability and Risk Analysis System (IRRAS) Vers:on 4.0, Volume 1 -
Reference: Manual, NUREG/CR-5813, EGG-2664, January 1992. : .

"K. D. Russell et al. , Integrated Reliability and Risk Analysis System (IRRAS) Version 2.5 Reference
Manual, NUREG/CR-5300, EGG-2613, March 1991.

K. D. Russell, M. B. Sattison, D. M. Rasmuson Integrated Reliability and Risk Analysis System
(IRRAS) - Version 2.0 User's Guide, NUREG/CR-5111, EGG-2535, manuscnpt completed March
1989, published June 1990.

K. D. Russell, D. M. Snider, M B. Sattison, H. D. Stewart, S.D. Matthews, K. L. Wagner, Integrated
Reliability and Risk Analysis System (IRRAS) User's Guide - Version 1. 0 (DRAFT), NUREG/CR-4844,
EGG-2495, June 1987 :

ii

ABSTRACT

The Systems Analysis Programs for Hands-on Integrated Reliability Evaluatlons (SAPHIRE)isa

‘ software application developed for performing a complete probabilistic risk assessment using a
personal computer running the Microsoft Windows™ operating system. SAPHIRE is primarily
funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is that
of software developer and tester. This development takes place using formal software development
procedures and is subject to quality assurance (QA) processes. The purpose of this document is to-

describe how the SAPHIRE software QA is performed for Version.6 and 7, what constxtutes its parts,
and llmltatlons of those processes.

il

FOREWORD

The U.S. Nuclear Regulatory Commission has developed the Systems Analysis Programs for Hands-on -
Integrated Reliability Evaluations (SAPHIRE) software used to perform probabilistic risk assessments

(PRAS) on a personal computer. SAPHIRE enables users to supply basic event data, create and solve fault

and event trees, perform uncertainty analyses, and generate reports In that way, analysts can perform PRAs
for any complex system, facility, or process

SAPHIRE can be used to model a plant's response to initiating events, quantify core damage frequencies,
and identify important contributors to core damage (Level 1 PRA). The program can also be used to ’
evaluate containment failure and release models for severe accident conditions, given that core damage has
occurred (Level 2 PRA). In so doing, the analyst could build the PRA model assuming that the reactor is
initially at full power, low power, or shutdown. In addition, SAPHIRE can be used to analyze both internal

“and external events, and it includes special features for transforming models built for internal event analysis

to models for external event analysis. It can also be used in a limited manner to quantify the frequency of
release consequences (Level 3 PRA). Because this software is a very detalled technical tool, users should be
farmlrar with PRA concepts and methods used to perform such analyses.

SAPHIRE has evolved with advances in computer technology. The versions currently in use (6 and 7) run
in the Microsoft Windows® environment. A user-friendly interface, Graphical Evaluation Module (GEM),
streamlines and automates selected SAPHIRE inputs and processes for performing event assessments

- SAPHIREAhas also evolved with users' needs, and Versions 6 and 7 include new features and capabilities
for developing and using larger, more complex models. For example, Version 7 can solve up to 2 million

sequences and includes enhancements for cut set slicing, event tree rule linkage, and reporting options.

This NUREG series report compnses seven volumes which address SAPHIRE/GEM Versions 6 and 7.

Volume 1, "Overv1ew/Summary, gives an overview of the functions available in SAPHIRE and presents
general instructions for using the software. Volume 2, "Technical Reference," discusses the theoretical
background behind the SAPHIRE functions. Volume 3, "SAPHIRE Users' Manual," provides installation
instructions and a step-by-step approach to using the program's features. Volume 4, "SAPHIRE Tutorial
Manual," provides an example of the overall process of constructing a PRA database. Volume 5,
"GEM/GEMDATA Reference Manual," discusses the use of GEM. Volume 6, "SAPHIRE Quality
Assurance (QA) Manual," discusses QA methods and tests. Lastly, Volume 7, "SAPHIRE Data Loading
Manual," assists the user in entering PRA data into SAPHIRE using the built-in MAR D ASCII-text file
data transfer process. .

Christiana H. Lui, Director
Division of Risk Analysis
Office of Nuclear Regulatory Research

CONTENTS

ABS'fRACT.L .. i1
FOREWORDc..ovoessaeemeressesesssessemssssssssssssssonsessiosssssssesssissssesscsseesssssssrienss eeetresnsesesssneessses iV
CONTENTS oo eressesssoese s et e e vii
EXECUTIVE SUMMARYoooocccmmnrrmsermessnsneressnsssssesees SO S e e X
ACRONYMS.....ovvmriirrrnnnenas SRS OO FOROPOP S s siss e est xi
L. INTRODUCTION w.oooocooroocceeoeseesssseeseeesssseeess s sssnesiosssessessssoessssssessssmesersssssssesssseesiess
L1 Background.........eomeersserersccresnsens e s .1
1.2 Summary of the Current SAPHIRE QA Processccoceoueun.... ettt et et er et eneenenenes 3
1.2.1 Change Design and Testing Procedure.........c.cccooevevercncnns ' e JRRSRUO 5

1.2.2 Acceptance Testing/Automated TeStNgccccoveveerereieneenenirinienein e e eeaaaannes 6

1.2.3 DOCUMENTALIONcoeeiieriereeiieerireeecinreneesieeee e reesseessaieesaneas reerereeeetrererrteeeanteearaeaesreeaeseenrtes 8

1.2.4 VEISION COMLIOL.....u.veevieerceiietsietevs st issessessmesesessssnshesasasassassssssassssassssssaenesesseesssssssencas 9

1.2.5 Approach to Bug Fixes and New Features..........ccccoccovivenrnninmincieeee e 9

2. QUALITY ASSURANCE PROCESSES 1
2.1 Tests Used in the SAPHIRE TV&EVcooivvmmrremiieineessesessies e eessesssessssisess beeesbonssscsensesns 11
2.2 QA Processes Used During the SAPHIRE Dévelopment............; et e nesennenseoe 23
221 Management 23

2.2.2 Tasks and Responsibilities...........ccoevemiieeniicnnininicnieesicr et 23

2.2.3 Documentation PUIPOSEocooiiiiieiiiieeirieee et srae st sras b .24

2.2.4 Testing, Verification, and Validation..............coeriniiiiicncceinaes 24

2.2.5 Configuration Management and Controlccccocerveenciiennns ST SR 26

2.2.6 QA Standards, Practices, and CONVENtIONS.cooveveerieriirrcciinniiiiereecrie s eaes 27

3. 7 CONCLUSIONS......oooocmeeiecteteeeseee e esssssbes s e tereereiiee et ee ettt e ets et e et et et et enrenas 29
"4, REFERENCES ..o e et 31
APPENDIX A — SAPHIRE Salient Features List....................c.ccooceorurnnen. e A-1
APPENDIX B — SAPHIRE QA Process Checklist and Change FOrms...........cocooeeveiiiiiiiinninnen B-1
APPENDIX C — SAPHIRE/GEM Test Suite Summary Report..............ocooi C-1

vil

EXECUTIVE SUMMARY

Product quality is a key component of SAPHIRE. The SAPHIRE QA processes documented in the report
provides the basis for setting quality objectives, progress, and the necessary framework for quality
improvements. The QA plan will evolve as the SAPHIRE product is enhanced to provide the end user
with solutions to their technical problems and cost-effectively meet user expectations. A majority of the
changes within the SAPHIRE software occur because the end user has identified characteristics that provide
“new potential”, thus resulting in SAPHIRE evolving as each new feature is discovered and implemented.
Therefore, the majority of software maintenance comes about not because of deficiencies in the code, but
because it was modified to embrace improved methods for risk and rellabllxty assessment.

In order to ensure the quality of the SAPHIRE software, the Idaho National Laboratory (INL) uses a varlety
" of software development methods mcludmg ' ’

e Controllmg software versions for both the formally released SAPHIRE versmns as well as for
_ source code. -

e Fol'lowing‘a standard approach to bhg fixes and new featu;eé.
e Usinga cyclical design process to prototype changes.

e Performing acceptance tests that the software must pass prior to official release.

The source code version control library requires that individual programmers “check-out” all files that they -
_ intend to modify. Prior to “check-in”, programmers must explain any changes made. A record is kept of all -
- changes, both as explained by the developer, and as individual copies of each version of a file. At any time,
the developer can retrieve past versions intact, if necessary. Since the SAPHIRE software program is
continually modified, the version control procedure ensures a methodical approach to tracking and releasing
these changes. -

As new features and bug fixes are made, the INL developers follow a standard approach to integrating these
items into SAPHIRE. For bug fixes, the developers take notes from the user describing the general context
of the bug, as well as step-by.—step actions to reproduce the bugs. This bug information includes acquiring a
copy of the user’s database, when necessary. Then, the bug is classified and prioritized according to
severity. A bug is considered “minor” if it inconveniences the user, but a workaround exists to produce a
correct answer. A bug is “major” if it prevents the user from obtaining the correct answer. Software
enhancements follow much the same approach as bug fixes. Enhancements are prioritized and
implemented, with intermediate testing by the developer and often by the requestor. Once the process and
results appear acceptable, the feature is added to the next official release.

The level of effort for the software design process corresponds to the size and complexity of the proposed
change. Developers use a cyclical prototyping design methodology as a means to clarify and refine the
change. The prototyping process involves the requestor throughout development. The developers will
interact with the requestor(s) both initially and throughout the design and development process to ensure the
change accomplishes the expected goal.

Prior to any official SAPHIRE release of versions 6 and 7, the software is run through a series of automated
tests. The tests simulate user input to the computer through a test script, and results are captured and
compared to expected results. This ensures that given a static input PRA file, the risk or reliability results
from SAPHIRE will be consistent from one release to the next. These acceptance tests were developed by
first identifying the critical tasks performed in a PRA. Then these tasks were mapped to the SAPHIRE
functions that perform these tasks. The critical functions were determined to include the following:

- L

8.

Fault tree analysis
Event tree and sequence analysis

End state analysis

- Importance measures analysis

Uncertainty analysis
Change sets -
Data utility functions -

GEM module functionality

A change is not considered complete until the results have been tested and found reasonable. Developers

~ and key users will test to see that the change works as expected and is free of defects. Prior to official
release of a version, SAPHIRE’s automated test suite must complete successfully. The success of the suite
is a good indicator that the new change does not adversely affect other areas of the code.

GEM

 INEEL
INL
" IRRAS .

“NRC

PC
PRA
QA
RAW

SAPHIRE

TV&V

V&V

ACRONYMS

Graphical Evaluation Module
Idaho National Engineering and Environmental Laborafory :

Idaho National Laborafory

' integratcd Reliability and Risk Analysis System

Nuclear Regulatory Commission

Personal Computer

Probabilistic Risk Analysis

Quality assufance

Risk Achievement Worth

Systems Ana.ly_sis Programs for Hands-on Integréted Reliability Evaluations
Tésting, Verification, and Validation

Verification and Validation

Xi

Systéms Analysis Programs for Hands-on Ihtegrat_ed
Reliability Evaluations (SAPHIRE)

Vol. 6 Quality Assurance Manual
1. INTRODUCTION |

1.1 Background

The U.S. Nuclear Regulatory Commission (NRC) has developed a powerful personal computer (PC)
software application for performing probabilistic risk assessments (PRAs), called Systems Analysis
Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE).

Using SAPHIRE on a PC, an analyst can perform a PRA for any complex system, facility, or process.
Regarding nuclear power plants, SAPHIRE can be used to model a plant’s response to initiating events, -
' quantify associated core damage frequencies and identify important contributors to core damage (Level 1
PRA). It can also be used to evaluate containment failure and release models for severe accident conditions,
given that core damage has occurred (Level 2 PRA). It can be used for a PRA assuming that the reactor is at
full power, at low power, or at shutdown conditions. Furthermore, it can be used to analyze both internal and
external initiating events, and it has special features for transforming models built for internal event analysis
to models for external event analysis. It can also be used in a limited manner to quantify risk for release
consequences to both the public and the environment (Level 3 PRA). For all of these models, SAPHIRE can
evaluate the uncertainty inherent in the probabilistic models.

SAPHIRE development and maintenance has been undertaken by the Idaho National Laboratory (INL). The
INL began development of a PRA software application on a PC in the mid 1980s when the enormous
potential of PC applications started being recognized. The initial version, Integrated Risk and Reliability
Analysis System (IRRAS), was released by the Idaho National Engineering Laboratory (now Idaho National
Laboratory) in February 1987. IRRAS was an immediate success, because it clearly demonstrated the
feasibility of performing reliability and risk assessments on a PC and because of its tremendous need
(Russell 1987). Development of IRRAS continued over the following years. However, limitations to the
state of the-art during those initial stages led to the development of several independent modules to - -
complement IRRAS capabilities (Russell 1990; 1991; 1992; 1994). These modules were known as Models
and Results Database (MAR-D), System Analysis and Risk Assessment (SARA), and Fault Tree, Event
Tree, and Piping and Instrumentation Diagram (FEP).

IRRAS was developed primarily for performing a Level 1 PRA. It contained functions for creating event
trees and fault trees, defining accident sequences and basic event failure data, solving system fault trees and
accident sequence event trees, quantifying cut sets, performing sensitivity and uncertainty analyses,
documenting the results, and generating reports.

MAR-D provided the means for loading and unloading PRA data from the IRRAS relational database.
MAR-D used a simple ASCII data format. This format allowed interchange of data between PRAs
performed with different types of software; data of PRAs performed by different codes could be converted
into the data format appropriate for IRRAS, and vice-versa.

SARA provided the capability to access PRA data and results (descriptive facility information, failure data,
event trees, fault trees, plant system model diagrams, and dominant accident sequences) stored in MAR-D.
With SARA, a user could review and compare results of existing PRAs. It also provided the capability for
performing limited sensitivity analyses. SARA was intended to provide easier access to PRA results to users
that did not have the level of sophistication required to use IRRAS.

FEP provided common access to the suite of graphical editors. The fault tree and event tree editors were
accessible through FEP as well as through IRRAS, whereas the piping and instrumentation diagram (P&ID)
editor was only accessible through FEP. With these editors an analyst could construct from scratch as well as
modify fault tree, event tree, and plant drawing graphical representations needed in a PRA.

Previous versions of SAPHIRE consisted of the suite of these modules. Taking advantage of the Windows
95 (or Windows NT) environment, all of these modules were integrated into SAPHIRE Version 6; more
features were added; and the user interface was simplified. With the release of SAPHIRE versions 5 and 6,

- INL included a separate module called the Graphical Evaluation Module (GEM). GEM provides a highly
specialized user interface with SAPHIRE, automating SAPHIRE process steps for evaluating operational
events at commercial nuclear power plants. In particular, GEM implements many of the accident sequence
precursor (ASP) program analysis methods. Using GEM, an analyst can estlmate the risk associated with
operational events very efficiently and expeditiously.

The SAPHIRE Quality Assurance (QA) Manual provides the details to identify the methodology used to
provide a planned and systematic approach required to guarantee the quality of the SAPHIRE software.
To ensure the required quality is satisfied, the SAPHIRE development team applies the methodology
needed to verify the design quality and to validate the software quality into the SAPHIRE software

- product. In addition, this document provides an overview into the general SAPHIRE QA process.
Specifically, the report first outlines and describe the key part of the process. Second, the report
discusses the formal testing program that is used to ensure software quality during the development
cycle. Lastly, it concludes the report by reviewing the topics addressed. ' :

In order to provide context to the complexity of a modern analysis code such as SAPHIRE (and its
associated implications on testing), a list of salient features found in the software is provided in Appendix
A. The combination of breadth and depth in these features shows the potential complexity that may be
found in software as extensive as SAPHIRE.

Appendix B provides a template for a QA Checklist that is used to perform periodic inspections to
monitor the SAPHIRE product quality. The checklist provides the identification for each inspection.
topic, an indication if the inspection, pass'ed, failed, or was not applicable, as well as a column that may
be used to insert specific comments regarding the inspection topic. Options for methods used to conduct
the evaluation are random sampling, interviews, and observations. Assessment techniques canbe
modified to use more than one approach or a different approach than suggested in the checklist. The
decision to use one or more techniques is conducted at the option of the evaluator.

In order to ensure quality of SAPHIRE, the important SAPHIRE features must be identified. Once these
features are known, tests can be generated that would evaluate each feature. The results of these tests are
described in Appendix C.

1.2 Summary of the Current SAPHIRE QA Process

The SAPHIRE QA process encompasses several activities the INL uses to ensure quality throughout the
development cycle. These activities are illustrated in Figure 1 and are described in this report.

User testing,
suggestions,

and feedback

Software
" design and

specification
documents

Automated
and manual
testing

SAPHIRE Testing,

. Software Quality verification,
revision Assurance and validation
control Process documents

system

Software
change
design forms

Requirements
" documents

Software
development
standards

Figure 1. SAPHIRE quality assurance process.

As part of the overall QA process, the SAPHIRE TV&V process and results were previously documented
in NUREG/CR-6688, “Testing, Verifying, and Validating SAPHIRE Versions 6.0 and 7.0 (Smith et al,
2000). Within that document, Section 1 explains that the version 6 and 7 TV&V departs from earlier
V&V efforts (for versions 4 and 5) by focusing on the development and execution of a set of automated
test scripts. This TV&YV process was expanded and automated so that the validity of the core
functionality of SAPHIRE can be verified on an ongoing basis with each incremental release. Note _that

over the development cycle spanning from 1999 to the end of 2002 (four years), the INL released 18

versions of SAPHIRE 6.

x for an average of one incremental release every 2. 7 months. As the software

matures, however, the release frequency tends to decrease. -

A released version of SAPHIRE represents an incremental version of the “current release” that is made
generally available. Note that at times, significant enhancements and additions were introduced as part of
these released versions, so while existing bugs may be fixed, it is possible that new bugs are introduced
via these new features. Nonetheless, for each incremental version, the SAPHIRE software must pass an
extensive automated test process to ensure that existing calculation features are not compromised.
Definitions of the software release terms used by the SAPHIRE development team include:

Beta

- Current Release’

N-1 Re_lease

The “beta” version of SAPHIRE is that numbered version (e.g., 8.x) that is
currently under development at the INL. This version is used to add new features
and to make significant modifications to either the analysis or user interface
portions of the software. Since this version is in development, it is possible that
features are incomplete or modification may leave the software in an unstable
state. In addition, the software documentation may not be available specific to -
this version of the software. This version is not available for general release.

The “current release” version of SAPHIRE is the most recent numbered version

of the software that is “frozen.” The term “frozen” indicates that the analysis and
user interface portions of the software will not be modified, with the exception of
needed changes related to programming errors or limitations. Typically, the
current release is the version that undergoes the largest amount of use, and
consequently, has the highest degree of testmg

The “N-1 release” version of SAPHIRE 1s the second- to-last released “frozen” |
version.

Note that for all versions of SAPHIRE, transfer of the software or related information (in electronic. or
hardcopy format) is prohibited unless prior approval is obtained since the software is subject to U.S.
export control regulations.

For the SAPHIRE QA, a variety of techmques is used to assure the integrity of the SAPHIRE software

1ncludmg
- Design changes
e Tests
e Documentation
® Version control

e Bug fixes

1.2.1 Change Design and Testing Procedure

Software developers follow the SAPHIRE Change Design and Testing Procedure when adding a new:
feature or revising an existing capability. This procedure first describes the general approach to changes,
and then describes processes that are more specific. The process stages include design and development,
testing, and documentation. The initial design effort corresponds to the size and complexity of the
change. Developers use a cyclical prototyping design methodology as a means to clarify and refine the
change. The prototyping process involves the requestor throughout development. The developers will
interact with the requestor(s) both initially and throughout the design and development process to ensure
the change accomplrshes the expected goal.

Changes and additions to the software vary from very small bug fixes to significant enhancements and
new capabilities. The complexity of a change or addition also varies by item. Therefore, the developers
use a graded approach to design. They spend more time and effort on larger and/or more complex _

-~ changes than on relatively simple items. Areas of changes or bugs also dictate the level of effort. For

- example, problems in cut set generating are much more important than problems in report areas.

Enhancements to cut set generatron are researched much more carefully than enhancements to reports

The frequency and formality of cornmunrcatlons with the requestor also corresponds to the size and
- complexity of the change. This ensures that time and money is spent wisely.

The SAPHIRE developers utilize a cyclical, or whirlpool, prototyping software development
methodology. The developers prepare prototypes of a proposed change or system, which can then be
evaluated by both the developer and requestor, resulting in the development of a more refined prototype.
This iteration process helps to clarify requirements, identify weak areas, and evolve and refine the design.
Pictorially, the iteration process resembles a spiraling whirlpool or a target, where with each iteration, the
cycle becomes smaller and tighter, until the final goal is achieved.

The cyclical prototypmg methodology requires a starting point, which entails a reasonably clear definition
of the initial problem and a general solution. When this has been achieved, the iterative development
cycle begins.

The first step in designing a change to SAPHIRE requires that the developers and requestors define and
discuss the problem and propose a solution. The developer should gain a broad understanding of the goal -
of the change, and the requestor should understand in general terms how the proposed solution will
accomplish the goal. - '

At this point in the process, the change will be summarized in a SAPHIRE Change Request Form (see
Appendrx B), where the problem will be summarized and categorized.

Once a clear definition of the change has been identified, additional items are considered, including:

e When applicable, define the necessary inputs and expected outputs.

e Determine the approximate complexity and level of effort required to accomplish the task.
e Consider how existing code functionality can be leveraged to help accomplish the task.
e Consider potential effects on other parts of SAPHIRE.

The next step is to prove the concept. This means developing key internal functions as well as a

rudimentary interface to access and test those functions. This step serves to test the feasibility of the
solution, and helps the designers understand the problem. The results of this step are used for further

. discussion between the developer and the requestor. This is considered the first iteration of the prototype.
Depending upon the results, the design may be modified and refined. The prototype will be modified or
rewritten to reflect the information learned.

An iteration of the software should improve the functionality of the change to bring it closer to its goal.
Successive passes, as the desngn and prototype stabilize, will incorporate more and more of the following
items:

& Additional supporting functions
¢ Refined and more complete user interface
o Integration into the SAPHIRE user interface

e Auxiliary functions to facilitate ease of use

Auxiliary functions are niceties that contribute to ease of use. They vary according to the task, but may
generally include such things as customizing, sorting, and/or saving data, generating reports, loading and
extracting data between projects, toolbar short-cuts, and individual and bulk processing of data. These
types of auxiliary functions are added as time and budget permit. Depending on the scope and
complexity of the task, the requestor and the developer maintain contact throughout the development
process. Specifically, the requestor or a designated group of users will be glven the opportunity to see,
try, and comment upon prototypes at logical pomts

As a prototype is refined, it approaches a point where satisfies the solution requirements. At this point,
the SAPHIRE Change Design and Testing Checklist is completed. Completing this checklist will help
assure that a standard list of coding issues have been addressed.

1.2.2 Acceptance Testing/Automated Testing

Prior to any official SAPHIRE release of versions 6 and 7, the software is run through a series of
automated tests. The tests simulate user input to the computer through a test script, and results are
captured and compared to expected results. This ensures that given a static input PRA file, the risk or
reliability results from SAPHIRE will be consistent from one release to the next.
These tests were developed by first identifying the critical tasks performed in a PRA. Then these tasks
were mapped to the SAPHIRE functions that perform these tasks (Appendix C contains additional detail).
The critical functions were determined to include the following:

e Fault tree analysis

e Event tree and sequence analysis

o End state analysis

o Importance measures analysis

e Uncertainty analysis
e Change sets
o Data utility functions

¢. GEM module functionality -

Next, a variety of models are selected, with varying degrees of size and complexity, based on suitability
for adequately testing one or more critical functions. These models mainly consist of actual PRA models
developed by experlenced analysts :

Test scripts were developed to exercise essential SAPHIRE functions, with a quantitative emphasis. The
test scripts mimic actions taken by an analyst, such as starting SAPHIRE and navigating the user interface
by selecting menu options, clicking buttons and typing information. Results are saved and compared
against expected results. A summary and a detailed report of the results of the tests are produced, so that
an overview .of the results can quickly be determined, and any fallures (or successes) can be traced in
more detall :

A change is not considered complete until the results have been tested and found reasonable. Developers
and key users will test to see that the change works as expected and is free of defects. Changes and new
capabilities will not be released until the results are deemed satisfactory and correct. When the change
has been accepted, the SAPHIRE Change Form will be updated to documcnt the completion of
development

Prior to official release of a version, SAPHIRE's automated test suite must complete successfully (100%
of all tests). The success of the suite is a good indicator that the new change does not adversely affect
other areas of the code. Rarely do changes and bug fixes change the acceptable results of the test. On the
unusual occasion when this happens, the target test results are modified to match the new accepted results
for future runs. The reasons for the results modlﬁcatlon are documented and cleared by an authority on
the subject matter.

The SAPHIRE automated test suite was designed to verify core operations, such as generating current
event data, and solving for cut sets. When the tests produce expected results, the correctness and stability
of SAPHIRE is validated. The tests exercise various features on assoned databases, with substantial
overlap on key features to provide added confidence.

The test suite is evaluated against significant changes and new features. New tests are developed to check
a new feature when the developer and customer agree that it is appropriate. To develop a new test, a
suitable test scenario with a database and validated correct answers must be determined.

Each new version of SAPHIRE undergoes beta testing before its release. Beta testing helps to ensure that
the results produced by the new version are correct and that the software is user-friendly and functional.
Beta testers are analysts experienced with PRA methods and terminology and typically are familiar with
earlier versions of SAPHIRE.

In addition to the automated testing employed by the SAPHIRE TV&V, the development team utilizes a
multi-faceted approach to testing. This approach; illustrated in Figure 2, is comprised of three items:
internal testing, external testing, and automated testing. “Internal” testing (or developmental testing)
includes those checks performed by the development team itself to ensure quality during the development
process. External testing are those evaluations performed by risk and reliability end-users using, in many
cases, “real world” models. Lastly, the automated testing are those tests that are used to ensure quality for
each incremental SAPHIRE release and are described in NUREG/CR-6688 and this report.

Internal - External
Testing - : Testing

Automated Testing

~ Figure 2. Types of testing used during the SAPHIRE development process.

| 1.2.3 Documéntation

As changes to SAPHIRE are finalized, a description of the change is documented in several places. The
developers describe the change when they check-in the altered source code into the-version control
library. Upon official release, the change is noted in-a “read me” text file that is distributed with
SAPHIRE. ' '

SAPHIRE has an on-line user manual and technical reference manual. Individual changes to the software
are not necessarily reflected in this documentation with each release. Many changes are not applicable to
this level of the documentation, but some changes and new features do apply. Minor changes, such.as
wording changes in a screen shot, or removal of an obsolete feature, do not merit immediate inclusion;
however, significant new features warrant timely addition. As priorities, time, and budget permit, when
such new features are added to the software this documentation is revisited and updated.

1.2.4 Version Control

The INL software developers use version control for both the formally released SAPHIRE versions, as

‘well as for source code. For each formal release of the software, the developers perform an acceptance

test: the software must pass a suite of automated tests prior to official release.

Each official release of SAPHIRE is assigned a unique version identifier. The release is bundled into a
standard installation package for easy and consistent set-up by individual users. Included in the release is
a list of bug fixes and new features for the current release, as well as a history of those items for past
releases. Each formal release of SAPHIRE w111 have passed an acceptance test descrrbed in the
Automated Testing section below. S

In addition to assrgnment of a unique version identifier for an ofﬁcral software release each source code
file is kept in a controlled library. (Source code is a collection of all the computer instructions written by -
developers to create the finished product.) The library is kept on a server, where back-ups are regularly
made (Individual developers/programmers machines are perlodrcally backed up as well.)

The source code version control library requires that individual programmers "check-out" all files that
they intend to modify. Prior to "check-in", programmers must explain any changes made. . A record is
kept of all changes, both as explained by the developer, and as individual copies of each version of a file.
At any time, the developer can retrieve past versions intact, if necessary.

The SAPHIRE software program is contmually modified, in response to user reported bugs and
suggestions, and contractually specified enhancements. The version control procedure described above

- ensures a methodical approach to tracking and releasing these changes.

1.2.5 Approach to Bug Fixes and New Features

As new features and bug fixes are made, the INL developers follow a standard approach to integrating
these items into SAPHIRE. For bug fixes, notes are taken from the reporting user describing the general
context of the bug, as well as systematic actions to reproduce the bugs. This bug information includes
acquiring a copy of the user’s database, when necessary. Reporting problems or suggesting features can
be done using the SAPHIRE web site (http://saphire.inl.gov) through the change request function. (See
Appendix B for additional information)

A software problem is classified and prioritized according to severity. - A bug is considered “minor” if it
inconveniences the user, but a workaround exists to produce a correct answer. A bug is “major” if it
prevents the user from obtaining the correct answer. Problems in more commonly used features are
considered a higher priority than those found in less used features. User deadlines are also considered.

Bug fixes are tested in the environment in which they were reported, as well as other places if possible
side effects are suspected. Sometimes, a release candidate is made available to the reporting user or group
of users to ensure that the problem has been satisfactorily fixed. Once a bug has been resolved, it is
added to the list of changes for the next official version, which must pass the set of acceptance tests
described in the next section.

Software enhancements follow much the same approach as bug fixes. Enhancements are prioritized and
implemented, with intermediate testing by the developer and often by the requestor. Once the process and
results appear acceptable, the feature is added to the next official release.

10

2. QUALITY ASSURANCE PROCESSES

21 Tests Used in the SAPHIRE TV&V

The use of SAPHIRE in regulatory applications is extensive. Therefore, SAPHIRE is tested through
various processes. Each new SAPHIRE version is beta tested to some degree before its release. Beta
testers are analysts experienced with PRA methods and terminology and are typically familiar with earlier
versions of SAPHIRE. The primary objective of the beta testing is to verify that the results produced by
the new version are correct. The secondary objective is to ensure the software is user-friendly and
functional. In addition, INL personnel receive feedback from users around the world. Hundreds of users
rely on the calculations inherent in SAPHIRE for both risk and reliability calculations. New SAPHIRE
releases are tested extensively by (a) comparing them with PRA models and results of earlier versions and
(b) by loading new PRAs and comparing them with expected results. Given that different PRAs have
been performed with different types of software, one can argue that SAPHIRE has been tested w1th an
enormous number of test cases. : :

The test procedure dictates how the mechanics of the testing process is to take place. To perform the tests
for the TV&V, test scripts and test databases to be used are stored on a network drive (at the INL)

“accessible by version control software. The version control software tracks all changes by author and

time. Note that only one person is allowed to check out an item for modification at any one time. These

_ personal copies are stored on a local machine for development and testing. Any completed changes are -

then submitted to the version control library with the name of the author, date, time, and a short
description of the change. The version control software stores and marks the changed copy as the newest
version but retains the old versions for historical purposes.

Individual test cases are designed to perform a specific analysis task, just as a SAPHIRE user might

perform them. Each test case consists of one or more scenarios (€.g., modifying data, generating cut sets).
These scenarios focus on a particular piece or variation of the test case analysis task. The complete set of
tests and scenarios comprise the test suite, which is executed prxor to release of each new version of
SAPHIRE

Prlor to running the test suite, the latest, completed, and debugged scripts are checked out of the control
library and compiled (by the testing software) into run-time form. The compiled suite of tests, along with
the compressed (.zip format) database files and SAPHIRE, are transferred to the test machine on which
the tests are to be run (if any changes to the scripts have been made since the last test run). This delivery

-mechanism allows the TV&V team to test SAPHIRE on a variety of computer platforms and operating

systems. Currently, SAPHIRE is supported for the Microsoft Windows operating systems of Windows

98, Windows NT, Windows 2000, and Window XP. The SAPHIRE software should function properly

under derivatives of these operating systems (e.g., Windows ME), but at this time, the TV&V has not
evaluated these other operating systems.

The SAPHIRE test utilizes two different processes. The first process is the development of test scripts or
batch files, which are DOS commands that run pre-determined macros. The macros are the second process
that is used in the testing of the newly released versions of SAPHIRE. Both of these processes along with a
simple example will be presented.

11

The script of batch files are DOS commands that set up the test that will be performed. There are two
different types of scripts. The first one shown below is used to execute multiple scripts at once. This script
file sets up.the output by stating the date and time the test was ran along with what version of SAPHIRE was
executed. This script will be considered as the overall test script. The individual lines are DOS commands
that help create the output. The first line is an input (i.e., %1 = typed in file name [detail]), which is a file
that will be created storing all of the output information. The second line is also a file that contains output
information but is a summary report instead of a full detail report (i.e., %2 = typed in file name [summary]).
The next group of lines is used to create the headers listed in the detail output report. These lines stamp the
output with the date and time of analysis along with the version of SAPHIRE being ran. This information is
placed in both the detail and summary report. The last group of lines will now call the individual script files
used for specific evaluations. In the case shown the core damage ﬁequency analysis will be performed using
the database. The line is a DOS line, which has the core_damage_freq script executed with the output
information being stored in %1 (detail file output) and %2 (summary file output) and then which database
this script is to be executed. The individual script files will be discussed briefly since they are very similar.

Overall Test Script
if %1$==$ goto end
if %2%$=S3 goto end

c: :

cd \Saphire7

echo SAPHIRE/GEM Test Suite Summary Report > %?2
c:\Saphire7\qatools\datetime "DATE & TIME :" %2
c:\Saphire7\qatools\fversion c:\Saphire7\tools\saphwin.exe %2
echo>> %2 '

echo> %1

‘rem CDF analysis
call scripts\core_damage freq %1 %2 byrn_2qa
etc. :

The individual script files can be ran as stand-alone or via an overall test script. The individual test scripts
are similar except they execute the macros, which tell SAPHIRE what type of analysis is to be performed.
The first two lines are the same for the individual test script as for the overall test script. The third line,
however, represents the database to be evaluated (%3 = database). The next group of lines is used to create
the folder, which the database will be placed and unzipped. Then it executes SAPHIRE and calls the macro,
which has the details of the specific analysis. Once the macro has performed its specific analysis the results
are dumped into the detail output file (%]) and summary output file (%2). The last line is used to compile
all of the outputs together in order to create one large detail file and one large summary file.

Individual Test Script
if %1%=S$ goto end
if %2%$==S$ goto end
if %3%==$ goto end

md c:\Saphire7\%3

del c:\Saphire7\%3*.* /q _
c:\Saphire7\qatools\unzip o c:\Saphire7\database\%3.exe d c:\Saphire7\%3
copy c:\Saphire7\results\%3\qa*.rpt c:\Saphire7\%3

12

call ¢:\Saphire7\tools\saphwin.exe i386 PROJECT=c:\saphire7\%3\
MACRO=c:\saphire7\macros\Core_Damage_Freq %3.mac
DETAIL=core_damage_freq_%3.rpt :
copy %1 + c:\Saphire7\%3\core_damage_freq %3.rpt %1

\Saphlre7\qatools\lasthne c:\Saphire7\%3 c: \Saphnre7\%3\core damage freq_%3 rpt %2
end

The macros are used to perform specific analyses. The following will provide a brief overview of the

macros. The macros utilize key words or verbs. The verbs or key words are designed to execute certain
functions within SAPHIRE to perform the specific analysis. The following macro that will be discussed is
used to solve the fault trees and event tree accident sequences of the specified project database. The macro is -
core_damage_freq.mac. The macro will be dissected in order for better understanding.

First, the macro sets up the analysis. The first line states that no prompt is required prior to starting the
analysis (i.c., SAPHIRE will just move down to the execution process instead of waiting for a manual input).

<initial prompt>no</initial prompt> -

ThlS part is a comment bracket, whlch enables the analyst to identify the type of analy51s this macro is going
to perform and any other pertinent information.

<c0mment>
i TEST CASE NAME: Core Damage Frequency
o ' TEST SCRIPT FILE NAME: Core_Damage_Freq PWR.mac

GENERAL DESCRIPTION OF WHAT IS VERIFIED
. This test case compares the sequence current case CDF agamst SAPHIRE version 6 base case
results. This test is not plant specific. :

NAME OF APPLICATION UNDER TEST: SAPHIRE 7.0

TEST CASE PURPOSE:
REQUIREMENT(S) VERIFIED: TBD

_ TESTO1 Solve Fault Trees Fault Tree Probability Results
" TEST 02 Solve Sequences Core Damage Frequency Results

TEST CASE ABSTRACT OF TECHNIQUES USED TO TEST THE FEATURE:
The automated tests described herein are grouped to run consecutively. -
OTHER FILES REQUIRED TO RUN TEST CASE: None.

</comment>

This parf provides a descn'pﬁon of the particular scenario that is going to be evaluated. The scenario for this
case is %P-01, where %P represents the particular database (i.e., Bym_2qa) then provides the description of
the test (i.e., Solve Fault Trees).

<scenario>
‘ <start>
v : <pame>%P 01</name>

<description>Solve Fault Trees</descnpt10n>
</start>
</scenario>

The fault tree menu is now executed by using the key word or verb <fault tree>. All of the fault trees are

. marked via the “*” operator, then they are solved at a truncation of 1.0E-16. Once all of the fault trees have
been solved, a base case update in the random calculation type is performed (key word <base case update>,
<analysis>random</analysis>). The results are then sent to a file with the name specified (i.e.,
ft_current_vs_base.rpt). This output is then compared to a quality assured set of results to make sure this
version of SAPHIRE that is being tested matches the results of a quality assured version of SAPHIRE. Then
the fault tree menu optlon is exited and the scenario is ended.

<fault tree>
<unmark></unmark>
<mark mask>*</mark mask>
<solve>
<truncation>1.0E 16</truncation>
</solve> :
<base case update>
<analysis>random</analysis>
</base case update>
<report>
<type>results</type>
<sub type>current base</sub type>
<file name>ft_current_vs_base.rpt</file name>
</report>
<compare file>
<input 1>ft_current_vs_base.rpt</input 1>
<input 2>qa_ft_current_vs_base.rpt</input 2>
<output>compare.rpt</output>
</compare file>
<report>
<type>results</type>
<sub type>current only</sub type>
<file name>ft_current_only.rpt</file name>
</report>
<compare file> :
<input 1>ft_current_only.rpt</input 1>
<input 2>qa_ft_current_only.rpt</input 2>
<output>compare.rpt</output>
</compare file>
</fault tree> _
<scenario><end></end></scenario>

14

- The next part of the macro provides a description of the particular scenario that is going to be evaluated. The v

scenario for this case is %P-02, where %P represents the particular database then provides the description of
the test (i.e., core damage frequency test). . '

~ <scenario>
<start> v
<name>%P 02</name>
<description>Core Damage Frequency Test</descr1ptlon>
</start>
</scenario>

This section tells SAPHIRE to go into the Change Set menu and make suré there are no change sets marked,
then generate the basic event data. Lastly, the process is completed using the </change set> key word.

<change set> _
<unmark></unmark> -
<generate></generate>
</change set>

The last line of every macro is the “exit program” verb. This command causes the macro to exit from
SAPHIRE in order for another macro to be executed. :

<program exit></program exit>

The above macro provided only a brief description of how the verbs or key words work in the macros.
However, all of the other menus and actions that can be performed by SAPHIRE (i.e., end state evaluations,
importance measures, GEM evaluations, etc) can be created using the same format. In general, state the
starting key word or verb (<end state>), then add the type of evaluation requ1red (<solve> [1 e.,.gather cut
sets]), then end the process by adding “/” to the verb (</end state>). .

By developing the key words or verbs into a SAPHIRE macro, the software can be tested for efficient and
direct version verification. The automated test suite uses embedded software hooks in the application-
programming interface (API) to allow the application code to run the test macros. The original test sequences .
(from SAPHIRE version 5) were translated into the macro language and then rerun on the current SAPHIRE
software release to ensure results matched the pre-macro results. The pre- and post-macro results were
independently verified and validated by a PRA analyst. :

In addition to specific test scenario data, the user identification of the person running the test; the version of
SAPHIRE being tested; and the version of the operating system are automatically recorded. Final
acceptance of any documentation, code, and test results is considered complete when all parties sign off on
the completed change. ' : 4

The automated test software generates two documents: a summary report and a detail report, as it executes
the tests. The report lists the test identification number, a description, and an overall pass/fail indicator. A
test is failed if even a single value in one sub-test is incorrect. The detail report displays a more thorough
description of the steps taken, the results obtained, the expected results, and deviations, if any. As the
code developers run the test suite, any discrepancies are noted and corrected prior to release of a new
version.

15

Automated testing activities are used to provide faster, better, and more efficient assessment of the
SAPHIRE code. Other test activities include the individual tests conducted by the developer of specific
module(s). Individual test cases are designed to perform a specific analysis task. Each test case consists of
one or more scenarios. These scenarios focus on a particular variation of the test case analysis task. A
complete set of tests/scenarios comprise the test suite, which is run for each new version of SAPHIRE.

Before test scripts are created, the salient features of the software to be tested must first be identified.
Identification of the SAPHIRE features to be tested begins by outlining the major functions performed in a
PRA. These functions are then overlaid onto specific SAPHIRE features. Applicable PRA functions include
cut set generation and quantification; uncertainty analysis; and importance measures. Input is solicited and .
received from experienced PRA users to expand and refine the list. From the list, SAPHIRE features are
examined to determine importance and if they testable.

Once the important SAPHIRE features are identified, tests were generated that would evaluate each feature
are selected. These tests may have more than one type of analysis approach, since it is possible within PRA
(and SAPHIRE also) to solve some problems in more than one way. For example, sequence cut sets could
be determined by solving sequence logic exphcxtly or by combining pre-ex1st1ng fault tree cut sets. - '

For each test result in the suite (see Appendix C), the first line of the test result identifies the test ID and
-description along with the time at which the particular test was started. This is illustrated below in the
sample test result (e.g., SURRY-50-05). After the identifier line, the steps processed by the test are shown.
In the example below, the SURRY-50 sequences are solved using a truncation of 1E-9/yr and then recovery
rules are applied. The cut sets are run through a cut-set update. Then, the test gathers end-state cut sets via
the partition rules (again with 1E-9/yr truncation). These end-state cut sets are updated. Lastly, the results
are compared against the stored “correct” results for the end states of AD5, AD6, AH1, and S2D1. Ifthe
results match the “correct” results, a “pass” is indicated, otherwise a “failed” would be indicated. Then, the
time of test completion is recorded.

SURRY-50-05 Scenario: Check End State Cut Sets started at 12:48:28 AM
Sequences solved with prob cut off (1.0E-09) and with recovery

Sequence cut sets updated

End States gathered by cut set partition with prob cut off (1 OE- 09)

End State cut sets updated

END STATE CUTSET RESULTS:

- ADS pass
- AD6 pass
AH1 pass
S2D1 pass

Scenario: Check End State Cut Sets completed at 12:50:05 AM

While the tests and approved criteria address a large part of the calculation functionality within
SAPHIRE, the tests do not cover 100% of SAPHIRE's capabilities. For example, the current test suite did
not encompass every possible way of modifying cut sets after generation. Users can manipulate cut sets

- after generation (i.e., "post-processing") by manually editing them, using "recovery rules," using the
"prune" option, and performing a cut set update. However, the test suite does test the most commonly
used mechanisms of performing tasks in SAPHIRE - these PRA tasks and their associated tests are listed
in Table 1. In this table, the test number, its name, the PRA area/function tested, the SAPHIRE option
that is exercised, and the test model(s) that are used are listed.

16

Table 1 Tests where specific PRA features are verified

"Test ~ |"Test Name PRA'Area | SAPHIRE . | Test
Number | ...~ L e R | option Models
Test-01 © | Solve Fault Trees Fault Tree Probability Results. Generate No change set All
Test-02 Solve Sequences Core Damage Frequency Results. current event data :
Test-05 Transient initiator with no other failures. data
Test06 . | Small LOCA initiator with no other failures.

Test-07 .| Steam Generator initiator with no other failures. |

.Test-08 -~} Grid-related LOOP initiator with no other failures.
Test-09 ' | Plant-centered LOOP initiator with no other failures.
Test-10 - | Severe Weather LOOP initiator with no other failures.
Test-11 - - | Extreme Severe Weather LOOP initiator with no other failures.
Test-13:. | Project Uncertainty.

.| Test-14 | Log Normal Distribution using MCS.
" Test-15 Normal Distribution MCS..
Test-16 -~ | Beta Distribution MCS.
Test-17 Chi-squared Distribution MCS.
Test-18 Exponential Distribution MCS.
Test-19 | Uniform Distribution MCS.

-Test-20 - | Gamma Distribution MCS.

.Test-21 - | Maximum Entropy Distribution MCS.

“Test-23 .~ | Seismic Log Normal Distribution MCS.

“Test-24 . '| Constrained Non-informative Distribution MCS.

N Test-25:":" ‘| Log Normal Distribution using LHS. ’

"Test-26 .. | Normal Distribution LHS. :

“Test-27 . .= | Beta Distribution LHS.

Test-28 © .| Chi-squared Distribution LHS.
Test-29 - | Exponential Distribution LHS.
Test-30 Uniform Distribution LHS.
Test-31" | Gamma Distribution LHS.
Test-32 Maximum Entropy Distribution LHS.
Test-34 . Seismic Log Normal Distribution LHS.
Test-35 Constrained Non-informative Distribution LHS.
Test-36 -~ | Histogram Distribution MCS.
Test-37 Histogram Distribution LHS.
Test-38 | Gather End States. _
Test-39-= - | End State Single/Group Uncertainty MCS.
Test-40 - .| End State Single/Group Uncertainty LHS.
Test-42 " .| Link Level 1 Event Trees (small event trees).
Test-43 " | Partition Sequence Cut Sets.
Test-44 - | Link PDS Event Trees (large event trees)..
. Test-45: . | Fault Tree Importance Measures.
Test-46 * :| Sequence Importance Measures.
Test-47:"-'| Sequence Group Importance Measures.
Test-48 End State Importance Measures.
Test-49 - End State Group Importance Measures. .
Test-03 Condition Assessment - MFW unavailable for 72 hours. Generate Single changes DEMO,
Test 04 Emergency Diesel Generator out of Service for 3 months. current event SURRY-50
Test-12 | Transient initiator with AFW failed. data
Test-22. - { Dirichlet Distribution MCS.
Test-33 . | Dirichlet Distribution LHS. o
Test-50 | Single Change Set on Compound Event. :
Test-50- Single Change Set on Compound Event Generate Single changes Wolf -
current event Creek,
data Peach
Bottom

17

"PRA Area -

Test Test Name "SAPHIRE " | Test
Number “option Models
‘Test-51 Change Set Processmg- Class Generate Class changes DEMO,

- Class change - all events, probablhty 0.1 current event SURRY-50

. . Class change - 2-MOV-1 events, probability 0.5 (a subset) data '

Test-52 Change Set Processing-Marked Order Generate Marked order DEMO,

e Marked change sets from scenanos 1,2, 3 (marked in that current event SURRY-50

order) data .

Test-41 Cut Set Verification Fault tree cut With flag sets COM-
Cut Set Verification Solve Sequences and Monte Carlo set generation PEAK,
uncertainty calculations. : SURRY-
Cut Set Verification Solve Fault Trees, Sequences and end 50,

- states.) 1 SEQUOIA
Test-01 Solve Fault Trees Fault Tree Probability Results Fault Tree cut Without flag SPAR, **
Test-41 Cut Set Verification ‘ set generation sets COM-

| Test-53 Basic Events Load / Extract Fault Tree Load / Extract ’ PEAK,
. SURRY-
: 50, CR3
‘|- Test-41 Cut Set Verification Sequence cut With flag sets All

e set Generation '

_ Test-02 Solve Sequences Core Damage Frequency Results Sequence cut Without flag Multiple

Test-13 Project Uncertainty ' . set Generation | sets

Test-41 Cut Set Verification

Test-42 -

Test-38 Gather End States Gather By sequence BV2-5,

Test-41 - - | Cut Set Verification sequence cut ‘ SURRY-

Test-44 Link PDS Event Trees (large event trees). sets into end 50,

: states COM-
PEAK,
: S _LERF

Test-43 Partition Sequence Cut Sets. Gather By Cut Set S_LERF

' sequence cut

sets into end

. states

Test-14 Log Normal Distribution using MCS Uncertainty of | Monte Carlo TSTU
" Test-21 Maximum Entropy Distribution fault tree sampling

Test-23 | Seismic Log Normal Distribution distributions

Test-24 Constrained Non-informative Distribution

Test-14 Log Normal Distribution using MCS Uncertainty of | Monte Carlo TSTU

Test-21 Maximum Entropy Distribution fault tree sampling

Test-23 Seismic Log Normal Distribution distributions

-Test-14 Log Normal Distribution using MCS Uncertainty of | Monte Carlo TSTU

Test-21 Maximum Entropy Distribution fault tree sampling

Test-23 Seismic Log Normal Distribution distributions

Test-14 Log Normal Distribution using MCS Uncertainty of | Monte Carlo TSTU

Test-21 Maximum Entropy Distribution fauit tree sampling

Test-23 Seismic Log Normal Distribution distributions :

Test-14 Log Normal Distribution using MCS Uncertainty of | Monte Carlo TSTU

Test-21 Maximum Entropy Distribution fault tree sampling

Test-23 Seismic Log Normal Distribution distributions

Test-14 Log Normal Distribution using MCS Uncertainty of | Monte Carlo TSTU

Test-21 Maximum Entropy Distribution fault tree sampling

Test-23 Seismic Log Normal Distribution distributions

Test-14 Log Normal Distribution using MCS Uncertainty of * | Monte Carlo TSTU

- Test-21 Maximum Entropy Distribution fault tree sampling '

Test-23 Seismic Log Normal Distribution distributions

Test-14 Log Normal Distribution using MCS Uncertainty of | Monte Carlo TSTU

Test-21 Maximum Entropy Distribution fault tree sampling

Test-23 Seismic Log Normal Distribution distributions

18

‘_-.-_-.A._-,-‘..,,,

Test

End State Birnbaum Importance
End State Uncertainty Importance

| Test Name PRA Area | SAPHIRE = | Test
Number. ' S S e _option . . Models
- Test-14 Log Normal Distribution using MCS Uncertainty of - {" Monte Carlo TSTU
Test-21 “+:| Maximum Entropy Distribution - fault tree sampling
Test-23 Seismic Log Normal Distribution distributions
‘Test-14.....| Log Normal Distribution using MCS Uncertainty of | Monte Carlo TSTU
Test-21 Maximum Entropy Distribution fault tree sampling
‘Test-23 Seismic Log Normal Distribution distributions
Test-14 Log Normal Distribution using MCS- Uncertainty of | Monte Carlo . TSTU
Test-21' Maximum Entropy Distribution fault tree . sampling - '
Test-23 - | Seismic Log Normal Distribution - distributions :
Test-14 -~ - | Log Normal Distribution using MCS "Uncertainty of | Monte Carlo TSTU
- Test-21 Maximum Entropy Distribution fault tree sampling
Test-23° | Seismic Log Normal Distribution distributions -
Test-14 Log Normal Distribution using MCS Uncertainty of | Monte Carlo TSTU
Test-21 Maximum Entropy Distribution fault tree sampling :
Test-23 Seismic Log Normal Distribution distributions.
-Test-36 . Histogram Distribution-MCS
Test-25 .| Log Normal Distribution using LHS Uncertainty of | Latin TSTU
Test-26 . Normal Distribution using LHS fault tree Hypercube
Test-27 Beta Distribution LHS distributions. sampling
“Test-28 | Chi-squared Distribution LHS :
Test-29 Exponential Distribution LHS
Test-30:" | Uniform Distribution LHS
Test-31.-7- | Gamma Distribution LHS
Test-32. - | Maximum Entropy Distribution LHS
Test-33 -7 | Dirichlet Distribution LHS
Test-34 - *.[Seismic Log Normal Distribution LHS. _
Test-35 -+ | Constrained Non-informative Distribution LHS
Test-37 - | Histogram Distribution-LHS
Test-22 Dirichlet Distribution MCS - Sequence Monte Carlo TSTU
Test-24 Constrained Non-informative Distribution MCS uncertainty sampling
analysis .
Test-38- Gather End States. Gathering of BV2-5
e : : _End States
Test-39 End State Single/Group Uncertainty MCS End State Monte Carlo BV2-5
uncertainty . sampling '
: analysis) :
Test-40 .. | End State Single/Group Uncertainty LHS End State Latin BV2-5
: uncertainty Hypercube
L analysis sampling
Test-45 Fault Tree Importance Measures - Importance Fault trees DEMO .
' - Fault Tree Fussell-Vesely Importance (ratio) measures
Fault Tree Bimbaum Importance (Interval or difference)
.' Fault Tree Uncertainty Importance ' v
 Test-46 | Sequence Importance Measures Importance Sequence DEMO
. ‘ Sequence Fussell-Vesely Importance (ratio). . measures
Sequence Birnbaum Importance (interval or difference).
: - Sequence Uncertainty Importance. '
Test-47 Sequence Group Importance Measures Importance Sequence Group | BV2-5
Sequence Group Fussell-Vesely Importance (ratio). measures :
Sequence Group Birnbaum Importance (interval or difference).
Sequence Group Uncertainty Importance.
Test-48 End State Importance Measures ’ Importance End State HISNO, .
: End State Fussell-Vesely Importance measures BV2-5

19

"SAPHIRE -

Test: | TestName. =~ =~ PRAArea “Test.
Number | - - sl B “option ‘Models
~Test-49 - .- | End State Group Importance Measures Importance End State Group | BV2-5
. -+ *_| End State Group Fussell-Vesely Importance measures : '
End State Group Birnbaum Importance
o End State Group Uncertainty Importance - :
‘Test-41 - | Cut Set Verification - - Cut Set Update .| Fault trees SURRY-
"Test-53 - | Basic Events Load / Extract Fault Tree Load / Extract . 50, COM-
T PEAK,
P CR3
Test-13 | Project Uncertainty Uncertainty
"Test-41 . | Cut Set Verification " analysis B
Test-41. "~ | Cut Set Verification Cut Set Update | Fault trees SURRY- -
SR : 50,COM- |
PEAK, -
Doy) .- CR3
Test-41 - | Cut Set Verification Fault tree cut Auto-recover SURRY-
Test-53. - | Basic Events Load / Extract Fault Tree Load / Extract - set option 50,
SRR ' ‘ : ‘ Recovery COM-
PEAK,
: v ‘ CR3
Test-02 - | Solve Sequences Core Damage Frequency Results Sequence cut Auto-recover ‘SURRY- .
Test-13- - | Project Uncertainty set ' option T 50, .
‘Test-41 | Cut Set Verification Recovery COM-
: ’ o : PEAK
Test-43 Partition Sequence Cut Sets. Sequence cut Batch apply S_LERF
o : set - option
Partitioning .
Test-42 - : ‘| Link Level 1 Event Trees (small event trees). Link Small | Linkage Rules - | S_LERF
[o event tree
' : : (logic) :
Test-44 . Link PDS Event Trees (large event trees). Link Large Create cut sets S_LERF
R : : ‘ event tree (cut’ | option
sets))
Test-41 Cut Set Verification Fault Tree Alpha-numeric - | SURRY-
S logic logic editor 50, '
COM-
: PEAK
Test-41 Cut Set Verification Fault Tree Graphical editor | SURRY-
o logic -} 50,
COM-
PEAK,
: v - . CR3
-Test-54 - | Fault Tree Utilities: Auto Page/Solve Fault Tree Pager CR3
- Fault Tree Utilities: Cut Sets to End State Logic
Test-42 .- | Link Level 1 Event Trees (small event trees) Event tree Graphical editor | S_LERF
SR logic
“All tests Project version | Version All Models
controll Upgrade :
Test-05 Transient initiator with no other failures. Initiating Delete All Models
Test-06 Small LOCA initiator with no other failures. Event :
 Test-07 Steam Generator initiator with no other failures. Assessments
Test-08 Grid-retated LOOP initiator with no other failures. ’
“Test-09 Plant-centered LOOP initiator with no other failures.
Test-10- Severe Weather LOOP initiator with no other failures.
Test-11 Extreme Severe Weather LOGP initiator with no other failures.
Test-12 Transient initiator with AFW failed.

20

Test Name

Test PRA Area | SAPHIRE | Test |
Number . : : : | option Models
" Test-05 - | Transient initiator with no other failures. Initiating Add All Models
Test-06- . | Small LOCA initiator with no other failures. Event
Test-07 - | Steam Generator initiator with no other failures. Assessments
Test-08 . | Grid-related LOOP initiator with no other failures. o
‘Test-09 . | Plant-centered LOOP initiator with no other failures.
Test-10 - | Severe Weather LOOP initiator with no other failures.
Test-11.7. | Extreme Severe Weather LOOP initiator with no other failures. .
Test-12-* | Transient initiator with AFW failed. '
Test 03 | Condition Assessment - MFW unavailable for 72 hours Condition Delete All Models
Test-04 - . | Emergency Diesel Generator out of Service for 3 months Assessments :
Test 03 - | Condition Assessment - MFW unavailable for 72 hours Condition Add All Models
Test-04 . - 1 Emergency Diesel Generator out of Service for 3 months Assessments
Test 03 - Condition Assessment - MFW unavailable for 72 hours Condition -Add events to All Models
Test-04° - :| Emergency Diesel Generator out of Service for 3 months Assessments Assessment . :
Test-03 .~ | Condition Assessment - MFW unavailable for 72 hours Condition Process All Models
Test-04 . | Emergency Diesel Generator out of Service for 3 months Assessments
Test-53- © | Basic Events Load / Extract Fault Tree Load / Extract - Fault Trees Load/Extract CR3
" Test-53 Basic Events Load / Extract Fault Tree Load / Extract Basic Events Load/Extract CR3
Test-54 Fault Tree Utilities: Auto Page/Solve Fault Trees Modify/Delete CR3
.. - .« | Fault Tree Utilities: Cut Sets to End State :
- Test-53 ‘Link Level 1 Event Trees (small event trees). Level 1 Event Linkage rules Wolf Creek
:) Link Level 1 Event Trees: Solve w/ Flag Sets Tree Linking 302, Peach
Solve Sequence Cut Sets w/ no Flags. : Bottom
' o 302,
SIMPLE- -
. . : FT
Test-56 End-State Gathering End States End State S_LERF
: Gathering . (by rules),
Beaver
Valley (by
: .) . names)
Test-57 Compound Event Plug ins Common cause | Fault Tree, SIMPLE-
. . : : : module, Compound FT (PLUG-
Utility module | Event Plug-in IN-FT)
(i.e,. add,
multiply),
Load-capacity
Test-58 Base Case Updates Base Case Base Case " All SPAR
Update Update 2Q, 3i
) . : : models
Test-59. Calculation Types & N of M Gates Calculation True, 1,3,5,7, SIMPLE-
’ Calculation Type True, N of M Gates types False, 1,3,5,7 FT
Calculation Type False, N of M Gates Ignore, .1,3,5,7
Calculation Type Ignore, N of M Gates Use of AND
gates, then OR
. gates.
Test-60 ~.| Change Sets (place holder for a future test) Change Sets TBD
Test-61 Uncertainty analysis Uncertainty TSTU,
Distributions SURA40,
Wolf
Creek,
Peach
Bottom, .
SIMPLE-
FT

21

‘Test Test Name PRA Area | SAPHIRE: | Test- -
Number ' L S option - -~ | Models
Test-59 Calculation Types & N of M Gates Nof M Gates | Use of all inputs | SIMPLE-
: . Calculation Type True, N of M gates ' ' FT
Calculation Type False, N of M gates
Calculation Type Ignore, N of M gates .
Test-59 Load Capacity Test Sequence Sequence SIMPLE-
. . Calculation Type True, N of M Gates generation Generation FT
v : . (BE-
LOAD-
CAPACIT
Y)
Test-64 Common-cause failure Common Common Cause | Wolf
Cause Failures, | Plug-ins Creek,
Basic Events Peach
with change Bottom 3
. sets '
Test-65 Event Transformations (place holder for a future test) Basic Events, Transformations | TBD
: : : ‘ Sequence.
. . Analysis
Test-66 Wrong Results (a false positive to ensure the error flag for Results Results DEMO
testing is functioning properly) - verification verification

22

2.2 QA Processes Used During the SAPHIRE Development

2.21 Management

The organizational structure of the SAPHIRE software development team influences and controls the
software quality. Roles and responsibilities within the organizational structure provide the development
team with the freedom, flexibility and objectivity to evaluate and monitor the software quality as well as
verify problem resolutions. This structure enables the development team to tailor the maintenance and
development activities, techniques, and methodologies for problem identification, reporting and resolution,
testing, records retention, and configuration management.

As SAPHIRE is currently in the maintenance phase of the software development lifecycle, software
development procedures and supporting company standards are tailored to provide an appropriate level of
quality, based upon a graded approach. The graded approach integrates the following INL software
management processes standard and procedures:

. Software Management which identiﬁes responsibilities, development methodologies, tools, and ‘

deliverables
. Quality Assurance activities to assure that the final software application meets the customer needs

for quality and timeliness

o Configuration Management and Change Control to monitor and uniquely identify baselines, changes
that are requested, evaluated, approved, and tested, as well as backup and recovery actions

. Software defect reporting and resolution for promptly addressing and resolving software errors
J Maintenance of the software to remove latent errors (corrective maintenance), respond to new or

revised requirements (preventive maintenance), and to adapt to software.changes in the operating
environment (adaptive maintenance)

*« Requircments and Design activities identified in contract documents

‘. Testing activities, including automated test scripts and results identified in the SAPHIRE Test
Verification & Validation (TV&V) plan. These test procedures demonstrate the adherence to the
requirements specified in the NRC forms.

. Recording and implementing lessons learned

2.2.2 Tasks and Responsibilities

Management provides oversight activities as well as monthly status reports, draft reports, and a final report
of the TV&V activities that are performed. The SAPHIRE project manager directs the roles, responsibilities,
and tasks of the software dévelopment team. Many of the quality management tasks and acttvities are
conducted by product teams but are also reviewed by the project manager.

23

2.2.3 Documentation Purpose

Documentation is traditionally developed and implemented to govern and provide quality assurance
oversight of the requirements implementation, product design, code development and testing, verification,
validation and maintenance of software. As the SAPHIRE product is currently in a maintenance mode, the
focus is primarily on providing enhancements and minor bug fixés. As such, a graded approach is applied to
provide a tailored method for document generation. The development team obtains and retains change
request information and documents lessons learned from previous development efforts. Materials for new
releases are developed to provide the end user with documents that identify the SAPHIRE product’s key
functional area, the cut-solving algorithm. These documents provide the mechanism for the product team to
perform internal quality reviews to ensure that all requirements for product enhancement and/or bug ﬁxes
have been implemented

Documentation for specifications, such as a Requirements Specification and Detailed Design Specification,
are not formally generated. Guidance and requests for new functionality are received from the NRC viaan
alternate mechanism. Contract documents have served as the driving documentation for specification of
software requirements and have not required the need for formal documentation, primarily because the
SAPHIRE product is now in maintenance mode. The contract documents have provided all the necessary
guidance for implementing technical requirements for new features and bug fixes. Typically, very little
change to the detailed design of the software is affected by the addition of new features. As such, all
requirements and the code designs needed for implementing those requirements have been verified and -
validated through the use of the SAPHIRE automated testing process, the TV&V plan, and reviewed by the
product team to prov1de and ensure the quallty of the software release.

User documeritation includes the SAPHIRE Advanced Training Manual, the SAPHIRE User’s Manual,
and the SAPHIRE Technical Reference Manual. These manuals are updated as necessary to reflect
changes in the software

Each release of SAPHIRE is bundled into a standard installation package for easy and consistent set-up by
individual users. Included in the release is a list of bug fixes and new features for the current release, as well
as a history of those items for past releases.

2.2.4 Testing, Verlflcatlon and Valldatlon

Quahty is not “built-in” through the testing process, rather, quality is implemented throughout the lifecycle,
beginning with the examination of the requirements, design, lessons learned from previous releases and
reviews of software defect reports. :

A TV&V plan is developed to make sure that all requirements are implemented and those new features do
-not affect existing code functionality or design. The TV&YV is a consolidated document used for tracking the
software development, testing and implementation and explicitly identifies the new features implemented for
each release of the software as well as the automated test results, including regression tests, to ensure the
software is complete, consistent, and correct. The SAPHIRE product development team uses the TV&V to
track, verify and validate requirements to ensure that all requirements are implemented and that all
requirements are included in the automated test scripts and test results. The TV&V plan is updated for each
release of SAPHIRE by the development team by the performance of the following steps:

. Prepare the TV&V plan

24

'_ . Determine the areas required for testing, including regression testing

° Develop new test cases based upon the development of a test model that includes the identification
of available PRA obtaine'd from the PRA database

. TV&V model testing which encompasses the identlﬁcation of base-case or nominal results for each
test case :
. Documenting the test résults, conclusnons and actions to correct any failures discovered during the

automated testmg process

Prior to any official SAPHIRE release; the software is run through a series of automated test procedures

_ These tests run SAPHIRE through calculation exercises in order to compare the output to expected
results. This ensures that given a static input PRA file, the risk or reliability results from SAPHIRE will

be consistent. These tests are developed by initially identifying the critical tasks performed in a PRA.

These tasks are then mapped to the SAPHIRE functions that perforrn these tasks. The critical functions -

were determined to 1nc1ude the following:

e F ault tree analysis

* Event tree and sequence analysis

o End state analysis. ‘

. Imoortance measures analysis

. Uncertainty analysis

; Cliange sets

. Dtnta utility functions

° Graphical evaluation module (GEM) functionality

Models, with varying degrees of size and complexity, based on suitability for adequately testing one or
more critical functions are then selected. These models mainly consist of actual PRA models developed
by experienced analysts. Test scripts have been developed to exercise essential SAPHIRE functions, with
a quantitative emphasis. New test scripts are developed for software enhancements, as needed. These test
scripts mimic actions taken by an analyst, such as starting SAPHIRE and navigating the user interface by
selecting menu options, clicking buttons and typing information. Results are saved and compared against
expected results. A summary and a detailed report of the results of the tests are produced, so that an
overview of the results can quickly be determined, and any failures (or successes) can be traced in more
detail.

25

2.2.5 Configuration Management and Control

Quality assurance reviews configuration management and control processes to ensure that only authorized
changes are made to the software. All software modules that have been tested, documented, and approved
for inclusion into the next release of the software are baselined. The software/system database “librarian”
controls the baselined source code. Copies of current build routines needed to construct the software,
including all copies of all build routines used in all prior releases are also under the librarian control.

SAPHIRE uses a configuration management database as a control library for all information related to the
development of software fixes, enhances, baselines, and subsequent releases. Processes are in placeto
uniquely identify all components, modules, documentation, error reports, test suites, and test results through
the establishment of a configuration control tracking number. The control library is kept on a server, where
back-ups are regularly made. (Individual developers/programmers machines are periodically backed up as
well). Controls are in place to preclude multiple users from simultaneously accessing the same information.
A source code version control library requires that individual programmers “check-out” all files that they
intend to modify. Prior to “check-in”, programmers must explain any changes made. A record is kept of all
changes, both as explained by the developer, and as individual copies of each version of a file. At any time,
the developer can retrieve past versions intact, if necessary. The SAPHIRE software program is continually
modified, in response to user reported bugs and suggestions, and contractually specified enhancements. The
version control procedure ensures a methodical approach to tracking and releasing these changes.

Bug fixes and all supporting documentation are placed under configuration control. Notes from the
_reporting user are obtained describing the general context of the bug, as well as step-by-step actions to
reproduce the bugs. This includes acquiring a copy of the user’s database, when necessary. The bug is
classified and prioritized according to severity. A-bug is considered “minor” if it inconveniences the user,
but a workaround exists to produce a correct answer. A bug is “major” if it prevents the user from
obtaining the correct answer. Bugs found in more commonly used features are considered a higher
priority than those found in.less used features. User deadlines are also considered. Bug fixes are tested in
the environment in which they were reported, as well as other places if possible side effects are suspected.
Sometimes, a release candidate is made available to the reporting user or group of users to ensure that the
problem has been satisfactorily fixed. Once a bug has been resolved, it is added to the list of changes for
the next-official version, which must pass the set of acceptance tests described in the next section.

Software enhancements and supporting requirements and documentation are also placed under
configuration control. Enhancements are prioritized and implemented, with intermediate testing by the
developer and often by the requestor. Once the process and results appear acceptable, the feature is added
to the next official release.

26

2.2.6 QA Standards, Practices, and Con'véntions

The content of all QA standards, processes and procedures as well as documentation and coding conventions
that are utilized are assessed to ensure the quality of the SAPHIRE code and supporting information used to
construct the software release.. Quality functions include the reviews of the basic design and programming
activities involved. Information under the cognizance of the quality review 1ncludes but is not limited to the
followmg

. ' Docu;hentatioﬁ standards _
. 'Design standards

o Codiﬁg standards

. - Commenting standards

. . Tésting Standards

To assess these items, QA reviews of software requirement specifications, design specifications, verification

and validation plans, test documentation, and configuration management processes. Methods used to assess

these items include functional audits to ensure that all requirements are being implemented, physical audits

‘to verify the consistency, completeness, and correctness of the software, software documentation and its

readiness for release, and in-process audits to verify the consistency of the design.

Many of these activities for SAPHIRE are conducted as identified in the TV&V plan. This includes
reviews of the contract documents, which provide the basic requirements for maintaining the SAPHIRE
software. As stated above, the development team conducts automated testmg to assure that all
requirements have been implemented correctly

27

3. CONCLUSIONS

Product quality is a key component of SAPHIRE. The SAPHIRE QA processes documented in the report
provides the basis for setting quality objectives, progress, and the necessary framework for quality
improvements. The QA plan will evolve as the SAPHIRE product is enhanced to provide the end user with
solutions to their technical problems and cost-effectively meet user expectations. A majority of the changes
within the SAPHIRE software occur because the end user has identified characteristics that provide “new
potential,” thus resulting in SAPHIRE evolving as each new feature is discovered and implemented.
Therefore, the majority of software maintenance comes about not because of deficiencies in the code, but
because it was modified to embrace improved methods for risk and reliability assessment or to take
advantage of changes in software development practices.

SAPHIRE implements the key components needed to assure product quality. Management enables the
software development team to apply a graded approach to effectxvely tailor activities, techniques, and
methodologies to provide for

. Configuration Management and Change Control

° Sqﬁwére defect reporting

. Software evol'uti_on and enhancernent

® CorrectiVC, preventive, and adaptive maintenance

. Denving detailed requirements from the require_fnents and design direction obtained from contract
documents. '

. "Development of test cases and scenarios and their implementation into an automated test suite nsed

for comprehensive testing to assure that requirements are validated

. Recording and implementing lessons learned

These factors provide the necessary assurance that quality is “built-in” to the SAPHIRE software, not “tested
in.” Quality must be planned, designed, implemented and verified before it can be validated through the
testing process. SAPHIRE will continue to be evaluated for quality as it evolves. As such, this quality plan
will also evolve as the needs and goals of the user and customer evolve to ensure the dimensions of quality
are established and assessed. '

29

4. = REFERENCES

.Bolander T. W. etal, (1994) Verification and Validation of the SAPHIRE Version 4 0 PRA Software

Package, NUREG/CR 6145, February.

Jones, J. L. et al., (1995) Systems Analysis Programs for Hands-On Integrated Reliability Evaluations
(SAPHIRE) Version 5.0 Verifi cation and Validation (V&V) Manual, NUREG/CR—61 16 February

Smith, C.L. et al, (2000) Testing, Verijﬁzmg and Valtdatmg SAPHIRE Verszons 6.0 and 7.0, NUREG-
CR/6688, September.

US NRC, (19:93)vSofrwar.e Quality Assurance Program aﬁd Guidelines, NUREG/BR-0167, February.

31

APPENDIX A

SAPHIRE Salient Features List

APPENDIX A — SAPHIRE Salient Features List

In order to provide additional context to the complexity of a modern analysis code such as SAPHIRE (énd

its associated implications on testmg) included is the list of salient features found in the software in Table

P

A-1.
‘Table A 1 SAPHIRE Sallent Features as a Functmn of the Version Number

Item | Feature Description Version: 6.x Versnon 7.x
A Cut Set Sequence Gereration
Al Rule based Fault Tree Linking X X

1A2 Linking of Small Tree Events X X
A3 Linking of Large Tree Events - X X -
B | Cut Set Generation for Fault Trees and Event Trees X X
C Cut Set Gathering for Sequence and End State Cut Sets X X
D Cut Set Partitioning via rules : X X
E Cut Set Sorting . _ o
E.l By individual basic évents X X
E.2 By probability ' X
E.3 Byrules - - X -
F Cut Set Post Processmg (Recovery Rules)
F.l Event tree sequences X X
F.2 Fault trees X X
G Change Sets (modifying basic events for an analysis) -
G.1 Single event selection X X
G.2 Multiple event selection X X
G.3 Group event selection X X
G.4 Workspace area
H Flag Sets (setting basic events to True of False)
H.1 Static (predefined) flag sets X X
H.2 Dynamic (rule based) flag sets X X
1 Cut Set Quantification Methods ,
I.1 Minimal Cut Set Upper bound (min-cut) - X X
1.2 Min-Max (exact, using inclusion/exclusion principle X X
1.3 Rare Event X X
1.4 Split Fraction (Sequences only) X X
J Cut Set Analysis ‘
J1 Cut set generation — cut sets solved, gathered, with truncation X X

' | by size or probability, auto recovery
J.2 Cut set path tracing through logic model X X
13 Cut set comparison between two cases X X
J.4 Cut set comparison including probablllty changes
1.5 Fault tree X X
J.6 Event tree sequences X X
1.7 End states X X
K Basic Events '
K.1 Basic event correlation designation X X

A-3

Item | Feature Description Version 6.x| Version 7.x
K.2 Basic event templates (reuse of a single event) X X
K.3 Compound events (plug in modules) X
K.3.1 | Common-cause alpha-factor module X X
K.3.2 | Common-cause alpha-factor (staggered) module X X
K.3.3 [Common-cause beta-factor module X X
K.3.4 | Common-cause multiple Greek letter module X X
K.3.5 | Loss-of-offsite power frequency and recovery module X
K.3.6 | Time Series module X X
K.3.7 | General purpose utility module X X
K.3.8 | Load-capacity module X
K.3.9 | Flow acceleration corrosion pipe module X X
K:3.10 | User defined module .
K4 Failure probability on demand X X .
K.5 Failure probability to run X X
‘K.6 Value input (for any value) X
K.7 Failure probability to run w/ repair X X
K.8 Failure probability to run X X
K.9 House event True (Prob = 1.0) i.e. failed X X
K.10 | House event False (Prob = 0.0) i.e. success X X
K.11 House event Ignore X X
K.12 | Human Factor Event X
K.13 | Fault tree Min Cut Upper Bound Value X X -
K.14 | End State Min Cut Upper Bound Value X X
K.15 | Seismic screening using user-specified ground acceleration X X
' value
K.16 | Seismic screening using hazard curve X X
L Importance Measures :
L.1 Fussell-Vesely importance measure X X
L2 Birnbaum importance measure X X
L.3 Risk increase ratio importance measure X X
L4 Risk reduction ratio importance measure . X X
L.5 Risk increase interval importance measure X X
L.6 | Risk reduction interval importance measure X X
L.7 Group importance measure ' X X
L.8 Uncertainty determination on importance measures X
M Model Creation
M1 Seismic, fire and flooding transformation capability X X
M.2 Fault tree logic editor X X
M.3 Fault tree graphical editor X X
M.4 | Event tree graphical editor X X
N Model Creation Load / Extract Data Models (MAR-D)
N.1 All data and file types concurrently X
N.2 Project files (primary descriptions, attributes, recovery rules, X X
fault tree recovery rules, partition rules, primary text)
N.3 Project files (alternate description, alternate text) X
N4 Attributes (primary attributes) X X
N.5 Attributes (all attributes, alternate attributes) X

Item

Feature Description

Version 6.x

Version 7.x

N.6 Basic event files (description, rate information, attributes, X X
transformations) ‘ ' : :
N.7 Basic event files (alternate description, text, altemate text, X
compound events) . '
N.8 | Fault tree files (description, logic, graphlcs cut sets, attributes, X X
.| recovery rules, primary text, PID diagrams) '
N.9 | Fault tree files (alternate description, alternate text) X
N.10 | Event tree files (description, graphics, logic, attributes, linking - X X
rules, recovery rules, partition, primary text)
N.11 Event tree files (alternate description, alternate Text) X
N.12 End state files (description, cut sets, textual information, X X
primary text) ‘
N.13 | End state files (alternate description, alternate text) - X
N.14 | Sequence files (description, logic, cut sets, attributes, recovery X X
rules, primary text) '
N.15 Sequence files (partitions, alternate description, altemate text) X
N.16 . | Gate information files (description, attributes) X X
N.17 | Gate information files (alternate description) X
N.18 | Change Set files (description, information) X X
N.19 | Change Set files (attributes, alternate description) X
N.20 | Histogram files (description, information) X X
N.21 | Histogram files (attributes, alternate description) X
N.22 Slice files (description, basic events, information) X . X
N.23 Slice files (attributes, alternate description) X
o Model Creation Logic Gate Types (Max inputs 256 unless
otherwise specified)
0.1 AND X X
0.2 OR X X
03 N of M (Max N=98, Max M=99) X X
0.4 . | NAND (Not AND) - X X
0.5 NOR (Not OR) X X
0.6 Transfer Gate X X
0.7 Left/right transfer marker X X
0.8 Undeveloped transfer X X
0.9 Inhibit gate X X
0.10 | Basic event X X
0.11 | Boxed basic event X X
0.12 | Undeveloped basic event X X
0.13 | Table of basic events X X
0O.14 | House event X X
0.15 | Vertical/horizontal text box X X
P Uncertainty Calculations Monte Carlo and Latin Hyper
Cube Sampling
P.1 Normal distribution X X
P.2 Lognormal distribution X X
P.3 | Beta distribution X X
P4 Chi Squared distribution X X
P.5 X X

Exponential distribution

A-5

Version 7.x

[s.13

Sequence (recovery rules, partition rules, text information)

Item | Feature Description Version 6.x
P.6 Uniform distribution X X
1 P.7 - | Constrained non-informative distribution X - X
P.8 Gamma distribution X X
P9 Maximum entropy distribution X X
P.10 Dirichlet distribution X X
P.11 Seismic log normal analysis X X
P.12 Histogram distribution X X
P.13 Triangular distribution X
Q Uncertainty Calculations Parameter Settings :
Q.1 User defined seed, sample size; number of iterations X X
Q.2 Output intermediate values to file X X .
Q3 Output intermediate values.in CSV format X
R General Support Features -
R.1 Sensitivity wizard X
R.2 Importance measures wizard X
R3. Embedded macro capability X
R4 Editing user information _ X
R.5 Page numbering control on grgphlc format X X
R.6 Conversion from alpha to graphic format X X
R.7 On-line context sensitive help ' X
R.8 Parallel processing (Linux onlx) X
R.9 Database recovery X X
R.10 | Designate output folder locatlon X
R.11 Graphical export to windows metafiles X X
S General Support Features Report Generation
S.1 Project reports (summary, text, letter report, statistics, custom X X
| report) :
S.2 Project reports (fault tree recovery rules, sequence recovery X
rules, partition rules, uncertainty reports) : _
18.3 Attributes (system, location, failure mode, basic event, train X X
’ type, custom reports)
S4 Basic event (overview, probability, uncertainty, seismic, X D¢
transformation, cross reference, custom reports) o
S.5 Basic event (compound event, developed events, X
' template events, text information)
S.6. Fault tree (summary, logic, graphics, cut sets, importance X X
measures, cross reference, custom reports) :
S.7 Fault tree (recovery rules, text information) X
S.8 Event tree (logic, graphics, initiating events, cross reference, X X
customn reports)
S.9 Event tree (linkage rules, recovery rules, partition rules, text X
information)
S.10 End state (summary, cut sets, importance measures, Cross X X
reference, custom reports)
S.11 End state (text information) X
S.12 Sequence (summary, logic, cut sets, importance measures, X X
' custom reports)
X

A-6

Feature Description

Item Version 6.x| Version 7.x
S.14 Change Set (summary, class, single, text information, custom X
reports) .
S.15 Flag Set (summary, flag set events cross reference, text X
. | information, custom reports) . -
S.16 | Gate (cross reference, custom reports) X X
S.17 | Histogram (summary, detailed, custom report) X X
S.18 Histogram (cross reference) X
S.19 Slice (summary, rule summary, slice events, slice rule, custom - X
reports) : ‘
S.20 User Info/preferences X X
S.21 | SPAR model report outputs X
T Report Format Types ‘
T.1 ASCII X - X
T.2 RTF X
T.3 ‘HTML X
U General Analysis Types
U.l Initiating Event Analysis (formerly GEM) - X X.
U.2 Condition Assessment Analysis (formerly GEM) X X
U3 Accident Sequence Precursor X X
U4 User Define Analysis types X X
V - | Application Program Interface
V.1 Microsoft © Visual Basic Interface X X
V.2 Microsoft © Visual C\C++ Interface X X
1V.3 . | Borland © Delphi Object Oriented Pascal X

A-7

~ APPENDIX B

SAPHIRE QA Process Checklist and Change Forms

APPENDIX B — SAPHIRE QA Process Checklist and Change

Forms
1. The project manager provides monthly reports, draft reports, and final TV&YV report to the
SAPHIRE sponsor of completed and pending maintenance tasks.

OK ' Comments:
Discrepancy
N/A

2. The development team obtains and retains change request information.
OK Comments:
Discrepancy
N/A '
- 3. The development team obtains and reviews documented lessons learned from previous

development efforts.

OK Comments:
_ Discrepancy
. N/A
4, Requirements derived from NRC Forms 173 and 189 are verified and validated for

implementation into automated test scripts.

OK Comments:
Discrepancy '
N/A
5 5.. NRC Forms 173 and 189 provide the requirements needed for software enhancements.

Questions regarding any requirement specified by these forms are obtained from the
appropriate NRC representative and the clarification of any requirement is documented and
placed under configuration control.

OK Comments:
Discrepancy
N/A

B-3

6. Detailed requirements are derlved from the higher-level requirements provided within the

NRC forms.
OK Comments:
Discrepancy
N/A
7. Detailed requirements and the code, test scripts, and test results are validated to ensure that
all requirements were implemented and tested.
OK Comments:
Discrepancy
N/A =
8. The designated QA 1nspector reviews completed and pending tasks for compliance to
requested enhancements or other mamtenance activities, such as bug fixes.
OK Comments:
Discrepancy '
N/A
9. A TV&V document is developed and mcludes implemented requ1rements new features,
_bug fixes and test results : :
OK Comments:
Discrepancy
N/A
10. Prior to an official release, software is processed through a series of automated test scripts.
OK Comments:
Discrepancy -
N/A
11. . Test scripts simulate typical user input.
OK Comments:
Discrepancy
N/A

B-4

'12. Models suitable for testing one or more critical functions consist of actual PRA ‘models.

OK ’ Comments:
Discrepancy
N/A
13. Test results are saved and compared against expected results.
OK Comments:
Discrepancy ' '
N/A
14. - User documentation is updated upon completio_n of each new release.
| OK - Comments:
Discrepancy
N/A
15.. Software releases are bundled into a software installation package for use in set-up.
OK Comments:
Discrepancy
N/A ‘
16. Soﬁwére releases include list of bug fixes, new featureé, and historical information.
OK ' ' Comments:
Discrepancy
N/A '
17. Onfy authorized changes are made to the software release.
OK Comments:
Discrepancy
N/A

B-5

I8. Software and supporting documentation is baselined and placed under configuration

control.

OK Comments:

Discrepancy

N/A

19. The software librarian (or designee) places all baselined data, including builds generated

during development, software fixes and enhancements, and software releases under
configuration control via the configuration management database.

OK Comments:

Discrepancy

N/A

20. The configuration management database precludes users from simultaneously acceésing the

same information.

OK Comments:

Discrepancy

N/A

21. Prior to check in of information obtain from the configuration library database, users

provide an explanation of any changes made. ‘

OK Comments:

Discrepancy '

N/A

22. Step-by-step instructions obtained from end users reporting bugs/defects are used to
reproduce the process that generated the bug. This information is placed under
~ configuration control.

oK -] Comments:

Discrepancy

N/A

B-6

23. Bugs are categorized by severity.

OK | Comments:

Discrepancy
N/A - '
24, Change requests and bug fixes are placed under configuration control.
OK , Comments:
Discrepancy
N/A
25. Version control software tracks changes by author and time.
OK Comments:
Discrepancy '
N/A '
26. The automated software process generates a summary report, detail report test

identification number description, and pass/fail indicator.

OK Comments:
Discrepancy ' ‘
N/A '
27. - Generation of new test scripts include obtaining information solicited/received from

experienced users and are examined to determine importance and testability.

OK ‘ : Comments:
Discrepancy -
N/A
28. Test scripts are reviewed to ensure that requirements are tested adequately, completely, and

correctly. (Good Business Practice) (Sample)

OK 7 Comments:

Discrepancy

N/A

B-7

When a bug is reported, the user should gather and record the relevant information about the bug
on the change request form (see below). General information should include bug reporter contact
information and program version information.

System environment information such as operating system and available memory and disk
information should be collected as well when it appears this information may be a factor into the
error.

The problem should be described in sufficient detail as to allow the programmer to reproduce the
error. The programmer may request that the bug reporter isolate the problem as much as possible.
When necessary, a database should be provided with step by step instructions on how to
reproduce the bug.

Change Design Form

ﬁtle_,trequifeﬁ),_ e

Description (required) - o

Tvee © Recommended Priority
Calculanon Bug) B ngh

Aﬂected Program Version Number
 SAPHIRE jv :
HQ&,D!ﬁcpxe;r%d___.__,,, e

? T v

Project Database Name (if applicable)) -)

PC Information (operating system. RAM. hard disk space. etc.)

[T‘Submit Change Request]

B-8

As the change information is collected the problem should be categorlzed as a major bug, minor
bug, 1mprovement or new feature:

* A major bug is defined as an error that stops the uécr from completing a task and/or
adversely affects the core calculation ability of SAPHIRE.

e A minqr bug is defined as an error for which a work around is available, or something
that affects less essential areas of SAPHIRE, such as a slight user interface malfunction.

¢ . The improvement category is defined as a change that will represent added convenient to
the user. For this category, the change is not significant enough to be considered a new
feature. Examples of improvements are minor repon enhancements, and replacmg or
adding smoother user interface options.

e A new feature is defined as a significant additional capability to be added. The scope of a
new feature is greater than that of an improvement to an existing feature. Examples of
new features include new calculation or uncertainty types, new wizards, and new plug-
ins. : : ' ‘

The priority of a change will generally correlate with the category of the change. Major bugs are
generally the highest priority. Minor bugs and suggested improvements are medium to low
priority, depending on the pervasiveness of the problem. Customers and project management
together prioritize new features.

B-9

APPENDIX C

SAPHIRE/GEM Test Suite Summary Report

APPENDIX C - SAPHIRE/GEM Test Suite Summary Report

The tests that are in the SAPHIRE TV&V automated test suite (as of November, 2003) are listed
in Table C-1. The status of each test, on a pass/fail basis, is reported in this table. Problems
associated with failures, if any, are investigated and corrected prior to a release of the software.

Test

Table C-_l SAPHIRE TV&V Automated Tests

: ‘ Pass or Fail Test Test Case
Number Test Description Status Reference Name
. . Number | = = .
BYRN-01 | Solve Fault Trees PASSED TEST-01 | [PBYRN-0i]
BYRN-02 { Core Damage Frequency PASSED [PBYRN-02]
BYRN-03 | Condition AFW out of service for 72 | PASSED “TEST-03 [PBYRN-03]
hours -
BYRN-04 | Condition EDG out.of service for 3 | PASSED TEST-04 [PBYRN-04]

: months ‘ ' :
BYRN-05 | Transient - No other failures PASSED TEST-05 [PBYRN-05]
BYRN-06 | Small LOCA : No other failures PASSED TEST-06 . ‘| [PBYRN-06]
BYRN-07 [SGTR - no other failures ' PASSED TEST-07 | [PBYRN-07]
BYRN-08 | Grid-related LOOP - no other "PASSED - TEST-08 | [PBYRN-08]

failures '
BYRN-09 | Plant-centered LOOP - no other PASSED TEST-09 [PBYRN-09]
. - | failures . :
BYRN-10 | Severe Weather LOOP - no other PASSED TEST-10 [PBYRN-10]
: failures. : :
BYRN-11 | Extreme Severe Weather LOOP - no | PASSED TEST-11 [PBYRN-11]
other failures
BYRN-12 | Transient - AFW failed PASSED TEST-12 [PBYRN-12]
PBOT-01 | Solve Fault Trees PASSED - TEST-01 [PPBOT-01]
PBOT-02 | Core Damage Frequency - PASSED TEST-02 [PPBOT-02]
PBOT-03 | Condition HPCI out of service for 72 | PASSED TEST-03 {PPBOT-03]
hours - '
PBOT-04 | Condition EDG out of service for 3 PASSED TEST-04 [PPBOT-04]
months '
PBOT-05 | Transient - No other failures PASSED TEST-05 [PPBOT-05]
PBOT-06 | Small LOCA - No other failures PASSED TEST-06 [PPBOT-06]
PBOT-07 | Grid-related LOOP - no other PASSED - TEST-08 [PPBOT-07]
| failures , . ' '
PBOT-08 | Plant-centered LOOP - no other PASSED TEST-09 | [PPBOT-08] |
failures : : ‘
PBOT-09 | Severe Weather LOOP - no other PASSED TEST-10 [PPBOT-09]
failures]
PBOT-10 | Extreme Severe Weather LOOP - no | PASSED TEST-11 [PPBOT-10]
other failures)
PBOT-11 | Transient - HPCI failed PASSED TEST-12 [PPBOT-11]
DRES-01 | Solve Fault Trees PASSED TEST-01 [PDRES-01]
DRES-02 | Core Damage Frequency PASSED TEST-02 [PDRES-02]
DRES-03 | Condition HPCI out of service for 72 | PASSED TEST-03 [PDRES-03]

C-3

Pass or Fail

Test o Test Test Case
Number Test Description Status Reference Name
: ' ' Number
hours .
DRES-04 | Condition EDG out of service for 3 PASSED TEST-04 [PDRES-04]
months ' ' ' .
| DRES-05 | Transient - No other failures PASSED TEST-05 [PDRES-05]
DRES-06 | Small LOCA - No other failures PASSED TEST-06 | [PDRES-06]
DRES-07 | Grid-related LOOP - no other PASSED TEST-08 [PDRES-07] .
B failures v L '
DRES-08. |- Plant-centered LOOP - no other PASSED TEST-09 [PDRES-08]
failures : ‘ :
DRES-09 | Severe Weather LOOP - no other PASSED | TEST-10 [PDRES-09]
failures v
DRES-10 | Extreme Severe Weather LOOP -no | PASSED TEST-11 [PDRES-10]

‘ other failures e '
DRES-11 | Transient - HPCI failed PASSED TEST-12 [PDRES-11]
GGUL-01 | Solve Fault Trees PASSED TEST-01 | [PGGUL-01]
GGUL-02 | Core Damage Frequency PASSED "TEST-02 [PGGUL-021
GGUL-03 | Condition HPCI out of service for 72 | PASSED TEST-03 [PGGUL-03]

| hrs . : '
GGUL-04 | Condition EDG out of service for 3 PASSED TEST-04 [PGGUL-04]
months , '
GGUL-05 | Transient - No-other failures PASSED TEST-05 [PGGUL-05
GGUL-06 | Small LOCA - No other failures PASSED . TEST-06 - | [PGGUL-06]
GGUL-07 | Grid-related LOOP - no other PASSED TEST-08 [PGGUL-07]
_ failures :
GGUL-08 | Plant-centered LOOP - no other PASSED TEST-09 [PGGUL-08]
| failures B
GGUL-09 | Severe Weather LOOP - no other PASSED TEST-10 [PGGUL-09]
failures
GGUL-10 | Extreme Severe Weather LOOP -no | PASSED TEST-11 [PGGUL-10]
’ _ other failures
GGUL-11 | Transient - HPCI failed PASSED TEST-12 [PGGUL-11]
MIL3-01 | Solve Fault Trees PASSED TEST-01 [PMIL3-01]
MIL3-02 | Core Damage Frequency PASSED - TEST-02 [PMIL3-02]
MIL3-03 | Condition AFW out of service for 72 | PASSED TEST-03 [PMIL3-03]
’ hours
MIL3-04 | Condition EDG out of service for 3 PASSED TEST-04 [PMIL3-04]

’ months :

MIL3-05 | Transient - No other failures PASSED TEST-05 [PMIL3-05]

MIL3-06 | Small LOCA - No other failures PASSED TEST-06 [PMIL3-06]

MIL3-07 | SGTR - no other failures PASSED TEST-07 [PMIL3-07]

MIL3-08 | Grid-related LOOP - no other PASSED TEST-08 [PMIL3-08]
failures

MIL3-09 | Plant-centered LOOP - no other PASSED TEST-09 [PMIL3-09]
failures

MIL3-10 | Severe Weather LOOP - no other PASSED TEST-10 _[PMIL3-10

el
¥

Test'

months

» o Pass or Fail Test Test Case
Number Test Description Status Reference . Name
’ ' Number
- failures '
MIL3-11 | Extreme Severe Weather LOOP - no | PASSED TEST-11 [PMIL3-11]
other failures ' ' ' '
MIL3-12 | Transient - AFW failed PASSED TEST-12 [PMIL3-12]
OCON-01 | Solve Fault Trees ' PASSED 1 TEST-01 [POCON-01] | -
OCON-02 | Core Damage Frequency. PASSED - | TEST-02 [POCON-02] | -
‘OCON-03 | Condition EFW out of service for 72 | PASSED | TEST-03 [POCON-03]
hours : : S :
OCON-04 | Condition 3TC out of service for 3 PASSED TEST-04 [POCON-04]
months- . : : : _ '
OCON-05 | Transient - No other failures PASSED TEST-05 [POCON-05]
OCON-06 | Small LOCA - No other failures PASSED TEST-06 [POCON-06] |
| OCON-07 | SGTR - no other failures- PASSED . TEST-07 [POCON-07] |
OCON-08 | Grid-related LOOP - no other - | PASSED . TEST-08 [POCON-08]
. | failures o ' ' - .
OCON-09 | Plant-centered LOOP - no other PASSED TEST-09 [POCON-09]
failures ' ' _ , '
OCON-10 | Severe Weather LOOP - no other - PASSED TEST-10 [POCON-10]"
- failures : : v
OCON-11 | Extreme Severe Weather LOOP - no | PASSED TEST-11 [POCON-11]
. other failures ' B ' 5
OCON-12 | Transient - EFW failed PASSED TEST-12 [POCON-12]
OYST-01 | Solve Fault Trees PASSED | TEST-01 [POYST-01]
OYST-02 | Core Damage Frequency PASSED TEST-02 [POYST-02]
OYST-03 | Condition MFW out of service for 72 | PASSED TEST-03 [POYST-03]
hours- '
OYST-04 | Condition EDG out of service for 3 PASSED TEST-04 [POYST-04]
months :
OYST-05 | Transient - No other failures PASSED TEST-05 [POYST-05]
OYST-06 | Small LOCA - No other failures PASSED TEST-06 [POYST-06]
OYST-07 | Grid-related LOOP - no other PASSED TEST-08 [POYST-07]
failures '
OYST-08 | Plant-centered LOOP - no other PASSED TEST-09 [POYST-08]
' failures . :
OYST-09 | Severe Weather LOOP - no other PASSED TEST-10 [POYST-09]
failures ’ ' L
OYST-10 | Extreme Severe Weather LOOP - no | PASSED TEST-11 [POYST-10]
other failures ' :
OYST-11 | Transient - MFW failed PASSED TEST-12 [POYST-11]
SONG-01 | Solve Fault Trees PASSED TEST-01 [PSONG-01]
SONG-02 | Core Damage Frequency PASSED TEST-02 [PSONG-02]
SONG-03 | Condition AFW out of service for 72 | PASSED TEST-03 [PSONG-03]
hours
SONG-04 | Condition EDG out of service for 3 PASSED TEST-04 [PSONG-04]

-GS

Test Case

failures

Test _ Pass or Fail Test
Number Test Description Status Reference Name
_ - Number v
| SONG-05 | Transient - No other failures PASSED TEST-05 TPSONG-05]
SONG-06 | Small LOCA - No other failures PASSED TEST-06 [PSONG-06]
SONG-07 .| SGTR - no other failures PASSED TEST-07 - [PSONG-07]
SONG-08 | Grid-related LOOP - no other PASSED TEST-08 [PSONG-08]
- failures v B ,
SONG-09 | Plant-centered LOOP no other PASSED - TEST-09 - | [PSONG-09]
| failures ' ' u
SONG-10 | Severe Weather LOOP no other PASSED - = | TEST-10 [PSONG-10]
“failures L '
SONG-11 | Extreme Severe Weather LOOP -no | PASSED TEST-11 [PSONG-11]
: other failures ' ’ A
SONG-12 | Transient - AFW failed PASSED TEST-12 [PSONG-12]
STL1-01 | Solve Fault Trees PASSED | TEST-01 [PSTL1-01}]
STL1-02 | Core Damage Frequency PASSED TEST-02 [PSTL1-02]
STL1-03 | Condition AFW out of service for 72 | PASSED - | TEST-03- [PSTL1-03]
hours ' '
STL1-04 | Condition EDG out of service for 3 PASSED . TEST-04 [PSTL1-04]
months : ’
STL1-05 - | Transient - No other failures PASSED TEST-05 [PSTL1-05]
STL1-06 | Small LOCA - No other failures PASSED .~ | TEST-06 [PSTL1-06]
STL1-07 | SGTR - no other failures PASSED - TEST-07 [PSTL1-07]
STL1-08 | Grid-related LOOP - no other PASSED TEST-08 [PSTL1-08]
failures :
STL1-09 | Plant-centered LOOP - no other PASSED TEST-09 [PSTL1-09]
| failures -
STL1-10 | Severe Weather LOOP - no other PASSED TEST-10 [PSTL1-10]
. failures
STL1-11 | Extreme Severe Weather LOOP -no | PASSED TEST-11 [PSTL1-11]
’ other failures
STL1-12 | Transient - AFW failed PASSED TEST-12 [PSTL1-12]
SURY-01 | Solve Fault Trees PASSED TEST-01 [PSURY-01]
SURY-02 | Core Damage Frequency PASSED 1 TEST-02 [PSURY-02]
SURY-03 | Condition AFW out of servrce for 72 | PASSED TEST-03 [PSURY-03]
hours
SURY-04 | Condition EDG out of service for 3 PASSED TEST-04 [PSURY-04]
| months
SURY-05 | Transient - No other failures PASSED "TEST-05 [PSURY-05]
SURY-06 | Small LOCA - No other failures PASSED TEST-06 | [PSURY-06]
SURY-07 | SGTR - no other failures PASSED TEST-07 [PSURY-07]
SURY-08 | Grid-related LOOP - no other PASSED TEST-08 [PSURY-08]
failures ,
SURY-09 | Plant-centered LOOP - no other PASSED TEST-09 [PSURY-09]
failures
SURY-10 | Severe Weather LOOP - no other PASSED TEST-10 | [PSURY-10]

C-6

LHS

Test Pass or Fail Test Test Case
Number - Test Description Status Reference Name
: ‘ Number :
SURY-11 | Extreme Severe Weather LOOP -no | PASSED TEST-11 [PSURY-11]
| other failures - s
SURY-12 | Transient - AFW failed "PASSED TEST-12 [PSURY-12]
SUR40-01 | Solve Sequence Cutsets PASSED TEST-02 [PSURA40-
SUR40-02 | Project Uncertainty - Monte Carlo PASSED TEST-13 [PSUR40-
Method ' o 02]
TstU-01 Log Normal Distribution using MCS | PASSED TEST-14 [PTstU-01]
TstU-02 Normal Distribution using MCS PASSED TEST-15 [PTstU-02]
TstU-03 Beta Distribution using MCS PASSED TEST-16 [PTstU-03]
TstU-04 Chi-Squared Distribution using MCS | PASSED TEST-17 [PTstU-04]
TstU-05 Exponential Distribution using MCS | PASSED TEST-18 [PTstU-05]
TstU-06 Uniform Distribution using MCS PASSED TEST-19 [PTstU-06]
TstU-07 Gamrma Distribution using MCS PASSED TEST-20 |- [PTstU-07]
TstU-08 Maximum Entropy Distribution PASSED TEST-21 [PTstU-08]1
: using MCS : ' e
TstU-09 Constrained Noninformative PASSED TEST-24 [PTstU-09]
Distribution using MCS : :
TstU-10 Seismic Log Normal Distribution PASSED TEST-23 {PTstU-10]
using MCS ' '
TstU-11 Histogram Distribution using MCS = | PASSED TEST-36 [PTstU-11]
TstU-12 Log Normal Distribution using LHS | PASSED TEST-25 [PTstU-12] -
TstU-13 Normal Distribution using LHS PASSED TEST-26 [PTstU-13]
TstU-14 Beta Distribution using LHS PASSED TEST-27 [PTstU-14]
TstU-15 Chi-Squared Distribution using LHS | PASSED TEST-28 [PTstU-15]
TstU-16 Exponential Distribution using LHS | PASSED TEST-29 [PTstU-16]
TstU-17 Uniform Distribution using LHS PASSED TEST-30 [PTstU-17]
TstU-18 Gamma Distribution using LHS PASSED TEST-31 - | [PTstU-18]
TstU-19 Maximum Entropy Distribution PASSED TEST-32 [PTstU-19]
. using LHS ' ' '
TstU-20 Constrained Noninformative PASSED TEST-35 [PTstU-20]
Distribution using LHS
TstU-21 Seismic Log Normal Distribution PASSED TEST-34 [PTstU-21]
: using LHS '
TstU-22 Histogram Distribution using LHS PASSED TEST-37 [PTstU-22]
TstU-23 Sq Constrained Noninformative PASSED TEST-24 {PTstU-23]
Distribution using MCS ‘
TstU-24 Sq Dirichlet Distribution using MCS | PASSED TEST-22 [PTstU-24]
BV2-5-01 | Gather End States PASSED TEST-38 [PBV2-5-01]
BV2-5-02 | End State Uncertainty using MCS PASSED TEST-39 [PBV2-5-02]
BV2-5-03 [End State Uncertainty using LHS PASSED TEST-40 [PBV2-5-03]
BV2-5-10 | End State Group Uncertainty using PASSED TEST-39 [PBV2-5-10]
MCS
BV2-5-11 | End State Group Uncertainty using PASSED TEST-40

[PBV2-5-11]

T

Test

Test Case

- Test “ Pass or Fail
Number Test Description Status Reference Name
, Number
SURRY- | Check Sequence Cut Sets without PASSED TEST-41 [PSURRY-
50-01 Flag Sets e 50-011
SURRY- | Check Sequence Cut Sets with Flag PASSED TEST-41 [PSURRY-
50-02 Sets , 50-02]
SURRY- | Check Fault Tree Cut Sets (no ﬂag PASSED - TEST-41 [PSURRY-
50-03 sets in this db) _ 50-03]
"SURRY- | Check Fault Tree Cut Sets w1thout PASSED TEST-41 [PSURRY-
50-04 Flag Sets , | ' : 1 50-04]
SURRY- | Check End State Cut Sets PASSED TEST-41 | [PSURRY-
50-05 - R ‘ 50-05]
SURRY- | Class Change - All Events PASSED TEST-51 | [PSURRY-
50-06 : : ' 50-06]
SURRY- | Class Change - LPR-MOV-* Events | PASSED .| TEST-51 [PSURRY-
50-07 ' ‘ | 50-07]
SURRY- Slngle Change - 1 Event PASSED TEST-51 [PSURRY-
50-08 ' 50-08]
SURRY- | Marked Change Sets PASSED TEST-52 [PSURRY-
.| 50-09 - 50-09]
COM- Check Sequence Cut Sets without PASSED TEST-41 [PCOM-
PEAK-01 | Flag Sets : - PEAK-01]
COM- Check Sequence Cut Sets with Flag | PASSED TEST-41 [PCOM-
PEAK-02 | Sets ’ PEAK-02]
COM- Check Fault Tree Cut Sets PASSED TEST-41 [PCOM-
PEAK-03 ' : __| PEAK-03]
COM- Check Fault Tree Cut Sets without PASSED TEST-41 [PCOM-
PEAK-04 | Flag Sets - _ PEAK-04]
COM- Check End State Cut Sets PASSED TEST-41 [PCOM-
PEAK-05 . | PEAK-05]
S_LERF- | Link Level 1 Event Trees PASSED TEST-42 [PS_LERF-
01 01]
S_LERF- | Partition Sequence Cut Sets PASSED TEST-43 [PS_LERF-
02 : 02]
S_LERF- | Link PDS Trees PASSED TEST-44 [PS_LERF-
03 03] '
DEMO-01 | Fault Tree Fussell- Vesely PASSED TEST-45 [PDEMO-
| Importance 01]
DEMO-02 | Fault Tree Birnbaum Importance PASSED TEST-45 [PDEMO-
' ' 02]
DEMO-03 | Fault Tree Uncertainty Importance PASSED TEST-45 [PDEMO-
03]
DEMO-04 | Sequence Fussell-Vesely Importance | PASSED TEST-46 [PDEMO-
04]
DEMO-05 | Sequence Bimbaum Importance PASSED TEST-46 [PDEMO-
05]
DEMO-06 | Sequence Uncertainty Importance ‘PASSED TEST-46 [PDEMO-
06]

C-8

Test.

Pass or Fail - Test Test Case
Number Test Description - Status | Reference Name
: Number ‘
DEMO-07 | Sequence Fussell- Vesely Group PASSED TEST-46 [PDEMO-
: Importance ' . : 07]
DEMO-08 | Sequence Bimbaum Group PASSED TEST-46 - | [PDEMO-
_ | Importance : | 08]
DEMO-09 | Sequence Uncertamty Group PASSED TEST-46 [PDEMO-
: Importance ' 09] . '
DEMO-10 | Class Change - All Events PASSED - TEST-51" | [PDEMO-
: L - 110] 4
DEMO-11 | Class Change - ?7- MOV 1 Events PASSED TEST-51 [PDEMO-
: : 11]
DEMO-12 | Single Change - 1 Event PASSED TEST-51 [PDEMO-
12}
DEMO-13 Marked Change Sets‘ PASSED TEST-52 [PDEMO-
o _ 131 =~
BV2-5-04 | End State Fussell-Vesely Importance | PASSED TEST-48 [PBV2-5-04]
BV2-5-05 | End State Birnbaum Importance PASSED TEST-48 . [PBV2-5-05]
-] BV2-5-06 [End State Uncertainty Importance PASSED TEST-48 [PBV2-5-06]
BV2-5-07 | End State Fussell-Vesely Group | PASSED - TEST-48 [PBV2-5-07]
- | Importance ‘ : . :
BV2-5-08. | End State Bimbaum Group PASSED TEST-48 [PBV2-5-08]
" | Importance ’ - :
BV2-5-09 | End State Uncertainty Group | PASSED TEST-48 | [PBV2-5-09]
Importance ' '
CR3-01 Solve Fault tree PASSED TEST-01 [PCR3-01]
CR3-02 Extract,Delete,Load,Solve PASSED - TEST-53 [PCR3-02]
CR3-03 Auto page, Solve PASSED - TEST-54 [PCR3-03]
CR3-04 - | Save cutsets to end state PASSED TEST-54 [PCR3-04]
SEQH_3I- | Check Sequence Cut Sets PASSED TEST-41 [PSEQH_3I-
01 : ' 01]

~Additional details of each test are shown below:

Test-01 Solve Fault Trees.
Scenarios generate basic event data (with no change sets), solve (w1th cut set probability cutoff) and
The alternate case min cut upper bound,

base case -min cut upper bound, and cut set totals are verified for each fault tree

quantify fault tree minimal cut sets, and recovery rules.

C-9

Test-02 Core Damage Frequency.

Scenarios generate basic event data (with no change sets), solve (with cut set probability cutoff) and
_quantify sequence minimal cut sets, and recovery rules. The alternate case min cut upper bound, -

base case min cut upper bound, and cut set totals are verified for each sequence.

Test-03 Condition Assessment - Auxiliary Feed Water (AFW) out of service for 72 hours.
Scenarios exercise all aspects of operational event analysis including removal of equipment from
_service and automated processing of all steps. These steps include basic event generation with
change sets; and generation, quantification, and recovery of cut sets. The number of sequences; total
conditional core damage probability (CCDP); total core damage probability (CDP); total
importance; and CCDP, CDP, and importance for each sequence are verified.

Test-04 Condition Assessment — Emergency Diesel Generator out of service for three months.
Scenarios exercise all aspects of operational event analysis including removal of equipment from |
service and automated processing of all steps. These steps include basic event generation with
change sets; and generation, quantification, and recovery of cut sets. The number of sequences; total
CCDP; total CDP; total 1mportance and CCDP CDP, and importance for each sequence are
verified.

Test-05 Initiating Event Assessment - Transnent with no other failures.

Scenarios exercise the number of sequences; total CCDP; total CDP; total importance; and CCDP
CDP, and importance for each sequence are verified. Automated steps performed for initiating
event assessments include basic event generation with change sets; and generation, quantification,
and recovery of cut sets.

Test-06 Initiating Event Assessment — Small Loss of Coolant Accident (SLOCA) with no
other failures. .

Scenarios exercise the number of sequences; total CCDP; total CDP; total importance; and CCDP,
CDP, and importance for each sequence are verified. Automated steps performed for initiating
event assessments include basic event generation with change sets; and generation, quantification,
and recovery of cut sets. '

Test-07 Initiating Event Assessment — Steam Generator Tube Rupture with no other failures.
Scenarios exercise the number of sequences; total CCDP; total CDP; total importance; and CCDP,
CDP, and importance for each sequence are verified. Automated steps performed for initiating
event assessments include basic event generatlon with change sets; and generation, quantification,
and recovery of cut sets.

Test-08 Initiating Event Assessment — Grid-Related Loss of Off-Site Power (LOOP) with no
other failures

Scenarios exercise the number of sequences; total CCDP; total CDP; total importance; and CCDP,
CDP, and importance for each sequence are verified. Automated steps performed for initiating
event assessments include basic event generation with change sets; and generation, quantification,
and recovery of cut sets.

Test-09 Initiating Event Assessment - Plant-Centered LOOP with no other failures

Scenarios exercise the number of sequences; total CCDP; total CDP; total importance; and CCDP,
CDP, and importance for each sequence are verified. Automated steps performed for initiating
event assessments include basic event generation with change sets; and generation, quantification, -
and recovery of cut sets.

C-10

Test-10 Initiating Event Assessment - Severe Weather LOOP with no other failures
Scenarios exercise the number of sequences; total CCDP; total CDP; total importance; and CCDP,
CDP, and importance for each sequence are verified. Automated steps performed for initiating
event assessments include basic event generation with change sets; and generation, quantification,
and recovery of cut sets,

Test-11 Initiating Event Assessment — Extreme Severe Weather LOOP with no other failures
Scenarios exercise the number of sequences; total CCDP; total CDP; total importance; and CCDP,
CDP, and importance for each sequence are verified. Automated steps performed for initiating

event assessments include basic event generatlon with change sets; and generatlon quantification, -
and recovery of cut sets. S

Test-12 Initiating Event Assessment - Transient with AFW Failed

Scenarios exercise the number of sequences; total CCDP; total CDP; total ifnportance; and CCDP,
CDP, and importance for each sequence are verified. Automated steps performed for initiating -
event assessments include basic event generation with change sets; and generation, quantification,
and recovery of cut sets. : .

Test-13 Dominant Sequence Frequencies and Core Damage Frequency Uncertainty
This scenario continues the tracking with an automated test script.. Cut sets generated with cut set

- probability cutoff and cut set size cutoff. Recovery rules are applied without cutoff. Cut set update

performed with no truncation. Project level Monte Carlo ‘uncertainty performed on results using
5000 samples :

Test—14 Fault Tree Uncertainty - Monte Carlo Method/Log Normal Distribution

This scenario consists of six variations that test uncertainty using the Monte Carlo simulation
technique for the log normal distribution type. The six variations use fault trees that consists of an
OR gate with a single basic event as its input. Each variation uses dlffermg basic event nominal
probabilities and error factors. The Sth percentile, 50th percentile, 95th percentile, and standard -
deviation results are verified based on 5, 000 samples (snmulated values) and a random number seed -
of 4,321 for each test. '

Test-15 Fault Tree Uncertainty - Monte Carlo Method/Normal Distribution

This scenario consists of variations that test uncertainty using the Monte Carlo simulation technique
for the normal distribution type. Two fault trees are used that consist of an OR gate with a single -
basic event as its input, with differing basic event nominal probabilities and standard deviation
values, Fault tree combinations of five sample sizes and two seed values are used for a total of ten
tests for each tree. The 5th percentile, S0th percentile, 95th percentlle and standard deviation results
are verified.

- Test-16 Fault Tree Uncertainty - Monte Carlo Method/Beta Distribution
- This scenario consists of ten variations that test uncertainty using the Monte Carlo simulation
technique for the beta distribution type. The ten variations use fault trees that consists of an OR gate

with a single basic event as its input. Each variation uses differing basic event nominal probabilities
and uncertainty values. The 5th percentile, SOth percentile, 95th percentile, and standard deviation
results are verified based on 5,000 samples and a seed of 4,321 for each test.

Test-17 Fault Tree Uncertainty - Monte Carlo Method/Chi Squared Distribution

This scenario consists of twelve variations that test uncertainty using the Monte Carlo simulation
technique for the chi-square distribution type. For ten of the variations, ten fault trees are used that

C-11

consists of an OR gate with a single basic event as its input. Each basic event has a different
nominal probability and uncertainty value (degrees of freedom). The Sth percentile, S0th percentile,
95th percentile, and standard deviation results are verified based on.5,000 samples and a seed of
4,321 for each test. For the other variations two fault trees are used that consist of an OR gate with
a single basic event as its input with differing basic event nominal probabilities and uncertainty
values. For each of these fault trees, four different sample sizes and seed of 4,321 are used. The 5th
percentile, 50th percentile, 95™ percentile, and standard deviation results are verified.

Test-18 Fault Tree Uncertainty - Monte Carlo Method/Exponential Distribution

This scenario consists of eight variations that test uncertainty using the Monte Carlo simulation
technique for the exponential distribution type. The eight variations use fault trees that consists of:
an OR gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities. The 5th percentile, 50th percentile, 95th percentile, and standard deviation results are
verified based on 5,000 samples and a seed of 4,321 for each test. . :
Test-19 Fault Tree Uncertainty - Monte Carlo Method/Uniform Distribution

This scenario consists of four variations that test uncertainty using the Monte Carlo simulation
technique for the uniform distribution type. The four variations use fault trees that consists of an OR
‘gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and upper end uncertainty values. The 5th percentile, 50th percentile, 95th percentile,
and standard deviation results are verified based on 5,000 samples-and a seed of 4,321 for each test.

Test-20 Fault Tree Uncertainty - Monte Carlo Method/Gamma Distribution

This scenario consists of six variations that test uncertainty using the Monte Carlo simulation- _
technique for the gamma distribution type. The six variations use fault trees that consists of an OR
"gate with a single basic event as its input. Each variation uses differing basic event nominal '
probabilities and uncertainty values (r). The 5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified based on 5,000 samples and a seed of 4,321 for each test.

Test-21 Fault Tree Uncertainty - Monte Carlo Method/Maximum Entropy Distribution

This scenario consists of seven variations that test uncertainty using the Monte Carlo simulation
technique for the maximum entropy distribution type.. The seven variations use fault trees that
consists of an OR gate with a single basic event as its input. Each variation uses differing basic
event nominal probabilities, upper end, and lower end uncertainty values. The 5th percentile, 50th
percentile, 95" percentile, and standard deviation results are verified based on 5 000 samples and a
seed of 4,321 for each test.

Test-22 Sequence Uncertainty - Monte Carlo Method / Dirichlet Distribution
This test scenario consists of four variations that test uncertainty analyses using the Monte Carlo

. simulation technique for the Dirichlet distribution type. The first three variations each use a three-
branch event tree with differing failure probabilities and parameter values. The fourth variation uses
a 121-branch event tree. Change sets are used to correlate the basic events. The 5th percentile, 50th
percentile, 95" percentile, and standard- deviation results are verified.

Test-23 Fault Tree Uncertainty - Monte Carlo Method/Seismic Distribution

This scenario consists of four variations that test’ uncertamty using the Monte Carlo simulation
technique for the seismic distribution type. The four variations use fault trees that consists of an OR
gate with a single basic event as its input. - Each variation uses differing basic event median failure
acceleration, screening G-level, Beta-R and Beta-U values. Uncertainty analysis is performed using
the Seismic analysis type. The 5th percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 10, 000 samples and a seed of 4,321 for each test.

Test-24 Fault Tree and Sequence Uncertainty — Monte Carlo Method/Constramed

. Noninformative Distribution

This scenario consists of five variations that test uncertainty using the Monte Carlo sxmulatlon
techniques for the Constrained Noninformative distribution type. The three variations involving -
fault trees use fault trees that consists of an OR gate with a single basic event as its input with
differing basic event nominal probabilities. The two variations involving sequences use event trees
with differing initiating event nominal frequencies. The 5th percentile, 50th percentile, 95th
percentile, and standardﬂdeviation résults are verified based on 10,000 simulated values for each test.

Test-25 Fault Tree Uncertainty - Latin Hypercube Method/Log Normal Dlstrlbutlon

This scenario consists of six variations that test uncertainty using the Latin Hypercube simulation
technique for the log normal distribution type. The six variations use fault trees that consists of an
OR gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and error factors. The 5th percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 5,000 samples (simulated values) and a random number seed
of 4,321 for each test. ' :

Test-26 Fault Tree Uncertainty - Latin Hypercube Method/Normal Distribution ‘
This scenario consists of variations that test uncertainty using the Latin Hypercube simulation
technique for the normal distribution type. Two fault trees are used that consist of an OR gate with a -
single basic event as its input, with differing basic event nominal probabilities and standard
deviation values. Fault tree combinations of five sample sizes and two seed values are used for a
total of ten tests for each tree. The Sth percentile, 50th percentile, 95th percentile, and standard
deviation results are verified.

Test-27 Fault Tree Uncertainty - Latin Hypercube Method/Beta Distribution o
This scenario consists of ten variations that test uncertainty using the Monte Carlo simulation .
technique for the beta distribution type. The ten variations use fault trees that consists of an OR gate
with a single basic ‘evAent as its input. Each variation uses differing basic event nominal probabilities
and uncertainty values. The 5th percentile, S0th percentile, 95th percentile, and standard deviation

- results are verified based on 5,000 samples and a seed of 4,321 for each test.

Test-28 Fault Tree Uncertainty - Latin Hypercube Method/Chi Squared Distribution.

This scenario consists of twelve variations that test uncertainty using the Monte Carlo simulation
technique for the chi-square distribution type. For ten of the variations, ten fault trees are used that
consists of an OR gate with a single basic event as its input. Each basic event has a different
nominal probability and uncertainty value (degrees of freedom). The 5th percentile, SOth percentile,
95th percentile, and standard deviation results are verified based on 5,000 samples and a seed of
4,321 for each test. For the other variations two fault trees are used that consist of an OR gate with
a single basic event as its input with differing basic event nominal probabilities and uncertainty
values. For each of these fault trees, four different sample sizes and seed of 4,321 are used. The 5th
percentile, 50th percentile, 95" percentxle and standard deviation results are verified.

C-13

Test-29 Fault Tree Uncertamty Latin Hypercube Method/Exponential Distribution

This scenario consists of eight variations that test uncertainty using the Monte Carlo simulation
technique for the exponential distribution type. The eight variations use fault trees that consists of
an OR gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities. The 5th percentile, 50th percentile, 95th percentile, and standard deviation results are
verified based on 5,000 samples and a seed of 4,321 for each test

. Test-30 Fault Tree Uncertainty - Latin Hypercube Méthod/U niform Distribution

* This scenario consists of four variations that test uncertainty using the Monte Carlo simulation
technique for the uniform distribution type. - The four variations use fault trees that consists of an OR -
gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and upper end uncertainty values. The 5th percentile, S0th percentile, 95th percentile,
and standard deviation results are verified based on 5,000 samples and a seed of 4,321 for each test.

Test-31 Fault Tree Uncertainty - Latin Hypercube Method/Gamma Distribution

This scenario consists of six variations that test uncertainty using the Monte Carlo simulation
technique for the gamma distribution type. The six variations use fault trees that consists of an OR
gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and uncertainty values (r). The 5th percentile, 50th percentile, 95th percentile, and
standard deviation results are verified based on 5,000 samples and a seed of 4,321 for each test.

Test-32 Sequence Uncertainty - Latin Hypercube Method/Maximum Entropy Distribution
This scenario consists of seven variations that test uncertainty using the Monte Carlo simulation -
technique for the maximum entropy distribution type. The seven variations use fault trees that
consists of an OR gate with a single basic event as its input. Each variation uses differing basic -
event nominal probabilities upper end, and lower end uncertainty values. The 5th percentile, 50th
percentile, 95" percentile, and standard deviation results are verified based on 5,000 samples and a
seed of 4,321 for each test.

Test-33 Sequence Uncertainty - Latin Hypercube Method/Dirichlet Distribution

This test scenario consists of four variations that test uncertainty analyses using the Monte Carlo
simulation technique for the Dirichlet distribution type. The first three variations each use a three-
branch event tree with differing failure probabilities and parameter values. The fourth variation uses
a 121-branch event tree. Change sets are used to correlate the basic events. The 5th percentile, 50th
percentile, 95 percentile and standard deviation results are verified. Since this distribution type -
was not available in version 5, version 6 results have been 1nspected for acceptance and are used for
comparison against subsequent incremental releases.

Test-34 Fault Tree Uncertainty - Latin Hypercube Method/Seismic Distribution

This scenario consists of four variations that test uncertainty using the Monte Carlo simulation
technique for the seismic distribution type. The four variations use fault trees that consists of an OR
gate with a single basic event as its input. Each variation uses differing basic event median failure
acceleration, screening G-level, Beta-R and Beta-U values. Uncertainty analysis is performed using
the Seismic analysis type. The 5th percentile, 50th percentile, 95th percentile, and standard
deviation results are verified based on 10,000 samples and a seed of 4,321 for each test.

C-14

Test-35 Fault Tree and Sequence Uncertamty Latin Hypercube Method / Constrained

Noninformative Distribution

This scenario consists of five variations that test uncertainty using the Monte Carlo simulation
techniques for the Constrained Noninformative distribution type. The three variations involving
fault trees use fault trees that consists of an OR gate with a single basic event as its input with _
differing basic event nominal probabilities. The two variations involving sequences use event trees
with differing initiating event nominal frequencies. The 5th percentile, 50th percentile, 95th
percentlle and standard deviation results are verified based on 10,000 simulated values for each test

Test—36 Fault Tree Uncertamty Monte Carlo Method /. Hlstogram Dlstrlbutlon
This scenario consists of four variations that test uncertainty using the Monte Carlo simulation

* technique for the histogram distribution type. The four variations use fault trees that consists of ar

OR gate with a single basic event as its input. Each variation uses differing basic event nominal

- probabilities and histograms (of percentage, area, and range types). The 5th percentile, 50th

percentile, 95th percentile, and standard deviation results are verlﬁed based on 5, 000 samples and a
seed of 4,321 for each test. .

' Test-37 Fault Tree Uncertainty — Latin Hypercube Method / Histogram Distribution

This scenario consists of four variations that test uncertainty using the Latin Hypercube simulation
technique for the histogram distribution type. The four variations use fault trees that consists of an -
OR gate with a single basic event as its input. Each variation uses differing basic event nominal
probabilities and histograms (of percentage, area, and range types). The 5th percentile, 50th
percentile, 95th percentile, and standard deviation results are verified based on 5,000 samples and a
seed of 4,321 for each test. ' '

Test-38 Gathering of End States
This scenario generates basic event data (with no change sets) and gathers the end states (without cut

set probability cutoff, by sequence end state). The alternate case min-cut upper bound and the
number of cut sets are verified for each end state. :

Test-39 End State Uncertainty — Monte Carlo Method ~
These scenarios perform multiple event sampling on all sequences that belong toa particular end
state (single uncertainty), as well as the collection of all end states (group uncertainty). The mean,
5th percentile, median, 95" percentile, and standard dev1at10n results are verified based on 3,000
simulated values for each test.

Test-40 End State Uncertamty Latm Hypercube Method

These scenarios perform multiple event sampling on all sequences that belong to a particular end
state (single uncertainty), as well as the collection of all end states (group uncertainty) . The mean,’
5th percentile, median, 95" percentile, and standard deviation results are verified based on 3,000
simulated values for each test.

Test-41 Cut Set Verification

This test case consists of scenarios that compare cut sets from selected fault trees, sequences, and
end states. The cut set frequency, percent contribution to the total, and basic events in the cut set are
verified. Cut sets are solved and /or /gathered with truncation, auto-recovered, and updated.
Sequences and fault trees are solved with and without their default flag sets. Also, fault tree editing
is briefly tested. This is done by opening the alphanumeric logic editor, saving and converting logic
to graphics, then pulling up the graphical editor and saving the graphics. This test does not test

C-15

specific editing features but it does verify that the original logic is correctly loaded and saved.
Failure of the logic to be preserved correctly would be detected with incorrect cut set results.

Test-42 Link Small Event Tree
This scenario uses.the Surry Large Early Release Frequency (LERF) Level 2/3 model (S_LERF) to
link event trees using the small event tree methodology. Prior to link, each event tree is loaded into
the graphical editor and saved to ensure that the correct logic is preserved. The sequences are then
" solved with cutoff. The alternate case min cut upper bound and number of cut sets is verified for
each Level 1 _sequence. :

Test-43 Partition Sequence Cut Sets

This scenario applies event tree partition rules to the sequences generated in scenario reference
number Test-42. These partition rules assign Plant Damage States (PDSs) to all sequences ‘with cut
sets. These end states are then gathered by cut set partition. The altemate case min cut upper bound
and number of cut sets is verified for each PDS.

Test-44 Link Large Event Tree : : :
This scenario uses. the results from scenario reference number Test-43 The PDS event trees created
by the partition rules are linked using the large event tree methodology and create sequence logic cut
sets. The LERF end states are then gathered by sequence end state and re-quantified using the Rare
Event approximation. The alternate case mm-cut upper bound and number of cut sets are venﬁed
for each LERF end state. .

Test-45 Fault Tree Importance Measures

This test case consists of scenarios that test importance measures calculations with fault trees for
each of the importance measures: ratio, difference, and uncertainty. For each event, the name,
-number of occurrences, probability, Fussell-Vesely (or Bimbaum or uncertainty 1mportance) risk
reduction ratio (or difference), risk increase ratio (or difference) results are verified.

Test-46 Sequence Importance Measures

This test case consists of scenarios that test Sequence importance measures calculations for each of
the importance measures: ratio, difference, and uncertainty. For each event, the name, number of
occurrences, probability, Fussell-Vesely (or Bimbaum or uncertainty importance), risk reduction
ratio (or difference), risk increase ratio (or difference) results are verified.

Test-47 Sequence Group Importance Measures

* This test case consists of scenarios that test Sequence Group importance measures calculations for -
each of the importance measures: ratio, difference, and uncertainty. For each event, the name,
number of occurrences, probability, Fussell-Vesely (or Bimbaum or uncertainty importance), risk
reduction ratio (or difference), risk increase ratio (or difference) results are verified.

Test-48 End State Importance Measures

This test case consists of scenarios that test End State importance measure calculations for eachof .
the importance measures: ratio, difference, and uncertainty. For each event, the name, number of
occurrences, probability, Fussell-Vesely (or Birnbaum or uncertainty importance), risk reduction
ratio (or difference), risk increase ratio (or difference) results are verified.

C-16

Test-49 End State Group Importance
This test case consists of scenarios that test End State Group 1mportance measures calculations for

“each of the importance measures: ratio, difference, and uncertainty. For each event, the name,

number of occurrences, probability, Fussell-Vesely (or Bimbaum or uncertainty importance), risk
reduction ratio {(or difference), risk increase ratio (or difference) results are verified.

Test-50 Change Set Processing- Single -
This test case consists of scenarios that test the effects of basic event changes via change sets, on

~ sequence cut set results. In these scenarios, single basic event changes are made in a- change set.
- The change set is then marked and the basic event data is generated. An affected sequence is then -
“selected and cut set results are verified. : :

Test-Sl Change Set Processmg- Class

This test case consists of scenarios that test the effects of basic event changes, via change sets, on
sequence cut set results. In these scenarios, class basic event changes are made in a change set. The
change set is then marked and the basic event data is generated. An affected sequence. is then
selected and cut set results are verified.

Test-52 Change Set Processing - Marked Order '

This test case consists of scenarios that test the effects of basic event changes via change sets, on
sequence cut set results. In these scenarios, the change sets created in Test-50 and Test-51 are used.
Multiple change sets are marked and the basic event data is generated. An affected sequence is then
selected and cut set results are validated. This test verifies that the changed basic events are
processed correctly based on the marked order of the change.sets.

Test-53 Extract Delete, Load, Solve Fault Trees and Basic Events
This test consists of scenarios that exercise utility functions associated with the database for loading
plant models, end state data,_ or other information to be analyzed with the tool set.

Test-54 Fault Tree Utility Functions —~Auto page, Solve, Save Cut Sets to End States
SAPHIRE provides several utilities maintain fault trees. These tests verify that the use of these

‘features does not introduce errors into the database. The auto-page scenario breaks up a large fault

tree into manageable smaller fault trees with transfer information. An auto-page is performed on a
large fault tree, and then the modified tree is solved to verify the cut set results are not altered with

the paging operation. Another scenario copies a fault tree cut sets to an end state, and then verifies

that the cut sets in the end state match the cut sets in the fault tree.

.Test 55 - Event Tree Linking (mcludmg rules)

The event tree linking rules are tested using several different databases. The databases are the Surry
LERF model, Wolf Creek Revision 302, and Peach Bottom Revision 302, The Surry LERF model
links the Level 1 event tree sequences together prior to solving the accident sequences, then’
performs an end state gather. The end states then become Level 2 event trees, which are linked
together using the large event tree method. These Level 2 sequences are then gathered into the final
end states for LERF, NO-LERF, etc. The Wolf Creek and Peach Bottom models have no accident
sequences at the beginning. The test has the sequences being generated using dynamic flag sets for
the accident sequences, and then evaluates the sequences. The sequences are evaluated using the
developed dynamic flag sets and then with no flag sets.

C-17

Test — 56 End-State Gathering

The end state gathering process is tested using the Surry LERF model and the Beaver Valley
NUREG 1150 model. ‘Both models have the sequences gathered into end states. The Surry
LERF model uses partition rules, while the Beaver Valley model uses the end state name.

Test—57 Compound Event Plug-ins
The compound event plug-in is being tested for both the common cause module utility module
(i.e. add, multiply), and load-capacity. The scenarios include testing the utility module and load-
capacity, testing the add and multiply functions in order to calculate the probability of the
compound event. Then change sets are created to affect the compound event and the final
. probability. The results are verified to make sure the probability is correct. Also tested is the
load-capacity plug-in. The values are input and the probability is calculated along with
performing an uncertainty calculation. The input values are also modified using a change set and
" then a new probability along with uncertainty evaluation is performed and verified to be correct.

Test —58 Base Case Update ~
All models have fault tree results and accident sequences cut sets converted to the base case. A
scenario for fault tree cut sets converted to the base case for comparison to the current case using
change sets.

Test — 59 Calculation Types

The calculation types are tested. The “TRUE” calculation type is tested. The “TRUE FALSE,
and IGNORE?” calculation types are tested. Fault trees are developed to verify the different
calculation types are being changed in the change sets and the results are correct. The other
calculation types (i.e., 3, 5, and 7) are also being checked in the simple database using change
sets. »

Test — 60 Application of Changé Sets

Change sets are used in numerous databases. Both class and single event change sets are
developed and tested. The change sets test both probability changes and calculation type -
changes. .

Test— 61 Uncertainty Distributions
All of the uncertainty distribution types are tested.

Test— 62 N of M Gates

The N/M gates are tested using the simple database (SIMPLE-FT) plant model. The N/M gate
has multiple N/M gates feeding into it. The N/M gate is evaluated usnng all of the mputs and also
with inputs affected by change sets.

Test — 63 Sequence Stress Testing
Several scenarios test sequence stress (i.e., numerous sequences being generated). An event tree
links over and over in order to test the ability to generate numerous sequences correctly.

Test — 64 Calculations on the Common-Cause Plug-in '

Use of the common-cause plug-ins is verified. Basic events are tested by using éhange sets. One
set of the inputs is set TRUE. This requires SAPHIRE to re-calculate the Common Cause Failure
(CCF) plug-in basic event for evaluation. The final probability is manually calculated and
checked to the probability calculated for final verification.

C-18

. Test — 65 Event Transformations B _

This test checks the capability of SAPHIRE to turn one or more basic events into other basic
events during the cut set generation process. This feature is prlmarlly used for external events
models.

Test - 66 Wrong Results : _

This test verifies the output of results. The output from the test is compared to incorrect results to
verify that the comparison is worked correctly. A LOSP scenario is executed to obtain results for
comparlson

Below, the physical output from two of the individual tests, the PBYRN-01 test (solving for fault
tree minimal cut sets) and the PBYRN-02 test (solving event trees for core damage cut sets) are
shown. Not only are each test graded on a pass/fail, but one should note that each entity (e.g.,
different fault trees, different sequences) is checked and graded on a pass/fail basis. All total,
there are over 250 high-level tests, where each test comprlses multiple sub-tests on specific
portions of the SAPHIRE software.

TEST CASE: SAPHIRE QA Models (CDF_BYRN) DATE & TIME: 8/6/03 6:09:37 PM
“Operating System:Microsoft Windows NT

TEST FOR: SAPHIRE Vérsi'on 7.20 .

Opened project: bryn_2qa

[PBYRN-01]Scenario: Solve Fault Trees‘started at 6:10:00 PM

Generated base case data’ |

Fault trees solved

with prob cut off (1.0E-16)
Fault Tree base case updated

FAULT TREE RESULTS:
Compare Min-Cut and No. of Cut Sets: .
- Fault Tree Min-Cut Status | Failure | Base Status Count. | Status
ACP-ST 5.300E-001 - pass ' 5.300E-01 pass 1 pass
1 AFW 3.341E-004 . | pass 3.341E-04 pass 13 pass
AFW-ATWS 2.425E-002 pass 2.425E-02 pass 14 pass
AFW-L 3.341E-004 pass 3.341E-04 pass 13 - pass
AFW-SGTR 3.531E-004 . pass 3.531E-04 _pass 12 pass-
BORATION 1.000E-003 pass 1.000E-03 pass 1 pass
COOLDOWN 3.997E-003 pass 3.997E-03 pass 12 pass
DEP-REC 3.500E-003 pass 3.500E-03 pass 1 pass
EP 2.889E-003 pass 2.889E-03 pass 5 pass
F&B 2.244E-002 pass 2.244E-02 pass 91 pass
F&L 2.244E-002 pass 2.244E-02 pass. 91 pass
HPI 9.140E-006 pass 9.140E-06 pass 88 pass

9.140E-006

C-20

HPI-L pass 9.140E-06 pass ‘88 pass

HPR 2.731E-003 pass 2.731E-03 pass 754 pass

HPR-L 2.731E-003 pass 2.731E-03 pass 754 pass

LPR 2.228E-003 pass 2.228E-03 pass 44 pass

MFW-A 2.000E-001 pass 2.000E-01 pass 1 pass

MFW-NT 5.000E-002 pass . 5.000E-02 pass 1 pass

MFW-T 7.840E-002 pass - 7.840E-02 pass 2 pass
-1 OP-2H 1.200E-001 pass 1.200E-01 pass 1 pass

Compare Mean:

Fault Tree Mean Status Failure

ACP-ST 0.000E+00 pass

AFW 0.000E+00 pass

AFW-ATWS | 0.000E+00 pass

AFW-L 0.000E+00 pass

AFW-SGTR 0.000E+00 pass

BORATION | 0.000E+00 pass

COOLDOW | 0.000E+00 pass

N

DEP-REC 0.000E+00 pass.

EP 0.000E+00 pass

F&B 0.000E+00 pass

F&L 0.000E+00 pass

HP1 0.000E+00 pass

HPI-L | 0.000E+00 pass

HPR 0.000E+00 pass

HPR-L 0.000E+00 pass

LPR 0.000E+00 pass

MFW-A 0.000E+00 pass

MFW-NT 0.000E+00 pass

MFW-T 0.000E+00 . pass

OP-2H 0.000E+00 . pass

Compare Min-Cut and No. of Cut Sets:

Fault Tree - | Min-Cut Status | Failure | Base Status Count | Status
OP-6H 3.600E-002 pass 3.600E-02 | pass 1 -pass
OP-BD = | 2.000E-002 | pass - 2.000E-02 | pass 1 pass
OP-SL 6.300E-001 pass 6.300E-01 pass 1 pass .
PORV 4.000E-002 pass 4.000E-02 | pass 1 - pass
PORV-1 1.000E+000 | pass 1.000E+00 | pass 1 pass
PORV-A - | 2.716E-001 | pass 2.716E-01 | pass 9 pass
PORV-L 1.600E-001 pass 1.600E-01 pass 1 pass
PORV-RES | 2.454E-004 pass - 2.454E-04 | pass 6 pass

| PORV-SBO | 3.700E-001 | pass’ 3.700E-01 | pass 1 pass

| PRVL-RES | 2.454E-004 pass 2.454E-04 | pass 6 pass
RCS-DEP 3.997E-003 pass - 3.997E-03 | pass 2 pass
Compare Mean:

+{ Fault Tree | Mean : Status Failure

.| OP-6H 0.000E+00 pass
OP-BD 0.000E+00 pass
OP-SL 0.000E+00 pass
PORV 0.000E+00 pass
PORV-1 0.000E+00 pass
PORV-A 0.000E+00 pass
PORV-L 0.000E+00 pass
PORV-RES | 0.000E+00 pass
PORV-SBO | 0.000E+00 pass
PRVL-RES | 0.000E-+00 ‘pass -
RCS-DEP 0.000E+00 pass
Compare Min-Cut and No. of Cut Sets:
Fault Tree Min-Cut Status | Failure | Base Status Count Status
RCS-SG 3.738E-002 pass 3.738E-02 pass 3 pass
RCS-SG1 | 2.766E-002 pass 2.766E-02 pass 2 . pass
RCSPRESS - 1.303E-002 pass 1.303E-02 pass 2 pass
RHR 3.298E-003 pass - 3.298E-03 pass 45 pass
RT 5.529E-006 pass 5.529E-06 pass 3 pass
RT-L 8.900E-008 " pass 8.900E-08 pass 1 pass.
SEALLOCA | 3.500E-002 pass _.3.500E-02 pass 1 pass
SG-DEP 1.000E-005 pass . 1.000E-05 pass 1 pass
SGCOOL 2.005E-001 pass 2.005E-01 pass 5 pass
SGCOOL-L 3.404E-001 pass 3.404E-01 pass 5 pass
SGISOL 1.099E-002 pass 1.099E-02 pass 2 pass
SGISOL] 1.228E-002 pass 1.228E-02 pass 4 pass
SLOCA-NR 4.300E-001 pass 4.300E-01 pass 1 pass
THROTTLE 1.000E-002 pass 1.000E-02 pass 1 pass

C-21

Compare Mean:

Fault Tree Mean Status Failure
|.RCS-8G 0.000E+00 | pass
RCS-SGl1 0.000E+00 | pass
RCSPRESS . ‘| 0.000E+00 [pass
RHR 0.000E+00 | pass
RT 0.000E+00 | pass
RT-L 0.000E+00 | pass
SEALLOCA 0.000E+00 | pass
SG-DEP 0.000E+00 | pass
SGCOOL 0.000E+00 | pass
SGCOOL-L 0.000E+00 | pass.
SGISOL- 0.000E+00 | pass
SGISOL1 0.000E+00 | pass
SLOCA-NR 0.000E+00 | pass
THROTTLE 0.000E+00 | pass

Scenario: Solve Fault Trees completed at 6:10:42 PM
[PBYRN-02]Scenario: Core Damage Frequency Test started at 6:10:43 PM
Generated base case data
Sequences solved
with prob cut off (1.0E-16) and with recovery
Event Tree base case updated
SEQUENCE RESULTS:
Compare MinCut and No. of Cut Sets:

Event Sequence | Min-Cut Status | Failure | Base Status | Count Status
Tree

LOOP 05 5.403E-12 | pass 5.403E-12 pass 105- pass
LOOP 07 5.303E-14 | pass 5.303E-14 pass 43 .pass
LOOP 09 1.692E-11 | pass 1.692E-11 pass 208 pass
LOOP 10 - 2.376E-11 | pass 2.376E-11 pass 58 pass
LOOP 13 2.395E-12 | pass 2.395E-12 pass 441 pass
LOOP 16 1.185E-12 | pass 1.185E-12° | pass 270 pass
LOOP 17 9.942E-11 | pass 9.942E-11 pass 155 pass
LOOP 18-02 4.499E-10 | pass 4.499E-10 pass 5 pass
LOOP 18-05 2.877E-13 | pass 2.877E-13 pass 48 _pass
LOOP 18-07 2.595E-15 | pass 2.595E-15 pass 14 pass
LOOP 18-08 5.188E-15 | -pass 5.188E-15 pass 13 _pass
LOOP 18-09 5.140E-10 | pass 5.140E-10 | pass 5 | pass
LOOP 18-11 2.642E-10 | pass 2.642E-10 pass 5 pass
LOOP 18-14 1.683E-13 | pass 1.683E-13 | pass 37 pass
LOOP | 18-16 1.005E-15 | pass 1.005E-15 pass 6 ass
LOOP 18-17 2.873E-15 | pass 2.873E-15 pass 9 pass
LOOP 18-18 3.019E-10 | pass 3.019E-10 pass 5 pass
LOOP 18-20 | 4.354E-10 | pass 4.354E-10 pass 10 _pass
LOOP 18-22 1.350E-10 | pass 1.350E-10 _pass 29 pass
LOOP 19 1.424E-12 -| pass 1.424E-12 pass 1 _pass

Compare Mean:

C-22

Compare MinCut and No. of Cut Sets:

C-23

Event Tree Sequence Mean _ Status Failure
LOOP 05 0.000E+00 pass '

LOOP 07 0.000E+00 - pass
LOOP 09 - 0.000E+00 pass
LOQP 10 0.000E+00 . - pass
LOOP 13 0.000E+00- "~ pass
LOOP 16 0.000E+00. pass
LOQP 17 0.000E+00 pass
LOOP 18-02 0.000E+00 -pass
LOOP - 18-05 0.000E+00 pass -
LOOP. 18-07 0.000E+00 pass
LOOP 18-08 0.000E+00 pass
LOOP 18-09 0.000E+00 pass
LOOP 18-11 0.000E+00 pass
LOOP 18-14 0.000E+00 pass
LOOP 18-16 0.000E+00 pass
LOOP 18-17 0.000E+00 pass
LOOP 18-18 0.000E+00 pass
LOOP 18-20 0.000E+00 _pass
LOOP - 18-22 0.000E+00 pass
LOOP 19 0.000E+00 pass

Compare MinCut and No. of Cut Sets:

Event Tree | Sequence | Min-Cut Status | Failure | Base Status Count Status
SGTR 03 5.920E-11 | pass | 5.920E-11 pass 82 pass
SGTR 04 7.172E-11 | pass 7.172E-11 pass 4 pass
SGTR 05 1.630E-11 | pass 1.630E-11 pass 1 pass
SGTR 08 2.496E-12 | pass 2.496E-12 pass 228 pass
SGTR 09 3.031E-12 | pass 3.031E-12 pass 24 pass
SGTR 10 6.161E-13 | pass 6.161E-13 pass 3 pass
SGTR i1 2.156E-10 | pass 2.156E-10 pass 3 pass

- SGTR 13 1.363E-13 | pass 1.363E-13 pass 48 pass
SGTR 14 0.000E+00 | pass 0.000E+00 pass 0 pass

Compare Mean: A

Event Tree | Sequence Mean ‘Status Failure
SGTR 03 0.000E+00 pass
'SGTR 04 0.000E+00 pass
SGTR 05 0.000E+00 pass
SGTR 08 0.000E+00 pass
SGTR 09 “0.000E+00 pass .

- SGTR 10 0.000E+00 pass
SGTR 11 0.000E+00 pass
SGTR 13 0.000E+00 pass
SGTR 14 0.000E+00 pass

C-24

Event Tree | Sequence | Min-Cut Status | Failure | Base . i Status | Count | Status
SGTR | 16 2.860E-15 pass 2.860E-15 | pass 10 pass
" SGTR 17 0.000E+00 | pass ~ 0.000E+00 | pass 0 pass
SGTR 18 7.546E-16 pass 7.546E-16 | pass 4 pass
SGTR 21 1.312E-14 pass 1.312E-14 | pass " | 28" pass
SGTR 22 6.463E-15 pass 6.463E-15 | pass 17 pass
SGTR 23 1.483E-15 pass 1.483E-15 | pass 6 pass -
SGTR - 26 2.884E-16 pass 2.884E-16 | pass | 3 . pass
SGTR 27 8.277E-17 | pass: 8.277E-17 | pass 2 | .pass
SGTR 28 0.000E+00 | pass .0.000E+00 | pass | O pass
SGTR 29 1.975E-14 - | pass " 1.975E-14 | pass 21 pass
SGTR - 31 2431E-17 pass 2431E-17 | pass | 1 Pass
SGTR = | 32 0.000E+00 | pass 0.000E+00 | pass 0 Pass
SGTR 34 0.000E+00 | pass 0.000E+00 | pass 0 | Pass
SGTR 35 0.000E+00 | pass 0.000E+00 | pass 0 Pass
SGTR 36 0.000E+00 | pass 0.000E+00 ! pass 0 Pass
SGTR 39 6.887E-15 pass 6.887E-15 | pass 23 | Pass
SGTR 41 4.450E-17 pass | 4.450E-17 | pass 1 Pass
SGTR 42 8.230E-14 | pass 8.230E-14 | pass 16 Pass
" SGTR 43 1.419E-13 " | pass 1.419E-13 | pass 26 Pass
SGTR 44 9.012E-12 | pass 9.012E-12 | pass 3 Pass
Compare Mean: .
Event Tree | Sequence | Mean Status Failure
SGTR 16 0.000E+00 pass :
SGTR 17 0.000E+00 pass
SGTR 18 0.000E+00 pass
SGTR 21 0.000E+00 pass
SGTR 22 0.000E+00 pass
SGTR 23 0.000E+00 pass
SGTR 26 ~ 0.000E+00 pass
SGTR 27 0.000E+00 pass
SGTR 28 0.000E+00 pass
SGTR 29 0.000E+00 pass
SGTR 31 0.000E+00 pass
SGTR 32 0.000E+00 pass
SGTR 34 0.000E+00 pass
SGTR 35 0.000E+00 pass
SGTR 36 0.000E+00 pass
SGTR 39 0.000E+00 pass
SGTR 4] 0.000E+00 pass
SGTR 42 0.000E+00 pass
SGTR 43 0.000E+00 pass
SGTR 44 0.000E+00 pass

Compare MinCut and No. of Cut Sets:

Event Tree | Sequence | MinCut Status | Failure | Base Status | Coun | Status
. t

SLOCA 04 9.088E-10 | pass . 9.088E-10 | pass 357 | Pass
SLOCA | 06 1.092E-11 | pass 1.092E-11 | pass 236 | Pass

SLOCA 07 7.692E-12 | pass 7.692E-12 | pass 66 Pass
- SLOCA 11 8.798E-14 | pass 8.798E-14 | pass 62 Pass
SLOCA 13 -5.689E-16 | pass 5.689E-16 [pass 9. Pass.
SLOCA 14 2.304E-15 | pass 2.304E-15 | pass 10 Pass.
SLOCA 17 9.983E-15 | pass 9.983E-15 | pass 30 Pass
SLOCA 19 0.000E+00 | pass -0.000E+00 | pass 0 Pass
SLOCA 21 4.728E-15 | pass’ 4.728E-15 | pass 24 | Pass

Compare Mean: o

Event Tree | Sequence | Mean Status Failure
SLOCA 04 . 0.000E+00 | pass '

SLOCA 06 0.000E+00 | pass
SLOCA 07 0.000E+00 | pass-
SLOCA 11 0.000E+00 | pass
SLOCA 13 '0.000E+00 | pass
SLOCA 14 0.000E+Q0 | pass
SLOCA 17 0.000E+00 | pass
" SLOCA 19 0.000E+00 | pass
SLOCA 21 0.000E+00 | pass

Compare MinCut and No. of Cut Sets: .

Event Tree | Sequence | MinCut Status | Failure | Base Status | Count | Status
SLOCA 22 1.920E-13 | pass 1.920E-13 pass 26 pass
SLOCA 23 1.288E-11 | pass 1.288E-11 pass 3 pass
TRANS [05 3.420E-12 | pass 3.420E-12 | pass 108 | pass
TRANS 07 2.545E-14 | pass 2.545E-14 | pass 49 pass
TRANS 08 2.362E-13 | pass 2.362E-13 pass 44 pass
TRANS 13 8.295E-14 | pass ‘8.295E-14 pass 69 pass
TRANS 15 1.995E-16 | pass 1.995E-16 | pass 6 pass
TRANS 16 1.493E-14 | pass 1.493E-14 pass 14 -~ | pass
TRANS 19 9.935E-13 | pass 9.935E-13 pass 640 | pass
TRANS 20 3.271E-11 | pass 3.271E-11 pass 134 | pass

" TRANS 21-04 3.695E-13 | pass 3.695E-13 pass 62 pass
TRANS 21-06 1.817E-15 | pass 1.817E-15 pass 9 pass
TRANS 21-07 1.371E-12 | pass 1.371E-12 pass 3 _pass
TRANS 21-11 7.246E-14 | pass 7.246E-14 pass 36 pass
TRANS 21-13 0.000E+00 | pass 0.000E+00 pass 0 pass
TRANS | 21-14 2.742E-13 | pass 2.742E-13 pass 3 pass
TRANS 21-15 6.675E-12 | pass 6.675E-12 pass 21 pass
TRANS 21-16 1.788E-11 | pass 1.788E-11 pass 6 pass

C-25

Compare Mean:

Mean

Status

Event Tree | -Sequence Failure
SLOCA | 22 0.000E+00 pass
SLOCA 23 0.000E+00 pass
TRANS 05 0.000E+00 pass
TRANS 07 0.000E+00 pass
TRANS 08 0.000E+00 pass
TRANS 13 0.000E+00 pass -
TRANS 15. 0.000E-+00 _pass

"TRANS 16 0.000E+00 pass
TRANS 19 0.000E+00 pass
TRANS - |- 20 0.000E+00 pass
TRANS 21-04 0.000E+00 pass -
TRANS: 21-06 0.000E+00 pass
TRANS 21-07 0.000E+00 pass
TRANS 21-11 0.000E+00 pass
TRANS 21-13 0.000E+00 pass
TRANS 21-14 0.000E+00 pass
TRANS 21-15 | 0.000E+00 pass
TRANS 21-16 0.000E-+00 pass

Scenario: Core Damage Frequency Test completed at 6:11:42 PM

TEST CASE COMPLETE: at 6:11:45 PM

C-26

NRC FORM 335 U.S. NUCLEAR REGULATORY | 1. REPORT NUMBER
COMMISSION (Assigned by NRC, Add Vol,,
2-89) Supp., Rev., and Addendum
NRCM 1102, BlBLIOGRAPHIC DATA SHEET Numbers, if any.)
3201. 3202 (See Instructions on the reverse) NUREG/CR-6952
INL/EXT-05-00655
2. TITLE AND SUBTITLE 3. DATE REPORT PUBLISHED
Systems Analysis Programs for Hands-on Integrated Reliability Evaluations MONTH YEAR
(SAPHIRE) Vol. 6 Quality Assurance Manual
September 2008
4. FIN OR GRANT NUMBER
N6203
5. AUTHOR(S) ' 6. TYPE OF REPORT
Technical
C. L. Smith, R. Nims, K. J. Kvarfordt, C. Wharton 7. PERIOD COVERED (nclusive Dates)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and
mailing address; if contractor, provide name and mailing address.)

Idaho National Laboratory , '

Battelle Energy Alliance

P.O. Box 1625

Idaho Falls, ID 83415-3850)

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type “‘Same as above™; If contractor, provide NRC Division, Office or Region, U.S.
Nuclear Regulatory Commission, and mailing address.)

Division of Risk Analysis

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES
D. O’Neal, NRC Project Manager

11. ABSTRACT (200 words or less)

The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed
for performing a complete probabilistic risk assessment using a personal computer running the Microsoft Windows operating
system. SAPHIRE is primarily funded by the U.S. Nuclear Regulatory Commission (NRC). The role of the INL in this project is
that of software developer and tester. This development takes place using formal software development procedures and is subject
to quality assurance (QA) processes. The purpose of this document is to describe how the SAPHIRE software QA is performed,
what constitutes its parts, and limitations of those processes.

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT
' Unlimited

SAPHIRE, software, reliability, risk, safety, PRA, quality assurance, QA, testing, 14. SECURITY CLASSIFICATION

verification, validation, V&V (This p.age)
Unclassified
(This report)

Unclassified

15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (2-89)

Printed
on recycled
paper

Fadersl Recyciing Program

NUNREJY/IVN\"UIJL, YUI. U Iydlellid Analysio r vyt

ATl

(SAPHIRE)

UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, DC 20555-0001

Ul Nna

Iiud>~vn Illlcgl ateu r\cuauuﬂy LvVaiddativin
6 Quality Assurance Manual

