6.2.2 Fault Test Setup Description

Eagle 21^{m} system performance, while subjected to the fault tests described in section 5.2, was monitored in the following manner:

- Channels adjacent (left, right, top, bottom) to the channel under test were chosen for monitoring.
- Minimum physical separation between the channel under test and adjacent channels was provided. Cabinet configuration was altered to provide minimum physical separation for the digital contact output board tests.
- The channel under test was continuously monitored immediately prior to the fault application, disconnected from the data acquisition system (DAS) during fault application, and reconnected to the DAS upon removal of the fault.

Following the test, all necessary repairs were recorded noting all component failures and channel operability was verified.

Figure 6-11 is the fault test data sheet.

6.2.3 Surge Withstand Capability (SWC) Test Setup Description

Eagle 21° system input/output performance, while subjected to the SWC tests described in section 5.3, was monitored in the following manner:

o Analog outputs -- Four analog output channels were monitored continuously during the surge tests. The channels munitored replicated signals processed by current loop, wide range RTD, and narrow range RTD input signal conditioning boards. Thus, system analog input/output processing performance was measured.

1/0 Module			Procedure Rev Date Test 7
TYPE			
SHORT CIRCUIT	, AC		DC
COMMON MODE GROUND	CONNECTED	TO VOLTS PLUS	MINUS GROUND
LINE TO LINE	VOLTS (+) VOLTS (-)	TO (+)	_ (+) TO (-)
TEST INJECTION POINT		TEST CONDITION	
I/O CARD TYPE		POINT #	and and
PRE-TEST			
DATA LOGGER VERIFICATION*		PRINT OUTPUT #	
SYSTEM STATUS			
REMARKS AND TEST OBSERVATION			
DISCONNECT DATA LOGGER			•
TEST		-	
TAPE RECORDER FOOTAGE BEGIN SPEED		END TIME: (STAR	SET #
SYSTEM STATUS:			
REMARKS AND TEST OBSERVATION			· · · · · · · · · · · · · · · · · · ·
POST-TEST			
DATA LOGGER DATA VERIFICATION	PRINT OU	TPUT #	
SYSTEM STATUS:			L
REMARKS AND TEST OBSERVATION			
PERFORME	0	REVIEWED	_

Figure 6-11. Fault Test Data Sheet

:

 Digital outputs -- A single variable NR RTD (Thot3) was chosen to toggle all six Delta T/Tavg system trip outputs. All six trip output channels were toggled utilizing the variable RTD circuit shown in Figure 6-6. The control relay was cycled continuously during pre-test, test, and post-test runs [

J-b,c The Delta T/Tavg system inputs were set just below and above the trip output toggle point (.2% or less). The Delta T/T_{avg} system utilizes current loop, NR RTD and O-10 volt analog input signals to generate partial trip output signals (see section 3 for system block diagrams). Thus, any significant degradation in system input signal processing would result in a trip output status failure. The control relay was not cycled during the partial trip module tests to ensure that the channel in test remained in one state (energized/deenergized) during the application of the surge.

Trip output status was monitored continuously during the noise tests using a strip chart recorder.

The following test methods were utilized to best measure system performance:

- Input/output channels adjacent to the output channel under test were monitored.
- During application of the surge test wave, the strip chart recorder chart speed was increased to improve resolution.
- Analog output channels replicating input channels under test were monitored.

Figure 6-12 is the Surge Test Data Sheet.

SURGE TEST DATA SHEET

	Procedure Rev DATE
TYPE	TEST #
TRANSVERSE MODE	
COMMON MODE	
TEST INJECTION POINT I/O CA	RD TYPE POINT #
PRE-TEST	
DATA LOGGER VERIFICATION PRINT OUTPU SYSTEM STATUS:	Γ
REMARKS AND TEST OBSERVATION	
DISCONNECT DATA LOGGER	
TEST	
TAPE RECORDER FOOTAGE BEGIN	END SET #
SYSTEM STATUS:	
REMARKS AND TEST OBSERVATIONS:	
POST-TEST	
DATA LOGGER DATA VERIFICATION* PRINT C	NUTPUT #
SYSTEM STATUS:	
REMARKS AND TEST OBSERVATION:	
PERFORMED	REVIEWED
Figure 6-12. Surg	pe Test Data Sheet

•

•

07206:10-042888

6.2.4 Radio Frequency Interference Test Setup Description

Eagle 21^{M} system input/output performance, while subjected to RFI, was monitored in the following manner:

- Analog outputs -- Four analog output channels were monitored continuously during the RFI test. The channels monitored replicated signals processed by current loop, wide-range RTD, and narrow-range RTD input signal conditioning boards. Thus, system analog input/output processing performance was measured.
- o Digital outputs -- A single variable NR RTD (Thot3) was chosen to toggle all six Delta T/Tavg System trip outputs. All six trip output channels were toggled utilizing the variable RTD circuit shown in Figure 6-6. The control relay was cycled at the start of each frequency run, measuring trip output performance during the RFI event. The Delta T/Tavg system inputs were set just below and above the trip output toggle point (.2% or less). The Delta T/T_{avg} system utilizes current loop, NR RTD and 0-10 volt analog inputs to generate partial trip output signals (see section 3 for system block diagrams). Thus, any significant degradation in system input signal processing would result in a trip output status failure. A normally open contact output channel was also monitored. The contact output was normally energized throughout the test.

In addition to continuous monitoring via the strip chart recorder, trip output status was also sampled by the control computer before, during, and after energization of the control relay. Any discrepancies between actual and expected trip output status were flagged by an error message. See figures 6-13 and 6-14 for RFI modulation and keying test data sheets. Figure 6-15 is the Tape Recorder Log Sheet.

RADIO FREQUENCY INTERFERENCE TEST DATA

TARGET: (CABINET POSITION) CALIBRATION FILE: FIELD STRENGTH LEVEL: (V/m) TYPE OF ANTENNA: (LOS PERIODIC OR BICONICAL) ANTENNA POLARIZATION: (HORIZONTAL OR VERTICAL)

DATE:

TEST PERFORMED BY:

REVIEWED BY:

TAPE NAME: TAPE SET:

TAPE RECORDER START AT: (FOOT)

FREQUENCY: (MHZ)

(DATE) (TIME)

EVENT	DIG/INPUT		-	OUTOUT	DATTERNA
	00 0011	(EXPELIED	IKIP	UUIPUI	PATTERN
2	11 1100				
1. S.	00 0011				

REMARKS:

FREQUENCY: (MHZ)

(DATE) (TIME)

EVENT	DIG/INPUT
1 1	00 0011
2	11 1100
3	00 0011

REMARKS:

FREQUENCY: (MHZ)

(DATE) (TIME)

ERROR IN THE CHANGING CONDITION OF BISTABLE STATUS (TRIP OUTPUT ERROR MESSAGE)

EVENT	DIG/INPUT
1	00 0011
2	11 1101
3	00 0011

REMARKS:

ENDING TAPE RECORDER FOOTAGE FOR THIS SET OF DATA: (FOOT)

Figure 6-13. RFI Modulation Test Data Sheet

RADIO FREQUENCY INTERFERENCE TEST DATA

TARGET:	(CABINET	POSIT	ION)		
FIELD ST	FRENGTH LEV	EL:	(V/M)		
TYPE OF	ANTENNA:	(LOG	PERIODIC	OR	BICONICAL)
ANTENNA	POLARIZATI	ÓN:	(HORIZON'	TAL	OR VERTICAL)

20

DATE:

TEST PERFORMED BY:

REVIEWED BY:

TAPE NAME: TAPE SET:

TAPE RECORDER START AT: (FOOT)

FREQUENCY: (MHZ)

(DATE) (TIME)

:

.

(EXPECTED TRIP OUTPUT PATTERN)	EVENT 1 2	(FIRST KEY CYCLE) DIG [K-OFF] INPUT 00 0011 11 1100	(SECOND KEY CYCLE) DIG [K-ON] INPUT 00 0011 11 1100
REMARKS:			
(DATE)		FREQUENCY: (MHZ)	
(11ME)	EVENT 1 2	DIG ^C [K-OFF] INPUT 00 0011 11 1100	DIG [K-ON] INPUT 00 0011 11 1100
REMARKS: (DATE)		FREQUENCY: (MHZ)	
(TIME)	EVENT 1 2	DIG [K-OFF] INPUT 00 0011 11 1100	DIG [K-ON] INPUT 00 0011 11 1100
REMARKS:			

ENDING TAPE RECORDER FOOTAGE FOR THIS SET OF DATA: (FOOT)

Figure 6-14. RFI Keying Test Data Sheet

0720c:16-042888

6-21

006-A-19566-29

TAPE RECORDER

TAPE RECORDER LOG SHEET

				LC	00	• C	ONDIT	IONS	IS RECORDING																			
SET	DATE	THE	1	PU	P	5	TENE	arec	TAPE	CTART							CHANNELS										RENARKS	
-			1	2	3	4	IEMP.	PTE 55	NO.	SIARI	5100	1122	MIN.	GHUUP	1	2	3	4	5	6	7	8 8	110	11	12	13	14	
	6		11							See Se																	63	and the second second
1.1.1.1		. Execute					NEW ALL										1.1						1	125				
					0	-				-			0		-		7.5	1	154		-		-	123				
	The Second						1.1.1.1.1	Sec.											10			1	i de		14			The second second
					1.2										121	12												
								Freihalt		125.00						100												C
-								1314152	a particular								86		197						200			
								1.5													-		100	197		8-54 9-55		
	All consistent					-					1.1.1.1.1.1	1.40	-		-	1						1	1			138		State of the second second
		0.000	0							1.5	1.1.1.1.1.1								121				12		E.C.			
										10 0					1		2.0											
								Heads &																				
								100050	1.1.1.1	-															6.7			
			1.1		-	-										1000					-	-						
			1								14	-								_						14.5	54.3	
						101				S. Could			ALL DATES				10	1		1	81		100	12		100		
							Sec. 1			S. S. Garde						tie	1							10				
												No. I												0			5	0
			1.5			11.1				0			0.77				10.						-					
			-		-					Constant of the			-			-		1111			1		-		24		-	
	Sec. Sec.					_	1	00001035								10		1									12	
	an She		and a														12							100				
															12				E.									
								1.4-5-11																				
					-			S. Sales					1000					-	-	-	-	-	-				-	
			-		-										-		-	-	-	-	+	-		-	1		-	
		6. 2 (b. 10)			1.10				and the second	1. Same and			1		1.6	1.		1.		L.						13.		

..

07204:18-042888

-0

Figure 6-15. Tape Recorder Log Sheet 6-22

SECTION 7 ACCEPTANCE CRITERIA

7.1 DESCRIPTION

The general acceptance criterion for the 1E safety-related system is that the system shall remain operational before, during, and after any one of the abnormal events described in Section 5 and listed below. Specific acceptance criteria for the noise, fault, surge withstand capability, and radio frequency interference tests are defined in the following paragraphs.

7.1.1 Noise Test Acceptance Criteria

The Eagle 21^{\sim} system shall remain operational and maintain protective action before, during, and after any credible noise event described in section 5.1.

7.1.2 Fault Test Acceptance Criteria

The Eagle 21° system shall remain operational and maintain protective action before, during, and after the application of any credible faults as described in section 5.2. Faults shall not propagate across the class non-lE to class 1E isolation barrier or from channel to channel.

7.1.3 Surge Withstand Capability Test Acceptance Criteria

The Eagle 21^w system shall remain operational and maintain protective action before, during, and after application of the surge withstand test wave to the designated class non-1E to class 1-E isolators as described in section 5.3. In addition, no component damage or shift in calibration exceeding the specified accuracy of the board under test shall occur due to the application of the surge withstand test wave to any cabinet input/output excluding the test panel and MMI communications connections.

7.1.4 Radio Frequency Interference Test Acceptance Criteria

ñ

The Eagle 21^w system shall remain operational (i.e., continuous microprocessor operation) while exposed to the radio frequency interference tests described in section 5.4.

SECTION 8

TEST RESULTS

The results of the system noise, fault, surge, and RFI tests are based on the acceptance criteria defined in Section 7. System performance during these abnormal events is described in the ensuing sections. The results are reported in tabular format at the end of this section.

8.1 NOISE TEST RESULTS

7

Tables 8-1a through 8-1g report the results of the noise tests. Analog output noise in all cases was coupled wire-to-wire from the non-1E cabling to the 1E cabling or directly into the analog output channel. The noise did not affect analog input or digital output signal processing. Thus, protective action was maintained before, during, and after all credible noise events. In all cases the analog output signals returned to normal upon removal of the noise signal.

The test effects column of tables 8-1a through 8-1g reports the worst-case analog output signal shift for each test run.

A system performance summary is given below for each type of noise test:"

Noise Test	Analog Output Signals	Results in Table
Random		
Ac Chattering Relay	2011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Dc Chattering Relay		
Mil-Spec Noise #1		
Mil-Spec Noise #2		
High Voltage Transie	ent	
Static		

The ac noise sources (ac chattering relay and Mil-spec noise #2) produced spiking on the analog output signal and an increase in the background noise level. There was no recorded shift in the nominal dc value. The random highvoltage transient and dc chattering relay noise sources produced a shift in nominal dc value and an increase in background noise level.

8.2 FAULT TEST RESULTS

Tables 8-2a and 8-2b report the results of the line-to-ground and the line-toline fault tests. Class-1E isolation was maintained in all cases. Damage was limited to components located on the non-1E side of the isolator or the non-1E side of the isolation device. Analog output noise recorded was coupled wire-to-wire and was limited to a spike upon fault application in isolated instances. No effects were observed on the system input processing or trip/contact output processing subsystems. Thus, protective action was maintained before, during, and after fault application. Sections 8.2.1 and 8.2.2 summarize the test results of the final board designs (see section 3 for drawing references). Section 8.2.3 describes the board modifications required and tables 8-2a and 8-2b report the test results of the original board designs.

8.2.1 Line-to-Ground Fault

System Performance Summary:

	Fault Voltage	Effects on Adjacent <u>Channels</u>	Damage
Current Loop Output	125 Vac	Г	n i
10-50 mA	125 Vdc		
	250 Vdc	2.0	
	580 Vac		
			0
Digital Contact Output	125 Vac		
	125 Vdc		
	250 Vdc		
	580 Vac	L	

8-2

Board Type	Fault Voltage	Effects on Adjacent <u>Channels</u>	Damage
Partial Trip Output	125 Vac	Γ	7
	125 Vdc		
	250 Vdc		
	580 Vac	L	_ b,c

8.2.2 Line-to-Line Fault

System Performance Summary:

Board Type	Fault Voltage	Effects on Adjacent Channels	<u>Damage</u>
Current Loop Output 10-50 mA	125 Vac	[]	7
	125 Vdc		
	250 Vdc		
	580 Vac		
Digital Contact Output	125 Vac		
	125 Vdc		
	250 Vdc		
0	580 Vac		
			b,(

:

3

MOV = Metal Oxide Varistor SSR = Solid State Relay

8.2.3 Board Modifications Required

During fault testing of the original contact output and partial trip output board designs, failures in transient suppression devices (metal oxide varistors, MOV) caused component rupture and damage to adjacent channel circuitry. Since the fault test acceptance criteria (section 7) state that adjacent channels shall not be affected by faults applied to a non-1E channel, modifications were required. Applicable fault retests were performed following the board modifications. The modifications by board type are summarized below. •

8-4

8.2.3.1 Partial Trip Output (EPT) Board

Design changes implemented to prevent MOV rupture are as follows. [

For more information concerning the EPT modifications see Appendix A.

8.2.3.2 Digital Contact Output (ECO) Board

The original ECO board design utilized line-to-line MOVs [

].b,c These MOVs failed and ruptured upon application of a 580 Vac line-to-line fault. Although there was no recorded degradation in adjacent channel performance, MOV material was sprayed on adjacent channel circuitry. Since the EPT board experienced adjacent channel failure due to MOV rupture, a design change was implemented to prevent MOV rupture. [

lb,c

]b,c

8.3 SURGE WITHSTAND CAPABILITY (SWC) TEST RESULTS

Table 8-3 reports the results of the SWC tests. No component failures occurred and there was no recorded changes in channel calibrations due to application of the SWC test wave. Protective action was maintained before, during, and after application of the SWC test wave to the designated class non-1E to class 1E isolators. Analog output noise recorded was coupled through the associated input signal conditioning channel while the surge was applied. Noise was radiatively, and conductively, coupled into the input

:

8-5

channel. This conclusion is substantiated by the fact that noise was recorded on the channel under test as well as on adjacent channels. Trip output status failures were caused by noise coupled through the NR RTD input channels. Since the trip outputs are a function of the NR RTD inputs, erroneous trip outputs did occur. In no case was a false triggering of a partial trip or contact output hardware module recorded. In all cases these modules provided the appropriate outputs per loop calculation processor request. Thus, adverse system performance was limited to the analog I/O processing subsystem. In all cases, the analog I/O processing subsystem returned to normal operation upon removal of the SWC test wave. The loop processor subsystem maintained continuous operation before, during, and after all SWC test cases.

The test effect column of Table 8-3 reports the maximum recorded shift from nominal of an analog output signal for a specified test.

:

8.3.1 Common Mode Tests

System Performance Summary:

	Worst-Case Shift in	Component Damage,
Type of I/O Board	Analog Output Signals	Calibration Snift
Wide-Range RTD Input	Г	7
Narrow-Range RTD Input	2	
WR RTD 0-10V Input		
Current Loop Input		
10-50 mA, Active		
Current Loop Input		
10-50 mA, Passive		
Current Loop Input		
4-20 mA, Active		
Current Loop Output		
10-50 mA		

0720c:16-061688

1

1.c

Type of I/O Board (cont)

Worst Case Shift in Analog Output Signals Component Damage, Calibration Shift

8.3.2 Transverse Mode Tests

System Performance Summary:

	Worst Case Shift in	Component Damage,
Type of I/O Board	Analog Output Signals	Calibration Shift
Wide-Range RTD Input	Г	7
Narrow-Range RTD Inpu	nt 🛛	
WR RTD 0-10V Input	0	
Current Loop Input	These second second	
10-50 mA, Active		an 1
Current Loop Input		
10-50 mA, Passive		
Current Loop Input		
4.20 mA, Active		
Current Loop Output,		
10-50 mA		
Ac Input, Cabinet Pow	ver	
Partial Trip Output		
Digital Contact Output	it L	

8.3.3 Board Modifications/Retests

The digital contact output and partial trip output boards experienced failures during the fault tests. See section 8.2 for a report on the required board modifications. These modifications were made to the transient voltage suppression circuitry on these boards.

8-7

D

The contact output board was retested to verify compliance with IEEE-472-1974. Only transverse mode transient suppression across open contacts was affected by the the modifications. Retests S57 and S58 were performed following the modifications to verify board performance.

The partial trip output board common and transverse mode transient suppression circuitry was modified. An analysis was performed (appendix A) in lieu of retesting and supports the original SWC tests, S13-S16.

8.4 RADIO FREGUENCY (RF) INTERFERENCE TEST RESULTS

Tables 8-4a and 6-4b report the results of the RF modulation and keying tests. In general, analog output noise recorded was coupled through the associated input signal conditioning channel. At isolated low frequencies (100 MHz or less) some noise was coupled directly into the analog output channel. Trip output status failures were caused by noise coupled through the NR RTD input channels. Since the trip outputs are a function of the NR RTD inputs, erroneous trip outputs did occur. In no case was a false triggering of a partial trip or contact output hardware module recorded. In all cases, these modules provided the appropriate outputs per loop calculation processor request. Thus, adverse system performance was limited to the analog I/O processing subsystem. In all

•

The two noise coupling paths (input and output) produced different recorded noise characteristics. The noise coupled through the inputs was most severe at the start and end of each frequency test run. The noise consisted of a spike upon application of the RF field, followed by a period of reduced noise, and ending with a spike upon removal of the RF field. The keying test results summary reports the worst-case transient analog output signal shifts. Noise coupled directly into the analog output channel produced a shift in the nominal dc value and an increase in the background noise level throughout the affected frequency test run. An additional test was performed to confirm that the noise coupled through the input channel was radiatively coupled and not conductively coupled. The RF signal generator was used to inject an ac coupled RF signal directly into the NR RTD input board with a nominal dc voltage applied to the input. The man-machine interface terminal was monitored during the noise injection and no effect on the input signal was observed. [

The test effect column of Tables 8-4a and 8-4b reports the maximum recorded shift from nominal of an analog output signal over the frequency range specified and reports the frequencies at which trip output status failures necurred.

8.4.1 Modulation Tests

System Performance Summary:

Frequency Band

.

Worst-Case Shift in Analog Output Signals

b.c

Jb.c

20 - 160 MHz 160 - 500 MHz 500 - 1000 MHz

8.4.2 Keying Tests

-

2

System Performance Summary:

Frequency Band

Worst-Case Shift in Analog Output Signals

20 - 160 MMz 160 - 500 MHz 500 - 1000 MHz

I

J,c

•

b.c

8.4.3 Cabinet Modifications Required

Modifications were made to the Eagle 21™ cabinet to improve system immunity to RFI. [

Jb,c There modifications were made prior to the recording of final data shown in tables 8-4a and 8-4b.

TABLE 8-1a RANDON NOISE TESTS (ANTENNA COUPLED)

.

• •

. .

0

••

.

Test	Ту	mpe of	Test	
Number	1/0	Board	Effect	
M1 (Partial Trip	Output	Г	7
N2 (~	10-50 mA Curr	ent Loop Output		
N3	Digital Conta	ct Output		
	NO, OC			
N4	Digital Conta	ict Output		
	NO, SC			TRAIL PROVIDE
N5	Digital Conta	ict Output		
	NC, OC			
NG	Digital Conta	ict Output		
	NC, SC		L ·] ^{b,c}
AOS = Analog Outp	ut Signal Shifts	OC = Open Circuit	NO = Norms]ly (Den
TOF = Trip Output	Failures	SC = Short Circuit	NC = Normally (losed

8-11

.. ..

TAPLE 8-16 AC CROSSTALK NOISE TESTS - CHATTERING RELAYS

Type of 1/0 Board	Test Effect
Partial Trip Output, Ant Co.	ГЛ
Partial Trip Output, Dir Co.	
10-50 mA Current Loop Output, Ant Co.	5-
10-50 mA Current Loop Output, Dir Co.	
Digital Contact Output, NO, OC, Ant Co.	
Digital Contact Output, NO, SC, Ant Co.	
Digital Contact Output, NO, Dir Co.	
Digital Contact Output, NC, OC, Ant Co.	
Digital Contact Output, NC, SC, Ant Co.	
	L _] b,c
	Type of 1/O Board Partial Trip Output, Ant Co. Partial Trip Output, Dir Co. 10-50 mA Current Loop Output, Ant Co. 10-50 mA Current Loop Output, Dir Co. Digital Contact Output, NO, OC, Ant Co. Digital Contact Output, NO, SC, Ant Co. Digital Contact Output, NO, Dir Co. Digital Contact Output, NC, OC, Ant Co. Digital Contact Output, NC, OC, Ant Co. Digital Contact Output, NC, SC, Ant Co.

..

· · · ·

0

.. ...

Test Number	Type of 1/0 Board	Test Effect
N16	Partial Trip Output, Ant Co.	Г 7
N17	Partial Trip Output, Dir Co.	
N18	10-50 mA Current Loop Output, Ant Co	
N19	10-50 mA Current Loop Output, Dir Co.	
N20	Digital Contact Output, NO, OC, Ant Co.	
N21	Digital Contact Output, NO, SC, Ant Co.	
N22	Digital Contact Output, NO, Dir Co.	
N23	Digital Contact Output, NC, OC, Ant Co.	
N24	Digital Contact Output, NC, SC, Ant Co.	
		L Jb,c /

TABLE 8-1c DC CROSSTALK NOISE TESTS - CHATTERING RELAYS

••

.

.....

0720c:16-061688

. .

..

TABLE 8-1d MILITARY SPECIFICATION NOISE SOURCE #1 TESTS (ANTENNA COUPLED)

DS = Analog Outp	ut Signal Shifts	OC = Open Circuit	NO = Nor	mally Open
UU			L] p,c
N30	Digital Contact	Output, NC, SC		
N29	Digital Contact	Output, NC, OC		
N28	Digital Contact	Output, NO, SC		
N27	Digital Contact	Output, NO, OC		
N26	10-50 mA Current	Loop Output		
N25	Partial Trip Out	put	[
est mber	Type 1/0 Bo	of <u>ard</u>	T Ef	est fect

. .

. .

8-14

0720c:16-061688

. .

..

TABLE 8-1e MILITARY SPECIFICATION NOISE SOURCE #2 TESTS (ANTENNA COUPLED)

•• • •

.

.

Test Number	Type of <u>1/0 Board</u>	Test <u>Effect</u>
N31	Partial Trip Output	ГЛ
N32	10-50 mA Current Loop Output	
N33	Digital Contact Output, NO, OC	
N34	Digital Contact Output, NO, SC	
N35	Digital Contact Output, NC, OC	
N36	Digital Contact Output, NC, SC	L _b,c
	OC = Open Circuit	NO = Normally Open

D

..

. .

.

..

.

TOF = Trip Output Failures

OC = Open Circuit SC = Short Circuit NO = Normally Open NC = Normally Closed

0

.....

. .

a.

. .

. .

Test lumber	Type of 1/0 Board	Effect
N43	Partial Trip Output, Ant Co.	Г 7
N44	Partial Trip Output, Dir Co.	
N45	10-50 mA Current Loop Output, Ant Co.	
N46	10-50 mA Current Loop Output, Dir Co.	
N47	Digital Contact Output, NO, OC, Ant Co.	
N48	Digital Contact Output, NO, SC, Ant Co.	
N49	Digital Contact Output, NO, Dir Co.	
N50	Digital Contact Output, NC, OC, Ant Co.	
N51	Digital Contact Output, NC, SC, Ant Co.	

TAL	BLE 8-	lg
STATIC	NOISE	TESTS

••

.

. .

• •

OC = Open CircuitNO = Normally OpenAnt Co. = Antenna CoupledSC = Short CircuitNC = Normally ClosedDir Co. = Direct Coupled

8-17

0720c:16-061688

0

. .

• •

TABLE 8-28

Test No.	Voltage Level	Type of 1/0 Board	Test Connect Ions	Effects on Adjacent Channels	Damage
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 •F25	125 VAC 125 VDC 125 VDC 125 VDC 250 VDC	Current Loop Output, 10-50 mA Current Loop Output, 10-50 mA Digital Contact Output, EN Digital Contact Output, EN Digital Contact Output, EN Digital Contact Output, EN Partial Trip Output, EN	H to + H to - + to + + to - - to + + to + + to - - to + - to + - to + H to - + to NO + to NO + to NC - to NO H to NC H to NC H to HI + to LO + to HI - to HI - to HI		
•F26	250 VOC	Partial Trip Output, EN	+ to HI		

.

.

.c

.. ..

0720c:16-061688

. . . .

1. T. N. L. M.	10.1	2010/17/2017		
		1	100 C 100	

	<i>v</i>	TABLE 8-	2a (Continued) ND FAULT TESTS		
Test No.	Voltage Level	Type of 1/0 Board	Test Connect lons	Effects on Adjacent Channels	Damage
• # 27	250 VDC	Partial Trip Output, EN	+ to L0		
					• •
•F28	250 VDC	Partial Trip Dutput, EN	- 10 10		
F29 F30	250 VDC 250 VDC	Partial Trip Output, DEN Partial Trip Output, EN	+ to HI + to HI		
F31 F32	250 VDC 250 VDC	Partial Trip Output, EN Partial Trip Output, DEN	- to HI - to HI		
F33	250 VDC	Partial Trip Output, EN	- to L0		
F34	250 VOC	Partial Trip Output, DEN Partial Trip Output, EN	- to LU + to LO		
F36	250 VDC	Partial Trip Output, DEN	+ to L0		
F37	580 VAC	Partial Trip Output, EN	H to LO		
F38	580 VAC	Partial Trip Output, DEN	H to LO		
F39	580 VAC	Partial Trip Output, EN	H to HI		
	300 ML	vartial in the output, ben			

•

· - Tests of original partial trip output board design

- EN energized DEN Deenergized

ND - Normally Open NC - Normally Closed

Test No.	Voltage Level	Type of 1/0 Board	Test <u>Connections</u>	Effects on Adjacent Channels Damage
F41	125 VAC	Current Loop Output, 10-50 mA	H to +, N to -	
F42	125 VDC	Current Loop Output, 10-50 mA	+ to +, - to -	
F43	125 VDC	Current Loop Output, 10-50 mA	- to +, + to -	
F44	250 VDC	Current Loop Output, 10-50 mA	+ to +, - to -	
F45	250 VDC	Current Loop Output, 10-50 mA	- to +, + to -	
F46	SOD VAC	Current Loop Output, 10-50 mA	H to +, N to -	
F47	250 VDC	Digital Contact Output, EN	+ to NC to C	
F40	250 VDC	Digital Contact Output, EN	- to NC. + to C	
•F49	SOO VAC	Digital Contact Output, EN	H to NC, N to C	
F50	125 VAC	Digital Contact Output, EN	H to ND, N to C	
F51	125 VDC	Digital Contact Output, EN	+ to ND, - to C	
F52	125 VDC	Digital Contact Output, EN	- to ND. + to C	
F53	250 VDC	Digital Contact Output, EN	+ to ND to C	
F54	250 VDC	Digital Contact Output, EN	- to ND, + to C	
F55	580 VAC	Digital Contact Output, EN	H to ND, N to C	
F56	250 VDC	Digital Contact Output, DEN	+ to ND, - to C	
F57	250 VDC	Digital Contact Output, DEN	- to ND. + to C	
*F58	580 VAC	Digital Contact Output, DEN	H to ND, N to C	
F50	125 VAC	Digital Contact Output, DEN	H to NC. N to C	
F60	125 VDC	Digital Contact Output, DEN	+ to NC, - to C	
F61	125 VDC	Digital Contact Output, DEN	- to NC. + to C	
F62	250 VDC	Digital Contact Output, DEN	+ to NC, - to C	
F63	250 VDC	Digital Contact Output, DEN	- to NC, + to C	
F64	SOO VAC	Digital Contact Output, DEN	H to NC. N to C	
F65	SOO VAC	Digital Contact Output, DEN	H to ND. N to C	

..

LD.C

TABLE 8-25 LINE-TO-LINE TESTS

0720c:16-061688

. .

..

Test No.	Voltage Level	Type of <u>1/0 Board</u>	Test Connections	Effects on Adjacent Channels	Damag
F66	580 VAC	Digital Contact Output, EN	H to NC. N to C	Γ	
F67 F68 F69 F70	125 VAC 125 VDC 125 VDC 250 VDC	Partial Trip Output, EN Partial Trip Output, EN Partial Trip Output, EN Partial Trip Output, EN Partial Trip Output, DEN	H to HI, N to LO + to HI, - to LO + to LO, - to HI + to LO, - to HI + to LO, - to HI		
====	250 VDC 250 VDC	Partial Trip Output, DEN Partial Trip Output, EN	* to HI to LO * to LO, - to HI		
F73	250 VDC	Partial Trip Output, EN	+ to H1, - to L0		•
F74	580 VAC	Partial Trip Output, DEN	H to HI. N to LO		
F75	580 VAC	Partiel Trip Output, EN	H to HI, N to LG		
ircuite					

TABLE 8-2b (continued) LINE-TO-LINE TESTS

.. ..

b.c

** - Tests of original digital contact output Board Design

EN: energized DEN: Deenergized

• • • • •

ND = Normally Open NC = Normally Closed

0720c:16-061688

TABLE 8-3 SURGE WITHSTAND CAPABILITY (SWC) TESTS

and the second	Mode	1/0 Board	Connect Ions	Effect
51	COM	Digital Contact Output, EN	ND/C	
5 2	TRANS	Digital Contact Output, EN	ND/C	
53	COM	Digital Contact Output, DEN	NO/C	
54	TRANS	Digital Contact Output, DEN	NO/C	
55	COM	Digital Contact Output, EN	NC/C	
56	TRANS	Digital Contact Output, EN	NC/C	
\$ 7	COM	Digital Contact Output, DEN	NC/C	a the second states when
S B	TRANS	Digital Contact Output, DEN	NC/C	
59	CCM	Digital Contact Output, EN	NO/NC/C	
\$10	COM	Digital Contact Output, DEN	NO/NC/C	a so a star a base
SII	TRANS	Digital Contact Output, EN	ND/NC	
\$12	TRANS	Digital Contact Output, DEN	NO/NC	
\$13	COM	Partial Trip Output, EN	H/N	
514	TRANS	Partial Trip Output, EN	H/N	
\$15	COM	Partial Trip Outout, DEN	H/N	
\$16	TRANS	Partial Trip Output, DEN	H/N	
\$17	COM	Current Loop Output, 10-50 mA	+/-	
518	TRANS	Current Loop Output, 10-50 mA	+/-	
\$19	COM	Current Loop Output, 10-50 mA	• <i>1</i> -	
\$20	TRANS	Current Loop Output, 10-50 mA	+/-	
\$21	COM	Wide Range RTD Input	V+, V-, I+, I-	
\$22	TRANS	Wide Range RTD Input	V+. V-	
\$23	TRANS	Wide Range RID Input	1+, 1-	
524	TRANS	Wide Range RTD Input	V+. I-	
S25	TRANS	Wide Range RTD Input	V+, I+	•
526	TRANS	Wide Range RTD Input	V 1-	• · · · · · · · · · · · · · · · · · · ·
\$27	TRANS	Wide Range RTD Input	V-, I+	
S28	COM	Wide Range RTD Input	v+, v-, 1+, 1-	
529	TRANS	Wide Range RTD Input	V+. V-	
\$30	TRANS	Wide Range RTD Input	1. 1-	
531	COM	Narrow Range RTD Input	V+, V-, I+, I-	
532	TRANS	Marrow Range RTD Input	v+, v-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
533	TRANS	Narrow Range RTD Input	1+, 1-	
•534	COM	Narrow Range RTD Input	V+. V I+. I-	

8-22

0720c:16-061688

.. ..

..

.

.

Test No.	Test	Type of <u>1/0 Board</u>	Test <u>Connect Ions</u>	Test Effect
•\$35	TRANS	Narrow Range RTD Input	V+. V-	F
•536	TRANS	Narrow Range RTD Input	1+. 1-	
537	COM	Narrow Range RTD Input	V+. V I+. I-	
538 539	TRANS TRANS	Narrow Range RTD Input Narrow Range RTD Input	V+ V- 1+: 1-	
•540	COM	Narrow Range RTD Input	V+, V-, 1+, 1-	•
•541	TRANS	Narrow Range RTD Input	V+, V-	
•542	TRANS	Narrow Range RTD Input	I+, 1-	
••543	COM	Narrow Range RTD Input	v+, v-, I+, I-	
544 545	COM TRANS	WR RTD 0-10V Input WR RTD 0-10V Input	*/-	
546 547	COM	Current Loop Input, 10-50 mA, act Current Loop Input, 10-50 mA, act	LS+/LI+ LS+, LI+, LS, LI-	
S48 S49 S50 S51 S52	TRANS TRANS TRANS COM TRANS	Current Loop Input. 10-50 mA, act Current Loop Input, 10-50 mA, act Current Loop Input. 10-50 mA, act Current Loop Input. 10-50 mA, pass Current Loop Input, 10-50 mA, pass	LS+, LS- LI+, LI- LS+, LI+ LI+, LI- LI+, LI-	
\$53 \$54 \$55 \$56 \$57	COM TRANS COM TRANS TRANS TRANS	Current Loop Input, 4-20 mA, act Current Loop Input, 4-20 mA, act AC Input, Cabinet Power AC Input, Cabinet Power Digital Contact Output, EN Digital Contact Output, DFN	LI+, LI- LI+, LI- H/N H/N NC/C ND/C	

...

TABLE 8-3 (continued) SURGE WITHSTAND CAPABILITY (SWC) TESTS

.

•

• • • •

Tests performed at 60 HZ repetition rate
Test performed at 50 HZ repetition rate
Retests required due to modifications made during fault testing

AOS : TOF :	Analog Output Signal Shifts Trip Output Failures	NO = Normally Open NC = Normally Closed	EN = Energized DEN = Deenergized
		r2 + roob andbia	ALL - ALLIVE
		il = Loop Input	pass = Passive

8-23

..

. .

		TAE	BLE 8-4a	12559	
RADIO	FREQUE	NCY MC	DULATIO	N TEST	RESULTS
(ALL	RESULTS	WITH	CABINET	DOORS	CLOSED)

Test No.	Field Strength	Frequency Band(MHZ)	Antenná Type	Polarization	(Cabinet Side) Target	Test Effec
RF 1	3 V/m	20 - 160	SICONICAL	VERT	FRONT	
RF 2	3 V/m	20 - 160	BICONICAL	HORZ	FRONT	
RF 3	3 V/m	160 - 500	LOG PERIODIC	HORZ	FRONT	
RF 4 RF 5	3 V/m 3 V/m	500 - 1000 160 - 500	LOG PERIODIC LOG PERIODIC	HORZ VERT	FRONT	
RF 6 RF 7	3 V/m 3 V/m	500 - 1000 20 - 160	LOG PERIODIC BICONICAL	VERT	FRONT RIGHT	
RF 8	3 V/m	160 - 500	LOG PERIODIC	VERT	RIGHT	

AOS - Analog Output Signal Shifts TOF - Trip Output Failures

8-24

. .

. .

•

-b,c

RF 9 RF 10 RF 11 RF 12 RF 13	3 V/m 3 V/m 3 V/m 3 V/m	500 - 1000 20 - 160	LOG PERIODIC	VERT	PICHT F	-
RF 10 RF 11 RF 12 RF 13	3 V/m 3 V/m 3 V/m	20 - 160	DICONICAL			
RF 11 RF 12 RF 13	3 V/m 3 V/m		DICUNICAL	VERT	LEFT	
RF 12 RF 13	3 V/m	500 - 1000	LOG PERIODIC	HORZ	LEFT	
lf 13		160 - 500	LOG PERIODIC	HORZ	LEFT	
	3 V/m	500 - 1000	LOG PERIODIC	HORZ	REAR	
IF 14	3 V/m	160 - 500	LOG PERIODIC	VERT	REAR	
RF 15	3 V/m	500 - 1000	LOG PERIODIC	VERT	REAR	
RF 16	3 V/m	160 - 500	LOG PERIODIC	HORZ	REAR	
RF 17	3 V/m	20 - 160	BICONICAL	VERT	REAR	
RF 18	3 V/m	20 - 160	BICONICAL	HORZ	REAR	
F 19	10 V/m	20 - 160	BICONICAL	HORZ	FRONT	
		•				
	10 11/-	EAD - 1000		U087	EDONT	
ar 20	10 1/4	500 - 1000	LOG PERIOUIC	TURL .	r NUM I	
F 21	10 V/m	160 - 500	LOG PERIODIC	HORZ	FRONT	

TABLE 8-4a (Continued) RADIO FREQUENCY MODULATION TEST RESULTS (ALL RESULTS WITH CABINET DOORS CLOSED)

.

..

.

.

L b.c

14

0720c:16-061688

. .

. . .

TABLE 8-4a (Continued) RADID FREQUENCY MODULATION TEST RESULTS (ALL RESULTS WITH CABINET DOORS CLOSED)

Test No. S	Field	Frequency Band(IHZ)	Antenna Type	Polarization	(Cabinet Side) Target	Test Effect
RF 22	10 V/m	500 - 1000	LOG PERIODIC	VERT	FRONT	
RF 23	10 V/a	160 - 500	LOG PERIODIC	VERT	FRONT	
RF 24	10 V/m	20 - 160	BICONICAL	VERT	FRONT	
RF 25	10 V/m	20 - 160	BICONICAL	HORZ	RIGHT	
	~			•		
RF 26	10 V/m	160 - 500	LOG PERIODIC	VERT	RIGHT	

..

.

b.c

. .

0

6720c:16-061688

. .

. .

	15	TABLE RADIO FREQUENC (ALL RESULTS N	B-4a (Continued CY MODULATION TES WITH CABINET DOOR	I) IT RESULTS IS CLOSED)	
est Fleid No. Strengt	h Frequency Band(1917)	Antenna Type	Polar ization	(Cabinet Side) Target	Test Effect
F 27 10 V/m	500 - 1000	LOG PERIODIC	VERT	RIGHT	F
F 28 10 V/m	20 - 160	BICONICAL	VERT	LEFT	
F 29 10 V/m	160 - 500	LOG PERIODIC	HORZ	LEFT	
IF 30 10 V/#	500 - 1000	LOG PERIODIC	HORZ	LEFT	
F 31 10 V/	20 - 160	BICONICAL	HORZ	REAR	
F 32 10 V/4	20 - 160	BICONICAL	VERT	REAR	
					L

.

••

.

• •

O

8-27

• • • •

0720c:16-061688

TABLE 8-4a (Continued) RADIO FREQUENCY MODULATION TEST RESULTS (ALL RESULTS WITH CABINET DOORS CLOSED)

Test Fle No. Stren	ld <u>gth Frequency Band(M42)</u>	Antenna Type	Polarization	(Cabinet Side) Target	Test Effect	
RF 33 10 V	/# 500 - 1000	LOG PERIODIC	HDRZ	REAR	[
RF 34 10 V	/m 500 - 1000	LOG PERIODIC	VERT	REAR		
NF 35 10 V	/m 160 - 500	LOG PERIODIC	VERT	REAR		
RF 36 10 V	/m 180 - 500	LOG PERIODIC	HORZ	REAR		
				-		*
					-	
					•	
00						
					9.5	
			1			

.c

•• ••

8-26

Test No.	Field	Frequency Band(MHZ)	Antenna Type	Polarization	(Cabinet Side) Target	Test Effect
RF 37	3 V/m	20 - 160	BICONICAL	HORZ	FRONT	
RF 38	3 V/m	160 - 500	LOG PERIODIC	HORZ	FRONT	
RF 39	10 V/a	160 - 500	LOG PERIODIC	HORZ	FRONT	1
RF 40	10 V/m	20 - 160	BICONICAL	HORZ	FRONT	
NF 41 NF 42 NF 43	10 V/m 3 V/m 3 V/m	500 - 1000 20 - 160 160 - 500	LOG PERIODIC BICONICAL LOG PERIODIC	HORZ VERT VERT	FRONT FRONT FRONT	
RF 44	10 V/m	i60 - 500	LOG PERIODIC	VERT	FRONT	
RF 45	10 V/m	20 - 160	BICONICAL	VERT	FRONT	•
				want	ERONIT	

11

b.c

TABLE 8-40

ADS - Analog Output Signal Shifts TOF - Trip Output Failure

£ .

8-29

.

SECTION 9 CONCLUSION

The Eagle 21^{m} system performance satisfied the acceptance criteria stated in section 7. The microprocessor subsystem maintained continuous operation while subjected to the abnormal events described in section 5.

Analog output signal noise coupled wire-to-wire or through the analog output channel has no effect on the protective action of the plant protection system since the Eagle 21™ does not use analog output signals for protection signal transmission. Analog output signals are used as interfaces to the plant control and monitoring equipment (e.g., computer, post-accident monitoring system (PAMS)).

9.1 NOISE TESTS

:

The protective action of the Eagle 21^v system was not affected by noise injected into or adjacent to class non-1E wiring. Analog output signal noise recorded was coupled wire-to-wire or through the analog output channel. Possible analog output noise effects on plant class non-1E systems and PAMS are summarized as follows:

- The AC noise sources (AC chattering relay, Mil-Spec noise source #1) generated noise spikes on the analog output signal. No change in the nominal DC value of the analog output signal was recorded. These noise spikes will not affect slow responding monitoring equipment.
- o The DC and high voltage transient noise sources produced a shift in the nominal DC value of the analog output signal of 0.5% or less. Since the accuracy requirements of the plant monitoring systems are large compared to the observed effects, these effects are considered minimal.

0720c 10-061666

9-1

9.2 FAULT TESTS

The protective action of the Eagle 21^{w} system was not affected by the injection of credible faults into the designated class non-lE to class lE isolators. Analog output signal noise recorded was coupled wire to wire and consisted of a noise spike of 0.88% or less upon fault application. No change in the nominal DC value of the analog output signal was recorded. These noise spikes will not affect monitoring equipment.

9.3 SURGE WITHSTAND CAPABILITY (SWC) TESTS

The protective action of the Eagle 21° system was not affected by the application of the surge withstand test wave to the designated class non-lE to class-lE isolators. In addition, no component damage occurred and no changes in channel calibrations were recorded due to the application of the surge withstand test wave to any cabinet input/output under test.

9.4 RADIO FREQUENCY INTERFERENCE TESTS

The Eagle 21^{w} system remained operational while exposed to radio frequency interference (RFI). Analog input/output processing and protective action functions were affected but demonstrated full recovery upon removal of the RFI. To avoid protection system perturbations, Westinghouse recommends that the Eagle 21^{w} system equipment room(s) be "zoned" to prohibit the use of transceivers in the 20-700 MHz band.

APPENDIX A

PARTIAL TRIP OUTPUT BOARD SURGE WITHSTAND CAPABILITY ANALYSIS

Performed by: R. Nero, Westinghouse

:

•

During the fault testing portion of the qualification test for EAGLE-21^m, it was necessary to modify the output circuitry of the EPT I/O board. Since the modification did not affect the portion of circuitry that was designed to handle high frequency oscillatory surges, the SWC tests (IEEE-472-1974) were not rerun on the EPT I/O board.

1,

:

C

The modification involved suppresser devices on the output. [

07200:10-061088

C

C

:

0

6

c

:

.

C

.

. .

. .

()

.

..

0

1.

0

· · · ·

8

C

1-8

...

. .

Figure A-4. EPT Differential Mode SWC Test Response

JC

.....

APPENDIX B

EAGLE 21 SIGNAL CONDITIONING AND MICROPROCESSOR PRINTED CIRCUIT BUARDS

0

9

: