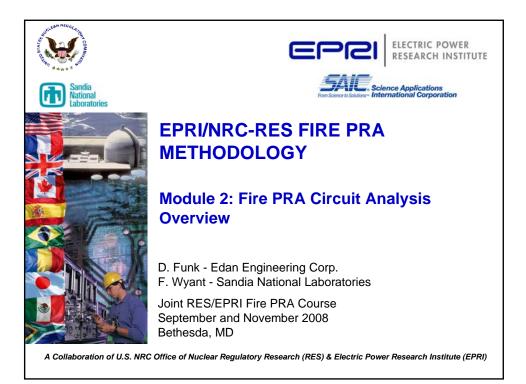
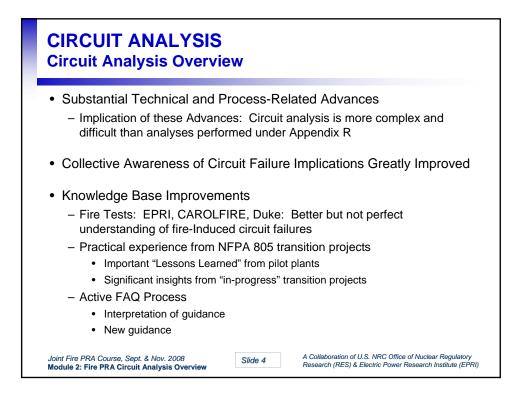
Tab 3:

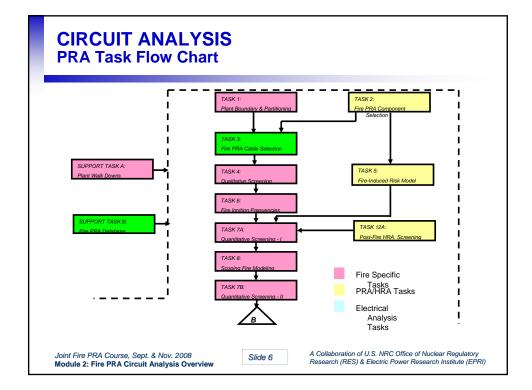

Module 2: Electrical Analysis

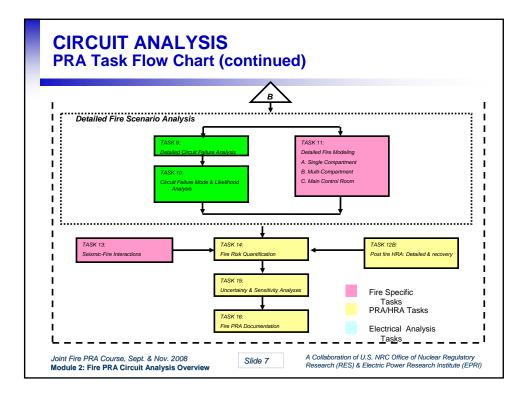
Frank Wyant Sandia National Laboratories

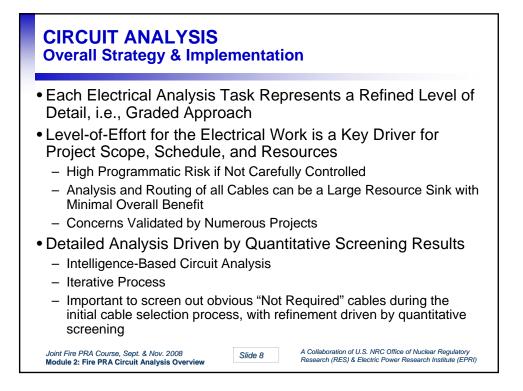
Dan Funk EDAN Engineering

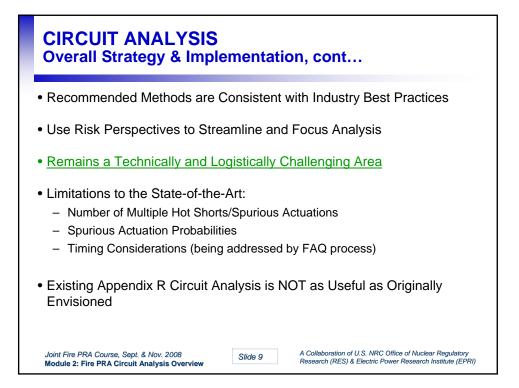

Tab 3.1:

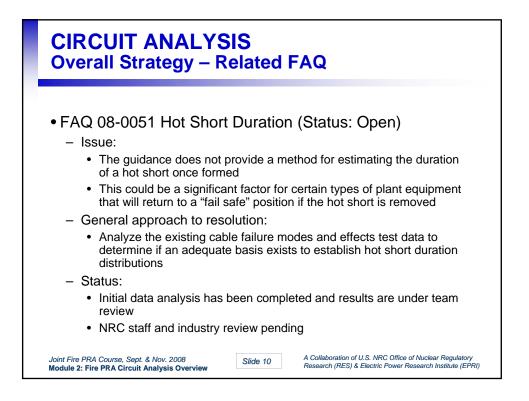

Circuit Analysis Overview

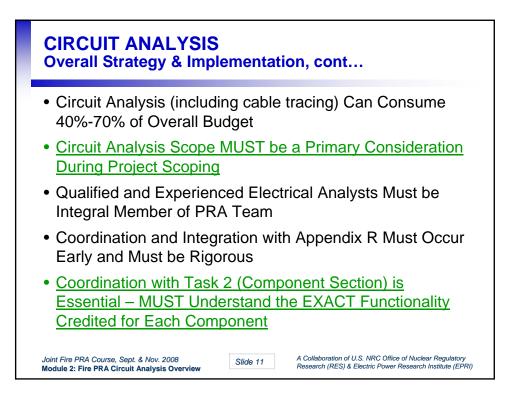


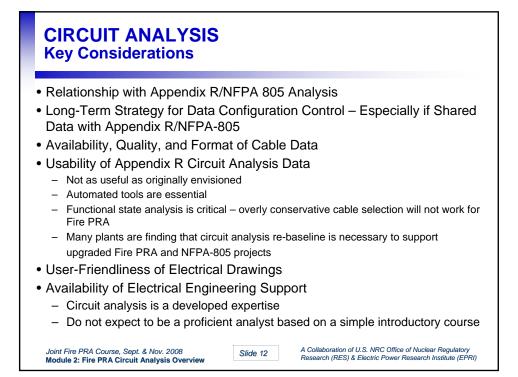








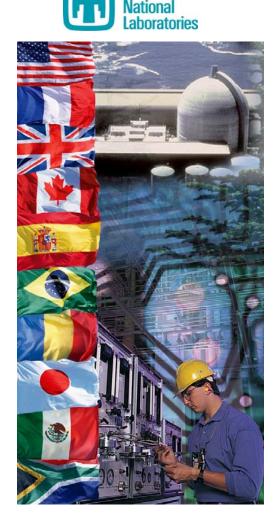




- Do Not Underestimate Scope
- Ensure Proper Resources are Committed to Project
- Doable but MUST Work Smart
- Do Not "Broad Brush" Interface with Appendix R Have a Detailed Plan Before Starting
- Constant Interaction with Systems Analysts is Critical
- Develop Project Procedures But Don't Get Carried Away
- Compilation and Management of Large Volume of Data
 - Automated Tools Imperative for Efficient Process
 - Be Mindful of Long-Term Configuration Management

Joint Fire PRA Course, Sept. & Nov. 2008 Slide 13 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Tab 3.2:


Task 3 Cable Selection

Sandia

EPRI/NRC-RES FIRE PRA METHODOLOGY

Module 2: Task 3 - Fire PRA Cable Selection

D. Funk - Edan Engineering CorpF. Wyant - Sandia National Laboratories

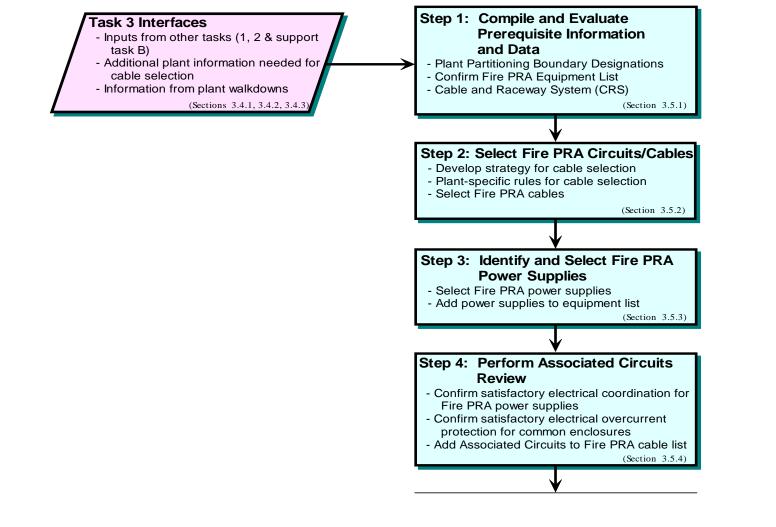
Joint RES/EPRI Fire PRA Course September and November 2008 Bethesda, MD

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

FIRE PRA CABLE SELECTION Purpose & Scope

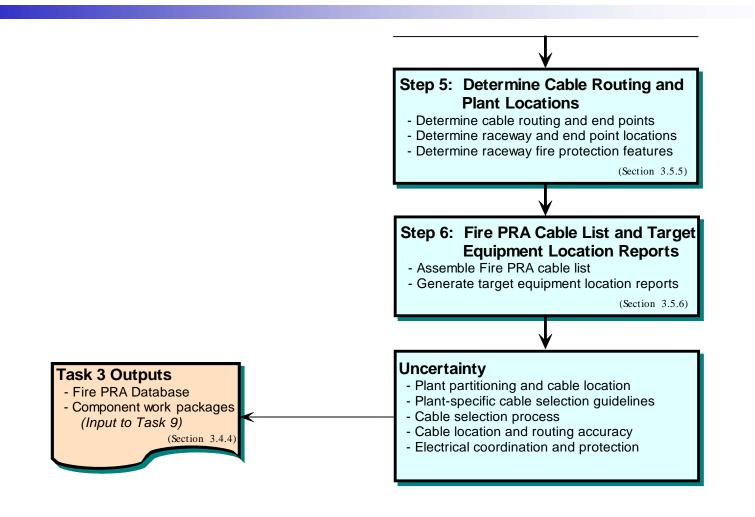
- Identify Circuits/Cables Associated with Fire PRA Components
- Determine Routing/Location of the Identified Cables
- Use Component-to-Cable-to-Location Relationships to Determine What Components Could be Affected for Postulated Fire Scenarios
 - *Note:* Scenario can be Fire Area, Room, Raceway, or Other Specific Location
- Identify Fire PRA Power Supplies

FIRE PRA CABLE SELECTION Introduction


Conducted for all Fire PRA Components

Note: Exceptions do exist

- Deterministic Process
- Cables Associated to Components Based on Specified Functionality
 - Basic circuit analysis (Task 9) incorporated into Task 3 work to prevent overwhelming the PRA model with inconsequential cable failures
 - Final product is a listing of defined Basic Events (component and credited function) that could be impacted by a fire for a given location (Fire Area, Fire Compartment, Fire Scenario)
- Procedure subdivided into six (6) distinct steps


FIRE PRA CABLE SELECTION Flowchart

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection Slide 4

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

FIRE PRA CABLE SELECTION Flowchart

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection Slide 5

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

FIRE PRA CABLE SELECTION Task Interfaces - Input

- Plant Boundary Partitions (Task 1)
- Fire PRA Component List (Task 2)
- Fire PRA Database (Support Task B)
- Appendix R Circuit Analysis
- Plant Cable & Raceway Database
- Plant Drawings

FIRE PRA CABLE SELECTION Task Interfaces - Output

- Fire PRA Cable List
- Fire PRA Power Supply List
- Associated Circuits review
- Component Analysis Packages
- Target Equipment Loss Reports (Potential Equipment Functional Losses Broken Down by Location or Scenario)

FIRE PRA CABLE SELECTION Step 1 – Prerequisite Information

- Confirm Plant Partitioning is Compatible
 - Do partitions align with cable location data?
 - What data is available and what is missing?
- Confirm PRA Equipment List is Final
 - Input into a formal and controlled database
 - For NFPA-805 transition projects a joint "consistency" review of NSP task and PRA component selection task is highly recommended
 - Critical that electrical analysts understand what the Basic Events really mean
- Evaluate Database Requirements
 - What currently exists?
 - What is needed to support work?
 - How is data to be managed and controlled?
 - This is a "Biggy"

FIRE PRA CABLE SELECTION Step 2 – Select Fire PRA Cables

- Analysis Cases
 - Appendix R Component with Same Functional Requirements
 - Must consider which (if any) automatic features are included in the existing analysis
 - Aligning existing analyses to Fire PRA Basic Events is not straightforward
 - Appendix R Component with Different Functional Requirements
 - Non-Appendix R Component with Cable Location Data
 - Non-Appendix R Component without Cable Location Data
- Analysis Sub-Steps
 - Step 2.1 Analysis Strategy
 - Step 2.2 Plant Specific Rules
 - Step 2.3 Select Cables

FIRE PRA CABLE SELECTION Step 2.1 – Analysis Strategy

- Coordinate with Systems Analysts to Establish Functional Requirements and General Rules
 - Equipment functional states, basic events, initiators
 - Initial conditions and equipment lines (i.e., normal state)
 - Consistent conventions for equipment functions/state/position
 - Equipment-level dependencies and primary components
 - Multiple function components
 - Super components
- Evaluate Appendix R Component & Circuit Data
 - Ensure equipment list comparison conducted during Task 2
 - Review in detail the comparison list ask questions!!!
 - Essential that comparison includes detailed review/comparison of "desired functional state(s)"

FIRE PRA CABLE SELECTION Step 2.1 – Analysis Strategy (continued)

- Goal Efficient and Accurate Process to Obtain Required Information
- Revisit Past Assumptions, Conventions, Approach
- Potential Trouble Areas
 - How is off-site power going to be handled?
 - Instrument circuits understand exactly what is credited
 - ESAFA, Load-Shed, EDG Sequencer, other automatic functions
 - Medium-voltage switchgear control power
- Extent of Detailed Analysis to be Conducted Concurrently
- Determine How Analysis Will be Documented

FIRE PRA CABLE SELECTION Step 2.2 – Plant Specific Cable Selection Rules

- Objective is Consistency
- Approach for Groups of Components
- Approach for Spurious Actuation Equipment
- Auxiliary Contacts Critical Area for Completeness
- System-Wide Actuation Signals
- Bus or Breaker?
- Subcomponents & Primary Components
- Identification of Permanent Damage Scenarios
- Procedure Develop Circuit Analysis Procedure/Guidelines

Slide 12

FIRE PRA CABLE SELECTION Step 2.2 – Ready to Start?

- Develop Written Project Procedure/Guidelines
 - Consistency, Consistency, Consistency
 - Checking Process?
 - Data Entry
 - Problem Resolution
- Training for Analysts
 - Prior circuit analysis experience is a prerequisite for key team members
 - Familiarity with plant drawings and circuits is highly beneficial
 - A junior engineer with no prior circuit analysis experience will not be able to work independently

FIRE PRA CABLE SELECTION Step 2.3 – Select Cables

- Case 1: Incorporate Existing Appendix R Analysis
 - Confirm adequacy of existing analyses IAW plan
 - Careful consideration of automatic functions
 - Exact alignment for credited functionality
- Cases 2 & 3: New Functional State/Component: w/ Cable Routing Data
 - Collect drawings and/or past analysis information
 - Identify/select cables IAW plant specific procedure/guidelines
 - Conduct detailed analysis to the extent decided upon
 - Formally document cable selection IAW established procedures/guidelines

FIRE PRA CABLE SELECTION Step 2.3 – Select Cables (continued)

- Case 3: New Component: w/o Cable Routing Data Available
 - Same as Case 2 & 3, plus...
 - Determine cable routing and associate with plant locations, including cable end points
- Analysis Work Packages
 - Retrieve from Past Appendix R Analysis
 - Highly Recommended for New Components
 - Major time saver for future work

FIRE PRA CABLE SELECTION Step 3 – Select Fire PRA Power Supplies

- Identify Power Supplies as Integral Part of Cable Selection
 - Make sure to differentiate between "Required" and "Not Required" power supplies
 - Switchgear and Instrument power supplies can be tricky
 - Useful to identify the applicable breaker/fuse
- Add Power Supplies to Fire PRA Component List
- Make sure Fire PRA model, equipment list, and electrical analysis are consistent
- Does Fire PRA model consider spurious circuit breaker operations?

⁻ Must understand how this is modeled to correctly select cables

FIRE PRA CABLE SELECTION Step 4 – Associated Circuits Review

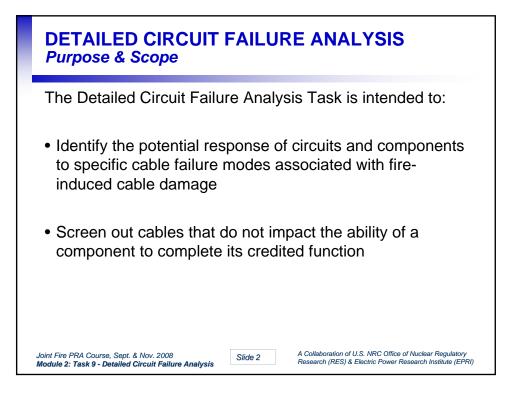
- Objective is to Confirm Existing Studies Adequate
- View the Process as a "Gap Analysis"
- Common Power Supply Circuits Assess Plant Coordination Studies
- Common Enclosure Circuits Assess Plant Electrical Protection
- Roll Up Results to Circuit Analysis or Model as Appropriate
 - Note: Ensure Switchgear Internal Fusing Supports Analysis Assumptions

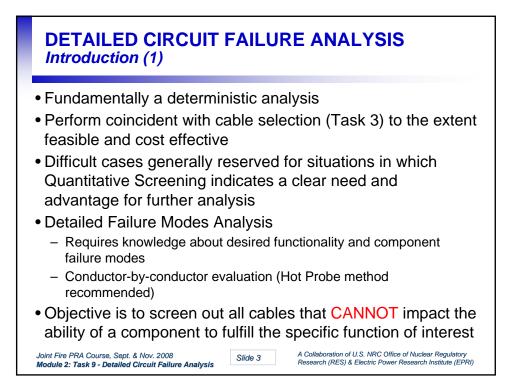
FIRE PRA CABLE SELECTION Step 5 – Determine Cable Routing and Locations

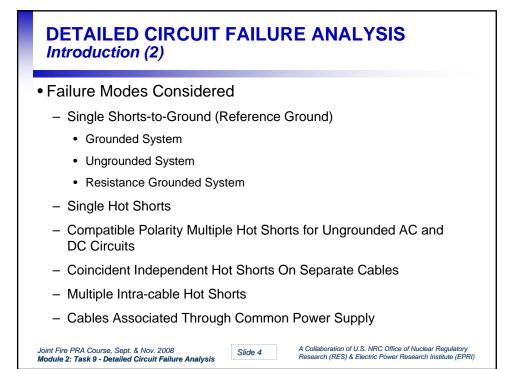
- Correlate Cables-to-Raceways-to-Locations
- Conceptually Straightforward
- Logistically Challenging
 - Labor intensive
 - Manual review of layout drawings
 - Plant walkdowns often required
- Determine Cable Protective Features
 - Fire wraps
 - Embedded conduit

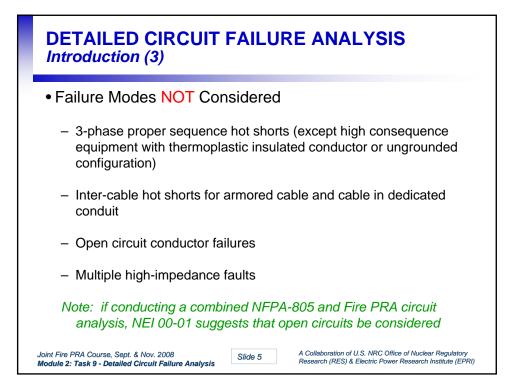
FIRE PRA CABLE SELECTION Step 6 – Target Equipment Loss Reports

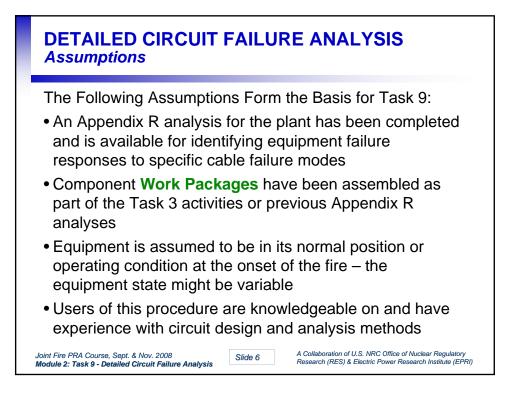
- Data Entered into Fire PRA Database
- Sorts and Queries to Generate Target Equipment Loss Reports

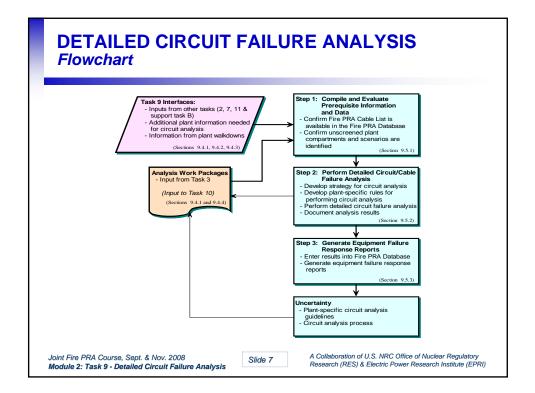

Perspective....Cable selection process should be viewed as providing "Design Input" to the Fire PRA. It does not, however, provide any risk-based results. In its simplest form it provides a list of equipment that could be affected by a fire at a specified location or for a specific scenario.

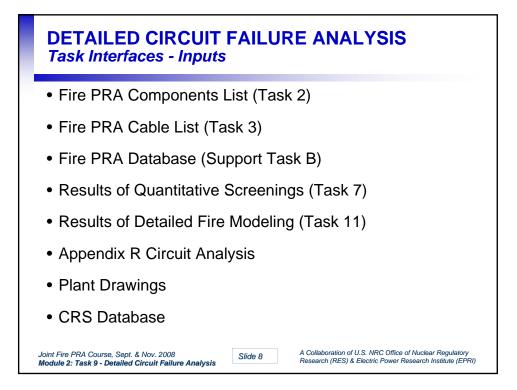


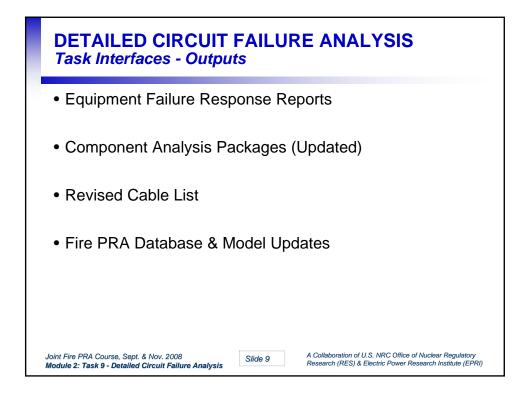

Tab 3.3:

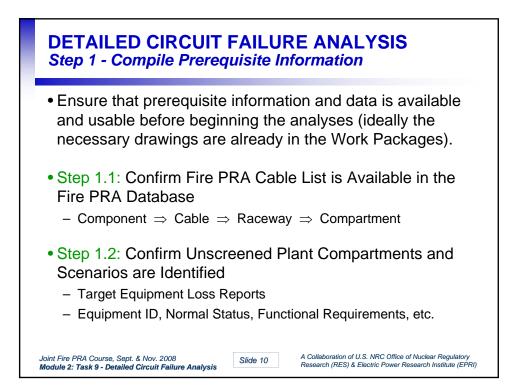

Task 9 Failure Modes Analysis

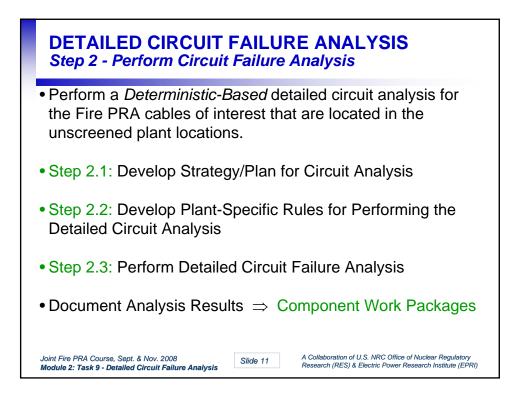


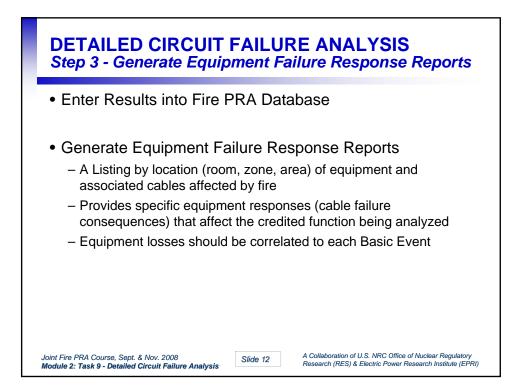


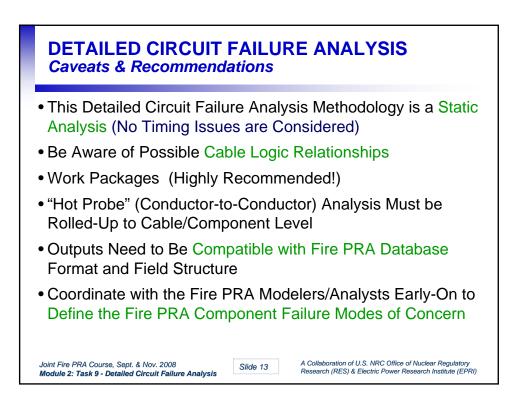


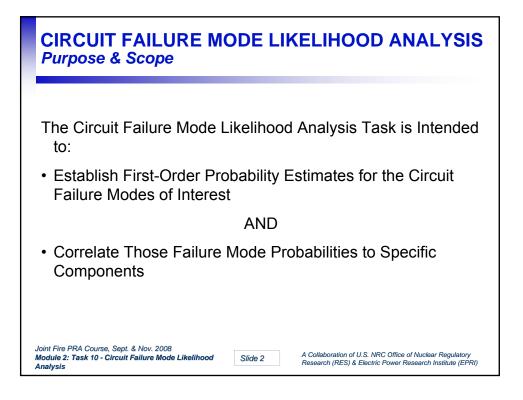


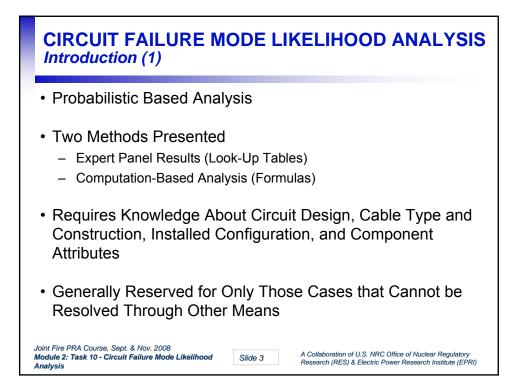


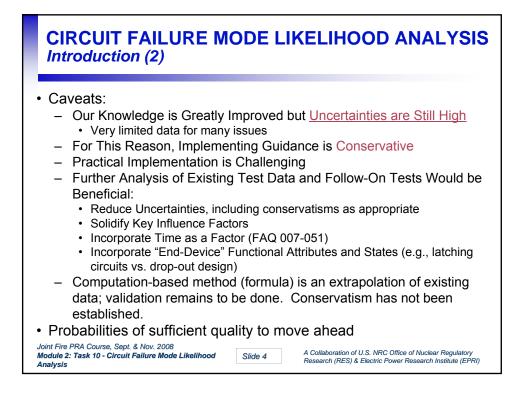


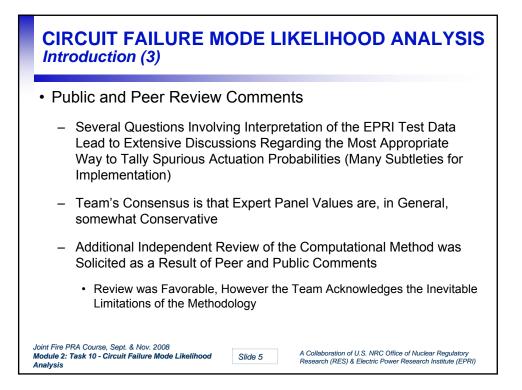


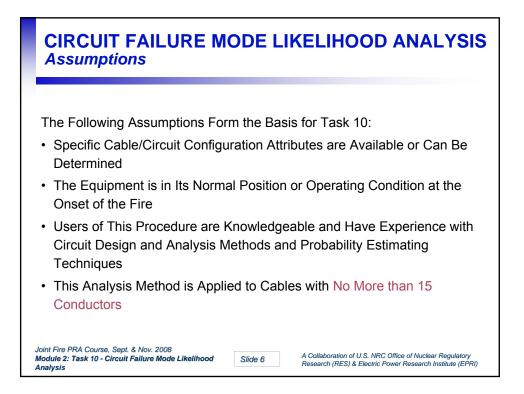


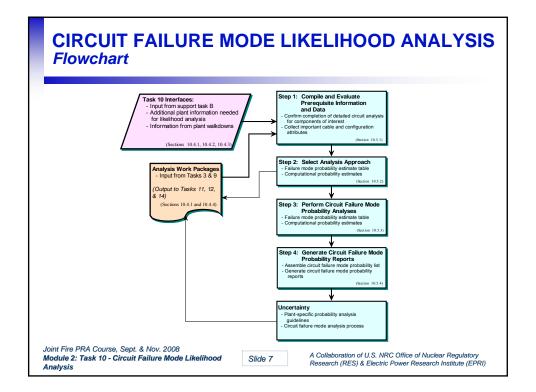

Tab 3.4:

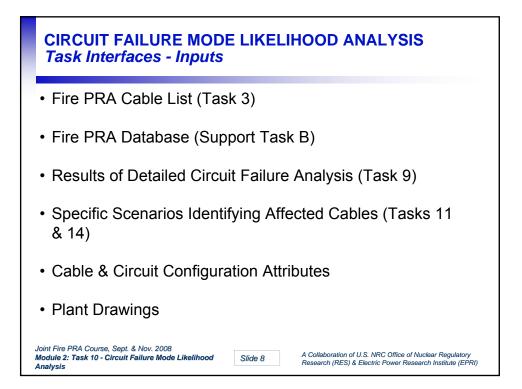

Task 10 Failure Mode Likelihood Analysis

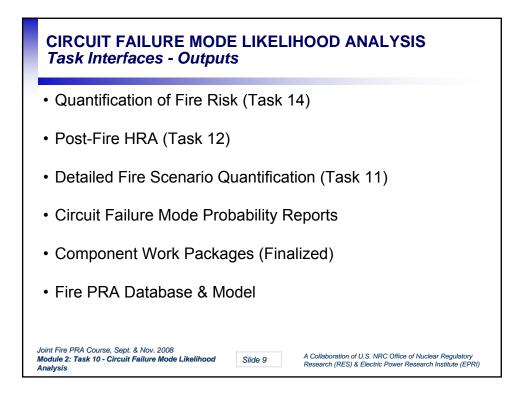

Tab 3.4a:

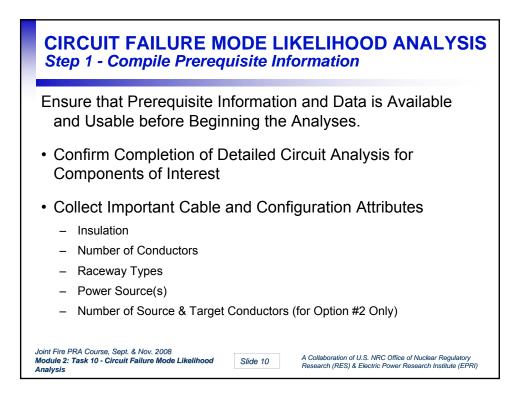

Task 10 Presentation Materials

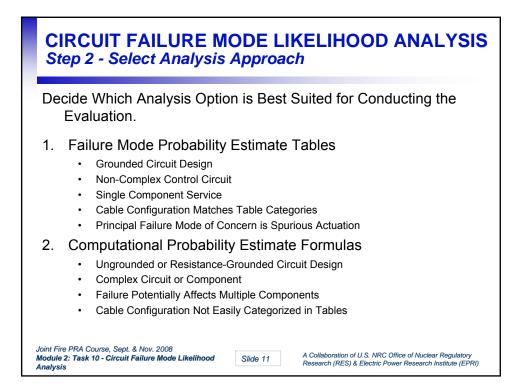


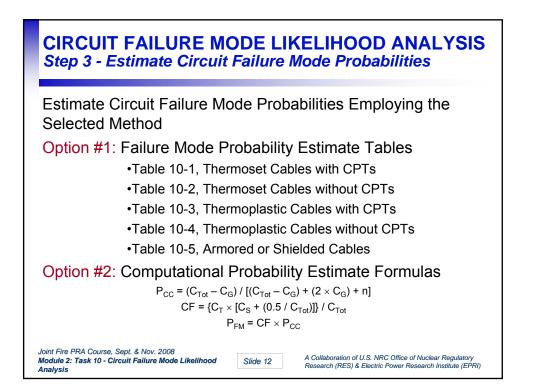


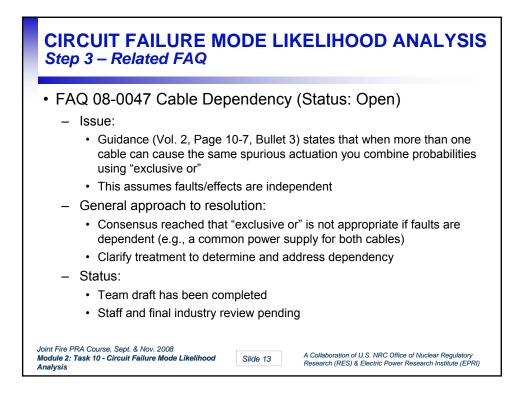


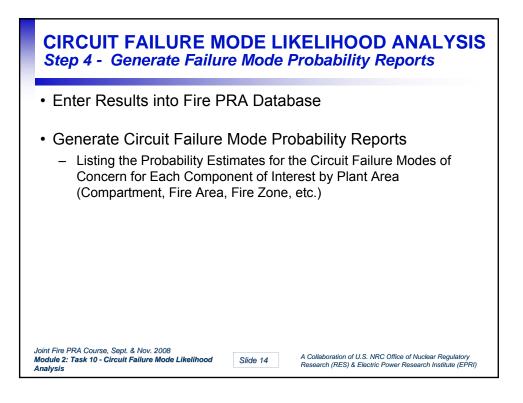


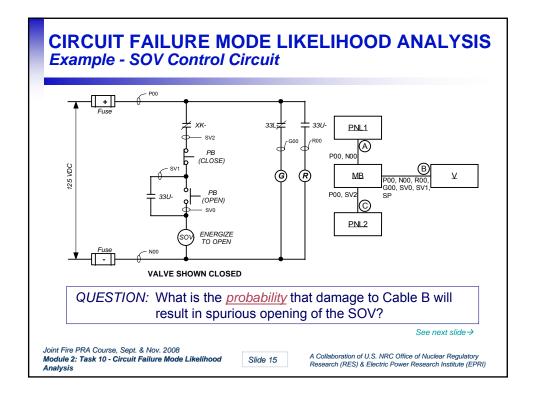


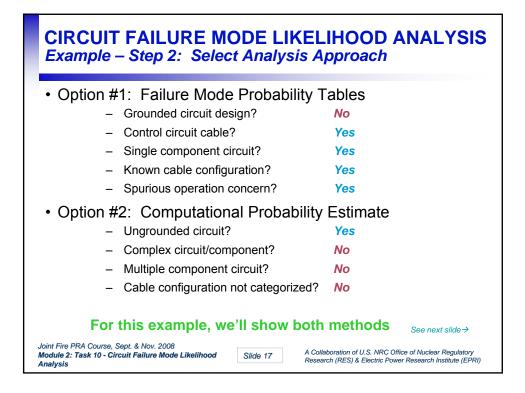


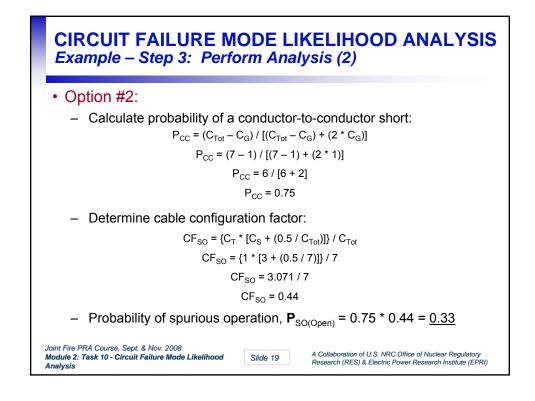












CIRCUIT FAI Example – Step				D ANALYSIS	
 Detailed circuit a 	analys	is completed 8	& documented	? Yes	
	Cable	+125 VDC Hot Probe	-125 VDC Hot Probe		
	A	LOC	LOC		
	В	LOC, EI, SO - Open	LOC		
	С	NC	LOC		
 Collect importar Cable insulati 		e and configur <i>Thermos</i>			
 Number of co 	nducto	ors? Seven			
 Raceway type 	e?	Tray			
 Power source 	– Power source? Ungrounded DC bus (no CPT)				
 Number of so 	urce &	target conducto			
		0		See next slide →	
Joint Fire PRA Course, Sept. & Nov. : Module 2: Task 10 - Circuit Failure Analysis		ihood Slide 16		RC Office of Nuclear Regulatory ic Power Research Institute (EPRI)	

Option #1: – Which Tal	ble to Use? Table 10-2,	Thermoset Ca	ble without C
Raceway Type	Description of Hot Short	Best Estimate	High Confidence Range
Tray	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.60 0.40 0.20 0.02 – 0.1	0.20 - 1.0 0.1 - 0.60 0.1 - 0.40
Conduit	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.15 0.1 0.05 0.01 – 0.02	0.05 - 0.25 0.025 - 0.15 0.025 - 0.1

Tab 3.4b:

Task 10 Classroom Exercises

Task 10: Circuit Failure Mode Likelihood Analysis Methodology

This document summarizes the process for determining the probability, or likelihood, of a particular circuit failure mode occurrence. It includes the five Failure Mode Probability Estimate Tables employed under the Option #1 analysis approach, and the Option #2 Computational Probability Estimate formulas. **Important!** Please refer to the complete discussion of this methodology provided in NUREG/CR-6850, EPRI 1011989, "EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities; Volume 2: Detailed Methodology," Final Report, September 2005.

Selecting the Analysis Approach

1. Option #1: Failure Mode Probability Estimate Tables

Tables of probability estimates would appropriately be used for cables that meet the following criteria:

- The circuit is of a grounded design (including impedance grounded systems with ground fault trip capability),
- The cable is part of the control circuit for a typical component (e.g., non-complex MOVs, SOVs, pumps),
- The cable is associated with a single component,
- The cable configuration is known and can be readily associated with one of the defined configurations in Tables 1 through 5, and
- The principal hot short failure mode of concern is a spurious operation of the component.
- 2. Option #2: Computational Probability Estimates

Use of the probability estimate formulas are recommended for cases where:

- The circuit is ungrounded or is impedance grounded without ground fault trip capability,
- The cable is part of a relatively complex circuit or component,
- The cable is associated with or can influence the behavior of multiple components (e.g., safeguards actuation signal, bus shed scheme, etc.),
- The cable configuration is not easily categorized into one of the defined configurations contained in Tables 1 through 5.

Performing the Circuit Failure Mode Probability Analyses

Option #1: Failure Mode Probability Estimate Tables

1. Categorize the circuit of interest based on its configuration attributes.

- 2. From the appropriate table (Tables 1 to 5), select the probability estimates for the failure modes of concern.
- 3. If the cable failure mode can occur due to different cable interactions, the probability estimate is taken as the simple sum of both estimates. For example, if a particular thermoset cable failure mode can be induced either by an intra-cable shorting event (P = 0.30) or by an inter-cable shorting event (P = 0.03; mid-range of 0.01–0.05), the overall probability of that failure mode is estimated to be 0.33.

Table-1Failure Mode Probability Estimates Given Cable DamageThermoset Cable with Control Power Transformer (CPT)

Raceway Type	Description of Hot Short	Best Estimate	High Confidence Range
Тгау	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.30 0.20 0.10 0.01 – 0.05	0.10 - 0.50 0.05 - 0.30 0.05 - 0.20
Conduit	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.075 0.05 0.025 0.005 – 0.01	0.025 - 0.125 0.0125 - 0.075 0.0125 - 0.05

M/C: Multi-conductor cable

1/C: Single conductor cable

Intra-cable: An internally generated hot short. The source conductor is part of the cable of interest Inter-cable: An externally generated hot short. The source conductor is from a separate cable

Table-2Failure Mode Probability Estimates Given Cable DamageThermoset Cable without CPT

Raceway Type	Description of Hot Short	Best Estimate	High Confidence Range
Тгау	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.60 0.40 0.20 0.02 – 0.1	0.20 - 1.0 0.1 - 0.60 0.1 - 0.40
Conduit	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.15 0.1 0.05 0.01 – 0.02	0.05 – 0.25 0.025 – 0.15 0.025 – 0.1

Raceway Type	Description of Hot Short	Best Estimate	High Confidence Range
Tray	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.30 0.20 0.10 0.01 – 0.05	0.10 - 0.50 0.05 - 0.30 0.05 - 0.20
Conduit	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.075 0.05 0.025 0.005 – 0.01	0.025 - 0.125 0.0125 - 0.075 0.0125 - 0.05

Table-3Failure Mode Probability Estimates Given Cable DamageThermoplastic Cable with CPT

Table-4Failure Mode Probability Estimates Given Cable DamageThermoplastic Cable without CPT

Raceway Type	Description of Hot Short	Best Estimate	High Confidence Range
Tray	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.60 0.40 0.20 0.02 – 0.1	0.20 - 1.0 0.1 - 0.60 0.1 - 0.40
Conduit	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.15 0.1 0.05 0.01 – 0.02	0.05 – 0.25 0.025 – 0.15 0.025 – 0.1

Table-5Failure Mode Probability Estimates Given Cable DamageArmored or Shielded Cable

Raceway Type	Description of Hot Short	Best Estimate	High Confidence Range
With CPT	M/C Intra-cable	0.075	0.02 – 0.15
Without CPT	M/C Intra-cable	0.15	0.04 – 0.30

3. When more than one cable can cause the component failure mode of concern, and those cables are within the boundary of influence for the scenario under investigation, the

probability estimates associated with all affected cables should be considered when deriving a failure estimate for the component. In general, the probabilities should be combined as follows:

 $P_{\text{Component failure Cable A}} = (P_{\text{Failure Cable A}}) + (P_{\text{Failure Cable B}}) - (P_{\text{Failure Cable A}})(P_{\text{Failure Cable B}})$

Option #2: Computational Probability Estimates

Application of this calculational method is more complex and is only recommended for cases where Option #1 cannot reasonably be applied. The intent is to give the analyst a means of refining the estimated circuit failure mode probabilities based on the most important characteristics of the cable/circuit under study.

This computational method involves applying circuit failure mode probability estimation formulas. The following discussions provide only the minimum definition of the failure mode likelihood estimation formulas and their terms. For a complete discussion of the technical basis, detailed explanations, and examples of usage, please refer to Appendices J and K in Volume 2 of EPRI 1011989, NUREG/CR-6850.

The probability of occurrence for a specific hot short failure mode (P_{FM}) is estimated by the formula:

 $P_{FM} = CF \times P_{CC,}$

Where:

- P_{FM} = The probability that a specific hot short failure mode of interest will occur in a specific circuit given a fire of sufficient intensity to cause cable damage,
- P_{CC} = The probability that a conductor-to-conductor short will occur prior to a short-toground or short to a grounded conductor, and
- CF = A configuration factor applied to P_{CC} to account for the relative number of source conductors and target conductors. Target conductors are those conductors of a circuit that, if contacted by an electrical source of proper magnitude and voltage, will result in abnormal energization of the circuit, component or device of concern. Source conductors represent energized conductors that are a potential source of electrical energy.
- 1. Calculate P_{CC} as follows:

Cables in trays:	$P_{CC} = (C_{Tot} - C_G) / [(C_{Tot} - C_G) + (2 \times C_G) + 1]$
Cables in conduit ¹ :	$P_{CC} = (C_{Tot} - C_G) / [(C_{Tot} - C_G) + (2 \times C_G) + 3]$
Ungrounded systems:	$\mathbf{P}_{\mathrm{CC}} = (\mathbf{C}_{\mathrm{Tot}} - C_G) / \left[(\mathbf{C}_{\mathrm{Tot}} - C_G) + (2 \times C_G) \right]$

¹ Armored and shielded cable should use the equation for conduit.

Where:

- $C_{Tot} =$ The total number of conductors in the cable of interest (including spares), and
- C_G = The number of grounded (or common) conductors in the cable of interest. The analyst should determine the number of grounded/common conductors based on the circuit configuration (contact positions, etc.) that represent the normal operating state of the component. If this information is unavailable or indeterminate, the worst-case conditions should be assumed.

Note: For ungrounded AC and DC systems, C_G represents the number of return conductors to the power source associated with the circuit of interest (e.g., the negative polarity conductors for an ungrounded 125 VDC circuit)

2. Calculate CF as follows.

Non-armored cables: $CF = \{C_T \times [C_S + (0.5 / C_{Tot})]\} / C_{Tot}$

Armored cables: $CF = (C_T \times C_S) / C_{Tot}$

Where:

 C_S = The total number of source conductors in the cable under evaluation,

 C_T = The total number of target conductors in the cable², and

 C_{Tot} = The total number of conductors in the cable, as before.

Note: CF should be ≤ 1.0 . If the calculated value of CF is greater than 1, then set CF = 1. In practical applications it is highly unlikely that the calculated value of CF will ever exceed 1. For this to occur, virtually all conductors in the cable would need to be either a source conductor or target conductor.

Note: The analyst should determine the number of target and source conductors based on the circuit configuration (contact positions, etc.) that represents the normal operating state of the component. If this information is unavailable or indeterminate, the worst-case conditions should be assumed.

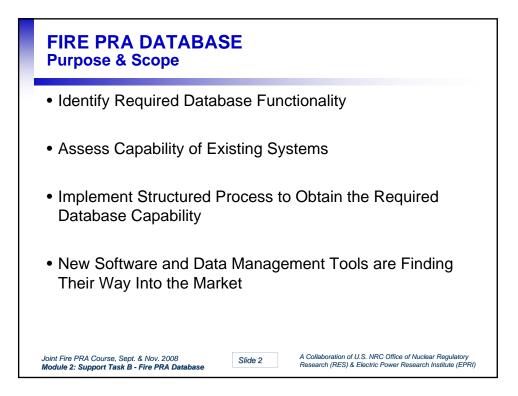
3. Calculate P_{FM} as follows:

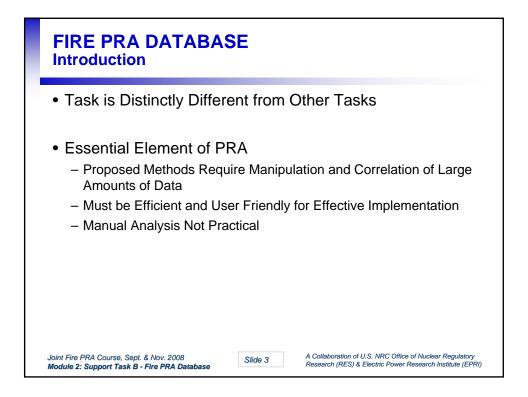
 $P_{FM} = CF \times P_{CC},$

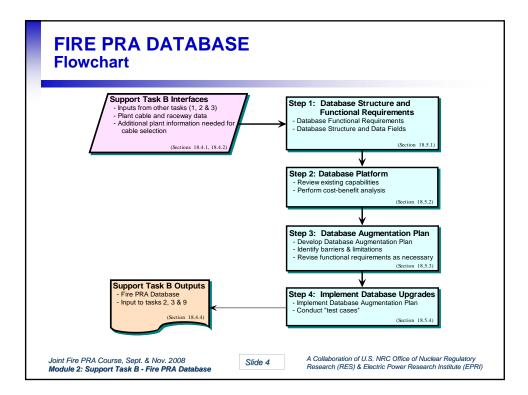
where CF and P_{CC} are determined using the formulas discussed above.

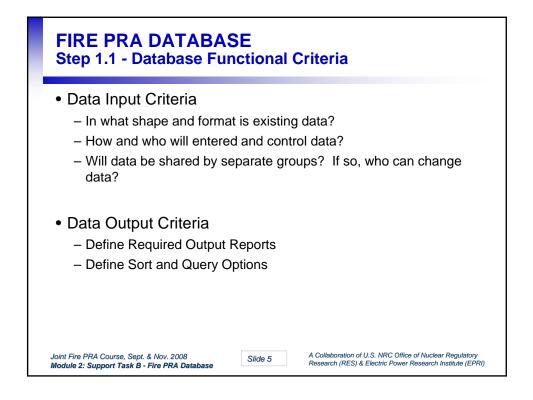
4. When more than one cable can cause the component failure mode of concern, and those cables are within the boundary of influence for the scenario under investigation, the

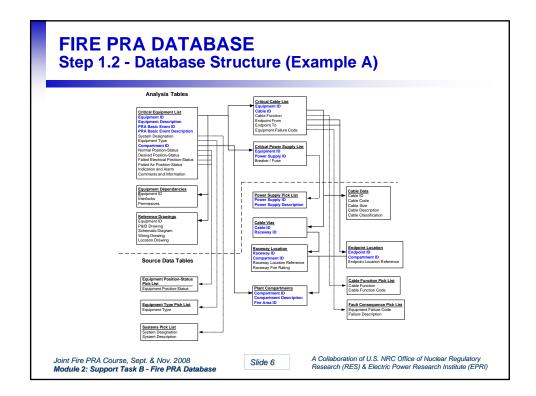
² Target conductors are only those cable conductors capable of forcing the component or circuit into the undesired state or condition of interest. For example, the target conductors associated with causing a spurious operation of the component will likely differ from target conductors associated with causing a loss of control condition.

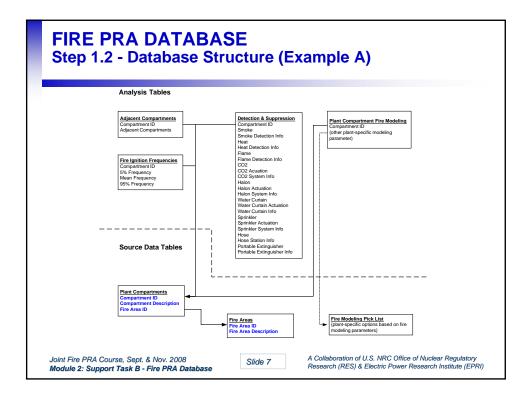

probability estimates associated with all affected cables should be considered in deriving a failure estimate for the component. In general, the probabilities should be combined as follows:

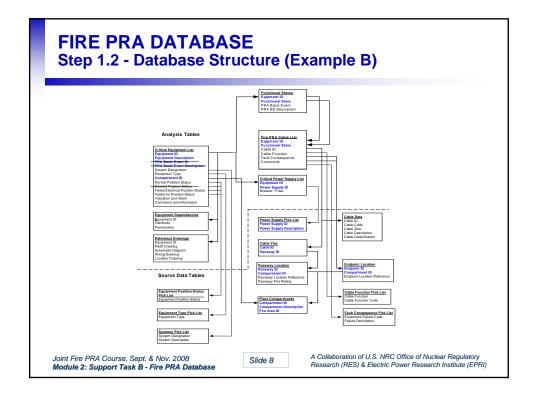

 $P_{\text{Component failure }} = (P_{\text{Failure Cable }A}) + (P_{\text{Failure Cable }B}) - (P_{\text{Failure Cable }A})(P_{\text{Failure Cable }B})$

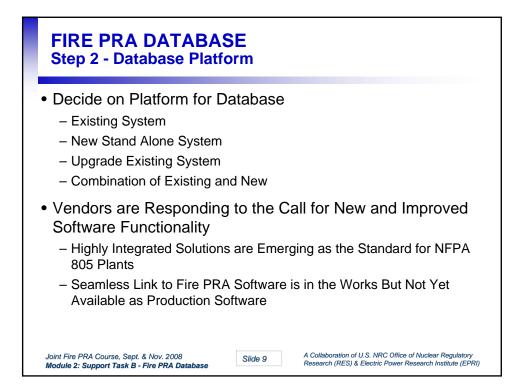

Tab 3.5:

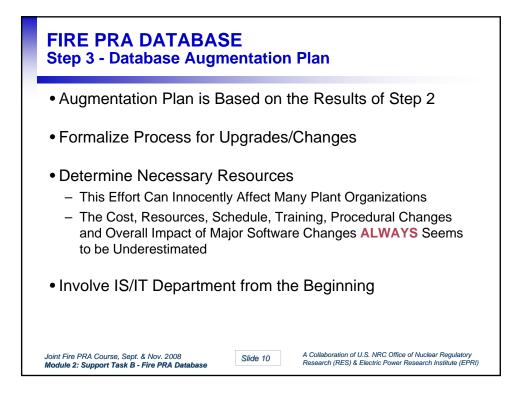

Task B FPRA Database

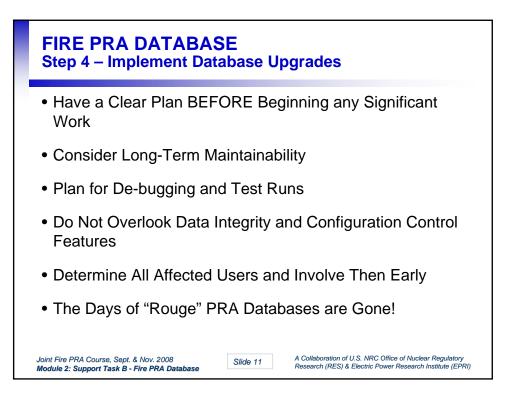


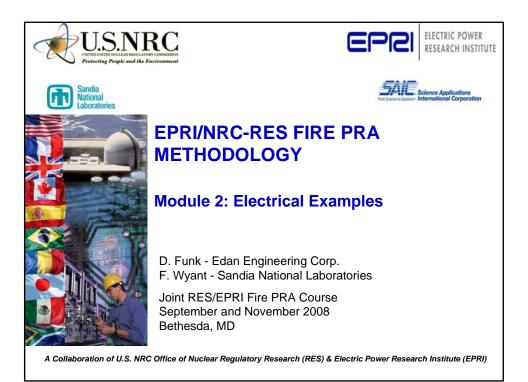


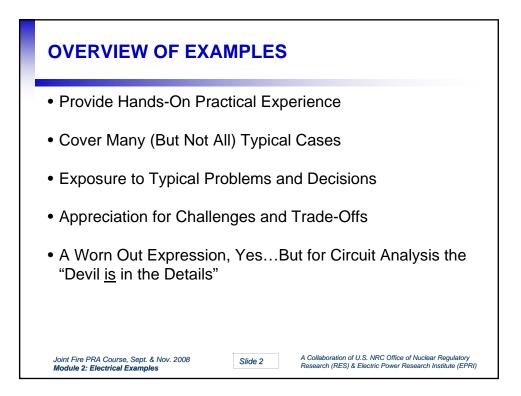


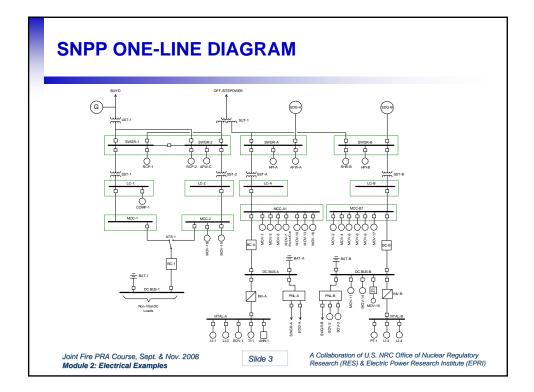




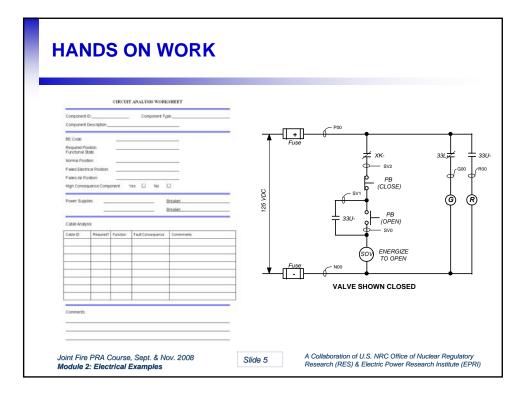








Tab 3.6:


Electrical Analysis Examples

Y A N		ROBLEMS		
		ROBLENIS		
Example No.	Component	Description of Analysis	NUREG/CR-6850	Comments
1	AOV-1 (SOV-1)	Std AC Solenoid Control Circuit	No	Multi-function component - analyzed for open and close
2	AOV-3 (SOV-3)	Std DC Solenoid Control Circuit	Yes - Figure I-2	Spurious only analysis
3	MOV-9	Typical MOV Control Circuit	Yes - Figure I-4	Functional analysis - change of position required
4	MOV-15	Double Pole DC Motor Control Circuit	Yes - Figure I-6	Functional analysis - change of position required
5	MOV-13	Ungnd AC, Inverted MOV Control Circuit	Yes - Figure I-8	Functional analysis - change of position required
6	MOV-10	Ungnd AC MOV Control Circuit	Yes - Figure I-10	Functional analysis - change of position required
7	MOV-8	MOV Control Circuit w/ Dual Controls	Yes - Figure I-12	Spurious only, classified as high consequence component
8	MOV-11	Typical DC MOV Control Circuit	No	Functional analysis - change of position required
9	MOV-16	Typical MOV Control Circuit	Yes - Figure I-4	Spurious Only
10	PI-1	Instrument Circuit	No	Indication only
11	ANN-1	Annunciator Circuit	No	No false indication
12	HPI-B	4.16 kV Motor	No	Functional analysis
13	COMP-1	480 V Motor	No	Functional analysis
14	SWGR-B	4.16 kV Bus	No	Multiple source options
15	LC-B	480V LC	No	Functional analysis
16	MCC-1B	480V MCC	No	Functional analysis

Tab 3.7:

Electrical Examples Summary and Loss Report

Example No.	Component	Description of Analysis	NUREG/CR- 6850	Comments
1	AOV-1 (SOV-1)	Std AC Solenoid Control Circuit	No	Multi-function component - analyzed for open and close
2	AOV-3 (SOV-3)	Std DC Solenoid Control Circuit	Yes - Figure I-2	Spurious only analysis
3	MOV-9	Typical MOV Control Circuit	Yes - Figure I-4	Functional analysis - change of position required
4	MOV-15	Double Pole DC Motor Control Circuit	Yes - Figure I-6	Functional analysis - change of position required
5	MOV-13	Ungnd AC, Inverted MOV Control Circuit	Yes - Figure I-8	Functional analysis - change of position required
6	MOV-10	Ungnd AC MOV Control Circuit	Yes - Figure I-10	Functional analysis - change of position required
7	MOV-8	MOV Control Circuit w/ Dual Controls	Yes - Figure I-12	Spurious only, classified as high consequence component
8	MOV-11	Typical DC MOV Control Circuit	No	Functional analysis - change of position required
9	MOV-16	Typical MOV Control Circuit	Yes - Figure I-4	Spurious Only
10	PI-1	Instrument Circuit	No	Indication only
11	ANN-1	Annunciator Circuit	No	No false indication
12	HPI-B	4.16 kV Motor	No	Functional analysis
13	COMP-1	480 V Motor	No	Functional analysis
14	SWGR-B	4.16 kV Bus	No	Multiple source options
15	LC-B	480V LC	No	Functional analysis
16	MCC-1B	480V MCC	No	Functional analysis

CIRCUIT ANALYSIS WORKSHEET

Component ID:_____

Continuation Sheet (____ of ____)

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

CIRCUIT ANALYSIS WORKSHEET

Component ID:		Comp	onent T	уре:
Component Description:				
BE Code:				
Required Position: Functional State				
Normal Position:				
Failed Electrical Position:				
Failed Air Position:				
High Consequence Component	Yes		No	
Power Supplies:			_	Breaker:
			_	Breaker:

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Commments

Comments:

Equipment ID	Equipment Description	Equipment Type	Location	Desired Position/ Status	Target Loss Locations
	High pressure safety injection	Pump	Aux Bldg. El. 0 Ft	On	1, 2, 3, 10
HPI-A	pump A			On	1, 2, 3, 10
	High pressure safety injection	Pump		On	1, 2, 3, 11
пы-р	IPI-B pump B		Aux Bldg. El. 0 Ft	On	1, 2, 3, 11
RHR-B	Residual heat removal pump B	Pump	Aux Bldg. El20 Ft	Off	1, 2, 3, 4A, 9, 11
AFW-A	Motor driven AFW pump A	Pump	Aux Bldg. EL. 0 Ft	On	1, 3, 4B, 9, 10
AFW-B	Steam driven AFW pump B	Pump	Aux Bldg. EL. 0 Ft	On	1, 3, 4B, 9, 11
AFW-C	Motor driven AFW pump C	Pump	Turbine Bldg. El. 0 Ft	On	1, 3, 12
RCP-1	Reactor coolant pump 1	Pump	Containment	Off	1, 2, 3, 7, 12
RCP-2	Reactor coolant pump 2	Pump	Containment	Off	1, 2, 3, 7, 12
COMP-1	Instrument air compressor	Compressor	Turbine Bldg. El. 0 Ft	Cycle	12
AOV-1	Dower operated relief value	AOV	Containment	Closed	1, 3, 7, 9
(SOV-1)	Power operated relief valve			Open	1, 3, 7, 9, 10
AOV-2 (SOV-2)	Letdown isolation valve	AOV	Aux Bldg. El. 0 Ft	Closed	1, 2, 3, 9
AOV-3 (SOV-3)	Charging pump injection valve	AOV	Aux Bldg. El. 0 Ft	Closed	1, 2, 3, 9
MOV-1	HPI discharge valve	MOV	Aux Bldg. El. 0 Ft	Open	1, 2, 3, 9, 10
MOV-2	VCT isolation valve	MOV	Aux Bldg. El. 0 Ft	Closed	1, 2, 3, 9, 11
MOV-3	Cont. sump recirc valve	MOV	Aux Bldg. El20 Ft	Open/ Closed ²	1, 2, 3, 4A, 9, 10
MOV-4	Cont. sump recirc valve	MOV	Aux Bldg. El20 Ft	Open/ Closed	1, 2, 3, 4A, 9, 11
MOV-5	RWST isolation valve	MOV	Aux Bldg. El. 0 Ft	Open	1, 2, 3, 12
MOV-6	RWST isolation valve	MOV	Aux Bldg. El. 0 Ft	Open	1, 2, 3, 12
MOV-7	RHR inboard suction valve	MOV	Containment	Closed	4A,7,9,12
MOV-8	RHR outboard suction valve	MOV	Aux Bldg. El20 Ft	Closed	4A,9,12
MOV-9	HPI discharge valve	MOV	Aux Bldg. El. 0 Ft	Open	1,2,3,,9
MOV-10	AFW pump A discharge valve	MOV	Aux Bldg. EL. 0 Ft	Open	1,3,4B,9,12
MOV-11	AFW pump B discharge valve	MOV	Aux Bldg. EL. 0 Ft	Open	1,3,4B,9,11,12
MOV-13	PORV block valve	MOV	Containment	Open/ Closed ¹	1, 3, 7, 9
MOV-14	AFW pump B turbine steam line isolation valve	MOV	Turbine Bldg. El. 0 Ft	Open	1, 3, 4B, 12

Table 1: Target Equipment Loss Report

Equipment ID	Equipment Description	Equipment Type	Location	Desired Position/ Status	Target Loss Locations
MOV-15	AFW pump B steam inlet throttle valve	MOV	Turbine Bldg. El. 0 Ft	Throttled	1, 3, 4B, 12
MOV-16	AFW pump A test line isolation valve	MOV	Turbine Bldg. El. 0 Ft	Closed	2, 4B, 9
MOV-17	AFW pump B test line isolation valve	MOV	Turbine Bldg. El. 0 Ft	Closed	2, 4B, 9
MOV-18	AFW pump C discharge valve	MOV	Turbine Bldg. El. 0 Ft	Open	1, 3, 12
MOV-19	AFW pump C test line isolation valve	MOV	Turbine Bldg. El. 0 Ft	Closed	1, 3, 12
V-12	CST isolation valve	MOV	Turbine Bldg. El. 0 Ft	Open	12
LI-1	RWST level	Instrument	Yard	Available	1, 3, 12, 13
LI-2	RWST level	Instrument	Yard	Available	1, 3, 12, 13
LI-3	Cont. sump level	Instrument	Containment	Available	1, 3, 7, 12
LI-4	Cont. sump level	Instrument	Containment	Available	1, 3, 7, 12
TI-1	Letdown heat exchanger outlet temperature	Instrument	Aux Bldg El. 0 Ft	Available	1, 2, 3, 9
PT-1	RCS pressure	Instrument	Containment	Available	1, 3, 7
ANN-1	AFW motor high temperature	Annunciator	SWG Access Room	Non spurious	1, 2, 3, 9, 4B
SWGR-A		Switchmoor	Switch goor Doom A	Energized from SUT-1	1, 3, 10, 12, 13
SWGR-A	Train A 4160 V switchgear	Switchgear	Switchgear Room A	Energized from EDG-A	1, 3, 8A, 10, 12
		Quitalanan	Switchgear Room B	Energized from SUT-1	1, 3, 9, 11, 12, 13
SWGR-B	Train B 4160 V switchgear	Switchgear	Switchgear Room B	Energized from EDG-A	1, 3, 8B, 9, 11, 12
SWGR-1	Non-safety 4160 V switchgear	Switchgear	Turbine Bldg. El. Oft	Energized	1, 3, 12, 13
SWGR-2	Non-safety 4160 V switchgear	Switchgear	Turbine Bldg. El. Oft	Energized	1, 3, 12, 13
SUT-1	Startup transformer	Transformer	Yard	Energized	1, 3, 12, 13
EDG-A	Train A emergency diesel generator	Diesel Generator	DG Bldg.	On	1, 3, 8A, 10, 12
EDG-B	Train B emergency diesel generator	Diesel Generator	DG Bldg.	On	1, 3, 8B, 10, 12
LC-1	Non-safety 480 V load center	Load Center	Turbine Bldg. El. 0 ft	Energized	1, 3, 12
LC-2	Non-safety 480 V load center	Load Center	Turbine Bldg. El. 0 ft	Energized	1, 3, 12
LC-A	Train A 480 V load center	Load Center	Switchgear Room A	Energized	1, 3,10
LC-B	Train B 480 V load center	Load Center	Switchgear Room B	Energized	1, 3, 11
SST-1	Non-safety station service transformer	Transformer	Turbine Bldg. El. 0 F	Energized	12

Equipment ID	Equipment Description	Equipment Type	Location	Desired Position/ Status	Target Loss Locations
SST-2	Non-safety station service transformer	Transformer	Turbine Bldg. El. 0 F	Energized	12
SST-A	Train A station service transformer	Transformer	Switchgear Room A	Energized	10
SST-B	Train B station service transformer	Transformer	Switchgear Room B	Energized	11
MCC-1	Non-safety 480 V motor control center	Motor Control Center	Turbine Bldg El. 0 Ft	Energized	12
MCC-2	Non-safety 480 V motor control center	Motor Control Center	Turbine Bldg El. 0 Ft	Energized	12
MCC-A1	Train A 480 V motor control center	Motor Control Center	SWG Access Room	Energized	9, 10
MCC-B1	Train B 480 V motor control center	Motor Control Center	SWG Access Room	Energized	9, 11
ATS-1	Automatic transfer switch	ATS	SWG Access Room	Energized from MCC-1	12
BC-1	Non-safety swing battery charger	Battery Charger	Turbine Bldg El. 0 Ft	Energized	12
BC-A	Train A battery charger	Battery Charger	Switchgear Room A	Energized	9, 10
BC-B	Train B battery charger	Battery Charger	Switchgear Room B	Energized	9, 11
BAT-1	Non-safety battery	Battery	Turbine Bldg El. 0 Ft	Available	12, 15
BAT-A	Train A battery	Battery	Battery Room A	Available	5, 10
BAT-B	Train B battery	Battery	Battery Room B	Available	6, 11
DC BUS-1	Non-safety 250 VDC bus	DC Bus	Turbine Bldg El. 0 Ft	Energized	12
DC BUS-A	Train A 125 VDC bus	DC Bus	Switchgear Room A	Energized	10
DC BUS-B	Train B 125 VDC bus	DC Bus	Switchgear Room B	Energized	11
PNL-A	Train A 125 VDC panel	Panelboard	Switchgear Room A	Energized	10
PNL-B	Train B 125 VDC panel	Panelboard	Switchgear Room B	Energized	11
INV-A	Train A inverter	Inverter	Switchgear Room A	Energized	3, 9, 10
INV-B	Train B inverter	Inverter	Switchgear Room B	Energized	3, 9, 11
VITAL-A	Train A 120 VAC vital bus	120VAC Bus	SWG Access Room	Energized	9, 10
VITAL-B	Train B 120 VAC vital bus	120VAC Bus	SWG Access Room	Energized	9, 11

Tab 3.8:

Circuit Analysis Worksheets

Component ID: LC	С-В		Co	mponent Type:	Load Center
Component Description:	Train	B 480 V Lo	oad Cen	ter	
BE Code:	EP	S-480VLC	BF	(480V LOAD CEN	ITER B FAULT)
Required Position: Functional State	EN	IERGIZED)		
Normal Position:	EN	IERGIZED)		
Failed Electrical Position	n: Of	f			
Failed Air Position:	N/2	A			
High Consequence Com	iponent Ye	s 🗌 No	o 🖂		
Power Supplies:				Breaker:	
				Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: SWGR-B		Component Type:	Switchgear
Component Description: Tra	ain B 4160V Switchge	ear	
BE Code:	PNL-B EPS-4VBUSB	BF-2 (4KV BUS B FAU	ILT)
Required Position: Functional State	ENERGIZED FROM	EDG-B	
Normal Position:	ENERGIZED FROM	SUT-1	
Failed Electrical Position:	Off		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🖾		
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: SWGR	-В	Compon	ent Type:	Switchgear
Component Description:	Train B 4160V Switchg	ear		
BE Code:	PNL-B EPS-4VBUS	BF-1 (4	4KV BUS B FAU	LT)
Required Position: Functional State	ENERGIZED FROM	SUT-1		
Normal Position:	ENERGIZED FROM	SUT-1		
Failed Electrical Position:	Off			
Failed Air Position:	N/A			
High Consequence Compone	ent Yes 🗌 No 🖂			
Power Supplies:		Breaker:		
		Breaker:		

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: COMP-1		Component Type:	Compressor
Component Description: Ins	strument Air Comp	pressor	
BE Code:	COMP-1_FTR	(COMP-1 Fails to Run)	
Required Position: Functional State	CYCLE		
Normal Position:	CYCLE		
Failed Electrical Position:	Off		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🖂		
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: HPI-B		Component Type:	Pump
Component Description: H	ligh Pressure I	njection Pump B	
BE Code:	HPIA_FTS HPIA_FTR	(HPI-A Fails to Start) (HPI-A Fails to Run)	
Required Position: Functional State	ON		
Normal Position:	STANDBY /	ON	
Failed Electrical Position:	Off		
Failed Air Position:	N/A		
High Consequence Componen	t Yes 🗌 N	0 🖂	
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID:	NN-1		Component Type:	Annunciator
Component Description	: AFW Moto	or High Te	mperature	
BE Code:	ANN-1	_FH (A	FW Pump Motor Spu	urious High Ann)
Required Position: Functional State	NON-S	PURIOUS		
Normal Position:	AVAIL	ABLE		
Failed Electrical Positio	n: UNAV	AILABLE		
Failed Air Position:	N/A			
High Consequence Cor	nponent Yes	🗌 No 🛛		
Power Supplies:			Breaker:	
			Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID:	PI-1		(Component Type:	Instrument
Component Descriptio	on: RC	S Pressu	re		
BE Code:		PI-1_FL	(RC	S Pressure Indica	tion Fails High)
Required Position: Functional State		AVAILA	BLE		
Normal Position:		AVAILA	BLE		
Failed Electrical Posit	ion:	LOW			
Failed Air Position:		N/A			
High Consequence Co	omponent	Yes [] No 🛛		
Power Supplies:				Breaker:	
				Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: MOV-16		Component Type:	MOV
Component Description: AF	W Test Line Isola	tion Valve	
BE Code:	MOV-16_TO	(MOV-16 TRANSFERS (DPEN)
Required Position: Functional State	CLOSED		
Normal Position:	CLOSED		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🛛		
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: MOV-11		Component Type:	MOV
Component Description: AF	W Discharge Isol	ation Valve	
BE Code:	MOV-11_FTO	(MOV-11 FAILS TO OPE	EN)
Required Position: Functional State	OPEN		
Normal Position:	CLOSED		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🛛		
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

CIRCUIT	ANALYSIS	WORKSHEET
---------	----------	-----------

Component ID:				t Type:	MOV	
Component Des	cription:	RHR Out	tboard Suction Valv	е		
BE Code:		MOV	-8_TO (MOV-8	TRANSFI	ERS OPEN)	
Required Positic Functional State						
Normal Position	ormal Position: CLOSED					
Failed Electrical	Failed Electrical Position: AS-IS					
Failed Air Position: N/A						
High Consequence Component Yes 🛛 No 🗌						
Power Supplies:			Brea	aker:		
			<u>Brea</u>	aker:		
Cable Analysis:						
Cable ID	able ID Required? Function Fault Consequence Comments					
		ł				

Component ID: MOV-10		Component Type:	MOV
Component Description: AF	W Discharge Isol	ation Valve	
BE Code:	MOV-10_FTO	(MOV-10 FAILS TO OPE	EN)
Required Position: Functional State	OPEN		
Normal Position:	CLOSED		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🛛		
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: MOV-13		Component Type:	MOV
Component Description: PO	RV Block Valv	/e	
BE Code:	MOV-13_FTC	(MOV-13 FAILS TO	CLOSE)
Required Position: Functional State	OPEN / CLOS	ED	
Normal Position:	OPEN		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No	\boxtimes	
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: MOV-15	(Component Type:	MOV
Component Description: AF	W Steam Inlet 1	Throttle Valve	
BE Code:	MOV-15_FTO	(MOV-15 FAILS T	O OPEN)
Required Position: Functional State	THROTTLED		
Normal Position:	CLOSED		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No [\boxtimes	
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: MOV-9	(Component Type:	MOV
Component Description: Hig	gh Pressure Inje	ection Valve	
BE Code:	MOV-9_FTO	(MOV-9 FAILS TO	OPEN)
Required Position: Functional State	OPEN		
Normal Position:	CLOSED		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No [\boxtimes	
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Component ID: AOV-3 (So	OV-3) Component Type: AOV
Component Description: Ch	arging Pump Injection Valve
BE Code:	AOV-3_FTC (AOV-3 FAILS TO CLOSE)
Required Position: Functional State	CLOSED
Normal Position:	OPEN
Failed Electrical Position:	CLOSED
Failed Air Position:	CLOSED
High Consequence Component	Yes 🗌 No 🖾
Power Supplies:	Breaker:
	Breaker:

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

CIRCUIT	ANALYSIS	WORKSHEET
---------	----------	-----------

Component ID: AOV-1 (Se	OV-1) Component Type: AOV
Component Description: Po	wer Operated Relief Valve
BE Code:	AOV-1_FTO (PORV AOV-1 FAILS TO OPEN)
Required Position: Functional State	OPEN
Normal Position:	CLOSED
Failed Electrical Position:	CLOSED
Failed Air Position:	CLOSED
High Consequence Component	Yes 🗌 No 🖂
Power Supplies:	Breaker:
	Breaker:

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

CIRCUIT	ANALYSIS	WORKSHEET
---------	----------	-----------

Component ID: AOV-1 (So	OV-1)	Component Type:	AOV
Component Description: Po	wer Operated	Relief Valve	
BE Code:	AOV-1_TO	(PORV AOV-1 TRANSFE	ERS OPEN)
Required Position: Functional State	CLOSED		
Normal Position:	CLOSED		
Failed Electrical Position:	CLOSED		
Failed Air Position:	CLOSED		
High Consequence Component	Yes 🗌 No		
Power Supplies:		Breaker:	
		Breaker:	

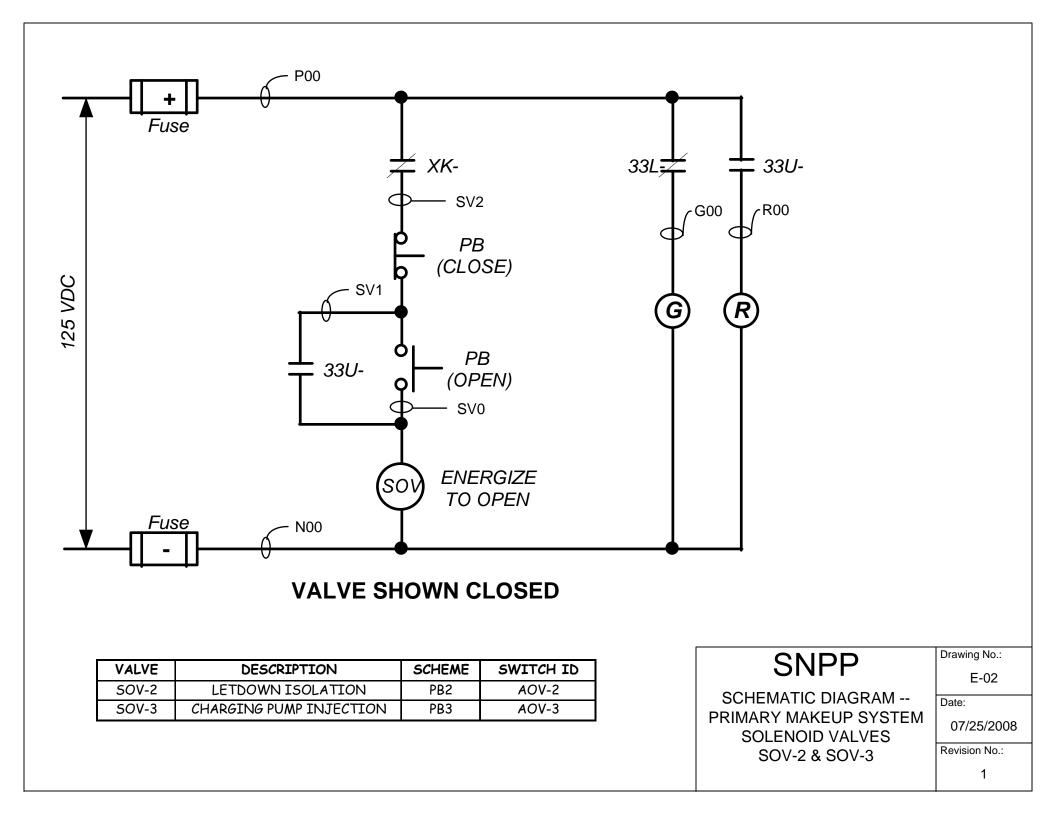
Cable Analysis:

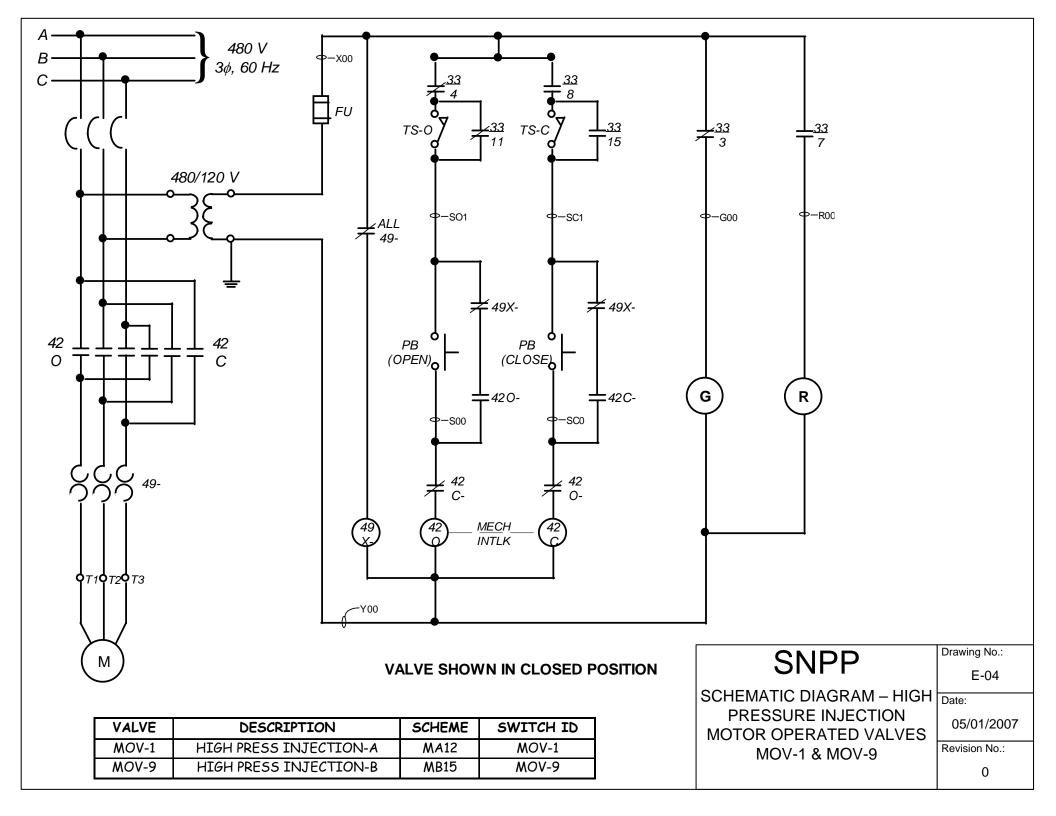
Cable ID	Required?	Function	Fault Consequence	Comments

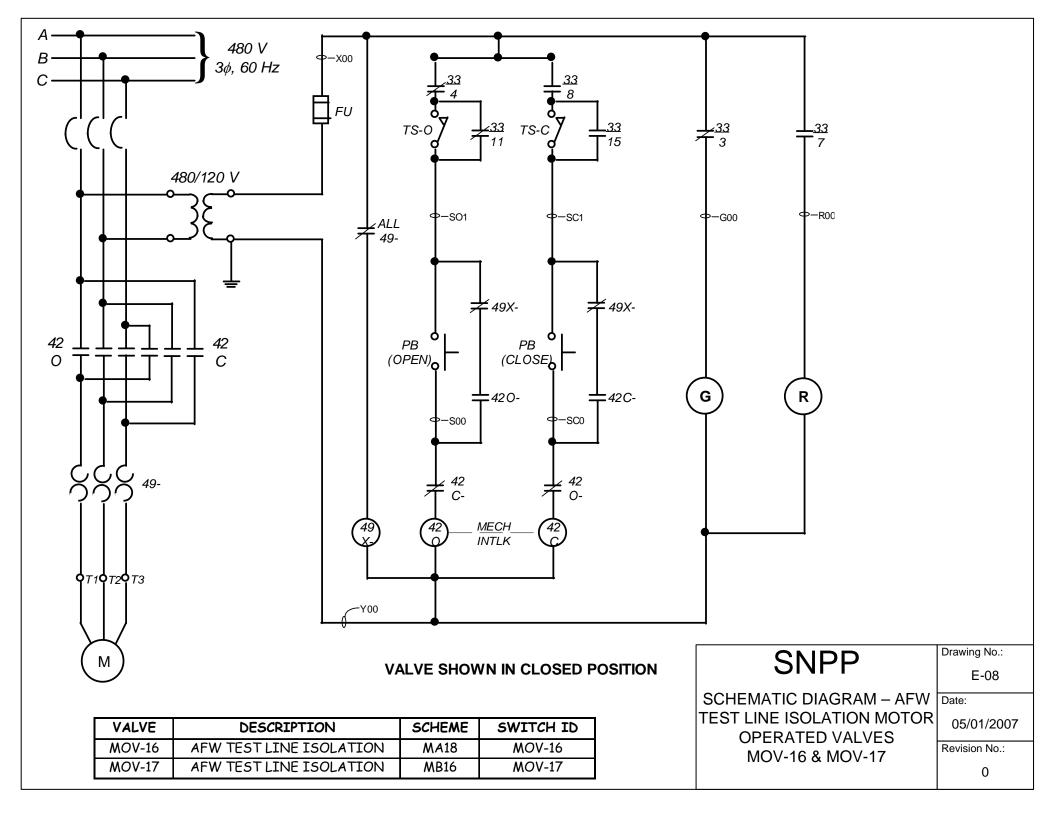
Component ID: MCC-1B		Component Type:	МСС
Component Description: Tr	ain B 480 V Motor Co	ntrol Center	
BE Code:	EPS-480MCCB1F	(480V MCC B1 FAULT)	
Required Position: Functional State	ENERGIZED		
Normal Position:	ENERGIZED		
Failed Electrical Position:	Off		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🖂		
Power Supplies:		Breaker:	
		Breaker:	

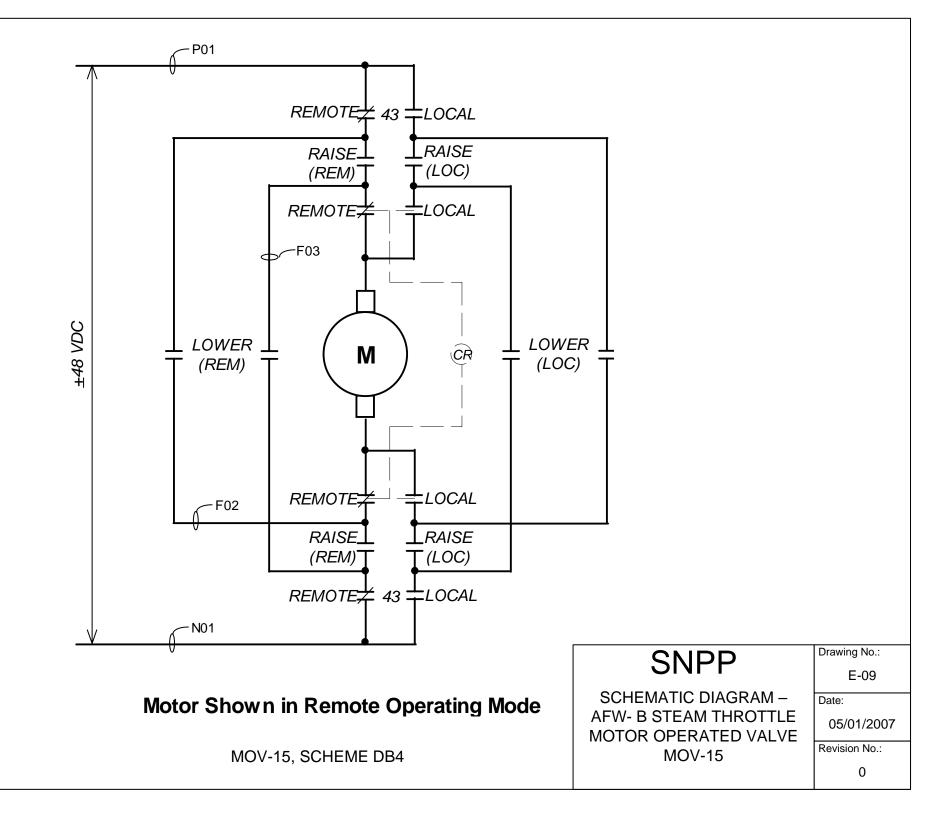
Cable Analysis:

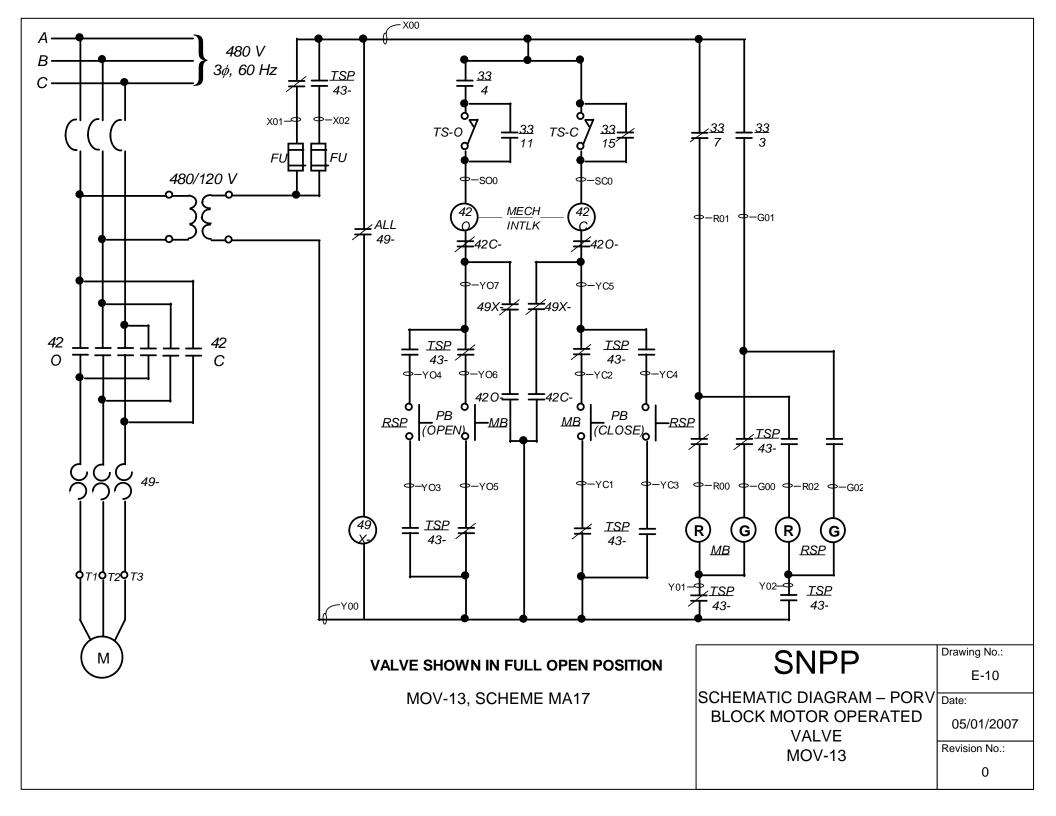

Cable ID	Required?	Function	Fault Consequence	Comments

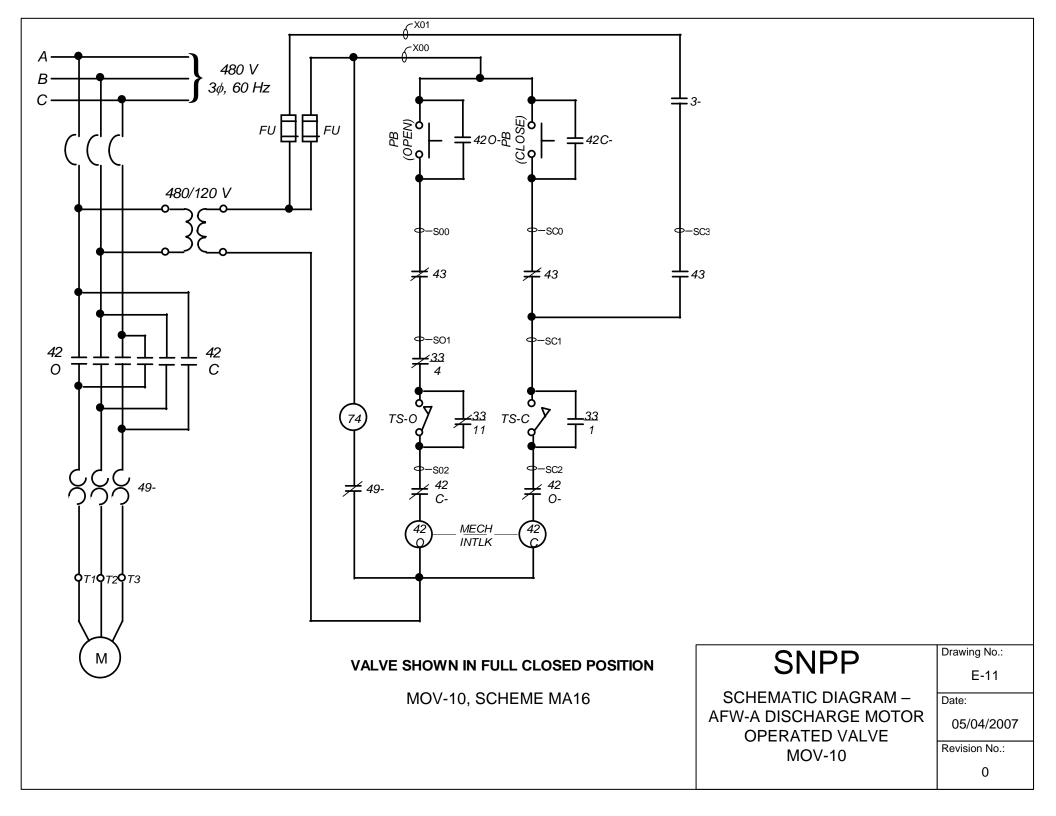

Tab 3.9:

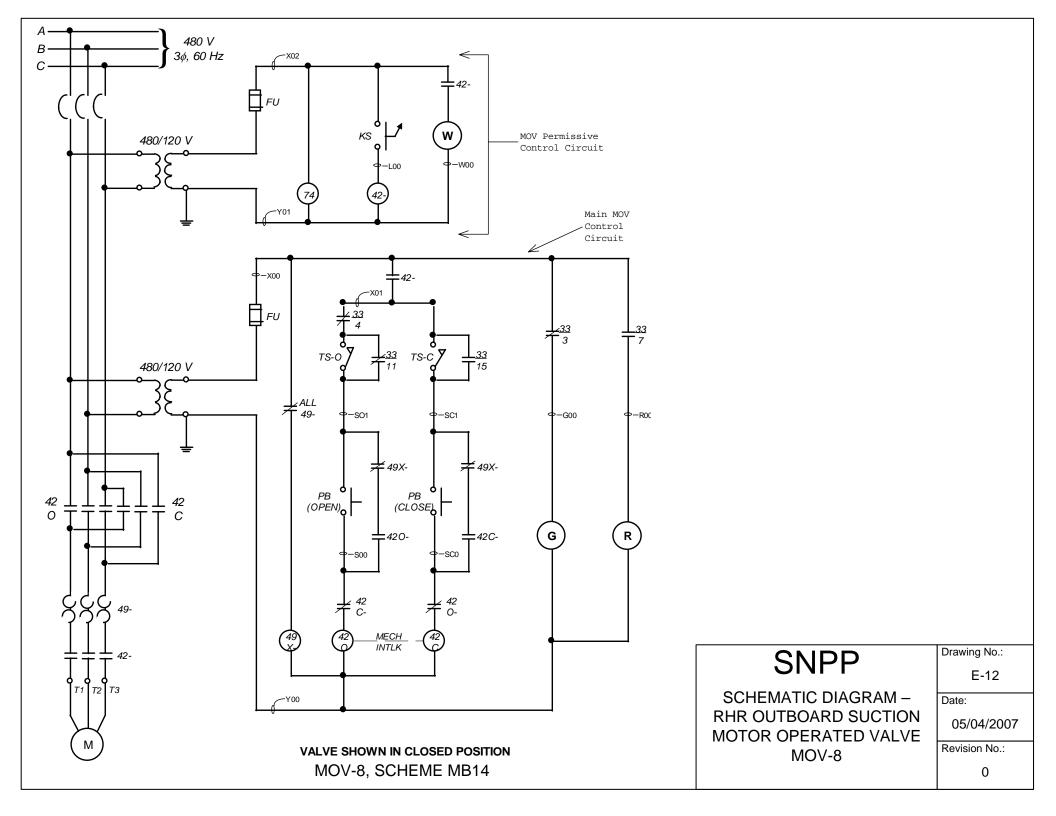

Drawing Package #1

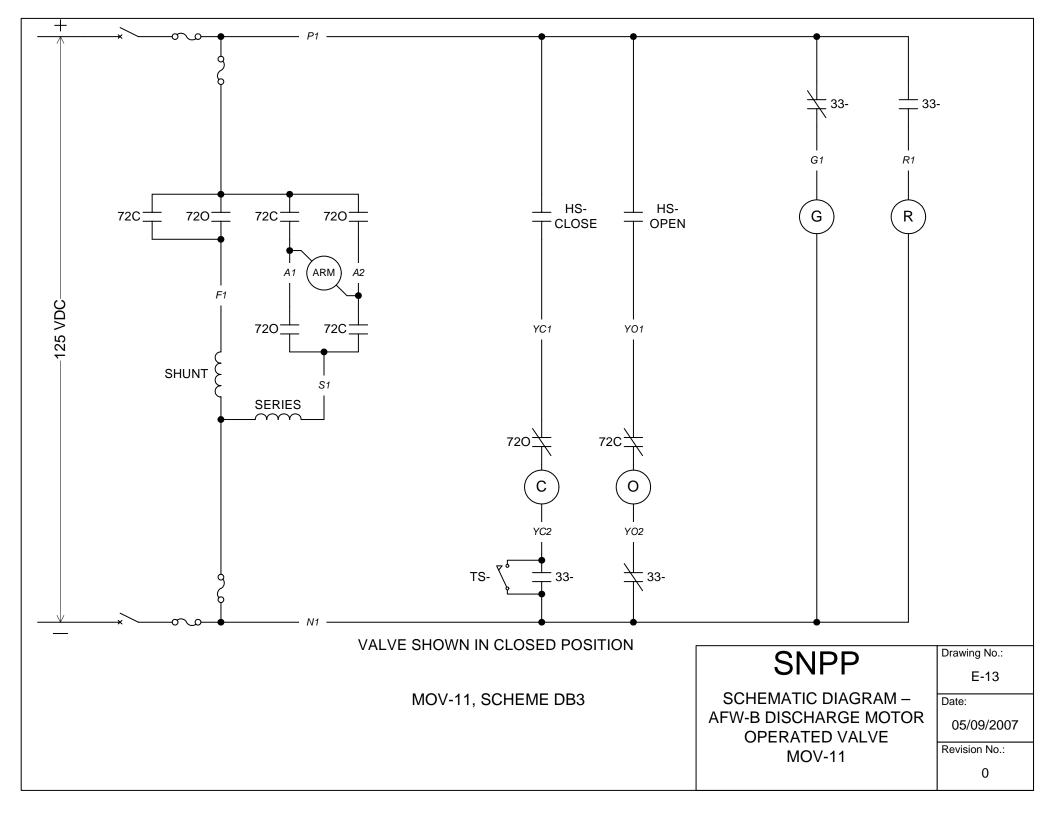

ELECTRICAL DISTRIBUTION SYSTEM - SIMPLIFIED ONE-LINE DIAGRAM

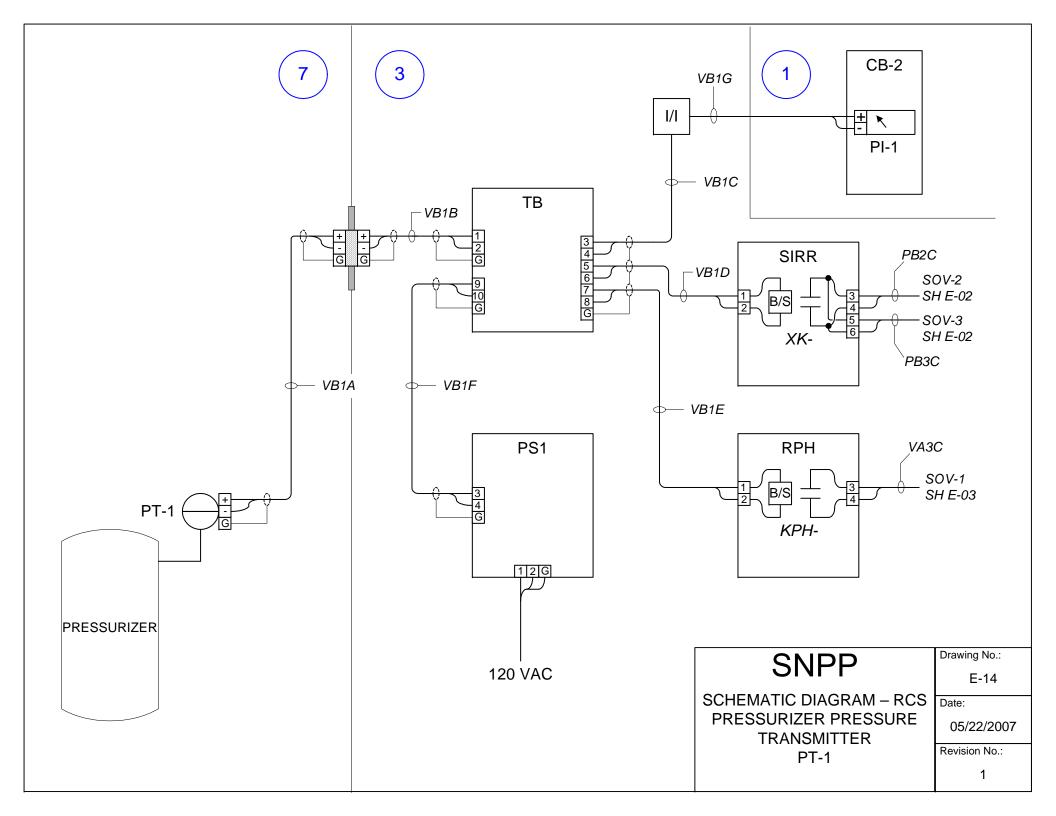


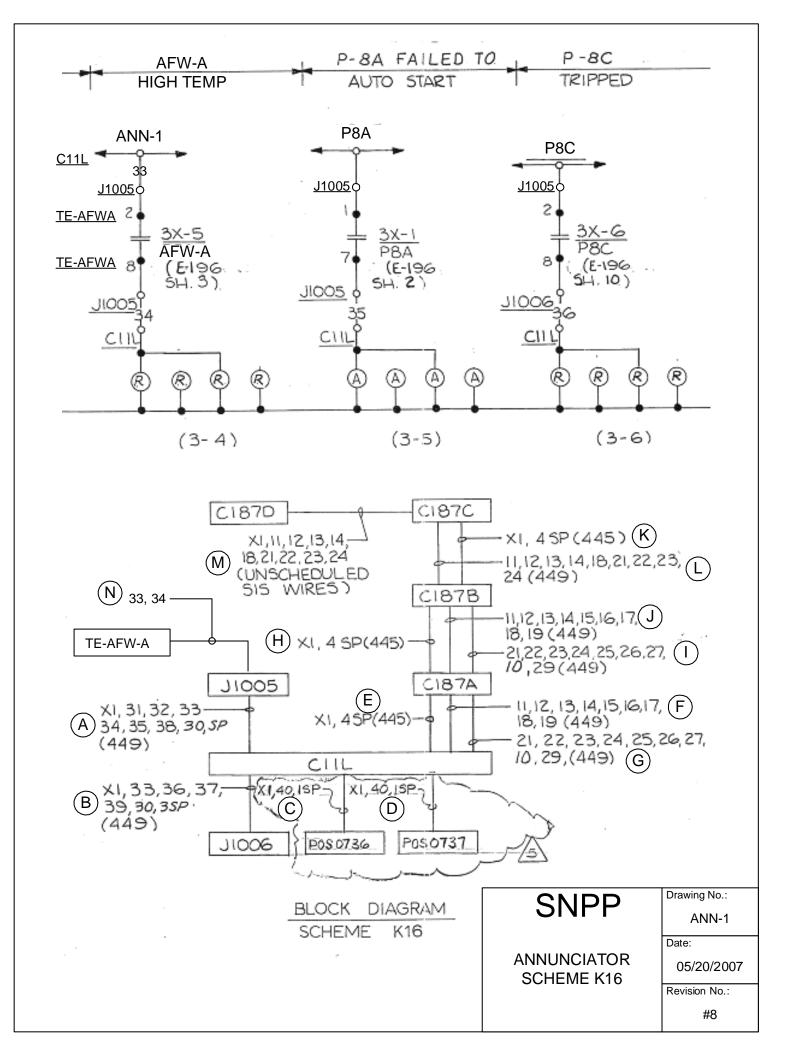


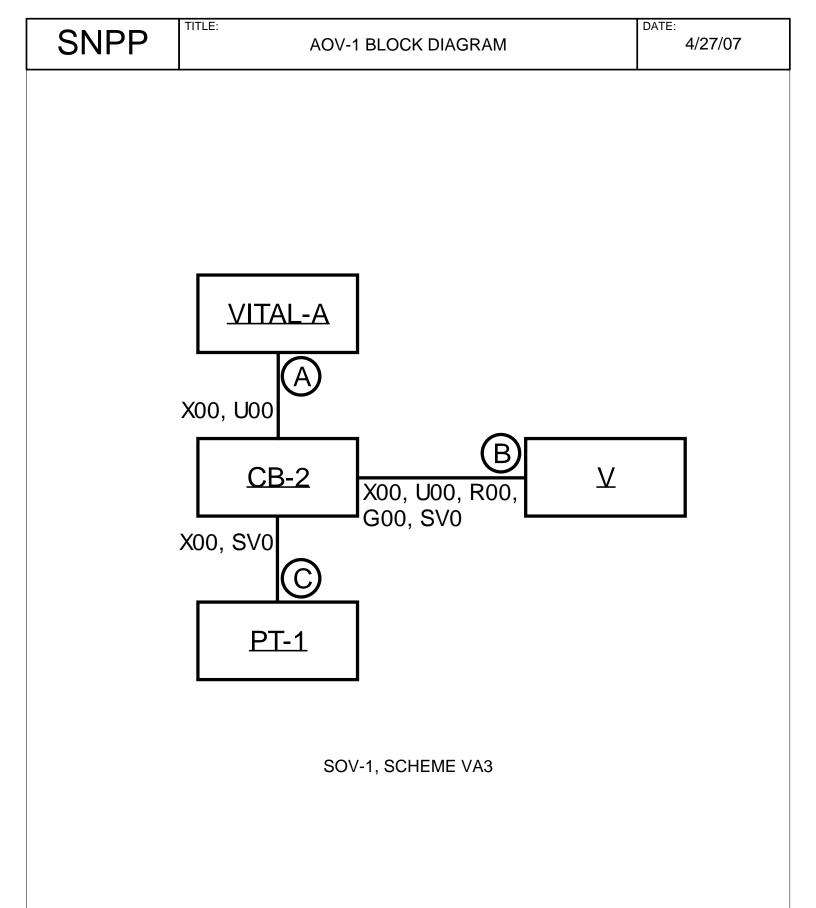


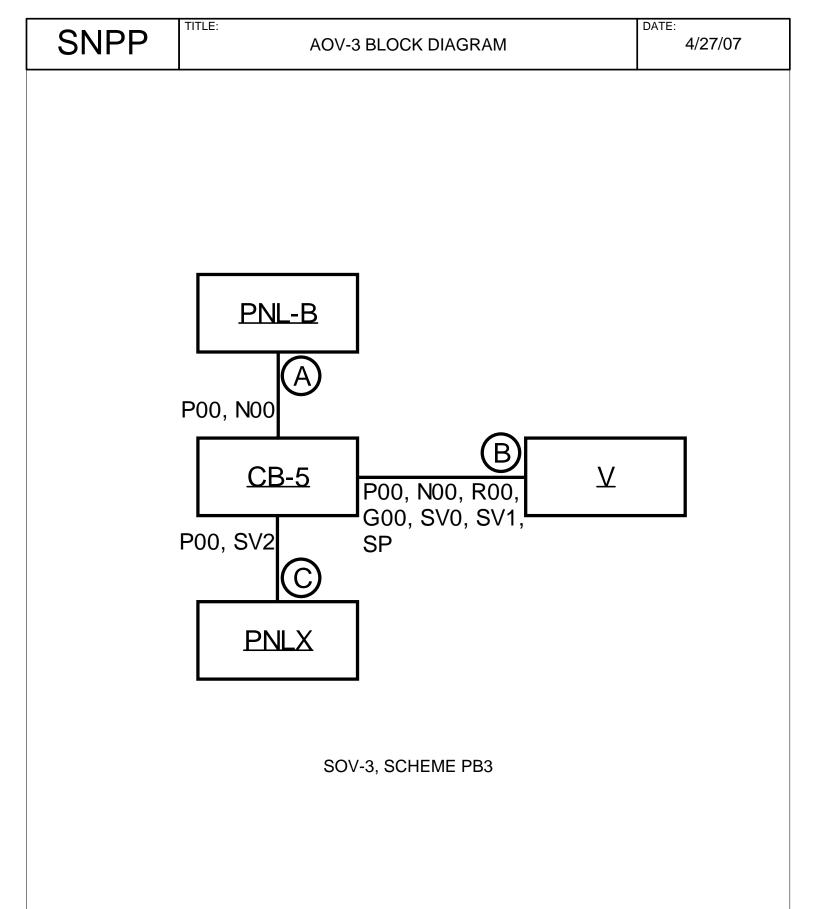


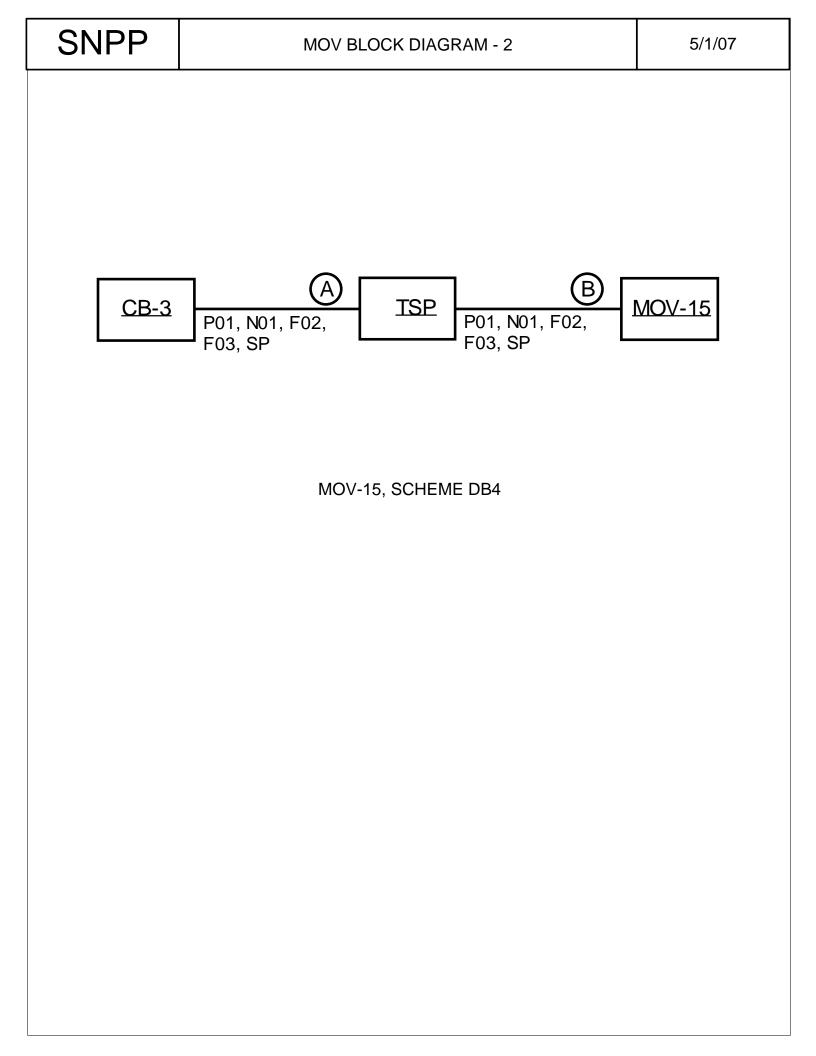


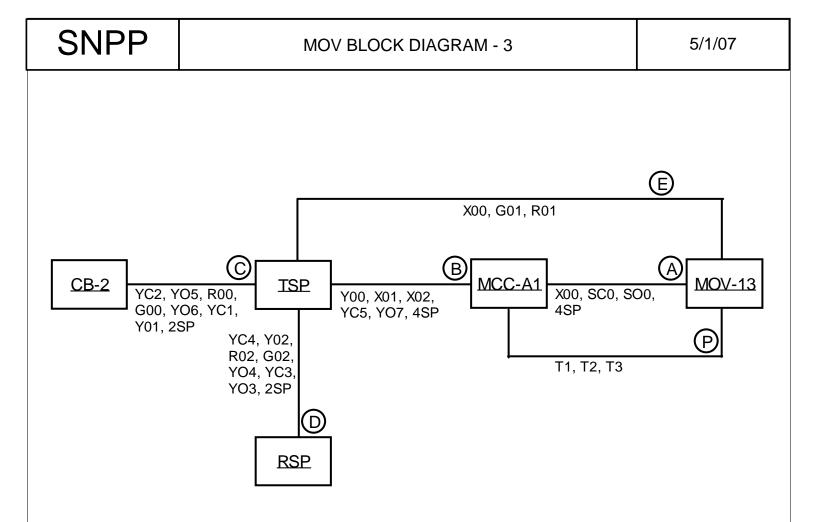


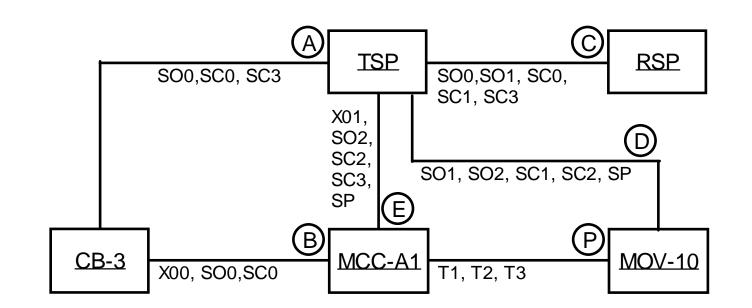


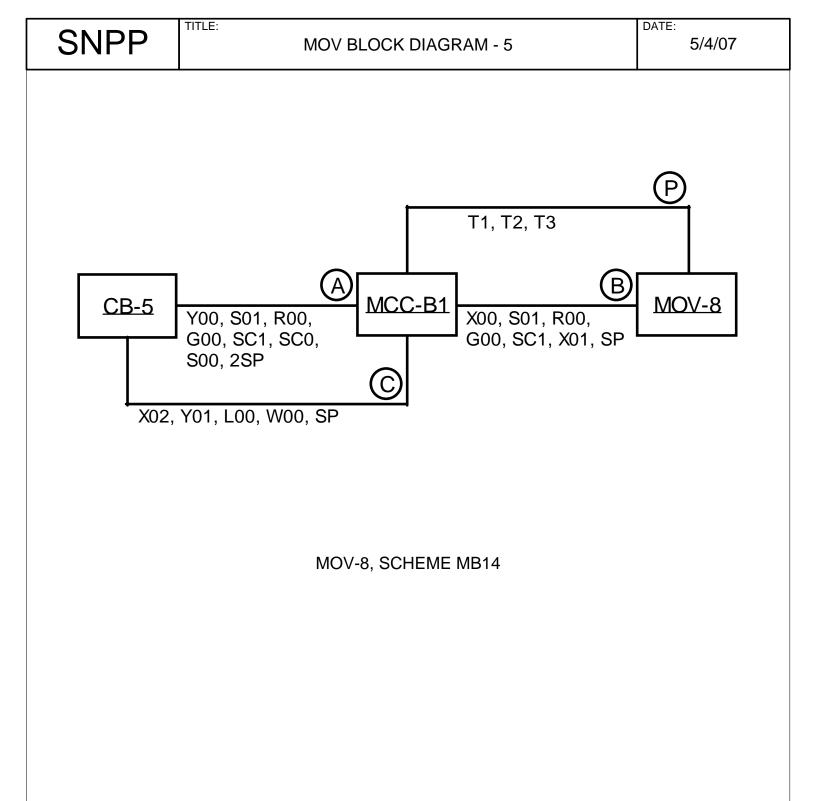


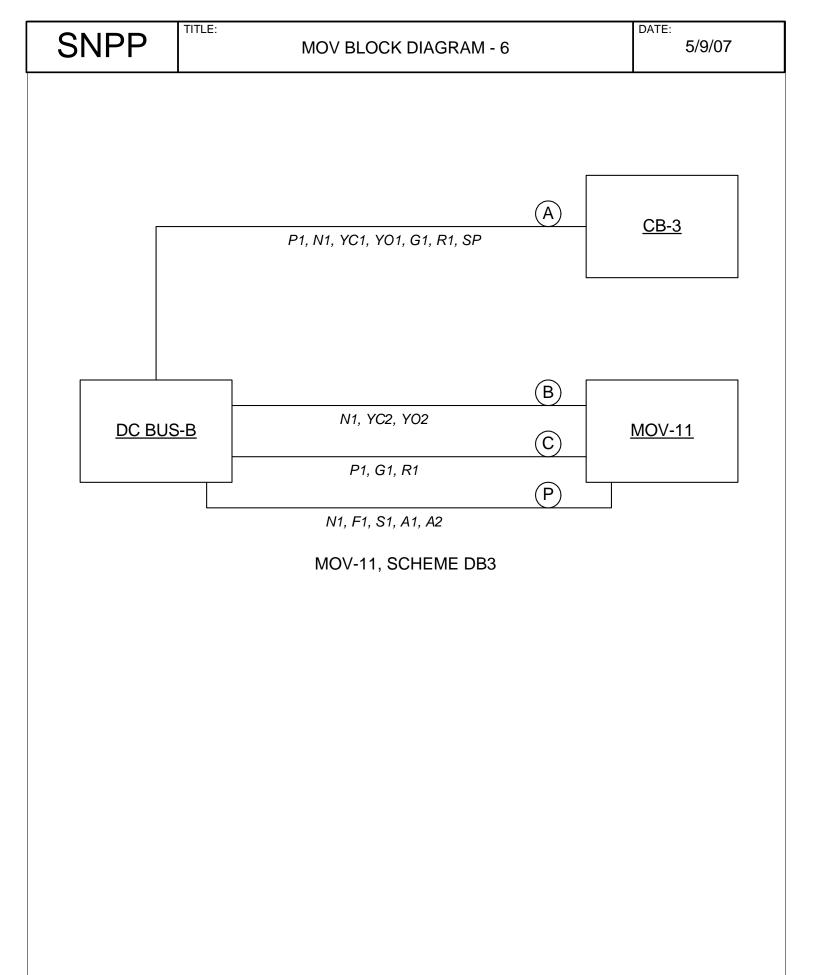



Tab 3.10:

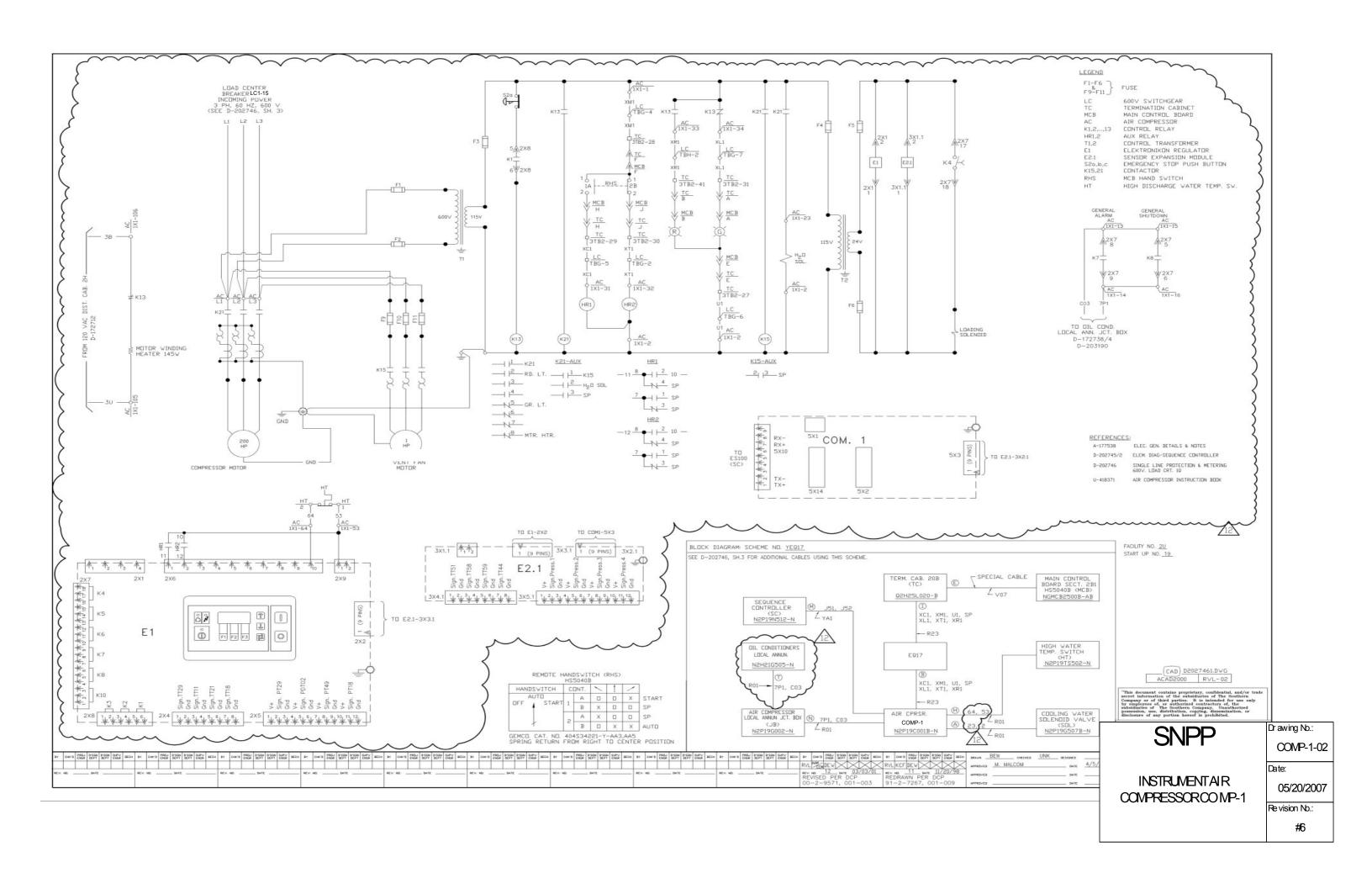

Drawing Package #2

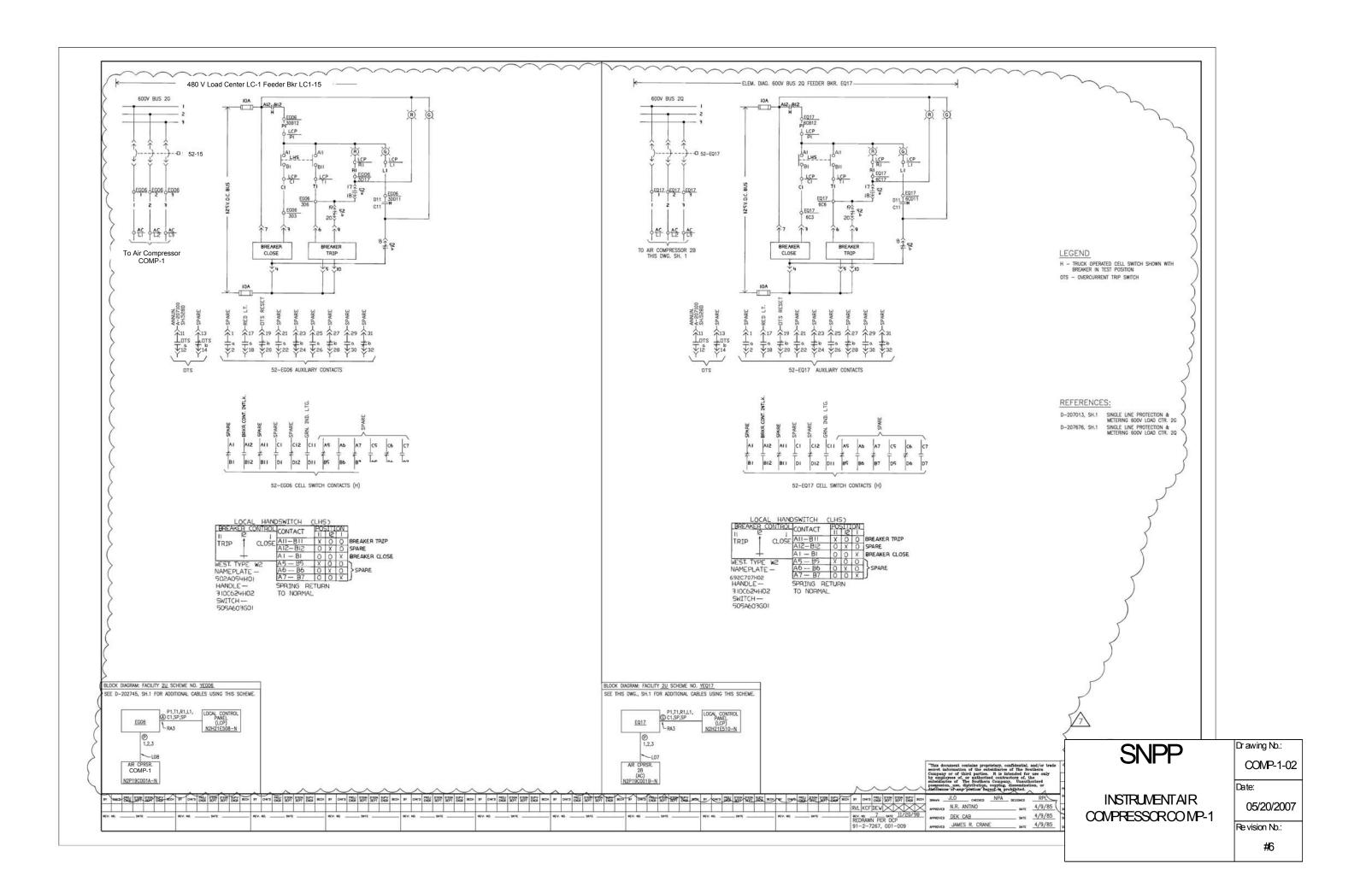

SNPP		MOV E	BLOCK DIAGR	AM - 1		5/4/07
MB		(A) 01, R00, 3C1, SC0, SP) MCC	T1, T2, T3 X00, S01, R0 G00, SC1, 29		P M
	Μ	MCC	CUBICLE	MB	<u>SCH</u>	EME
MO	/-1	MCC-A1	2	CB-5	MA	12
MO	/-3	MCC-A1	3	CB-5	MA	13
MO	/-4	MCC-B1	2	CB-5	MB	12
MO	/-5	MCC-A1	4	CB-5	MA	14
MO	/-6	MCC-B1	3	CB-5	MB	13
MO	/-7	MCC-A1	5	CB-5	MA	15
MO		MCC-B1	5	CB-5	MB	15
MO		MCC-A1	8	CB-3	MA	18
MO	/-17	MCC-B1	6	CB-3	MB	16

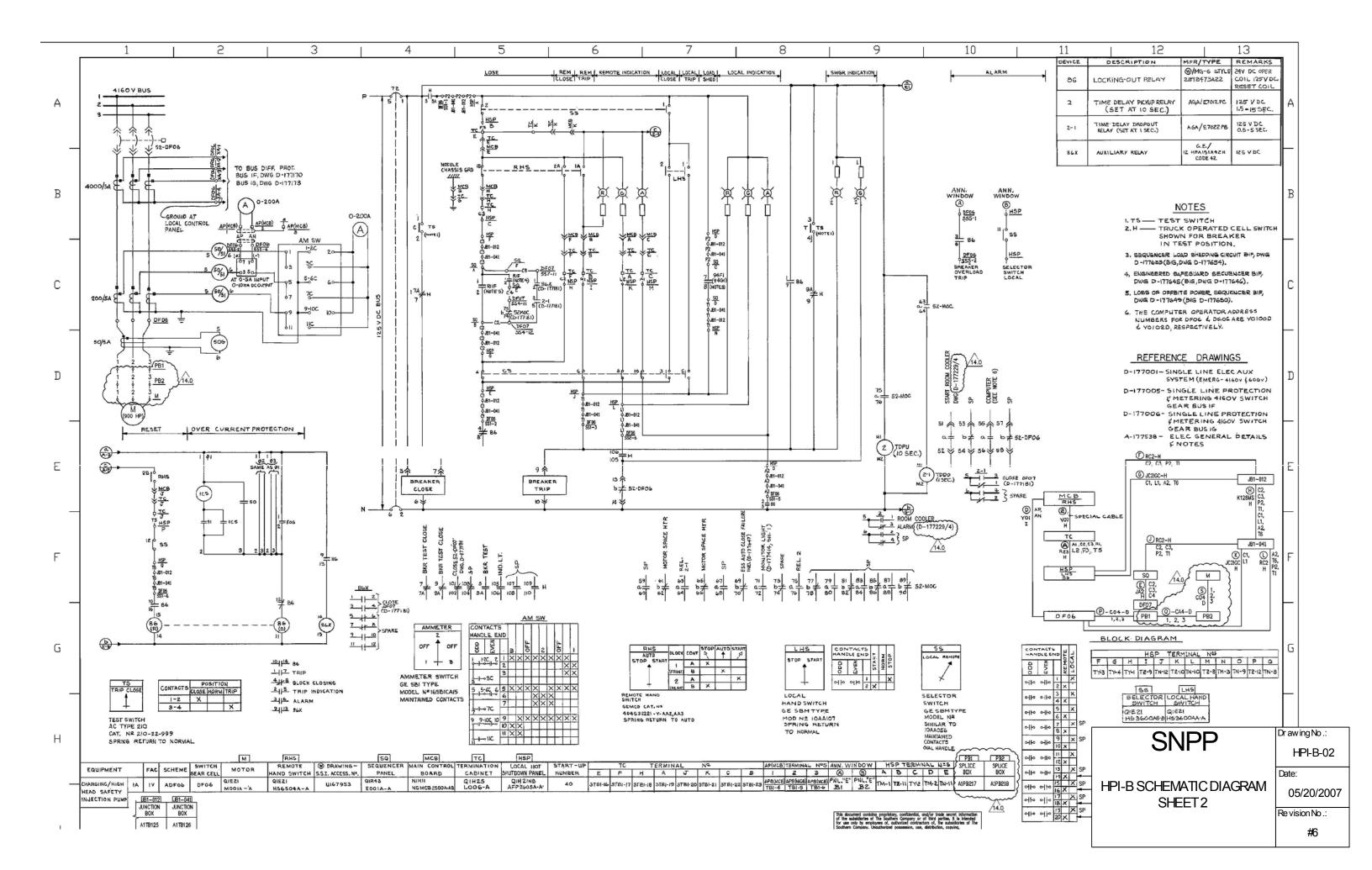


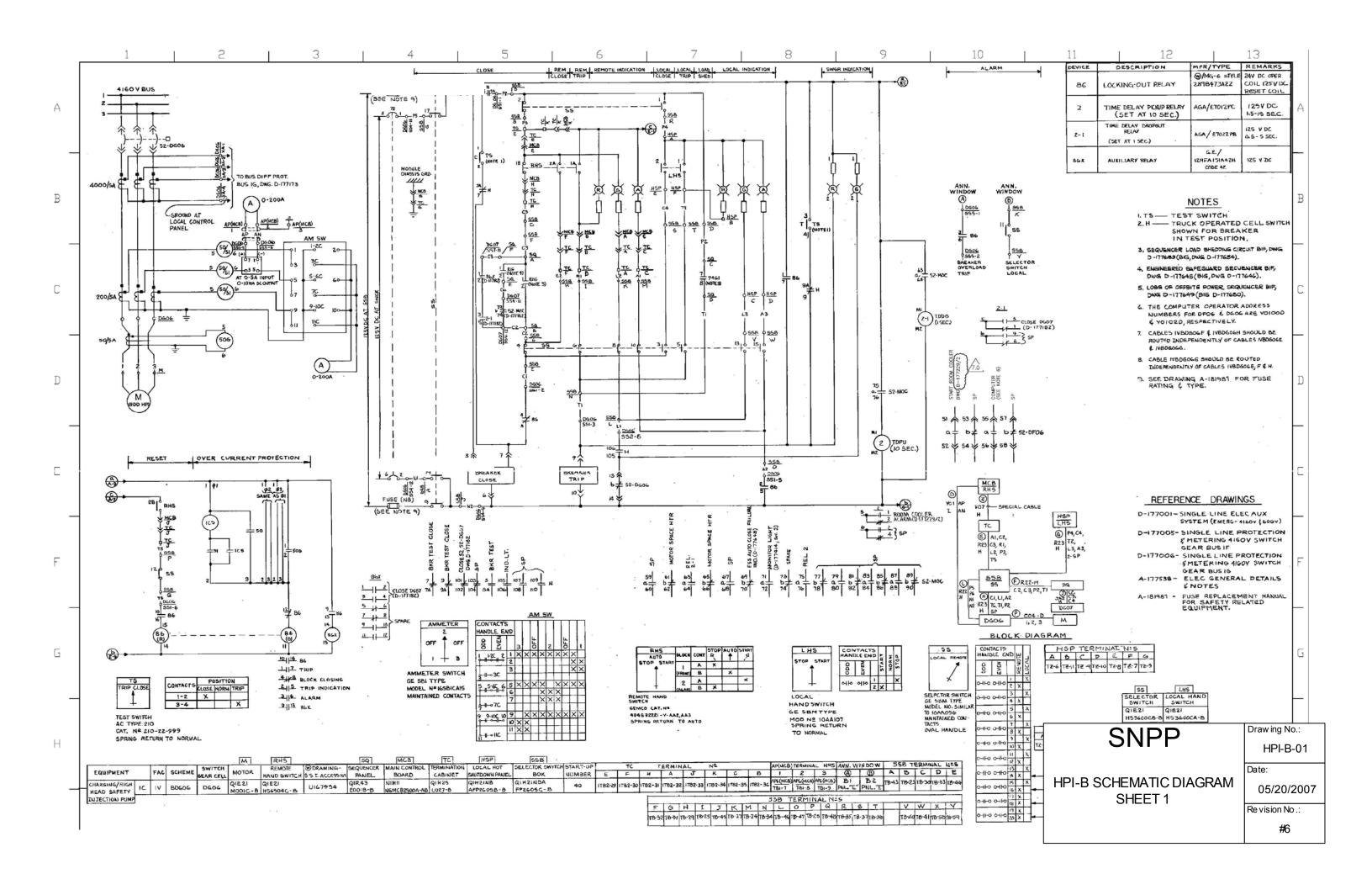

MOV-13, SCHEME MA17

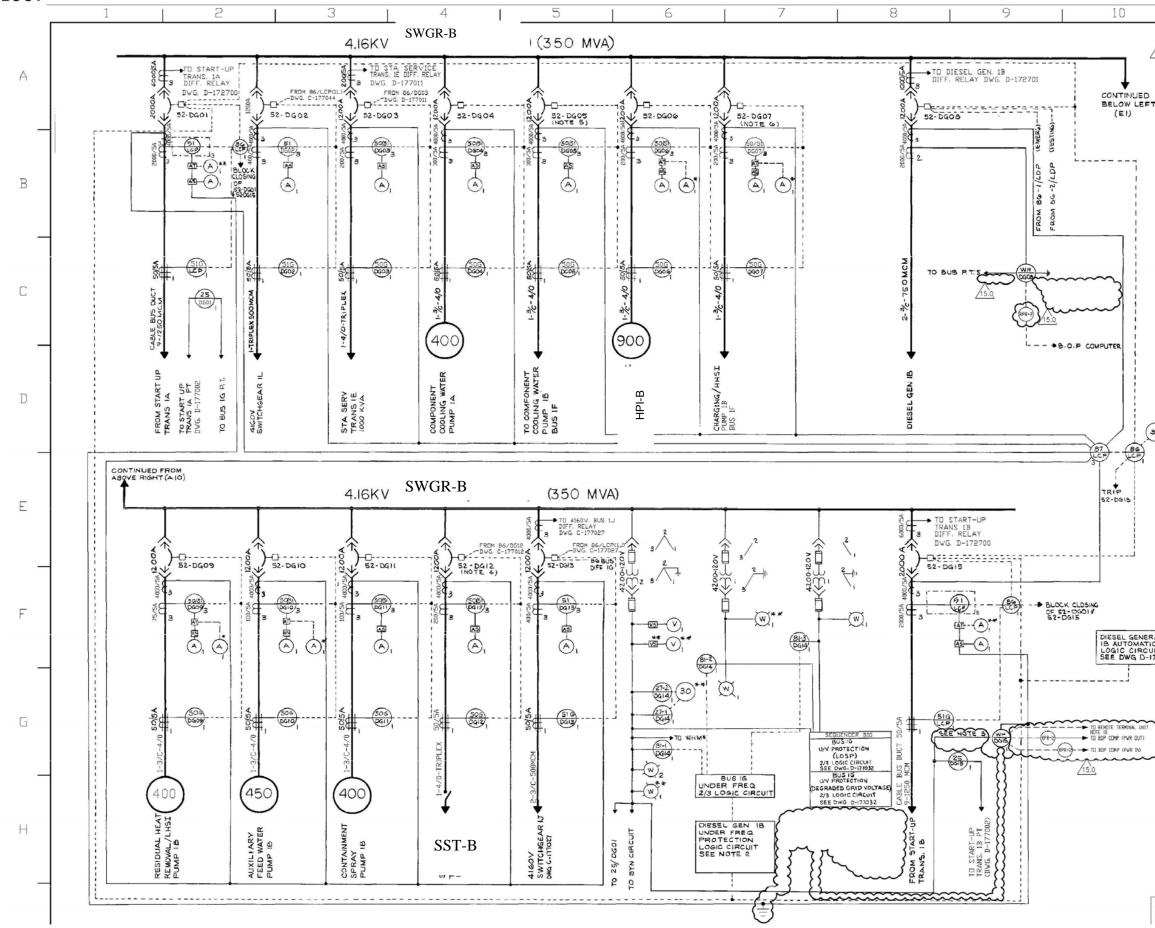
SNPP

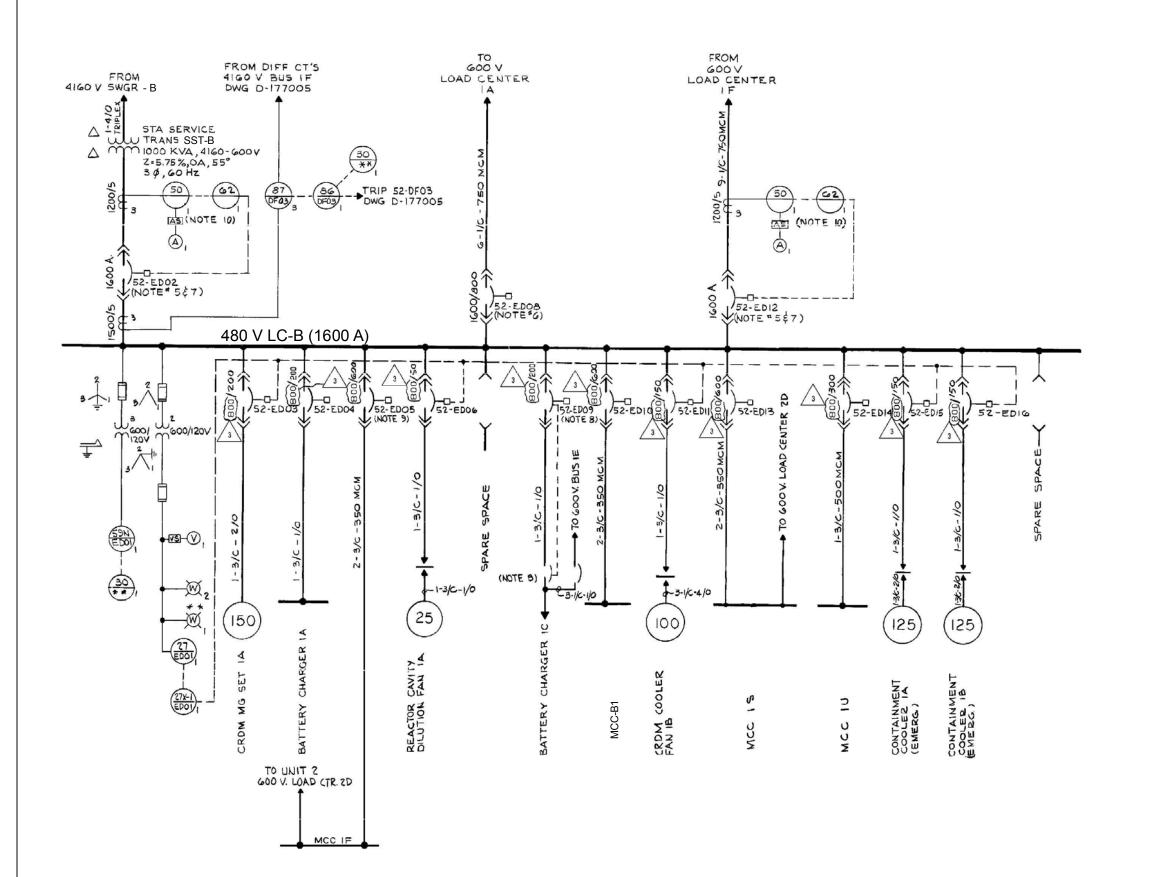

MOV-10, SCHEME MA16



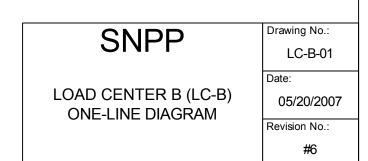



Tab 3.11 Part 1:


Drawing Package #3 Part 1

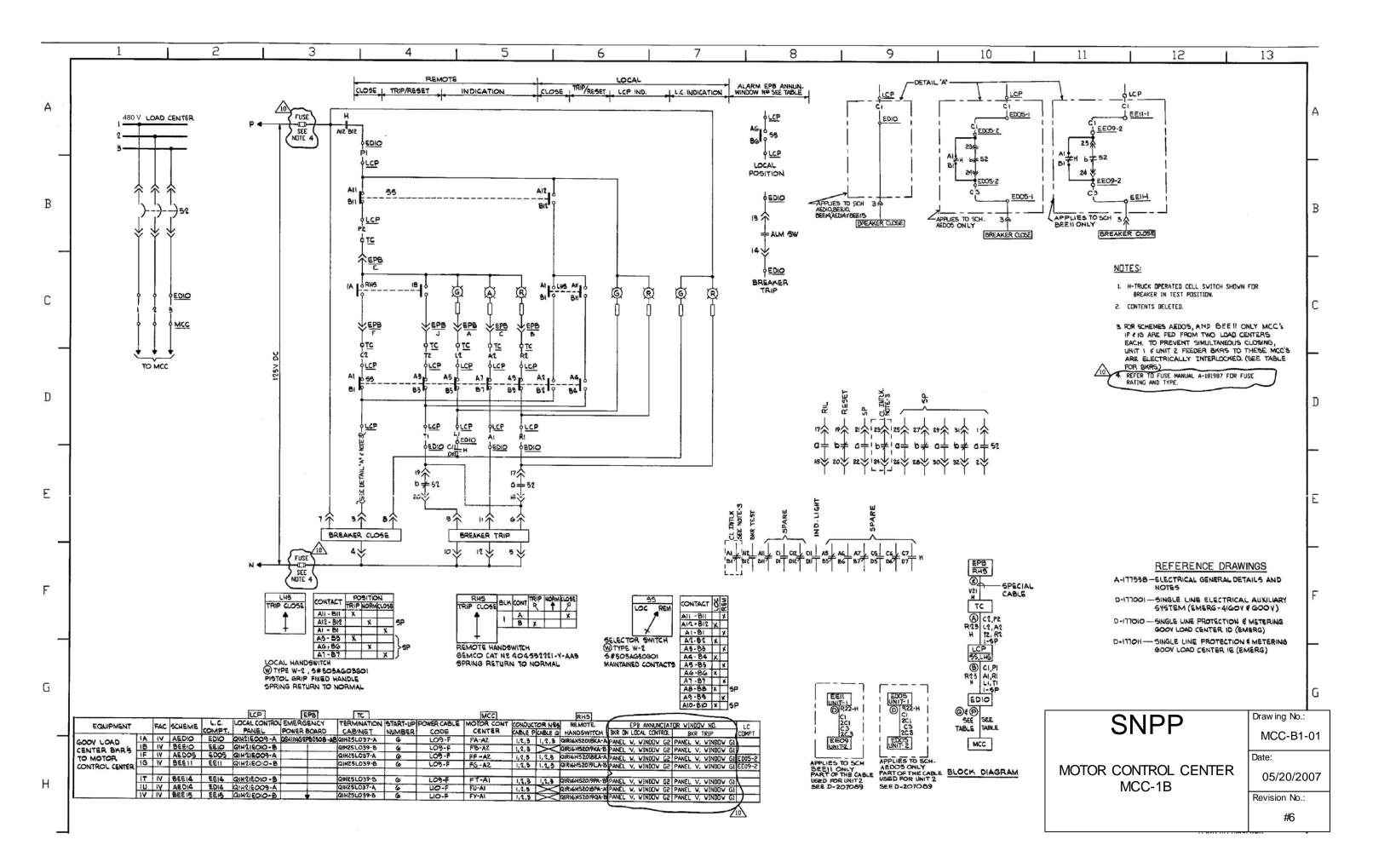


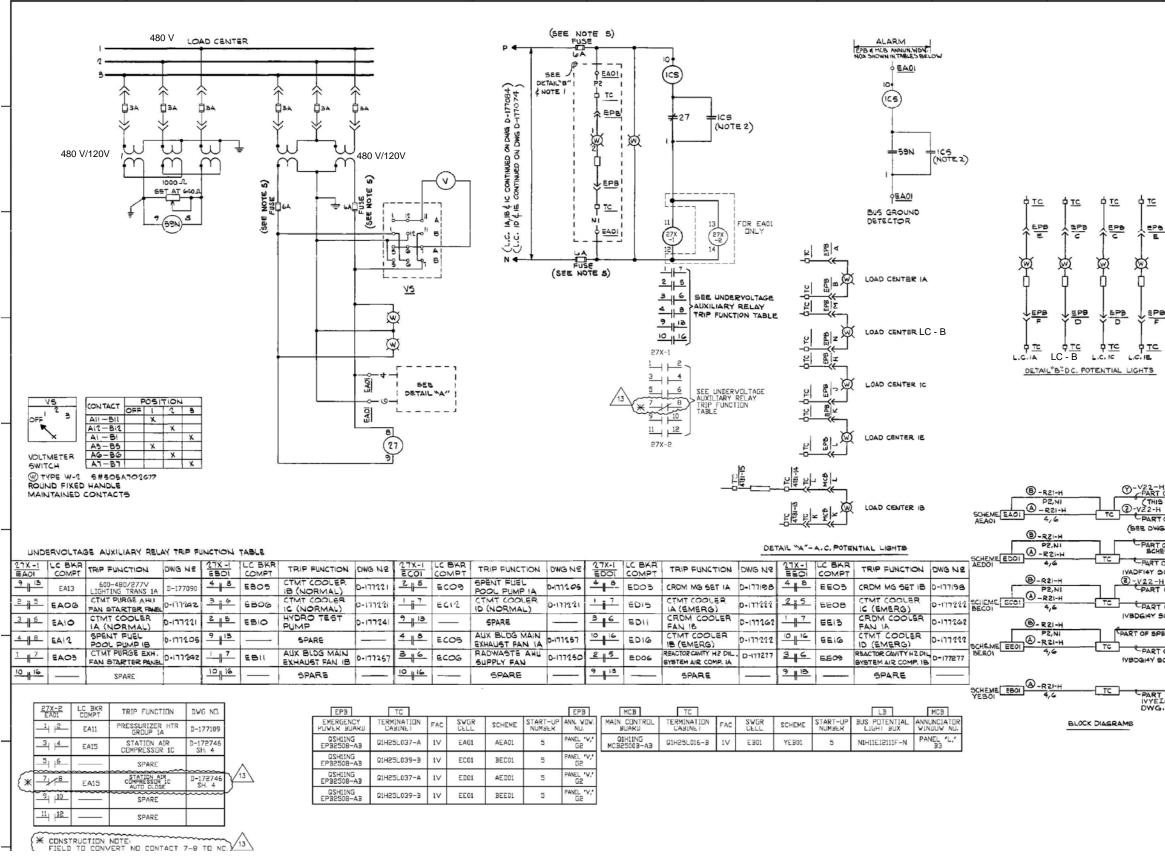
		4.4	~		10			
		11 12			13			
	DEVICE	DESCRIPTION	MFR/TYPE		REMARKS			
15.0		START UP TRANS IA OVER CURRENT RELAY DIESEL GEN IB	JEMSTAR					
5	DG08	WATT HOUR METER	JS05R6010			A		
	25	BUS IG SYNCHRONISM CHECK		APPLK	CABLE TO CELLS			
Ŧ	SEE REMARKS			DGOI	¢ DG15			
	DGOZ	4 GOV SWITCHGEAR IL OVER CURRENT RELAY	GE/IAC538					
	50G	GROUND SENSOR RELAY	GE/PJCINAY		CABLE TO CELLS			
	SEE REMARKS			TO D	TO DG07, DG09			
	50/51	STA SERV TRANS IE	GE/IAC 538					
	DG03	OVER CURRENT RELAY COMP COOLING WATER FUMP IA	CELEACCE			В		
	50/51 DG 04	OVER CURRENT RELAY	GE/ LACOD					
	50/51 DG05	COMP COOLING WATER PUNP IB	GE/IAC66B					
	50/51 DG06	CHARGING/HHSI PUMP 1C DVER CURRENT RELAY	GE/IACGGB			-		
	50/51	CHARGING/HHSI PUMP 18	GE/IAC GOB					
	DG07	VER CURRENT RELAY	GE/IAC54A		ABLE TO CELLS			
	SEE REMARKS	RELAV		DGC2	¢ DGIS			
	50/51 DG09	RHR/LHSI PUMP A	GE/IACGGB					
	50/51 DG 10	AUX FEED WATER PUMP IB	GE/IAC66B					
	50/51 DG11	CTMT SPRAY PUMP 18 OVER CURRENT RELAY	GE/IACGGB			_		
	50/51 DG12	STA SERV TRANS IF	GE/IAC53B					
	51	4160V SWITCHGEAR IJ	GE/IAC535					
	DG13	OVER CURRENT RELAY	GE/HEA			D		
30)	LCP 87	BUS DIFFERENTIAL LOCKOUT RELAY BUS 16 DIFF. PROTECTIVE	GE/PVD/C					
	the	RELAY	hims					
ξ	RPR-2	REPEATING PULSE RELAY		RELAY	PNL A			
1	27-1,2 DG14	BUS IG UNDER VOLTAGE RELAY	GETIAV54E	~	< <u>}/15.0</u>			
	TG15	START-UP TRANS 18 WATT HOUR METER	JEMSTAR		كممر			
1	has		JS05R6010 -B6-DNP	كرر		E		
	81-(1,2,43) DG14	BUS IG UNDER FREQUENCY RELAY	GE/SFF201B1A	1B 2/3	L GENERATOR			
	LCP	START UP TRANS IB	GE/IACS3B					
	BG	OVER CURRENT RELAY START UP TRANS IB LOCKOUT RELAY	GE/HEA					
		START UP TRANS IN LONGAUT	GEIHEA					
	51G	VERY INVERSE TIME GROUND	GE/IAC 54 A	APPLI	CABLE TO			
ļ	LCP	RELAY				-		
						F		
ATOR								
C STA	RT	NDTES:						
77032	2	ROOM,						
	/	2. DIESEL GENERATOR UND FUNCTIONS ONLY WHEN D 15.0 PARALLEL WITH SYSTEM	ER FREQU	ENCY OPEF	PROTECTION RATING IN			
	Z	3. WH METER IS BI-DIRECTION		\sim	~~~~~			
		A FOR REVINTERLOCKING OF	BKE 52-DG	12 (SEE	ONG.C-111(8)			
		5 FOR KEY INTERLOCKING OF	BKR. 52-00	05(SEE	DWG.C-17719)	G		
5		G FOR KEY INTERLOCKING OF 7. LCP - DENOTES LOCAL CO	NTROL PANE	LL.	E 0W0.0-11/120			
)		8. **- DENOTES EMERG, PO ROOM			AIN CONTROL			
	Z		MAIN CONTRE		<u> </u>			
		REFERENCE DRAWI			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		D-177001 SINGLE LINE E	LEC. AUX. S	YSTEM	KEMERG.			
).		Draw ing No.:			
	SNPP							
					GWGR-D-	51		
			-		Date:			
		4.16 KV SWGR	-В		05/20/200	77		
"This d and/or	oc ta	ONE-LINE DIAGF	RAM		00,20,20			
of The intende	Se d				Revision No.:			
					#6			


L		1.1.	1.		10	
1	DEVICE	DESCRI	PTION	MFR/TYPE	REMARKS	i
	50 NOTE 10		TRANSF. ID	GE/PJCB2G		
	NOTE 10	TIME DELAY	RELAY	AGASTAT/		
	50 NOTE IO		T RELAY, 30, FOR			
	62 NOTE 10	TIME DELAY	RELAY	AGASTAT/ ETOIZPA		
	87 DF03	STA SERVICE		0E/1251D1505A		ł
	DFOB	STA. SERVICE		G.E./HEA		
	EDOI	BUS ID OVER RELAY (GROUND	VOLTAGE DETECTION)	WEST/CV-8		
	EDOI	BUS ID UNDER	VOLTAGE RELAY	WEST/CV-2		
	27X-1 EDOI	BUS ID UNDER		WEST/MG-G		

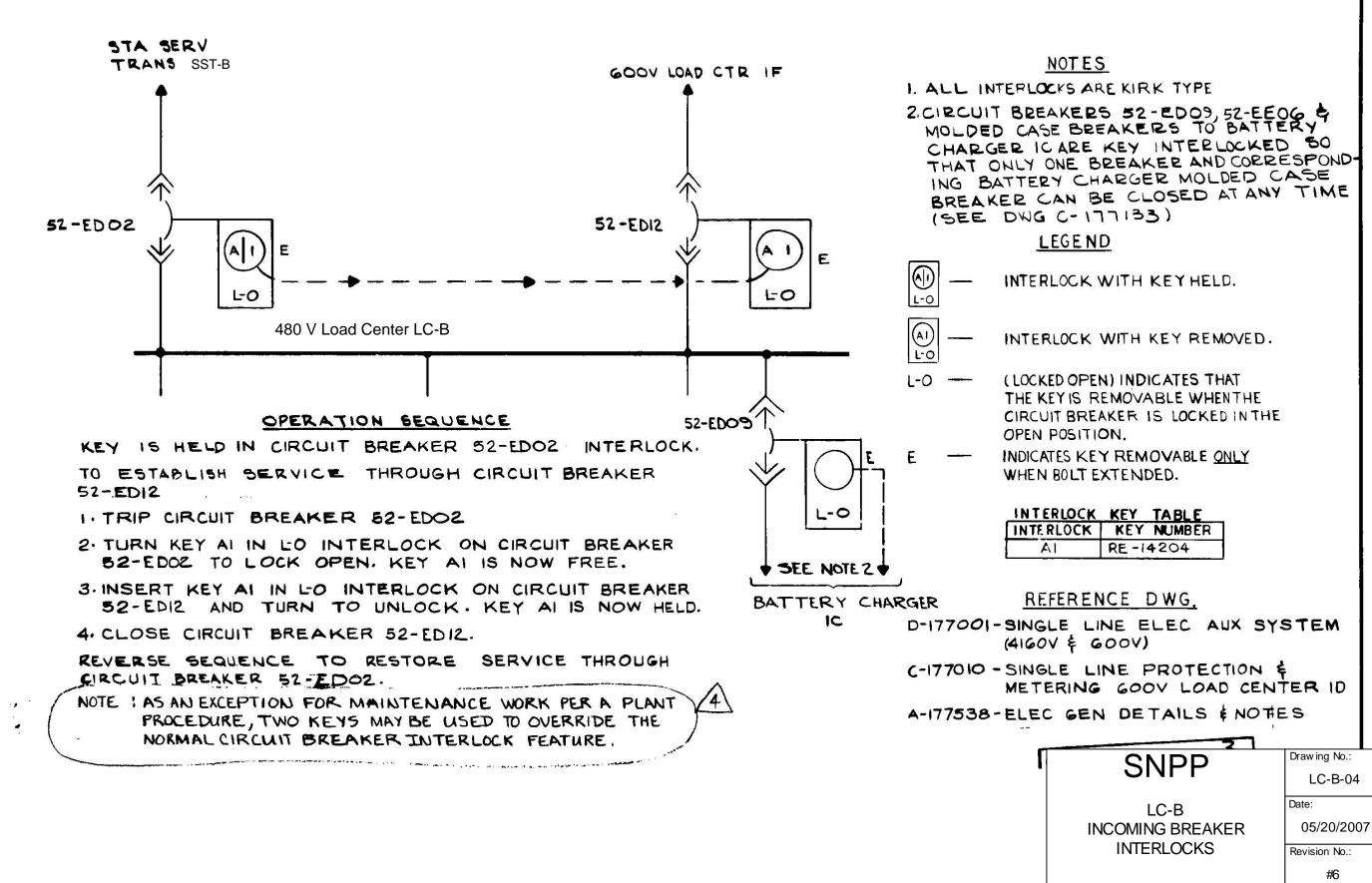
NOTES

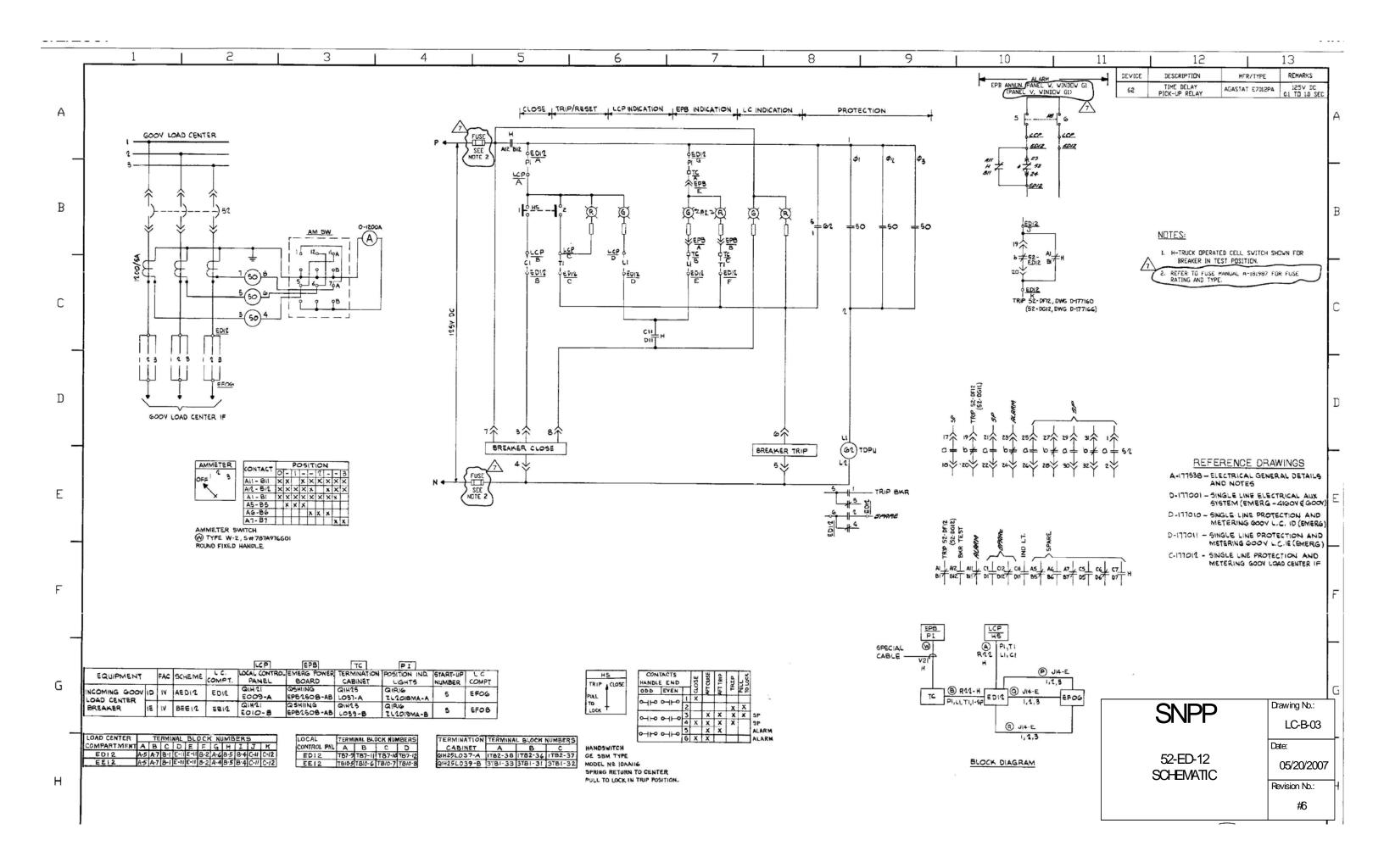
- I. ** DENOTES EMERG. POWER BOARD IN MAIN CONT.RM.
- 2 INTERRUPTING RATING OF ACB'S IS 22,000 AMPS RMS SYMMETRICAL (MIN) 3. BUS SHORT CIRCUIT RATING 22,000
- AMPS SYMMETRICAL.
- 4. STATION SERVICE TRANSFORMER "ASKAREL" TYPE.
- 5. BREAKERS 52-EDOZ AND 52-EDIZ ARE KEY INTERLOCKED SO THAT ONLY ONE CAN BE CLOSED AT ANY TIME (DWG, B-177 125)
- 6. BREAKERS 52-EDOB AND 52-EA09 (ON GOOV. BUS IA) ARE OPERATED BY A SINGLE CONTROL SWITCH IN THE MAIN CONTROL ROOM.
- 7. ALL BKR'S EXCEPT 52-EDO2 & 52-EDI2 HAVE SOLID STATE TRIP UNITS WITH FOLLOWING DESIGNATIONS (BREAKER FRAME/SENSOR RATING - AMPERES)
- 8. BREAKERS 52-EDO9, 52-EEOG AND MOLDED CASE BKRS. TO BATTERY CHARGER IC ARE KEY INTERLOCKED SO THAT ONLY ONE BREAKER AND CORRESPONDING MOLDED CASE BKRS (AN BE CLOSED AT ANY TIME (DWG-C-17133).
- 3. UNIT I BREAKER EDOG IS ELECTRICALLY INTERLOCKED WITH UNIT Z BREAKER EDOS TO PREVENT SIMULTANEOUS CLOSING OF BOTH BREAKERS.
- 10, LOCATED IN TERMINAL BLOCK COMPARTMENT ABOVE ASSOCIATED BREAKER,
- 11. THIS DRAWING SUPERSEDES DRAWING C-177010, SHT 1 DF 1. REV. 14, DATED 11-15-90, PER PCN S-93-1-8690, REV. 0.

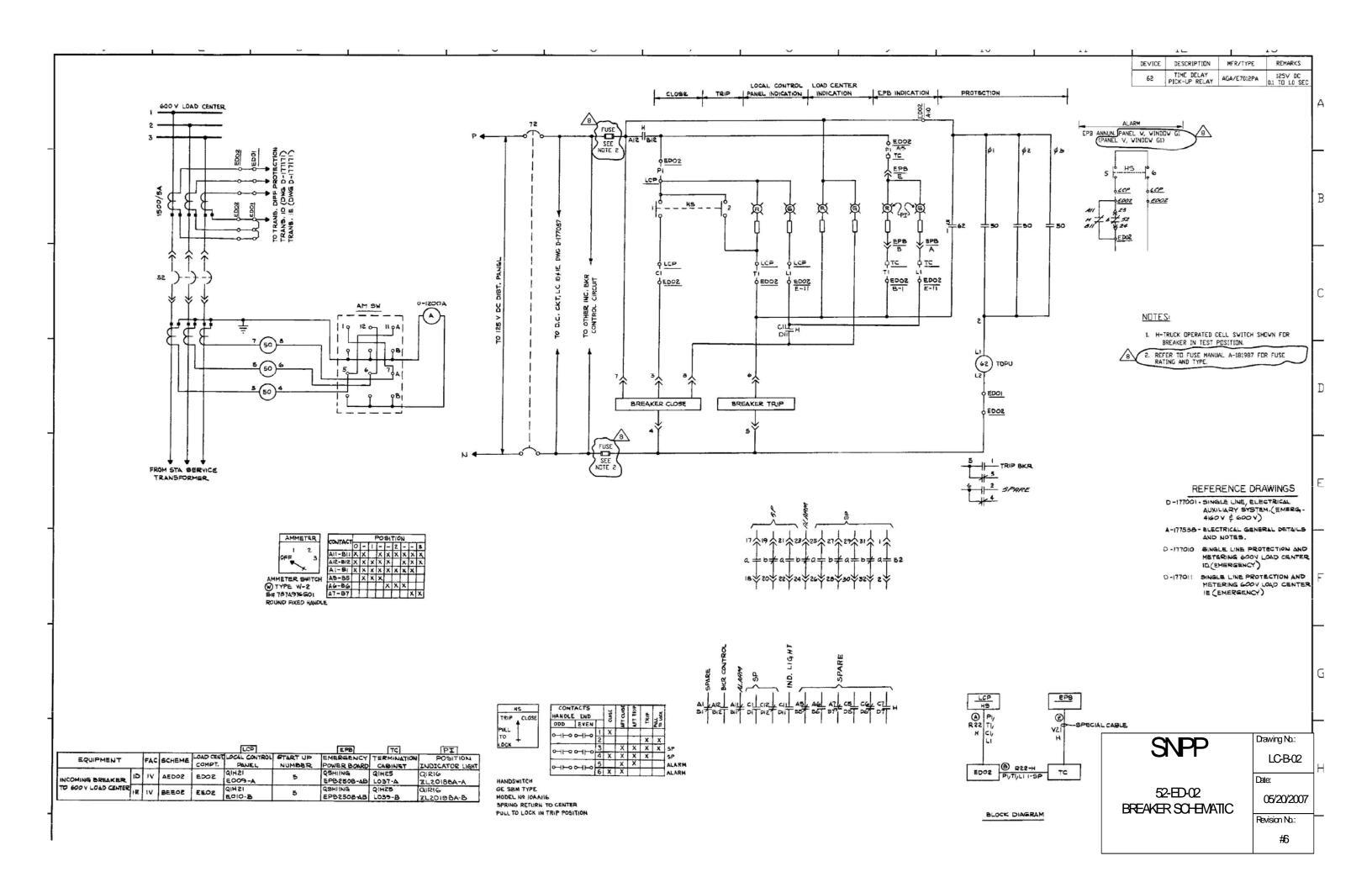

REFERENCE DRAWINGS

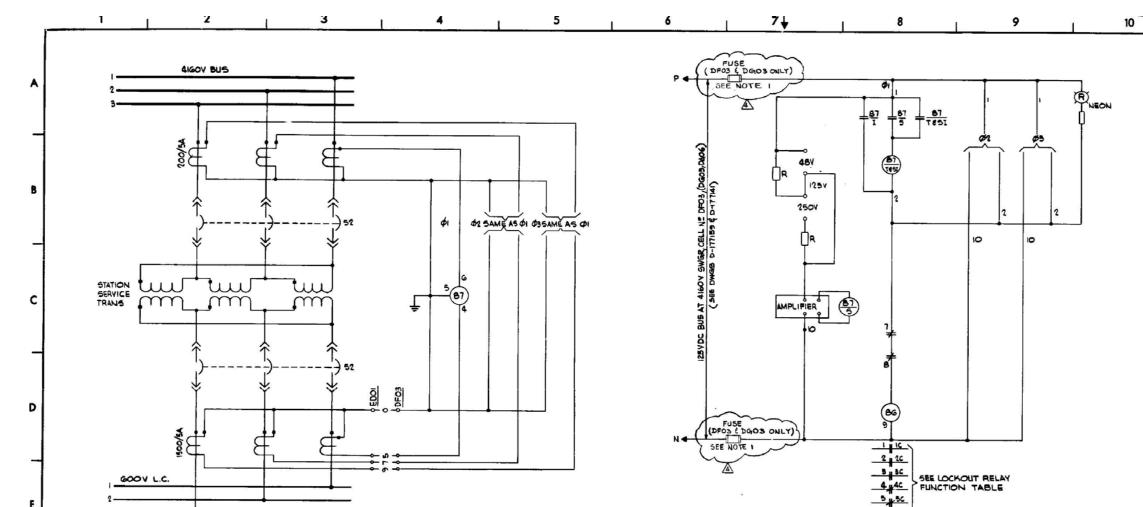

A-177538 - ELECTRICAL GENERAL DETAILS & NOTES D-177001 - SINGLE LINE ELEC, AUX. SYSTEM (4160 & 600V)

Tab 3.11 Part &:


Drawing Package #3 Part G



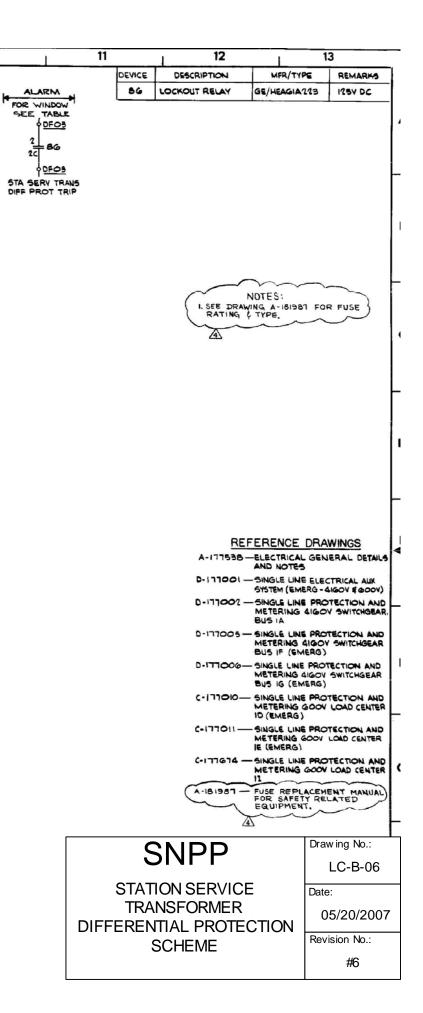



1 2 3 4 5 6 7 8 9 10

I.	11	1 12		13	-
	DEVICE	DESCRIPTION	MFR / TYPE	REMARKS	1
	27X -1	UNDERVOLTAGE	₩/MG-6	125 V DC]
	27X-2	UNDERVOLTAGE AUXILIARY RELAY	GE/HFA	125V DC	
					В
TC					
		NDTES			F
E		I. DOES NOT APPL	Y TO EBOI.		i i
		2. SEAL IN CONTA			
		3. CABLE FOR 1 4. CABLE FOR	A.C. POTENTIA	L LIGHTS.	
		5. SEE DRAWING A-1 TYPE (LC COMPT'S EE01 DNLY).	81987 FER FUSE RA S EA01, EC01, ED01,	AND AND	
EPB		EEUI UNLY).			
F					
s					E
					\vdash
2-H		REFEREN	ICE DRAWIN	IGS:	E
	¢ C-172830) NOTE-	A-117538-E	ND NOTES	RAL DETAILS	
ART OF S	PECIAL CABLE		NGLE LINE ELEC		L
RT OF SP	NOT	D-171001-5	NGLE LINE ELECT		
			INGLE LINE PRO	TECTION AND	
2-H		E-3 V	ETERING GOOV	LOAD CENTER	F
	PECIAL CABLE (THIS NOTE-	C-11008-5	INGLE LINE PRO		
	LED ON DWG D-17716	3	NGLE LINE PROT	ECTION AND	
SPECIAL	CABLE WBECOIZ (THIS		TETERING GOOV		\vdash
	LED ON DWG D-177	D-177010 - 5	INGLE LINE PRO		
		10	(EMERG)		
ART OF S	NOTE- PECIAL CABLE SCHEDULED ON	MCB M	INGLE LINE PRO		E
WG. D-17	7086	A-161987 - F	USE REPLACE	MENT MANUAL	
		E	OR SAFETY RE	CATED	L
Г		• •• ••		Drowing Ma	
		SNPP		Drawing No.:	_
		~ · · · ·		LC-B-0	5
			_	Date:	
		DAD CENTER		05/20/20	07
	UNDER	VOLTAGE SC	CHEME		
				Revision No.:	
				#6	

+

LOCKOUT RELAY FUNCTION TABLE


	50 DF03	FUNCTION	DWG NE	86 0603	FUNCTION	DWG NE	86 DAO6	FUNCTION	DWG N2
	-1110	TRIP BAR 52-DFOS	C-177159	+ 10	TRIP BKR 52-DGO3	C-177159	1110	TRIP BAR 52-DAOG	D-177141
F	2 20	ALARM	THIS DWG	2 20	ALARM	THIS DWG	2 20	ALARM	THIS DWG
	3 30	SPARE	·	3 34	SPARE		3136	SPARE	
	4 40	SPARE		4 46	SPARE		444	BLOCK CLOSING	D-177141
	-5+5C	BLOCK CLOSING BKR 51-DFOB	C-177159	5 # 5C	BLOCK CLOSING BKR 52-DGO3	C-177159	5+50	SPARE	
	64.60	SPARE	-	6 66	SPARE		6,60	SPARE	

G

EQUIPMENT			SCHEME	SWGR	COMPARTMENT		ANNUNCIATO	
DIFFERENTIAL RELAY		17	ADFO3	DFOB	EDOI	5 5	EPB PANEL W	
TRANSFORMER	IE	IV	BDG03	DGO3	SEOI	5 }	EPB PANEL V	
	II	IV	XDAO6	DAOG	EIOI	5 }	MCB PANEL 'L'	
	OR STATION SERV	ANSFORMER IE	ANSFORMER IE IV	RANSFORMER IE IV BDG03	ANSFORMER IE IV BOGOS DGOS	ANSFORMER IE IV BDG03 DG03 EEOI	ANSFORMER	

DF03 ©0 R42 5 H 7 SED01 BLOCK DIAGRAM

6 . 00

