

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY GULF ECOLOGY DIVISION 1 SABINE ISLAND DRIVE • GULF BREEZE, FL 32561-5299 850-934-9200

September 3, 2008

OFFICE OF RESEARCH AND DEVELOPMENT

2000

SED 12

2

1: 23

Brid

U.S. Nuclear Regulatory Commission Attn: Mr. Bryan A. Parker USNRC Region I Division of Nuclear Materials Safety 475 Allendale Road King of Prussia, PA 19406-1415

Dear Mr. Parker:

03032959

A small laboratory room, located at a NOAA facility in Key Largo, FL, has not been occupied by US EPA scientists since the 1990's. Following a decommission of this laboratory, we respectfully request permission to remove the Key Largo facility located at 512 Caribbean Avenue, from NCR License 09-10672-03.

Enclosed are a comprehensive Radiological Survey Report, Certificates of Calibration, Instrument QC checks, copies of notebook pages recorded during decommission, copies of room diagrams with swipe (vial number), copies of scintillation vial numbers, and Contamination Wipe Test Survey Results.

Please contact Dr. Stephanie Friedman, RSO, at 850-934-2468. Thank you for your attention to this matter.

Sincerely,

Noam H. Bon in

William H. Benson, Ph.D. Director

Report for decommissioning of the NOAA laboratory at Key Largo, FL 29 August 2008

US EPA contacts: Dr. Stephanie Friedman, RSO Gulf Ecology Division, Gulf Breeze, FL 850-934-2468 friedman.stephanie@epa.gov

The purpose of this report is to remove, from our NRC license (Lic No 09-10672-03), the following statement from item 10, "...at 512 Caribbean Avenue, Key Largo, Florida" regarding the use of licensed material.

I. Facility to be decommissioned: NOAA National Underseas Research Program 514 Caribbean Drive Key Largo, FL 33037

Dr Otto Rutten, Associate Director 305-451-0233 X202

II. Laboratory/building information:

- the building is located at the above NOAA address in Key Largo, FL
- the laboratory is a room located on the first floor, underneath the housing area, and is referred to as a "chemistry lab" (see attached photo)
- no room number available
- room map and dimensions were prepared during a site-visit (enclosed in package)
- no additional rooms were used to store radioactive material
- material was transported by the user to this facility and then removed upon completion of the stay in Key Largo and returned to the Gulf Breeze EPA facility

PERSONAL INFORMATION WAS REMOVED BY NRC. NO COPY OF THIS INFORMATION WAS RETAINED BY THE NRC.

- Once the swipe/smear is performed, place the swipe in a Liquid Scintillation Vial (LSV) with 1 ml of de-ionized (DI) water. Annotate the sampling location and number on the cap of the liquid scintillation vial and the Swipe/Smear Survey Map.
- Place the liquid scintillation vial in a LSV tray.
- After all swipes are taken and placed in LSVs, package the tray for shipment by encasing the LSV tray in plastic wrap to prevent tampering and attach a Chain of Custody Seal(s) to the wrapped tray that will provide evidence of sample tampering.
- Fill out a Chain of Custody Transfer Form for every 10 or less sample locations per survey unit.

Gamma Scan Survey

A general area gamma scan survey will be conducted in and around the building in question to be decommissioned. General area exposure rate readings (μ R/hr) will be taken and annotated on a Sampling Survey Map.

The Eberline E-600 Scalar rate meter coupled to a Eberline SPA-6 gamma probe was selected for performing general area gamma surveys. This instrument configuration was selected for its general applicability for this type of work. The instrument combination was selected for use in determining if any area had elevated gamma exposure rates.

Waste Management

Waste streams associated with survey and sampling activities include use PPE (Tyvek and Gloves). If not suspected of being contaminated, these items will be disposed of as refuse/trash. If contamination is suspect, based on survey data, PPE will be bagged as potentially radioactive waste and turned over to the US EPA GED RSO for proper disposition.

Documentation of Surveys and Swipe/Smear Samples

Once a survey is completed, all survey data forms and maps will be reviewed by the sampling team. Upon completion of the review, each individual survey package, one for each survey unit, will be presented to the US EPA Gulf Ecology Division Facilities Manager as a documented record of survey and sampling performed. The GED RSO will be provided all chain of custody forms for shipment of Swipe/Smears requiring analyses.

III. GED licensed isotope information and other chemicals used at the Key Largo facility:

- 3 H in the form of 3 H-methyl thymidine (approx 5 mCi total)
- ${}^{14}C$ in the form of ${}^{14}C$ bicarbonate (approx 25 mCi).
- any possible additional chemicals used may have been in the form of organics and not radioactive

IV. The EPA, Gulf Breeze, used this facility in the 1990's by the following investigators:

- Dr Wade Jeffrey
- Dr Rick Coffin
- both investigators were interviewed in 2007 as to isotope use, room, quantities, concentrations, etc.
- both investigators no longer work at EPA, Gulf Breeze, FL.

V. Decommissioning approach:

- The GED RSO will supply swipes and liquid scintillation vials to be used for swipe sampling.
- The GED RSO will coordinate sample shipment and any laboratory analyses of samples collected and submitted to US EPA RSO (Todd Baker) at Research Triangle Park (RTP), NC.
- Qualified radiation decommissioning personnel will provide proper survey equipment and supply copies of equipment calibration documents of survey instrumentation.
- The decommissioning staff will conduct 100% beta surveys of survey units in the buildings to be decommissioned as directed by the Montgomery EPA and/or NOAA staff based on site history and radiological use.
- The decommissioning staff will conduct swipe sampling of the survey units after review of the survey results. Swipe samples will be packaged by the decommissioning staff to provide Chain of Custody transfer of the samples.

Equipment and Materials

- Preprinted Survey unit maps and data forms (plan view of area, items or equipment to be surveyed.
- Minimum 10 foot metal rule tape measure
- Fine Tip indelible marker (black ink)
- Swipe Smears (as requested by laboratory performing analyses)
- Liquid Scintillation vials (as request by laboratory performing analyses)
- Ziploc or equivalent bags
- Sample Labels
- Chain of Custody Seals
- Chain of Custody Forms
- Tyvek pants
- Steel Toed Boots
- Hard Hats (available for use if required)
- Eberline E-600 with Ludlum 43-89 probe calibrated for beta measurements

Prerequisites

Ensure that all personnel are provided a safety briefing by the NOAA Facility Manager prior to commencing work.

Ensure Survey/Sampling Team is provided proper PPE for area to be surveyed based on area postings and any GED site control requirements.

Beta Scan Surveys

The Beta Scan surveys will include 100 percent coverage of floors and countertops. A wall/vertical surface survey will be conducted 3 foot up from any floor and 18" up from any countertop that is adjacent to a horizontal surface being surveyed.

The Eberline E-600 Scalar ratementer coupled to a Ludlum Model 43-89 alpha/beta probe was selected for performing beta scan surveys. This instrument configuration was selected for its general applicability for this type of work. The instrument was operated in the Beta only operating mode to provide the highest efficiency for identifying elevated beta activity concentrations.

Verify the instrument has been calibrated and that the instrument has been response checked to respond to beta radiation.

With the instrument in operation and held at a height not to exceed 2 cm above the area to be surveyed begin scanning surfaces at a rate of speed not to exceed 2 in/sec. Using the audible response of the instrument, stop over areas of increased activity to determine if any area exceeds twice the background/reference count rate/activity. Annotate on survey forms any area exceeding twice background otherwise annotate the range of gross beta concentration in dpm/100cm². Mark the area of increased activity by circling the area with tape/paint/indelible marker, etc. and on the Sampling Survey Map.

NOTE: Areas marked will be used to determine swipe sampling locations. Beta Swipe/Smear Sampling

- Smear sampling will be conducted after review of the 100 percent Beta Scan Surveys to determine sampling points. Additional swipe survey locations will be randomly selected to provide a minimum of 30 swipe/smear samples per survey unit.
- Survey/Sampling Team member performing swipe/smear sampling will change gloves at each survey unit at a minimum, and as needed thereafter.
- At each sampling point, remove a single smear and wipe the smear over an area of approximately 100 cm² (wipe area of approximately 4 inches by 4 inches or an "S" pattern approximately 16" long).

US EPA NAREL Radiological Survey Protocol For US EPA GED – Key Largo, FL Lab Decommissioning

Scope

This procedure describes the methods and techniques used by the US EPA (Environmental Protection Agency) NAREL (National Air and Radiation Environmental Laboratory) personnel to be employed when performing surface contamination surveys and conducting swipe/smear sampling as part of characterization/final status surveys for decommissioning of survey units for the US EPA Gulf Ecology Division (GED) Key Largo laboratory (NOAA Facility) that require radiological clearance prior to removal from NRC license (License No. 09-10672-03).

The purposes of the described survey and sampling effort are:

- To determine the extent and magnitude of contamination (if any) on laboratory and equipment surfaces.
- To ensure that levels of personnel protective equipment (PPE) worn during characterization and any subsequent remediation activities are adequate for the protection of workers based on any identified radiological conditions.
- To ensure the establishment of appropriate site controls, as necessary for communicating the risk to any identified radiological condition.

Applicability

This procedure applies to the characterization/final status survey and sampling activities being conducted by US EPA NAREL personnel to survey units requiring clearance as identified by the GED Radiation Safety Officer (RSO).

Responsibilities

- The GED RSO will supply swipes and liquid scintillation vials to be used for swipe/smear sampling.
- The GED RSO will coordinate/facilitate sample shipment and any laboratory analyses of samples collected with the US EPA Research Triangle Park (RTP) RSO.
- The US EPA NAREL personnel will select and provide proper survey equipment and supply copies of equipment calibration documents of survey instrumentation.

- The US EPA NAREL personnel will conduct beta surveys of survey units in the buildings to be decommissioned as directed by the GED RSO based on site history and radiological use.
- The US EPA NAREL personnel will conduct swipe sampling of the survey units after review of the survey results. Swipe samples will be packaged by US EPA NAREL personnel in order to provide "Chain of Custody" transfer of the samples.

Equipment and Materials

- Survey unit maps and data forms (plan view of area, items or equipment to be surveyed.
- Minimum 10 foot metal rule tape measure
- Fine Tip indelible marker (black ink)
- Swipe Smears (as requested by laboratory performing analyses)
- Liquid Scintillation vials (as request by laboratory performing analyses)
- Ziploc or equivalent bags
- Sample Labels
- Chain of Custody Seals
- Chain of Custody Forms
- Tyvek pants
- Steel Toed Boots
- Hard Hats (available for use if required)
- Eberline E-600 with Ludlum 43-89 probe calibrated for beta measurements
- Eberline E-600 with Eberline SPA-6 gamma probe calibrated for gamma measurements

Prerequisites

Ensure that all personnel are provided a safety briefing by the NOAA Facility Manager prior to commencing work.

Ensure Survey/Sampling Team is provided proper PPE for area to be surveyed based on area postings and any GED/NOAA site control requirements.

Beta Scan Surveys

The Beta Scan surveys will include 100 percent coverage of floors and countertops. A wall/vertical surface survey will be conducted 3 foot up from any floor and 18" up from any countertop that is adjacent to a horizontal surface being surveyed.

The Eberline E-600 Scalar ratementer coupled to a Ludlum Model 43-89 alpha/beta probe was selected for performing beta scan surveys. This instrument configuration was selected for its general applicability for this type of work. The instrument will be operated in the Beta only operating mode to provide the highest efficiency for identifying elevated beta activity concentrations.

NAREL personnel will verify survey instruments have been calibrated and that the instruments have been response checked to respond to beta radiation.

With the instrument in operation and held at a height not to exceed 2 cm above the area to be surveyed begin scanning surfaces at a rate of speed not to exceed 2 in/sec. Using the audible response of the instrument, stop over areas of increased activity to determine if any area exceeds twice the background/reference count rate/activity. Annotate on survey forms any area exceeding twice background otherwise annotate the range of gross beta concentration in dpm/100cm². Mark the area of increased activity by circling the area with tape/paint/indelible marker, etc. and on the Sampling Survey Map.

NOTE: Areas marked will be used to determine swipe sampling locations. Beta Swipe/Smear Sampling

- Smear sampling will be conducted after review of the 100 percent Beta Scan Surveys to determine sampling points. Additional swipe survey locations will be randomly selected to provide a minimum of 30 swipe/smear samples per survey unit.
- Survey/Sampling Team member performing swipe/smear sampling will change gloves at each survey unit at a minimum, and as needed thereafter.
- At each sampling point, remove a single smear and wipe the smear over an area of approximately 100 cm² (wipe area of approximately 4 inches by 4 inches or an "S" pattern approximately 16" long.
- Once the swipe/smear is performed, place the swipe in a Liquid Scintillation Vial (LSV) with 1 ml of de-ionized (DI) water. Annotate the sampling location and number on the cap of the liquid scintillation vial and the Swipe/Smear Survey Map.
- Place the liquid scintillation vial in a LSV tray.
- After all swipes are taken and placed in LSVs, package the tray for shipment by encasing the LSV tray in plastic wrap to prevent tampering and attach a Chain of Custody Seal(s) to the wrapped tray that will provide evidence of sample tampering.
- Fill out a Chain of Custody Transfer Form for every 10 or less sample locations per survey unit.

Gamma Scan Survey

A general area gamma scan survey will be conducted in and around the identified laboratory and NOAA Facility. General area exposure rate readings (μ R/hr) will be taken and annotated on a Sampling Survey Map.

The Eberline E-600 Scalar rate meter coupled to an Eberline SPA-6 gamma probe was selected for performing general area gamma surveys. This instrument configuration was selected for its general applicability for this type of work in determining if any area has elevated gamma exposure rates μ R/hr.

Waste Management

Waste streams associated with survey and sampling activities include the use of PPE (Tyvek and Gloves). If not suspected of being contaminated, these items will be disposed of as refuse/trash. If radiological contamination is suspect, based on survey data, PPE will be bagged as potentially radioactive waste and turned over to the GED RSO for proper disposition.

Documentation of Surveys and Swipe/Smear Samples

Once a survey is completed, all survey data forms and maps will be reviewed by the sampling team. Upon completion of the review, each individual survey package, one for each survey unit, will be presented to the GED RSO as a documented record of survey and sampling performed. The GED RSO will be provided all chain of custody forms for shipment of Swipe/Smears requiring analyses to US EPA RTP.

Summary of NAREL Personnel Actions

Gamma exposure rate survey measurements indicated no areas with increased gamma exposure rate above background. Background Gamma exposure rates ranged from $1.6 - 4.2 \mu$ R/hr. These measurements are consistent with the normal gamma background exposure rate for this area. A minimal detectable gamma exposure rate of twice the background readings is easily distinguishable with this instrument.

Beta contamination survey measurements indicated no areas with increased beta contamination above background. Background Beta measurements ranged from $2,200 - 2,700 \text{ dpm}/100 \text{ cm}^2$. Beta survey measurements ranged from $2,000 - 5,200 \text{ dpm}/100 \text{ cm}^2$. These measurements are consistent with the normal beta activity concentration measurements in the area. A minimum detectable beta contamination survey of twice the background is easily distinguishable with this instrument.

Swipe samples taken were shipped to US EPA Research Triangle Park (RTP), NC for analysis by the Radiation Safety Officer (RSO).

No radioactive waste was generated as a result of these surveys.

P:\SAMs Files\ER\Regional Support\GED Key Largo Facility\NAREL - GED_Key Largo Rad Survey Procedures_011608.doc

QUALIFICATIONS

A. The following individuals performed the sampling and testing at the Gulf Ecology Division:

Sam Poppell

- Health Physicist for USEPA
- 28 years of Radiation Experience
- 15 years as RSO or Deputy RSO
- On NAREL NRC License as User (NRC License No. 01-07317-01)
- EPA Radiological Emergency Response Team Commander

MS in Health Physics BS in Nuclear Medicine BS in Biology AS in Natural Sciences and Mathematics

1988 - Present	HP for USEPA
1987 - 1988	Georgia Tech HP Program
1985 - 1987	Alabama Radiation Health Program
1982 - 1985	Nuclear Medicine Program

David Kappelman

- Nuclear Engineer USEPA
- EPA Radiological Emergency Response Team Deputy Commander
- BS EEE (Electrical Electronic Engineer)

13 years experience with USEPA 8 years experience with DoD (US Navy)

Stephanie Friedman

B. Attachment (3) reveals the qualifications of the individuals that interpreted the results of the smear testing. $p_{enc} = p_{enc} + p_{enc} +$

P:\SAMs Files\ER\Regional Support\GED Key Largo Facility\QUALIFICATIONS of survey team_011608.doc

(100% Beta Survey of GED Lab in NOAA Building Continued)

<u>Location</u>	<u>Range</u> (per 100 cm2)
Floor	2.9K – 5.2K dpm
Countertop	2.0K – 3.4K dpm
Doorway Entry	3.2 – 4.7K dpm
Sink	3.2K dpm
Floor in Front of Sink	4.25K dpm
Left wall (including cabinets/doors)	2.3K – 3.8K dpm
Right wall (including cabinets/doors)	2.2K – 3.8K dpm
Back wall (including cabinets/doors)	2.7K – 3.4K dpm
Front wall (including cabinets/doors)	2.5K – 3.1K dpm

January 9, 2008

Smear / Swipe Sampling of GED Lab in NOAA Building

Location	<u>Number_of swipes</u>
Floor	21
Countertop	21
Doorway Entry	2
Sink	1
Floor in Front of Sink	1
Left wall (including cabinets/doors)	15
Right wall (including cabinets/doors)	16
Back wall (including cabinets/doors)	3
Front wall (including cabinets/doors)	3
Field QA Blanks	5
TOTAL	88

RESULTS

Attachment (1) provides a brief summary of the on-site results from the radiological survey. In summary, there were no areas with increased gamma exposure rate or evidence of beta contamination.

Attachment (3) provides the results and interpretation of the smear samples. In summary, all samples were indistinguishable from the blank or background sample at the 95% confidence level. Therefore, the sample sets did not detect any removable radioactive contamination.

P:\SAMs Files\ER\Regional Support\GED Key Largo Facility\DISCOVERY_011608.doc

DISCOVERY

The following is the information obtained during the radiological survey. Attachment (4) reflects sketches of subject buildings, suspect equipment and their associated test locations.

Fred Land

January 8, 2008

Gamma Exposure Rate Survey

Equipment: E600 Kit #3, SN 387 SPA 6 SN 494, Source Check 229 uR/hr, Cs137 Source 3294/703019. Background check was performed away from the suspect buildings with a reading of 2.61 uR/hr.

Equipment: E600 Kit #5, SN 363 SPA 6 SN 503, Source Check 200 uR/hr, Cs137 Source 3288/703015. Background check was performed away from the suspect buildings with a reading of 2.56 uR/hr.

NOAA Building. The outside gamma exposure rate survey ranged from 1.6 - 4.2 uR/hr and the inside gamma exposure rate survey ranged from 2.6 - 2.8 uR/hr.

100% Beta Survey of GED Lab in NOAA Building

E600 Kit #3 used in survey.

AM Equipment Check: E600 Kit #3, SN 387, Ludlum 43-89 Beta Probe SN 130516. Source Check 33.7K dpm, Pu239 Source 3295/703018. Source Check 32.5K dpm, Sr90 Source 3293/703020. Background Beta reading 2.7K dpm per 100 cm2.

PM Equipment Check: E600 Kit #3, SN 387, Ludlum 43-89 Beta Probe SN 130516. Source Check 34.9K dpm, Pu239 Source 3295/703018. Source Check 30.1K dpm, Sr90 Source 3293/703020. Background Beta reading 2.4K dpm per 100 cm2.

E600 Kit #5 was available as a backup.

AM Equipment Check: E600 Kit #5, SN 363, Ludlum 43-89 Beta Probe SN 145388. Source Check 24.8K dpm, Pu239 Source 3289/703009. Source Check 31.9K dpm, Sr90 Source 3287/703011. Background Beta reading 2.56K dpm per 100 cm2.

PM Equipment Check: E600 Kit #5, SN 363, Ludlum 43-89 Beta Probe SN 14388. Source Check 24.3K dpm, Pu239 Source 3289/703009. Source Check 32.3K dpm, Sr90 Source 3287/703011. Background Beta reading 2.2K dpm per 100 cm2.

Attacker 22 EPA GED/ORIS - NOAA facst. 4, Rod Secommissonce garne at 114 to de 01/06/08 - TRavel from Mom to Penesecola FC to prhip Stephonis Fundman, GEDRSO + Marphs - Cartinine traveling to work 5. fe - NOAA Lacitity Reptango, - Stopped overnight in Olando FE 01/07/08 - Cartined frond to key hars the - Arming they have Fr - your to NOAA Ancility to see alive it was ! 01/08/08 - Annue at NOMA facelity net with a otto 08:45 AM EST - Briefel an NOAA farility 10313Hors and HIS - Looked at the hab room will for Gen use - 0900 Starled Stasging Dungs not and removing Henry from -0915-1015 cleaned / sweep, remard de bris 4 nearined room if two plan dirigram

·15 Vial#5= 41,42,43,44,45,46,47,48,49,50,51 Left wall ۰. -٠ · 1.4 ς. \widetilde{m} 78K ٠. 7 C , # 50 2 = 1 = 20 -2.8K # 46 = 3.8K DOR <u>e (. . .</u> . 13 A . ×54 交差 3 # 48 9 6K X1. C# ••• #47 2.3K ŝ ., 81 "9E

10 A

.

Viw#s=17,18,14,21,22,23,24,25,26,27,28,29,30,31,32, Viw#s=17,18,14,21,22,23,24,25,26,27,28,29,30,31,32, TOP VIEW 1007. 33 floor Kit#3 room Survey back wall = 2.4 K #17 d of cabin =2.4K #18 =2.4K -2.7K #38 ~2.2K #19 ¥37 ≈ 2.41 2,6#27 3 26K clun-ord 1 # 3/0 ~2K Sink 33" $\mathcal{T}_{\mathcal{E}}$ × N = 2.2K # 23 160" #22 x3,24 *33 16j = 3K ~3.4K #24 44#34 ≈3K#25 ich ~7,9K #26 #33 22.74 _28 K #27 2 #32 ≈ 2.3/ ≠28 42" <u></u>∦3Ì 2.2K #29 ~2.2K 2.6 K door Zin" 22" 224

H= vial number (swipe) along with dpm count

8 Jan 08 21 Saurvey Team: Sam Poppell David Kappelman Stephanie Friedman performed dimensional measurements of room for survey 1015 - check instruments / survey equipment (see data_sheets) Kit#5 Gamma survey of room * 2.6 uR/hr Kit #3 4 11 2.8 uR/hr time (1010PM survey to re-check instrument calibration. ki+ =3 11 QC Instrument check! 43-89 Kit #5 AM=0930 PM=1610 PM AM 2.56K J.JK Backgrd (Beta)_ 24.3 K Pu-239 24.8 K 31.9 K Sr-90 32.3 K SPA-6 gamma (breck) 2,56 Cs 137 200 43-89 k+#3 PH _AM Backgrd (beta) 2.7K 2.4 K 34.9 K 33.7 K plu-239 Sr 90 32.5 K 30.1 K 2.61 R/hr SPA-6 blog

		 ج	•		
		#55 	#56 \$4.94 \$4.74 \$57		
		=4.8K #59	•		
Side WAII	3,0K #63 #	1 2 2 4 4 2 5 4 4 7 5 4 4 7 5 4 4 7 5 4 4 7 5 7 4 4 7 5 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8K	In the second	
	7 2	# Ta = 4/, le , #lo ^z	\$	1.3K 471 #67 7° ^h	
side wall	* 6%		#75 #73	<i>4-2K</i> #68	
		-15+77-	41K #75 clear	5:de wait 	
# # # (17)	# <u></u>	24. +	1 K	Cubi	
S & Carter	784 20 00 - 20	floor		» #82	73
· · ·	bother #58	(moved the tridg)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E

23 Outride survey 1.6 - 4.2 uR/hr = 1430 PM Jamory 9, 2008 0900 Beging Surpris Surfaces that find in gesterdays Survey Sunapies planed in Sk vials as motived in work plan. Samples and soon secured for January 10, 2008 Replaced tems remped from room when/before work sterted. Secured samples in box for transport back to GOD, Guff Poregette Packed remaining equipment Tried meting with NOAA Facylik office at while but he was not in with him that our work was Complete and that if analysis Showed Savefing we would Kep him informed Began fred back Janway 11 2008 CAN P

24		
D	Wr. Bto.y	:
ξε		
2		
3		-
÷ 4		-
5		+
6		+
7		
<u> 8 </u>		No and Alexandre
99		1000
P		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u> </u>		0.004
<u> _ · 2</u>		×
<u> </u>		
14		
<u> </u>		
16		
17		
<u> 0</u> 		
RIL D	BJ - C	
21	Ulanah	
27		
72		
25		6
210	· · · · · · · · · · · · · · · · · · ·	
27		
28		
29		
30		
31		
32		
33		- -
34		
35		
		• •

Vial #15 Blanks were introduced every \$ 20th Sangth Every \$ Scal

73 38 Jobz76 77 644 40 Son ba .41 44 2/onk BCK Swat 84 52 88 S Bank Background saythe

τ,

. .

CERTIFICAT OF CALIBRA (EXPOSURE RATE I	E TION INSTRUMENT)	RSA Lak 21 Pendleton Hebron, Com (860) 228-072	Doratories, Inc. Drive, P.O. Box 61 necticut 06248 21 Fax (860) 228-4402
Customer and Contact: USE Customer Address: 540 Sou Inst. Mfr. & Model Eberlin Det. Mfr. & Model Eberlin	EPA/NAREL, Attn: Spenc uth Morris Avenue, Montg ne Model E600 Ins ne SPA-6 De	er Hamil (334) 270-3475 gomery, AL 36115-2601 t. Type Smart Meter t. Type Gamma Scintillator	Inst. s/n 387 Det. s/n 494
Cal. Date 26 November 20	07 Du	e Date 26 November 2008	Cal. Interval 1 year
Environmental conditions: Tempe Pre-calibration Checks: Contamination survey Mechanical check Meter zero Geotropism check	erature: 72°F Relative Humidity Battery check Audio check Reset check Fast response check	Atmospheric Pressure 29.90 inc Slow response check Window operation Plateau check Alarm set	hes Hg ⊠ Det. volts 1191 Vdc ⊠ Input sens. 10 mV
Pulse generator s/n 94926		s/n 171-04928 Ø Voltmeter	s/n 57410002
JAV Readout (2 points) Rei./his			······································
······································	·		
S/N of source used for precision cl Reading #1 1.518 mR/h Re Precision: ⊠± <10% □±10-209	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % Dut of tolerance	Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518	mR/h
5/N of source used for precision cl Reading #1 1.518 mR/h Re Precision: ⊠± <10% □±10-209 Range	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Rea % □Out of tolerance Refere	Dedicated Source? □Yes ⊠No ding #3 1.522 mR/h Mean 1.518 ence Calibration Point	mR/h Instrument Indication
S/N of source used for precision cl Reading #1 1.518 mR/h Re Precision: ≥± <10% □±10-209 Range n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h	mR/h Instrument Indication 21.0 μR/h
G/N of source used for precision cl Reading #1 1.518 mR/h Re Precision: $\boxtimes \pm < 10\% \square \pm 10.20\%$ Range n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % Dut of tolerance Refere	Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.079 mR/h	mR/h Instrument Indication 21.0 µR/h 79.7 µR/h
S/N of source used for precision cl Reading #1 1.518 mR/h Re Precision: ≥± <10% □±10-205 Range n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Rea % □Out of tolerance Refere	✓ Dedicated Source? □Yes ⊠No ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.079 mR/h 0.265 mR/h	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h
S/N of source used for precision cl Reading #1 1.518 mR/h Re Precision: ≥± <10% □±10-20% Range n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	/ Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h
i/N of source used for precision cl Reading #1 1.518 mR/h Re Precision: ≥± <10% □±10-20% Range n/a n/a n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	/ Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 0.89 mR/h	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h 968 μR/h
S/N of source used for precision cl Reading #1 1.518 mR/h Re Precision: $\boxtimes \pm < 10\% \ \Box \pm 10-20\%$ Range n/a n/a n/a n/a n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.265 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h 968 μR/h 2.38 mR/h
S/N of source used for precision cl Reading #1 1.518 mR/h Re Precision: $\boxtimes \pm < 10\%$ $\Box \pm 10-20\%$ Range n/a n/a n/a n/a n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	✓ Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 0.21 mR/h	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h 968 μR/h 2.38 mR/h 5.50 mR/h
S/N of source used for precision ci Reading #1 1.518 mR/h Re Precision: $\boxtimes \pm < 10\%$ $\Box \pm 10-20\%$ Range n/a n/a n/a n/a n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	✓ Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h 0.94 mR/h	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h 968 μR/h 5.50 mR/h 7.73 mR/h OUT OF TOLERANCE
S/N of source used for precision c. Reading #1 1.518 mR/h Re Precision: $\boxtimes \pm < 10\%$ $\square \pm 10-20\%$ Range n/a n/a n/a n/a n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % Dut of tolerance Refere	Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h 968 μR/h 2.38 mR/h 5.50 mR/h 7.73 mR/h OUT OF TOLERANCE
S/N of source used for precision c Reading #1 1.518 mR/h Re Precision: $\boxtimes \pm < 10\% \square \pm 10-20\%$ Range n/a n/a n/a n/a n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h 0.94 mR/h	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h 968 μR/h 2.38 mR/h 5.50 mR/h 7.73 mR/h OUT OF TOLERANCE
S/N of source used for precision c Reading #1 1.518 mR/h Re Precision: $1 \le 10\%$ $\square \pm 10-20\%$ Range n/a n/a n/a n/a n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	✓ Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h 0.00000000000000000000000000000000000	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h 968 μR/h 2.38 mR/h 5.50 mR/h 7.73 mR/h OUT OF TOLERANCE
S/N of source used for precision c Reading #1 1.518 mR/h Re Precision: ≥± <10% □±10-205 Range n/a n/a n/a n/a n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	// Dedicated Source? □Yes ≥No ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.586 mR/h 0.586 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h 0.00000000000000000000000000000000000	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h 968 μR/h 5.50 mR/h 7.73 mR/h OUT OF TOLERANCE
S/N of source used for precision c Reading #1 1.518 mR/h Re Precision: $\square \pm < 10\%$ $\square \pm 10-20\%$ Range n/a n/a n/a n/a n/a n/a n/a n/a	heck #6 Isotope Cs-137 eading #2 1.514 mR/h Read % □Out of tolerance Refere	✓ Dedicated Source? □Yes BNo ding #3 1.522 mR/h Mean 1.518 ence Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h	mR/h Instrument Indication 21.0 μR/h 79.7 μR/h 271 μR/h 605 μR/h 968 μR/h 5.50 mR/h 7.73 mR/h OUT OF TOLERANCE

No ranges were calibrated electronically.

Sources used: ¹³⁷Cesium 750 mCi s/n KR-6244 and KR-6250, and ¹³⁷Cesium 750 µCi s/n 163.

RSA Laboratories Log ID# 11544. Calibration points calculated to center of detector volume unless otherwise specified. Instrument indicates within $\pm 10\%$ of calibration points unless otherwise indicated. RSA Laboratories, Inc. certifies that the above instrument has been calibrated with standards traceable to the National Institute of Standards and Technology, or have been derived from accepted values of natural physical constants, or have been derived by the ratio-type of calibration techniques.

Calibrated by: Kurt D. Newton

.

.

Date: 26 November 2007

CERTIFICAT OF CALIBRA (DISINTEGRATION	RERT # 3 TE TION RATE INSTRUM	ENT) RSA Lal 21 Pendleton Hebron, Con (860) 228-072	boratories, Inc. Drive, P.O. Box 61 necticut 06248 21 Fax (860) 228-4402
Customer and Contact: US Customer Address: 540 So Inst. Mfr. & Model Eberl Det. Mfr. & Model Ludhu Cal. Date 26 November 2	EPA/NAREL, Attn: S outh Morris Avenue, M ine Model E600 im 43-89 007	pencer Hamil (334) 270-3475 Iontgomery, AL 36115-2601 Inst. Type Smart Meter Det. Type Alpha/Beta Scintillator Due Date 26 November 2008	Inst. s/n 387 Det. s/n 130516 Cal. Interval 1 year
Environmental conditions: Temp Pre-calibration Checks: Contamination survey Mechanical check Meter zero Geotropism check	erature: 72°F Relative Hu Battery check Audio check Reset check Fast response check	midity 36% Atmospheric Pressure 29.90 inc Slow response check □ Window operation □ Plateau check ⊠ Alarm set	ehes Hg ⊠ Det. volts 752 Vdc ⊠ Input sens. see comments mV
■ Pulse generator s/n 94926 ↓□ HV Readout (2 points) Ref./I	□ Oscille	oscope s/n 171-04928	r s/n 57410002 V/ V
Comments: $DT = 10.0 \ \mu sec. U_{\beta} \approx 4770 \ dpm \ \beta, 0 \ dpm \ \alpha.$ S/N of source used for precision Reading #1 705,000 dpm F Precision: $1200 \ m \pm 10.20$	pper window set at 38.4 mV check #6 Isotope (Reading #2 715,000 dpm 0% □Out of tolerance	for α, channel 1. Lower window set at 1.60 Cs-137 Dedicated Source? □Yes ⊠No Reading #3 710,000 dpm Mean 710,0	mV for β, channel 2. Local background

Range Multiplier	Cal. Source Used (isotope and S/N)	Source Activity (dpm)	Instrument Reading (dpm)	4π Instrument Efficiency (%)
1 min. count	Tc-99 #D702	23,064	27,900(β)	100%
1 min. count	Th-230 #91TH2200210	38,900	38,900(α)	100%

RSA Laboratories ID# 11544. Instrument indicates within $\pm 10\%$ of calibration points unless otherwise indicated. Source-to-detector entry window distance for efficiency determinations is 1 cm unless otherwise specified. RSA Laboratories, Inc. certifies that the above instrument has been calibrated with standards traceable to the National Institute of Standards and Technology, or have been derived from accepted values of natural physical constants, or have been derived by the ratio-type of calibration techniques.

Calibrated by: Kurt D. Newton_

Date: 26 November 2007

CERTIFICAT OF CALIBRA EXPOSURE RATE	TE # ATION (INSTRUMENT)	5 21 Pendle Hebron, C (860) 228-	ton Drive, P.O. Box 61 Connecticut 06248 -0721 Fax (860) 228-4402
Customer and Contact: Un Customer Address: 540 S ast. Mfr. & Model Eber Det. Mfr. & Model Eber Cal. Date 26 November 2	SEPA/NAREL, Attn: Sj outh Morris Avenue, M line Model E600 line SPA-6 2007	pencer Hamil (334) 270-3475 lontgomery, AL 36115-2601 Inst. Type Smart Meter Det. Type Gamma Scintillator Due Date 26 November 2008	Inst. s/n 363 Det. s/n 503 Cal. Interval 1 year
nvironmental conditions: Tem re-calibration Checks:	perature: 72°F Relative Hu	midity 36% Atmospheric Pressure 29.9	0 inches Hg
Contamination survey	Battery check	Slow response check	
Mechanical check Meter zero	Audio check	Window operation Relateau check	
Geotropism check	Fast response check	Alarm set	⊠ Input sens. 10 mV
Pulse generator s/n 94926 HV Readout (2 points) Ref./I	□ Oscillo InstV/	scope s/n 171-04928 8 Volta	neter s/n 57410002 V/V
bomments: $DT = 5.0 \ \mu sec$, CO N of source used for precision eading #1 1.335 mR/h	a check #6 Isotope C Reading #2 1.324 mR/h	Cs-137 Dedicated Source? □Yes আ Reading #3 1.349 mR/h Mean 1	io .336 mR/h
omments: $DT = 5.0 \ \mu sec$, CC N of source used for precision eading #1 1.335 mR/h recision: $12 \pm < 10\% \ \Box \pm 10.2$	a check #6 Isotope C Reading #2 1.324 mR/h 10% □Out of tolerance	S-137 Dedicated Source? □Yes Reading #3 1.349 mR/h Mean 1 Reference Calibration Point	lo .336 mR/h
omments: $DT = 5.0 \ \mu sec$, CC N of source used for precision eading #1 1.335 mR/h recision: $12 \pm < 10\% \ \Box \pm 10.2$ Range n/a	a check #6 Isotope C Reading #2 1.324 mR/h 10% IOut of tolerance	Cs-137 Dedicated Source? □Yes ≥N Reading #3 1.349 mR/h Mean 1 Reference Calibration Point	io .336 mR/h Instrument Indication
mments: $DT = 5.0 \ \mu sec$, CC N of source used for precision ading #1 1.335 mR/h ecision: $\Box \pm < 10\% \ \Box \pm 10.2$ Range n/a n/a	a check #6 Isotope C Reading #2 1.324 mR/h 10% □Out of tolerance	S-137 Dedicated Source? □Yes Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.079 mR/h	lo .336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h
mments: $DT = 5.0 \ \mu sec$, CC N of source used for precision ading #1 1.335 mR/h ecision: $\mathbf{a} \pm < 10\% \ \Box \pm 10.2$ Range n/a n/a n/a	a check #6 Isotope C Reading #2 1.324 mR/h 10% IOut of tolerance	Cs-137 Dedicated Source? □Yes Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.079 mR/h 0.265 mR/h	io .336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 268 μR/h
mments: $DT = 5.0 \ \mu sec$, CC N of source used for precision ading #1 1.335 mR/h ecision: $\boxtimes \pm < 10\% \ \Box \pm 10.2$ Range n/a n/a n/a n/a	a check #6 Isotope C Reading #2 1.324 mR/h 20% □Out of tolerance	2s-137 Dedicated Source? □Yes ≥N Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h	io 336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 268 μR/h 618 μR/h
mments: $DT = 5.0 \ \mu sec$, CC N of source used for precision ading #1 1.335 mR/h ecision: $\boxtimes \pm < 10\% \ \square \pm 10.2$ Range n/a n/a n/a n/a n/a n/a	a check #6 Isotope C Reading #2 1.324 mR/h 10% IOut of tolerance	Cs-137 Dedicated Source? □Yes and Reading #3 1.349 mR/h Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.021 mR/h 0.265 mR/h 0.265 mR/h 0.89 mR/h	lo .336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 268 μR/h 618 μR/h 961 μR/h
mments: DT = 5.0 μ sec, CC N of source used for precision ading #1 1.335 mR/h ecision: $\underline{a} \pm < 10\% \Box \pm 10.2$ Range n/a n/a n/a n/a n/a n/a n/a n/a	a check #6 Isotope C Reading #2 1.324 mR/h 10% DOut of tolerance	Cs-137 Dedicated Source? □Yes ⊠N Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 2.22 mR/h	io 336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 268 μR/h 618 μR/h 961 μR/h · 2.33 mR/h
numents: $DT = 5.0 \ \mu sec$, CC N of source used for precision rading #1 1.335 mR/h ecision: $\Box \pm < 10\% \ \Box \pm 10-2$ Range n/a n/a n/a n/a n/a n/a n/a n/a	i check #6 Isotope C Reading #2 1.324 mR/h 10% □Out of tolerance	Cs-137 Dedicated Source? □Yes ≥N Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 0.29 mR/h	io 336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 268 μR/h 618 μR/h 961 μR/h • 2.33 mR/h 4.91 mR/h
omments: $DT = 5.0 \ \mu sec$, CC N of source used for precision eading #1 1.335 mR/h ecision: $\Box \pm < 10\% \ \Box \pm 10.2$ Range n/a n/a n/a n/a n/a n/a n/a n/a	a check #6 Isotope C Reading #2 1.324 mR/h 10% IDut of tolerance	Cs-137 Dedicated Source? □Yes ⊠N Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h	lo .336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 618 μR/h 961 μR/h 2.33 mR/h 4.91 mR/h 6.40 mR/h OUT OF TOLERANCE
mments: $DT = 5.0 \ \mu sec$, CC N of source used for precision ading #1 1.335 mR/h ecision: $\Box \pm < 10\% \ \Box \pm 10.2$ Range n/a n/a n/a n/a n/a n/a n/a n/a	in check #6 Isotope C Reading #2 1.324 mR/h 10% IDOut of tolerance	Cs-137 Dedicated Source? □Yes ⊠N Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.586 mR/h 0.586 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h 0.94 mR/h	io .336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 268 μR/h 618 μR/h 961 μR/h 2.33 mR/h 4.91 mR/h 6.40 mR/h OUT OF TOLERANCE
omments: $DT = 5.0 \ \mu sec$, CC N of source used for precision rading #1 1.335 mR/h ecision: $\Box \pm < 10\% \ \Box \pm 10.2$ Range n/a n/a n/a n/a n/a n/a n/a n/a	in check #6 Isotope C Reading #2 1.324 mR/h 10% DOut of tolerance	Cs-137 Dedicated Source? □Yes ⊠N Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h	lo 336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 268 μR/h 961 μR/h 2.33 mR/h 4.91 mR/h 6.40 mR/h OUT OF TOLERANCE
biniments: $DT = 5.0 \ \mu sec$, CC N of source used for precision eading #1 1.335 mR/h ecision: $\Box \pm < 10\% \ \Box \pm 10.2$ Range n/a n/a n/a n/a n/a n/a n/a n/a	in check #6 Isotope C Reading #2 1.324 mR/h 10% □Out of tolerance	2s-137 Dedicated Source? □Yes ≥N Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h	io 336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 268 μR/h 618 μR/h 961 μR/h 4.91 mR/h 6.40 mR/h OUT OF TOLERANCE
mments: $DT = 5.0 \ \mu sec$, CC N of source used for precision ading #1 1.335 mR/h ecision: $\boxtimes \pm < 10\% \ \Box \pm 10.2$ Range n/a n/a n/a n/a n/a n/a n/a n/a	a check #6 Isotope C Reading #2 1.324 mR/h 10% IDut of tolerance F	2s-137 Dedicated Source? □Yes ≥N Reading #3 1.349 mR/h Mean 1 Reference Calibration Point 0.021 mR/h 0.021 mR/h 0.079 mR/h 0.265 mR/h 0.586 mR/h 0.89 mR/h 2.22 mR/h 5.29 mR/h 8.94 mR/h	io 336 mR/h Instrument Indication 19.55 μR/h 79.6 μR/h 268 μR/h 618 μR/h 961 μR/h 4.91 mR/h 6.40 mR/h OUT OF TOLERANCE

Sources used: ¹³⁷Cesium 750 mCi s/n KR-6244 and KR-6250, and ¹³⁷Cesium 750 µCi s/n 163.

*

RSA Laboratories Log ID# 11546. Calibration points calculated to center of detector volume unless otherwise specified. Instrument indicates within $\pm 10\%$ of calibration points unless otherwise indicated. RSA Laboratories, Inc. certifies that the above instrument has been calibrated with standards traceable to the National Institute of Standards and Technology, or have been derived from accepted values of natural physical constants, or have been derived by the ratio-type of calibration techniques.

Calibrated by: Kurt D. Newton	2mg	1 cm	Date: 26 November 2007
	<u>ه</u> ر	-	

1	RERT #5	O DEA Lab	matania Ina		
CERTIFICATE OF CALIBRATION (DISINTEGRATION RATE INSTRUMENT)		ENT)	KSA Laboratories, Inc. 21 Pendleton Drive, P.O. Box 61 Hebron, Connecticut 06248 (860) 228-0721 Fax (860) 228-4402		
Customer and Contact: USI Customer Address: 540 Sou	CPA/NAREL, Attn: S oth Morris Avenue, N	pencer Hamil (334) 270-3475 Iontgomery, AL 36115-2601			
Inst. Mfr. & Model Eberlin	ne Model E600	Inst. Type Smart Meter	Inst. s/n 363		
Det. Mfr. & Model Ludlur	n 43-89	Det. Type Alpha/Beta Scintillator	Det. s/n 145388		
Cal. Date 26 November 20	07	Due Date 26 November 2008	Cal. Interval 1 year		
Environmental conditions: Tempe Pre-calibration Checks: Contamination survey Mechanical check Meter zero Geotropism check	rature: 72°F Relative Hu Battery check Audio check Reset check Fast response check	midity 36% Atmospheric Pressure 29.90 inches Slow response check Window operation Plateau check Alarm set	B Det. volts 771 Vdc Input sens, see comments mV		
			-		
■ Pulse generator s/n 94926 □ HV Readout (2 points) Ref /In	□ Oscillo	oscope s/n 171-04928 ⊠ Voltmeter s/n V Ref /Inst	n 57410002		
Comments: $DT = 8.0 \ \mu sec. Upper4910 dpm \beta, 0 dpm \alpha.S/N of source used for precision clBeading #1 714 000 dpm Pa$	er window set at 38.6 mV f	or α, channel 1. Lower window set at 1.60 mV Cs-137 Dedicated Source? □Yes ⊠No Peading #3 711 000 dom:Moon 711 333	for β , channel 2. Local background a		

Range Multiplier	Cal. Source Used (isotope and S/N)	Source Activity (dpm)	Instrument Reading (dpm)	4π Instrument Efficiency (%)
1 min. count	Tc-99 #D702	23,064	28,100 (β)	100%
1 min. count	Th-230 #91TH2200210	38,900	38,800(α)	99.7%
			_	
			-	

RSA Laboratories ID# 11546. Instrument indicates within $\pm 10\%$ of calibration points unless otherwise indicated. Source-to-detector entry window distance for efficiency determinations is 1 cm unless otherwise specified. RSA Laboratories, Inc. certifies that the above instrument has been calibrated with standards traceable to the National Institute of Standards and Technology, or have been derived from accepted values of natural physical constants, or have been derived by the ratio-type of calibration techniques.

Calibrated by: Kurt D. Newton	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	an	Date: 26 November 2007

Instrument QC Checks (Acceptable Operating Ranges)

#5

	DATE Performed	12/12/07	12/12/07	12/12/07		12/12/07	
	RERT E600 Kit #	5	5	5	5	5	5
	E600 S/N	363	363	363	363	363	363
	Source Kit #5	38	38	. 38	38	38	38
	Source	alpha	beta	beta	gamma	gamma	namma
	Nucliide	Pu-239	Sr90	Sr90	Cs137	Cs137	Cs137
	NAREL S/N	703009	703011	703011	703015	703015	703015
	Source S/N	3289	3287	3287	3288	3288	3288
	Detector	43-89	43-89	SHP-360	SHP-300A	SPA-6	SHP-290
	S/N	145388	145388	195	10005	503	113
	Source	alpha	beta	beta	gamma	gamma	gamma
	Units	K dpm	K dpm	K cpm	uR/hr	uR/hr	uR/hr
	1	24.0	30.2	3.54		211	- ur ur ur
	2	23.9	31.2	3.54		210	
	3	23.7	30,9	3.50		211	
	4	22.9	31.8	3.48		209	
	5	23.1	32.0	3.51		210	
•	6	23.9	31.6	3.44	<u> </u>	214	
	7	22.8	31.3	3.43		215	
	8	23.6	32.1	3.44		214	
	9	23.8	30.2	3.34		214	
	10	23.9	31.0	3.30		213	
	11	22.4	31.5	3.43		216	
	12	23.4	32.0	3.41		215	
	13	23.6	32.4	· 3.39		206	
······································	14 .	23.3	31.7	3.36	· · · · · · · · · · · · · · · · · · ·	200	
	15	23.0	31.1	3.26		205	· · · · ·
	16	22,9	31.3	3.41		203	
	17	23.9	31.7	3.30		214	
	18	23.3	30.7	3.43		214	
	19	23.2	30.9	3.28		213	
	20	23.8	30.5	3.33		210	
	Average Gross	23.4	31.3	3.4		211.8	*
	Background	0	2.07	0.033		1 475	
	Standard Deviation	0.5	0.6	0.1		3.2	
	Upper Control Limit	24.8	31.1	3.6		220.0	
	Upper Warning Limit	24.3	30.5	3.5		216.8	
	Average Net	23.4	29.2	3.4		210.0	
	Lower Warning Limit	22.5	28.0	3.2		203.8	
	Lower Control Limit	22.0	27.4	3.1		200.6	·····
		· · · · · · · · · · · · · · · · · · ·				200.0	
	(+/- 20%-BKG PM	18.7-28.1	23,4-35.0	2.7-4.1		168 2-252 4	
BKalba	a) 2.56K (2.2K)	۵.M	(F PM)				
Pu-239		24.8KG	24.3K)	PM			
Sr-90			319K	3518222	F)		
				SF		backard	
(Back)						(D = ()	
CS 137						200	·····
						200	

E600_3-5_QC Checks PM = 1610

•

SANI 1/8/08

Attach mail =

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY NATIONAL EXPOSURE RESEARCH LABORATORY Research Triangle Park, NC 27711

> Office of Research and Development

February 21, 2008

MEMORANDUM

Subject: Contamination Wipe Test Survey Results for Gulf Breeze Samples Numbers 1-88

Ritchie D. Buschow, MEM, CLSO //Signed/ From: Assistant Radiation Safety Officer Ext. 919-541-0550 Mail Code D343-02

To: Stephanie Friedman US EPA Environmental Effects Research Laboratory **ORD/Gulf Ecology Division** Sabine Island Drive Gulf Breeze, FL 32561-5299 Telephone: 850-934-2468 FAX: 850-934-2406

This memorandum serves to document and transmit the results obtained by liquid scintillation counting for the contamination wipe test samples collected and submitted by David Kappelman and Sam Poppell from OAR/ORIA/NAREL in Montgomery, Alabama.

Summary: All samples were indistinguishable from the blank or background sample at the 95% confidence level. Therefore, the sample sets did not detect any removable radioactive contamination.

To make this data package complete, the following items are included with this analysis.

- 1. Individual copies of the Chain of Custody Record for all samples collected, NAREL/Form-1 Revision 2 02/10/00. (The original forms will remain with the samples until final disposal.)
- 2. Full original instrument report print outs generated by the liquid scintillation counter at the time of the sample batch counting which includes a sub-set of spike samples run with each sample batch.
- 3. A processed data report in the form of a Microsoft Excel spreadsheet showing complete sample identification correlation, a reprint of individual results and a data validation and discussion report for the sample batch.

The minimum detectable activities are provided with the processed data report along with any explanation of results and their interpretation. The reports were constructed to satisfy all requirements for reporting this data to the Nuclear Regulatory Commission in support of a decision regarding the overall contamination characterization of the locations sampled. These results should be incorporated into the final status survey report provided to the NRC.

Todd Baker and I performed the sample analysis. A summary of our qualification follows.

Symbol: Asst. RSO/RTP-107

Todd W. Baker is a health physicist and the current Radiation Safety Officer at the US Environmental Protection Agency's facility in Research Triangle Park (http://www.epa.gov/rtp/). This facility is a NRC Broad Scope licensee. Mr. Baker holds a BS in Physics from Dickinson College in Carlisle, PA and a MSPH from UNC-Chapel Hill. Mr. Baker was a DOE Operational Health Physics fellow during his graduate studies. His practicum was conducted at Brookhaven National Laboratory where he coordinated a study on neutron dosimetry from data collected at the Alternating Gradient Synchrotron, a 33 GeV proton accelerator. His thesis research was conducted at the Y-12 plant in Oak Ridge, TN performing alpha spectral analysis on liquid scintillation counters. Mr. Baker was first employed after his graduate studies (1992) by the Health & Safety Division of Los Alamos National Laboratories as a technical staff member where he updated administrative and technical quality control procedures for a large (> 500,000 samples/yr.) health physics analysis laboratory for compliance with Federal Regulations and Department of Energy issued orders and provided technical expertise for the analyses of non-conforming or specialized sample matrices to detect levels of radiation contamination in close cooperation with dose assessment personnel. In 1993 Mr. Baker returned to North Carolina as a consultant for A. D. Little, Inc., performing consulting support to the US EPA/RTP. By January of 1994, Mr. Baker assumed the position he currently holds at the US Environmental Protection Agency. In 2001, Mr. Baker became a Certified Health Physicist.

Ritchie D. Buschow is currently employed with the US EPA, Office of Research and Development, RTP, NC in the Safety Health & Environmental Management Office where he functions as the Assistant Radiation Safety Officer and Laser Safety Officer. Mr. Buschow holds a BS in Physics from James Madison University and a Master of Environmental Management (MEM) from Duke University. Over the years, he has also taken a number of post-graduate courses at both the University of North Carolina, Chapel Hill and Oak Ridge Associated Universities (Oak Ridge, Tenn.) in radiation protection and health physics. In his current position as Assistant Radiation Safety Officer at EPA, his duties include records management, radiation safety training, receipts and transfers of radioactive materials, leak testing of sealed radioactive sources, laboratory audits, personnel dosimetry program, management of radioactive and mixed waste streams, radioactive materials license renewals and/or amendments. Mr. Buschow was the former RSO at North Carolina Central University (NCCU). While at NCCU, Mr. Buschow was charged with the entire implementation of the radiation safety program. He was also a safety officer in the Radiation Safety Office at UNC-Chapel Hill for six years. Specific duties included radiation safety surveys of research labs and the hospital nuclear medicine facility, leak tests of sealed sources, bio-assay analysis, radiation/contamination surveys of radiation therapy patient areas, and surveys of diagnostic x-ray equipment used in both the hospital and dental school. In 2007, Mr. Buschow became a Certified Laser Safety Officer (CLSO) by the Board of Laser Safety (BLS).

Enclosures: (As stated in the body of the text) Swipe Sample #'s 1-88 - Chain of Custody Form; 1 page Swipe Sample #'s 1-88 - Liquid Scintillation Counter Instrument Reports; 7 pages. Swipe Sample #'s 1-88 - Processed Data Report; 4 pages cc: Sam W. Poppell, OAR/ORIA/NAREL-ESB {Electronic Copy Only} David Kappelman, OAR/ORIA/NAREL-ESB {Electronic Copy Only} Rebecca L. Hemmer, ORD/NHEERL/GED {Electronic Copy Only} Bruce Michael, ORD/NHEERL {Electronic Copy Only} Todd W. Baker, ORD/NERL-IO (SHEM) {Electronic Copy Only} Asst. RSO Reading File RSO File

€EPA №	CHAIN OF CUSTODY RECORD NATIONAL AIR AND RADIATION ENVIRONMENTAL LABORATORY								540 South Morris Ave. Montgomery, AL 36115-2601 (334) 270-3400 Fax (334) 270-3454	Container #				
Project Name G.E.D. Ke	y Lo	2198		# ANALYSIS REQUESTED				For Laborato	ry Use Only					
Project Manager Stephanic	Fried	man		of									Comments:	
Sampling Team Members													H-3 & C-14 ANA	ktses Bt
Stephanie Friedr	nan			N		C							LIQUID SCINTILLAT	TON.
Sam Poppell	2			T A		,								
5				I										
Requested Completion N	otify Pro	ject Ma	nager	E	3	14								
Date Upo	on Receij	pt? Dery	es 🗆 No	R										
Sample Description	Date	Time	Matrix	09	si=								Comments	Lab Sample ID
SWIPES IN LSC VIALS	1/9/08	0930	surpe	88	V	V			<u>`</u>					
1) Sampled By: Pon Dell Dat	e/Time	19/200	8 9:30	2) Re	ceived B	y: pit	l g. f.	h	Date/Tir	mg/31/	103/10	:00A-	Sample Shipped via	Internal Container
3) Relinquished By: Friedman D	ate/Time 2	28 JAN	08 11.0	54) Re	ceived B	y:			Date/Tir	ne			FedEx UPS Hand Other	Temperature°C
5) Relinquished By: Da	ue/Time			6) Re	ceived B	y:			Date/Tir	ne			Custody Seal Present? DY DN	Page
Samples Disposed By: D	ate/Time			Dispo	sal Meth	od:							Custody Seal Intact? DY DN	of

Distribution: White and Yellow Copies accompany sample to laboratory. Pink copy is retained by Samplers. Please use a separate form for each container.

NAREL/FORM-1 Revision 2 02/10/00

Page # 1 User: RDB

2/5/200811:02:59 PMQuantaSmart (TM) - 2.02 - Serial# 433693Protocol# 22 - Gulf Breeze H-3, C-14 Dual Label DPM.lsa
Samples Labeled 1-88

Assay Definition-Assay Description: Dual label H-3 and C-14 DPM assay per request of NAREL. Assay Type: DPM (Dual) Report Name: Gulf Breeze Sample Report Analysis Format Output Data Path: C:\Packard\Tricarb\Results\RDB\Gulf Breeze H-3, C-14 Dual Label DPM \20080205 1730 Raw Results Path: C:\Packard\Tricarb\Results\RDB\Gulf Breeze H-3, C-14 Dual Label DPM \20080205 1730\20080205 1730.results Comma-Delimited File Name: C:\Packard\Tricarb\Results\RDB\Gulf Breeze H-3, C-14 Dual Label DPM\20080205_1730\Gulf_Breeze_YYYYMMDD_HHMM.csv Assay File Name: C:\Packard\TriCarb\Assays\Gulf Breeze H-3, C-14 Dual Label DPM.lsa _uanta@mart (fM) -Count Conditions-3, C-14 Usal Label Samples 1. Nuclide: 3H-14C UG Quench Indicator: tSIE/AEC External Std Terminator (sec): 0.5 2s% Pre-Count Delay (min): 0.00 Quench Sets: Low Energy: 3H-UG Mid Energy: 14C-UG Count Time (min): 3.00 11 Count Mode: Normal Repeat Sample Count: 1 Assav Count Cycles: 1 Calculate Reference: Off #Vials/Sample: 1 100 Merchat sete Background Subtract: On - 1st Vial Low CPM Threshold: Off 13.25 group to the second 2 Sigma % Terminator: Off 化化化合金 化化合金 UL Bkg Subtract $\mathbf{L}\mathbf{L}$ Regions 0.0 12.0 1st Vial Δ aantastavial (18) - 1 в 12.0 156.0 1st Vial Laber С 0.0 0.0 Samples Count Corrections-Static Controller: On Luminescence Correction: n/a Heterogeneity Monitor: n/a Colored Samples: Off Delay Before Burst (nsec): 75 Coincidence Time (nsec): 18 Half Life-, ÷. A. S. M. A. S. S. Half Life Correction: Off Reference Time Reference Date Half Life Units Regions NOTO: All Jo-phi reviewed By Ath D. R. 2/6/08 Α de la composição de la в С Instrument Block Data Machine=Tri-Carb 2900TR Version=2.06 1 43 A 41 433693 11 JAN 14 MODEL=Tri-Carb 2900TR VERSION=2.06 SERIAL=433693 IPA Block Data Software Version IC: 2.11 Software Version EC: 2.02

2/5/2	008 1	1:03:02	M Qui	C-1	$\frac{\text{mart (IM)} - 2}{4 \text{ Dual Tabal }}$.02 -	Serial#	433693		Page
FICCO		Guil	Drease U-J	, 0-14	Samples Lal	celed	1-88			USGL:
					en e					
Date 2	Acquir	ed: 03/31	/2005		Date Acquired	d: 03/	/31/2005			
3H-UG	in A	.ed: 03/1:	5/2006		Date Modified	d: 02/	/23/2006			
		. .				_				
770.1	AEC 4	53.30	Efficiency	(*) *	151E/AEC	Cour 12.4	nt Effic: 12	iency (%)		
661.4	6	49.30			666.57	12.3	36			
	9 4	44.95		j.	555.90	11.8	81			
376.1	2	33.70			372.38	11.0)8			
269.9	5	24.80	Alfo		269.73	10.2	23			
122.10	3 0	8.62	-17 J	нса9	123.23	9.30	5 1			
85.37		4.66			81.51	8.01	L			
48.80		1.44			48.44	7.25	5			
3H-UG	in B				14C-UG in B					
tSIE//	AEC	Count	Efficiency	(8)	tSIE/AEC	Cour	nt Effic	iencv (%)		
770.1	4	4.08	-		772.57	83.7	70			
554.19	ь 9	4.07		, i	555.90	82.7	/4 78			
467.04	4	4.13			468.38	82.5	54			
376.12	2	4.08		1	372.38	81.9	96			
188.3	3	3.32		•	191.02	77.1	13			
122.10	0	2.36			123.23	70.9	97			
48.80		0.81		÷	48.44	43.3	37			
PID	S#	ELTIME	CPMA	CPMB	DPM1 DI	PM2	SIS	tSIE	MESSAGES	
/14	2	0:10:45	5	0	13	0	63.11	432.19	В	
214	3	0:17:46	0	0	3	0	0.00	434.55		
314 414	4. 5	0:21:18	2	, O, 1	0	0 · 1	41.17	417.90 434.54		
514	6	0:28:19	5	- Õ	15 · · · · ·	ō	0.00	440.44		
614	7 9	0:31:51	2	5 0	2212/2 8 2	0	0.00	430.75		
\$14	9	0:38:54	Ō	0,	3	· · · · ·	0.00	414.96		
914	10	0:42:26	2	0	. Cat. 17	0	741.51	412.42		
1014 1114	12	0:45:58	1 2	U : 0	⊁ ∿6≩5⊕ 4 -⊈⇔645 5	0	0.00 83.01	433.49		
ル11	13	0:53:05	Ō	Õ,	Q	0	0.00	441.16		
/ <u>)</u> 11	14 15	0:56:36	1	1	ания с 23 1 0 м. — П. 11 2	2	209,14	436.28		
1511	16	1:03:38	ů.	· ŏ	3	, 0	0.00	441.88		
/611	17	1:07:10	1	0	4	0	37.86	429.88		
// 11 / / 11	19	1:14:12	2	0	· · · · · · · · · · · · · · · · · · ·	0	104.02	443.12 435.21		
/511	20	1:17:43	0	0	2	0	0.00	439.07		
2011 2/11	21	1:21:14	2	2 0	4	2	63.25	461.69 410.84		
r 11	23	1:28:16	. 3	ŏ.	11	õ	0.00	420.49		
2711	24 25	1:31:47	0	0	2	0	0.00	426.64		
2511	26	1:35:24	5	0 0	15	0	0.00	439.97 419.61		
2611	27	1:42:25	2	0	Second and American	0	0.00	432.67		
ンノユエ 2 9 11	∠8 29	1:45:56	2	0	6 0	U 0	0.00 0.00	448.87 439.85		
	20	1.50.50	ő		e la	•	24.00	403 00		

· •		$(x_1, \dots, x_n) \in \mathbb{R}^n$		an a	
2/5/2008	11:03:02 PM	QuantaSmart (TM) - 2.02 - Serial#	433693	45 Frent 24	Page
Protocol#	22 - Gulf Breeze H	I-3, C-14 Dual Label DPM.lsa		•	User:

· •

Samples Labeled 1-88

4 RDB

....

.....

			C pm A	cpmb	orn1	proz			
30 11	31	1:56:30	3	2	6	2	41.36	438.74	
7/ 11	32	2:00:02	0	0 : ,	1	0	0.00	440.23	
72 11	33	2:03:33	0	0	1	0	0.00	432.77	
37 11	34	2:07:05	3	0	9	0	0.00	438.11	1. N.
39 11	35	2:10:37	0	0	0	0	0.00	431.95	
JJ []	36	2:14:08	4	0	11	0	0.00	436.37	
J • 4 77 A	3/	2:1/:44	4	Ŭ	TT	0	62.00	420.46	
37 4 38 4	20	2:21:10	5	1	13	1	30.05	444.32	
39 4	- 40	2.23.17	0	2	10	2	198 68	434,05	
40 4	41	2:31:50	õ	্র	i oo	2	95.12	463.95	
41 4	42	2:35:21	1	ō	2	0	0.00	421.06	
42 4	43	2:38:52	2	0	5	0	235.94	423.22	
434	44	2:42:24	3	0	10	0	0.00	438.91	
44 4	45	2:45:55	8	0	22	0	12.43	433.63	
454	46	2:49:26	3	0	17 8	·	4.61	444.90	
Y16 4	47	2:52:57	0	0	1	0	0.00	427.77	
4	48	2:56:29	4	0 5	10	. 0	7.07	417.95	
4819 4650 10	49	3:00:05	2	0			0.00	407.63	
19	50	3:03:37	0	0	6	0	0.00	442.3/	
5019	52	3.10.39	2	0	101	0	50.29	448.00	
1 219	53	3:14:10	2	1	4	1	79 45	413.00	
53 419	54	3:17:41	2	ō	6	· 0	0.00	437.98	
54 55 19	55	3:21:12	ō	õ	ž	ō	0.00	445.68	
sy 🖌 19	56	3:24:43	0	2	0	3	44.80	423.53	
56 5 19	57	3:28:14	2	2	4	2	117.53	426.77	
5-7 5 19	58	3:31:46	4	0	12	0	0.00	436.26	
58 19	59	3:35:17	0	0	1	0	0.00	423.26	
55 60 19	60	3:38:49	2	2	.6	2	65.83	418.67	
642	62	3.42:25	0	0	.0	0	25 05	425.91	
62632	63	3.49.28	2	0	10	0	25.95	424.94	
63 = 2	64	3:52:59	3	0	7	ŏ	58.90	427 25	·
6460 2	65	3:56:30	Ō	Õ /	2	Õ	0.00	436.03	
65 66 2	66	4:00:02	7	2	17	2	29.23	425.41	
66 2	67	4:03:33	0	0	Q	. 0	0.00	415.28	
672	68	4:07:04	3	0	10	0	0.00	430.27	
682	59	4:10:35	1	0	3	0	228.27	444.44	
702	70	4:14:00	. 0	0,	16 16	0	0.00	439.12	
$\frac{10}{11}$	72	4:21:10	Ő	0	2	ő	04.00	440.20	
71 1	73	4:24:47	ő	õ	16	õ	1.49	420.27	
77 1	74	4:28:18	1	Ŏ	3	ŏ	96.96	422.97	
74 1	75	4:31:50	3	1	8	Ó	58.68	420.63	
7r 1	76	4:35:21	6	2	14	2	39.11	428.46	
)c 1	77	4:38:51	4	3	10	3	67.95	427.87	
771	78	4:42:23	0	0	2	0	0.00	425.58	
	/9	4:45:55	3	Q	10	0	0.00	396.64	
201	80 81	4:49:27	3	0	6	1	0.00	410.90	
1/1	82	4:56:29	1	Ō	4	ň	97.54	455.50	
er 1	83	5:00:01	2	õ	8	õ	1788.77	416.52	
831	84	5:03:32	Ö	3	Ō	4	203.61	414.01	
24 17	85	5:07:08	5	2	14	2	47.42	420.08	
85 17	86	5:10:40	0	0	1	0	0.00	428.99	
86 17	87	5:14:12	3	0	9	0	6.30	420.57	
87 ⊥/ 0917	88	5:1/:44 5:21:15	3	3	7	3	56.46	410.61	
<i>∎o</i> ⊥/ Misei	to to pr	215112 215112	U .	Ų	1	υ	0.00	419.43	
17	91	5:24:48	16582	1933 41	152	282	11.48	469.16-6	A N-3 Splke
17	92	5:28:19	1148	8736	0 1	10604	79.19	453.32-6	B C-14 JAIHU
17	93	5:31:51	16745	7864 39	801	7539	29.97	464.08 -0	A N-3/ C-14 JAhr
				an a				-	

QuantaSmart (TM) - 2.02 - Serial# 433693 2/7/2008 7:13:02 PM Page # 1 Protocol# 22 - Gulf Breeze H-3, C-14 Dual Label DPM.lsa User: RDB Recount of Sample #s 44, 65, 70, 72, 75 Assay Definition-Assay Description: Dual label H-3 and C-14 DPM assay per request of NAREL. Assay Type: DPM (Dual) Report Name: Gulf Breeze Sample Report Analysis Format Output Data Path: C:\Packard\Tricarb\Results\RDB\Gulf Breeze H-3, C-14 Dual Label DPM \20080207 1833 Raw Results Path: C:\Packard\Tricarb\Results\RDB\Gulf Breeze H-3, C-14 Dual Label DPM \20080207 1833\20080207 1833.results Comma-Delimited File Name: C:\Packard\Tricarb\Results\RDB\Gulf Breeze H-3, C-14 Dual Label DPM\20080207_1833\Gulf_Breeze_YYYYMMDD_HHMM.csv Assay File Name: C:\Packard\TriCarb\Assays\Gulf Breeze H-3, C-14 Dual Label DPM.lsa SantaSmart (Id) Count Conditions-, C-24 Giaz Maber advants on Stater 1.0 Nuclide: 3H-14C UG Quench Indicator: tSIE/AEC External Std Terminator (sec): 0.5 2s% Pre-Count Delay (min): 0.00 Quench Sets: Low Energy: 3H-UG Mid Energy: 14C-UG Count Time (min): 3.00 Count Mode: Normal Assay Count Cycles: 1 Repeat Sample Count: 1 #Vials/Sample: 1 Calculate % Reference: Off Background Subtract: On - 1st Vial Low CPM Threshold: Off 2 Sigma % Terminator: Off Regions \mathbf{LL} UL Bkg Subtract 0.0 12.0 lst Vial Α В 1st Vial 12.0 156.0 С 0.0 0.0 1st Vial and of same of Count Corrections-Static Controller: On Luminescence Correction: n/a Colored Samples: Off Heterogeneity Monitor: n/a Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 Half Life-Half Life Correction: Off Regions Half Life Units Reference Date Reference Time А в С Instrument Block Data Machine=Tri-Carb 2900TR 1 a. . Version=2.06 an frageriers 433693 1 MODEL=Tri-Carb 2900TR COLONARD MARY -VERSION=2.06 a the Calebra Cardena SERIAL=433693 STRALLS IN STRAFT C IPA Block Data Software Version IC: 2.11 Software Version EC: 2.02

2/1/2000 /	:13:04 PM	Qui	antaS	mart (TM)	- 2.02	- Serial#	433693		Page # 3
Protocol# 22	2 - Gulf	Breeze H-3	, C-1	4 Dual Lab	el DPM.	lsa			User: RDB
		Re	count	of Sample	∍ #s 44	, 65, 70,	72, 75		
Date Acquire	ed: 03/31	/2005		Date Acqu	ired: 0	3/31/2005			
Date Modifie	ed: 03/15	/2006		Date Modi	fied: 0	2/23/2006			
3H-UG in A				14C-UG in	A				
tSIE/AEC	Count	Efficiency	(8)	tSIE/AEC	Co	unt Effic	iency (%)		
770.14	53.30	-		772.57	12	.41	1 . ,		
661.46	49.30			666.57	12	.36			
554.19	44.94			555.90	11	.81			
467.04	40.10			468.38	11	.54			
376.12	33.70			372.38	11	.08			
269.95	24.79			269.73	10	.23			
188.33	16.20			191.02	; 9.	38 ,			
122.10	8.62			123.23	8.	64			
83.3/	4.00		1.1	81.51	в. 7	01			
40.00	1.44			40.44	/.	25			
			1917	n a tha na 1 a tha ta					
3H-UG in B				14C-UG in	В				
tSIE/AEC	Count 1	Efficiency	(%)	tSIE/AEC	Co	unt Effic	iency (%)		
770.14	4.08			772.57	83	.70	(0)		
661.46	4.07			666.57	82	.74			
554.19	4.23			555.90	82	.79			
467.04	4.13			468.38	82	.54			
376.12	4.08			372.38	81	.96			
269.95	3.77			269.73	79	.95			
188.33	3.32			191.02	77	.13			
122.10	2.36			123.23	70	.97			
85.3/	1.63			81.51	61	.30			
40.00	0.01			40.44	4.5	. 57			
"									
PID S#	ELTIME	CPMA	CPMB	DPM1	DPM2	SIS	tSIE	MESSAGES	
20 2	0.14.16	10	11	. 0	0	48.27	408.53	В	
20 2 '20 3	0.17.48	. 0	2	. <u> </u>	. U	48 93	429.00		
20 4	0:21:19	ō	ר א	.5	3	70 94	437 07		
20 5	0:24:51	õ	ĩ	10. S	ĩ	0.00	434.23		
20 6	0:28:23	õ	Ö	a tanggi 0	ō	0.00	430.03		
Missing vial	7.	-	÷	1 1 1 1 1 1 1					
	0:31:56	16808	1956	41715	281	11.48	469.19	<u> </u>	
20 8		1155	8650	0	10496	79.02	456.18		
20 8 20 9	0:35:28	****			7506	30 10	463 14		
20 8 20 9 20 10	0:35:28 0:38:59	16685	78 99	39706	1300	30.19	405.14		
20 8 20 9 20 10	0:35:28 0:38:59	16685	7899	39706	1500	50.19	103.14	γ	
20 8 20 9 20 10	0:35:28 0:38:59	16685	7899	39706	GA	50.19 5 H-3 J	103.14 11 h e	P	
20 8 20 9 20 10	0:35:28 0:38:59	16685	7899 Julu,	39706	GA	50.13 5 H-3 J	105.17	P	
20 8 20 9 20 10	0:35:28 0:38:59 Acue	16685 DBy Att A	7899 p.h.	39706	7300 GA	50.13 5 H-3 JJ 5 C-14 SP	103.14 1/he	P	

e general de services de la companya de la companya

. .

en dis. Start - 12 dise. Start - 12 dise. Start - 12 dise.

计可以进行 机分子 计算行分子 1、11月1日日)。 1、11月1日日(11月1日) 1、11月1日日(11月1日)

Protocol # 22 - Gulf Breeze H-3, C-14 Dual Label DPM.lsa

Samples Coded "1-88"

User: Ritchie Buschow

Processed Data Report

(For complete raw data including full instrument settings, see the corresponding Report Datasheets)

Regions	LL	UL Back	ground Subtract
Α	0.0	12.0	1st Vial
В	12.0	156.0	1st Vial
С	0.0	0.0	1st Vial

Sample ID	ELTIME	СРМА	СРМВ	DPM1	DPM2	SIS	tSIE MESSAGES
Blank	0:10:45	8	12	0	0	50.79	411.39 Background Via
1	0:14:15	5	0	13	0	63.11	432.19
2	0:17:46	0	0	3	0	0	434.55
3	0:21:18	2	0	7	0	41.17	417.9
4	0:24:49	0	1	0	1	139.44	434.54
5	oi:28:19	5	0	15	0	0	440.44
6	0:31:51	2	0	8	0	0	430.75
7	0:35:23	4	3	9	3	40.73	429.62
8	0:38:54	0	0	3	0	0	414.96
g	0:42:26	2	0	7	0	741.51	412.42
10	0:45:58	1	0	4	0	0	433.49
11	0:49:30	2	0	5	0	83.01	441.68
12	0:53:05	0	0	0	0	0	441.16
13	0:56:36	1	1	1	2	209.14	436.28
14	1:00:07	4	0	12	0	0	440.63
15	5 1:03:38	0	0	3	0	0	441.88
16	6 1:07:10	1	0	4	0	37.86	429.88
17	1:10:41	0	0	0	0	0	443.12
18	1:14:12	2	0	6	0	104.02	435.21
19	1:17:43	0	0	2	0	. 0	439.07
20	1:21:14	2	2	3	2	63.25	461.69
21	1:24:46	1	0	4	0	0	410.84
22	1:28:16	3	0	11	0	0	420.49
23	1:31:47	0	0	2	0	0	426.64
24	1:35:24	. 3	0	9	0	0	439.97
25	1:38:54	5	0	15	0	0	419.61
26	1:42:25	2	0	4	0	0	432.67
27	1:45:56	2	0	6	0	0	448.87
28	1:49:27	0	0	0	0	0	439.85
29	1:52:59	2	. 0	6	0	24.8	421.83
30	1:56:30	3	2	6	2	41.36	438.74
31	2:00:02	0	0	1	0	0	440.23
32	2:03:33	0	0	1	0	0	432.77
33	2:07:05	3	0	9	0	0	438.11
34	2:10:37	0	0	0	0	0	431.95
35	2:14:08	4	0	.11	0	. 0	436.37
36	2:17:44	4	0	11	0	62	420.46
37	2:21:16	3	0	9	0	36.65	444.32
38	2:24:47	5	1	13	1	70	434.89
39	2:28:18	0	2	0	2	198.68	438.5 9
40	2:31:50	0	1	0	2	95.12	463.95
41	2:35:21	1	0	2	0	0	421.06
42	2:38:52	2	0	5	0	235 94	423 22

43	2:42:24	3	0	10	0	0	438.91
44	2:45:55	8	0	22	0	12.43	433.63
45	2:49:26	3	0	8	0	4.61	444.9
46	2:52:57	· O .	Ð	1	0	0	427.77
47	2:56:29	4	0	10	0	7.07	417.95
48	3:00:05	2	0	8	0	0	407.63
49	3:03:37	0	0	0	0	0	442.37
50	3:07:08	2	0	6	0	38.29	448.06
51	3:10:39	4	0	11	0	65.11	413.88
52	3:14:10	2	1	4	1	79.45	443.95
53	3:17:41	2	0	6	0	0	437.98
54	3:21:12	0	0	2	0	0	445.68
55	3:24:43	0	2	0	3	44.8	423.53
56	3:28:14	2	2	4	2	117.53	426.77
57	3:31:46	4	0	12	0	0	436.26
58	3:35:17	0	0	1	0	0	423.26
59	3:38:49	2	2	6	2	65.83	418.67
60	3:42:25	0	0	0	0	0	425.97
61	3:45:56	2	0	7	0	25.95	424.94
62	3:49:28	3	0	. 10	0	0	417.57
63	3:52:59	3	0	7	0	58.9	427.25
64	3:56:30	0	0	2	0	0	436.03
.65	4:00:02	7	2	17	2	29.23	425.41
66	4:03:33	0	0	0	0	0	415.28
67	4:07:04	3	0	10	0	0	430.27
68	4:10:35	1	0	3	0	228.27	444.44
69	4:14:06	0	0	1	0	0	439.12
70	4:17:38	6	0	16	0	64.66	440.26
.71	4:21:10	0	0	2	0	0	426.27
72	4:24:47	6	0	16	0	1.49	434.24
73	4:28:18	1	0	3	0	96.96	422.97
74	4:31:50	3	1	8	0	58.68	420.63
75	4:35:21	6	2	14	2	39.11	428.46
76	4:38:51	4	3	10	3	67.95	427.87
77	4:42:23	0	0	2	0	0	425.58
78	4:45:55	3	0	10	0	0	396.64
79	4:49:27	3	0	8	0	0	410.9
80	4:52:58	3	1	6	1	97.54	453.58
81	4:56:29	1	0	4	0	0	405.95
82	5:00:01	2	0	8	0	1788.77	416.52
83	5:03:32	0	3	0	4	203.61	414.01
84	5:07:08	5	2	14	2	47.42	420.08
85	5:10:40	0	0	1	0	0	428.99
86	5:14:12	3	0	9	0	6.3	420.57
87	5:17:44	3	3	7	3	56.46	410.61
88	5:21:15	0	0	1	0	0	419.43
[Position Skip GB H-3	ped to Set O	ff Spikes Ru	ns with san	nple batch]			
Spike GB C-14	5:24:48	16582	1933	41152	282	11.48	469.16
Spike GB Dual	5:28:19	1148	8736	0	10604	79.19	453.32
Label Snike							
(H-3/C-14)	5:31:51	16745	7864	39801	7539	29 97	464 08
· /							

Data Validation:	Blank	CPMA 8	СРМВ 12	Comments Acceptable ranges	s: 10 minute sta	bilized cour	nt.	
. –		H-3 dpm Actual	LSC Result	% Difference	C-14 dpm Actual	LSC Result	% Difference Comments	
GBI	H-3 Spike	44298	41152	-7.1%	NA	NA	NA Excellent agreement	
GB C	-14 Spike	NA	NA	NA	10252	10604	3% Excellent agreement	
GB Dual Label Spike (I	H-3/C-14)	40158	39801	-1%	6757	7539	12% Excellent Agreement	

Minimum Detection Count Rate Limit:

H-3 +6.13 cpm above blank/background

C-14 +7.50 cpm above blank/background

Calculated as follows: $(k_{\alpha}+k_{\beta})$ *SQRT[(Sigma_{backoround})²+(Sigma_{sample})²]

= $(k_{\alpha}+k_{\beta})$ *SQRT[(BCR/BT)+(SCR/ST)]

Where:

 k_{a} = Type I error (False positive) = 0.05 or 5%; therefore Normal table distribution value = 1.645

 k_{B} = Type II error (False negative) = 0.05 or 5%; therefore Normal table distribution value = 1.645

SQRT = Square root function

Sigma_{background} = Standard deviation of the blank/background count

Sigma_{sample} = Standard deviation of the gross sample count

BCR = Background count rate

BT = Background time = 10 minutes

SCR = Sample count rate which approaches background; therefore set SCR=BCR

ST = Sample count time = 3 minutes

Nominal	Minimum	Detection	Activities
NOTIFIA		Delection	ACHAINCS.

	Efficiency	DPM	Bq	μCi
H-3	40.3%	15.21	0.25	6.85E-06 Calculated using H-3 Spike applied quench curve efficiency
C-14	82.4%	9.10	0.15	4.10E-06 Calculated using C-14 Spike applied quench curve efficiency

Comments:

1. The tSIE was the Quench indicating Parameter used to apply efficiency and calculate DPM values.

All sample tSIE values fell within the valid range of the stored curve. Minimum: 396.64 Maximum: 469.16

2. 17 mL of Ultima Gold liquid scintillation cocktail was used to dissolve the sample media and promote complete homogenous solutions.

3. A few samples had visible particulate loading which was allowed to settle out before actual counting but after the samples were vortexed vigorously.

4. The first vial blank/background option automatically subtracted background from all sample results in positions from "2" forward.

5. The three spiked samples had excellent agreement with their respective expected or 'true' DPM rates. Therefore, the quench curves and the efficiency corrections applied were valid.

6. The cocktail liquid was clear but each sample had a few bubbles floating in the cocktail (clear in coloration).

At the bottom of each vial, a light blue (like fluorescence of some sort) coloration could be seen.

7. Several samples at or slightly above the the calculated minimum detectable count rate for H-3 were recounted with results noted below.

8. Possible reason for negative percent differences noted in both the single and dual spiked H-3 standards could be the fact

that in order to obtain an adequate count rate for H-3 I had to pipette equal volumes four separate times in each standard prepared thereby adding to some potential volume losses.

2/7/2008 7:	13:04 PM Red	counts of 44	, 65, 70, 72 a	and 75 with Spil	ke Set		·····
Sample ID	ELTIME	СРМА	СРМВ	DPM1	DPM2	SIS	tSIE MESSAGES
Blank	0:10:45	10	11	0	0	48.27	408.53 Background Vial
44	0:14:16	0	0	2	0	0	429.6
65	0:17:48	1	3	3	3	48.93	424.44
70	0:21:19	0	3	0	3	70.94	437.07
72	0:24:51	0	1	0	1	0	434.23
75	0:28:23	0	0	0	0	0	430.03
[Position Sk GB H-3	ipped to Set C	Off Spikes Ru	uns with sam	ple batch]			
Spike GB C-14	0:31:56	16808	1956	41715	281	11.48	469.19
Spike	0:35:28	1155	8650	0	10496	79.02	456.18
GB Dual Label Spike							
(H-3/C-14)	0:38:59	16685	7899	39706	7586	30.19	463.14

Conclusion:

All samples: No detectable activity - essentially indistinguishable from background/blank rate.

Analysis Performed by: Ritchie D. Buschow

<u>Attere a Beston 2/21/08</u> Signature and Date:

Verified by: Todd W. Baker

aber alailos

This is t include: Ther tech omis	o acknowledge the receipt of your <u>9308</u> , and to i s an administrative review has bee Amendment Coc e were no administrative omission nical reviewer. Please note that th sions or require additional informa	letter/application dated nform you that the initial processing which en performed. -10672-03) is. Your application was assigned to a the technical review may identify additional ation.
Plea	se provide to this office within 30 o	days of your receipt of this card
A copy Branch	of your action has been forwarded who will contact you separately if	I to our License Fee & Accounts Receivable there is a fee issue involved.

Your action has been assigned **Mail Control Number** 142803. When calling to inquire about this action, please refer to this control number. You may call us on (610) 337-5398, or 337-5260.

NRC FORM 532 (RI) (6-96)

x

Sincerely, Licensing Assistance Team Leader