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ABSTRACT

This report identifies and investigates methodologies to deal with uncertainties in assessing
high-level nuclear waste package performance. Four uncertainty evaluation methods (probability
- distribution approach, bounding approach, expert judgment, and sensitivity analysis) are suggested
as the elements of a methodology that, without either diminishing or enhancing the input
uncertainties, can evaluate performance uncertainty. Such a methodology can also help identify
critical inputs as a guide to reducing uncertainty so as to provide reasonable assurance that the risk
objectives are met. This report examines the current qualitative waste containment regulation and
shows how, in conjunction with the identified uncertainty evaluation methodology, a framework
for a quantitative probability-based rule can be developed that takes account of the uncertainties.
Current U.S. Nuclear Regulatory Commission (NRC) regulation requires that the waste packages
provide "substantially complete containment” (SCC) during the containment period. The term
"SCC" is ambiguous and subject to interpretation. This report, together with an accompanying
report that describes the technical considerations that must be addressed to satisfy high-level waste
containment requirements, provides a basis for a third report to develop recommendations for
regulatory uncertainty reduction in the "containment” requirement of 10 CFR Part 60.
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EXECUTIVE SUMMARY

Performance-related U.S. Regulatory Commission (NRC) regulations for high-level waste
(HLW) include 10 CFR 60.112 on repository system performance, which implements the
Environmental Protection Agency (EPA) requirements related to the containment of high-level
waste (HLW). The engineered barrier system (EBS) is a subsystem of the overall repository system.
The NRC performance requirements for this subsystem are given in 10 CFR 60.113, which requires
that containment of HLW be substantially complete during the period when radiation and thermal
conditionsin the EBS are dominated by fission product decay. The minimum period of containment
is specified as 300 to 1,000 years after permanent closure of the geologic repository. The current
NRC regulation requires "substantially complete containment” (SCC). However, the term "SCC"
is ambiguous and subject to interpretation. The purpose of this report and two other companion
reports is to investigate the feasibility of a possible change in the current regulation to reduce the
regulatory ambiguity. The firstreport' is acompendium of technical information and considerations
that must be addressed to satisfy containment requirements of HLW. As the second report in this
series, this report identifies methodologies to deal with uncertainty issues involved in evaluating
containment performance. Together, the two reports provide the basis for a third report?, which
develops recommendations for resolving the regulatory uncertainty in 10 CFR Part 60.113.

As part of the feasibility study, this report has the key objective of identifying and investigating
methodologies to deal with uncertainties in waste package performance assessment, without
prejudging whether an SCC rule should be qualitative or quantitative. Although the focus of this
report is mainly on waste package performance assessment, the methodologies discussed are also
broadly applicable to a wide range of other performance assessment issues. Another objective of
this report is to critically evaluate the methodologies discussed. By presenting the strengths and
limitations of the methodologies, this report aims to guide the analysts in selecting the appropriate
approaches for the uncertainty analysis, as well as conveying useful advise for avoiding pitfalls in
the application of the selected methodologies.

As a feasibility study and a companion study to the first report, this report has a limited scope.

This report presents methodologies, not analyses. As a compilation of methodologies, this report
accepts the input data and models and their associated uncertainties as givens and shows how to
evaluate the effects of input uncertainties on the output uncertainty, without either attenuating or
amplifying the input uncertainties. The input uncertainties stem from the technical considerations
discussed in the first report. The output uncertainty relates to the SCC criterion. However, this
report does not deal directly with the quality of the inputs; as with any analysis, the quality of the

Manaktala, HK. and C.G. Interrante, "Technical Considerations for Evaluating Substantially Complete Containment
of HLW within the Waste Package,” CNWRA 90-001, 1990.

2Nair, P.K. and E. Tschoepe, "Substantially Complete Containment Feasibility Study Recommendations Report,”
CNWRA Letter Report, 1990,
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output can be no better than the quality of the inpilts. The tasks of specifying the input uncertainties
and choosing, developing, and applying the uncertainty methodologies to determine the output
uncertainty are the responsibility of the repository designer, i.e., the Department of Energy (DOE).

The containment performance assessment and uncertainty issues are addressed in Sections 2
and 3. Section 2 describes the scope of uncertainty issues involved in waste package performance
assessment and suggests a probabilistic analysis framework by which uncertainties can be treated
to address the containment issue. It should be noted that a probabilistic approach, if useful for
evaluating performance, can be used regardless of whether an SCCrule is qualitative or quantitative.
Section 3 characterizes those uncertainties encountered in waste package performance assessment
by uncertainty types and sources. Examples of uncertainty characterization aré¢ given in the
following table. The purpose of the classification is to provide a systematic way to include all
sources of uncertainty and to analyze the uncertainties associated with the SCC issues.

l Types of Uncertainty | Sources of Uncertainty Examples Possible Effects
Random Fabrication Grain size, defects Stochastic corrosion
Geologic characteristics | Rock formation Random porosity

Knowledge: Insufficient data Geochemistry Error in specification
Parameter
Knowledge: Lack of scientific models | Water intrusion scenarios | Inaccurate time-to-failure
Modeling Waste-form/canister prediction

‘ interaction
Knowledge: . Inadequate knowledge |Long-term radiation effects | Not all failure mechanisms
Completeness considered

If uncertainty could be reduced to zero, it might be possible to design an EBS that provides
complete containment with full (100 percent) confidence. In reality, uncertainty cannot be totally
reduced because of the difficulties associated with long-term predictions and many practical
constraints such as time and cost factors. To minimize risk, one should attempt to build high
confidence by designing-in reliability and by evaluating and reducing uncertainty.

To evaluate uncertainty, one can first use probabilistic and statistical tools or expert judgment
to characterize uncertainty and then conduct probabilistic and sensitivity analysis to identify critical "
inputs, i.e., those parameters whose associated uncertainties are the major components of the output
uncertainty. Early identification of these critical inputs is essential as a guide toreducing uncertainty
s0 as to provide reasonable assurance that the performance objectives are met. Uncertainty can be
reduced by gathering more data (including field data, lab data, and natural analog data), by improving
predictive models using advanced research results and accelerated life tests, and by performing
validation analyses or tests. Section 4 suggests several uncertainty evaluation methods that can be
jointly used to design such a methodology.



Section 4, together with the appendices, constitutes the bulk of the results of this study. The
methods discussed are of a very general nature and are not exhaustive. Section 4 discusses four
uncertainty evaluation methods and suggests that a methodology may be designed in such a way
that the assurance (or confidence) level in the analysis output reflects the degree of uncertainty in
data and models, i.e., the assurance level of the output reliability is low if the input quality is poor.
Such a methodology would be useful fqr providing guidance for reducing uncertainty.

A probability-distribution approach that models all the uncertainties as
probability-distributions is not feasible because of the large uncertainties in the input parameters
and process models. For evaluating containment performance, other approaches must be used to
supplement the probability-distribution approach. Four uncertainty evaluation methods are
identified as shown in the following table.

Method Main Role Discussions
1. Probability-Distribution « Establish waste package performance distributions | Section 4.3
(reliability analysis) Appendices B, C,E, F,
II. Bounding * Quantify input uncertainty Section 4.4
(Bounds, assurance levels) Appendix D

. Pr0vide assurance levels for results of I

III. Expert Judgment ¢ Quantify input uncertainty Section 4.5
(Distributional input, assurance levels)
+ Provide assurance levels for results of [

IV. Sensitivity Analysis » Identify critical assumptions, parameters Section 4.6

The four methods are not mutually exclusive; they should be. jointly used. The
probability-distribution approach provides a framework for waste package reliability analysis.
When there are not enough data to establish a distribution for an uncertainty parameter, the bounding

-approach can be used to quantify input uncertainty, using bounds and corresponding assurance
levels. In addition, in combination with the probability-distribution approach, the bounding
approach can provide assurance levels to the outputs. Expert judgment can be used to assist in
developing distribution models and process models. In some cases, expert judgment may be the
only practical mechanism to justify (or provide reasonable assurance for) the selection of scenarios,
process models, and the values of parameters. When there are insufficient data or knowledge to
discriminate between several competitive models or assumptions, sensitivity analyses can be
performed to identify critical uncertain parameters, so that efforts can be directed to reduce the
uncertainty.

The uncertainty evaluation methods discussed in Section 4 provide a basis for exploring
probability-based SCC rules. Section 5 examines the current SCC regulation and provides an
example that shows how a framework for a quantitative probability-based rule can be developed
that takes account of the uncertainties. The basic idea is to evaluate the assurance level of the waste
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package reliability, which defines (in a probabilistic sense) the containment requirement in terms
of the allowable number (for example, zero) of waste package failures. The assurance level of the
reliability can be evaluated using the bounding approach or the reasonable-assurance approach.

A significant part of this study concerns the improvement of the standard Monte Carlo
approach, which might be extremely time-consuming for complex problems such as waste-package
reliability assessment. A number of methods are proposed in the appendices that provide potentially
significant improvement over the standard Monte Carlo method. These more efficient procedures
are suitable for providing cost-effective and accurate “what if" answers to different assumptions,
to assist in uncertainty and risk analyses.



NOMENCLATURE

cdf cumulative distribution function

EBS engineered barrier system

E() expected value

F() cdf

F(p;n,t) cdfof P(n,t); Prob[P(n,t) < p] (see Eq. 4)

K WP’s failing ratio = N/M

K, regulatory limit of K; (see Eq. 1)

M total number of waste packages in an EBS

N(@) total number of failed waste packages in an EBS at time t
n an integer associated with random variable N (¢)

Prob()  probability of
P(n,?) cdf of N; Prob(N(t) < n)

D reliability

p reliability estimate

Do | reliability target (regulatory limit)

SCC substantially complete containment

T, time-to-failure of waéte package

T, regulatory limit of containment time (see Eq. 1)
TF transfer function

t time

LA number of failure of k* waste package; 0 or 1
WP waste package

X; input parameters to transfer functions

Y, output/performance functions

B risk associated with reliability (see Eq. 8)

B, acceptable level of risk (see Eq. 10b)

o standard normal cdf

o, transfer functions in waste package performaxice assessment






1. INTRODUCTION

1.1 Background

The Center for Nuclear Waste Regulatory Analyses (CNWRA) has developed a systematic
approach for evaluating and analyzing the regulations affecting the High Level Radioactive
Waste program. The systematic approach is described in detail in a CNWRA document (see

- CNWRA, 1990). The rationale for the systems approach is to enable the analyst to identify,
among other things, specific interrelated regulatory requirements, what must be proven to
demonstrate compliance with these regulations, and how one might demonstrate compliance
with the requirements. As part of this process, uncertainties in the regulations are also evaluated,
and potential uncertainty resolution strategies are explored. ' Preliminaiy analysis of regulations
related to the performance of waste packages within the engineered barrier system indicates
that there is uncertainty with respect to these requirements, and the CNWRA is assessing various
uncertainty resolution strategies. This report supports an initial effort to identify an acceptable
strategy for reducing the regulatory uncertainty in the meaning of the term "substantially
complete containment.” ‘

Regulations by the Nuclear Regulatory Commission (NRC) with respect to the disposal
of high-level radioactive wastes (HLW) in geologic repositories are set outin the Code of Federal
Regulations (CFR), Title 10, Part 60. In the current work on the containment of HLW, two
paragraphs in 10 CFR Part 60 are the principal focus, that is, 10 CFR 60.112, "Overall System

- Performance Objective for the Geologic Repository after Permanent Closure," and 10 CFR
60.113, "Performance of Particular Barriers after Permanent Closure." 10 CFR 60.112 provides
the performance requirements for the overall geologic repository system and 10 CFR 60.113
includes the performance requirements for the repository subsystems, including the engineered
barrier system and the geologic setting.

As noted in the following paragraphs, the performance requirements for the engineered
barrier system consist of two parts: (1) a "containment” requirement for HLW waste packages
and (2) a radionuclide release rate limit from the engineered barrier system (EBS). Taken
together these two parts are intended to control the release of radioactive materials to the geologic
setting and to add confidence that the overall system performance objectives for the repository
(i.e., 10 CFR 60.112) will be met.

The performance requirements for the EBS, as contained in 10 CFR 60.113, specify that:

(i) "The engineered barrier system shall be designed so that assuming anticipated pro-
cesses and events: (A) containment of HLW will be substantially complete during the
period when radiation and thermal conditions in the engineered barrier system are
dominated by fission product decay; and (B) Any release of radionuclides from the
engineered barrier system shall be a gradual process which results in small fractional
releases to the geologic setting over long times...."



(ii) "In satisfying the preceding requirements, the engineered barrier system shall be
designed, assuming anticipated processes and events, so that: (A) containment of HLW
within the waste packages will be substantially complete for a period to be determined
by the Commission taking into account the factors specified in 60.113(b) provided, that
such period shall be not less than 300 years nor more than 1,000 years after permanent
closure of the geologic repository; and (B) The release rate of any radionuclide from the
engineered barrier system following the containment period shall not exceed one part of
100,000 per year of the inventory of that radionuclide calculated to be present at 1,000
years following permanent closure, or such other fraction of the inventory as may be
approved or specified by the Commission; provided, that this requirement does not apply
to any radionuclide which is released at a rate less than 0.1% of the calculated total release
rate limit. The calculated total release rate limit shall be taken to be one part in 100,000
per year of the inventory of radioactive waste originally emplaced in the underground
facility, that remains after 1,000 years of radioactive decay."

Although the requirement in the regulation for limited release from the EBS in the
post-containment period is clearly stated in numerical terms, the coupled requirement for
"substantially complete containment” (SCC) during the containment period is ambiguous and
subject to interpretation. Accordingly, clarification of the meaning of the containment
requirement either by rulemaking or some other uncertainty reduction method is needed. One
reason why a rapid resolution of the meaning of this regulation has not occurred is that the
problem of demonstrating containment for long periods of time is an unprecedented task.

Three factors make the problem different from those solved in the past; and these, listed
as follows, will require the judicious application of advanced and relevant technologies.

(1) Length of time :
The required service time (over 300 years) specified in the regulation exceeds the times
commonly required in engineering design.

(2) Size
The number of waste packages is very large (about 20,000 to 80,000 are expected) which
implies that a full-scale laboratory test is practically impossible.

(3) Inaccessibility

In a closed repository that is not subject to active institutional controls, the waste packages
will be inaccessible for inspection during the majority of the service life, whichis up to thousands
of years. Reasonable assurance of the required long-term performance will require the appli-
cation of conservative assumptions and/or a scientific understanding, with a high level of
confidence, of the effects of time and the environment on a repository.



In an effort to clarify and investigate the feasibility of quantifying the containment reg-
ulation, the CNWRA at the Southwest Research Institute is examining the feasibility of a
potential rulemaking activity related to containment. As part of this work, three background
technical reports have been developed to provide a common technical basis from which a rule
can be developed, if appropriate. The first report (Report 1, Manaktala and Interrante, 1990)
is intended to present and describe the technical topics that must be considered in assessments
of the long-term performance of the waste package. As the second report in this series, this
report (Report 2) identifies methodologies for assessing how well the various technical con-
siderations can be evaluated in the face of known and, at times, unknown uncertainties. The
third companion report, on the basis of the information provided in the first two reports, contains
recommendations for the resolution of the issue of SCC of HLW within the waste package.

1.2 Objectives and Scope

As part of the feasibility study, this report has the key objective of identifying and inves-
tigating methodologies to deal with uncertainties in waste-package performance assessment,
without prejudging whether an SCC rule should be qualitative or quantitative. Although the
focus of this report is mainly on waste package performance assessment, the methodologies
discussed are also broadly applicable to a wide range of other performance assessment issues.
Another objective of this report is to critically evaluate the methodologies discussed. By
presenting the strengths and limitations of the methodologies, this report aims to guide the
analysts in selecting the appropriate approaches for the uncertainty analysis, as well as conveying
useful advise for avoiding pitfalls in the application of the selected methodologies.

As a feasibility study and a companion study to the first report, this report has a limited
scope. This report presents methodologies, not analyses. As a compilation of methodologies,
this report accepts the input data and models and their associated uncertainties as givens and
shows how to evaluate the effects of input uncertainties on the output uncertainty, without either
attenuating or amplifying the input uncertainties. The input uncertainties stem from the technical
considerations discussed in the first report. The output uncertainty relates to the SCC criterion.
However, this report does not deal directly with the quality of the inputs; as with any analysis,
the quality of the output can be no better than the quality of the inputs. The tasks of specifying
the input uncertainties and choosing, developing, and applying the uncertainty methodologies
to determine the output uncertainty are the responsibility of the repository designer, i.e., the
Department of Energy (DOE).

1.3 Report Organization

Sections 2 and 3 address containment performance assessment issues and suggest
approaches. Section 2 describes the scope of uncertainty issues involved in waste package
performance assessment and suggests a probabilistic performance assessment framework by
which uncertainties can be treated to address the containment issue. ' It should be noted that a



probabilistic approach, if useful for evaluating performance, can be used regardless of whether
an SCCruleisqualitative orquantitative. Section 3 characterizes those uncertainties encountered
in waste-package performance assessment by uncertainty types and sources.

A probability-distribution approach that models all the uncertainties as probability dis-
- tributions is an idealized approach for probabilistic performance assessment. To use the
probability-distribution approach, implementation problems associated with insufficient data
and uncertain transfer functions must be resolved. Without adequate data and models, the result
of a reliability analysis would be highly uncertain. Three other uncertainty evaluation methods,
‘namely the bounding approach, expert judgment, and sensitivity analysis, were identified to
supplement the probability-distribution approach. Section 4, together with the appendices,
constitutes the bulk of the results of this study. The methods discussed are of a very general
nature and are not exhaustive. This section presents an uncertainty evaluation methodology
that combines the above four methods and suggests that a methodology may be designed in
such a way that the assurance (or confidence) level in the analysis output reflects the degree of
uncertainty in data and models, i.e., the assurance level is low if the input quality is poor. Such
a methodology would be useful for providing guidance to reducing uncertainty.

Section 5 examines the current SCC regulation and provides an example that shows how
a framework for a quantitative probability-based rule can be developed that takes account of
the uncertainties. The uncertainty evaluation methodology of Section 4 would be used to
evaluate the uncertainty associated with whatever SCC rule, either qualitative or quantitative,
- is adopted. A summary of the report is presented in Section 6.

A significant part of this study concerns the improvement of the standard Monte Carlo
approach, which might be extremely time-consuming for complex problems such as waste
package reliability assessment. A number of methods, discussed in Appendices A-C, provide
potentially significant improvement over the standard Monte Carlo method. These more effi-
cient procedures may be suitable for providing cost-effective and accurate "what if"' answers to
different assumptions to assist in decision-making.

Some of the methodological techniques presented in this report draw heavily on the rel-
atively new field of geostatistics (e.g., see references in Appendix F). Because it arose out of
mining and petroleum engineering, geostatistics has been developed largely outside of the
mainstream of statistics, and is unfamiliar to many statisticians. However, because it was
developed to deal with complex dependency structures where classical statistical methods are
inadequate, geostatistics is highly useful for dealing with the spatial and temporal dependencies
involved in waste repositories.



2. WASTE-PACKAGE PERFORMANCE ASSESSMENT
2.1 Introduction

In 10 CFR Part 60, the "waste package" is defined as the waste form (radioactive waste
materials and any encapsulating or stabilizing matrix) and any containers, shielding, packing,
and other absorbent materials immediately surrounding an individual waste container; the EBS
is defined as the waste packages plus the underground facility.

The SCC regulation addresses the ability of all the waste packages within the EBS to
"contain" the waste during the period when radiation and thermal conditions in the EBS are
dominated by fission product decay.

In this report, a failure is defined as loss of containment function caused by the interaction
between environments and waste-package degradation processes. A more explicit definition
of a waste-package failure can be advanced only when a design is proposed in which the
materials, geometries, etc., are well-defined. The consequence of waste-package failure is the
availability of nuclear waste for transport to the geologic setting. However, the amount or rate
of release is regulated in a separate requirement that is not discussed in this report.

InReport 1 (Manaktala and Interrante, 1990), the various technical considerations required
in making a logical argument for satisfying containment requirements were presented. The
higher-order classification of the technical considerations includes environment, materials
fabrication, degradation processes, and inspections and monitoring. These considerations, when
incorporated into a life prediction methodology for waste packages, become the basis of
exercising technical judgment on the long-term performance of the containment barriers.

Recognizing the various types of inherent uncertainties in the technical considerations,
the remaining discussions in this section attempt to establish a probabilistic analysis framework
by which uncertainties in waste-package performance assessment can be treated to address the
SCCissue. To achieve this goal, potential failure modes/mechanisms and uncertainties will be
described to provide a basis for probabilistic treatment.

2.2 Waste-Package Failure Modes
2.2.1 General Approach to Assessment of Waste-Package Performance

An assessment of waste-package performance may be considered to involve the fol-
lowing steps:
» Identify anticipated processes and events;
» Identify possible failure modes in the context of anticipated processes and events;
* For each failure mode, identify failure paths (i.e., scenarios, environments and
mechanisms leading to failures);
* For each failure path, evaluate time-to-failure for each waste package



(Note: assuming each waste package and associated environment have their own
characteristics);

» Compute number of waste-package failures as a function of time;

« Use the result from the above step to determine whether the design provides SCC.

A basic performance measure is time-to-failure, which is a function of environment
and material characteristics. To evaluate time-to-failure, it is necessary to identify failure
modes, defined here as the physical/chemical processes that result in failure. Once the
time-to-failure information is available, the number of waste package failures, as a function
of time, can be computed. In this report, the two major performance measures, time-to-failure
and number of waste-package failures, are treated as random variables to deal with the
uncertainties involved in evaluating containment performance.

2.2.2 Waste-Package Failure Modes

In defining general mechanical failure modes, Collins (1981) suggested that a sys-
tematic classification might be devised by which all possible failure modes could be pre-
dicted. According to Collins, there are:
four manifestations of failure:

« Material change (metallurgical, chemical, nuclear)

» Elastic deformation '

+ Plastic deformation

« Rupture or fracture
four failure-inducing agents:

» Reactive environment (chemical, nuclear)

» Temperature

« Force

* Time
and two failure locations:

* Body type

* Surface type

Several technical considerations presented in Report 1 fall in the category of "material
change." This is an important aspect of waste containment where degradation processes are
slow and long-term in nature. Elastic or plastic deformations are applicable to repositories
where creep is an important phenomena. The integrity of waste packages can also be affected
by transient "overload” conditions within the repository area. This may be due to events
such as seismic/tectonics or volcanic activities. In such cases, the manifestations of failure
would include elastic or plastic deformation, and rupture or fracture.



The failure-inducing agents in describing containment involve the long-term and
time-dependent geochemical environment, the gamma radiation field, decay heat temper-
atures, and geo-thermo-mechanical conditions.

The degradation of waste-package performance can be body-related (i.e., bulk material
property changes) and/or surface-related (i.e., corrosion, erosion and other surface effects).

The above classification, which may neither be complete, nor fully relevant to the
waste-package performance assessment problem, nevertheless does provide a way to define
possible failure modes and failure paths. As an example, pitting corrosion is a localized
attack that leads to the development of pits or holes that may penetrate the container wall.
This failure mode may be induced by time (long-term), temperature, reactive environment,
and results in material change leading to a pitting failure.

In reviewing a waste-package design, it is necessary to investigate all the possible
failure modes, and also to investigate the scenarios (related to failure-inducing agents)
associated with each failure mode. Standard risk analysis techniques such as fault-trees and
failure-modes-and-effects-analysis can be used in defining failure path and failure conse-
quence.

Examples of the important failure modes that need to be reviewed in waste-package
performance assessment are corrosion, radiation damage, and force and/or temperatu-
re-induced deformation or fracture (e.g., by seismic force). A more detailed description of
the conceivable failure modes can be found in Report 1.

2.2.3 Uncertainties Associated with Failure Modes

As discussed above, there are failure-inducing agents for each failure mode. Uncer-
tainties are anticipated in these failure-inducing agents, as described in Section 2.3. Because
failure modes will depend on design parameters such as the selected material, geometry,
strength, location, etc., it is difficult to postulate which failure modes and uncertainties will
be important. Section 2.3 attempts to describe those uncertainties that are anticipated or
that have significant impacts on the overall performance.

2.3 Uncertainties in Waste-Package Environments and Materials
2.3.1 Uncertainties in Environments |

Waste-package environments are defined here as time-dependent physical/chemical
conditions imposed either externally or internally on a waste package (or any of the barriers)
and having the potential of affecting the performance to the extent of causing a waste-package
failure. Note that a barrier, such as a packing, has a resistance property, but also provides
an environmental condition for other barriers.



Major waste-package environments that may impact the waste-package performance
include the following elements:

» Geochemical condition

» Thermal field

« Radiation field

« Fluid flow field

« Stress and seismic fields

« Surrounding medium: rocks and other barriers

The geochemistry of a repository defines important environmental conditions that
initiate and/or propagate material degradation processes such as corrosion. The geochem-
istry characteristics surrounding an EBS could be influenced by the gamma radiation or
release of metal ions from other components of the EBS (Manaktala and Interrante, 1990).
Thus, the uncertainties in geochemical characteristics are strongly dependent on long-term
predictive models.

The thermal field around waste packages is expected to be dependent on the type and
amount of nuclear waste. In the case of an unsaturated medium around EBS, the thermal
field has a potential effect of keeping liquid water from contacting the waste packages in
the first several hundred years after permanent closure. However, once the temperature
drops to below boiling point, the water may be in contact with canisters. The thermal field
may alsoenhance the concentration of salts and other corrosive elements in the waste package
vicinity. The uncertainties in predicting the thermal field stem mainly from the difficulty
in characterizing the thermal properties of the surrounding medium.

The waste package radiation field is determined by the waste package design and the
contained nuclear waste. The radiation field may influence the characteristics of the sur-
rounding materials and cause changes in the degradation rates. The characteristics of the
radiation field have relatively smaller uncertainty; however, the radiation effect on the
materials may have greater uncertainty that can be reduced only by physical understanding
of the processes.

The fluid flow field interacts with geochemical conditions and provides a path for
potentially hostile chemicals to contact and degrade the waste packages. The locations and
amount of water and vapor depend on many factors such as climate, water table, and water
flow characteristics of the rock matrix. The uncertainties are dependent on long-term pre-
dictive models such as recharge rates and groundwater flow models.

The effects of the stress and seismic fields depend on waste package and EBS design
and repository geologic characteristics. The sources of stresses include those due to welding,
sealing, and other fabrication processes; and other mechanical forces imposed upon the
waste packages by, for example, the collapse of emplacement boreholes due to seismic



shaking or fault motions by an earthquake. The stress field may contribute to corrosion
failure and other mechanical failures such as impact failure or buckling failure. To some
extent, the fabrication-induced stress can be controlled by proper quality assurance proce-
dures. The stresses induced by seismic shaking and fault motions, on the other hand, are
difficult to predict and are, hence, subject to greater uncertainty. A practical solution today
is to use a probabilistic model to simulate the occurrence and effects of such events.

The surrounding medium includes rocks, soils, and other barriers that affect the
geochemical, thermal and/or fluid flow fields. Uncertainties in material characteristics are
anticipated for nonhomogeneous medium such as rock.

In summary, the nature of the waste package environments involves many uncer-
tainties. In general, the uncertainties involve physical variability such as porosity in a rock,
and knowledge uncertainty (see Section 3.2) such as tectonic and seismic activities and
climate changes on time scales of thousands of years or more.

2.3.2 Uncertainties in Materials

As defined earlier, a waste package consists of the waste form and any containers,
shielding, packing, and other absorbent materials immediately surrounding an individual
waste container. Detailed definition of uncertainties in waste-package materials will be
possible only after materials have been selected.

Material defects may exist in most engineering materials. Although initial (after
inspection) defects can be controlled to some extent, "small" defects may be unavoidable
because of imperfect manufacturing processes and/or of detection limitations of non-
destructive testing methods.

In general, the uncertainties that could impact performance assessment include such
random characteristics as material grain size and orientation, location of defects or voids,
distribution of residual stresses, and variations in waste form characteristics (amount and
type) among waste packages. Scientific uncertainty is expected to exist in the long-term
predictive models of material properties. The importance of each mentioned uncertainty
depends on waste-package design and potential failure modes.

2.4 Probabilistic Performance Assessment and Probabilistic Modeling

According to Sections 2.2 and 2.3, waste-package performance assessment requires
long-term prediction/modeling of environments and material-related processes that are uncer-
tain. This section describes a probabilistic analysis framework and presents several examples
of probabilistic modeling that are useful for dealing with the uncertainties.



Figure 1 shows a simplified flow-chart for waste-package probabilistic performance
assessment. In this figure, the transfer functions ¢; are idealized mathematical models repre-
senting real world physical processes that link the inputs to the outputs. The transfer functions
are likely to be very complicated and would require sophisticated computer modeling. The
input parameters X; and the transfer functions are generally uncertain.! Both the inputs and the
transfer functions are in general functions of time.

Inputs, X; | Transfer Functions, ¢; — Outputs, ¥,  |— SCC Compliance

Determination

WP material properties, Water intrusion, radiation WP time-to-failure, Evaluate reliability,
geochemistry, rock damage, corrosion, etc. number of WP failures, etc. confidence
characteristics, etc.

Figure 1. Waste-package (WP) probabilistic performance assessment.

To evaluate uncertainty, the input uncertainties are propagated through the transfer
functions to the outputs Y;. As a result of the input uncertainties, the two major performance
measures, time-to-failure and number of waste package failures, are uncertain. Uncertainty
evaluation methods that may be used for probabilistic performance assessment are discussed in
Section 4.

Probabilistic performance assessment requires proper probabilistic modeling of a variety
of uncertainties (see Section 3). For example, the initial defect size might be modeled by a
probability distribution that can be developed based on empirical probability detection curves
(Woo and Simonen, 1984). Some material degradation processes have been represented as
random and modeled probabilistically. For example, the generation of pits on stainless steel
can be assumed to occur randomly in time and space, and it may be modeled as a stochastic
Markov process (Sato, 1976; Provan and Rodriguez, 1989; Shibata and Takeyama, 1977,
Rodriguez and Provan, 1989). In such cases, probabilistic predictive models may be established
to predictrandom pit growth. Similarly, because the deepest pit (rather than the overall corrosion
rate or the number of pits) may cause containment failure, an extreme value statistical model is

! A possible approach to modeling an uncertain transfer function is to include random variables in a transfer function,
to account for scientific or modeling uncertainty. In such cases, these random variables are also treated as inputs.
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useful for modeling the time-to-failure (Provan and Rodriguez, 1989). In general, the time-
to-failure prediction models should be built based on physical formulations and/or experimental
results.

Probabilistic/statistical models may be useful for establishing life prediction models based
on accelerated testing and/or natural analogs. For example, an accelerated stress corrosion
cracking test method has been proposed by Sato and Murata (1989) to simulate changes in
environments, to evaluate material service life. They examined the time-to-failure distributions
due to different test conditions, using a Weibull distribution in which the "shape parameter,"
m, was used to identify the failure type, i.e., "startup" (m < 1), "incidental" (m = 1) or "wear-out"
(m> 1). If m can be estimated based on natural analogs or other experimental evidence/models,
then m is an useful index for suggesting an accelerated test method for developing a long-term
life prediction model.

11



3. CHARACTERIZATION OF UNCERTAINTIES IN WASTE-PACKAGE PERFORM-
ANCE ASSESSMENT

3.1 Introduction

Section 2 suggests a probabilistic approach to waste-package performance assessment.
This section presents a method of characterizing the uncertainties so that the required
probability-based uncertainty evaluation methods can be identified.

In this section, uncertainties will be classified into two major types: uncertainty due to
random variability and uncertainty due to lack of knowledge about parameters, models, or
phenomenologies. Also, examples of uncertainty sources associated with each uncertainty type
will be given to demonstrate how to classify waste package uncertainties. Uncertainty evaluation
methods that might be suited to treat each type of uncertainty are presented in Section 4.

Uncertainties can be classified in a number of ways. However, for this report, the purpose
of classification is to provide a systematic way of analyzing the certainties associated with the
SCC issues. Therefore, precise taxonomy is not crucial. Rather, it is more important that all
sources of uncertainty can be included so that proper uncertainty evaluation methods can be
identified or developed.

3.2 Types of Uncertainty

There are two major types of uncertainty: (1) uncertainty due to random variability, and
(2) uncertainty due to lack of knowledge about parameters, models, or underlying physical
processes. The essential difference between these two types is that an enlargement of the data
base can decrease knowledge uncertainty, but can have no effect on random uncertainty.

The following definitions are drawn mainly from USNRC (1983) and from Vesely and
Rasmuson (1984). The former contains a comprehensive treatment of uncertainty, and the latter
is a useful overview.

3.2.1 Random Uncertainty

Random uncertainty is uncertainty due to experimental error or inherent variability in
some measured physical quantity. This type of uncertainty results when an experiment is
repeated under identical conditions, and different outcomes are observed. An example is
the failure times for a group of "identical" waste packages subject to "identical” experimental
conditions. Random uncertainty is inherent in the physical process involved; it cannot be
reduced by enlarging the data base. However, enlarging the data base can provide infor-
mation about the probability distribution of the random uncertainty, but this information
reduces the knowledge uncertainty, not the random uncertainty. For the SCC applications,
the random uncertainties will tend to be dominated by the knowledge uncertainties because
of the need to predict complicated long-term processes.
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In recent years, researchers have become increasingly aware that many deterministic,
nonlinear systems can exhibit irregular, unpredictable, and seemingly random behavior.
This phenomenon is termed "chaos" (Jensen, 1987). Because chaotic behaviorisnotaffected
by increased knowledge, uncertainty stemming from. such behavior will be considered
random uncertainty. '

3.2.2 Knowledge Uncertainty

There are three types. of knowi’edgc unce_iftaintyr:‘ parameter, modeling, and com-
pleteness.

Parameter uncertainties refer to imprecisions and inaccuracies in input parameters,
e.g.,. chloride concentration in the waste-package environments. Parameter uncertainties
can be reduced by parameter estimation, using appropriate data. However, the estimation
process itself can introduce additional uncertainties if the data are biased, incomplete, or
irrelevant, or if an invalid data analysis is used. Additional uncertainties can be introduced
if expert judgment is used for parameter estimation. All of these types of uncertainty are
-considered parameter uncertainties.

Modeling uncertainties refer to uncertainties in a probability model (e.g., a parame-
terized distribution model) of a random uncertainty, and uncertainties in the applicability
and precision of an idealized physical model, stemming from its inadequacies in representing
reality, e.g., an empirical corrosion model based on short-term experimental data. Since all
models are imperfect representations of reality, all models are subject to a greater or lesser
degree to modeling uncertainty. - This stems from uncertainty as to whether the model
accounts for all the variables that affect the results and from uncertainties in the relations
and descriptionsused in the model. Modeling uncertainty can also be introduced by applying
the model beyond its range of validity.

Completeness uncertainties refer to uncertainties as to whether all the significant
phenomena, relationships, and future states have been considered, e.g., whether all scenarios
that could significantly affect SCC have been identified. Completeness uncertainties are
similar in nature to-modeling uncertainties, but occur at the initial stage in the analysis. In
addition to inadequate identification of the physical phenomena involved, completeness
uncertainties can also result from inadequate consideration of human error, software reli-
ability, orinteractions and dependencies among the elements of the processes being modeled.

3.3 Sources of Uncertainty

The sources of the random uncertainty involved in a waste-package performance
assessment include material fabrication processes. The resulting random variables include grain
size, defect size, and defect locations, etc.
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The sources of parameter uncertainty include insufficient data or knowledge, indirect
data (e.g., based on analogs), etc. The sources of modeling uncertainty include lack of scientific
models and/or experimental data for making long-term predictions. The sources of completeness
uncertainty include inadequate knowledge to predict long-term events.

Another source of uncertainty is human error. Human error could result in random
uncertainty (e.g., crack size due to imperfect inspection or mishandling of equipment) and
knowledge uncertainty (e.g., calculation error, modeling error, or lack of completeness).

Table 1 provides some examples of uncertainty sources and their possible effects on waste
package performance. In general, it is anticipated that all uncertainties in waste package per-
formance assessment can be classified according to Section 3.2.

Table 1. Examples of Uncertainty Characterization in Waste-Package Performance Assessment

Types of Uncertainty {Sources of Uncertainty Examples Possible Effects
Random Fabrication Grain size, defects Stochastic corrosion

. Geologic characteristics Rock formation Random porosity
Knowledge: Insufficient data Geochemistry Error in specification
Parameter
Knowledge: Lack of scientific models | Water intrusion scenarios | Inaccurate time-to-failure
Modeling Wasteform/canister prediction

. . interaction
Knowledge: Inadequate knowledge Long-term radiation effects | Not all failure mecha-
Completeness nisms considered
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4. WASTE-PACKAGE UNCERTAINTY EVALUATION METHODOLOGY

4.1 Uncertainty Evaluation and Uncertainty Reduction
4.1.1 Uncertainty Evaluation

Referring to Figure 1, the input uncertainties X; are propagated through the transfer
functions to the outputs ¥,. The uncertainty evaluation methods discussed in this section
accept parameters and transfer functions (and their associated uncertainties) as given. Major
Y, of interest are waste package (WP) time-to-failure (denoted by T,) and the total number
of WP failures in time t (denoted by N(¢)). Both T, and N(¢) are random variables.

Figure 2 is a flow-chart showing the sequence of process models required to assess
compliance with EBS regulations, which separates containment and radionuclide release
rate models. For illustration, an EBS surrounded with rock medium is assumed in this flow
chart. A transfer function (TF) which could either be deterministic or stochastic replaces
one or more process models.

Remarks on the flow-chart:

)
()

3

4

®

"Inward" refers to the WPs; "outward" refers to the biosphere.

As a simplification, the same groundwater conceptual model is used to assess
both the external degradation of WPs and the transport of released radionuclide
to the biosphere (TES).

The groundwater model is coupled with a rock mechanics model because
development of major fracture and/or mﬁjor collapse could influence flow paths
both inward (TF1) and outward (TF5).

The aggregation model (TF4) accounts for space and time dependence due to
the spatial arrangement of WPs in the repository.

Calculation of the release rate, i.e., compliance to the release rate regulation, is
conditioned by the multiple WPs failure model.

The transfer functions are generally coupled (dependent); however, the flow-chart
suggests several decoupling possibilities to aid feasibility of the global assessment task:

1)

)

3

Decoupling of the external and internal degradation models (transfer functions
TF1 and TF2) until the two processes combine, resulting in actual failure (TF3).
Decoupling of the single WP and multiple WPs failure models, allowing for
consideration of alternative space-time failure-dependence scenarios, without
having to evaluate the entire modeling sequence.

Decoupling of the containment (SCC) and release rate issues.
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Model
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Groundwater, Thermal
Geochemistry, Rock Mechanics,

and Other Models Inward Outward
Inward \
External
TF1 Degradation
Model Single Multiple Release
WP Model WP Containment @ WPs Containment ' to
Failure Mode! Failure Model Biosphere
: Internal '
Degradation (SCC Issus) . (Release Rate
Model {ssue)

Figure 2. Modeling sequence for EBS performance assessment.




4.1.2 Uncertainty Reduction

If uncertainty could be reduced to zero, it might be possible to design an EBS that
provides complete containment, with full (100 percent) confidence. In reality, uncertainty
can not be totally reduced because of the difficulties associated with long-term predictions
and many practical constraints, such as time and cost factors. To minimize risk, one should
attempt to build high confidence by designing-in reliability and by evaluating and reducing
uncertainty. ' ‘

Toevaluate the uncertainty, one can first use probabilistic and statistical tools or expert
judgment to characterize the uncertainty and then conduct probabilistic and sensitivity
analysis to identify critical inputs, i.e., those parameters or models whose associated
uncertainties are the major components of the output uncertainty. Early identification of
these critical inputs is essential as a guide to the allocation of resources for reducing
uncertainty. '

Unccrtairity can be reduced by gathering more data (including field data, lab data, and
natural analog data), by improving predictive models using advanced research results and
accelerated life tests, and by performing validation analyses or tests.

Collection of relevant data and development of transfer functions involve many
specialized fields and require numerous experts. The scope of this report is not to directly
deal with the quality of the input data or transfer functions, nor is it to provide in-depth
suggestions for reducing uncertainty. Rather, the goal is to identify or develop uncertainty
evaluation methods that are useful for evaluating uncertainty, so as to provide reasonable
assurance that the risk objectives are met.

4.2 Uncertainty Evaluation Methods

A selected review of some uncertainty evaluation methods applicable to waste package
performance assessment is documented in Appendix A. Several uncertainty methodologies are
outlined in Appendices B through F. The applicability of these methodologies to the SCC issue
is, as yet, unproven. Although we believe that these methodologies provide a sound basis for
an uncertainty evaluation, no claim is made that they are the only appropriate ones.

As with any analysis, the quality of the output can be no better than the quality of the inputs
or the models (transfer functions). Without adequate data and models, the result of a reliability
analysis would be uncertain. Nevertheless, an uncertainty evaluation methodology can be
designed in such a way that the confidence in the output reflects the degree of uncertainty in
data and models, i.e., the assurance level is low if the input quality is poor. This section suggests
several methods that can be jointly used to design such a methodology.
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An idealized approach for probabilistic performance assessment is the probability-
distribution approach. This approach models all the input and transfer function uncertainties
as probability distributions and calculates the resultant uncertainties of the results. However,
there are serious implementation problems associated with insufficient data and uncertain
transfer functions, which make the probability-distribution approach impractical for most
applications. Therefore, in many engineering problems where safety is a concern, it is common
to use the safety factor approach to provide "safety margins" or reliability for a design (Collins,
'1981). To account for uncertainties, typically a number of safety factors are applied to the
characteristic or nominal values of the major design parameters such as material properties and
loads. This approach is simple to implement, but the selection of the safety factors is often
experience-based and, more critically, the resulting reliability can not be quantified.

Since an experience base for long-term waste disposal does not exist, the safety factor
approach should be used with caution. Unless assurance levels can be established for selected
safety factors, this approach is not recommended for addressing the SCC regulation.

The major difficulties associated with the probability-distribution approach include
insufficient data or knowledge for establishing distributions and the difficulties in quantifying
the uncertainties in transfer functions. To deal with these problems, other approaches must be
used to supplement the probability-distribution approach. Four uncertainty evaluation methods
are identified in Table 2. The methods suggested are of a very general nature and are not
exhaustive. They are potentially useful tools to deal with uncertainty issues in SCC. Most of
the detailed technical discussions supporting these methods are included in the appendices.

Table 2. Uncertainty Evaluation Methods for Waste-Package Reliability Analysis

Discussions

1. Probability-Distribution « Establish WP performance distributions Section 4.3

(reliability analysis) Appendices B, C, E, F.
II. Bounding » Quantify input uncertainty Section 4.4

(Bounds, assurance levels) Appendix D

« Provide assurance levels for results of 1

1. Expert Judgment « Quantify input uncertainty Section 4.5
‘ (Distributional input, assurance levels)
« Provide assurance levels for results of I

IV. Sensitivity Analysis » Identify critical assumptions, parameters Section 4.6

The probability-distribution approach provides a framework for waste-package reliability
analysis. When there are not enough data to establish a distribution for an uncertainty parameter,
the bounding approach can be used to quantify input uncertainty, using bounds and corre-
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sponding assurance levels. Expert judgment can be used to assist in developing distribution
models and transfer functions. In many cases, expert judgment may be the only practical
mechanism to justify (or provide reasonable assurance for) the selection of scenarios, process
models, and the values of parameters. When there are insufficient data or knowledge to dis-
criminate between several competitive models or assumptions, sensitivity analyses can be
performed to identify critical uncertain parameters, so that efforts can be directed to reduce the
uncertainty.

The four approaches are not mutually exclusive. For example, the bounding approach can
be used in conjunction with the probability-distribution approach, and expert judgment can be
used to provide the necessary input so that the probability-distribution approach can be applied.

The above approaches can be applied according to the types of uncertainties identified in
Section 3.

For any input variable or process, the treatment of random uncertainty involves the spec-
ification of a probabilistic model for the inherent physical uncertainty in the variable or process.
This probabilistic model can be based on theoretical considerations, experiments (including
accelerated tests as discussed in Section 2.4) or natural analogs. These can be complemented
with expert judgment. If the model can be completely specified, then the treatment of random
uncertainty for the input variable or process is complete. However, if there is any significant
uncertainty about the choice of model or the values of model parameters, then there is knowledge
uncertainty as well as random uncertainty.

Three types of knowledge uncertainty were identified in Section 3.2 - parameter, modeling
and completeness. Modeling and completeness uncertainty can best be handled by the formal
use of expert judgment. However, if there is significant uncertainty about a critical model (a
model whose choice can significantly affect the results), then a sensitivity analysis in conjunction
with expert judgment can be used to evaluate different models. Another approach is to bound
the uncertainty by using conservative models.

The treatment of parameter uncertainty admits the largest variety of approaches. These
approaches can be characterized by the amount of data available for the input variables and
parameters. The method requiring the most data is the probability-distribution approach. If
only bounding data are available, then the bounding approach can be used. Expert judgment
can be used to provide inputs for the probability distribution or bounding approach when -
insufficient data are available.

Development of a detailed methodology for uncertainty evaluation and its implementation
is possible only when a conceptual repository design is available and the waste-package design
parameters are well-defined. Actual implementation corresponding to particular data and
- transfer functions would be the responsibility of the repository designer. As a general guideline,
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the SCC problem must be approached in terms of its unique attributes and specific constraints.
A collection of approaches such as those reviewed in Appendix A and those discussed in this
section must be assembled. New approaches should be developed as needed.

4.3 Probabilitv-Distribution A |

Referring to Figure 1, a probability-distribution approach would consist of assigning
probability distributions to all uncertain inputs X; and propagating these distributions using the
transfer functions ¢; to derive the probability distributions of the outputs ¥,. In practice, this
approach calls for a global simulation of the entire sequence described in Figure 2, to derive the
probability distributions for the key performance measures, including time-to-failure
T,(k =1,...M) and total number of waste package failures N(z). Here M is the total number of
WPs.

Let W (k = 1,...M) be the number of failures of the k* waste package. At a given time t,

the random variable W, can take only two values: O or 1, with corresponding probabilities
determined from the probability distribution of T,. Thus, the total number of failures is:
N@®)=XW,=W,+W,+....+W,, in which every W, is a random variable that is a function of
input random variables X; .! ’

Ideaily, given all the transfer function and the joint probability-distribution-function of the
input random variables, a standard Monte Carlo simulation can be performed to obtain the
distribitions of T,, W,, and finally N(¢).2

The standard Monte Carlo approach would consist of repetitive sampling of the input
uncertainty space and transferring of each sample into the output value (or outcome), thus
allowing a sampling of the N (¢)-output distribution - a task that may be prohibitively costly. To
alleviate this problem, appendices B, C, and E suggest some practical approximate computational
methods.

Appendix B discusses important limitations of the standard Monte Carlo approach and
proposes several alternative Monte Carlo simulation techniques, with emphasis on reducing the
sampling effort. In particular, an efficient importance sampling scheme is proposed.

!Remark: In general, the random variables W, (k = 1,2,...M) are‘not independent because the realizations of some

common input random variables X; may affect multiple waste packages simultaneously. Onthe other hand, the random
variables W, are not completely dependent because of the differences in locations, materials, etc., among different WPs.

*In Section 5, the distribution of N(¢) is used to develop a framework for a qdantitative probability-based rule.
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Appendix C proposes a fast probability analysis method that employs a fast probability
integration concept combined with an importance sampling scheme. The importance sampling
method implemented in this appendix relates to the more general approach discussed in
Appendix B. For complex transfer functions, Appendices B and C provide potentially significant
improvement over the standard Monte Carlo method.

Appendix E reviews and proposes general principles for decoupling and streamlining
sequences of transfer functions without altering their ability to generate "extreme-valued
responses” that are important for waste package reliability analysis. Note that "extreme-valued
responses” means responses beyond the performance compliance limit, with usually a low
probability of occurrence.

Another problem associated with the probability-distribution approach is that the available
information might be insufficient to define probability distributions. Section 4.4 and Appendix
D discuss the bounding approach that can be used to supplement the probability-distribution
approach. Section 4.5 discusses the expert judgment approach that may be useful to assist in
defining input probability distributions. Appendix F proposes a methodology for integrating
soft' information.

4.4 Bounding Approach

In order to implement the probability-distribution approach, it is necessary to specify the
jointdistribution of all input variables. If this can be done, then, in principle, the joint distribution
of the output variables can be calculated (see Appendix B). Although there may be sufficient
theoretical foundations or experimental data to specify the distribution of many input variables,
itis likely that, for some input variables, no such information exists. Although some information
about the distribution of such a variable X may exist based on theory, data, or expert judgment,
this information may be too vague to justify assigning a distribution to X. However, in such a
case, itmay be possible tocharacterize X as lying in some specified interval (called an uncertainty
interval) with high assurance. Itis expected that the uncertainty interval and the level of assurance
will be specified by expert judgment (see Section 4.5).

Assume that the set of input variables can be divided into two subsets -- X" and X", where
X'={X,,.,X,} is a set of input variables with joint distribution F(xy,..,X,)=
Prob{X,<x,.,X, $X,}, and X" ={X,,,,,.,X, } is a set of input variables with uncertainty
intervals [a,, , 1, D +1)--5 [@1, b1 ). The bounding approach combines the input distribution F for
X’ with the uncertainty intervals for X" to calculate upper and lower bounds for the joint

! As opposed to hard data, "soft" data correspond to local geophysical information that needs updating.
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distribution of the output variables Y = {v,,...,Y,}, without diminishing or enhancing the input
uncertainties. A probabilistic inequality is used to relate the assurance level of the output bounds
to the assurance levels of the input uncertainty intervals (see Appendix D).

A note of caution is in order. When an input variable X is characterized by an uncertainty
interval [a, b}, itis assumed that not enough is known about X to justify specifying a distribution
forit. Consequently, it would not be appropriate to replace the uncertainty interval with some
fitted distribution. For example, some analysts might be tempted to replace an uncertainty
interval [a, b] by a distribution for X, e.g., a lognormal, where Prob{a <X < b} is setequal to
the assurance associated with the uncertainty interval. This would be inappropriate for several
reasons. First, it would be substituting the analyst’s judgment for the experts’ judgment. Second,
the use of any distribution implies an averaging process, which could lead to less uncertainty
in the output distribution of Y than is implied by the uncertainty interval for X. Third, the tail
behavior of the fitted distribution might possibly dominate the effect of X on the output dis-
tribution of Y, and this would violate the implicit judgment of the experts that nothing can be
said about the values of X outside of the uncertainty interval. For all of these reasons, only the
“-bounding approach as outlined in Appendix D is recommended to evaluate the effect of input
variables in X".

4.5 Expert Judgment

The use of expert judgment (often referred to as expert opinion) is an essential aspect of
uncertainty modeling for SCC rulemaking. Three areas of particular concern are scenario
development, model development, and parameter estimation. Expert judgment is needed in
scenario development to identify, classify, and screen events and processes, to formulate and
screen scenarios, and to estimate their relative ranking and probabilities of occurrence. Expert
judgment is needed in model development to select and interpret data, to develop the conceptual
models, and to build confidence in the models and codes. Expert judgmentis needed in parameter
estimation toidentify important parameters and to quantify their uncertainiy. Specific techniques
for the formal elicitation and use of expert judgment in these areas are discussed in Bonano gt

al. (1990).

The formal use of expert judgment has been extensively applied to a number of recent
major studiés in the nuclear probabilistic risk assessment area [USNRC (1989), Bernreuter gt
al. (1989), and Risk Engineering, Inc., gt al. (1989)]. Although scientific inquiry and
decision-making have always relied on expert judgment, the formal use of expert judgment as
a well-documented systematic process is a relatively new development. Ithas been necessitated
by the need to address questions where alternative sources of information are unavailable, less
reliable, or too costly. However, because of the many potential pitfalls in using expert judgment,
it is essential that analysts must be familiar with the state of the art and must use the services



of experienced practitioners in order to avoid wasting time and resources. Useful discussions
of potential pitfalls and approaches to overcoming them may be found in Meyer and Booker
(1990), Mosleh and Bier (1988), and Svenson (1989).. '

The formal use of expert judgment is most appropriate when extensive, noncontroversial
data directly relevant to a problem is lacking, or when the issue studied is complex or is apt to
receive extensive review and criticism. A formal expert-judgment process has a predetermined
structure for the collection, processing, and documentation of experts’ knowledge. The
advantages and drawbacks in using such a process as opposed to an informal process are outlined
in Bonano gt al, (1990). The advantages include improved accuracy and reliability of the expert
judgments, a reduced likelihood of critical mistakes leading to suspect or biased judgments,
enhanced consistency and comparability of procedures, and improved scrutability and docu-
mentation for communication and external review. The drawbacks include an increase in the
resources and time required to carry out the process, areduction in the flexibility to make changes
in the on-going process, and an enhanced vulnerability 'to criticism due to the relative trans-
parency provided by a formal documentation of the procedures and findings. Bonano ¢t al,
warn that, while a formal process often requires more resources and time than an informal
process initially requires, a faulty process that fails to withstand criticism or must be redone
because of inappropriate design or improper execution may end up failing to satisfy the project’s
objectives and cost more in both time and resources. The potential for further costs in an informal
study should be considered when evaluating the need for a formal process.

The expert judgment process used in NUREG-1150 (USNRC, 1989) is discussed in Ortiz
etal, (1989). This process for gathering expert judgment was developed in response to criticisms
of the previous Reactor Safety Study (USNRC, 1975) and an éarlier draft of NUREG-1150.
The history of this development underscores the importance of basing the SCC rulemaking
analysis on state-of-the-art techniques and of making use of experienced practitioners in this
difficult area.

As outlined in Ortiz et al, (1989), there were seven steps in the expert judgment process
used in NUREG-1150. These steps should form the basis for the use of expert judgment in the
uncertainty modeling for SCC rulemaking. Bonano gt al, (1990) discuss specific techniques
for the elicitation, use, and communication of expert judgments, as well as suggestions for the
use of expert judgment in HLW disposal. '

4.5.1 Selection of Issues and Experts

The selection of issues and experts is closely related. The initial selection of issues
should be made by the project staff and used to guide the selections of experts. The experts
should then review the list of issues and be invited to propose additions, deletions, or
modifications to the list. There are two ways to organize the experts - by panels and by
teams. The panel approach was used for NUREG-1150 (one panel for each of six groups

23



of related issues) and the Lawrence Livermore seismic hazard study (one seismicity panel
and one ground motion panel) described in Bernreuter gt al. (1989). The team approach
was used in the Electric Power Research Institute (EPRI) seismic hazard study (six balanced
teams, each containing seismicity and ground motion experts) described in Risk Engineering,
Inc., et al, (1989). Regardless of which approach is used, it is essential that the experts
should be knowledgeable about the state of the art and be chosen to represent a diversity of
backgrounds, with a wide variety of experience and viewpoints (e.g., academic, consulting,
commercial, national laboratory, government).

4.5.2 Presentation of Issues to the Experts

In addition to providing the experts with a clear statement and a good understanding
of the issues, this step also provides a mechanism to discuss the state-of-the-art data base
forthe issues. Anessential aspect of issue presentation is issue decomposition, which allows
the experts to make a series of simpler assessments rather than one overall assessment of a
complex issue. This step should be carried out with great care, as the decomposition of an
issue can vary by expert and thereby significantly affect its assessment. Care should also
be taken to present the issues so as to minimize potential biases in their assessment.

4.5.3 Preparation of Issue Analyses by the Experts

The experts should be given sufficient time and resources to analyze the issues before
the elicitation session. This step may entail support by the project staff, e.g., by performing
computer calculations or other requested analyses.

4.5.4 Discussion of Issue Analyses

Before the elicitation session, the experts should be allowed to present the results of
their analyses and research. The ensuing discussion can serve to ensure a common under-
standing of the issues and the data base. The final part of this step is to reach agreement on
the exact elicitation variables.

4.5.5 Elicitation Training and Elicitation

The purpose of elicitation training is to help the experts learn how to encode their
knowledge and beliefs into probabilistic or other quantitative forms. Elicitation training can
significantly improve the quality of the experts’ assessments by avoiding psychological
pitfalls that can lead to biased and/or overconfident assessments. Whenever the training
session takes place, it is important that it not be abbreviated due to time pressure. The
training should be carried out by a substantive expert who is knowledgeable about the issues
to be assessed and a normative expert who is knowledgeable about decision theory and the
practice of probability elicitation. ' '
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The elicitation sessions should be held immediately following the discussion of issue
analyses and the selection of the elicitation variables. An elicitation team should meet
separately with each expert, to avoid pressure to conform and other group dynamics inter-
actions which might occur if the expert judgments were elicited in a group setting. The
elicitation team should consist of a substantive expert, a normative expert, and a recorder.
It is also useful to add as a fourth member the person who will prepare the final documen-
tation.

4.5.6 Recomposition and Aggregation of Results

Each expert’s elicitations should be recomposed by the normative and substantive
experts to put them in a form suitable for further analysis. For example, recomposition is
necessary to convert the subjective probability distributions provided for each part of the
issue decomposition into an assessment for the issue as a whole.

After the reéomposition of each expert’s elicitation, the results should be aggregated
to yield a final assessment for each issue. There are two general classes of aggregation
methods - methods that tend to consensus and methods that tend to preserve the variability
between the experts. Two informative reviews that discuss many of the aggregation methods
that have been proposed are Genest and Zidek (1986) and Uppuluri and Seaver (1986).

Although consensus methods are often easy to implement (e.g., averaging over the
experts), they should not be automatically applied without careful consideration. Because
one of the primary goals of uncertainty modeling is to reflect the state-of-the-art uncertainty
as-expressed by the diversity of expert judgments, an aggregation method should not be used
if it tends to mask the diversity of expert judgment. For example, consider a case where
half the experts judge the probability P of a phenomenon to be close to zero, whereas the
other half judge P to be close to one. Averaging over the experts is equivalent to the case
where all the experts judge P to be approximately one-half. However, these two cases are
quite different, since there is no disagreement among the experts in the second case, whereas
there is a greatdeal of disagreement (and hence uncertainty) in the first case. In the second
case, a decision-maker would have high confidence that P =1/2, whereas in the first case,
he does not know what value to assign to P. If he would want to make one decision if P =
0 and another decision if P = 1, premature averaging in the first case might deprive the
decision-maker of essential information. In general, an aggregation method should be used
only if a sensitivity study indicates that it does not destroy information, as expressed by the
-diversity of expert judgments, that might significantly affect a decision-maker’s options.

4.5.7 Documentation

The final step in the expert judgment process is to document the entire process.
Documentation has several purposes. First, it can be used by the experts involved to assure
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them that their judgments were correctly reflected. Second, it can be used by potential users
of the results of the process to enhance their understanding. Third, it can be used by peer
reviewers of the process to provide an informed basis for their review. And finally, docu-
mentation can be extremely useful to update the analyses, when future research provides
additional information. o

4.6 Sensitivity Analysis

In engineering design and performance analysis, many sensitivity measures can be
defined. A commonly used sensitivity measure in deterministic analysis is performance sen-
sitivity, 0Z/0X;, where Z is a performance function (e.g., time-to-failure) and X; is a design
variable. In some cases, performance sensitivity is defined as AZ/AX;, where a finite change
(not necessarily very small) in X; is taken to measure the change in Z. In general, a reference
point (e.g., a design point) must be chosen to perform the analysis. In a deterministic design
approach, sensitivity analysis is useful for identifying key design variables and impro-
ving/modifying designs. However, the above sensitivity analysis does not take into account the
uncertainty or random variability in the input variables.

In probabilistic performance assessment, a more direct sensitivity measure is probabili-
tylreliability sensitivity, which measures the change in probability/reliability relative to the
change in distribution parameters such as mean and standard deviation. Another, perhaps more
important, kind of probability/reliability sensitivity analysis is the determination of the relative
importance of the random variables. This analysis can be done, for example, by repeated
probabilistic analysis in which one random variable at a time is treated as a deterministic variable
(i.e., zero variance). The results of the analyses, for example, are a number of cdf curves or
reliabilities. Based on the results, the relative importance (i.e., ranking) can be identified.

The concept of sensitivity analysis can be extended further to include all the major
assumptions that are uncertain. The uncertainty assumptions could include probability distri-
bution types (Lognormal, Weibull, etc.), process models (matrix flow, fracture flow), and
parameters in an empirical life predictive model, etc. In general, probability distribution
modeling (with input from expert judgment) should not be automatically applied to all input
parameters or models, even when it is possible to do so. In particular, probability distribution
modeling should not be applied to "merge" mutually exclusive assumptions/models. Instead,
the results based on different models/assumptions should be evaluated and presented to the
decision maker, along with their probabilities. In practice, this "sensitivity" analysis should be
applied only to critical models/assumptions, so that the number of combinations presented to
the decision-maker would not be excessive.



In summary, sensitivity analysis is a powerful tool for supporting probabilistic analysis
and identifying key design variables and process models that contribute most to performance
uncertainty. Identification of such design variables and process models is important for two
reasons. First, it identifies those variables and processes that must be examined with particular
care, to ascertain that their contributions to performance uncertainty have been properly assessed.
Second, it can help to prioritize research programs that have the greatest potential to decrease
performance uncertainty.
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5. A PROBABILISTIC FRAMEWORK FOR ASSESSING CONTAINMENT PER- -
FORMANCE

51 ng' litative vs, Quantitative Criteria

The Commission has several options: - leave the SCC regulation as is, make the regulation
less ambiguous but still qualitative, or make the regulation more quantitatiye. One consequence
of leaving the SCC regulation wording qualitative is that the Commission has the flexibility to
interpret SCC more precisely as more information becomes available on its feasibility. In this
vein, the Commission has postponed the precise definition of the containment period by stating
it to be a minimum period of 300 to 1,000 years after permanent closure of the repository.
However, using a qualitative regulation increases the chance that the designer (DOE) will over-
or under-design the waste packages.

~ A major motivation for making the SCC regulation more quantitative is to reduce its
ambiguity for both DOE and NRC. Of course, any change in the regulation must recognize
that, because of the long time periods involved, uncertainty about the geologic setting, and the
inaccessibility of the waste packages once the repository is sealed, no design can guarantee
complete containment. (The inclusion of the term "substantially" in the current regulation is a

- reflection of this fact.) The critical regulatory question is: "How much risk is acceptable?"

This section provides an example that shows how a framework for a quantitative
probability-based rule can be developed, which takes account of the uncertainties. The example
framework for the probability-based rule contains a number of parameters. A key parameter is
a proportion K, of "acceptable" waste package failures.during the regulatory period. The value
of K, defines the design goal. Clearly, K, =0 (complete containment) is the most desirable

_criterion and appears to correspond most closely to the intent of the current régulatio’n. The
term "substantially" is given a quantitative meaning by specifying the probability that K, =0 is
achieved. The purpose of this section is not to suggest a specific.SCC rule, but rather to present
aclass of rules that is sufficiently broad to accommodate a wide range of scientific and regulatory
concerns. If the example framework of the rule is adopted by NRC, additional analyses will be
required to determine the values of the parameters that specify the precise form of the rule.
Furthermore, NRC may have to provide additional guidelines and may have to increase the level
of interaction with DOE.

5.2 C oI 0 ﬁ Q I.I Io B I

To maintain flexibility for NRC, while assisting the license applicant to design safe waste
packages, it seems reasonable that any adopted quantitative rule should satisfy, as closely as
possible, the following six criteria: '

(1) It should be easy to interpret z_md be unambiguous;
(2) It should allow for a pass-fail criterion;
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(3) It should reflect the state-of-the-art in both scientific knowledge and uncertainty;
(4) Itsdemonstration should be achievable with presently available or easily developed
methodology and data, including the use of expert judgment;
" (5) It should allow flexibility for possible later rule modification;
(6) It should allow flexibility to use data up to licensing hearing time and beyond, up
until permanent closure of the repository.

In an attempt to satisfy these criteria, we describe an example framework for a
probability-based rule, as outlined below,

5.3 An Example Framework for a Probability-Based Rule for SCC

The basicidea is tocontrol the number of failed waste packages during the SCC performance
period. Since the number of emplaced packages-:will be known, this is equivalent to controlling
the proportion K of failed waste packages. However, because of the nature of the physical
processes involved and the long time period, K is inherently stochastic and must be treated as
a random variable. One possible approach is to control E(K), the expected value of K. This
approach is unsatisfactory because the actual value of K might be very far from E(K), if the
distribution of K had a large spread. To control X, it makes more sense to control the probability
that K exceeds some regulatory limit K,. Accordingly, a possible r_i11e could be developed based
on the following example framework:

"The probability that the proportion K of waste packages failing during the period [0,T,] does
not exceed K, should be no less than p,."

In symbols,

Prob{K <K,}2p,, (1)

where K is the proportion of waste packages failing in time T, and p,, called the reliability
target, is the minimum acceptable probability that K < K,. How to deal with the uncertainty in
demonstrating that Eq. (1) holds will be discussed below. '

-Itmay be desirable to extend the requirement (1) to several values of K, and p,. Forexample,
it may be desirable to specify a value of p, very close to 1 for a large value of K, in order to
control the risk of a massive failure. However, for simplicity, this report will consider only one
value for K, and p,. Our results can be easily extended if more than one value of K, and p, is
used.

Asan exainple, suppose that a total of 10,000 waste packages will be emplaced and NRC
determines that no failures are allowed in the first 1,000 years after permanent closure. Rec-
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ognizing the inherent unpredictability of the exact number of failures, NRC allows the regulatory
limit of O failures to be exceeded with no more than 0.1 probability. In this example,
K,=0,p,=0.9, and the criterion is Prob{K <0} 20.9.

The specific values of T,, K, and p, will be determined by NRC. In the current SCC
regulation, T, at a minimum, lies between 300 and 1000 years. The choice of T, K, and p,
will depend on the definition and the consequences of failure and will have to be consistent with
the allowable radionuclide release rates subsequent to T,. '

Itis convenient to write the requirement (1) in terms of the cumulative distribution function
(cdf) of N(t), the random number of failed WPs in [0,z]. If M is the total number of emplaced
~ WPs, the cdf of N(¢) is defined as:

- P(n,t) = Prob{number of WPs failing in [0,¢] is <n}, )
=Prob{N(t)<n}, |

foralln =0,1,... M. Only values of P(n,t) fort <T, are relevant for SCC, although values of
P(n,t) for t > T, may be needed for repository evaluation after T, years.

A sketch of P(n,t) as a function of n is shown in Figure 3 for two values of ¢, with 7, < z,.
For n =0,P(0,t) is the probability that no WPs fail in [0,¢], i.e., the probability of full con-
tainment, and is a number between 0 and 1. Since M is the total number of waste packages,
PM,t)=1forallt. If¢, <t,N(t) <N(t), since the number of failed WPs can only increase
as time increases. Hence, as Figure 3 indicates, the cdf of N(t,) is greater than the cdf of N(z,)
for all values of n < M. Figure 3 has been drawn under the assumption that P(n,0) = 1 for all
n, i.e., the number N(0) of failed packages is zero at time ¢t =0. At time ¢ = oo, all packages
would certainly have failed; hence P(n,o) =0forall n <M.

To write the requirement (1) in terms of P(n, ), note that K = N(T,)/M in the period [0, T,].
Hence,

Prob{K <K,} =Prob{N(T,)<K M}
=P(KM,T,)

and Eq. (1) becomes
PKM,T)2p,. 3)

We see that the requirement (1) will hold if it can be demonstrated that the cdf P(K,M,T,)

complies with the reliability goal. Assuming that this can be done, a quantitative rule based on
Eq. (1) will satisfy the six criteria listed in Section 5.2:
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A P(n,t)=Prob{N(t) s n}

- P(n,0)
-1
t=t,
t=t,
PQ,t) .
(t<t)
P(0,1) 1
P(n,o)
0 ' o

Figure 3. Waste-package number-of-failures distribution.

(1) Eq. (3) is easy to interpret and is unambiguous.

(2) The repository will comply with the rule if and only if Eq. (3) holds.

(3) The demonstration that Eq. (3) holds will very likely require state-of-the-art
scientific knowledge. :

(4) The demonstration of compliance should be achievable if the reliability target is
not too high. ‘

(5) Flexibility can be achieved by modifying K, or p,. For example, the rule could be
made stricter by increasing the reliability target p,, or by decreasing K.

(6) The rule could allow the use of new data up until permanent closure by requiring
Eq. (3) to be evaluated conditional on all information available at time ¢ =0, i.e.,
permanent closure time.
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We have shown that a rule based on Eq. (3) would satisfy the suggested criteria, provided
that Eq. (3) can be verified. However, because of incomplete information about the repository
and the behavior of the waste packages over the very long time period involved, there will be
considerable uncertainty about the value of the probability P (K,M,T,). It remains to show how
to incorporate this uncertainty into the example framework.

Note that, apart from the uncertainty in the determination of P(K M, T,), there is no
ambiguity in the probability-based rule, as there is in the current SCC regulation. Although it
is probability-based, the rule boils down to the determination of the value of P(K,M,T,). If
there were sufficient data and validated models to compute the cdf, then there would be no
uncertainty involved in applying the rule. For example, suppose that the waste packages failed
independently in [0, T,], each with a known failure probability equal to g, where g is very small.
Then, to an excellent approximation, the number of failures in [0,7,] would have a Poisson
distribution with mean A = Mgq and P(K,M,T,) could be easily calculated and compared with
D, in Eq. (3). In practice, the calculation of P(n,t) would be much more complicated because
failures are correlated due to common uncertain environments affecting multiple waste pack-
ages.

Because of the large scientific uncertainty, it is highly unlikely that it will be possible to
demonstrate that Eq. (3) holds with certainty for reasonable values of K,,M,T, and p,: at best,
it may be possible to demonstrate that Eq. (3) holds with some high assurance, say, 95 percent.
Accordingly, we will assume that P (n,¢) has a distribution and consider the (second level) cdf
defined by

F(pin,t)=Prob{P(n,t)<p}. 4

In practice, it will not be necessary to estimate F (p;n, 1) for all values of the parameters 7, ¢ and
p; it will be sufficient to evaluate Eq. (4) only for the parameter values under consideration.
For example, let M = 10,000, K, = 0 and T, = 1,000 years. If the reliability target equals 0.9
and 95 percent assurance is assumed to be an acceptable approximation of "certainty," the
corresponding SCC rule is that there is at least 95 percent assurance that the probability of zero
WPs failing in the first 1000 years is no less than 0.9. Such a rule would be written: -

Prob{P(K,M,T,)=0.9} 2095 : )

ie., : :
Prob{P(OWP’s, 1000yrs) 2 0.9} 2 0.95.

For arbitrary K,,M and T, this SCC rule can be written in terms of F(0.9;K,M,T,) as

1-F(0.9;K,M,T,) > 95. (6)
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This means there is a high assurance (95 percent) that the reliability is at least 90 percent for
any fixed K, and 7,.

From Eqgs. (4) and (6),
F(0.9:K,M,T,)=Prob{P(K,M,T,) < 0.9} <0.05. ¥))

This can be interpreted as saying that the probability that the reliability target is not met is no
more than 5 percent.

In practice, the situation is somewhat more complicated than is implied by Eq. (7). To
demonstrate that the reliability target can be met, the repository designer will have to provide
an estimate p° =P (K,M,T,) for P(K,M,T,) such that p* 2 p,. In addition, NRC may well
require assurance that Eq. (3) is, in fact, satisfied. As part of the rule, NRC may want to control
the chance that Eq. (3) is not satisfied, given that p* > p,. This chance is called the risk and is
denoted by B, where

B=Prob{P(KM,T,)<p,|p" 2p,}. (8)

The next step is to relate B to F(p;n,r). We cannot use Eq. (4) directly, since P is a
conditional probability and the events {P(K,M,T,)<p,} and {p" 2 p,} are not independent.
Since p’ = P (KM, T,) is an estimate of P(K,M,T,), it is clear that these events are negatively
correlated. Accordingly, if it is known that p* 2 p,, it is less likely that P(K,M,T,) < p, than
if nothing were known about p". From Egs. (4) and (8), this result is written as:

B=Prob{P®&,M,T,)<p, 10" 2 p,}
 <Prob{P&,M,T,)<p,)
= F(p,KM,T,) |
or |
B<F(p,:K,M,T)). - ©

- From Eq. (9), in order to control the risk B, it is sufficient to control F (p.:K,M,T,). This
can be done by showing that F (p,;K,M,T,) < B,, where B, is an acceptable level of risk. From
Eq. (9), the risk would be less than B,.

Combuung these results, we see that the rule based on the cxample framework has two
parts. The desxgner must demonstrate that
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p'=P'KM,T,)2p, (10a)
and
F,=F(p,K,M,T,)<B,. (10b)

The first part of the rule controls the reliability, and the second part controls the assurance
that the reliability target is met. An alternative is to omit the second part and use the demon-
stration of the first part as part of an argument that Eq. (3) holds with reasonable assurance (see
"Remarks"). '

Remarks _
Remark 1. Criteria Satisfaction

The rule based on the example framework satisfies all the criteria in Section 5.2 except
the first. The first part of the rule does satisfy the first criterion since p " is the estimate of the
reliability target. However, since it seems very unlikely that F, can be calculated with sufficient

precision, there will be unavoidable ambiguity associated with Eq. (10b). This can be dealt
with by using either the reasonable-assurance or the bounding approach.

Remark 2. Reasonable-Assurance Approach

It may not be possible to demonstrate that Eq. (10b) holds. The reasonable-assurance
approach consists of demonstrating that Eq. (3) holds with "reasonable assurance.” Forexample, A
~ one could find an estimate p" that satisfies Eq. (10a) and develop an argument that, with rea-
sonable assurance, the true reliability P (K, M, T,) is greater than the reliability estimate p. This
would imply that P(K,M,T,)>p" 2 p,, i.e., Eq. (3) holds with reasonable assurance.

The reasonable-assurance approach can also be applied to the demonstration of Eq. (10b).
Instead of a model for the second level cdf F (p;n, t) that leads to the demonstration that F, < Bos
asrequired by Eq. (10b), one could settle for a "reasonable assurance" that F, < §,. For example,
one could develop a chain of reasoning, including expert judgment, that would culminate in a
" statement that "F, < B, with reasonable assurance." '

Remark 3. Bounding Approach

It is highly unlikely that it will be possible to characterize the probability structure of all
input variables and parameters with enough precision to determine F (p;n,t). If all that is known
about some input variables is that they lie in some known intervals with high assurance, then it
may be possible to determine an upper bound for F(p;n,t). This could be done by using
conservative (bounding) models and/or the bounding approach outlined in Appendix D. If this
upper bound is less than B,, then Eq. (10b) holds.



6. SUMMARY

The technical uncertainty arising from the "substantially complete containment" requirement
in 10 CFR 60.113 requires, first, a degree of understanding of the technical elements that must be
considered in a systematic approach to address any containment evaluation, and second, a logical
approach to define "how well" each of the technical elements can be determined. The first aspect
of the requirement is addressed in the technical considerations report (Report 1). The second part
is the subject of this report.

This report describes a number of broadly applicable uncertainty evaluation methods based
on existing methodologies. To address the uncertainty issues, four uncertainty evaluation methods
are identified: the probability-distribution approach, the bounding approach, expert judgment, and
sensitivity analysis. The diversity of the various methods identified in this report is a reflection of
the diverse nature of the types of technical data or information that can be expected from the technical
elements described in Report 1. The associated uncertainties are identified and characterized by
uncertainty types and sources. Once the pertinent data for the technical elements are identified,
they can be individually or collectively quantified by these methods. The report examines the
current SCC regulation and provides an example that shows how a framework for a quantitative
probability-based rule can be developed that takes account of the uncertainties.

There is not any "best" methodology that can be recommended. As a general rule, the problem
should be approached in terms of its unique characteristics developed from the waste-package
design. Several methodologies have been discussed in the appendices. The methodologies discussed
are of a very general nature and are not exhaustive. A mix of these and other appropriate meth-
odologies should be explored, taking feasibility and applicability into account. Whatever mixed
approach is used, it is essential that the probabilistic framework be built on a solid understanding
of the physical, chemical, geological, and other aspects of the waste-package long-term containment
problem.
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APPENDIX A - UNCERTAINTY MODELING METHODS - A SELECTED REVIEW
1. INTRODUCTION

To evaluate the appropriateness of a more quantitative regulation, and assess the feasibility
of a probabilistic rule framework discussed in Section 5 of the main report, a number of relevant
documents were reviewed. This review does not claim exhaustivity; only those documents listed
in the references and bibliography of this appendix were reviewed. However, we believe that these
documents do reflect present concepts for demonstrating safety compliance, and we wish to com-
ment on some possible shortcomings. In addition, we will suggest possible approaches applicable
to Substantially Complete Containment (SCC).

It is clear that the development of a compliance-demonstration methodology accounting for
severe shortage of data is an extremely difficult task, and that only the repository designer with
access toall available data can hope to develop such methodology. However, an independent review
may prove useful for future methodology development.

The literature reviewed for this report can be classified into two categories. The first category
focuses on the problem of the release rate to the environment, whereas the second one emphasizes
the problem of failure of waste packages (WPs). Since the release rate depends on the WP failure
rate that, in turn, depends on critical environment parameters such as water accessing the engineered
barrier system (EBS), the two issues cannot be fully decoupled.

2. TOPICS RELATED TO SCC

2.1 Sccvs. Release Rate

Several Sandia-originated reports, as summarized by Davis et al, (1989), do not distinguish
the two 10 CFR 60.113 rules on SCC and release rate. The Sandia flow charts relate to the modeling
of the release of radionuclide to the environment, starting from the initially contained inventory;
compliance is limited to the U.S. Nuclear Regulatory Commission (NRC) release-rate regulations
and related U.S. Environmental Protection Agency (EPA) regulations. For example, simulation of
water flow is done from the WP outward, as a medium of radionuclide release to the environment.
Whereas for the sole purpose of SCC performance assessment, one should simulate the inward
flow, allowing water and its chemicals to reach the WPs and degrade the containment capability.

Using Sandia terminology, the question is what are the scenarios that could put any number
of WPs in contact with substantial water, say more than one gallon per year per container during
the containment period (300 to 1,000 years)? Study of the consequences of such scenarios require
parallel critical data (or process simulations) about the long-term degradation effect of water, with
due account being given to the temperature and failure-chain effect.



Assuming that water is a major source of WP degradation, the scenarios for surface and
groundwater reaching the WPs are more critical to containment, whereas the scenarios for radio-
nuclide transport by groundwater flow are important for control of release rate.

Remark: In this regard, the "tentative interpretation of the EBS boundary as the wall of the
emplacement hole" (Ramspott, 1988) and the assessment of such interpretation as conservative may
not be correct. Indeed, the environment prevailing in the underground facility (in particular
humidity) may negatively impact containment. 10 CFR Part 60 defines the EBS as the WPs plus
the underground facility. Planning of the underground facility to prevent or retard access of water
to the WPs is, thus, part of the SCC requirement.

2.2 The Scenario Approach

As summarized in Campbell and Cranwell (1988), the performance assessment methodology
involves three steps:

1. Develop scenarios.
2. Develop models for use in estimating consequences from the scenarios.
3. Perform performance assessment to assess compliance with the regulatory rules.

The corresponding types of uncertainty are (Bonano and Cranwell, 1988):

1. Scenario uncertainty, including completeness of all scenarios, uncertainty about
the scenario occurrence and the consequences of each scenario.

2. Modeling uncertainty, including uncertainty about the conceptual model, the
mathematical model and potential errors in the computer codes.

3. Data and parameter uncertainty, possibly the easiest to model but also, unfortu-
nately, the least consequential.

As pointed out by the Sandia authors, the major difficulty with this framework is the
quantification of uncertainty in scenario completeness and the evaluation of the relative probability
of occurrence of each scenario being considered.

2.2.1 Scenario Development

In the Sandia reports, a scenario defines a set of conditions (including events, features, and
processes) leading to particular performance measures that may or may not meet compliance. That
set of conditions includes all input variables and all the parameters defining the transfer function
that processes the input variables into the output values. :

The fore-mentioned scenario concept can be generalized if we consider that the parameters
of the transfer function are a subset of the input variables. In such cases, a scenario can be interpreted
as a particular realization of a multivariate set of usually dependent variables {Xj,...,X;} charac-
terizing the state of a system.
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Assuming that the "normal” (e.g., unperturbed, base-case) scenario will likely result in
meeting the performance goal with high probability, the thrust of scenario development for eval-
uating SCC compliance should be to select those scenarios that could lead to non-compliance, and
to evaluate their probability of occurrence.

For a high-reliability containment design, a scenario of interest would correspond to a
"perturbed,” possibly "extreme" set of conditions or realization {X, =x,,...,X; =x;}, "extreme"
defining a realization with low probability of occurrence and leading to non-compliance. When
developed by a panel of experts, it thus corresponds to a subjective (and most often unquantifiable)
sampling of "extreme corners” of the joint distribution of L input variables {X,, ..., X, }.

The scenarios in general should be developed as much: as possible from data, whether actual
or simulated, and expert judgment should be used when quantitative data are not available.

Elements contributing to scenario developments. are:

* Relevant data collected on possibly different but analogous (in some sense) sites and time
scales.

» Physical process simulations, including simulations leading to extreme output values. Such
simulations could provide a ranking and thus some measure of the probability of occurrence.

* Sensitivity analysis indicating which of the L variables {X,, ...,X; } are most consequential
to, say, WP failure, and pointing at potential harmful (for SCC) couplings of the variables.
A panel of experts may then be convened, with a careful elicitation procedure, to decide on the

details and contents of each scenario to be considered, i.e., on the N sets {x,...,x"},i =1,...,N,
if N scenarios are retained (see Section 4.5 of the main report).

2.2.2 Scenario Probability
Ideally a model for the joint L-variate distribution of {X,, ...,X; } should be established, from
which the probability of any scenario i could be derived, say:
Prob{X, e xPxdx],... X, € xP+dx ]} =P,
= Probability of scenario i.

A scenario i (more precisely the class of scenarios i) is defined by the intersection of L intervals,
one for each of the L input variable X;. Note that to any number N of scenarios actually considered
should be added an 0* scenario, called the "complement scenario," corresponding to the sum (union)
of all joint realizations not accounted for by the L scenarios.



For the scenario probability, P;,i =0,...,/N, to be of any use and, in particular, to sum up to

1, the (N + 1) scenarios must not only be complete, but also mutually exclusive, i.e. notwo scenarios
should share a common set of realizations of all L variables X,. For example, with L = 2, the two
scenarios {X, € [1,3],X; € [1,3]} and {X, € [2,4],X, € [2,4]} are non-mutually exclusive because
they share the common set {X, € [2,3],X, € [2,3]} defined on all L =2 variables, see Fig. A-1.

:2

Figure A-1. Non-mutually exclusive scenarios.

Note: The two scenarios {X, € [1,3],X, € [1,3]} and {X, € [2,4],X, € [2,4]} share a common set (hatched area) of all
defining variables.

If the L variables whose realizations determine a scenario are not specified beforehand, it is
possible that scenarios defined by a panel of experts might not be mutually exclusive. In such a
case, the scenarios should be transformed to an equivalent set of mutually exclusive scenarios before
occurrence probabilities are solicited. (See Appendix B for a discussion of methods to evaluate
occurrence probabilities.)
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2.2.3 Relative Probability

Rather than seeking the absolute probability of occurrence of each of the N scenarios retained
for study, one may limit one’s goal to a relative probability ranking of these scenarios. For example
scenario i is ranked more probable than scenario i’, without saying how much more probable, if
some aggregation of the expert opinion probabilities for i exceed that for i”. Such ranking would
not require the condition that the N scenarios be mutually exclusive nor even that they are complete
(exhaustivity). But such ranking falls short of providing the probability of occurrence of, say, the
impact (response function) of scenario i, thus would not provide per se the required probabilistic
assessment of SCC compliance.

2.3 Space and Time Dependence

The interdependence between processes and input parameters pertaining to the risk of failure
of any number of waste packages is the major difficulty faced in modeling that risk: interdependent
processes cannot be decoupled, and dependent input variables must be sampled jointly to account
for their degree of correlation (not necessarily linear). Thus, there is a tendency to make simplifying
independence hypotheses where data or, in the lack thereof, geological evidence, would invalidate
them. When dependence or couplings of variables are known to result in greater risk of failure, an
independence hypothesis must be based on unquestionable data and/or a strong consensus of expert
opinions. Alternatively, sensitivity studies may show that the independence assumption does not
seriously alter the final conclusions.

In the absence of such justification, the hypothesis of independence should not be made
because it may violate the essential intrinsic geological dependence patterns.

Some examples of such dependence are:

» The spatial distribution of conductivity data for the evaluation of water infiltration (an
inward process leading to accelerated corrosion of the WPs) and water transport of released
radionuclides. Forexample, there seems to be a developing consensus that major water-flow
rates at Yucca Mountain would occur through flow in fractures. A fracture can be seen as
a string of high conductivity values very different from the matrix conductivity, i.e., a
specific dependence feature of the conductivity field. Moreover, such spatial dependence
(clustering) of extreme values is not relevant to linear-correlation analysis and traditional
covariance and lognormal modeling (Journel and Alabert, 1989).

» The space and time-dependence of WPs’ failure due to common external failure mechanism
and to the chain-effect. Water dripping from a fracture intersecting several galleries could
simultaneously affect several WPs and jointly shorten their respective containment periods
through accelerated corrosion. Similarly, an earthquake may generate rock falls and gallery



collapses throughout part or all of the repository, thus generating dependent WP failures.
This geology-induced dependence process can be compounded by a time chain-effect if
the heat release of the failed WPs accelerates the corrosion of other nearby WPs.

In general, WP failures caused by external sources (e.g., earthquakes) are most likely to
involve statistical dependence in space, whereas WP failures caused by internal sources
(e.g., materials) are more likely to be independent from one WP to another. Unfortunately,
the external sources are also those most likely to generate a large number of early failures.

» The sequential failure process of the successive barriers of a WP. The internal degradation
sources would start acting on the ¥* outer barrier only when the (k - 1)* has failed.

+ The interdependence of radionuclide release rate and the water-flow process. Indeed water
acts simultaneously as an corrosion agent (in fact the major one) and a transport vehicle.
Thus, the study of the release rate to the environment under disruptive excess of water
cannot be decoupled from that of SCC under the same scenario.

Modeling dependence: When two processes are dependent, they should be studied or simulated
jointly. If decoupling is required, say for reasons of computer coding and computation time, then
a series of different conditional processes should be considered. Using a probabilistic terminology,
consider two dependent variables representing the two processes, X; and X,.

Either the joint distribution of X, X, should be considered, i.c.,
F(x,,x,)=Prob{X, <x,X, <x,},

or a series of distributions for X, conditional on different values (outcomes) of X, should be con-
sidered, i.c.,

Fx™=Prob{X,sx1X,=x"},i=1,...,N.

The number N of classes of conditioning value for X, depends on the range of X, and the type
and strength of the (X, X,) dependence. A word of caution is here relevant:

Heteroscedastic (non-Gaussian) dependence: The function or process ¢(x;;:x;") may be radically
different from one conditioning value x{? to another x{”, not only different in terms of means or
expected values as Gaussian-related models would indicate. Even if both marginal distributions of
X, and X, are lognormally distributed, this does not imply that any of the N conditional distributions

F (x,;x{") are lognormal. The dependence (X,, X,) may be limited to extreme values of X,, e.g.,

Prob{X,<x, | X,=x,} =F(x,), forallx, <b,,
Prob{X, s x, | X, =x,} = y(x;;x,), forx, > b, (large) with y = F.
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For example, the flow process may change drastically when the spatial distribution of conductivity
(X,) shows a large proportion of spatially connected high values (open fractures).

2.4 Expected Value and Least Square Criterion

There is sometimes a misconception that the mean of a distribution, being the "expected"
value, should be the preferred value, and that the accuracy of an estimator should be measured in
terms of mean square error. Care should be taken in using the mean value as the preferred value:
the mean of a distribution may not exist (e.g., Cauchy distribution) or may correspond to a zero-
probability outcome (e.g., the mean 0.5 of a 0-1 coin toss); the mean value of an input distribution
will not necessarily generate an output value equal to the mean of the output distribution.

It is true that the mean m = E{Z} is among all outcomes of a random variable Z the one that
minimizes the average squared error, i.c.,

m is such that E{[Z —m}} =min{E{[Z - zJ*}, all z}.
(Berger, 1980, p. 60.)

However, one should question the relevance of adopting the mean square criterion E {{Z -z}
to measure the impact of the random error {Z —z]. Had the mean absolute error E{| Z —z |} been
minimized, the optimal estimate would have been the median. Besides analytical simplicity, which
is not a relevant notion for the safety of a repository, the mean square criterion minE {[Z -z} is
no better than the mean absolute deviation criterion min{E{| Z —z |}} or a particular loss function
L(-) criterion: min{E {L(Z —z)}} (see Journel, 1989 - Lesson 4 and utility theory references, for
further discussion). ‘

For conservative reasons, one should rather choose for input to the analysis the value of z
that would yield the most unfavorable (higher failure probability) output response. In a scenario
context, choosing the mean of the input variable distribution may be non-conservative. This problem
becomes less serious if the distribution of Z is highly positively skewed, for, then, the mean E{Z}
is equal to a high p-quantile value z,, with p 0.5, which would for most input variables represent
a conservative choice.

In fact, and as is explained in Appendix B of the main report, the question is not so much to
ensure a conservative response value, i.e., a value that could entail non-compliance, but to attach
a probability of occurrence to this response value y seen as a function of the input value(s) x:y = ¢(x).
If the transfer function ¢ is monotonic increasing and single-valued, the output value y, = ¢(x,)
corresponding to the p-quantile x, of the input distribution is also the p-quantile of the Y-response
distribution. Thus, focus should be on mapping p-quantiles from the input space to the output
(response) space or, better, conversely.



251 litv and Lone-tail Distributi

In the Sandia reports and more generally in the hydrological literature, distributions for input
variables are often assumed normal or lognormal. If data exist to support a lognormal model for
transmissivity averaged over the whole thickness of an aquifer (Hoeksema and Kitanidis, 1985),
there are no such data for conductivity distributed in the 3-dimensional space. In fact both data and
good judgment indicate that conductivity, in an heterogeneous media consisting of a mixture of
multiple rock types and porosity fabrics, features multimodal distributions with modes differing by
several orders of magnitude in millidarcies. The fact that core plugs sampled for permeability are
not taken in impervious media nor in fractures or fragmented rocks entails a censored sampling
resulting in unimodal histograms, but does not refute the existence of extreme modes. Unfortu-
nately, such extreme modes are most consequential for fluid flow (Desbarats, 1987).

The choice of lognormal distributions that are not long-tail compared to, say, hyperbolic
distributions, should be carefully documented from either unbiased data (which can sample extreme
values) or a large consensus of expert opinions. The argument of analytical convenience does not
even hold in favor of the lognormal distribution, since hyperbolic-type distributions are just as
convenient (Johnson & Kotz, 1970). Short of data, one should consider sensitivity analysis with
distributions other than normal-related.

Since much of the behavior of interest for SCC compliance is in the tail of the output dis-
tribution, it is essential to justify any input distribution assumptions that affect the tail of the output
distribution.

2.6 The Multivariate Normal Distribution
2.6.1 Tail.Probabilities

The multivariate normal distribution, with its exceptional analytical convenience, represents
a dangerous attraction to many practitioners. Indeed, an L-variate {X,,/ =1,...,L} multivariate
distribution is fully characterized by:

~ the means: X ={E{X},1=1,...,.L}
~ the covariance matrix: Cyp={Cov{X,X,},I,I'=1,...,L}.

In addition all marginal and conditional distributions are also normal (Anderson, 1984).

However, this convenience is paid for by very specific properties that can make the multi-
variate normal model either inappropriate or a non-conservative approximation. In particular, the
multivariate normal distribution entails a little known, yet severe, "destructuration” (independence)
of extreme values in the following sense (see Journel & Alabert, 1989): If x,,,x,- corresponding to
high p,p’-quantile threshold values of the marginal distributions of, respectively, X, and X;,, then



Prob{X,>x,,X,>x,}=Prob{X,>x,}- Prob{X,>x,}
=(1-p)(1-p’), a very small value.
This result applies even if X, and X,. are correlated.

In other words, when sampling from a multivariate normal distribution, one disallows the
possibility of drawing a L-tuple {x,! =1,...,L}, in which several of the values x{ are simulta-
neously extreme. This is non-conservative if coincidence of extreme values are the causes of failure.
This could happen even if the input variables are dependent.

2.6.2 Maximum Entropy

~ Some authors use the maximum entropy argument to justify their choice of multivariate
normal-related models. Entropy is a measure of disorganization, and its maximization ensures that
no structure beyond the imposed constraints is introduced into the model. Itis known (Jones, 1979),
that the multivariate distribution that maximizes entropy under the constraint of an imposed
covariance is the multivariate normal distribution. If the additional constraint of a lognormal
marginal distribution is imposed, then the maximum entropy distribution is multivariate lognormal.

Maximum entropy is certainly a quite reasonable criterion. However, the constraints should
include all available information, whether quantitative or qualitative. There is clearly much more
to, say, patterns of spatial dependence, than a mere histogram and covariance function, in which
case the maximum entropy distribution would not necessarily be multivariate normal-related.

2.6.3 Normal-Score Transforms

Another frequent misconception is that one can easily transform any set of variables
{X;,! =1,...,L}into a set of multivariate normally-distributed variables {u,,/ = 1,...,L} by amere
sequence of univariate transforms. This is not the case, unless the initial random variables X; are
mutually independent.

» Each variable X, can indeed be transformed into a univariate normal &, by the classical
quantile function (normal-score) transform:

u =0 (F/(X,) > NQO,1),

where ®7(.) is the standard normal quantile function, or inverse standard normal Cumu-
lative Distribution Function (cdf), and F(.) is the X,-marginal cdf. However, the resulting
L normal-score transforms ¥, are not exactly multivariate normally-distributed, unless the
X,’s are mutually independent or already multivariate normal. This oversight is pervasive
in the hydrogeological literature, where the log-transform of, say, transmissivity variables
T,=T(x,), is assumed to generate a multivariate normal field {LnT(x,),! =1,...,L}.
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« The correct approach (although not the only one) is to consider for normal-score transforms
a sequence of conditional functions written as (Rosenblatt, 1952):

u, = O7'(F,(X,)), with F,(.) being the marginal cdf of X,

=d(F. 2(X; | x,)), with F,(.) being the conditional cdf of X, given
X,=x,, adistribution that depends on the conditioning valuex,
u =D (F, (X, | X1, .. X - 1)), with Fi(. | Xy, ...X, _,) being the conditional cdf of X, given the
(L = 1) conditioning values X, =x,,...X; ;=X _,.

Clearly, thls correct approach is much more demanding than a mere series of marginal
normal-score transform ®'(F,(X))),l =1,...,L.

The previous discussion is not intended to discard the multivariate normal distribution
model, which has a long record of satisfactory results in a large variety of studies. Rather,
suchamodel should not be taken for granted, and its adoption should always be documented.
If departure from the multivariate normal assumptions is shown to be inconsequential for
the particular study at hand, then the multivariate normal model is a prime candidate because
of its well—undcrstood properties.

3. UNCERTAINTY EVALUATION METHODS
3. 1 Intr.o.dnﬂmn

The report by Zimmerman gt al, (1990) addresses the problem of assessing compliance
demonstration uncertainty by propagating data and parameter uncertainties through multiple
complex transfer functions into a distribution characterizing the uncertainty of the response (output)
values. It discusses four uncertainty analysis methods: (1) Monte Carlo simulation, (2) response
surface methodology, (3) differential analysis approach, and (4) geostatistical techniques.

Although the four methods listed above should be considered as complementary tools rather
than alternative approaches, they will be discussed separately.

3.2 Monte Carlo Simulation

Monte Carlo simulation is a sampling-based technique to map 2 mulnvanate mput distribution
into a possibly multivariate distribution of output values.

If the input variables {X,,/ =1, ...,L } are in number L, and the transfer function ¢ (see Section
4.3 of the main report) is single-valued, each input L-tuple {x{",/=1,...,L} would result in, say,
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~one K-tuple of output values {y® ¢ =1, .. K} The Monte Carlo idea is to run N' such input
L-tuples {x{,1=1,...,L},i =1,...,N through ¢ resulting in a distribution of N output K-tuples
{yPk=1,...,K},i=1,...,N. Consider the simpler case, K = 1, of one single output value, say
the time-to-failure of any particular WP.

The output distribution of the y®,i = 1,...,N, depends of course on the sampling of the input
X space. The Zimmerman gt al, report considers three types of sampling:

» Random sampling. A random sample of size N is a set of N independent observations on
. the vector X = (X},...,X;) of input random variables. Each observation on X is made in
accordance with the assumed joint input distribution of X, ...,X;. Zimmeman gt al, point
out that random sampling can be prohibitively expensive for many computer models, since
N can be very large if the sample is to adequately cover the ranges of the input variables.

» Stratified sampling. A stratified sample is a sample from a partition of the X input space
into n mutually exclusive and exhaustive L-variate cells or strata with known probabilities
p; 20, such that ¥ p; = 1. (For example, the strata may be of equal probability: p; = 1/n.)
A stratified sample is a random sample from X of size n; from stratum j, where Xn;=N.
Systematic sampling is stratified sampling where one observation is taken at the center of
each stratum (n ;= 1). Importance sampling is stratified sampling where more observations
are drawn in input areas of importance, for example, corresponding to extreme X,-values.
The marginal sampling proposed in Appendix B is a particular case of importance sampling
where one tries iteratively to zoom toward those input L-tuples that yield a marginal
response value, i.e., a response that barely passes compliance.

« Latin hypercube sampling (LHS). LHS is a special kind of stratified sampling in which
the range of each input variable is divided into intervals of equal probability, and one value
is then randomly selected from each interval. For a sample of size N, the range of each
input variable X,(/ = 1,....L) is divided into intervals of probability 1/N, and a value x,, is
chosen at random from the #™ interval (n = 1,...,N). The N values thus obtained for X,
are rearranged according to an independent random permutation of {1,2,..,N}. The
resulting permutations form an L x N matrix, with the I row consisting of the permuted

. values of X,. The N columns of this matrix constitute the Latin hypercube sample.

LHS has the advantage of covering the range of each of the input variables. As is true for
. stratified sampling, it can be shown that, under appropriate conditions, estimates based on
LHS have smaller variance than estimates based on random sampling. However, LHS has
the disadvantages of not being able to accommodate a general dependency structure for
the input variables. Even though LHS can be modified to accommodate some types of
dependency, there is a danger that use of LHS could lead to biased estimates.

! In this appendix, N denotes sample size.
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In their pioneering paper, Mckay gt al, (1979) consider only the case where the input
variables X; are independent. They prove that LHS is unbiased and, provided the transfer
function is monotonic in each of its arguments, that LHS is better (i.e., has smaller variance)
than random sampling for estimating the mean and distribution of the output Y. Stein
(1987) proves that, asymptotically as the sample size N = oo, LHS is better than random
sampling. While their results are interesting, they are not very useful since stratified
sampling is also unbiased and is better than random sampling. Since random sampling is
inefficient and is not recommended for problems involving complex transfer functions,
LHS is an alternative to stratified sampling and should be compared with it. However,
although numerical examples indicate that LHS is better than stratified sampling (e.g., see
Mckay et al,), there is no general proof to date. Although Zimmerman gt al, claim that
LHS is better than either random or stratified sampling (page 5), it is clear from their
Appendix A (based on Mckay gt al,) that this is only true for the stratified sampling example
cited in Mckay gt al,

All of the results cited above assume that the input variables are independent. Recognizing
that this is often not the case, Iman and Conover (1982) note that: "If a correlation structure
exists among the input variables, but the actual sampling takes place as if the input variables
were independent, the theoretical properties of the statistics formed from the input may no
longer be valid. Estimators intended to be unbiased or consistent may not be." (page 331).
In this paper, Iman and Conover present a method for approximately inducing a desired
rank correlation structure, on the input variables, that preserves the exact marginal dis-
tributions and, with an example, show that it is better than LHS, based on independent
inputs. Recognizing that "there is much more to a multivariate input distribution than a
. mere collection of marginal distributions and a covariance matrix" (page 331), Iman and
Conover point out that, in practice, independence is often assumed for simplicity and argue
that their method should be used whenever the input random variables are correlated.

Stein (1987) points out that Iman and Conover’s procedure does not necessarily yield input
variables with even approximately the correct joint distribution. Stein then describes a
procedure "...for producing a Latin hypercube sample of size N such that each sample
vector has approximately the correct joint distribution when N is large" (page 146). Stein
makes no claim that his procedure is better than random sampling, even in the asymptotic
case. (However, he does present an example that shows that LHS is a definite improvement
over simple random sampling). In fact, he cautions the reader that, "...if N is not large
enough, then the jointdistribution of Z . (the j sample vector) may be substantially distorted,
which could lead to bias problems” (page 146). :
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Recommendation:

Although LHS has been used extensively in probabilistic risk assessments (e.g., USNRC,
1989), the input variables are generally assumed independent or have a simple dependency
structure. Since, for the SCC uncertainty analysis, many of the input variables will have
a complex dependency structure, it is not clear that LHS can yield unbiased estimators or
that it is better than stratified sampling. Unless LHS can be shown to be an accurate and
efficient procedure under these circumstances, it is recommended that the more widely
used and more well-understood stratified sampling be used. To further reduce computa-
tional effort, Appendices B and C suggest more efficient importance sampling methods.

3.3 Response Surface Methodology

The response surface methodology consists of replacing the complex transfer function
Y =¢X) by a simple analytical function of a limited number L’ of the initial L input variables, with
L’ < L. Most often that function is a linear combination of the X,,/ =1,...,L"

L
&) =a,+ 121 aX,.
In a more complex case, the fitted transfer function may include some non-linear functions, e.g.,

kst

The coefficients a,,a;,b, are fitted by least squares from a series of runs of the actual transfer
function Y = ¢(X) yielding, say, N realizations: {x,/ =1,...,L;y®"},i=1,...,N.

Once the approximation &(X) isestablished, itis usedin place of the actual (expensive) transfer
function Y = ¢(X) to propagate uncertainty on X into a distribution for Y, in fact for Y =6X).

One shortcoming of the response surface methodology not fully recognized in the Zimmerman
et al, report, is the smoothing effect of the least squares criterion for fit. The variance of the
approximation ¥ may be much less than that of the actual response Y. This reduction of variance
and consequent reduction of distribution tails may not affect reproduction of the mean response,
ie.,

E{Y}=E{Y},
but it may bias reproduction of the high p-quantile values in a non-conservative (over optimistic)
direction:

73

, ¥, €Y, with p large close to 1,
and: ¥,,y, being the p-quantiles of the distributions of, respectively, Yand?Y.
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A solution to such smoothing of the tails is to consider a weighted least squares fit slanted
toward better reproduction of the important tail, or to consider piece-wise response surfaces fit.
However, such solutions may require additional information about the transfer function. '

~In repository performance assessment, in addition to the mean and median response values,
the high p-quantiles may be very important. Therefore, the response surface methodology suffers
a potentially severe limitation that makes it a non-recommendable technique except, possibly, for
modeling accessory transfer functions with little consequence on the final critical response.

The differential analysis approach is similar in principle to the response surface methodology
and suffers from the same limitations. It consists of replacing the complex transfer functionY =¢(X)
by a Taylor series expansion about some fixed base value, usually the mean input

p={m,l=1,.. L}

r=6@=0@+ 3 q’(”)(x, ).

From this first-order approximation, the mean and variance of the output Y are estimated as:

L
=E{Y}=0@W+ Z acb(u) E{X, -} = 0@,

which amounts, exactly, to assuming that the mean 1nput U corresponds to the mean output E{Y},
and:

L 300 0w
varir}= le1§1 oX, oX, CoviX,X,}.

Again, linearization either by Taylor series or by a least squares fit cannot render the com-
plexity of most transfer functions involved in a repository safety assessment. Also the variance
approximation requires that each X;-distribution be of small variance. Last, one should question
the Taylor development about the mean U rather than about any other more appropriate (more
extreme) multivariate p-quantile values of X.

A second-order Taylor expansion would be better, but would call for second-order partial
derivatives of ¢ and moments of order 4 of the input random vector X in the calculation of Var{Y }.

The differential anaiysis approach yields estimates of the mean and variance of the response
variable Y. One would need an additional distributional assumption to make probability statement
about that response. When the goal of the analysis is to evaluate the tail distribution, the differential
analysis approach may not be sufficient.
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A method thatmay be used to improve the differential analysis approach toestablish a response
cdf without using higher-order derivatives is discussed in Appendix C.

3.5 Geostatistical Techniques

Geostatistics is a branch of applied statistics that deals with phenomena spread in space and/or
time with some pattern of dependence. This pattern of dependence, which may be more complex
than mere linear correlation, is inferred from data, modeled by one or a series of covariances, then
put to use for space/time interpolation. Kriging, in its common (ordinary) form, is but a general-
ization of multiple linear regress'ion, in which the independent variables (the data) can be inter-
correlated to the same degree that they are correlated to the dependent variable (Journel, 1989 -
Lesson 2).

Kriging and its variant cokriging has been widely used, and sometimes misused, in hydro-
geological applications to provide input fields of transmissivity values to flow simulators. The
same criticisms that were levied against response surface and differential analysis techniques can
be applied to kriging: fields of kriging estimates are smooth, and do not reproduce the actual pro-
portions and spatial patterns of connectivity of extreme input values that could lead to poor repository
performance (Journel and Alabert, 1989). That smoothing effect is particularly severe when data
are sparse, which is, unfortunately, a common situation in repository compliance assessment. Some
authors, including Zimmerman gt al,, argue that kriging provides, together with the least squares-type
estimate, a measure of the corresponding estimation uncertainty. This is correct only in the very
restrictive case when the spatial distribution under study, say that of transmissivity, can be modeled
by a multivariate normal distribution possibly after a normal-score transform such as the logarithm.
In all other cases, the kriging variance is but a ranking index of data configuration, a useful index,
but yet a far cry from a measure of local estimation accuracy (Journel and Rossi, 1989). In any
case, a contour map of local estimation variances cannot be input into a transfer function, such as
a flow simulator, to propagate spatial estimation uncertainty. -

Notwithstanding the hard sale of geostatistics and the common usage of kriging-cokriging in
the hydrogeological literature, the only geostatistical algorithm that is relevant to propagation of
uncertainty is that of "conditional simulation," (Journel, 1989 - Lesson 5).

Conditional simulation is an algorithm for generating alternative, equiprobable, spatial fields
of dependent input values (say transmissivity) which honor data values at their locations and
reproduce some prior measure(s) of spatial dependence, such as a variogram or covariance function.
Conditionally simulated input fields have the distinct advantage, over most estimated fields, that
they do not smooth actual spatial variability: proportions and spatial connectivity of extreme input
values can be correctly reproduced.

“Consider, for example, a set of L dependent input variables {X;,]/ =1,...,L} with L possibly

as large as 10°. The dependence between any two variables X,, X, can be characterized by either
the full bivariate probability distribution:

A-15.



F,(x,x") = Prob{X,<x,X, Sx},

or any moment thereof such as the covariance:

Cov{X,, X, } =E{X,,X,.} - E{X,} - E{X,}.
In the latter case, only linear correlation between X, and X,- will be reproduced.

Conditional simulation allows the generation of equiprobable sets of L-tuples {x,] =1,

..,L},i=1,...,N, with N as large as necessary. Each set of L-tuples will match the prior model
of spatial dependence, in addition to honoring the data values, that is:

xD=x,1"e (L), foralli=1,...,N.

~ The conditional simulation algorithm allows equiprobable sampling from a, possibly very
large, set of spatially dependent input variables. These N equiprobable sets
{(x®1=1,...,L},i=1,...,N could then be processed by the transfer function into a set of N

equiprobable response value(s):
=0 1=1,...,.L)i=1,...,N.

From this latter set, a distribution (histogram) can be built, yielding a measure (more exactly
amodel) of response uncertainty. For example, the proportion of values y”’exceeding the regulatory
threshold y;,, provides an estimate of the probability of exceedance:

Prob{Y =6X) > y;n}-

Geostatistical conditional simulations appear as a versatile convenient (very fast) sampling
tool to be used in a Monte Carlo approach. It is misleading to present it as an alternative to such a
Monte Carlo approach.

Bootstrap technique: Bootstrap and other resampling techniques (Efron, 1982), can be seen
as particular stochastic simulation algorithms, whereby equiprobable sets of L — tuples are obtained
by sampling with replacement from an original larger set of data values. Although widely used to
assess the sampling distribution of statistics built on such L — tuples, resampling techniques appear
limited in their potential applications to repository studies, for two reasons:

(i) - the resampling algorithm usually requires that the original data be statistically inde-
pendent, although this limitation can be somewhat removed by orthogonalization of the
data (Solow, 1985).

(ii) -more importantly, the initial data set must be large to very large to allow meaningful
(non-redundant) resampling.
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Section 3 of the Zimmerman gt al, report suggests using a single technique, the Monte Carlo,
to propagate uncertainties through a sequence of models (transfer functions). The Monte Carlo
approach is chosen for its versatility, absolute generality of application, and lack of constraining
prior hypotheses, such as small uncertainty variances and linearization of the transfer functions.
Zimmerman gt al, insist on the necessity of proper interfacing of the various models, the output
distribution of transfer function k being one of the input distributions of transfer functions k+1.
They insist also on ensuring consistency of any approximation from one model to another. All
these recommendations are reasonable and important.

The Monte Carlo approach is a viable technique to propagate uncertainty in a complex per-
formance assessment. However, its implementation requires defining:

e The technique for sampling a high-dimensional multivariate input distribution
» The approximation needed to cut down the number of runs of an extraordinary complex
series of transfer functions. '

4. OTHER WASTE PACKAGE ISSUES

~ The report by Stephens et al. (1986) provides a review of U. S. Department of Energy (DOE)
WP performance assessment methods and its application to the Basalt Waste Isolation Project
(BWIP). At the time of that report, application of DOE methodology to the Yucca Mountain site
had just started. Comments on some aspects of this report and two related papers by Liebetrau gt
al, (1987) and Ramspott (1988) are given.

These three documents do not propose any global and integrated compliance methodology,
but all do recommend a probabilistic approach to compliance assessment. The report by Stephens
et al, proposes some solutions, based on modularization and decoupling principles, to reduce the
computational effort of a "global" Monte Carlo approach.

Extemal failure sources
These three documents concentrated more on the problem of failure sources external to the

WPs. Besides rock fall (very unpredictable), the major external source of WP failure is probably v
accelerated corrosion due to excess water getting in contact with the WP outer barrier.

Stephens ¢t al, proposes a convolution - type approach to modeling the probability of
sequential failure of concentric barriers going outward; this approach could be applied equally to
the inward process of failure due to external water (and also rock fall). Then at a certain point, the
two outward and inward failure processes would meet, leading to actual failure of the WP.
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The geological processes generating intruding water can be assumed independent of both
corrosion and number of failures, and could be simulated independently. The corresponding flow
simulation could be inverted from the outward flow models envisioned by Sandia for study of the
release rate.

One important question not addressed in the reports is the modeling of a chain-effect: the
influence of any one failed WP in shortening the remainder lifetime of nearby WPs. More generally,
what is the space-time dependence between the failure times of any group of WPs? There is little
doubt that there would be some clustering effect - in space and time - of failed WPs, if only due to
common external sources of failures. Probabilistic evaluation of such clusters would not only help
with the compliance assessment issue, but would also help with an engineering design that would
minimize the occurrence of such clusters. For example, if one can predict the direction of future
fractures (a rock mechanic problem), the original WP locations should be clustered in an orthogonal
direction, to minimize the number of WPs affected by any single fracture.
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APPENDIX B - PROBABILITY-DISTRIBUTION APPROACH
I- GENERAL

1. MONTE CARLO APPROACH

1.1 Introduction

In Section 5 of the main report, a probabilistic Substantially Complete Containment (SCC)
rule has been suggested that calls for knowledge of the distribution of the number N (¢) of waste
packages failing in [0,¢]. This number can be viewed as the output value Y of a transfer function,
see Fig. 1 of the main report and Fig. B-1. Because the multiple input variables to that transfer
function are uncertain, they are made Goinﬂy) random, resulting in a random output variable
Y =N(t). The distribution of N(¢) is the basis for the proposed probabilistic rule.

The problem of determining a methodology for compliance demonstration is now cast as the
very general problem of transferring an input uncertainty into an output uncertainty, see Fig. B-1.
The standard Monte Carlo approach would consist of repetitive sampling of the input uncertainty
space and a transfer of each sample i into the response value (or outcome) y®, thus allowing a
sampling of the Y -output distribution. This appendix discusses important limitations of this standard
Monte Carlo approach and, together with Appendix C, proposes some implementation approxi-
mations. The implementation approximations proposed here are conceptual in nature. Actual
implementations corresponding to a particular transfer function would be the responsibility of the
repository designer.

In most applications, the standard Monte Carlo approé;ch is unfeasible, for it would involve
ahuge number N' of runs of an expensive global simulation program denoted by the transfer function
¢ of Fig. B-1. A combinatorial exercise will help elucidate the problem.

Consider the following numbers:

o There are L input variables, some of them categorical, such as rock types, indicators of
sub-processes to be used for the global transfer function ¢ (e.g., fracture - controlled flow
vs. matrix flow), some of them continuous such as thermal and hydraulic conductivities
and material characteristics of the waste packages. The number of uncertain parameters
involved in performance assessment may be large.

« Each of these L input variables would require a different discretization level, depending
on its nature and level of uncertainty, with a minimum of 2 for a binary variable and up to
possibly 10 for a critical parameter with multimodal long-tail distributions. Consider an
average of four classes per input variable, defining a total of N =4'% = 1.6 x 10® classes
(1" for L = 100.

!In this appendix, N denotes sample size.
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» There are K =5 output variables whose uncertainty is to be characterized. Considering
again an average of four classes for each of these output variables, there are 4° output
classes. To sample completely a multivariate distribution, a minimum average of 10
outcomes per class would be reasonable, calling for N = 10 x 4° = 10240 = 10,000, a large
number yet much smaller than N =4'®. Clearly, running an expensive global transfer
function N times to allow exploration of all input classes is not sensible, nor is it needed.
What is needed is a determination of the response probability (hyper-) surface constituted
of a much smaller number 4 of classes. Characterizing these 4% classes requires a much
smaller number N of carefully chosen (described below) runs. Yet N = 10,000 may still
be too large for a complex global transfer function. Thus, there appears to be a need for
approximating the standard Monte Carlo approach to make it feasible without biasing the
desired answer, i.e., a response probability surface: Prob{Y, <y, ..., Yx < yx} or the most
important parts thereof, see Fig. B-1. All approximations will aim at reducing the number
of samples of the joint input distribution. '

L K
INPUT VARIABLES GLOBAL OUTPUT VARIABLES
X.‘ eesaenusoan R XL i TF ¢ Y1 proesencness . YK
L+ ST v X) Gyq 1oeeereveee , yK)

Figure B-1. Standard Monte Carlo approach.

Note: The input L-variate distribution is processed by the global transfer function into an output K-variate distribution
(response surface): F(x,,...,r.)=Prob{X,<r,... X, Sr GOy, ..n Ye) =Prob{Y, £ yp, ... Ye S yu}.
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Not all 4% classes of the output distribution are equally important; in general where the output

values are more critical one should have a better class-resolution, whether in terms of class amplitude
measured in the units of the Y,’s or in terms of class probability.

In Fig. B-2, the K =2 output variables are each classified into four classes of unequal
amplitude.

All output classes should be characterized with a probability value for reason of completeness,
even if they are unimportant. Also, output classes should be mutually exclusive to allow unequivocal
determination of all class-probabilities, see Fig. A-1 and the related discussion.

K = 2 output variables K=1

Y2 G(Yy ) = PROB (Y; <y4}
A

1- -------------- p——

(1) (4)
Y Y Y Y

Figure B-2. Discretizing the output intervals.

Note: The critical intervals should be narrower in terms of probability. Non-critical output values can be lumped into
a single interval, say for K = 2:{Y, < y", ¥, < y{}: hatched area.

Very often the whole output distribution is not required for compliance assessment. A quantile

approach consists in retaining from the output distribution only one or a few critical probability
intervals and/or quantile values.



For example, with K =1 and a given compliance threshold y,, the probability of exceedance
may suffice: '

Prob{Y > y;.}

Alternatively one may only require evaluation of a high p-quantile of the Y-distribution, i.e., the
value y, such that:

Prob{Y <y,} =p, with p fixed large, e.g., p =.95;
consequently: Prob{Y >y,}=1-p.

With K = 2, if compliance requires both variables Y, and Y, to be below regulatory limits y; j,,
and y, ;,, One may require only evaluation of the probability of compliance:

Prob{Y, > Yitimo Y2 > yz'“m}.

In such cases there is no need to sample the entire input space so as to build the entire output
distribution. Importance sampling scheme may be used to focus on those input areas leading to the
relevant bounds of the output distribution. However, for regulatory purposes, it may be desirable
to evaluate the y-distribution at values other than the regulatory limits. This is particularly true if
the regulatory limits do not have a large built-in safety margin.

1.2 Sampling the Input Distribution

For determining the output class probabilities, the proportion of input sets leading to aresponse
vector Y falling into each of the output classes should be evaluated. The problem is thus the inverse
mapping of the, say 4%, classes of output into the corresponding 4% classes of input values.

One can try either to invert (approximately) the various transfer functions constituting the
global transfer function ¢, or use a forward simulation approach by sampling the input distribution.

In the forward simulation approach, the input space is sampled: each point or sample i cor-
responds to a particular joint realization of the L input variables, say {X; =x{,...,X, =x}. Then,
each point i is transferred (through ¢) to a particular output class, see Fig. B-3.

At least five sampling schemes deserve consideration:

« Random sampling. This scheme is relatively straightforward but can be prohibitively
expensive for many computer models, since N can be very large if the sample is to ade-
quately cover the ranges of the input variables.
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Figure B-3. Forward simulation approach.

Note: Forward transfer of selected points i of the input space (X,, ...,X,) allows a probability mapping of classes of

output values. The transfer function ¢ is assumed single-valued, i.c., the response to a given set i of input values is
unique.

« Stratified sampling. The input space is partitioned into mutually exclusive and exhaustive
strata as on the left of Fig. B-2, and each stratum is sampled at random by a single point.
Stratified sampling protects from any accidental clustering of the sample points. The strata
can be of any "size," as long as their respectiVe probabilities are known. However, to allow
mapping the input strata probabilities into output probabilities, there should be more input
strata than output classes.

« Systematic sampling. Samples the input space at the nodes of a regular grid, either in terms
of equal class amplitudes:

x8*V = x® + Ax, for all class bounds of X,,
or in terms of equal class probabilities:

Prob{X, € [x?xf*V]} = p, constant for all classes i of X,.
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Systematic sampling is a special case of stratified sampling, where a unique stratum sample
is taken at the "center"” of that stratum. Again, the prior probability attached to each stratum:
must be known. When the L input variables are highly dependent and the number of strata
retained is small with regard to L, systematic sampling should be the preferred choice,
because it avoids any extreme location of the random sample in each stratum. -However,
if the input variables are known to be periodic, a regular grid in phase with the input periods
could yield severely biased output results.

 Latin hypercube sampling (IHS). Since, for the SCC uncertainty analysis, many of the

input variables will have a complex dependency structure, it is not clear that LHS can yield
unbiased estimators or that it is better than stratified sampling. Unless LHS can be shown
to be an accurate and efficient procedure under these circumstances, it is recommended
that the more widely used and more well-understood stratified sampling be used.

» Scenarjo - type sampling. Define a scenario as a particular realization defining a set of
conditions including events, features, processes, and the parameters in the transfer functions
(see Appendix A for discussion). When N scenarios are selected, say by a panel of experts,
this amounts to picking N points i in some regions in the input space, for example, the upper
right-hand corner of the input space (X,,X;) of Fig. B-3. The major drawback of this
approach is that the N scenarios §; do not by themselves provide a set of probabilities
pj»j=1,...,J,to be assigned to the J output classes as in Fig. B-3. Rather, N subjective
probabilities x; are assigned to the scenarios S;, such that ¥x; =1,i=1,...,N, and these
probabilities 7; are assigned to the N corresponding output responses (Cranwell gt al,, 1987,
p. 53).

Unless the N scenarios S; represent a mutually exclusive and exhaustive partition of the

input space as in Fig. B-2, and the probability elicitation program has been designed to ask
the experts for the absolute probability of each stratum, the expert-originated values
n;,i =1,...,N, are but a relative ranking of the N selected scenarios.

For a high reliability design, it is likely that the selected scenarios are clustered in some
corner of the input (hyper-)space (see Appendix A), except for a "base case” isolated in
the remainder of that space. Such clustering and the likelihood that the corresponding
scenarios are partially redundant (non-mutually exclusive) might lead the experts to
overestimate the relative probabilities of the corresponding strata; as a consequence, the
probabilities of the corresponding responses would be too high (over-conservative).

Recommendations:
« For a full characterization of the output distribution, implement a stratified sampling with

strata of equal joint-probability. The definition of such strata would require a careful
modeling of the input space, including:

B-6



~ definition of input variables ranges and interdependence

~ definition of mutually exclusive and exhaustive strata and their respective proba-
bilities _
~ selection of one point (scenario) per strata
There should be at least as many input strata as there are output classes (two to three times
more would be better).
Determination of strata probabilities would call fora careful evaluation of all patterns of
dependence (possibly non-linear) between any number of input variables (see Section 1.3).

» For a partial characterization of the output distribution, such as through critical bounds or
quantile values, implement an importance sampling focused on those "important" or
"marginal” areas of the input space (see Section 2).

These recommendations do not preclude use of carefully elicited expert judgments to make

up for lack of data.

1.3 Determining Input Strata Probabilities
Consider, for the sake of simplicity, a parallelepipedic strata defined from L input variables:
{X, e [x,x, +adx,),....X, € [xy,x, +dx.]}.

Any geometry-complex stratum can be approximated by a series of smaller parallelepipedic strata
of the type above.

Evaluating that stratum probability amounts to the general problem of evaluating the joint
probability:

P, =Prob{X, € [x,x,+dx],....X, € [x,,x +dx]}.
This joint probability can be decomposed into the product of L conditional probabilities:
P, =Prob{X, € [x;,x,+dx,]}
* Prob{X, € [x,,x,+dx,] | X, € [x,,x, +dx]}
« Prob{X, € [x,,x,+dx,] | X, € [x, % +dx5).X, € [x,x,+dx,]}-

ooooooooo

* Prob{X, € [x,,x, +dx;] | X, € [x,x, +adx,),....X; _ € [x,_p,x _+dx,_,}- (1)



The previous decomposition is exact, but requires calculation of probabilities with increasing
conditioning level. The last term, in particular, calls for the calculation of a probability interval of
X, conditioned by intervals on the (L — 1) other variables. With Llarge, say L = 100, suchcalculation
is not practical.

Grouping: The number of L can be substantially decreased by considering grouping of mutually
independent input variables. Consider, for example, two groups of variables of respective size L,
and L,, with: L =L, + L,, such that the joint realization of any number of variables from the first
group L, is influenced in no way by knowledge of any joint realization of any number of variables
from the second group (L,).

Then

P, =Prob{X, € [x,,x, +dx,], Xy € [x,ﬂ,x,,l +dx,q]}
* Prob{Xy ,, € [y o1sXp 1+ dry ), ... Xy € Dxp, 2, +dx ]}
=P, P, | )

For example, the group of input variables conditioning the internal waste package degradation
model can be considered as independent from that conditioning the groundwater/rock mechanics
model.

Screen effect: Within each of the previous groups, the number of conditioning variables can again
be considerably reduced by using the "screen effect” or Markov effect paradigm commonly used
in geostatistics (Journel and Huijbregts (1978) p. 346; Ripley (1987), p. 114). This paradigm
amounts to retaining from a list of (L — 1) variables X,,! = 1,...,L — 1 conditioning an L” one X,
only that one which is the "most dependent” on X;. Let X,ﬂ € [1,L — 1] be that variable most

dependent on X, then:
Prob{XLIX,,l=1,...,L—1}=Prob{XL|XL°}. 3)

"Most dependent” can be interpreted in the traditional sense of linear correlation, or better in the
sense of rank correlation, or better still in the sense of the conditioning variable that modifies most
(for some distributional distance) the prior distribution of X; . '

Assuming that the L variables X, have been ordered randomly and using the screen-effect

approximation (3), the joint probability (1) reduces to a product of one-level conditional proba-
bilities:



P, =Prob{X, € [x,,x, +dx,]}
* Prob{X, € [x,,x,+dx,] | X, € [x,,x,+dx,]}

* Prob{X; € [x,,x;+dx;] | Xy € [xy,xy +dxy]}

oooooooooooo

* Prob{X, € [x;,x, +dx;] | X, € [x,,x,.+dx, ]}, 4)

with: ' e [1,1 - 1], X, being the variable most dependent on X, among all previously considered
variables.

One should make sure that the series of approximations involved in relation (4) do not ali
lead to over/underestimation, so that a compensation-effect can take place.

After appropriate groupings, L could be of the order of 10 for each group. Then, the
screen-effect approximation allows calculation of the strata probability P, from 10 conditioning
probabilities involving each no more than one level of conditioning. This process may be tedious,
but should be feasible. '

Limited (in scope) expert judgments may be elicited for some of the conditional probabilities
involved in expression (4). This is preferable to elicitation of a poorly understood scenario prob-
ability.

Remarks
* The dependence of the approximation (4) on the random ordering of the L variables is a matter
of concemn, if these L variables are not all related to the same attribute, say porosity at L different

locations, as they are in traditional geostatistical applications. Some sensitivity analysis would then
be in order. '

Because of the approximation (4), the sum of the N strata probabilities may not add exactly
toone. A standardization correction would then be in order. :

1.4 Stratified Sampling and Conditional Simulations

Stratified sampling can be combined with the geostatistical technique of conditional simu-
lations, to sample some important strata more than others.

Consider the case of an input set X = {X,,/ =1,...,L} comprised of two subsets:



» A setof spatial variables X,/ =1, ...,Lye.g., X; =T (u,) is the transmissivity at node u, of
some grid.

* A set of categorical parameters, X,,/ =Ly+1,...,L defining the transfer function under
study.

where L, could be of the order of 10° to 10°, whereas L — L, may be only of the order of 10, thus:
Ly»L -L,

Defining strata on the parameters X;,/ =L, + 1, ..., L iseasy, particularly if they are categorical

with a discrete distribution. Definition of strata on a very large multivariate spatial distribution is
much more difficult: conditional simulations amount to equiprobable random sampling of the spatial
inputspaceX,, I =1, ..., L, butare not yet a probability - specified stratified sampling (see Appendix
A, Section 3.5, "Geostatistical Techniques," and Journel, 1989 - Lesson 5).

The idea is to proceed with stratification whenever possible, i.., for those variables
X,,l =Ly+1,..., L, with each stratum having a specified joint (L — L) - marginal probability, i.e.,
independently of the L, variables X;,/ = 1,..., Ly, Then, within each of these strata, proceed with
random sampling of the remaining L, spatial variables using the same (for all strata) N conditional
realizations {x®, I =1,...,L},i=1,...,N.

Example: ‘Consider two sets of spatially dependent variables, say porosity and transmissivity defined
over 10° grid blocks, thus: Ly =2 x 10°. Then consider acomplementary setof L — L, = 4 parameters
defining a particular flow simulator (transfer function). Assume each of these parameters binary,
ie.,

X, =1, with marginal probability p,
0, with marginal probability (1 - p,),
where
I=Ly+1,....,Ly+4.

The four parameters are assumed mutually independent (just for the present accounting), thus define
2* = 16 strata with specified marginal four-variate probabilities P;,j=1,...,16. For example, the
first stratum, corresponding to all four parameters set to 1, has probability

Py=Prye1* Pryea® Pryss® Pryess and 2P = 1.

_ " 'Each of these 16 strata are sampled by the same number, say N = 100, of equiprobable
conditional realizations of the porosity-transmissivity field:
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{09@), TOw), 1=1,...,10°},i =1,..., N = 100.

Assumirig that the L, spatial variables are independent of the four process parameters, there

are 16 x 100 = 1600 input samples available, each of dimension (2 x 10*+4), and with specified
joint L-variate probability. For example, the realization {¢“,), T®W,),1=1,...,10% X,=1,
! =Ly+ 1,L} has probability P,/100.

The number 1600 of input samples may still be too large if each sample is to be processed
through an expensive, computer-intensive transfer function. One could consider cutting down that
number using the following algorithm:

* Select out of the 16 sets of parameter values the one, j,, deemed most unfavorable, from

the point of view of compliance. Process all 100 conditional realizations under the con-
ditions j,, thus obtaining a set of 100 "unfavorable" response values. From a ranking of
these response values, retain four conditional realizations, the three leading to the three
output distribution quartiles and the one leading, say, to the 95* percentile of that output
distribution.

Only these four selected conditional realizations are processed under the remainder 15 ‘sets

of process parameters. Thus the total number of runs of the transfer functions is: 100(1) + 4(15)
=160, a more reasonable number.

The 100 initial realizations are conditional to j,, and each would receive 1/25th the weight

given to each of the latter 60 realizations. Conditional to each set J # jo of the process parameters,
the corresponding four runs can be considered to approximate the three conditional quartiles and
the 95th percentile. |

2. FAILURE BOUNDARY DETERMINATION USING IMPORTANCE SAMPLING
2.1 Introduction

Asindicated in Section 1, the probabilistic approach requires an inverse mapping of the output
classes into corresponding input classes (see Fig. B-3). Then, the input class probabilities would
be determined and assigned to the relevant output classes.

Short of being able to invert the transfer function ¢ of Fig. B-4, the proposed approach consists
of a forward simulation, mapping points (i) of the input space into the output classes. Also, it has
been argued that the number of output classes could be quite small, possibly down to only two
classes, as in Fig. B-4: the lower class corresponding to, say, compliance, and the complement
- class. In the case of Fig. B-4, compliance is defined by non-exceedance of the threshold value y;.,
applied to the single output variable Y, i.e., K = 1. For example, for SCC compliance, Y could be
the random number of waste packages (WPs) having failed by time t. '
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Figure B-4. Determining the compliance probability.

Note: The non-compliance probability P(y,,,) = Prob{Y > y;,} is made to correspond to a single-body area (hatched)
ina space U with reduced dimensionality (S < L). The boundary of that area is interpolated from a few carefully chosen
points (i) corresponding to marginal conditions. Points (i”) correspond to "extremely unfavorable™ conditions.

In the rest of this section, for ease of notations, only the case (K = 1) of Fig. B-4 is considered;

however, the arguments presented remain valid for an output surface defined by any number K of
variables. '

The proposed approach consists in a preferential (importance) sampling of the areas of the
input space deemed to lead to "extreme" output classes, see Fig. B-4. "Extreme" is here understood
as that (or those) output class(es) exceeding or leading to exceedance of regulatory limits. The
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problem is that the extent, thus the probability of those input areas (hatched in Fig. B-4) are not
known g priori, Worse, these critical input areas may be disconnected as in the upper left of Fig.
B-4; indeed the transfer function Y = ¢(X,, ...,X;) need not be congenially monotonic.

When a transfer functions is well-behaved (e.g., can be approximated by using a number of
well-selected polynomial functions - see Appendix C), a fast probability estimation technique as
described in Appendix C can be used to identify the regions for importance sampling. However,
a scheme is needed for more general transfer functions. In the following section a methodology is
proposed to approximate the boundaries of these critical areas in the input space.

2.2 Monotonic Transfer Functions

A single-valued function Y = ¢(X,, ...,X;) of L variables X, is said to be multivariate mono-

tonically increasing if and only if: for any two input sets {x{, ...,x"}, {x®),...,x®} such that:
x2x®,1=1,...,L, then:

YO=6¢G,...x8 2 ¢, ..., xH).

If a function Y = ¢(X,, ...,X,) is monotonically increasing, then to any set {Y > y;,,} corre-

sponds a "single-body" set D (yyn), which may not be convex, as is the hatched area on the lower
left of Fig. B-4.

Determining the boundaries, thus, the probability, of a single-body set is much easier than
for a multiple-body set, such as represented by the hatched areas on the upper left of Fig. B-4. Thus,
if the transfer function ¢ under consideration is not monotonically increasing, it should be
decomposed into a sequence of two transfer functions ¢ and ¢, with the former ensuring that
the latter is monotonic increasing, see Fig. B-4.

Among alternative pre-filters ¢ one would prefer the one that also, and in decreasing priorityi
+ defines transform variables U, that carry physical significance, so that their probabilities

of occurrence are easier to determine, possibly through expert judgment.
 reduces the dimensionality of the input space from L to S < L.
+ maximizes "decoupling” between the variables U,, i.e., the S variables U, should be as

much as possible mutually independent, again to allow an easier determination of proba-
bility of joint occurrence.

Through inversé—mapping, the output class-probabilities would be determined from single-
body areas on the U-input space, rather than from multiple-bodies areas on the original X-input
space, see Fig. B-4.
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The pre-filter step ¢© amounts to the following recommendation, which may prove critical

if the output probabilities are to be inferred from expert opinions in the failure boundary determi-
nation approach.

Any scenario approach must ensure that the input space to bé sampled is:
« of low dimensionality (S small), with easily interpretable quasi-independent variables

» such that the transfer function to the input space be single-valued and multivariate
monotonic.

According to the prior recommendation given in Section 1, that input space would then be
sampled with a stratified sampling scheme.

Remarks:

« If the final transfer function is monotonically decreasing, a very simple transform of its
input variables U, would make it monotonic increasingly, e.g.,V,=1-U,or V, = 1/U,.

o Itis yet unclear whether the critical step ¢ of pre-filtering a complex function to make it

multivariate monotonic is always possible. Additional methodology research is here
needed.

« If all S input variables U, are mutually independent, then input areas corresponding to

output intervals of the type (Y € [y,,y;.1]} would be parallelepipedic of the type
(U, e [u,,u,;.1),s =1,...,8}. Thus, the stratified sampling should also be parallelepi-
pedic (see Fig. B-2). '

The non-rectangular hatched area on the lower left of Fig. B-4 implies that the two input
variables U,, U, to ¢® are not independent. If the S mutually independent variables are standardized
to a common univariate distribution, say, uniform in {a, b] for all s, or standard Gaussian, then all
U-intervals should be of equal sizei.e., U, ;,, — U, ; = Ay, ;=constant forall s = /,...,S, but possibly:
Au, ; # Au, i, for j # j’

2.3 Determining Probability of Exceedance

Consider the case of only two output classes separated by the single threshold value y,, as
in Fig. B-4. The exceedance class {Y > yy,} corresponds to the single body "safe” set:

D (y;,) = {Usuch thatY > y,..}

Determination of the failure probability P (Yy,) = P{Y > yu,} calls for two steps:
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* delineation of the boundary of the set D (yus,) in the U-space, see hatched area on the lower

left of Fig. B-4. In structural reliability this boundary hyper-surface is known as the "limit
state surface."
« evaluation of the probability attached to the failure area, i.e.,

P .)=f dFy ...p Uy ..o l,),
(ylun Doy} Uy U,( 1 )

with Fy, ..y, (4, ..., 4,) being the joint cdf of the S input variables U,

Approximation solutions for evaluation of the probability integral P(yy,) defined over a

single-body failure set are well known in structural reliability (Madsen gt al,, 1986; Wu et al., 1989;
Bjerager, 1989).

But first the boundary or limit state surface of D (yy,) must be delineated, corresponding to

step (i). Itis proposed to interpolate this boundary, defined in the U space, by a few carefully chosen
points (i),i = 1,...,N corresponding to "marginal” points. Marginal points represent those condi-
tions (i.e., acombination of selected input parameters) that would barely pass the compliance criteria
Y < yye

To determine the boundary points (i) corresponding to a given threshold value y;,,, one could

ptoceed with an iterative process as follows (see Fig. B-5), assuming that the transfer function is
continuous.

(1) Start with two bounding points (i;) and (i;), deemed to result in the inequalities:

¢(l)(“1(ll)" ( ) < Vi <¢(u(u1 - u‘(iz)).

(2) Zoom progressively toward the corresponding boundary by considering a third point,
for example:

@{u®,....u®},
with: 1 = (4@ + )2, forall s = 1,..,5.
If, e.g., ¢("(uf"), . u,(i’)) < Yum, then consider possibly the fourth point:

with: u (u +u("))/2 foralls =1,...,S.
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Retain the 7* iteration as an approximation for a marginal point (i) located on the border
of the hatched area D (y,,).

(3) Iterate the process N times, starting each time from step (1) with a different pair ((i,), (i,))

and resulting in N marginal points (i),i = 1, ..., N defining the boundary of D (y,,,). Once
\j},;- the area D (yy,) is defined, evaluate its probability Prob{U € D (y;,)} possibly using
the approximations proposed in Section 1. Then, and finally, the sought after probability
of exceedance is:

P(y,,) =Prob{Y >y, } =Prob{U € D(y,,)}.

? BOUNDARY OF D (y )

(i ) (i2)
u 2 S SRR o ¢ ...(..i.;..i........ E

(PR S— S

(ig) - ‘(" 3'!

) (i q) oemreeeomnman

i H t
H :
‘

(i1) (i3 (i q) (i2)
Uy Uy Uy Uy

—U,

Figure B-5. Iterative search for a marginal point.

Note: The marginal point (i) on the boundary of the set D is approached iteratively by considering the sequence of

points (i), (&) (i), (), - (&)
One would stop at the 7* iteration when the consequence of the condition at (i,) is judged close enough to the threshold

value y,,, defining the set D.
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Remarks |

+ Ifthe transfer function ¢ is not continuous, the response limit value y,, may not be reached,
thatis, there may not be any set of input values (u,,s = 1,..,5) such that ®V(u,, ..., s) = Yims
see Fig. B-4. In such a case, the boundary corresponding to a conservative regulatory limit
should be searched instead. In searching for the marginal points, it is important to identify
this situation and prevent the iterative search from looping indefinitely. "

« If the list of input variables u, includes a categorical variable characterizing, for example,

a model type (e.g., matrix flow vs. fracture flow), the transfer function is likely to involve
severe discontinuities whenever that categorical variable changes value. In such a case,
the discontinuity problem may be solved by finding the boundaries separately for each
realization of the categorical variables, and then all the conditional probabilities should be
assembled to evaluate the total probability P (yy,) = Prob{u € D (yu,)}.

» The determination of probabilities in the input space, such as Prob{U € D (y;,)}, does not

call for knowledge of any of the transfer functions ¢ or ¢; it calls for knowledge of the
joint multivariate distribution of the S input variables U, (see Section 1.2).

o During the search process, if a simpler approximation to ¢ can be found, such that the
essential order relations are preserved (i.e., if (i) leads to a "pass" with the approximation
model, it should also lead to a "pass" with the actual transfer function ¢, and, similarly
for a "fail"), then the full (and computer-intensive) transfer function ¢ of Fig. B-4 should
be replaced by the simpler function for those intermediate points (such as (i), (i) on Fig.
B-5), in order to reduce computational efforts.

Approximation models could range from a response surface model to an expert judgment
about whether point (i) would pass or fail. However, the later iteration points, such as (i,)
and (i,) on Fig. B-5, should make use of the exact transfer function, to ensure determination
of a correct marginal point (i).

A parameterization of the input space u, in terms of y-isopleth surface as in Fig. B-5, allows
the evaluation of safety margins. For example, if the (uncertain) input variable u, varies
over a certain range 4, € [, min, U, mex)> ONE can check if that range intersects the boundary

of D (Yya)-
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Some accounting: If an average of two iterations, calling for four points (x =4 as in Fig. B-5), is
needed to zoom into an approximation for a marginal point (i); and a maximum of 30 marginal
points (i) is sufficient to delineate the boundary of D (y,) in a § = 10 - dimensional input space,
then a maximum? of 120 points would have to be run, a large but not too excessive number.

Qbmmgg_ﬂle_ﬁm__oymm_dlmm What has been done for the evaluation of
P (Yun) =Prob{Y > y,.} can be repeated for several other threshold values y,,,, thus allowing us to

approximate the output probability distribution G(y) = Prob{Y <y}, as shown at the right of Fig.
B-6. '

Note that the number N 6f points does not increase proportionally to the number J of threshold
values y;,j =1,...,J retained to discretize the output distribution, since the iteration processes for
say, G (y;) and G (,), can share several points, see Fig. B-6.

In summary, one can visualize the above proposed process for determination of the output
probability distribution G (y) as a point-by-point determination of (equal Y-response) contour lines
defined on a carefully defined input space U, see Fig. B-6.

Remarks

If we define 2 scenario as a particular realization defining a set of conditions including events,
features, processes, and the parameters in the transfer functions, then the above approach can be
classified as a scenario-type sampling scheme. The proposed approach provides an alternative
means of determining the output probability distribution by focusing on the marginal conditions
that would barely pass the compliance criteria. The approach is different from the more traditional
scenario approach, in which a small number of points (i) are picked in the input space (usually X
rather than {)), yielding output values y’, see Fig. B-4. In practice, the probability attached to such
a value y’,Prob{Y > y’}, cannot be determined easily.

The proposed approach provides a more rigorous determination of the output probability
distribution, at the cost of an increased, yet manageable, number of scenarios to evaluate. As
opposed to the traditional approach, the emphasis is not on selecting extreme scenarios, but in
approximating marginal scenarios that would barely pass the compliance criteria. To reduce
computational effort, one should investigate solutions for decoupling and streamlining all transfer
functions to be run repetitively (see Appendix E).

2Some of the initial iteration points, say (i,), can be used as seeds to zoom onto several different marginal points, see
Fig. B-5.



G(y) = Prob {Y <y}

Up
A MARGINAL
POINT L
777, [
(i) Y3 /
Yq %
Z ]

S
w

Figure B-6. Determination of the output cdf.

Note: The contour line (y,) on the U —space is the locus of all points (i) leading to a response value close to (y,). The

hatched area corresponds to the probability of exceedance: 1 — G(y,) = Prob{Y > y,}. The transfer function ¢ is assumed
singled-valued and monotonic increasing.
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APPENDIX C - PROBABILITY-DISTRIBUTION APPROACH
Il - FAST PROBABILITY INTEGRATION AND IMPORTANCE
SAMPLING UPDATING

1. INTRODUCTION

In Section 5 of the main report, a probabilistic Substantially Complete Containment (SCC)
rule has been discussed that calls for the evaluation of the number N(t) of waste packages failing
in [0,¢]. The distribution of N(f), which is a complex function of the multiple uncertain input
variables, is the basis for the quantitative probabilistic rule.

The Cumulative Distribution Function (cdf) of N () can be evaluated using the standard Monte
Carlo approach. However, as noted in Appendix B, it would involve a large number of repeated
runs of a global simulation program - a task that may be prohibitively costly. To alleviate this
problem, this appendix, together with Appendices B and E, suggest some practical approximate
computational methods. Appendix B proposes a methodology for determining the failure-boundary
(or limit-state surface) and computing the corresponding failure probability. Appendix E suggests
methods for simplifying transfer functions. This appendix proposes an efficient procedure, based
on approximate transfer functions.

When a transfer function is sufficiently "well-behaved" so that it can be approximated by
using a number of appropriate polynomial functions, it is possible to quickly and adequately
approximate the limit-state surface and the corresponding failure probability. In this appendix, a
method is proposed that combines the fast probability integration concept with an importance-
sampling scheme. The proposed method uses an approximate, simplified transfer function to define
the initial sampling region and gradually increases the sampling region to update the approximate
probability.

For complex but well-behaved functions, the method provides a potentially significant
improvement over the standard Monte Carlo method. In principle, the method can also be applied
to functions that are not well-behaved, provided that reasonably good approximate functions can
be established to suggest importance sampling regions. In general, for transfer functions that are
not well-behaved, the search procedure as suggested in Appendix B may be used to assist in defining
the initial as well as the subsequent sampling regions.

The approximation techniques proposed here are conceptual in nature. Actual implementation
corresponding to a particular transfer function would be the responsibility of the repository designer.

2. REVIEW OF PROBABILISTIC ANALYSIS METHODS

This section provides a brief review of probabilistic analysis methods, with emphasis on those
requiring minimum function evaluations.
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Recent probabilfsﬁ@ analysis methods based on "limit state" (the boundary between "safe"
and "fail") formulations and the most probable point concept (described below) have been developed
toevaluate structural safety (Ang and Tang, 1984; and Masden gtal,, 1986). These methods generally
employ performance sensitivity calculations and can incorporate efficient sensitivity calculation
schemes such as the adjoint method and perturbation algorithms. These methods are analytical in
nature and are very efficient relative to simulation methods, and they provide information on the
sensitivity or importance (ranking) of random variables. However, there are two problems asso-
ciated with these methods. (1) If the performance functions or transfer functions are complicated,
the solution procedure tends to be cumbersome and possibly too costly. (2) The analyses do not
provide error estimates, although "good" accuracies for a wide range of engineering problems have
been reported in the literature.

A solution to the first problem described above has been proposed recently, using an advanced
mean-based method (Wu gt al., 1989; and Wu et al,, 1990). In applying this method, the probability
solution starts from conventional mean-based approximation. Next, the solution is improved by
correcting the predicted performance function values and the performance sensitivities at some
properly selected points. This solution procedure may be close to the optimum in requiring a
minimum number of function evaluations relative to the accuracy of the performance cdf. However,
the advanced mean-based method by itself is an approximate scheme. To confirm or enhance the
accuracy, a probability analysis method that combines the fast probability integration technique
and an importance sampling method will be proposed in Section 3 of this appendix.

2.1 Analytical Approaches - General Concept
Let a transfer function (or performance function) be defined as:
Y =X, X, . X)), ¢y

where X; are the input random variables; then the cdf of ¥ can be computed as

PI<y)=F00= [ [z @

Y<y,

where y, is a specific value of the random variable Y, fy(x) is the input joint probability density
function, and Y <y, is the region of integration. This multiple integral is, in general, very difficult
toevaluate. Alternatively, a Monte Carlo solution provides aconvenient but usually time-consuming
approximation.

For many engineering problems, efficient approximate solutions can be obtained by the
recently developed structural reliability analysis methods (Ang and Tang, 1984). To apply these
methods, the first step involves the formulation of the limit-state surfaces for a given ¢-function.
Then the ¢-function is approximated by a polynomial at the most probable point (defined below).



Because the error in the approximated ¢-function tends to be small around the most significant
probability region, fairly accurate solution may be achieved, provided that the ¢-function is
"well-behaved."

The limit state is defined as:
Y=y, 3)

This limit state separates the variable space into two regions: e.g., in structural design, "safe" and
"fail." If the cdf of Y is of interest, then a number of y, values can be selected to establish F,(y,).

The approximation procedure involves the identification of the most probable point, which
is defined in the standardized normal (Gaussian) space using the transformation described below.

In general, the non-normal X variables can be transformed to the standard normal variables
¥ using the following Rosenblatt transformation (Rosenblatt, 1952):

u, = &' [F,(x))]

Uy =@ [Fyx, | 1)) (4)

u, = F (0, | X% .00 X)),

where F; is the original cdf and &' is the inverse standardized normal cdf. When the variables are

mutually independent, the transformation reduces to:

U, =07 [Fy (x). ®)
The inverse transformation is: |

x; = Fy [®w,)]. (©6)

In many engineering applications, only marginal distributions and correlation coefficients
are available. In such cases, Eq. 5 can be used and the corresponding correlation coefficients
between y; variables can be computed (Wu et al,, 1989). Afterwards, uncorrelated normal variables

can be generated by a standard transformation procedure. ’

By transforming ¢(X) to ¢(x), the most probable point (point on the limit state surface with
maximum joint probability density) in the u-space, u", is the point that defines the minimum distance,
B, from the origin to the limit state surface (see Fig. C-1). In this appendix, this point will be used
as an approximation point. An approximation point is defined here as a critical point that minimizes
the probability error when the original function is replaced by an approximate function.



Most Probable
Point

Transformation

\X \ uy

1

Figure C-1. Illustration of the transformation and the most probable point,

The minimum-distance point may be found by using the optimization or iteration schemes.
Afterwards, approximate ¢(x) function can be established by fitting, in the vicinity of the approx-
imation point x°, the exact function with a simple (e.g., a linear or quadratic polynomial) function.
Once the approximate function is obtained, the probability estimate can be easily estimated.

In the transformed u-space, approximate results are available for linear and quadratic functions
(Tvedt, 1990). For example, for unique u", the first-order probability estimate is:

P(Y < y,) = ®(-B) (7a)

and the asymptotic second-order probability estimate is:
L-1
P <y0) = O(-B) ILA+Br)™, B—seo, (7b)

where x;,j =1,...L — 1 are the main curvatures of the limit-state surface at u'.

The key to the above fast probability integration approach is the ability to identify one or
more approximation points at the "probability-significant” regions. If good approximation points
can be identified, not necessarily the most probable points in the transformed space, then the
approximation can be extended to include higher-order (i.e., higher than second-order) polynomials
in either the original X-space or a transformed space. Once a polynomial is available, one can apply
a standard Monte Carlo approach or other more efficient approximation techniques to estimate the
probability. With the current computer technology, it is feasible to apply the standard Monte Carlo
approach to problems involving simple functions such as polynomial equations.
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It should be pointed out, however, that higher-order approximations are more difficult to
construct and require more transfer function calculations. In practice, therefore, some degree of
engineering judgment is necessary in order to justify the use of reasonably low-order polynomial
approximations. In addition, efficient checking methods, such as the one described below, are
needed to confirm or update the solutions.

By repeatedly applying the above approximate methods for a number of different y,, the cdf

of Y can be constructed. This implies that an approximate function is established for each limit
state. The fact that the entire Y-function is being represented by more than one approximating
function (one for each probability level) is the main reason that low-order approximate functions
are "sufficient” for many engineering problems. For the case involving one random variable, this
concept is similar to fitting a nonlinear curve with splines.

The above approach has been used quite successfully for structural reliability problems (Ang
and Tang, 1984; Madsen ¢t al,, 1986; Wu ¢t al,, 1989; and Wu ¢t al,, 1990). However, when the
transfer function Y is implicitly defined and is highly nonlinear, it may be difficult to assess the
error due to the low-order approximation. Furthermore, inefficiency and convergence instability
may occur due to the limitations in the optimization algorithms and the existence of multiple
minimum distance points. A procedure that is robust and fast will be described in the next section.
The discussions will be limited to well-behaved functions, namely the Y -function can be approx-
imated by a number of low-order polynomials. For more general functions, the search-procedure
for determining the limit-state boundary, as discussed in Appendix B, may be used to define the
important regions. Also, other techniques for establishing good approximate functions should be
sought.

2.2 Analytical Approaches - Mean-Based Methods

Mean-based analytical methods involve the development of approximate ¢-function based

on the mean values. Assuming that the ¢-function is "smooth" or can be smoothed, the ¢-function
can be expressed as:

L A¢
¢@=¢(g)+_2(zx—,)-(xi—uo+fl<x_)
i=1 i
=a,+XaX,+HX) ‘ (8)
=0, +HX),

where the sensitivities A¢/AX; are evaluated at the mean values; ¢,(X) is a random variable repre-
senting the sum of the linear terms and H (X) represents the higher-order terms.
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For complicated, implicit, performance functions requiring computer algorithms such as finite
element or finite difference methods, there are several ways of obtaining a;, including numerical
differentiation methods, the adjoint method, and the least-squares method. When numerical dif-
ferentiation is applied, the minimum required number of ¢ function evaluations for computing the
a; is (L+1).

Since the ¢,-function is linear and explicit, its cdf can be computed effectively using many

methods, including the analytical methods mentioned earlier and the convolution theorem. For
brevity, the mean-value first-order (MVFO) solution based on ¢,(X) will be called the mean-value
(MYV) solution. The MV method has also been called differential analysis (see Appendix A).

For nonlinear ¢-functions, the MV solution is, of course, not accurate. To improve the
accuracy, an advanced mean value (AMYV) method was developed (Wu et al,, 1989; and Wu et al,,
1990) to compute the cdf. The AMV method reduces the truncation error by approximating the
random function H (X) as a deterministic function H (¢,) dependent on ¢,. The H-function is defined
using the most probable point of ¢,. The AMYV solution is expressed as:,

0°) =0, +H@y). )
Based on the MV solution, a stepwise AMV procedure can be outlined as follows:

» Obtain the linear approximation ¢,(X) using Eq. 8.

» Compute the cdf of ¢,(X) at selected y, points using the analytical methods.

» Select a number of cdf values that cover a sufficiently wide probability range.
« For each cdf value, identify the most probable point x".

« Re-compute ¢(x") to replace y, for the same cdf in the previous step.

The recomputation of ¢(x *) corrects y, by including the deterministic H(¢,) function. For m
cdf values, the total number of the ¢-function evaluations is (L. + 1 + m).

The above AMYV method is based on approximate most probable point. With more function
calculations, the accuracy can be improved based on gxact most probable point(s) derived using
proper iteration algorithms (Wu gt al,, 1989; and Wu gt al., 1990).

2.3 Importance Sampling Methods

The importance sampling method is based on the idea of sampling only in the critical region.
The reason for doing this is that relatively small sample sizes can produce point probability estimates
having relatively narrow confidence intervals. Based on this concept, various schemes have been
developed particularly for structural safety analysis (Harbitz, 1986). In these methods, the sampling
starts from the standardized Gaussian space.
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3. PROPOSED IMPORTANCE SAMPLING METHOD

The following Section 3.1 discusses the general concept of using an approximate ¢-function
to define the importance sampling region. Section 3.2 presents a sampling procedure using the
AMV solution to define an approximate function. There is no unique way of selecting an
approximate function. The reason for selecting the AMYV solution is for convenience. In practice,
more efficient solutions may be achieved by using more appropriate approximation functions.

31 G | Formulation Using An A imate Functi

Assume that an approximate, analytical function, Y* = ¢"(X), to the exact function, ¥, can be

found by some method (e.g., coarse finite element model, mean expansion, response surface, AMV,
etc.). Let

06X =6'X) +eX) (10)

where the error function, £(X), is arandom variable. Consider a special case where Y is a monotonic
function of a "base" random variable ¥, which has easily determined distribution. An example of
defining Y, is included in Section 3.2. Now consider a Monte Carlo simulation. Because of the
presence of £(X), the relationship between Y and Y, is generally random, as illustrated in Fig. C-2.

pdf of Y

Figure C-2. Relationship between the exact (y) function
and the approximate (y,) function.
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In general, it is not feasible to find a Y, such that e(X) is insignificant. However, Fig. C-2
suggests that: if the number of samples in region I (V,) equals the number of samples in region III
Ny, then

P >y)=PX, >y (11)

even if €(X) is "large." The two numbers N, and N, correspond to misclassification of "fail-safe"
conditions; letting N; = N;; provides a compensation to the misclassification errors. Thus, given a
"sufficient” number of random samples (by increasing samples and sampling region), the point
probability of Y can be estimated by finding a point Y,,, which provides the condition N, = Ny, and
by using the (more easily computed) distribution of Y.

Fig. C-2 also suggests that, when €(X) is reasonably small, one does not need to concentrate
on the entire region of Y, for computing the point probability of Y. In particular, when the "tail
distribution” is of major interest, it is preferred to generate sufficient N; samples and minimum N,
samples.

“The above concept can be extended to non-monotonic functions, where, foreach Y~ = y,, there

exist multiple Y,, values.

When Y is a complex function requiring extensive computations and Y, is a simple analytical

function (e.g., a polynomial), a simple, efficient procedure can be designed as follows (Wu and
Nair, 1988):

* Generate X samples and compute Y.

* Compute Y only if Y, is in the important region, e.g., the tail region.

This is a two-stage sampling procedure in which the first stage uses the Y* values to filter the

undesirable random samples. Only the selected samples will go to stage 2, where the "expensive”
calculations of the ¢-function will be performed.

A more general approach to directly generate the desired X samples is described in the next
section, using the u-space as the starting sampling space.

mplin ing the AMV.-

Applying the previous formulations, the AMYV solution can be used, as one of the possible
choices, to provide a basis for defining Y,, Y" and the importance sampling region.

Let
Y, =Y, (12)
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where Y, is a linear function of X, and the AMYV approximation is:
Y =Y, +H(Y)), (13)

where H is defined in Eq. 9. Note that there are various ways of defining Y,; e.g., a second-order
polynomial of X may be used. Of course, it is better if Y, closely approximates Y.

Given a limit state Y = y,, the AMV approximation is:
Y,+H{Y,) =y, (14)

In the u-space, the most probable point i~ satisfying the limit state is defined by the vector OQ
shown in Fig. C-3. The minimum distance is p.

N

Figure C-3. Illustration of the AMV-based importance sampling method.

Using the rotationally symmetric properties of the Gaussian joint probability density in the
u-space, a procedure to generate selected samples is as follows:

* Perform orthogonal transformation of y to #” such that the vector OQ in Fig. C-3
coincides with u,".
« Select an initial distance & < .



* Generate a ,” sample such that u,” > 8.

* Generate random samples for the remaining u-variables.
» For each u’ point, compute the y point.

» Compute X from y.

» Compute Y,(X) and Y(X).

* Repeat the above five steps as necessary and count numbers of samples: N,, Ny, and N,.

* Reduce distance 8 to generate additional samples until § is sufficiently small.

The convergence criteria for 8 include the convergence of y,, (evaluated by letting N, = Nj;) and
the convergence of the sum (N, + N;;). An optimum J is the one that minimizes Ny. Finally, the
probability estimate is computed using y,, and Eq. 11, taking advantage of the fact that Y, is a
simple function. '

The above procedure may be improved by using the exact most probable point (derived, for
example, using the AMV-based iteration procedure) (Wu gt al., 1989; and Wu et al., 1990), to define
the orthogonal transformation. The reason is that more samples generated in this way will be closer
to the most probable point. In terms of the regions defined in Fig. C-2, this means that fewer samples
will be generated in Region IV, implying higher efficiency.

4. NUMERICAL EXAMPLE

A waste package corrosion process model (Sutcliffe, 1984) is used to demonstrate the pro-
posed sampling procedure. The performance function is the corrosion depth of a waste package
and is expressed as a function of three random variables: chloride concentration (CI), an empirical
constant related to time (d), and a pitting factor (Kp). The present example uses a simple explicit
function to facilitate the generation of an "exact" probabilistic solution for comparison purposes.
Itshould be emphasized that the methodology is equally applicable to implicit performance functions

(Wu gt al,, 1990).
Assume that the corrosion depth can be predicted using the following formula:
C =K,K exp(a/H)O*CI‘t’, (15)

where K is the uniform corrosion factor, H is the absolute temperature, ¢ is the exposure time, O is
the oxygen concentration, and q, b, and ¢ are dimensionless empirical parameters. The data used
for this illustration are defined in Table C-1.

Based on Eq. 15 and Table C-1, a standard Monte Carlo solution was generated. This solution,
using 100,000 simulations to ensure "accurate" solutions at the tail of the distribution, will be used
as a comparison basis.

- C-10



Table C-1. Data Input for Demonstration Example

Variable Mean |Standard Deviation |Distribution
Kp (mm/yr®) 4.0 | 10 | Lognormal
1 Cl (ug/g;ppm) 6.5 0.65 Normal

d | 0.47 | 0.0329 Lognormal
H ) 373 0

K (mm/yr") | 01706 |0 5
O (ug/g;ppm) 7 0

a -1402 0

b 0.2 |0

c 0.543 0

t (yr) 300 0

By numerical differentiation at the mean values of the random variables, the following
first-order approximation can be obtained:

C,=A,+AK,+ACl+Asn, (16)
where A; are constants.

The solutions based on the MV and the AMV methods are shown in Fig. C-4, where the cdf
is plotted on a normal probability paper. The MV solution is obtained by applying a fast probability
integration method (Wu and Wirsching, 1987) to Eq. 16. The AMY solution is obtained using Eq.
9.

By comparing with the Monte Carlo solution, it can be concluded that the AMYV solution is
good in the cdf range from approximately 0.0003 to 0.99. There is one selected point, at cdf =
0.99976, which shows relatively large error. This discrepancy exists because C is non-linear and
the most probable point is far away from the mean-values point. To improve the accuracy, iterations
can be performed to converge to the exact most probable point. For illustration purposes, only the
first iteration has been carried out. The results are plotted in Fig. C-4.

Todemonstrate the proposed importance sampling method, the approximate function C, will

be used as the base random variable. The AMYV solution approximates C by C". Fig. C-5 shows
the random relationship between C and C, using 600 random samples. The random error £(X) is
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higher for larger C,. The curve in Fig. C-5 is the AMYV solution. Itcan be seen that ¢* and C, have
a nonlinear relationship, because C is nonlinear in X, and C, is linear in X. Thus, the AMYV solution
provides, roughly, the "best-fit" curve and explains why the AMV approximation produces rea-
sonable probability results.

To illustrate the sampling procedure, a small probability problem representing a worst case
was selected. Assume that the probability of [C > 2.665] is desired. The AMYV solution is 2.33 x
10* and a standard Monte Carlo solution with 500,000 samples produces 4.41 x 10™. Based on
Fig. C-4, it appears that the AMYV solution is not sufficiently accurate at this probability level.

To improve the AMYV solution, the sampling procedure described earlier was applied. The
first task is the selection of the initial minimum distance. The AMV minimum distance is 3.53 and
the most probable pointis U =(3.28,0.333, 1.25). Several initial distances for importance sampling
were selected to find the optimum & that minimizes N;y. Results are listed in Table C-2, in which
N is the number of samples, with C exceeding 2.665, and N7 is the total number of samples. The
optimum & was found to be near 2.8. Fig. C-6 shows the results of 100 standard Monte Carlo
samples and 500 importance sampling samples with = 2.8. The optimum C;, (i.€., Y, in Fig. C-2)
is 2.23, whereas the AMYV method predicts 2.305.
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Figure C-6. Cdf analysis using the AMV-based importance sampling method.
(Number of performance function evaluations: 600)



The percent error in the probability estimate, with 95 percent confidence, is (Ang and Tang,
'1984):

l1-p

percent error < 2 N, a7
where p = Ng/Ny.
Assuming a 10 percent error, the required number of samples, N, is:
N, = 400122 (18)

p

For the standard Monte Carlo method, p = 4 x 10™ for [C > 2.665] and Ny = 10°. For the importance
sampling method, p = 0.15 (see Table C-2) and N = 2266. Therefore, the importance sampling
method improves the efficiency by 440 (10%/2266) times. Two importance samplings with 5000
samples each indicated that the "exact" solution is near 4 x 10™. With 500 samples, the solution in
Table C-2 is off by less than 10 percent.

Table C-2. Importance Sampling Analysis Results

Distance Samples | Cy p =Ng/N;r | P[C>2.665]
3.0 500] 2.247 0.262 0.000353
29 500] 2.226 0.21 0.000391
2.8 5001 2.230 | 0.148 0.000378
2.8 1000 0.166 0.000424
2.8 2000 0.173 0.000443
2.8 5000 0.160 0.000409
2.8 5000 0.156 0.000399

Std. Monte Carlo 500000 0.000441 | 0.000441
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5. SUMMARY

The efficiency and the analytical nature of the fast probability analysis methods such as the
advanced mean-based method provide potential applications to complex computation-intensive
problems (such as waste-package performance assessment) that are too costly to analyze using the
standard Monte Carlo method. The fast probability analysis result can be checked or enhanced
using an importance-sampling updating technique, provided that a reasonable approximate per-
formance function can be determined. The proposed procedure is suitable for providing cost-
effective and accurate "what if" answers to different assumptions, to assist in uncertainty and risk
analyses.
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APPENDIX D - THE BOUNDING APPROACH

To implement the probability-distribution approach discussed in Appendix B, it is necessary
to specify the joint distribution of all input variables. Although there may be sufficient theoretical
foundations or experimental data to specify the distribution of many input variables, it is likely that,
for some input variables, no such information exists. Although some information about the dis-
tribution of such a variable X may exist based on theory, data, or expert judgment, this information
may be too vague to justify assigning a distribution to X. However, in such a case, it may be
possible to assign bounds to X. This approach is called the bounding approach, and it is used to
prdpagate uncertainty in a subset {X;} of the input variables when not enough is known about {X;}
to use the probability-distribution approach.

Denoting an input variable subject to the bounding approach by X, we assume that X lies in
some interval [a,b] with assurance (1 —7). Both the uncertainty interval [a,b] and the assurance
are assumed to be supplied by expert judgment. The role of the assurance is to express the experts’
assessment of the validity of the assertion that X lies in the stated uncertainty interval. As such, it
can be interpreted as a lower bound on the probability thata <X < b. For example, Y= .05 means
that the experts believe there is at least a 95 percent chance that X lies in the stated uncertainty
interval. This interpretation will be used for the purpose of applying the Bonferroni inequality to
calculate the output assurance as a function of the ihput assurances (see below).

The assurance is interpreted as a lower bound instead of an equality because only vague
information is available about X. In practice, y will usually be small but positive, so as to reduce
the length of the uncertainty interval. If y= 0 (assurance = 100 percent), a and b would be absolute
bounds on X. However, the length of the uncertainty interval might be too large to yield useful
results. In such a case, the length of the uncertainty interval can be reduced by allowing v to be
positive. The trade-off between the assurance and the uncertainty interval will be discussed below.

The bounding approach is recommended when one or more variables can only be characterized
by an uncertainty interval. The bounding approach uses the only information available about these
variables, i.e., their bounds. Accordingly, letX,,,,,...,X; beinput variables such that the uncertainty
interval of X; is [a;,b;] with assurance 1-%;(i =m +1,...,L). Assume that the input variables
X, ...,X,, can be treated by the probability-distribution approach. Using the notation of Appendix
B (Fig. B-1), the output variable Y; can be written as Y; = ¢;(X,, ..., Xi, X+ 1, . .-, X, ), Where ¢; is the
j® component of the global transfer function ¢,j =1, ...,K. We write:

Y;=0,X",X"), (1)

where X’ ={X,,...,X,,} and X" ={X,,,,...,X. }. If X" had a multivariate distribution, we could
write the distribution of the K output variables Y = {¥,,...,Y¢} as
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G(y)=GOy,-., ) =Prob{Y, < y,,...Y, <y}

= f Prob{Y, < y,...Y, <3, X" =u"YdF ", 2)

3
where u"={up,1,...,4} is any fixed set of values of X",S§* is the domain of X", and
Fu"Y=Prob{X, . Sup,1,.-. Xy S }. Sincg sJ;dF@") =1, bounds on G (y) can be calculated by
bounding the integrand in Eq. 2. This yields:
| G,()<G(Q) <G (Y), (3)

where

G,(y)= II;i‘n Prob{Y,<y,...Y, <y |X"=u"}

G, = n}z}x Prob{Y, <y,....Y, <y |X"=u"}.
Thc above bounds hold in general and might be useful even if the probability-distribution approach
applied to X".

In the bounding approach, the only information available about X" is the joint uncertainty
interval

S*={a,<u;Sb,i=m+1,...,L} (4)

and the associated assurances. If the domain of X" were $* with certainty, then Eq. 3 would hold
with S$* given by Eq. 4. However, since X" lies in S* with less than 100 percent assurance, Eq.
3 holds with less than 100 percent assurance. To calculate the assurance of Eq. 3, we interpret the
assurance for each component of X" as a lower bound for the probability that it lies in its associated
uncertainty interval. We then calculate a lower bound for Prob {S*} and interpret this lower bound
as the assurance of Eq. 3.

It can be shown (see proof on page D-6) that Prob{S"} 21 -7, where
Y= Ymrr t otV &)
From this result, it can be seen that Eq. 3 holds with assurance (1 -Y").

From Eq. 4, S* is an (L —m)-dimensional rectangular parallelepiped. In other words, the
minimum and maximum of G (y) in Eq. 3 are calculated by allowing the components X; of X " to
vary independently over their uncertainty intervals. However, some of the components of X may
have a dependency structure not captured by Eq. 4. For example, it may be known thatX,, ., 2 X,, ,,.



In such a case, the minimum and maximum of G(y) in Eq. 3 should be calculated by constraining
S” to take the assumed dependency structure of X into account. This will have the effect of possibly
bringing the bounds on G (y) closer together. Since the Bonferroni inequality is unaffected by any
dependency structure, Eq. 5 will still hold.

Eq. 5 relates the output assurance to the input assurances. Although y* should be small (e.g.,
¥* =.05) in order that the bounding approach be useful, the input assurances can vary without
changing y*, provided only that they satisfy the constraint of Eq. 5. This freedom can be used to
adjust the uncertainty intervals so that the bounds for G(y) are as close as possible. For example,
in many applications, only a small number of input variables are critical variables, i.e., significantly
affect the output. If these critical variables can be identified with a sensitivity analysis, then the
uncertainty intervals for the pon-critical input variables can be chosen with high assurance (even
100 percent assurance) in the knowledge that they will not significantly affect the bounds for G (y).
For a fixed y*, the uncertainty intervals for the critical input variables can then be adjusted_to
minimize the distance between G,(y) and G,(y).

It would appear that the bounding approach has increased the uncertainty by replacing G @)

with the interval [G,(y), G,(y)]. However, it must be emphasized that the result is a direct conse-
quence of the uncertainty in the input variables X, , ,, ...,X;, and hence is unavoidable. For given
input uncertainties, uncertainty in the output G (y) can be reduced only by decreasing thc assurance

(1=v5.

The main result that Eq. 3 holds with assurance (1 —y*) was derived by first assuming that
X" lies in $ * with probability one and then calculating the probability that this assumption is correct.
An alternative approach is to assume that Prob{X" € $*} = 1 —y* and derive bounds on G (). Eq.
2 can be written as ’

)= [ Hu"F ), 16
’ §

where S is the domain of X" and H(y,u")=Prob{Y,<y,,..., Y,,y <y |X"=u"}. Now write
S =S*US*, where S*is given by Eq. 4 and S* is the complement of $*. Then Eq. 6 can be written
as

GQ)= [ HOu"MF @)+ qu,g")dFu"). ™
S* .

To get bounds on G(y), note that Prob{S*} =1-1v*, Prob{S*}=v* and 0 SH(y,u")<1 for

u" e S*. (The bounds G(y)sH(y,u") SGy(y) hold only when u € $*.) It follows from Eq. 7
that



6> [HouFw)21-G)

s‘
and

G s [ Hy.udFu™+ j dF (u")

S ]
SA-yIGQ) +r*
or
(1-v)G,() <G =G, +¥*1 -G, ()l @)

These bounds on G (y) follow from the assumption that Prob{S*} =1-¥* and hold for any dis-

tribution function F(4"). A comparison of Eq. 3 with Eq. 8 shows that the bounds in Eq. 8 are
wider than those in Eq. 3, with equality if and only if yY* =0. The increased spread in the bounds
is a reflection of the fact that Eq. 8 is an absolute statement, whereas Eq. 3 holds only with assurance
(1-v*). Either Eq. 3 or Eq. 8 can be used to bound G(y).

In practice, the bounds in Eq. 3 may be difficult to calculate. From Eq. 1, the conditional
distribution of Y given X" = u" depends on 4" in two ways: directly, through #" in ¢ and indirectly,
through the conditional distribution of X’ given X" =u". Although this double dependence may
make it difficult to find the minimum and maximum over S*, it can also be used to find simpler but
wider bounds on G ().

From Eq. 1, we can write:

Prob{Y,<y,...Y, <y |X"=u"
=Prob{Y <y |X"=u"

=Prob{¢X',X")<y|X"=u"}, ©)
where ¢ = {§,,...,¢,} is the global transfer function. For any fixed values 4" and v", define
H(X;E",K")=Pr0b{¢@’,!.")SZIX"=£" . (10)

From Egs. 3, 9 and 10, the bounds on G (y) can be written:

G\(y) = min H(y;u",u") (11a)
Gy(y) = max H(y;u",u"). (11b)
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To get a lower bound for G,(y), note that:

n;inH(-y_;lll’lﬂ) = I}lirl'H(z;g'",z")

> min min H(y;u","). (12)
The inequality follows because minimizing H(y;u",v") when »" and v" can vary independently

over S’ is less restrictive than minimizing H (y;u",v") when u" is constrained to be equal to y".
Hence:

G\(»)2G;(y), (13)
where
Gi(y) = min min H(y;u",»")
Similarly,
G,(y) <G,(3), . (14)
where |

GQQ’) = max max H(y;u",y").
Finally, from Egs. 3, 13, and 14,

G/@)SGQ)<G,). (15)

The bounds from Eq. 15, although wider than the bounds from Eq. 3, may be simpler to
calculate because 4" is not constrained to be equal to v". If the bounds in Eq. 15 are not much wider
than those in Eq. 3, then little is lost and much may be gained by using Eq. 15 instead of Eq. 3. In
the special case where X“and X" are independent, then G,(y) = G;(y) and G,(y) = G,(y) and Eq.
- 15 reduces to Eq. 3. Thus, Eq. 15 may yield useful bounds on G(y) when X’ and X" are "almost”
independent.
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Proof: Prob{S°}21-7.

Consider any set of n statement S; such that Prob{S;} =1-p;,i =1,...,n. We wish to find a bound
for the probability of the joint statement

S ={S,,...5:}=nNS§,.
Using standard results from Boolean algebra, and using S to denote the complement of S,
Prob{S}=1-Prob{S}
=1-Prob{nS;}
=1-Prob{uS}
21-ZProb{S;} or
Prob{S}21-%p.

This last inequality is called the Bonferroni inequality. It holds regardless of the dependency
structure of the S;. Now let S; = {g; < X; < b;} be an uncertainty interval for X; with assurance 1 —¥;.
Then Prob{S;} <7.. Substituting into the Bonferroni inequality yields Prob{S}21-Xy,. If we
set Y= X, then Prob{S} 21 -7v. The desired result follows by setting S =S* and y="*.
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APPENDIX E - MODELING THE TRANSFER FUNCTIONS
1. INTRODUCTION

A key element of the demonstration of the probabilistic rule proposed in Section 5 is the
transfer of input uncertainty into a distribution for the critical output variable, the number of waste
packages (WPs) failing in the period [0,¢]. The simpler the transfer function, the easier the task of
transfer of uncertainty. Appendix B (Section 2, "Failure Boundary Determination Using Importance
Sampling") discusses important implementation shortcuts if the transfer function can be made
multivariate monotonic. This appendix reviews some commonly used simplification principles for
modeling transfer functions, pointing out cases where such simplifications may result in non-
conservative (for the Substantially Complete Containment (SCC) issue) assessment for the output
probability distribution.

Modeling the transfer functions is a highly specific technical task that does not pertain to this
report on uncertainty evaluation methods. However, in a simulation approach to uncertainty
modeling, the transfer functions must be computed repetitively for a large number of alternative
sets of input variables. Toreduce computational burden, this appendix reviews and proposes general
principles for decoupling and streamlining sequences of transfer functions, yet without altering their
ability to generate "extreme-valued responses” important for WP reliability analysis. Note that
"extreme-valued responses” means responses beyond the compliance limit, with usually a low
probability. of occurrence.

There are a few general principles that can be put to use to streamline a transfer function
before repetitive forward simulation runs:

» Modularization and decoupling

* Response surface modeling, or regression
 Important response modeling

« Extrapolation models

2. MODULARIZATION

The most efficient way to simplify a transfer function, or more generally a complex multi-
variate input-dependent process, is to decompose it into a series of simpler sub-processes, each’
calling for a lesser number of input variables. For example, the global transfer function ¢ can be
decomposed into a series of five simpler transfer functions TF1 to TFS, as presented in Fig. E-1.
These subprocesses can be either in parallel, as for TF1 and TF2 or, better, in series, as for TF3 and
TF4.

Ideally, these subprocesses should call, not only each for lesser number of input variables
than the global transfer function, but also for independent sets of input variables. Again from Fig.
E-1, the two sets of input variables to TF2 and TF4, respectively, can be seen as approximately
independent, whereas this is not the case for the two sets of input variables to TF1 and TF4; the
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latter two share common input variables stemming from a common groundwater/rock-mechanics
model. Given any prior single WP failure model, repetitive runs of TF4 can be done
independently of the TF2 runs. Similarly, runs of TF3 can be done independently of those: of both
TF1 and TF2.

The transfer function TF5 conditioning the release rateinFi g. E-1is most likely quite complex
and should itself be made more modular.

3. RESPONSE SURFACE MODELING

Consider any particular subprocess or module ¢ that transforms the input set X:{X,, ...,X.}
into the output set Y:{Y,,..., Y}, as in Fig. E-2.

Repetitive runs of ¢ would yield a correspondence between any N sets: of input. values
X®i=1,...,N and N sets of output values Y¥,i =1,...,N. From these N pairs of sets, one can
determine a regression of any output variable (the dependent variables) on the: L (or less) input
variables (the independent variables), e.g:,

L
=1

with T,(-) being some, possibly pon-linear, transform of the input variable X;.

More generally, instead of considering the regression (1), one could fit: some: parametric
response surface providing a close-form analytical approximation H(-) to those important aspects
of the transfer function ¢

Y =4P®) = HX)+e. @

Consider, then, the next module ¢® that transforms a subset (K’ < K) of the variables Y, into

M new output variables Z:{Z,,...,Zy} (see Fig. E-2). One wishes to study the global transfer
function ¢ = ¢®- ¢, which transforms X into Z, i.e.,

Z =6 =90 ).

Rather than repetitive, possibly expensive, runs of the global process ¢, one may consider
shortcutting the first module ¢ by replacing it by the regression (1) or the response surface (2),
e.g.,

Z=~ q>“"(é:l ay T(X), k=1, K) (3)



INPUT X:(X,.... % }
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12

1

0@ H(x)

Figure E-2. Response surface modeling.

Note: The first module ¢ of the transfer function ¢ = ¢.¢"" is approximated by a response surface H(X), with H(.)

being some simple close-form analytical expression.
The second module ¢ only considers a limited number of "summary” variables Y,k =1,...,K’, with K’ <K « L.

The approximation (3) is particularly advantageous if the first module ¢ is expensive to run

and/or if K’ &€ L, i.e., if the modularization ¢ = ¢®- ¢ has succeeded to cut down the number of
input variables from L to K.

Remarks

(1) The choice of the regression-type [i.e., the transform T ,(-) or the response surface (2)] is

critical for the accuracy of the approximation (3). In repository-type applications, one
should be careful in not smoothing out extreme values of the intermediary response
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valuesy,, k=1,...,K" Ifthe regression surface (1) or (2) does not reflect any extreme
set ¥, then the outcomes Z* of the approximation (3) may all be artificially median-

valued, even if some of the original input set X’ were extreme.

Any smoothing of the response distribution is usually non-conservative in the sense that
it leads to an underestimation of the probability of occurrences of extreme values, a fact
not always well-understood, and possibly the major drawback of the regression shortcut
for transferring probability distributions (see prior discussion in Appendix A).

(2) The regression (1) can be interpreted as a linearization of the first transfer function ¢
Y=¢"®=4-T, )

with: A =[a,], a (K xL)matrix

and: T=([T(X)), I[=1,..,LY, Y=[Y,k=1,...,K].

Again, the process of linearization of a transfer function tends to smooth out response dis-
tributions resulting possibly in optimistic nonconservative assessments.

4. IMPORTANT RESPONSE MODELING
There are two important aspects to the response surface approximation (1):

« the choice of the particular transform functions T,(X;) specific to each input variable X;

and
« the criterion for determining the model parameters a,,.

Unfortunately, there is no general theory or rule for selecting the transform functions
T,(),l=1,...,L, except for evident parsimony and simplicity.

Sensitivity analysis is used to evaluate how any particular response variable Y, is dependent
on each specific input X: this is done by fixing all other input variables X,. at, usually, their mean
or median values. For example, if the variability of Y, | X;, = E{X,}, as a function of X,/ #1’, is
seen to be correctly fit by the function T(X)), then that function T(-) is retained for the approximation
(1). If that function T(-) is not monotonic over the range of X,, then that range can be split into
intervals within which monotonic approximations T(-) can be defined:

"l
T,(X)= jl§l TjI(Xl)’ )

- with: T;(x) =0, forall x & [x;,X;.,].



. However, the function T(-) may depénd on the other input variables X;,,!” # [; in all rigor, one

should denote that function as T\(X, | X =x;,,l’ # I), emphasizing that dependencé. If one single
function T(X;) has to be retained, it is unclear for which set of conditioning values X,, = x,.,!" #1)
it should be determined. The usual choice of mean or median values for the X, does not necessarily
yield a final, overall "best” approximation of type (1); worse, it is most likely not conservative
because it does not allow the approximation to reflect a combination of extreme values for different
variables X;,X,. There seems to be a need to appraise what a "good" or "best" approximation of

type (1) represents.

As for the criterion for determining the parameters ay, it is, in the vast majority of applications,
least-squares and homoscedastic. That is, the a,,’s are determined to minimize the average square
deviations between the model (1) and the observations {y®, k=1,...,K}, i=1,...,N inde-
pendently on the criticality or ranking of the realization (i).

Recommendation:
~ Inthe line of importance sampling as developed in Appendix B, it is recommended that good
fit of the "marginal” output sets {y{),k = 1,...,K } be preferred to good fit of mean or median output

sets. By "marginal” it is understood those output sets close to the compliance limit, either barely
passing it or failing it.

Consider the case K = 1, simpler for notation purposes: marginal output values are those
¥ = y,. £ dy. The fit of a model of type (1), including the choice of the functions T,(-), should be

skewed toward reproducing the proportion of output values greater than y;,. The resulting model
would thus be y,, - dependent, and valid only in the vicinity of y;:

L
Y=hX)= 12—:1 8y Vim) - T/ X3V im)- (6)
The approximation (6) must be such that:
P{hX) > y;n} =P{Y > yu}, )

in addition to fitting closely all experimental output values y®).

In the case of an intermediary transfer function for which the notion of marginal output value
is not defined, one may replace the value yj, by some high p-quantile value y, of the output dis-
tribution y(",i =1,...,N. If low values y lead to noncompliance, one would instead retain a low
p-quantile value y, with p close to zero.

5. EXTRAPOLATION MODELS

The two processes of interpolation and extrapolation are distinguished in the sense that the
former is performed between two bounds within ranges of dependence, while the latter rests on one
single bound and extends beyond any verifiable range of dependence. For example,
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« Interpolation is performed within the class [p,,p,] defined from two calculated output
probabilities p, =P{Y <y,} and p,=P{Y <y,}, with y, <y, to provide the intraclass
distribution P{Y <y},y € p;,p,.

« Extrapolation is called for the last class [p;,1] beyond the last calculated output probability,
with y, equal to or larger than the compliance threshold y;,,.

Both interpolation and extrapolation call for models. However, the interpolation model is,
or at least can be, data-based, whereas the extrapolation model cannot be, by definition.

The golden rule with extrapolation is to consider many alternative extrapolation models.

A corollary rule is to go as far as possible with data-based or data-charged models, and only
then revert to extrapolation-type modeling, i.e., using a model that cannot be refuted by accessible
data.

Multivariate normal - related models, including the multivariate lognormal distribution, are
examples of models usually called much tooearly before data-based information has been exhausted.
(Refer to previous discussion on multivariate normal and maximum entropy in Appendix A.)

Acceleration principle: Sometimes one can avoid extrapolation models by playing between two
variables with similar consequences on the output. This principle is often used to mimic an unfeasible
long-duration experiment by increasing (accelerating) another variable. For example, if output data
y(r,t,) are unavailable for very large values of the input time period f,, one may consider the
substitute data obtained by accelerating, say, the rate of corrosion r and observe the output for
smaller time period ¢,, i.e., consider the approximation:

y(r,t) = y(r, t,),' with:r,>7r; 31,
If based on sound physical grounds and/or experiments relating the y-consequences of the input
variables 7 and ¢, the acceleration principle allows some data control on extrapolation models.
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APPENDIX F - BAYESIAN GEOSTATISTICS (A FORMALISM FOR UPDATING
PRIOR SOFT INFORMATION)

1. INTRODUCTION

In Appendix B, a combination of stratified sampling for process parameters and conditional
simulation sampling for spatial variables has been proposed to characterize the input (multivariate)
distributions. Each conditional simulation can be viewed as a random sample of the input space of
all spatially variable parameters, such as porosity and permeability. The dimension of that input
space can be very large, from 10, if block average (effective) properties are considered, to 105, if
core-volume properties are considered. It is therefore essential to reduce as much as possible the
spread of that multivariate input distribution by conditioning on as many data as possible, including
all sources of information, possibly of varying quality.

The concept and algorithms for conditional simulations are well described elsewhere (Ripley,
1987; Journel, 1989 - lesson IV). The principle of conditional simulation consists of drawing
possible outcomes for any yet unsampled (or unknown) input value from a probability distribution
model made conditional on the available information. The more information, the smaller the spread
(e.g., variance) of that distribution, thus the lesser the uncertainty. This appendix proposes a for-
malism for generating such probability distribution models conditional on data of different types.

This appendix contains advanced research results that have not yet undergone the test of
numerous implementations. However, the author believes these results to be relevant to the Sub-
stantially Complete Containment (SCC) issue, which requires the use of soft data.!

Not all data are equal; they differ by their prior measure of uncertainty and their degree of
dependence on the particular unknown being considered. The general Bayesian formalismis ideally
suited to update (reduce) uncertainty about any variable by accounting for the correlation between
that variable and any relevant piece of information (the data). In the following, a geostatistical twist
is given to that general Bayesian formalism, in the sense that all data are assumed to be spatially
distributed and statistically inter-dependent, in addition to being related to the unknown. The
formalism proposed amounts to modeling local prior distributions as random variables with their
specific reliabilities and patterns of spatial dependence. Bayesian updating is then performed
yielding posterior (conditional) probability distribution models for the unsampled (or uncertain)
values.

This appendix consists of four sections providing:

1: areview of the basic principles of non-parametric geostatistics
2: a formalism for a common coding of hard and soft data
3-4: a formalism for jointly processing hard and soft data

'As opposed to hard data, "soft" data comrespond to local information that needs updating.



2. BASIC CONCEPTS OF NON-PARAMETRIC GEOSTATISTICS

Non-parametric geostatistics differs from more traditional multinormal-based geostatistics
in the sense that itendeavors to characterize uncertainty by direct inference of conditional (posterior)
probability values. A parametric approach would consist of the indirectinference of such conditional
distributions through their parameters (usually mean and variance), once a distributional type has
been assumed. :

Non-parametric geostatistics rests on three basic yet very powerful concepts:

« Bayesian updating
« indicator coding of information
~ » projection theorem

Elements of these three concepts are briefly summarized with the focus being toward the deter-
mination of conditional (posterior) probability distributions as measures of uncertainty.

2.1 Bavesian Updating (Berger, 1980)

Consider any two random events A, and A,, in which outcomes can be either discrete or

continuous. (In the following discussion, we will be using discrete notations for convenience.)

The two random variables (RV) are characterized by their joint distribution:
P(a,a)=P{A =a,A,=a,}.

The conditional or posterior distribution of the event A, (the unknown), given information on A,
(the data), is given by Bayes’ relation:

- Py(a,a)
P, ,(a =P{A, =a,|A,=a,} =———, 1
124, 1a) {A,=a,|A;=a,;} Py(a) (1)
with P,(a,) = P{A, = a,} being the marginal probability of event A,.
Bayes’ relation can be rewritten as:
| P,(a, | ay)
=——" _".p 2
P, 1a) Pyay) (@) )

with P, \(a; | a;) =P{A,=a, | A, = a,} being the conditional probability (likelihood) of observing

the data A, = g, if the unknown value A, = g,; this probability is called the likelihood function, a
function of both a, and g,.



Relation (2) appears as an updating of the prior (marginal) probability P,(a,) =P {A, =a,}

by the data-value a, dependent factor P, ,(a; | a,)/P,(a,). This updating calls for prior knowledge
of the likelihood function P, ,(a, | a,), i.¢., de facto for knowledge of the joint distribution P,,(a,, a,)
since:

Pyla,,a) =P, (a;| a) - P\(a).

Notwithstanding the success of the formulation (2), this discussion prefers the initial for-
mulation (1), which states unambiguously that Bayesian updating requires knowledge of the joint
distribution P,,(a,,a,), i.€., a prior model of dependence between the unknown A, and the data A,.
That prior model should stem from actual prior information, such as a calibration data set
{af’,a{’},i =1,...,N, from which the conditional distributions P,,(a, | a,) can be inferred for all
values a,. Indicator covariances are shown hereafter to be exactly such joint distribution models
inferred from data. ‘

Unfortunately, often the likelihood function P, ,(a, | a,) is arbitrarily taken from some con-

genial multinormal-related distribution with no data justification; then, belatedly, Bayesian
respectability is gained by using the formulation (2). Bayesian updating is a powerful concept for
propagation of information, but cannot make up for the poor quality or arbitrariness of the likelihood
functions being used.

2.2 Indicator Coding of Information (Journel, 1989 - Lessons 4-5; Journel and Alabert, 1989)

The probability of any event can be expressed as the expectation of a corresponding indicator
(binary) random variable. Define the indicator attached to the random event A as:

L(a)=l, ifA=a f
0, if not 3)
Then P{A = a} =E{I,(a)}. |

Similarly, if the event A, (the unknown) is made conditional on another event A, (the data),

the corresponding conditional probability can be expressed as the conditional expectation of an
indicator RV:

P{A=a,| A=} =E{l, @), (@)=1} @)

Relation (4) is fundamental, for it allows mapping the problem of estimating conditional (posterior)
probabilities into that of estimating conditional expectations, with the projection theorem (point 3
hereafter) providing a general approach to the latter.

Bayes’ relation (1) is then rewritten, in all generality:



E{l,(a)* 1, (a)}
Bl (@) | @} =— g

®)

It thus appears that updating the prior probability P,(a,) =P {A,=a,} = E{l, (a,)} calls for the
indicator covariance E{l, (a,) * I, (@)} =P{A,=a,,A,=a,}. There is a strict parallel between

indicator covariance models and joint probability distributions, between the indicator approach to
calculating conditional distributions and Bayesian updating.

2.3 The Projection Theorem (Luenberger, 1969)

Consider any two dependent random events A and B. The conditional expectation
E{A | B =b} is a function, usually non-linear, of the conditioning value b:

E{A |B =b}=y(b). ©®
.Randomizing b into the RV B, the conditional expectation (6) y(B) appears itself as arandom

variable. This randomization of b into B is the key conceptual step, for it allows estimation of y(B)
by projection-type algorithms. '

The projection theorem allows defining uniquely the RV y(B) as the projection of the RV A
onto the Hilbert space Hp of all measurable functions of B (see Figure F-1). That projection is
characterized by the orthogonality of the error vector A —y(B) to the Hilbert space of projection,
leading to the well-known normal equations, belatedly renamed kriging equations:

yiss.t E{[A-y(B)]- f(B)}=0,
ie., 0))
E{y(B)- f(B)} =E{A - f(B)}, forall fe H,.

Any data event B can be seen as the intersection of a certain number N, possibly large, of
indicator (binary) datalp o, = 1,...,N. Thus, the random event B can take up to 2" outcome values,
depending on the state of the N indicator switches I ,. Note that the N indicator RV’s I , may be
dependent, with, for example:

E{lp - I } =0, forbidding the two switches o and &’ to be simultaneously set to one.

The following lemma provides the general expression of any measurable function f(B) of a
random event B characterized by N indicator RV’s I :

Lemma: Any function of n indicator (binary) variables can be written as a linear combination of
these indicators taken one by one, then of products of any two, three, ..., up to » indicators:
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E{AB}

Hing)

Figure F-1. The projection theorem.

Note: The conditional expectational E {A | B} is defined as the unique projection of A onto the Hilbert space generated
by all functions of B. That conditional expectation can be approximated by projecting A onto a Subspace Hy © Hp.

fB)=fly pa=1,...,n)

. _ a ® a n @ '
_a&l+¢§l IB a+a12102§01a01021801 18,02 (8)

with (by com}ention) the RV 1 almost certainly equal to the unit scalar. There are

1+ |+ % 4 ...+ ™ | = 2% coefficients a®.
1 2 n

Note that any product of indicators is an indicator (binary) variable; thus, expressmn 8)isa
linear combination of 2" indicator variables.

The Hilbert space Hp of Fig. F-1 is thus characterized by the basis of the 2" vectors of

expression (8). The conditional expectation W(B) = E{A | B} appears as a linear combination of
2" binary events, and is then characterized by 2" normal equations of type (7):



W(B) =Xy 1 +a>=:1 A0, o+ a§1 %gal xg’q Y ANEY A

Forrrnnns +A Ly )

with the 2" coefficients A determined by the 2° orthogonality relations:

E{yB)+1}=E{yB)} = E {A}, ensuring unbiasedness
L E{yB) Iz }=E{AI;,},a=1,..,n

E{yB)lpq *lpo}=E{AIpy *Is,}
for all pairs a, > o, @, = 1,...,N, in number (;) . (10

..................

» D. R. Cox (1972) has proposed an expansion for joint probability distributions similar to
expression (8). ‘

+ The projection theorem coupled with the concept of indicator coding allows expressing any

conditional expectation E {A | B} as a linear combination of 2" elementary binary events. The
coefficients (A's) of this expression are given by a system of linear equations calling for:

~ the covariance matrix between any two elementary binary events
~ the covariance between any elementary binary event and the unknown A

 The full expression (9) is exact inasmuch as Bayes’ relation (1) or (5). However, in practice,
it may be difficult to infer all 2" (2" + 1)/2 + 2" = 2"(2" + 3) indicator covariances as required by
system (10). One may call for a Markov-type paradigm, and approximate expression (9) by
retaining only those (n, + 1) elementary events (out of a total of 2*) deemed most characteristic
of event B:

L] * no
Y(@B)=[E{A|B}] =v,- 1+ Zlvcnfa , 11)
with the 7, binary events J, taken from the set of 2" binary events defining B and listed in

expressions (8) or (9). The (ny+ 1) weights vy, v, of expression (11) are determined by a
correspondingly reduced set of normal equations expressing the projection of A onto the vector
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subspace H,,  Hp generated by the (1, + 1) elementary events selected (see Fig. F-1). Note
that the projection of A onto H, also defines the closest approximation to the conditional

expectation E{A | B} to be found in the subspace H,, [refer to the theorem of the three per-
pendiculars in topology (Journel and Huijbregts, 1978, p. 559)].

For example, if the ny+ 1 = n + 1 events first listed in exprcssibn (9) are retained, defining the
approximations:

w(B)=E{A |B} = "°+a‘i:1 Valsa > (12)

the corresponding (# + 1) normal equations are:

~ first equation equivalent to an unbiasedness condition:
v+ 3 vaE{lp o} =E{A},
whiéh allows defining the conditional expectation estimate (12) as:
(E{A |BY-E{AN'= 3 villyo-Pd, (13)

with: po=E{l3 ;},a=1,...,n.
~ the remainder n normal (linear) equations are:
ﬂi} veCov{ly gl o} = Covily wALO=2, ... (14)
with:
Cov {Ia,psIB,a} = E{Un,p "P;;] [IB,a -Dpd}
Cov{ly A} =E{lls—p,l[A-E{A}]}.

- Thus, the approximation (13) to the conditional expectation E{A | B } only requires knowledge
of:

~ the (n + 1) marginal expected values E{A},p,, 0 =1,....,N to ensure unbiasedness, i.e.,

E{[E{A |B}'}=E{A}



~ the n(n +1)/2 indicator covariances Cov{l 3,/ .},0 # B =1,...,n defining the interde-
pendence between the n elementary data events Iy, .

~ the n indicator covariances Cov{l ,,A} characterizing the dependence between each
elementary data event I , and the unknown A.

o If the unknown event A is itself binary, e.g.,A =1 4,(a,) as defined by relation (3), then the
conditional expectation E {A | B} is itself a conditional probability value:

E{l,(a)|B}=P{A, <q,|B},

which gxact expression is given by the development (9), or which can be approximated by an
expression of type (13).

By varying the threshold value a;,, the entire conditional (posterior) distribution function of A,

given any outcome of B can be derived. Note from the linear system (14) that changing the
(unknown) event A does not require solving a new system, since A affects only the right-hand
side covariance values.

In summary, it appears that the non-parametric determination of conditional probability distrib-
utions, through the projection theorem and normal equations, is theoretically straightforward. All
problems relate to the inference of the covariances characterizing the dependence between the
unknown and the data, as in formula (5).

Such inference is made easier if the usually complex assemblage of data (B in Fig. F-1) is
decomposed intoa series of elementary binary events, the 2" switches /p o, 15 o,, /5,0, - - -, in €xpression
(9). Then inference of a limited number of indicator covariances, characterizing the pattern of
dependence of the most important switches, is enough to provide an approximation to the required
conditional probability. s

The effect of truncation of the exact expression (9) into the more amenable expression (11)
or (12) can be evaluated through a convergence analysis of approximations of type (9) with
increasing truncation order number.

3. CODING SOFT DATA

The projection theorem approach discussed in the previous section does not impose any
limitation on the type of conditioning information. The data event B, in the notations of relations
(6) to (14), 1s constituted of any number N of elementary binary events I ,,00=1,...,N. These N,
possibly dependent switches generate a potential of 2" realizations for B.
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This remarkable flexibility of the indicator coding of any data event B allows considering
almost any type of conditioning data, yet all can be processed through the same normal equations
(10) or (14).

Consider the elementary cases of information taking the format of a hard continuous or discrete
variable, a constraint interval, and last, a prior probability distribution. Information relates to the
spatial distribution of a particular attribute z(x), say core porosity measured at location x.

I l- C Io : ;

Discretize the range of Z by K threshold values z,,k = 1,...,K, and define from the original

RV Z(x) the K indicator (binary) RV’s as:

1052 =1, if Zx) <z,
0,ifnot k=1,......K. (15)

» Hard data: A hard sample value z(x;) would generate a complcte indicator data column

i(xy:z;) of zeros followed by ones (see Fig. F-2). What has been lost in the process of
indicator coding is the resolution within a class. However, one could consider K as large
as necessary and the class intervals can be arbitrary, for example, of equal amplitude, or
equal marginal probability, or clustered in some important range of Z-values.

» Constraint interval: At some other location x, the porosity may not have been sampled, but

awell log may indicate the rock type prevailing at x, from which an interval for the porosity
may be specified: z(x,) € [a,,b,] (see Fig. F-2). Such a constraint interval would generate
an incomplete indicator data column with:

i(x52)=0, forz, <a,
undefined, for z, € [a,,b,] (16)
1, for z, > b,.

« Priorlocal distribution: At some third location x4, the constraintinterval [a,, b;] corresponds

to a rock type for which a porosity distribution is available, for example, from samples
taken elsewhere. One may consider for prior information at x , that distribution, identifying
the indicator data to the corresponding cumulative distribution function (cdf) values (see
Fig. F-2):



i(x3,2,) =0, forz, <a,
P{Z <z, | rock type prevailing at x,} € [0, 1],
| for z, € [a,, b,] 17)

1, for z,>b,

X4 X2 X3
-0 -0 -0
— 32
T0 T0° —+ 03
Z(X 1) —»| — 32 |
- +1 +2 1 o7
THRESHOLD Z) -1 =i(xy:2) + 4 o8
-—1 -+ -+ 095
- +-2 | —+4 099
i — b, i — bg
=41 1 1
Y Y Y
A. HARD 8. CONSTRAINT C. LOCAL
SAMPLE INTERVAL PRIOR CDF

Figure F-2. Indicator cdding of prior information.

In this latter case, the indicator data are not any more binary, but are prior probability valued
in [0,1]. They are said to be "fuzzy" indicator data.

Note that a hard sample of type (15) is but a particular case of prior local distribution with
zero variance (no uncertainty), that is, a step cdf:

1(xy32,) = Az, 2(x,)) =0, for all z, <z(x,)
1, forall z, 2 z(x,).
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A constraint interval can also be seen as an incomplete prior probability distribution.
Therefore, a general format for input numerical data is a local prior cdf defined as:

yx;z)=P{Z(x) <z |x} € [0,1]. - (18)
Remarks:

* The notation y(+; *) with a lower case letter y recalls that this information is a deterministic
scalar, as opposed to a random variable. In the next section, that information will be made
random to allow accounting for its own uncertainty. The notation | x differentiates this
information, specific to location x, from the prior histogram of Z(x) obtained, say, by
averaging all hard data z(x,) available at different locations. To avoid confusion, the local
prior cdf (18) is sometimes called a pre-posterior distribution. The overall histogram of
Z(x) can be seen as prior information available at all locations x, whereas pre-posterior
information of type (18) is available only at some selected locations.

» Prior uncertainty at location x is characterized by the spread of the local prior Cumulative
Distribution Function (cdf) (18). Itis maximal if only the overall prior histogram is available
atx; itis minimal (zero variance) if (18) reduces to a step cdf corresponding to a hard sample
value.

At this point indicator coding, including fuzzy indicator valued between [0,1], has allowed
defining a continuum between no local data (maximum prior uncertainty) and hard data (no
uncertainty).

Bayesian updating consists of reducing the uncertainty associated to any local prior cdf of
type (18) by capitalizing on dependent information available at neighboring locations. The result
will be a new distribution at each location x, called the posterior distribution, reflecting a reduced
uncertainty.

. ite information:

Information available at a given location x can include several pre-posterior, or local prior,
distributions related to different attributes. For example, in addition to a local porosity permeability
distribution, there could be available a local transmissivity distribution, and/or a distribution of rock
types, if the well log analysis could not determine with certainty which rock type prevails at x:

~ for porosity ¢:y,(x;¢,) =P{Px) < ¢, | x}
~ for transmissivity T:y,(x;t,) =P{T(x) <t |x}
~ for rock type (assuming three rock types r = 1,2,3):
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y@r)=P{xer|x} (19)
yxr)=Pxer|x}
Yxsr) =P{x € ry| x} =1-y,(x;r,) — y;(x;7).

All these data at x may be interdependent and, provided this dependencé has been modeled, can be

used to update each other: for example, the local prior rock type distribution can (must) be used to
update both local prior transmissivity and porosity distributions.

In addition, thanks to spatial cross-correlation, the rock type information y;(x;7) at location

x can be used to update the transmissivity distribution at a neighboring ;location x” where no pre-
posterior rock distribution is available.

4. PROCESSING SOFT DATA

Although the local prior distribution y(x;z,) as defined by relation (18) already carries a
measure of uncertainty of that information, that measure may be itself uncertain.

To allow for a modeling of that second level uncertainty, the idea is to randomize y(x;z,)

itself into a random function (RF) Y(x;z,). Of course that RF is likely to present spatial auto-
correlation, since local prior information at two neighboring locations x, x’ are likely to be
dependent. Also, and hopefully, Y (x;z,) is related to the binary indicator RF /(x;z,) as defined in
(15) and whose conditional expectation is precisely the posterior cdf:

E{I(x;2)| ()} =P{Z(x) Sz|n)} =F (x;z | (n)) (20)

with the notation (n) representing all information available at all locations, including, but not limited
to location x.

The projection theorem indicates that an estimate of the conditional cdf (20) is obtained by
projecting the (unknown) RV I(x;z) onto the linear vector space generated by all data
Y(x,z,),00=1,....,n available at all neighboring locations x, including x itself. That estimator is
written, similarly to expression (13):

[FOsz |N)-F(2)] = é’x Vo (Y (xg52) — E{Y (x52)}] 21)

with F(z) = P{Z(x) < z} being the prior cdf (not a local prior!) of the stationary RF Z(x) inferred,
say, from the histogram of all z-data available over the stationary field.
Determination of the estimator (21) requires knowledge of:

~ the two mean values F(z) and E{Y (x;z)}
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~ the (n x n) covariance matrix, [Cov{Y (x;z), Y(ga;z)}],a,B =1,...,n, characterizing the
interdependence (redundancy) between the n data Y (x,:z)

~ the n covariances Cov{Y (x,;z),/(x;z)},a=1,...,n, characterizing the relation of each
datum Y (x,;z) with the unknown I (x;z).

Covariance determination:

In the following discussion, to lighten notations the parameter-threshold value z will be

dropped:
Y(x;z) is short denoted as Y (x)

I(x;z) is short denoted as /(x).
However, it will be remembered that all results are threshold z-dependent.
The following constitutive hypothesis is key to the proposed covariance determination:

"Hard information /(x) always prevails over any soft collocated information Y (x), that is:
EJ@) LY@ =y} =EJI@) | I@ =1}
E{x)11x)=0,Y®) =y} =E{Ix)]|Ix)=0} (22)
forally € [0,1], and all x’, x".

The tedious but otherwise not particularly difficult calculations are given hereafter. The
results are strikingly simple. '

Let:
Ci(h)=Cov{Ix +1),I@)} =E{Ix+h) * I®)}-F?,
with F =F(z)=E{l(x;z)},

be the covariance of the indicator RF I(x), as inferred from all indicator data i(x,,;z) available at all
sample locations throughout the stationary field of Z(x). Then:

Cov{lI(x+h),Yx)}=B + C/(h)
Cov{Y(x+h),Y(x)} =B+ Cy(h)
E{Y@)}=F +mY+1-F)m®=BF +m® (23)

Var{Y(®)}=F(1 -F)B*+[F®+(1 -F)cd®]
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with:
mV=E{Y(x)|I(x)=1} € [0,1]
m@=E{Y(x)|I(x)=0} e [0,1]
B=m"-m%e [-1,+1]
P =Var{Y(x)|1x)=1}
@ =Var{Y(x)|I(x)=0}

m®is the expected value of the pre-posterior information Y (x) given that the actual valueis /(x) = 1;

itcanbe inferred from a calibration data set where pre-posterior values y(x,) and i(x,,) co-exist (see
Fig. F-3). Similarly, the variance 6®" can be inferred from the variance of the data y(x,,) for which
the collocated i(x,) = 1. .

Similar definitions hold for m® and ¢,

Figure F-3. Calibration of the information Y (x).

Note: Using a data set for which pre-posterior information y(x,) and actual values i(x,) co-exist, the two conditional
means m®=E{Y(x) | I(x) =i} are determined.
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Information value:

Maximum conditional consistency for the information y(x) would call for m® and m® =0,
ie,B=1.

Maximum inconsistency, such that Y(x)=1-I(x), would yield: m®=0 and m©@=1,
ie.,B=~1. '

)

The case m®?=m®, i.e. B =0, corresponds to an average non-informative pre-posterior

Y(x).
e WhenB=1I: .

Cov{Y(x+h)* Y(x)} =Cov{l(x +h) * Y(x)} = C/(h), thus, as far as the projection theorem,
the pre-posterior information Y (x) is treated equal to the hard local information /(x).

o When B=-1, similarly Y(x) is treated equal to 1 —/(x).

* When B=0, all covariances involving Y (x) vanish; therefore, the information Y (x) is ignored
in the normal equations.

Thus, it appears that the average value of the information Y (x) is measured by B?, not B, just

as the value of information in a traditional regression is measured by p?, not p the coefficient of
correlation. '

llp_danng Unless B = 1,Y(x) is not considered equal to /(x); thus, any pre-posterior cdf y(x) will
be updated (i.e., modified) by information of type y(x,) or i(x,) available at surrounding locations

Xo
Composite information:

The previous development and the relations (23) only consider one single type of pre-posterior
information Y (x). In case of composite information of type (19), where several types of pre-posterior
information Y,(x),! = 1,...,L co-exist, one would need to repeat the previous calibration exercise
L times defining L consistency indices B,/ =1,...,L.

A more difficult problem will be that of evaluating the cross-covariances of the type
Cov{Y,(x +h),Y,{x)},] # I’, measuring the degree of redundancy between these different sources
of information. Such evaluation may require setting a hierarchy of data screening similar to the
constitutive hypotheses (22). Additional research is warranted here.
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5. COKRIGING HARD AND SOFT DATA
As developed in Sections 3 and 4,

» a hard data Z(x) generates a full indicator data column:
[[(x;z),k=1,...,K]’y, cf. relation (15)

« soft local information can be coded as a pre-posterior distribution:
y(x;2) =P{Z(x) <z, | x} [cf. relation (18)], then randomized into ¥ (x;z,).

The goal is to estimate (actually model) the . posterior distribution:
E{l(x;z)| (n)}=P{Z(x)<z|(n)}. This conditional exception is estimated. e.g., by a linear
combination of hard indicator data of the type I(x,,,z,) and fuzzy indicator data of the type

Y(xopzdou=1,...,n;0,=1,...,n,n,m € (n):
[P{Z(x) Sz, | ()} = F@))" = Zg o1 Ag - U @oy2) — F (2,)] (24)

+ T Vo[V (oizy) — E{Y (oiz)}]
with: E{I(x;z)}=F(@)=P{Z(x)<z},forallx
and: E{Y(x;z)} as given by later relation (31).

The (n, + n,) weights A,, and v,, are given by a system of (», + n,) normal equations of type

(7), also called the cokriging system. Dropping from the notations the threshold parameter z,, this
system is written:

Zo o1 Ag, Cov il (xg), 1 (x4} + g v Covi{¥ (), 1 (x,,)}
=Cov{I@, 1z} 4 =1,....m,

Yo 1A, Covil (xg), Y (2,)} + Zgi o v, Covi¥ (x5), (x,)}
=Cov{I(x),Y @)}, ou=1, ...,

Solution of this system calls for knowledge of three covariance functions, hereafter assumed
stationary:

« hard indicator covariance:

C/(h)=Cov{l(x +h),I(X)} 25)

» fuzzy indicator covariance:
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Cy(h) = Cov{Y(@ +h),Y 0}
» hard-fuzzy indicator cross variance:
Cry(B) =Cov{lx +h),Y(©)}.

The hard indicator covariance C,(h;z,) is inferred directly from the hard indicator data i (Xap324),
as deduced through relation (15) from the hard original data z (’ial)° As for the two other covariances

Cy(h), and Cy(h), they could also be inferred from actual data if there are enough collocated Y and
I-data. Otherwise, building on a Markov hypothesis of type (22), they can be derived directly from
the hard indicator covariance C;(h).

Covariance determination [proof of relations (23)]:
Let
®Vwp) =P{Y@ <p 1@ =1} & [0,1] | (26)
be the conditional cumulative distribution function (cdf) of Y (x). Recall that ¥ (x) isitself a random
cdf.
Similarly:
®x;p)=P{Y@<p lI@) =1} [0,1].

To allow inference of the covariances Cy(h) and Cyy(h), we must assume (rather a decision) some

form of stationarity for the random functions Y (x), /(x). Strict stationarity of ¥ (x) and / (%) entails
stationarity of the previous cdf’s (26) which can then be denoted without the location parameter x
as:

@Y (p), d(p) for the conditional cdf’s 27)

¢“(p), ¢°(p for the corresponding pdf’s

with

ot )(p)
dp

oY (p) = =1,2.

* Stationarity for Y (x;z) is strictly a model decision that allows inference of the covariance C,(h;z).
It still leaves the possibility for realizations y(x;z),y(x + h;z) to be different, that is, allows for
different pre-posterior distributions at different locations.
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Hypothesis: "Hard information /(x) prevails over any other information when conditioning at
location x, and prevails over any other collocated information," that is:

E{G+W @ =1Y®)=p}=EJ@+D | I©=1} (28)
| =K,(h)/F, forallp e [0,1]

- with:
E{I@}=E{r'®}=K/0) =F
K,(h) = E{I()I(x +h)} = C,(h) + F*
and similarly:

E{Ie+h) [I®)=0,Y(@) =p}=E{I@+h)|I1(x)=0}
={F -K,(h))/(1 -F),forall p € [0, 1].

- Also:
PiYW=plI®=i,Yx+h)=p'}
= P{Yx)=p|Ix)=i},forallh,p’i=0,1.
« Using Bayes’ relation, develop the joint probability:
P{Ix+h)=1-Y®)=p}=
P{Ix+h)=1-Y®O=plI®)=1}-F+P{Ix+h)=1-YX)=p |Ix)=0}-(1-F).

Since:

PUE+W)=1Y@=p |I®) =1}
=PUGE+W=11Y@=p,I@=1}-PY@®=p I®=1}
=K,(W/F - 0" (p).

Similarly:
PUE+m)=1Y@=p |I(x)=0}= K’(h) -4%0p).
Thus:
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P{Ix+h)=1Y®)=p}=K,}B)-6"(p)+[F -K,®]- 6“(p).

The non-centered cross-covariance between I(x + A) and Y (x) is obtained by integrating the
previous density:

EUG+RY@) =K® [ po™0)p +IF ~K,0) [ pdo”(p)
=K,(h)- mV+{F -K,(h)] - m© 29)
=K (h) m®-m®] +Fm®
with:
m® = E{Y(x) | I(x) = 1}: mean of the pdf ¢")(p)
m® = E{Y(x) | I(x) = 0}: mean of the pdf $“(p).

The marginal pdf of ¥ (x) appears as a mixture of the two conditional pdf’s $'(p) and ¢°(p),
indeed:

PiY®)=p}=P{¥Y@=p|I@)=1}-F+P{¥Y@=p |Ix)=0}-(1-F)
=Fo"(p)+{1-F}0°(p). - (30)
Thus, the mean of Y (x) is:
E{Y®)}=FmP+(1 -F)m®. (31)
Recall: E{/(x)} =F.

Finally, the centered cross-covariance between hard and soft data is written from relations
(29) to (31):

Cor(B) = Cov{I(x +B), Y (O}
=E{Ix+h)- Y@} -E{Y®} E{/®)} | (32)
={m®-m®} - {K,(h)-F*} =B - C/(h) |
withB =m®P-m® e [-1,+1]

« Similarly, using Bayes’ relation, develop the joint probability:

F-19



PYX)=p,Yx+h)=p'}=P,+P,+P;+P,,

with:
P=P{Y®=p,Yx+h)=p'I(x)=1,I(x+h)=1}
P,=P{Y@)=p,Y(x+h)=p’I(x)=1,I(x +h)=0}
Py=P{Y@=p,YE+h)=p’,I®)=0,Ix+k) =1}
P,=P{Y(®)=p,Y(x+h)=p’I(x)=0,I(x +h) =0}
and:

P\=P{Y@=p,Yx+W)=p'|I@®=1,Ix+hr) =1} -K/h)
=K@ P{Y@)=p|Yx+h)=p"1@)=1Ix+h)=1}]
P{Ya+h)=p" 1I®=11x+h)=1}]

Since the hard information / (x) prevails over any other soft information at x, the second term
in square brackets is equal to P{Y(x)=p |/(x)=1}. Similarly, the third term is equal to
P{Y(x+h)=p'|I(x+h)=1}. Thus:

P, =K,®- ") - ¢V("). (33)
Similarly:

P,=[F -K,()]- ") ¢°@"

Py=[F -K,®]-6°@)-6°®"

P,=[1-2F +K,(M)]- 6°p)- 6" (p".
And finally:

EY@ Ya+m} =3, [ [ o’ Pidpdy’
=B’K,(h) +m®[m® + 2FB).
Recalling the expression (31) for the marginal mean of Y (x), the centered covariance is:

Cov{Y(x),Y(x +h)}=B*.C/(h), forh>0 (34)
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with: B =m® —m©,

The hypothesis calling for dominance of hard dataon soft data allows the direct determination
of Cy(h) and Cjy(h) from the indicator covariance: C;(h) and the consistency index B. That index
measures the consistency of soft information with-hard indicator information, and should be inferred
from calibration data of the type of Fig. F-3.

Remarks:
Cy(0) = Var{Y @} = E{V' @}~ [E{Y@}*
with E{Y’@)} =F[c*"+m**+ (1 -F)[*” +m*®},

since the pdf of Y (x)is.a mixture of ¢ (p) and $*(p), and 6*", *” are the variances of respectively
¢“p) and 6“(p).

Accounting for the expression (31) for the mean, it comes:.
CO) =[F(1-F)+ B’}+[Fc""+(1-F)o*")]
=V: + V.

VZcanbe read as a "consistency term," bestif B*isclose toone. V}isa "fluctuation term," increasing

with the conditional variances 6*" and *” of the pre-posterior distribution information Y (x). The
smaller this term, the better the: soft information ¥ (x)):.

Now, fmm relation (34).it comes:
lim, _,, Cy(h) = B’C/(0)= V< 25
since. C;(0).=Var{I(x)} =F (1 -F)<.25.
Thus, the covariance Cy(h) = B*C;(h)is-proportional to the indicator covariance C,(h), except
for an additional discontinuity at the origin of amplitude Vf?'(see Fig. F-4).

If V}': 0, i.e., if the soft information is. precise no: matter if not accurate (B # 1), as long as

lack of consistency can be:corrected through knowledge of B, the soft information Y (x) is as good
as a hard indicator data /(x)..
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Figure F-4. Covariance relation between soft and hard data, (under dominance of hard data).

Note: Spatial autocorrelation of the soft data decreases as the fluctuation term V} (nugget effect) increases.
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