

Figure H.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure H.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 125 psi from the Combined RCTS Tests

Figure H.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 125 psi from the Combined RCTS Tests

Figure H.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 125 psi from the Combined RCTS Tests

Figure H.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 125 psi from the Combined RCTS Tests

Figure H.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 125 psi from the Combined RCTS Tests

Figure H.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 455 psi from the Combined RCTS Tests

Figure H.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 455 psi from the Combined RCTS Tests

Figure H.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 455 psi from the Combined RCTS Tests

Figure H.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 455 psi from the Combined RCTS Tests

Figure H.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 455 psi from the Combined RCTS Tests Table H.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen B2269-UD19

Isotropic C	onfining Pre	ssure, σ _o	Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
31	4464	214	1864	89	721	2.95	0.979
62	8928	427	2039	98	752	2.77	0.970
125	18000	861	2446	117	819	2.65	0.947
249	35856	1716	3015	145	900	2.41	0.907
455	65520	3135	3860	185	1000	2.21	0.837

Table H.2 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen EXELON 2269-UD19; Isoptropic Confining Pressure, σ_o=125 psi (18.0 ksf = 861 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
3.80E-04	2590	1.00	3.80E-04	2.56
7.23E-04	2590	1.00	7.23E-04	2.57
1.40E-03	2590	1.00	1.16E-03	2.63
2.77E-03	2590	1.00	2.32E-03	2.61
5.46E-03	2590	1.00	4.53E-03	2.61
1.08E-02	2569	0.99	8.97E-03	2.62
2.14E-02	2569	0.99	1.80E-02	2.65
4.17E-02	2529	0.98	3.46E-02	2.62
8.19E-02	2469	0.95	6.80E-02	2.76
1.54E-01	2332	0.90	1.23E-01	3.23
2.72E-01	2150	0.83	2.04E-01	4.52
4.83E-01	1889	0.73	3.23E-01	6.92

* Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve

* Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table H.3 Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing Strain from TS Tests of Specimen B2269-UD19; Isotropic Confining Pressure, σ_0 = 125 psi (18 ksf =861 kPa)

	Fir	st Cycle		Tenth Cycle				
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material	
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping	
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %	
1.03E-03	2088	1.00	0.68	1.02E-03	2098	1.00	0.70	
2.04E-03	2088	1.00	0.74	2.04E-03	2098	1.00	0.74	
4.06E-03	2088	1.00	0.59	4.05E-03	2098	1.00	0.60	
9.95E-03	2088	1.00	0.86	9.96E-03	2093	1.00	0.69	

ŕ

Table H.4 Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of Specimen B2269-UD19; Isoptropic Confining Pressure, σ_0 = 455 psi (65.5 ksf = 3135 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average [⁺] Shearing Strain, %	Material Damping Ratio ^x , D, %
3.01E-04	3736	1.00	3.01E-04	2.35
6.20E-04	3736	1.00	6.20E-04	2.36
1.21E-03	3736	1.00	1.21E-03	2.36
2.36E-03	3736	1.00	2.03E-03	2.38
4.61E-03	3736	1.00	4.01E-03	2.33
8.76E-03	3736	1.00	7.62E-03	2.32
1.66E-02	3736	1.00	1.43E-02	2.33
3.16E-02	3736	1.00	2.72E-02	2.44
5.72E-02	3704	0.99	4.92E-02	2.52

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

1

Table H.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen B2269-UD19; Isotropic Confining
Pressure, σ_0 =455 psi (65.5 ksf = 3135 kPa)

	First	t Cycle		Tenth Cycle			
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
9.98E-04	3197	1.00	0.90	9.95E-04	3206	1.00	0.55
2.00E-03	3197	1.00	0.79	1.99E-03	3206	1.00	0.64
3.99E-03	3197	1.00	0.89	3.97E-03	3206	1.00	0.86
1.02E-02	3197	1.00	1.06	1.02E-02	3206	1.00	1.17

FUGRO CONSULTANTS, INC.

6100 Hillcroft (77081) P.O. Box 740010 Houston, Texas 77274 Tel: 713-369-5400 Fax: 713-369-5518

April 25, 2008

Ms. Siesta Williams MACTEC 3301 Atlantic Avenue Raleigh, NC 27604

RE: Two (2) Reports For The EXELON COL Project

Dear Ms. Williams:

Fugro has completed two (2) RCTS tests, which are B2274-UD8 and B2174-UD6, for the EXELON project. Fugro has incorporated, as needed, Dr. Kenneth Stokoe's comments into the final reports. The final reports and the associated RCTS Test Approvals by Dr. Kenneth Stokoe have been attached.

Please let us know if you have questions. Thanks.

Very truly yours,

Fugro Consultants, Inc.

/10g

Jiewu Meng, PhD, P.E. Project Engineer

Enclosures

Cc: Kathryn White, in PDF

Bill De Groff

Bill DeGroff, P.E. Laboratory Department Manager

RCTS TEST APROVAL

PROJECT SITE/NAME | EXELON

Test ID	Sample ID	Depth B.S. (Ft)	Approved By (Initials)	Date
RCTS#I	B2274-UD8	122	KAST	13 Apr. 08
RCTS#J	B2174-UD6	96.4	KAAG	13 Apr. 108
			1 0 0 0	·

Two RCTS tests for the site referenced above were tested, and two reports were prepared, by Fugro Consultants, Inc.

I have reviewed the data and associated results listed above and found them to be reasonable.

Approved By:

Dr. Kenneth Stokoe

Dansider anggested revisions as noted in a ten Rigures

APPENDIX I

Specimen B2274-UD8 (Index properties not available)

Borehole B2274 Sample UD8 Depth = 122.0 ft (37.2 m) Total Unit Weight = 112.6 lb/ft³ Water Content = 33.5 % Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 49 psi

> FUGRO JOB #: 0411-08-1686 Testing Station: RC9

Figure I.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure I.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure I.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure I.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure I.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests

Figure I.6 Variation in Low-Amplitude Material Damping Ratio with Isotropic Confining Pressure from Resonant Column Tests

DCN# EXE805

Figure I.7 Variation in Estimated Void Ratio with Isotropic Confining Pressure from Resonant Column Tests

Figure I.8 Comparison of the Variation in Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure I.9 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure I.10 Comparison of the Variation in Material Damping Ratio with Shearing Strain and Isotropic Confining Pressure from the Resonant Column Tests

Figure I.11 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 49 psi from the Combined RCTS Tests

Figure I.12 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 49 psi from the Combined RCTS Tests

Figure I.13 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 49 psi from the Combined RCTS Tests

Figure I.14 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 49 psi from the Combined RCTS Tests

Figure I.15 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 49 psi from the Combined RCTS Tests

Figure I.16 Comparison of the Variation in Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 197 psi from the Combined RCTS Tests

Figure I.17 Comparison of the Variation in Normalized Shear Modulus with Shearing Strain at an Isotropic Confining Pressure of 197 psi from the Combined RCTS Tests

Figure I.18 Comparison of the Variation in Material Damping Ratio with Shearing Strain at an Isotropic Confining Pressure of 197 psi from the Combined RCTS Tests

Figure I.19 Comparison of the Variation in Shear Modulus with Loading Frequency at an Isotropic Confining Pressure of 197 psi from the Combined RCTS Tests

Figure I.20 Comparison of the Variation in Material Damping Ratio with Loading Frequency at an Isotropic Confining Pressure of 197 psi from the Combined RCTS Tests Table I.1Variation in Low-Amplitude Shear Wave Velocity, Low-Amplitude Shear Modulus, Low-Amplitude
Material Damping Ratio and Estimated Void Ratio with Isotropic Confining Pressure from RC Tests
of Specimen B2274-UD8

Isotropic C	onfining Pre	ssure, σ_o	Low-Amplitude Shear Modulus, G _{max}		Low-Amplitude Shear Wave Velocity, Vs	Low-Amplitude Material Damping Ratio, Dmin	Estimated Void Ratio, e
(psi)	(psf)	(kPa)	(ksf)	(MPa)	(fps)	(%)	
12	1728	83	816	39	481	3.86	1.02
25	3600	172	881	42	499	3.64	1.01
49	7056	338	895	43	502	3.52	1.00
98	14112	675	1178	57	572	3.22	0.98
197	28368	1357	1664	80	670	3.00	0.92

Table I.2Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests of
Specimen B2274-UD8; Isoptropic Confining Pressure, σ_0 =49 psi (7.1 ksf = 338 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
7.07E-04	1006	1.00	7.07E-04	3.42
1.53E-03	1006	1.00	1.53E-03	3.48
3.07E-03	1006	1.00	2.40E-03	3.51
6.10E-03	1006	1.00	4.76E-03	3.58
1.23E-02	1006	1.00	1.05E-02	3.66
2.47E-02	996	0.99	1.92E-02	3.72
4.90E-02	982	0.98	3.82E-02	3.89
9.31E-02	956	0.95	7.17E-02	4.09
1.86E-01	879	0.87	1.39E-01	4.47
3.87E-01	761	0.76	2.79E-01	5.27
8.04E-01	613	0.61	4.99E-01	8.33

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

a.

Table I.3Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio with Shearing
Strain from TS Tests of Specimen B2274-UD8; Isotropic Confining Pressure, σ_0 = 49 psi (7.1 ksf
=338 kPa)

	Fir	st Cycle		Tenth Cycle			
Peak	Shear	Normalized	Material	Peak	Shear	Normalized	Material
Shearing	Modulus,	Shear Modulus,	Damping	Shearing	Modulus,	Shear Modulus,	Damping
Strain, %	G, ksf	G/G _{max}	Ratio, D, %	Strain, %	G, ksf	G/G _{max}	Ratio, D, %
9.92E-04	875	1.00	0.90	9.87E-04	874	1.00	0.90
1.96E-03	875	1.00	1.24	1.95E-03	874	1.00	1.02
3.83E-03	875	1.00	1.28	3.87E-03	874	1.00	1.06
9.66E-03	875	1.00	1.27	9.66E-03	874	1.00	1.16
1.96E-02	868	0.99	1.19	1.97E-02	866	0.99	1.25

.

Table I.4Variation in Shear Modulus and Material Damping Ratio with Shearing Strain from RC Tests
of Specimen B2274-UD8; Isoptropic Confining Pressure, σ₀= 197 psi (28.4ksf = 1357 kPa)

Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Average ⁺ Shearing Strain, %	Material Damping Ratio ^x , D, %
3.19E-04	1648	1.00	3.19E-04	3.00
6.88E-04	1648	1.00	6.88E-04	3.05
1.33E-03	1648	1.00	1.07E-03	3.08
2.63E-03	1648	1.00	2.13E-03	3.13
5.21E-03	1648	1.00	4.16E-03	3.22
1.03E-02	1648	1.00	8.27E-03	3.28
2.05E-02	1623	0.98	1.64E-02	3.38

⁺ Average Shearing Strain from the First Three Cycles of the Free Vibration Decay Curve [×] Average Damping Ratio from the First Three Cycles of the Free Vibration Decay Curve

Table I.5Variation in Shear Modulus, Normalized Shear Modulus and Material Damping Ratio
with Shearing Strain from TS Tests of Specimen B2274-UD8; Isotropic Confining
Pressure, σ_0 =197 psi (28.4 ksf = 1357 kPa)

First Cycle					Ten	th Cycle	
Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %	Peak Shearing Strain, %	Shear Modulus, G, ksf	Normalized Shear Modulus, G/G _{max}	Material Damping Ratio, D, %
1.02E-03	1571	1.00	1.09	1.07E-03	1540	1.00	0.88
2.00E-03	1571	1.00	0.91	2.03E-03	1540	1.00	1.31
4.00E-03	1571	1.00	0.93	4.06E-03	1540	1.00	1.08
9.75E-03	1571	1.00	1.48	9.78E-03	1540	1.00	1.48
1.99E-02	1519	0.97	1.45	2.01E-02	1508	0.98	1.56

TUGRO

APPENDIX J

Specimen B2174-UD6 (Index properties not available)

Borehole B2174 Sample UD6 Depth = 96.4 ft (29.4 m) Total Unit Weight = 117.7 lb/ft³ Water Content = 12.9 % Estimated In-Situ Ko = 0.5 Estimated In-Situ Mean Effective Stress = 42 psi

> FUGRO JOB #: 0401-1686 Testing Station: RC7

Figure J.1 Variation in Low-Amplitude Shear Modulus with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure J.2 Variation in Low-Amplitude Material Damping Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure J.3 Variation in Estimated Void Ratio with Magnitude and Duration of Isotropic Confining Pressure from Resonant Column Tests

Figure J.4 Variation in Low-Amplitude Shear Wave Velocity with Isotropic Confining Pressure from Resonant Column Tests

Figure J.5 Variation in Low-Amplitude Shear Modulus with Isotropic Confining Pressure from Resonant Column Tests