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ABSTRACT

In the context of justification of the seismic design
criteria used, particularly for the Sequoyah Nuclear Plant,
an earthquake ground motion study was conducted using portable
seismographic instruments at six competent rock sites located
at and in the vicinity of the Sequoyah facility. Spectral
analysis, in the frequency band of 0.3 to 7 Hz, of recordings
from three regional and two distant earthquakes suggests a
large variation in absolute site response. Typically, sites
located on the Cumberland Plateau experienced the largest
ground motion for all events. Amplification ratios of
these sites to sites located in the adjacent Tennessee River
Valley ranged from two to six over broad frequency bands,
and in excess of an order of magnitude over narrow bands.

The site occupied near the Sequoyah Nuclear Plant, typically
responded very close or below the mean and well below the

mean plus one standard deviation response.
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PREFACE

At present, the computation of design response spectra
for specific sites, proceeds from analysis of strong motion
data that have been classified according to their site
foundations. These several groups of data are described as
being either "soft", "intermediate", or "hard" (Trifunac,
1976); or as sites founded on "rock", "stiff soils", "deep
cohesionless soils", or "medium clays and sands" (Seed et
al, 1976). Statistical analyses of these strong motion data
indicate that large deviations in recorded ground motion
still exist within groups of records taken from sites assumed
to be similar. These large differences suggest strongly
that some important effects influencing the seismic signal
have not been accounted for by the types of classification
presently used. These effects can be related either to the
differences in source mechanism and travel paths, or most
likely to individual site conditions, since it is well known
that the local structure and the rock properties within the
crustal column of each site affect the transmission of
seismic waves.

An estimation of these local effects, in terms of
relative ground motion amplification as a function of

frequency, can only be done throuch on-site monitoring.
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Such an estimation should be a prerequisite to the extrapola-
tion of any empirical ground motion relations into regions
devoid of strong motion recordings.

In an effort to characterize the observable local site
response at the Sequoyah nuclear power plant site, relative
to other rock sites in the immediate region, a six-element
portable seismograph network was installed in eastern Tennessee
during the summer of 1978.

Through this seismic monitoring at six sites including
Sequoyah, the relative spectral response of the six sites to
regional and teleseismic earthquake input, in the band-width
of 0.3 to 7.0 Hz, was studied. The results of this investigation
are presented in the following report entitled "Earthquake

Ground Motion Study in Eastern Tennessee".
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EARTHQUAKE GROUND MOTION STUDY
IN EASTERN TENNESSEE

INTRODUCTION

Within the framework of the present task objective,
which is to demonstrate the adequacy of the seismic design
spectra of three Tennessee Valley Authority (TVA) nuclear
plants currently under review by the Nuclear Regulatory
Commission (NRC) (i.e., Sequoyah, Watts Bar, and Bellefonte),
a brief experimental study of the local crustal amplification
in southeastern Tennessee was undertaken with a particular
emphasis on the Sequoyah site.

The main purpose of the study was to obtain, in the
short time available, experimental data which would permit
an evaluation of the Sequoyah crustal response to various
seismic inputs.

Seismic design spectra are usually based on statistical
mean values of strong motion data. The inhomogeneity of the
present intensity-acceleration data base results in large
standard deviations which, for the sake of safety, are
conservatively accepted in the final design. A first step
to avoid undue and costly conservatism in structural design
consists in sorting more carefully the various elements of
a strong motion data set, either by defining more specifically
the distance and magnitude ranges of data accepted in the

set or by tightening the criteria for foundation similarity
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on the basis of geological and geophysical parameters (e.g.,
shear wave velocities). Such an effort has already been
made in a previous study prepared by TVA. A second siep
consists in using experimental guidelines to specify the
amount of conservatism needed. These guidelines can be
obtained from experimental strudies of local crustal res-
ponses, both at the site and at neighboring sites. By
defining these local crustal responses and their relative
differences, an insight on intensity distribution can be
obtained, since intensity reports are certainly a function
of the site responses.

The present experiment was devised to gather information
on the crustal response of the Sequoyah site relative to
some adjacent sites with the objective of establishing
experimentally the qualitative and, if possible, quantitative
response level of the Sequoyah site relative to others.
Such information should define the need for using either the
mean or the mean plus one standard deviation in the selection
of the response spectrum.

THEORETICAL BACKGROUND

It is well known, since the early 1930's with the rise
of seismographic instrumentation, that a seismic signal can
be substantially affected by the crustal structure at a
recording site. In Japan, Imamura (1929), Ishimoto (1931,
1932, 1934), and Takahasi and Hirano (1941) studied crustal

effects, both theoretically and experimentally. Basically,
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they had noticed that certain events produced substantially
different recordings at stations located relatively close
and using similar instrumentation. In the United States,
Gutenberg (1934, 1957) reported that certain stations appeared
to have a "preferential frequency band". Eventually, numerous
researchers (e.g., Nuttli and Whitmose (1961), Fernandez
(1963), Nuttli (1964), Phinney (1964), Leblanc (1967),
Hasegawa (1971), Kurita (1973), and many others), have shown
the influence of the local crust on the amplitude levels of
various phases. The resulting signal amplification (or
attenuation) is a function of frequency. The crustal transfer
function can be derived analytically with the Haskell matrix
formulation using the density, longitudinal and shear wave
velocities, and thickness of each crustal layer. It can
also be observed directly (Leblanc, 1967; Leblanc and
Howell, 1967) in the frequency domain through spectral
analysis.

Schematically, a recorded seismogram obtained at a
given site can be considered as the output of a series of
filters into which an original seismic input is fed. In the
time domain, the source function, b(t), and other influencing
factors such as the azimuthal effects related to source
mechanism, az(t), the attenuation, dit), the crustal effects,
h(t), and the instrumental response, s(t), can be considered
in terms of filters:

|b(t)|———>|az(t)l——>|djt)|—>|h(t)|—->[s(t)l=‘r(t)| (1)

where r(t) is the recorded seismogram.
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the excessive noise level resulting from construction activity,
the Sequoyah site (SEQ) station was deployed in an abandoned
quarry, 3 km from the power plant site, in the Ordovician

Age Chicamauya L.S., which stratigraphically overlies the
Cambrian Age Conasauga group rocks of the power plant
foundation.

The Watts Bar (WAT) site station was selected in a
roadcut located 1.5 km from the plant, in the Cambrian Age
Rome formation, which stratigraphically underlies the Cambrian
Age Conasauga group foundation rocks at the power plant
site. The concern for vandalism influenced the selection of
a site within the fenced-in area of the plant. Sparcity of
outcrops further limited the quality of the site. The WAT
site was located on a vertical bed of sandy siltstone, 3
to 4 feet thick, included in a sequence of weathered shales
and thinly-bedded siltstone. The poor quality of the rock
site and its clcse proximity to construction activity resulted
in a very low signal-to-noise ratio. The noise level was so
high that most of the WAT recordings could not be used in
the study.

The remaining four seismic stations were deployed to
sample competent rock sites, both on the Cumberland Plateau
and along the Tennessee River Valley. It should be remembered
that the Huckleberry (HUC, HUK) and Grandview (GNV) stations
are both located west of the Cumberland escarpment at approx-

imately the same elevation (500 M) in Pennsylvanian age
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sandstone formations. The Cleveland (CLE) and Sweetwater (SWT)

stations are both located in the Tennessee River Valley,

also at similar elevation (270 M), in Ordovician age limestones.
Table 1 lists the names, codes, cnordinates, elevations,

and geologic formation names and ages of the six sites

occupied duriny the ground motion experimental study. The

site locations and distances between sites are shown in

Figure 1.

EVENTS SELECTED FOR GROUND MOTION STUDY

puring the 56-day study period, approximately 25 events
originating from sources at regional and teleseismic distan~-s,
were recorded by the portable network. of these, three
regional events located in the central and south-central
United States with MpLg magnitudes of 2.6, 3.8, and 3.9,
were retained for analysis. Two teleseisms, both with mp
magnitudes of 5.7, one located in Venezuela, +he other off
the coast of Nicaragua, were also used in the study. Table 2
lists the parameters of these events, while Figures A-1
through A-5 in Appendix A jllustrate their time histories as
recorded by the six-station network.

By using both regional and distant events, a broader
spectrum of excitation pulses are considered. The Lg phase of
regional events tends to favor higher frequencies, while the

P phase of distant earthquakes is richer in lower frequencies.
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DATA PROCESSING

All recordings of the five events listed in Table 2
were photographically enlarged by a factor of 3 to 5. The
enlarged photocopies were then manually digiticed using a
sampling rate varying between 30 and 50 counts per second
~ depending on the scale of the enlarged copies. For some
events, two independent digitizations of the same records by
two analysts were made and compared to evaluate any digitizing
error. By comparing a plot of the digitized records with
the recorded time histories, spurious points were identified
and corrected. A final visual check of all digitized time
histories was made to confirm their equivalence in time and
amplitude to the recorded seismograms.

Once the recorded seismograms were digitized, the
following steps were followed to obtain the relative spectral
responses from the time series.

First, a correction was made to remove the effect of
curvature always present on visual recorders obtained with a
pivoting pen. The corrected traces are shown in Appendix B,
while the original curved traces are presented in Appendix A.
It should be noted that the time series of the uncurved
traces have varying time increments. A new time series with
regular time increments was obtained before proceeding with
the Fourier analysis.

Secondly, the Fourier Amplitude Spectrum was determined
for each curvature-corrected trace, using a rectangular-

shaped time window of approximately 15 seconds for the P phase.
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of the two tel eseism and of approximtely 14, 17, and
20 seconds for the Lg phase of the three regional events.

In a third step, the calculated anplitude spectra were
corrected for the displacenent sensitivity of the seismograph
systens. The magnification curve used in this correction is
shown in Figure 2. After this stage of processing, the
conputed anplitude spectra correspond to true ground di spl ace
ment over the frequency band of 0.3 to 7.0 Hz. Al of t he
spectra for the five selected events are shown i n Appendi x B,
along with the corresponding uncurved time histories.

The next step was to correct the spectra of the three
regi onal events for the effects of attenuation. Distances
to the earthquake epicenters were calculated and the spectra
were corrected for the combined effects of geometrical
spreading and anel astic attenuation, usi ng the shortest
epi central distance as a datum This correction was made by

assuning that the Lg-phase anplitudes obey the rel ationship:

A A/ 3(sin A)-Y2exp(-YA) (5)
(Ewing et al, 1957)

wher e

A i s the ground anplitude

A the epicentral distance in degree

Y the coefficient of anelastic attenuation

Val ues of the coefficients of anelastic attenuation ()
of Lg waves, used in this correction, were linearly interpolated
from the values of 0.0006 km ! at 1 Hz and 0.006 km ! at

10 Hz, observed by Nuttli (1978).
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After these corrections for instrumental response and
for attenuation were made, and assuming that the azinutha
effect issmall, less than 100 for all events, the remaining
spectra were considered to be site dependent, according to
Equation 4. The final phase of the processing was to determ ne
the relative responses of each site.

This was acconplished first by determning the mean of
all site response spectra and the mean plus one standard
deviation site response spectra for all five events. Secondly,
the responses of each site relative to these statistically
determ ned spectra were calculated. Finally, the respo~nses
of each site relative to the SEQ site response were determ ned.

Figure 3 shows the flow diagram of the entire procedure
used in analyzing the data.

It should be kept inmnd that velocity and accel eration
spectra would only enhance the displacenent spectra by a
factor of wand W, without changing the overall characteristics
of the crustal response.

RESULTS

To facilitate the conparison of the site responses, the
spectral data calculated for the five events were displayed
inthree ways. The first method was to plot the SEQ site
spectra versus the mean and the nean plus one S.D. spectra,
calculated fromthe responses of five sites for four events,
and fromall six sites for the teleseismof My 30. Figures 4

through 8 show these plots. Fromthese figures, it can be
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seen that the variations in site responses are nore pronounced
for the regional events of May 23, June 1, and June 9 than
for the teleseisms of May 30 and July 11. (Note: the nean
spectra are plotted as disconnected squares; the mean plus
one S.D. spectra are plotted as disconnected plus signs;

the SEQ spectra are in solid lines.) It isalso clear from
these figures that the SEQ spectra have fewer peaks above
the nean spectra than bel ow, and very seldom reach or peak
over the mean plus one S.D. spectra; this is true for the
three regional events and for the teleseismof July 11. For
the tel eseismof My 30, the SEQ spectrumshows points
equal Iy distributed bel ow and above the nean, it also has
sone points above the mean plus one S.D. spectrum |t
shoul d be noted, however, that for this event, all of the
sites had an approxi mately equival ent response as shown by
the small scatter in the data plotted in Figure 6.

The second method used to display the data shows the
relative responses of all of the sites plotted as a percentage
of the mean spectra and also of the mean plus one S D.
spectra. Figures 9 through 20 illustrate these relative
responses of the sites. For the sake of clarity, the SEQ
site response is displayed twice ineach figure: once wth
the CLE and SWI stations; and once with the HUC and G\V
stations (and with the WAT station for the event of My 30).
The traces inthese figures, except for Figures 17 and 18,

were snoothed before display with a 3-point digital filter

(N, % k) to enhance the major features.
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Figures 17 and 18 show the unsnoothed versions of the
two previous figures (15 and 16); by conparison of these
four figures, the effects of filtering can be assessed.
Several observations can be drawn fromthis second series of
plots (Figures 9 through 20). First, in terms of site res
ponses relative to the nean and the mean plus one standard
devi ation responses, two stations located in the valley, SW
and CLE have, in general, the |owest (and best) responses
for all events. The SEQ site, also in the valley, tends to
be slightly higher than CLE and SWI, as in Figures 11, 12,
13, 14, 15, 16, 17, and 18, although it conpares favorably
with CLE in Figures 9, 10, 19, and 20. |InFigures 9 and 10,
13 and 14, 15 and 16, and 18 and 19, SEQ renmins, in general
bel ow the nean and the mean plus one standard deviation
with only occasional and narrow peaks above, and nevez in
excess of 30 percent.

The stations located on the ridge, HUK and G\V, show
relative responses that are considerably higher than the SEQ
responses. HUK has the highest responses of all, over nost
of the entire frequency band. Thus, this second series of
plots denonstrates that SEQ has a better crustal response
than stations on the ridge, and conpares well with stations
inthe valley.

The third series of figures (21, 22, and 23) display
the responses of other sites as a percent of the SEQ site

response for the three regional events. Sone of the conclusions
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al ready made are once again enphasized by these figures;
nanely, the lowrelative response of the SW' and CLE sites
and the high relative response of the G\W and HUC sites

Fut hernore, these figures show that the SWIF and CLE sites do
not underlie the SEQ response by nore than 100 percent, and
that the HUC and G\V sites, and in some instances the CLE
site, generally exceed the SEQ response by a factor of 2

to 6, and over sone narrow frequency bands, exceed it by
more than one order of magnitude.

Inthese three figures where positive and negative
ordinates represent positive and negative signal ratios at
various stations with respect to SEQ the predom nance of
positive responses denonstrates clearly that the SEQ site
response conpares very favorably with the responses of
other sites in southeastern Tennessee.

CONCLUSI ONS

The preceeding analysis illustrates a |arge range of
variations in the site response of six conpetent rock sites
| ocated in a small area of southeastern Tennessee to regional
and distant seismc inputs. Over sone narrow frequency
bands, the variations in crustal response can exceed one order
of magnitude, and over broad bands, sone sites can respond
hi gher by factors ranging from 2 to 6. This variation

I ncrustal response of rock sites, coupled with the additional
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ground notion anplification of an overlying soil layer, can
account for the large scatter of reported intensities within
arestricted epicentral region. Typically, in eastern

United States, earthquakes are often characterized by the

hi ghest intensity reported, regardless of the fact that this
intensity nmay be reported in only one or few instances and

that a lower intensity level clearly prevailed in the epicentra
region.

When such a characterization is applied to the design
earthquake used in safety analysis, a large amunt of conservatism
i s inposed. Al sites are assumed to have a high crustal
anmplification equivalent to the maxi numintensity of the
design earthquake, when experimental data show that, for
many sites inthe inmrediate vicinity, such ahigh intensity
val ue should not be generalized. Based on the results of
the preceeding section, nanely the |ow response of the SEQ
CLEO SW sites relative to that of the nearby sites on the
Cumberl and Plateau (i.e., HUC and G\V), it becones obvious
that applying the same rigid safety guidelines to all sites
woul d be overly conservative in the case of the |ower responding
sites. It is, therefore, recomuended that, as a reasonable
relaxation, the 84 percentile site specific response spectrum
devel oped by the TVA, based on a suite of United States
West Coast, and Italian strong notion records, need not be
applied inthe case of the SEQ site. The application of the
mean design spectrum appears to be nore realistic and fully

adequate for the relatively quiet SEQ site
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STATION

CLEVELAND
GRANDVIEW

HUCKLEBERRY

SEQUOYAH
SWEETWATER

WATTS BAR

CODE

CLE
GNV

HUC
HUK

SEQ

WAT

TABLE 1

EASTERN TENNESSEE GROUND MOTION STUDY NETWORK

LATITUDE
N.

35009. 94 '

35049. 365'

35016. 277 '

35016. 272’

35014. 964"

35037. 354

35036. 449’

LONGITUDE
W.

84046. 75'
84050. 081"

85012.169
85012.193'

85005. 793"
84020. 165’

84048. 226’

ELEVATION
M.

262
494

518
520

210
280

238

GEOL0aE C
FORMATION

Mosheim L. S.

Crossville S. S

Vandever S. S

Chi ckamauga L. S.
Newal a L. S.

Rome Fm

AGE

Ord
Ord.

Penn.

Penn.

Ord.

Ord.



DATE ORIGIN TIME
1978 HR:IMM:SEC(EDT)

REG ONAL EVENTS
23 NAY 06: 16: 01. 8
01 JUNE 22:07:09.0

09 JUNE 19:14:58.1

TELESEI SM C EVENTS
30 MAY 21:12:

11 JULY 08: 24

' Locati ons determ ned using G ound Mtion Network Data,
Standard errors in Long.

EVENTS USED

LATITUDE

N.

37016. 7'

38017. 8'

31058. 6

12042. 6'

7.5

9046.8' (S.)

to 11.0".

2l ocation by U.S.GS. using WASSN dat a.

TABLE 2

LONGITUDE
W.

87025.3
88041. 8'
88039.7

87038. 4

70032. 4*

IN THE GROUND MOTION STUDY

MAGNTIDUE

MbLg  Mb REMARKS

2.6 W Kent ucky?!

39 S. Illinois'

38 S. Mss.-Ala. Border'
5.7 Ni caragua Coast?
5.7 Venezuel a?

Standard errors in Lat. 6.6 to 8.2';



DISTANCES BETWEEN STATIONS(K M.)
SEQ HUC CLE WAT  GNV SWT

SEQ

HUC 9.9

CLE 304 403

WAT 478 520  49.1

GNV 679 69.7 731 241

SWT 80.5 878 647 424 503

Figure 1
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APPENDIX A

SEISMOGRAMS OF EVENTS ANALYZED

IN THE GROUND MOTION STUDY
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APPENDIX B

DIGITIZED TIME HISTORIES AND CORRECTED

SPECTRA FOR EVENTS ANALYZED IN THE GROUND MOTION STUDY
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In the time domain, the seismogram is the result of a
series of convolutions:

r(t) = b(t) * az(t) = d(t) * h(t) = s(t). (2)

In the frequency domain, the mathematical equivalence
is a series of multiplied Fourier Transforms:

R(f) = B(f) - AZ(f) - D(f) - H(f) - S(f). (3)

See Morse and Feshbach (1953) for relationships of time
and frequency domains through Fourier Transformation.
Considering that the instrumental response (5(f)) is known

and can be corrected for, and that for selected conditions,

azimuthal and attenuation effects, K(f), can be considered
relatively constant or can be calculated, the source obviously
being the same, it can be seen that seismograms recorded at
various sites become representative of crustal effects at
the respective sites, and that differences between site
spectra are proportional to, and indicative of, the crustal
effect:
R(f)j = H(f); - BI(f) ° K(f). (4)
This explains why a spectral comparison of recorded
signals can yield information on the local crustal response.

SITE SELECTION

The experimental procedure developed to study the
relative ground motion response of six rock sites in eastern
Tennessee included, as a primary step, the deployment of
instruments at or near the Sequoyah nuclear power plant
site. 1Ideally, seismic monitoring should have taken place

on the actual rock foundation of the reactor site. Due to
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