

Entergy Nuclear South Entergy Operations, Inc. 17265 River Road Killona, LA 70057-3093 Tel 504 739 6715 Fax 504 739 6698 rmurill@entergy.com

Robert J. Murilio Licensing Manager Waterford 3

W3F1-2008-0057

August 25, 2008

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555-0001

Subject: Startup and Power Escalation Report for Cycle 16 Waterford Steam Electric Station, Unit 3 (Waterford 3) Docket No. 50-382 License No. NPF-38

Dear Sir or Madam:

In accordance with Waterford 3 Technical Specification 6.9.1, Entergy is submitting the attached summary report for plant startup and power escalation testing for Waterford 3's Cycle 16 operation. Waterford 3 resumed commercial power operation on June 1, 2008, following the completion of refueling outage 15. This report summarizes the results of the WSES-3 Cycle 16 startup physics test program, which includes the impact of the introduction of Next Generation Fuel (NGF).

There are no new commitments contained in this submittal.

Please contact Mr. Robert J. Murillo, Manager, Licensing at (504) 739-6715 if there are any questions concerning this matter.

Sincerely. N, ciè WW

RJM/GCS/ssf

Attachment: Waterford's Startup and Power Escalation Report for Cycle 16.

URR

cc: Mr. Elmo E. Collins, Jr. Regional Administrator U. S. Nuclear Regulatory Commission Region IV 612 E. Lamar Blvd., Suite 400 Arlington, TX 76011-4125

> NRC Senior Resident Inspector Waterford Steam Electric Station Unit 3 P.O. Box 822 Killona, LA 70066-0751

U. S. Nuclear Regulatory Commission Attn: Mr. N. Kalyanam Mail Stop O-07D1 Washington, DC 20555-0001

Wise, Carter, Child & Caraway ATTN: J. Smith P.O. Box 651 Jackson, MS 39205

Winston & Strawn ATTN: N.S. Reynolds 1700 K Street, NW Washington, DC 20006-3817

Morgan, Lewis & Bockius LLP ATTN: T.C. Poindexter 1111 Pennsylvania Avenue, NW Washington, DC 20004

Attachment to

W3F1-2008-0057

WATERFORD 3'S STARTUP AND POWER ESCALATION REPORT FOR CYCLE 16

TABLE OF CONTENTS

Page	
------	--

1.0	Introd	uction	2
2.0	React	or Core Desc	ription2
3.0	Low F	ower Physics	Testing4
	3.1	Initial Critical	lity4
	3.2	Critical Boro	n Concentration Measurement4
	3.3	Isothermal T	emperature Coefficient Measurement4
4.0	Powe	r Ascension T	esting5
	4.1	Fuel Symme	try Verification5
	4.2	Core Power	Distribution Measurement5
5.0	Opera	ational Testing	J
	5.1	Isothermal T	emperature Coefficient Measurement6
6.0	Concl	usion	7
7.0	Refer	ences	
8.0	Table	s	
	8.1	Table 1	Waterford-3 Cycle 16 Design Core Loading Description9
	8.2	Table 2	CECOR Results for Fuel Symmetry Verification11
	8.3	Table 3	GETTARP Results at 68% Power with Westinghouse Predictions13
	8.4	Table 4	GETTARP Results at 100% Power with Westinghouse Predictions15

1.0 Introduction

This report summarizes the results of the WSES-3 Cycle 16 startup physics test program, as it pertains to the introduction of Next Generation Fuel (NGF). This program included pre-critical tests as well as those conducted during low power physics testing (LPPT), power ascension, and at full power. While all these tests performed as part of this program were completed satisfactorily, not all test results are included in this summary. Only those tests deemed necessary to demonstrate acceptance of the measured core physics parameters are included.

The objective of these tests was to demonstrate that, during reactor operation, the measured core physics parameters would be within the assumptions of the Final Safety Analysis Report (FSAR) accident analysis and within the limitations of the plant technical specifications, as well as to verify the nuclear design calculations. It was also the intent of these tests to demonstrate adequate conservatism in the Cycle 16 core performance with respect to the WSES-3 FSAR, Technical Specifications, Cycle 16 Core Operating Limits Report (COLR), and Cycle 16 Reload Analysis Report.

2.0 **Reactor Core Description**

WSES-3 Cycle 16 core includes using Next Generation Fuel (NGF) assemblies. The introduction of 100 NGF (Region Z) to the WSES-3 core entails the following changes:

- A reduced pellet diameter of 0.3225 inches (vs. 0.325 inches for Region Y).
- A reduced cutback (i.e., non-poison) region of 6 inches at both the top and bottom of the ZRB₂ rods (vs. 7 inches for Region Y).
- The use of Optimized ZIRLO[™] fuel rod cladding material (vs. ZIRLO[™] for Region Y).
- The fuel rod cladding diameters (in inches) for Region Z are reduced to 0.374 OD x 0.329 ID from 0.382 OD x 0.332 ID to accommodate the higher pressure drop of the mid and intermediate flow mixing (IFM) grids.
- The overall fuel rod length has been increased from Region Z to 162.568 inches from 161.868 inches.
- The fuel rod initial fill gas pressure has been reduced for Region Z to 275 psig at 75°F from 380 psig at 68°F.
- The IFBA rod initial fill gas pressure has been reduced for Region Z to 150 psig at 75°F from 150 psig at 68°F.
- A new lower end fitting assembly, new outer and center guide tube assemblies, a new upper end fitting flow plate with longer hold-down springs, all new mid grid assemblies with I-springs,

intermediate flow mixing (IFM) grids, a new Inconel top grid, a modified GuardianTM grid, and new thimble crimp screws that replace the old bold/locking discs.

- Top, mid, and IFM grid assemblies featuring sleeves that bulged to the guide tubes instead of welded and smaller cell sizes to accommodate the smaller diameter fuel rods.
- A guide tube flange that is bulged to the outer guide tube rather than welded.
- A Guardian[™] grid that is attached to the lower end fitting via inserts instead of welding the grid skirt to the lower end fitting.
- Stress-Relief Annealed (SRA) ZIRLO[™] materials for guide tubes and Optimized ZIRLO[™] materials for grid straps rather than the Zircaloy-4 materials used in previous fuel regions.
- An anti-rotational joint between guide tubes and the upper nozzle to prevent damage to spacer grids and grid-to-guide tube joints during guide post installation and removal.
- An initial shoulder gap of 0.502 inches less than the standard fuel assemblies.

The reload region will consist of:

- 8 type Z1 assemblies, each with 48 integral burnable absorber rods
- 16 type Z2 assemblies, each with 80 integral burnable absorber rods
- 8 type Z3 assemblies, each with 88 integral burnable absorber rods
- 24 type Z4 assemblies, each with 100 integral burnable absorber rods
- 28 type Z5 assemblies, each with 112 integral burnable absorber rods
- 16 type Z6 assemblies, each with 124 integral burnable absorber rods

In addition twenty-one (21) Region X and ninety-six (96) Region Y assemblies in the core during Cycle 15 will be retained for Cycle 16. See Table 1 for additional enrichment information.

The Cycle 16 core makes use of a low-leakage fuel management scheme in which previously burned Region Y and Region X assemblies are placed on the core periphery. The 100 fresh Region Z assemblies are located throughout the interior of the core where they are arranged with the previously burned fuel in a pattern that minimizes power peaking. This type of fuel management is economically beneficial because it reduces core leakage and, therefore, uranium requirements for a specified total energy output. This low-leakage design also reduces the total neutron fluence that the reactor vessel is exposed to during the cycle.

WSES-3 Cycle 16 continues the use of a burnable absorber using zirconium diboride (ZrB₂) coating in the Next Generation Fuel. By design, ZrB₂ is coated

onto the outer surface of the uranium dioxide (UO_2) fuel pellets prior to loading into the fuel rod cladding tubes rather than being mixed with the UO2 directly, as is done with other integral fuel burnable absorber (IFBA) materials. The ZrB₂ IFBA coated pellets are identical to the enriched uranium dioxide pellets except for the addition of a thin boride coating on the pellet cylindrical surface. Coated pellets occupy the central portion of the fuel stack.

3.0 Low Power Physics Testing

3.1 Initial Criticality

Following each refuel, initial criticality is achieved by boron dilution. The initial RCS boron concentration is required to be greater than the predicted All-Rods-Out (ARO) Critical Boron Concentration (CBC) by an amount worth of 1.5% Δp . An estimated CBC is calculated for ARO, Regulating CEA Group P at 75 inches withdrawn. All shutdown and regulating CEA groups are withdrawn to their upper electrical limits, with the exception of Group P at 75 inches, and dilution is commenced. For Cycle 16, the estimated ARO CBC was calculated to be 1194 ppm. Criticality was achieved with a CBC of 1166 ppm and Group P at 75 inches withdrawn.

3.2 Critical Boron Concentration Measurement

The purpose of this test is to verity the critical boron concentration for the ARO CEA configuration of the startup test predictions. Initially, CEA's are ARO except for Regulating CEA Group P at greater than 130 inches withdrawn. Three stable RCS boron samples are averaged to estimate the rodded CBC. Group P is withdrawn to the upper group stop and the residual worth is measured using a reactivity meter. The measured ARO CBC for Cycle 16 was 1206 ppm. The predicted ARO CBC for Cycle 16 was 1194 ppm.

3.3 Isothermal Temperature Coefficient Measurement

Isothermal Temperature Coefficient (ITC) at Hot Zero Power (HZP) measurement was not performed due to the implementation of the Startup Activity Test Reduction (STAR) program approved by the NRC.

4.0 **Power Ascension Testing**

4.1 Fuel Symmetry Verification

Prior to exceeding 30% full power, fuel symmetry verification must be performed to ensure that no detectable fuel misloadings are present. Assembly power data is obtained by executing CECOR, a computer code used to construct three dimensional assembly and peak pin power distributions from incore detector signals. Each instrumented assembly power is compared with the average of its symmetric group and a percent difference is calculated. The acceptance criterion states than this difference must be less than or equal to 10%. The largest percent difference from average observed was approximately 2.88%. See Table 2 for CECOR output.

4.2 Core Power Distribution Measurement

The purpose of this test is to verity that selected measured core power distribution parameters agree with the predicted core power distribution parameters at both the 68% and 100% power levels. These parameters include the measured radial power distribution, axial power distribution, planar radial peaking factor (F_{xy}), integrated radial peaking factor (F_r), core averaged axial peaking factor (F_z), and three-dimensional (3-D) power peaking factor (F_q). A snapshot is taken and CECOR executed to obtain assembly power data. The comparisons were made using the GETARP program and the results are shown in Tables 3 and 4, and summarized in Tables 4.2-1 and 4.2-2.

WSES-3 Cycle 16 68% Core Power Distribution Results							
	Westinghouse Predicted	Measured*	% Difference	Acceptance Criteria			
Radial RMS	N/A	1.2748	N/A	≤ 5.0%			
Axial RMS	N/A	4.7253	N/A	≤ 5.0%			
F _{xy}	1.490	1.4839	-0.4088	± 10.0 %			
Fr	1.436	1.4296	-0.4428	± 10.0 %			
Fz	1.102	1.1164	1.3028	± 10.0 %			
Fq	1.581	1.6100	1.8348	± 10.0 %			

Table 4.2-1

*RMS values in %.

WSES-3 Cycle 16 100% Core Power Distribution Results							
	Westinghouse Predicted	Measured*	% Difference	Acceptance Criteria			
Radial RMS	N/A	1.0889	N/A	≤ 5.0%			
Axial RMS	N/A	3.6358	N/A	≤ 5.0%			
F _{xy}	1.4700	1.4669	-0.2111	± 10.0 %			
Fr	1.4170	1.4163	-0.0522	± 10.0 %			
Fz	1.0880	1.1385	4.6455	± 10.0 %			
F _a	1.5980	1.6743	4.7761	± 10.0 %			

Table 4.2-2	
-------------	--

*RMS values in %.

The acceptance criteria states that for the measured radial power distribution, the total RMS error between measured and predicted relative power densities for all assemblies must be less than 5.0%. Also, for each assembly with a predicted relative power density less than 0.9, the percent difference between measured and predicted must be less that 15%. For those assemblies with predicted relative power densities greater than or equal to 0.9, the percent difference between measured and predicted relative power distribution, the RMS error between measured and predicted relative power densities must be less than 10%. For the axial power distribution, the RMS error between measured and predicted relative power densities must be less than 5%. Additionally, for all four peaking factors, measured and predicted values must agree to within 10%. All acceptance criteria were met at both the 68% and 100% power levels and are summarized in Tables 4.2-1 and 4.2-2.

5.0 **Operational Testing**

5.1 Isothermal Temperature Coefficient (ITC) Measurement

Prior to reaching 40 Effective Full Power Days (EFPD) core burnup, an Isothermal Temperature Coefficient/Moderator Temperature Coefficient (ITC/MTC) test must be conducted to verify compliance with Technical Specification and COLR requirements. Initially, power is reduced to approximately 99.5% to allow temperature fluctuations necessary for the test. The RCS average temperature is increased and decreased by approximately 5 °F and the power change is measured. This process is repeated two (2) additional times to obtain sufficient data to determine an average rate of change of power with temperature. This value is multiplied by a predicted Power Coefficient to arrive at an average ITC.

The MTC is then calculated by subtracting the predicted Fuel Temperature Coefficient (FTC) from the measured average ITC. Additional calculations include MTC linear extrapolations to 70% and 100% at the current burnup and an extrapolation to 100% power at the end of cycle (EOC).

6

Tab	le	5.	1	-2′	1
-----	----	----	---	-----	---

	Echelon* Prediction	Measured*	Acceptance* Criteria
ITC	-1.1593	-1.3705	± 0.5
MTC (70%)**	N/A	-0.8888	-3.9 < MTC < 0.0
MTC (100%)**	N/A	-1.2739	-3.9 < MTC < -0.2
EOC MTC (100%)**	N/A	-2.2764	-3.9 < MTC < -0.2

*All values are x10⁻⁴

** MTC values at 70%, 100% and EOC 100% are extrapolated.

The acceptance criteria demands that, for any core burnup, the MTC be less positive than 0.0 x $10^{-4} \Delta \rho / {}^{\circ}F$ at 70% power, more negative than -0.2 x $10^{-4} \Delta \rho / {}^{\circ}F$ at 100% power, and less negative than -3.9 x $10^{-4} \Delta \rho / {}^{\circ}F$ at any power. Also, the measured average ITC must agree with predictions to within ± 0.5 x $10^{-4} \Delta \rho / {}^{\circ}F$. All acceptance criteria were met and are summarized in Table 5.1-1.

6.0 **Conclusions**

Based upon the successful completion of all startup tests required, specifically those described above, and the proximity of core physics parameters to predicted values, it is concluded that the measured core parameters verify that Cycle 16 nuclear design calculations and demonstrate adequate conservatism with respect to the limits and requirements of the FSAR and technical specification, respectively.

7.0	References
-----	------------

- 7.1 WSES-3 Technical Specifications
- 7.2 WSES-3 Cycle 16 Core Operating Limits Report (COLR)
- 7.3 WSES-3 Final Safety Analysis Report (FSAR)
- 7.4 NF-WTFD-08-10, "Waterford 3 Cycle 16 Final Reload Analysis Report"
- 7.5 WSES-3 Procedure NE-002-002, Variable Tavg Test
- 7.6 WSES-3 Procedure NE-002-003, Post-Refueling Startup Testing Controlling Document
- 7.7 WSES-3 Procedure NE-002-030, Initial Criticality
- 7.8 WSES-3 Procedure NE-002-050, Critical Boron Concentration Measurement
- 7.9 WSES-3 Procedure NE-002-110, Fuel Symmetry Verification
- 7.10 WSES-3 Procedure NE-002-140, Core Power Distribution Measurement
- 7.11 NF-WTFD-08-20, "Waterford 3 Cycle 16 Startup Test Predictions"
- 7.12 CEO2008-00107, "Waterford 3 Cycle-16 Variable Tavg Test Predictions"

Sub- Batch ID	Number of Assemblies	UO₂ Rods per Assembly	Nominal Enrichment (wt. %)	ZrB₂ Rods per Assembly	Shim Loading (ZrB₂)	Number of Fuel Rods (Including ZrB ₂ Rods)	Number of ZrB ₂ Rods
71	8	176	4.60	8	· 2.0 X	1472	64
-	Ŭ	12	4.00	40	2.0 X	416	320
72	16	144	4.60	40	2.0 X	2944	640
	10	12	4.00	40	2.0 X	832	640
73	8	124	3.80	60	2.0 X	1472	480
(20	Ů	24	3.40	28	2.0 X	416	224
74	24	136	3.80	48	2.0 X	4416	1152
		0	3.40	52	2.0 X	1248	1248
75	28	116	3.80	68	2.0 X	5152	1904
20	20	8	3.40	44	2.0 X	1456	1232
76	16	112	3.80	72	2.0 X	2944	1152
20	10	0	3.40	52	2.0 X	832	832
Total	100					23600	. 9888
¥1	12	184	4.10	0	2.0 X	2208	0
		28	3 80	24 .	20X	624	288

Table 1Waterford-3 Cycle 16 Design Core Loading Description

					and the second se		
V1	12	184	4.10	0	2.0 X	2208	0
11	12	28	3.80	24	2.0 X	624	. 288
. Y 2	. 16	176	4.10	8	2.0 X	2944	128
12	10	12	3.80	40	2.0 X	832	640
∨3	4	164	4.10	20	2.0 X	736	80
13 4	-	12	3.80	40	2.0 X	208	160
V 4	8	160	4.10	24	2.0 X	1472	192
14 0	5	8	3.80	44	2.0 X	416	352
V 5	36	144	4.10	40	2.0 X	6624	1440
10	50	[•] 12	3.80	40	2.0 X	1872	1440
Y6	20	136	4.10	48	2.0 X	3680	960
10	20	0	3.80	52	2.0 X	1040	1040
Total	96					22656	6720

Enclosure 1 to CE-08-131, Rev. 0

Sub- Batch ID	Number of Assemblies	UO₂ Rods per Assembly	Nominal Enrichment (wt. %)	Erbia Rods per Assembly	Shim Loading (Erbia)	Number of Fuel Rods (Including Erbia Rods)	Number of Erbia Rods
ХТ	۵	184	4.35	0		736	. 0
	. •	52	4.00	0		208	0
ΧO	. 1	184	4.48	0		184	0
7.0	l l	52	4.13	. 0		52	. 0
¥3	8	· 144	4.48	0		1152	0
7.5	0	20	4.13	: 72	2.1	736	576
ХÀ	8	136	4.48	0		1088	0
74	0	12	4.13	88	2.1	800	704
Total	21			•		4956	1280

Table 1 (cont.) Waterford-3 Cycle 16 Design Core Loading Description

Grand Total	217		51212	<u>ZrB₂</u> 16,608 <u>Erbia</u> 1280
----------------	-----	--	-------	---

10

1CECRNP02	. = w	3 C16 CASE	=w3301um	EXP=0.00	1	EDIT= 21 DATE≈ 6	1 TIME=2020 PAGE = 37
*******	********	******	******	******	******	******	, ,
*****	******	GLOBAL	TILT FOR 00	TANT SYMMETRIC	GROUPS SUMMED OVER ALL AX	IAL DETECTOR LEVELS	****
BOX	INST	AZIMUTHAL	CYCLES	POWER	POWER/	PERCENT DIFFERENCE	
84 83 134	21 20 36	10.62000 169.38000 190.62000	2 2 2	.77186 .74791 .74911	1.02058 .98892 .99051	2.05777 -1.10847 94932	•
205	52	240.25500	2	.86086	1.00000 .	.00000	
11 7 207 211	4 2 53 55	74.05500 105.94500 254.05500 285.94500	2 2 2 2	1.85281 1.89463 1.89689 1.91355	.98060 1.00273 1.00393 1.01274	-1.94026 .27313 .39279 1.27431	
9 209	3 54	90.00000 270.00000	0	3.29821 3.27676	1.00326 .99674	. 32622 32622	
25 181 193	6 45 51	140.19400 219.80600 320.19400	2 2 2	1.49867 1.21977 1.53164	1.05787 .86100 1.08114	5.78692 -13.90044 8.11353	
66 54 152 164	19 13 38 44	26.56500 153.43500 206.56500 333.43500	0 0 0	2.96302 3.09058 2.94340 3.11539	.97851 1.02064 .97203 1.02883	-2.14919 2.06353 -2.79720 2.88287	
98 86 120 132	28 22 29 35	9.46200 170.53800 189.46200 350.53800	0 0 0 0	3.38469 3.42992 3.37432 3.41666	.99509 1.00839 .99204 1.00449	49123 .83852 79612 .44881	
27 183 191	7 46 50	128.66000 231.34000 308.66000	0 0 0	3.39563 3.38407 3.48329	.99258 .98921 1.01821	74158 -1.07935 1.82092	
1CECRNP02	= w 3	C16 CASE=	W3301UM	EXP=0.00		EDIT= 21 DATE= 6	1 TIME=2020 PAGE = 38
BOX	INST	AZIMUTHAL ANGLE(DEG)	CYCLES IN CORE	POWER	POWER/ SYMMETRIC AVERAGE	PERCENT DIFFERENCE FROM AVERAGE	
33 29 185 189	10 8 47 49	68.19900 111.80100 248.19900 291.80100	0 0 0 0	3.71417 3.74190 3.71249 3.81926	99125 99865 99080 1.01930	87485 13498 91976 1.92960	
187	48	270.00000	0	3.46702	1.00000	.00000	
64 56 154 162	18 14 39 43	36.87000 143.13000 216.87000 323.13000	0 0 0	3.52815 3.63290 3.54497 3.68425	.98070 1.00982 .98538 1.02410	-1.92959 98206 -1.46201 2.40952	
96 88 130	27 23 34	14.03600 165.96400 345.96400	0 0 0	3.32935 3.40753 3.42995	.98241 1.00548 1.01210	-1.75857 .54846 1.21011	
62 156	17 40	,56.31000 236.31000	0	3.12623 3.14373	.99721 1.00279	27905 .27905	·
60 158	16 41	90.00000 270.00000	0 0	3.10605 3.12574	.99684	31591 .31591	
94 90 124 128	26 24 31 33	26.56500 153.43500 206.56500 333.43500		2.90268 2.92627 2.94242 2.94983	.99057 .99862 1.00414 1.00667	94263 13768 .41375 .66657	
07	25	90,0000	0	7 86557	1 00000	00000	

Page 11

Table 2

Table 2 (cont.)

During the performance of NE-002-110, all octant symmetric groups passed the 10% criteria except for the group containing instruments 6, 45, and 51 (instrument 12 would normally be within this group but was taken out of scan due to bad signals). The percent deviations for this group were (from CECOR edit 21):

BOX	INST	AZIMUTHAL	CYCLES	5 POWER	POWER/	PERCENT DIFFERENCE
		ANGLE(DEG)	IN COF	RΕ	SYMMETRIC AVERA	AGE FROM AVERAGE
25	6	140.19400	2	1.49867	1.05787	5.78692
181	45	219.80600	2	1.21977	.86100	-13.90044
193	51	320.19400	2	1.53164	1.08114	8.11353

From the Startup test predictions (NF-WTFD-08-20), the powers in these locations are predicted to be:

15% Power	68% Power
0.52	0.52
0.40	0.41
0.52	0.52
0.48	0.483
	15% Power 0.52 0.40 0.52 0.48

The large differences in powers are due to the non-symmetric loading of the assemblies in these locations. Box 25 and 193 contain assemblies from Batch Y5 while Box 181 has a Batch XT assembly. As can be seen, the power in Box 181 from the startup test predictions is significantly different than those in the other two boxes.

Using the above information, the "expected" deviations for these locations would be:

BOX	15% Power	68% Power
25	8.33	7.66
181	-16.67	-15.11
193 -	8.33	7.66

Therefore, a difference for Box 181 on the order of -17% can be expected based on predicted data. The measured difference was -13.90%.

The large differences using the predicted power distribution demonstrates that the group containing detectors 6, 12, 45, and 51 are not symmetric by design and need not be included in the symmetric group check for this procedure.

Table 3

GGGGGGGGGGG EEEEEEEE	TTTTTTTTTT	AAAA	RRRRRRRRR	PPPPPPPP
GGGGGGGGGGG EEEEEEEE	111111111111	AAAAAA	RRRRRRRRRR	PPPPPPPPP
GGG EEE	TTT	AAA AAA	RRR RRR	РРР РРР
GGG GGGGG EEEEE	TTT	алалалала	RRRRRRRRRR	PPPPPPPPP
GGG GGGGG EEEEEE	TTT	AAAAAAAAAA	RRRRRRRRR	PPPPPPPP
GGG GGG EEE	TTT	AAA AAA	RRR RRR	PPP
GGGGGGGGGGG EEEEEEEE	TTT	AAA AAA	RRR RRR	PPP
GGGGGGGGGGG EEEEEEEE	TTT	AAA AAA	RRR RRR	PPP (FPA)
A PROGRAM TO EXTRACT DA	TA FROM CECOR	SUMMARY FIL	ES FOR COMPAI	RISON OF
AXIAL AND RADIAL POWER	DISTRIBUTIONS	•		
GETRNP01 - GETARP FOR N	T REVISION 1			
MEASURED DATA EXTRACTED	FROM: w3303t	w.s01		
PREDICTED DATA EXTRACTE	D FROM: c16p0	68		
	•			

RELATIVE RADIAL POWER DISTRIBUTION COMPARISON																
PREDICTED ; MEASURED ; % DIFFER ;				, .2 , 2	280; . 287; . 59; 1	190; .4 197; .4 .42; 2.	80; 93; 80;	270; 270; .09;	%	DIFFER	ENCE =	(MEAS PRE	PREDICTE DICTED	ED) x 100.0		
+	+			.310; .315; 1.63;	.530; .532; .39;	.690 .672 -2.66	1.040 1.014 -2.52	1.150 1.140 86	1.030 1.003 -2.65	.680; .656; -3.56;	.520; .519; 11;	.300; .300; .13;				
; .520; 1.060; 1.060; ; .517; 1.039; 1.046; ; .55; -1.96; -1.30;				1.100 1.079 -1.95	1.180 1.163 -1.40	1.220 1.210 79	1.180 1.157 -1.97	1.090; 1.066; -2.16;	1.050; 1.029; -2.01;	1.040 1.015 -2.44	. 500 . 500 . 00					
		.520; .523; .51;	1.070 1.038 -3.02	1.200; 1.169; -2.60;	1.330; 1.311; -1.43;	1.290; 1.285; 41;	1.240 1.245 .39	1.220 1.215 43	1.240 1.240 .02	1.280 1.278 17	1.310; 1.295; -1.17;	1.170 1.145 -2.17	1.010 .980 -3.01	.410 .412 .43		
	.310 .323 4.06	1.070 1.058 -1.11;	1.210 1.187 -1.92	1.250; 1.248; 15;	1.260; 1.247; -1.05;	1.220 1.224 .34	1.200 1.195 45	1.230 1.234 .36	1.200 1.192 64	1.210 1.216 .48	1.240 1.229 85	1.220; 1.216; 31;	1.150 1.131 -1.64	1.000; .984; -1.60;	.290 .300 3.39	
	.530; .547 3.30;	1.070; 1.071; .08;	1.330 1.335 .38	1.260; 1.261; .08;	1.270; 1.267; 28;	1.130 1.122 71	1.120 1.120 04	1.120 1.112 74	1.120 1.116 32	1.130; 1.110; -1.78;	1.250; 1.245; 37;	1.240; 1.228; 93;	1.290 1.293 .20	1.030; 1.031; .13;	.510; .528; 3.49;	
; .270	.680; .699; 2.72;	1.100 1.105 .43	1.290 1.312 1.71	1.220; 1.241; 1.70;	1.140; 1.139; 07;	1.140 1.142 .18	1.060 1.055 46	1.050 1.058 .79	1.050 1.050 .01	1.130 1.130 .03	1.130; 1.120; 89;	1.210; 1.213 .26;	1.270 1.284 1.10	1.080; 1.081; .11;	.680; .690;- 1.40;	.280;
; -1.49 + ; 480	1.030; 1.017; -1.24;	1.180; 1.187; .61;	1.240 1.261 1.73	1.200; 1.198; 20;	1.120; 1.129; .80;	1.060 1.056 35	1.060 1.065 .51	1.040 1.039 05	1.050 1.059 .90	1.050; 1.045 45	1.110 1.113 .24	1.190; 1.173; -1.43;	1.230 1.243 1.04	1.170; 1.170; .01;	1.030; 1.015; -1.49;	.279; 35; .480;
2.39	1.150 1.126 -2.12	1.220; 1.221; .10;	1.220 1.228 .66	1.230; 1.245; 1.21;	1.120; 1.125; .44;	1.050 1.064 1.31	1.040 1.044 .34	1.010 1.018 .83	1.030 1.038 .73	1.050 1.059 .85	1.120; 1.118; 18;	1.230; 1.235; .37;	1.220 1.222 .16	1.220 1.219 07	1.140; 1.129;- 96;	2.93;
; 2.23;	1.030; 1.011; -1.84;	1.170; 1.175; .43;	1.240 1.255 1.24;	1.190; 1.202; 1.03;	1.110; 1.127; 1.54;	1.050; 1.055; .50;	1.050 1.064 1.30	1.030 1.038 .74	1.050 1.064 1.30	1.050; 1.058; .79;	1.120 1.130 .92	1.200; 1.200; .01;	1.240 1.262 1.75	1.180; 1.186; .49;	1.030; 1.022;- 75;	3.09;
; -3.54	.680; .687 .97;	1.080; 1.083; .32;	1.270; 1.293; 1.80;	1.210; 1.226; 1.31;	1.130; 1.129; 06;	1.130 1.137 .61	1.050 1.054 36	1.050 1.061 1.04	1.050 1.058 .81	1.140 1.148 .71	1.140 1.146 .51	1.220; 1.248; 2.30;	1.290 1.318, 2.16;	1.100 1.108 .77	.680; .703;- 3.44;	1.59;
	.510 .527 3.27	1.030; 1.029; 13;	1.290; 1.299; .70;	1.240; 1.231; 73;	1.250; 1.251; .11;	1.130 1.112 -1.60	1.110 1.119 .77	1.120 1.116 36	$1.110 \\ 1.126 \\ 1.43$	1.130 1.133 .27	1.260; 1.279; 1.52;	1.260 1.275 1.16	1.330; 1.346; 1.17;	1.060 1.076 1.48	.530; .551; 3.88;	
+	.290 .302 4.11	1.000 .996 37	1.150 1.145 41	1.220; 1.230; .78;	1.240; 1.238; 15;	1.210 1.218 .69;	1.200 1.193 56	1.230 1.235 .41	1.200 1.201 .10	1.220; 1.238; 1.49;	1.260; 1.263; .24;	1.250 1.266 1.25	1.200; 1.200; .01;	1.070; 1.067; 28;	.310; .325; 4.87;	
		.410; .434; 5.91;	1.010; 1.002; 75;	1.170; 1.172; .15;	1.310; 1.307; 20;	1.280 1.277 24	1.240 1.238 18	1.220 1.206 -1.17	1.240 1.250 .83	1.290; 1.307; 1.29;	1.320; 1.332; .92;	1.200; 1.193; 55;	1.060; 1.052; 76;	.520; .528; 1.60;	,	
		,	.500; .510; 1.99;	1.040; 1.033; 71;	1.050; 1.040; 92;	1.090; 1.071; -1.71;	1.180 1.156 -2.06	1.220 1.205 -1.24	1.180 1.165 -1.28	1.100; 1.088; -1.07;	1.060; 1.060; 02;	1.060 1.053 65	.510; .519; 1.79;			
			,	.300; .305; 1.61;	.520; .526; 1.14;	.680; .666; -2.08;	1.030 1.001 -2.80	1.150 1.127; -1.96;	1.030 1.010 -1.98	.690; .672; -2.61;	.530; .536; 1.18;	.310; .319; 2.80;				
						.2	70; .4 71; .4 26; 2	180; .4 190; .4 .13; .	90; .2 93; .2 65; 1	280; 286; 97;						

Table 3 (cont.)

RELATIVE AXIAL POWER DISTRIBUTION COMPARISON

NODE

123456789012345678901234567890123358888888889012344444444455

PREDICT	red Me	AS.	% DIFFERENCE	
. 9140 .8040 .8840 .9130 .9330 .9480 .9480 .9590 .9960 1.0020 1.0070 1.0130 1.0240 1.0300 1.0300 1.0300 1.0420 1.0420 1.0480 1.0540 1.0540 1.0540 1.0540 1.0920 1.0920 1.0980 1.0920 1.0980 1.0920 1.0980 1.0070 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.0200 1.02000 1.02000 1.02000 1.020000000000		82 23 33 57 86 55 86 60 60 60 61 54 79 91 88 80 60 51 88 16 63 58 81 63 58 79 77 77 80 64 64 54 51 81 33 74 40 55 88 16 62 64 54 55 88 79 99 77 77 80 64 64 55 58 79 91 77 80 55 58 79 91 77 80 55 58 79 91 77 80 55 58 57 80 57 99 91 77 80 55 58 58 58 58 58 58 58 58 58 58 58 58	-2.2114 -3.9380 -1.6181 -1.0496 .2721 1.1126 2.0417 2.8975 3.5421 4.2058 4.8397 5.3289 5.6771 5.9999 6.0793 6.0793 6.0793 6.0793 6.0793 6.0793 5.9699 5.7070 5.3683 4.9833 4.9833 4.9833 4.1664 3.3386 3.0398 2.6063 2.2117 1.7782 1.2613 .6447 .1192 - 4147 -1.0499 -1.6974 -2.4612 -3.1583 -3.9838 -4.7746 -5.4815 -7.24855 -7.8536 -9.36586 -9.36566 -9.36566 -9.36566 -9.36566 -9.36566 -9.36566 -9.36566 -9.36566 -9.36566 -9.36566 -9.36566 -9.36566 -9.36566 -	
PEA} PEAY FXY FR FZ CALCULATED RN RADIAL = AXIAL = MEASURED ASI PREDICTED ASI ACC	CING PARAMETER COM MEAS. PREDICTE 1.4839 1.4900 1.4296 1.4360 1.1164 1.1020 1.6100 1.5810 I.2748 4.7253 =0047 =0361 CEPTANCE CRITERIA	PARISON D % DIFFEREN - 4088 % - 4428 % 1.3028 % 1.8348 %	CE	
MEASURED FXY MEASURED FR MEASURED FQ RMS ERROR ON A RMS ERROR ON A ALL PREDICTED WERE WITHJ ALL PREDICTED WERE WITHJ	WAS WITHIN PLU WAS WITHIN PLU WAS WITHIN PLU WAS WITHIN PLU XIAL DISTRIBUTIO RADIAL DISTRIBUTIO RADIAL POWERS LES N PLUS OR MINUS RADIAL POWERS GRE N PLUS OR MINUS	S OR MINUS S OR MINUS S OR MINUS S OR MINUS WAS LE N WAS L S THAN 0.9 15.000 % OF ATER THAN OR 1 10.000 % OF	10.000 % OF THE 10.000 % OF THE 10.000 % OF THE 10.000 % OF THE SS THAN OR EQUAL T ESS THAN OR EQUAL MEASURED. EQUAL TO 0.9 MEASURED.	PREDICTED VALUE. PREDICTED VALUE. PREDICTED VALUE. PREDICTED VALUE. TO 5.000 %.

*** ALL ACCEPTANCE CRITERIA WERE MET ***

Table 4

١

GGGGGGGGGGG	EEEEEEEEE	TTTTTTTTTTT	AA	AA	RRRRRR	RRR	PPPPP	PPP
GGGGGGGGGGG	EEEEEEEEE	\mathbf{m}	AAA	AAA	RRRRRR	RRRR	PPPPP	PPPP
GGG	EEE	TTT	AAA	AAA	RRR	RRR	PPP	PPP
GGG GGGGG	EEEEEE	TTT	AAAAA	ааааа	RRRRRR	RRRR	PPPPF	PPPP
GGG GGGGG	EEEEEE	TTT	AAAAA	АЛАЛА	RRRRRR	RRR	PPPPP	PPP
GGG GGG	EEE	TTT	AAA	AAA	RRR RR	R	PPP	
GGGGGGGGGGG	EEEEEEEEE	TTŤ	AAA	AAA	RRR R	RR	PPP	
GGGGGGGGGGG	EEEEEEEEE	TTT	AAA	AAA	RRR	RRR	PPP	(FPA)
A PROGRAM T	O EXTRACT DA	TA FROM CECOR	SUMMA	RY FIL	ES FOR	COMPA	RISON (DF
AXIAL AND R	ADIAL POWER	DISTRIBUTIONS						
GETRNP01 - (GETARP FOR N	T REVISION 1						
MEASURED DA	TA EXTRACTED	FROM: w3305n	j.s02					
PREDICTED D	ATA EXTRACTE	D FROM: C16P1	00					
RE	LATIVE RADIA	L POWER DISTR	IBUTIO	N COMP	ARISON			

; PREDICTED ; ; MEASURED ; ; % DIFFER ;					KEL	; .2	90; .4 85; .4 76; .	490; 491; .11; -	490; 487; .59; -	270; 268; .72;	%	DIFFER	ENCE =	(MEAS	PREDICT	ED) x 100.0	
T		T			.320 .310 -3.10	.530; .528; 42;	.690 .675 -2.12	1.030 1.011 -1.81	1.140 1.130 86	1.020 1.001 -1.89	.680 .660 -3.01	.530; .520; -1.92;	.310 .304 -1.94				
			-	.520 .509 -2.02	1.060; 1.028; -3.07;	1.060; 1.040; -1.91;	1.100 1.077 -2.12	1.180 1.162 -1.49	1.210 1.203 56	1.170 1.157 -1.08	1.090; 1.068; -1.99;	1.050; 1.031; -1.77;	1.040; 1.018; -2.14;	.500 .499 16	-		
		-	.530 .521 -1.78	1.060 1.030 -2.84	1.190; 1.155; -2.97;	1.310; 1.296; -1.05;	1.280 1.270 75	1.240 1.237 21	1.220 1.217 24	1.230 1.235 .39	1.270 1.268 19	1.300; 1.291; 70;	1.160; 1.150; 90;	1.000 .984 -1.59	.420; .415; -1.16;		
	+	.320 .318 73	1.060 1.050 92	1.190 1.181 72	1.240; 1.237; 26;	1.250; 1.244; 46;	1.210 1.217 .59	1.200 1.199 08	1.230 1.237 .60	1.200 1.199 07	1.210 1.214 .31	1.240; 1.234; 47;	1.220; 1.214; 45;	1.140 1.135 41	.990; .985; 46;	.300; .298; 69;	
	+ ., .,	.530 .540 1.87	1.060 1.061 .12	1.310 1.323 .97	1.250; 1.260; .80;	1.260; 1.265; .36;	1.140; 1.130; 88;	1.120 1.126 .54	1.130 1.129 06	1.120 1.125 .45	1.140; 1.122; -1.57;	1.250; 1.248; 18;	1.230; 1.229; 10;	1.280 1.288 .62	1.030 1.032 .17	.520; .525; .96;	
+ ;	. 270	.690 .693 .44	1.100 1.099 09	1.280 1.300 1.58	1.220; 1.236; 1.28;	1.140; 1.147; .62;	1.150 1.151 .05	1.070 1.071 .07	1.060 1.072 1.11	1.070 1.068 23	1.140; 1.142; 1.19;	1.130; 1.131; .05;	1.200; 1.210; .87;	1.270 1.278 .63	1.080 1.083 .27	.680; .689; 1.29;	.280;
·+	. 2694 28 . 490;	1.020 1.016 44	1.170 1.181 .95	1.240 1.254 1.09	1.200; 1.205; .40;	1.120; 1.135; 1.38;	1.070; 1.075; .48;	1.070 1.080 .95	1.060 1.064 .33	1.070 1.076	1.070; 1.068; 18;	1.120; 1.121; .11;	1.190; 1.180; 82;	1.230 1.239 .75	1.170; 1.172; .21;	1.020; 1.018; 18;	.285; 1.68; .490;
, .48 ,3 +49	. 4884	1.130 1.125 49	1.210; 1.213 .28;	1.220 1.229 .75	1.230; 1.246; 1.31;	1.130; 1.137; .59;	1.060; 1.076; 1.49;	1.060 1.063 .24	1.030 1.034 .43	1.050 1.057 .70	1.060 1.073 1.24	1.130; 1.131; .11;	1.230; 1.237; .58;	1.220 1.225 .42	1.200; 1.214; 1.17;	1.130; 1.130; 01;	130; .49; 130;+ .01; .490; + .492; 020; .33; 020;+ .02; .270;
+	.4884	1.020 1.011 88	1.170 1.170 .01	1.230 1.248 1.45	1.190; 1.207; 1.42;	1.120; 1.133; 1.19;	1.070 1.075 .42	1.070 1.078 .73	1.050 1.058 .79	1.070 1.079 .80	1.070; 1.080; .90;	1.120; 1.137; 1.55	1.200; 1.206; .51;	1.230 1.254 1.94	1.170; 1.180; .82;	1.020; 1.020; .02;	
; - +	.2/5+	.680 .684 .53	1.080; 1.081; .13;	1.270 1.284 1.07	1.200; 1.221; 1.76;	1.130; 1.138; .74;	1.140; 1.147; .65;	1.070 1.070 02	1.060 1.073 1.23	; 1.070 ; 1.074 ; .40	1.150; 1.158; .70;	1.140; 1.154; 1.19;	1.220; 1.241; 1.74;	1.280 1.306 2.00	1.090 1.103 1.23	.690; .697; 1.09;	1.74;
	+	.520; .523; .50;	1.030; 1.027; 28;	1.280 1.292 .91	1.230; 1.231; .09;	1.250; 1.253; .20;	1.140; 1.126; -1.26;	1.120 1.126 .58	1.130 1.132 .21	; 1.120 ; 1.133 ; 1.12	; 1.140 ; 1.144 ; .37	1.260; 1.276; 1.30;	1.250; 1.269; 1.49;	1.310 1.332 1.72	1.060; 1.070; .90;	.530; .544; 2.61;	
	+	.300; .299; 22;	.990; .995; .53;	1.140 1.145 .45	1.220; 1.222; .19;	1.240; 1.239; 10;	1.210; 1.214; .33;	1.200 1.198 16	1.230 1.236 .51	1.200 1.204 .37	1.210 1.230 1.67	1.250; 1.259; .73;	1.240; 1.253; 1.01;	1.190 1.194 .34	1.060; 1.060; 04;	. 320; . 320; . 13;	
	+		.420; .437; 4.14;	1.000 1.001 .06	1.160; 1.164; .36;	1.300; 1.296; 29;	1.270 1.262 62	1.230 1.229 05	1.220 1.206 -1.17	1.240 1.240 .00	1.280; 1.288; .60;	1.310; 1.315; .41;	1.190; 1.180; 84;	1.050 1.043 62	.530; .524; -1.05;	+	
		+		.500 .506 1.13	1.040; 1.028; -1.13;	1.050; 1.037; -1.21;	1.090; 1.069; -1.90;	1.170 1.153 -1.41	1.210 1.196 -1.18	1.170 1.162 72	1.100; 1.084; -1.49;	1.060; 1.052; 79;	1.050; 1.041; 87;	.510 .511 .25	+		
			+		.310; .308; 59;	.530; .524; -1.10;	.680; .667; -1.88;	1.020 .997 -2.23	1.130 1.117 -1.16	1.030 1.005 -2.39	.690; .673; -2.40;	.530; .531; .16;	.310; .313; 1.09;		-		
				-	*	+	, .2 , .2	70; .4 68; .4 77; -1.	190; 183; 34; -	490; . 486; . .76; -2	290; 283; .54;		+				

ζ

Table 4 (cont.)

RELATIVE AXIAL POWER DISTRIBUTION COMPARISON

NODE

PREDICTED	MEAS.	% DIFFERENCE	
PREDICTED 7080 8360 9360 9360 10180 1.0450 1.0450 1.0620 1.0730 1.0840 1.0880 1.0880 1.0880 1.0880 1.0880 1.0880 1.0880 1.0880 1.0840 1.0840 1.0840 1.0760 1.0760 1.0760 1.07700 1.0760 1.07700 1.0760 1.07700 1.0640 1.0700 1.0640 1.0540 1.0840 1.0840 1.0540 1.0540 1.0540 1.0410 1.0260 1.0180 1.0260 1.0100 1.0260 1.0100 1.0260 1.0100 1.0260 1.0100 1.0260 1.0100 1.0260 1.0100 1.0340 1.0260 1.0100 1.0340 1.0260 1.0100 1.0340 1.0260 1.0100 1.0000 1.0260 1.0100 1.0000 1.07770 1.0770 1.07770 1.07700 1.07700 1.07700 1.07	MEAS. .7180 .8076 .8920 .9601 1.0058 1.0396 1.0655 1.0859 1.1020 1.1143 1.1237 1.1303 1.1377 1.1385 1.1376 1.1377 1.1385 1.1376 1.1377 1.1377 1.1385 1.1376 1.1377 1.1385 1.1376 1.1377 1.1388 1.1356 1.1377 1.1388 1.1356 1.1377 1.1388 1.1356 1.1377 1.1388 1.1398 1.0938 1.0938 1.0938 1.0938 1.0938 1.0938 1.0938 1.0938 1.0938 1.0938 1.0938 1.0938 1.0938 1.0938 1.0936 1.0934 1.0274 1.0506 1.0394 1.0274 1.0276 1.0394 1.0274 1.0146 1.0010 .9866 .9558 .9	<pre>% DIFFERENCE 1.4058 -3.4014 -4.7020 -2.0312 -1.1948 -5134 .3280 1.2034 2.0380 2.7975 3.3746 3.8913 4.3197 4.5662 4.7418 4.7725 4.7589 4.6246 4.3897 4.0780 3.3309 2.9321 2.9862 2.3225 2.1120 1.9684 1.7157 1.4143 .6661 2.2522 1502 6391 -1.6709 -2.3141 -2.8398 -3.4548 -4.1686 -4.7824 -5.3593 -5.9227 -6.4491 -6.7916 -6.7916 -6.8544 -6.8544 -6.8544 -6.4729 -7.3824</pre>	
.5500 PEAKING P/ PARAMETER MEAS.	.5519 ARAMETER COMPARISON PREDICTED % DIF	. 3486 FERENCE	;
FXY 1 460 FR 1.410 FZ 1.131 FQ 1.677 CALCULATED RNS VALL RADIAL = 1.(AXIAL = 3.(MEASURED ASI = PREDICTED ASI = ACCEPTAN(59 1.4700 - 21 33 1.4170 - 25 35 1.0880 4.64 13 1.5980 4.770 JES 1889 30728 0495 CE CRITERIA REPORT	11 %	
MEASURED FXY WAS MEASURED FR WAS MEASURED FZ WAS RMS ERROR ON AXIAL (RMS ERROR ON AXIAL (RMS ERROR ON RADIAL ALL PREDICTED RADIAI WERE WITHIN PLUS ALL PREDICTED RADIAI WERE WITHIN PLUS	WITHIN PLUS OR MINI WITHIN PLUS OR MINI WITHIN PLUS OR MINI WITHIN PLUS OR MINI DISTRIBUTION WAS DISTRIBUTION WAS POWERS LESS THAN 0 O OR MINUS 15.000 POWERS GREATER THAN 0 OR MINUS 10.000	US 10.000 % OF THE PR US 10.000 % OF THE PR US 10.000 % OF THE PR US 10.000 % OF THE PR LESS THAN OR EQUAL TO S S OF MEASURED. N OR EQUAL TO 0.9 % OF MEASURED.	EDICTED VALUE. EDICTED VALUE. EDICTED VALUE. EDICTED VALUE. 5.000 %. 5.000 %.

*** ALL ACCEPTANCE CRITERIA WERE MET ***