Structural Int	egrity Associa	toc Inc	EL N. VV ICO	
	• •	105, 110.	Flie No.: VY-10Q-	-303
CALCULATI	ON PACKAC	ЗE	Project No.: VY-1	6Q NEC-JH_06
`NAME:	21274669		L	
rironmental Fatigu	e Analysis of VYN	PS		
CT NO.:				
50394				
	<u></u>	PLANT:		
ergy Nuclear Oper	ations, Inc.	Vei	rmont Yankee	
TION TITLE:		I	,	
ronmental Fatigu	e Evaluation of Rea	ctor Recircu	lation Inlet Nozzle an	d Vessel Shell/Bottom
Affected Pages	Revision Descri	ption	Project Manager Approval Signature & Date	Preparer(s) & Checker(s) Signatures & Date
I - 24, Appendices: A1 - A2, B1 - B2 In computer files	Initial issue		Terry J. Herrmann 07/05/07	Gary L. Stevens 07/05/07 - Day L. Muens
				Terry J. Herrmann 07/05/07 Turry Neuron
			U.S. I In the Matter of Docket No/ OFFERED by: IDENTIFIED of Action Telian: Proported Chai	NUCLEAR REGULATORY COMMISSI D = 1+1 34 Alust law Vernant Van 20 -2.7/ Official Exhibit No. M Applicant/Licensee Intervenor NE NRC Staff ADMITTED REJECTED W
	NAME: ironmental Fatigu CT NO.: 50394 irgy Nuclear Oper TION TITLE: ronmental Fatigua Affected Pages I - 24, Appendices: A1 – A2, B1 – B2 In computer files	NAME: ironmental Fatigue Analysis of VYN CT NO.: 50394 irgy Nuclear Operations, Inc. ATION TITLE: ronmental Fatigue Evaluation of Rea 1 Affected Pages I - 24, Appendices: A1 – A2, B1 – B2 In computer files	NAME: ironmental Fatigue Analysis of VYNPS CT NO.: 50394 PLANT: rgy Nuclear Operations, Inc. Ver ATION TITLE: ronmental Fatigue Evaluation of Reactor Recircu 1 Affected Pages 1 - 24, Appendices: A1 – A2, B1 – B2 In computer files	NAME: ironmental Fatigue Analysis of VYNPS CT NO.: 50394 PLANT: rgy Nuclear Operations, Inc. TION TITLE: ronmental Fatigue Evaluation of Reactor Recirculation Inlet Nozzle ar Affected Pages I - 24, Appendices: A1 - A2, B1 - B2 In computer files In the Mapper Docket No OFFERED by DESIMPLED Action Teles

OFFICE OF SECRETARY RULEMAKINGS AND ADJUDICATIONS STAFF

Implate dery-028

NEC065998

t,

Table of Contents

1.0 INTRODUCTION/STATEMENT OF PROBLEM/ OBJECTIVE	.3
2.0 TECHNICAL APPROACH OR METHODOLOGY	.3
3.0 ASSUMPTIONS / DESIGN INPUTS	4
4.0 CALCULATIONS	6
4.1 RPV Lower Head	,7
4.2 RR Inlet Nozzle	9
5.0 RESULTS OF ANALYSIS	1
6.0 CONCLUSIONS AND DISCUSSION 1	1
7.0 REFERENCES	12
APPENDIX A VY WATER CHEMISTRY INFORMATION [8] A	1
APPENDIX B VY LICENSE DATE [10]B	31

List of Tables

Table 1:	Water Chemistry Calculations	. 14
Table 2:	Bounding Fen Multipliers for Recirculation Line	.15
Table 3:	Bounding Fen Multipliers for Feedwater Line	.16
Table 4:	Bounding Fen Multipliers for RPV Upper Region	. 17
Table 5:	Bounding Fen Multipliers for RPV Beltline Region	. 18
Table 6:	Bounding Fen Multipliers for RPV Bottom Head Region	. 19
Table 7:	EAF Evaluation for RPV Shell/Bottom Head Location	. 20
Table 8:	EAF Evaluation for Limiting RPV Shell/Shroud Support Location	.21
Table 9:	EAF Evaluation for RR Inlet Nozzle Forging Location	. 22
Table 10	: EAF Evaluation for RR Inlet Nozzle Safe End Location	. 23
Table 11	: Summary of EAF Evaluation Results for VY	. 24

Page 2 of 24

Contain Vendor Proprietary Information

١

F0306-01R0

1.0 INTRODUCTION/STATEMENT OF PROBLEM/ OBJECTIVE

The purpose of this calculation is to perform a plant-specific evaluation of reactor water environmental effects for the reactor recirculation (RR) inlet nozzle and the reactor pressure vessel (RPV) shell/bottom head locations identified within NUREG/CR-6260 [1] for the older vintage General Electric (GE) plant for the Vermont Yankee Nuclear Power Plant (VY).

The water chemistry input used in this calculation covers several portions of the RPV, as well as the feedwater and recirculation lines. Although these regions encompass more areas than needed to address the two components of interest in this calculation, environmental fatigue multipliers are developed for all of these regions in this calculation for potential use in other evaluations associated with this project.

2.0 TECHNICAL APPROACH OR METHODOLOGY

Per Chapter X, "Time-Limited Aging Analyses Evaluation of Aging Management Programs Under 10 CFR 54.21(c)(1)(iii)," Section X.M1, "Metal Fatigue of Reactor Coolant Pressure Boundary," of the Generic Aging Lessons Learned (GALL) Report [2], detailed, vintage-specific, fatigue calculations are required for plants applying for license renewal for the locations identified for the appropriate vintage plant in NUREG/CR-6260.

In this calculation, detailed environmentally assisted fatigue (EAF) calculations are performed for VY for two of the locations associated with the older vintage GE plant in NUREG/CR-6260. The older-vintage GE plant is the appropriate comparison to VY since the original piping design at VY was in accordance with USAS B31.1 [3], as well as the fact that the older-vintage boiling water reactor (BWR) in NUREG/CR-6260 was a BWR-4 plant, which is the same as VY.

Entergy performed an initial assessment of EAF effects for VY in their License Renewal Application (LRA) that was submitted to the NRC in January 2006. Table 4.3-3 of the VY LRA provides the results of those evaluations. All but two of the VY locations evaluated for EAF in the LRA did not yield acceptable results for 60 years of operation. Further refined analyses are currently underway in other calculations associated with this project to address those components. This calculation documents the EAF evaluation for the RR inlet nozzle and RPV shell/bottom head locations, where it is expected that acceptable EAF results can be achieved based on the existing analyses without the need for additional refined evaluations.

File No.: VY-16Q-303 Revision: 0 Page 3 of 24

NEC066000

Contains Vendor Proprietary Information

3.0 ASSUMPTIONS / DESIGN INPUTS

Per Section X.M1 of the GALL Report [2], the EAF evaluation must use the appropriate F_{en} relationships from NUREG/CR-6583 [4] (for carbon/low alloy steels) and NUREG/CR-5704 [5] (for stainless steels), as appropriate for the material for each location. These expressions are:

For Carbon Steel [4, p. 69]: $F_{en} = \exp(0.585 - 0.00124T' - 0.101S*T*O*\epsilon^*)$

Substituting $T' = 25^{\circ}C$ in the above expression, as required by NUREG/CR-6583 to relate room temperature air data to service temperature data in water [6], the following is obtained:

 $F_{en} = \exp (0.585 - 0.00124(25^{\circ}C) - 0.101 \text{ S}^* \text{ T}^* \text{ O}^* \epsilon^*)$ $= \exp (0.554 - 0.101 \text{ S}^* \text{ T}^* \text{ O}^* \epsilon^*)$

For Low Alloy Steel [4, p. 69]:

 $F_{en} = \exp(0.929 - 0.00124T' - 0.101S^*T^*O^*\varepsilon^*)$

Substituting $T' = 25^{\circ}C$ in the above expression, as required by NUREG/CR-6583 to relate room temperature air data to service temperature data in water [6], the following is obtained:

 $F_{en} = \exp(0.929 - 0.00124(25^{\circ}C) - 0.101 \text{ S* } \text{T* } \text{O* } \epsilon^{*})$ $= \exp(0.898 - 0.101 \text{ S* } \text{T* } \text{O* } \epsilon^{*})$

where [4, pp. 60 and 65]: Fen

S

Т

T O

ε,

en	=	fatigue life correction factor
k	=	S for $0 < $ sulfur content, S ≤ 0.015 wt. %
	=	0.015 for S > 0.015 wt. %
*	=	0 for T < 150°C
	=	$(T - 150)$ for $150 \le T \le 350^{\circ}C$
	=	fluid service temperature (°C)
*	=	0 for dissolved oxygen, DO < 0.05 parts per million (ppm)
	=	$\ln(DO/0.04)$ for 0.05 ppm $\leq DO \leq 0.5$ ppm
	=	ln(12.5) for DO > 0.5 ppm
k	=	0 for strain rate, $\varepsilon > 1\%$ /sec
	=	$\ln(\varepsilon^*)$ for $0.001 \le \varepsilon \le 1\%$ /sec

= $\ln(0.001)$ for $\varepsilon < 0.001\%$ /sec

File No.: VY-16Q-303 Revision: 0 Page 4 of 24

Contains Vendor Prophietary Information

For Types 304 and 316 Stainless Steel [5, p. 31]: $F_{en} = \exp(0.935 - T^* \epsilon^* O^*)$

where [5, pp. 25 and 31]: F _{en}	=	fatigue life correction factor
T*	=	$0 \text{ for } T < 200^{\circ} C$
	Ξ	1 for $T \ge 200^{\circ}C$
Т	=	fluid service temperature (°C)
•		•
ε*	=	0 for strain rate, $\varepsilon > 0.4\%$ /sec
×		• •
	×	$\ln(\epsilon/0.4)$ for $0.0004 \le \epsilon \le 0.4\%$ /sec
	Ξ	$\ln(0.0004/0.4)$ for $\varepsilon < 0.0004\%$ /sec
O*	Ξ	0.260 for dissolved oxygen, DO < 0.05 parts per million (ppm)
	Ξ	$0.172 \text{ for DO} \ge 0.05 \text{ ppm}$

Bounding F_{en} values are determined or, where necessary, computed for each load pair in the detailed fatigue calculation for each component. The environmental fatigue is then determined as $U_{env} = (U)$ (F_{en}), where U is the original fatigue usage and U_{env} is the environmentally assisted fatigue (EAF) usage factor. All calculations can be found in Excel spreadsheet "*VY-16Q-303 (Env. Fat. Calcs).xls*" associated with this calculation.

From Reference [7], for the BWR, typical DO levels range from just over 200 ppb for normal water chemistry (NWC) conditions to less than 10 ppb for hydrogen water chemistry (HWC) conditions. Typical HWC system availabilities are greater than 90%. Based on VY-specific water chemistry input for Entergy [8], which is also contained in Appendix A of this calculation, the input shown in Table 1 is defined for use in this calculation.

The water chemistry input covers several portions of the RPV, as well as the feedwater and recirculation lines. Although these regions encompass more areas than needed to address the two components of interest in this calculation, environmental fatigue multipliers are developed for all of these regions in this calculation for potential use in other evaluations associated with this project.

Therefore, based on Table 1 and for the purposes of this calculation, the following is assumed:

- Over the 60-year operating life of the plant, HWC conditions exist for 47% of the time, and NWC conditions exist for 53% of the time.
- All operation through 11/1/2003 was assumed as NWC using the dissolved oxygen values from the "Pre-NMCA" column in Appendix A, and all operation after 11/1/2003 was assumed as HWC using the maximum oxygen values from the "Post-NMCA + HWC (OLP)", "Post-NMCA + HWC (EPU)", and "Future Operation" columns in Appendix A.
- Recirculation line DO is 122 ppb pre-HWC and 48 ppb post-HWC.
- Feedwater line DO is 40 ppb for pre-HWC and 40 ppb for post-HWC conditions.
- RPV Upper Region DO is 114 ppb pre-HWC and 97 ppb post-HWC.
- RPV Beltline DO is 123 ppb pre-HWC and 46 ppb post-HWC.
- RPV Bottom Head Region DO is 128 ppb pre-HWC and 69 ppb post-HWC.

File No.: VY-16Q-303 Revision: 0

Contains Vendor Rroprietary Information

Page 5 of 24

NEC066002

Based on the above typical DO levels, bounding F_{en} multipliers for each of the three applicable materials (carbon, low alloy, and stainless steels) are shown in Tables 2 through 6 for the various RPV and piping regions.

The projected number of cycles used in this calculation is based on the number of cycles actually experienced by the plant in the past and forward-projected with some additional margin for 60 years of operation, as documented in Reference [9]. In addition, the latest governing stress analysis for each location was utilized, and any relevant effects of Extended Power Uprate (EPU) operation were incorporated as necessary. With these assumptions, the cumulative usage factor (CUF) values documented in this calculation are considered applicable for sixty years of operation including all relevant EAF and EPU effects.

4.0 CALCULATIONS

The analyses for the NUREG/CR-6260 locations identified in Section 2.0 are provided in this section. As previously noted, the fatigue calculations for 60 years for all locations make use of the 60-year projected cycles for VY from Reference [9], and incorporate EPU effects.

Since the F_{en} methodology documented in References [4] and [5] is relatively "new" technology, it is intended to apply to "modern-day" fatigue analyses, i.e., applied to fatigue analyses that use current ASME Code fatigue curves, etc. Therefore, to be consistent with this approach, the evaluation for the all locations will also utilize modern-day fatigue calculation methodology using the 1998 Edition, 2000 Addenda of the ASME Code [11]. This involves applying a Young's Modulus correction factor (i.e., $E_{fatigue curve}/E_{analysis}$) to the calculated stresses, applying K_e where appropriate, and utilizing the 2000 Addenda fatigue curve.

- NOTE: It is recognized that some of the references used in this calculation are not the latest revision; for example, Reference [12] (VYC-378, Revision 0) has been revised. However, the details necessary to perform the evaluations in this calculation are not necessarily contained in the latest revision of all documents. Therefore, wherever necessary, the appropriate revision of the governing document is referenced in order to obtain all appropriate inputs necessary to perform the EAF calculations. So, it should be recognized that, despite using what appear to be outdated revisions of some references, use of these references is for input data use only. All calculations represent the latest available analyses for all locations.
- NOTE: Hand calculations may yield results slightly different than the values shown in the tables of this calculation due to round-off based on the significant figures utilized by the spreadsheet used for these calculations.

File No.: VY-16Q-303 Revision: 0 Page 6 of 24

F0306-01R0

NEC066003

v Information

Contains Vendor Rroprietar

4.1 RPV Lower Head

The 60-year CUF value (without EAF effects) for the RPV shell/bottom head location was reported in Table 4.3-3 of the VY LRA submittal to be 0.400. The EAF CUF estimated by Entergy for this location was 0.98, based on an overall F_{en} of 2.45. Based on this result, further refined analysis would not normally be necessary to show acceptable EAF CUF results for this component. However, the calculation for this location is updated in this section to reflect the updated water chemistry information supplied for this project.

The CUF value reported in the VY LRA for the RPV shell/bottom head location is 0.400. This value is the original design basis CUF from the RPV Stress Report, as noted on page B8 of Reference [12]. However, as noted on page A61 of Reference [12], this CUF corresponds to Point 8, which is located on the outside surface of the RPV bottom head at the junction with the support skirt. Therefore, this location is not exposed to the reactor coolant, and EAF effects do not apply. Based on this, evaluation of the limiting location along the inside surface of the RPV bottom head was performed.

Based on a review of the primary plus secondary stresses tabulated for all locations along the bottom head on page A52 of Reference [12], Point 14 was selected for EAF evaluation. Per Section 3.2.1.2 of Reference [13], none of the CUF values for the RPV bottom head region were evaluated for the effects of EPU, as the CUF values are below the EPU screening criteria value of 0.5. Therefore, as a part of the evaluation for this location, EPU effects were included. Per References [14] and [19], the RPV shell material is low alloy steel (A-533, Grade B).

The new CUF calculation for Point 14 for 40 years, which includes the use of updated methodology and incorporates EPU effects [14], is shown at the top portion of Table 7. The CUF for 40 years (without EAF effects) is 0.0057.

The fatigue calculation for 60 years for the RPV shell/bottom head location is also shown in Table 7. The results show a CUF (without EAF effects) of 0.0085 for 60 years. The fatigue calculation for 60 years makes use of the 60-year projected cycles for VY from Reference [9].

The resulting environmental fatigue calculation for the RPV shell/bottom head location is shown in Table 7. Bounding F_{en} multipliers were applied in the calculations. RPV bottom head water chemistry conditions from Tables 1 and 6 are used for this location. The results show an EAF adjusted CUF of 0.0809 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0).

The CUF determined for Point 14 is very low. Comparison to other locations of the RPV shell/bottom head region indicates it is not the limiting location from a fatigue perspective. Review of the CUF values in Table 3-1 of Reference [15] reveals that the shroud support (at vessel wall junction) location is potentially more limiting, so EAF evaluation of that location is also performed.

Per page S3-99f of Reference [16], the design basis CUF of 0.06 is for Point 9. Page S3-85 of Reference [16] reveals that this point is on the RPV shell at the junction of the shroud support plate. Per References [14] and [19], the RPV shell material is low alloy steel (A-533, Grade B).

File No.: VY-16Q-303 Revision: 0

Contains Ventor Proprietary Information-

NEC066004

Page 7 of 24

The revised and updated CUF calculation for Point 9 for 40 years, which includes the use of updated methodology and incorporates EPU effects, is shown at the top portion of Table 8. The CUF for 40 years (without EAF effects) is 0.0549. This CUF value is more limiting than the RPV shell/bottom head location evaluated in Table 7, so it is considered to be the governing location for VY with respect to the equivalent NUREG/CR-6260 RPV shell/bottom head location.

The fatigue calculation for 60 years for the RPV shell/shroud support location is also shown in Table 8. The results show a CUF (without EAF effects) of 0.0774 for 60 years. The fatigue calculation for 60 years makes use of the 60-year projected cycles for VY from Reference [9].

The resulting environmental fatigue calculation for the RPV shell/shroud support location is shown in Table 8. Bounding F_{en} multipliers were applied in the calculations. RPV bottom head water chemistry conditions from Table 6 are used for this location. The results show an EAF adjusted CUF of 0.7364 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0).

File No.: VY-16Q-303 Revision: 0 Page 8 of 24

F0306-01R0

NEC066005

Contains Vendor Proprietary Information

4.2 RR Inlet Nozzle

For conservatism due to the different materials involved, two locations are evaluated for the RR inlet nozzle: (1) the limiting location in the nozzle forging, and (2) the limiting location in the safe end.

The 60-year CUF value (without EAF effects) for the RR inlet nozzle in the VY LRA submittal is 0.610. However, that analysis used conservative transient definitions and cyclic projections for 60 years of operation that have since been updated. The applicable CUF values are those shown in Table 3-1 of Reference [15] (0.1058 for the safe end, and 0.03 for the nozzle for 40-years), except that these values are pre-EPU.

For the RR inlet nozzle forging, the governing CUF calculation is shown on page B28 of Reference [12], where a value of 0.03 was obtained. From pages A269 and A270 of Reference [12], the CUF calculation corresponds to Point 12 in the nozzle forging, which is on the outside surface of the nozzle on the outboard end of the nozzle transition. Although this location is not exposed to the reactor coolant, it will be conservatively evaluated for EAF effects as it is the bounding fatigue location in the nozzle forging. As a part of the evaluation for this location, EPU effects were included. Per page I-S8-4 of Reference [17], the RR inlet nozzle material is low alloy steel (A-508 Class II).

The new CUF calculation for Point 12 for 40 years, which includes the use of updated methodology and incorporates EPU effects [14], is shown at the top portion of Table 9. The CUF for 40 years (without EAF effects) is 0.0433.

The fatigue calculation for 60 years for the RR inlet nozzle forging location is also shown in Table 9. The results show a CUF (without EAF effects) of 0.0650 for 60 years. The fatigue calculation for 60 years makes use of the 60-year projected cycles for VY from Reference [9].

The resulting environmental fatigue calculation for the RR inlet nozzle forging location is shown in Table 9. Bounding F_{en} multipliers were applied in the calculations. RPV beltline water chemistry conditions from Table 5 are used for this location. The results show an EAF adjusted CUF of 0.5034 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0)

For the RR inlet nozzle safe end, the governing CUF calculation is shown on page B27 of Reference [12], where a value of 0.1058 was obtained. From pages A257 and A259 of Reference [12], the CUF calculation corresponds to Line 6 at the inside surface of the safe end. Page A238 of Reference [12] reveals that this location is location at the nozzle-to-safe end weld. Per Section 3.2.1.2 of Reference [13], the CUF value for the RR inlet nozzle safe end was evaluated for the effects of EPU, since the original CUF calculated in Reference [18] was 0.551 (which was adjusted downward to 0.1058 by Entergy in Reference [12] based on further refined evaluation). Therefore, as a part of the evaluation for this location, EPU effects were included. Per page 8 of Reference [18], the RR inlet nozzle safe end material is 316L stainless steel.

File No.: VY-16Q-303 Revision: 0

Contains Ventor Proprietary Information

Page 9 of 24

F0306-01R0

The new CUF calculation for the RR inlet nozzle safe end for 40 years, which includes the use of updated methodology and incorporates EPU effects [14], is shown at the top portion of Table 10. The CUF for 40 years (without EAF effects) is 0.0017.

The fatigue calculation for 60 years for the RR inlet nozzle safe end location is also shown in Table 10. The results show a CUF (without EAF effects) of 0.0017 for 60 years. The fatigue calculation for 60 years makes use of the 60-year projected cycles for VY from Reference [9].

The resulting environmental fatigue calculation for the RR inlet nozzle safe end location is shown in Table 10. Bounding F_{en} multipliers were applied in the calculations. Recirculation line water chemistry conditions from Table 2 are used for this location. The results show an EAF adjusted CUF of 0.0199 for 60 years, which is acceptable (i.e., less than the allowable value of 1.0)

File No.: VY-16Q-303 Revision: 0 Page 10 of 24

Contains Vendor Proprietary Information

F0306-01R0

5.0 RESULTS OF ANALYSIS

The final environmental fatigue results contained in Sections 4.1 and 4.2 (and associated Tables 7 through 10) for the RPV shell/bottom head and RR inlet nozzle locations are summarized in Table 11.

6.0 CONCLUSIONS AND DISCUSSION

In this calculation, EAF calculations were performed in accordance with the GALL Report [2] for the following VY locations:

- RR inlet nozzle, consisting of the following bounding locations:
 - Nozzle forging (low alloy steel)
 - o Safe end (stainless steel)
- RPV shell/bottom head, consisting of the following bounding locations:
 - o Limiting bottom head shell inside surface location (low alloy steel)
 - o Limiting RPV shell/shroud support location (low alloy steel)

The above locations were selected based on the locations identified in NUREG/CR-6260 for the older vintage GE plant and plant-specific fatigue calculations that determined the limiting locations for VY. Calculations for the remaining NUREG/CR-6260 locations will be documented in other analyses performed under this project.

The EAF results for the locations identified above are shown in Table 11. These results indicate that the fatigue usage factors, including environmental effects, are within the allowable value for 60 years of operation for all locations evaluated. The calculations for all locations make use of the 60-year projected cycles for VY and incorporate EPU effects. Therefore, no additional evaluation is required for these components, and the GALL requirements are satisfied.

File No.: VY-16Q-303 Revision: 0 Page 11 of 24

Contains Vendor Proprietary Information

F0306-01R0

7.0 REFERENCES

- 1. NUREG/CR-6260 (INEL-95/0045), "Application of NUREG/CR-5999 Interim Fatigue Curves to Selected Nuclear Power Plant Components," March 1995.
- 2. NUREG-1801, Revision 1, "Generic Aging Lessons Learned (GALL) Report," U. S. Nuclear Regulatory Commission, September 2005.
- 3. USAS B31.1.0 1967, USA Standard Code for Pressure Piping, "Power Piping," American Society of Mechanical Engineers, New York.
- 4. NUREG/CR-6583 (ANL-97/18), "Effects of LWR Coolant Environments on Fatigue Design Curves of Carbon and Low-Alloy Steels," March 1998.
- 5. NUREG/CR-5704 (ANL-98/31), "Effects of LWR Coolant Environments on Fatigue Design Curves of Austenitic Stainless Steels," April 1999.
- 6. EPRI/BWRVIP Memo No. 2005-271, "Potential Error in Existing Fatigue Reactor Water Environmental Effects Analyses," July 1, 2005.

REDACTED

- "Vermont Yankee Dissolved Oxygen (DO) Levels for Use in EAF Evaluations," page 11 of Entergy Design Input Record (DIR) EC No. 1773, Revision 0, "Environmental Fatigue Analysis for Vermont Yankee Nuclear Power Station," 7/3/07, SI File No. VY-16Q-209.
- "Reactor Thermal Cycles for 60 Years of Operation," Attachment 1 of Entergy Design Input Record (DIR) EC No. 1773, Revision 0, "Environmental Fatigue Analysis for Vermont Yankee Nuclear Power Station," 7/3/07, SI File No. VY-16Q-209.
- 10. VY LRA, page 1-4 (included as Appendix B to this calculation).
- 11. American Society of Mechanical Engineers Boiler & Pressure Vessel Code, Section III, Rules for Construction of Nuclear Facility Components, and Section II, Materials, Part D, "Properties (Customary)," 1998 Edition including the 2000 Addenda.
- 12. Yankee Atomic Electric Company Calculation No. VYC-378, Revision 0, "Vermont Yankee Reactor Cyclic Limits for Transient Events," 10/16/85, SI File No. VY-05Q-211.

NEC066009

- 14. GE Nuclear Energy Certified Design Specification No. 26A6019, Revision 1, "Reactor Vessel Extended Power Uprate," June 2, 2003, SI File No. VY-05Q-236.
- Structural Integrity Associates Report No. SIR-01-130, Rev. 0, "System Review and Recommendations for a Transient and Fatigue Monitoring System at the Vermont Yankee Nuclear Power Station," February 2002, SI File No. W-VY-05Q-401.
- 16. CB&I RPV Stress Report, Section S3, Revisión 4, "Stress Analysis, Shroud Support, Vermont Yankee Reactor Vessel, CB&I Contract 9-6201," 2-3-70, SI File No. VY-16Q-203.
- 17. CB&I RPV Stress Report, Section S8, Revision 4, "Stress Analysis, Recirculation Inlet Nozzle, Vermont Yankee Reactor Vessel, CB&I Contract 9-6201," 2-3-70, SI File No. VY-16Q-203.
- GE Nuclear Energy Certified Stress Report No. 23A4292, Revision 4, "Reactor Vessel Recirculation Inlet Safe End Nozzle," March 12, 1986, SI File No. VY-16Q-203.
- 19. Entergy Drawing No. 5920-5752, Revision 3 (CB&I Drawing No. R15, Revision 1), "Vessel & Attachments Mat'l. Identifications," 1/20/88, SI File No. VY-16Q-209.

Page 13 of 24

Contains Vendor Proprietary Information

F0306-01R0

Date of HWC Implementation:	11/01/2003	(see Appendix A)
Availability of HWC System Since HWC Implementation:	98.54%	(see Appendix A)
Projected Future HWC System Availability:	98.5%	(see Appendix A, assume same as recent experience)
Recirculation Line DO		
pre-HWC:	122	ppb (see Appendix A)
post-HWC:	48	ppb (see Appendix A)
Feedwater Line DO		
pre-HWC:	40	ppb (see Appendix A)
post-HWC:	40	ppb (see Appendix A)
RPV Upper Region DO		
pre-HWC:	114	ppb (see Appendix A)
post-HWC:	97	DDD (see Appendix A)
RPV Beltline Region DO		
pre-HWC:	123	DDD (see Appendix A)
post-HWC:	46	ppb (see Appendix A)
F		
BPV Bottom Head Region DO		
; pre-HWC:	128	ppb (see Appendix A)
post-HWC:	69	DOD (see Appendix A)
p		
Plant Startup Date:	03/22/1972	(see Appendix B)
Time at pre-HWC Conditions:	31.61	years (calculated, includes leap years.)
Date of Calculations:	04/30/2007	
Time Since HWC Implementation:	3.49	Vears (calculated, includes leap years.)
Projected Future Time for HWC Operation:	24.90	Vears (calculated, includes leap years.)
······································		, , , , , , , , , , , , , , , , , , , ,
Overall HWC Availability:	47%	

Table 1: Water Chemistry Calculations

Note: All operation through 11/1/2003 was assumed as NWC using the dissolved oxygen values from the "Pre-NMCA" column in Appendix A, and all operation after 11/1/2003 was assumed as HWC using the maximum oxygen values from the "Post-NMCA + HWC (OLP)", "Post-NMCA + HWC (EPU)", and "Future Operation" columns in Appendix A.

File No.: VY-16Q-303 Revision: 0 Page 14 of 24

Contains Vendor Proprietary Information

F0306-01R0

Structural Integrity Associates, Inc.

Table 2: Bounding Fen Multipliers for Recirculation Line

File No.: VY-16Q-303 Revision: 0

į

Page 15 of 24

NEC066012

Contains Vendor Proprietary Information

Low Alloy Steel:			F _{en} = exp(0.898	• 0.101S*T*O* _E *)			
		Assume S* = 0.015 (maxi Assume _{£*} = In(0.001) = -	mum) 6.908 (minimum)				
for a BWR with HWC enviro XO = 40 ppb = 0.040 ppm < 0 hus:	onment (post-HWC implement .050 ppm so O* = 0	ation):		ForaBWRwith DO=40ppb≈0 Thus:	n NWC environme 1.040 ppm < 0.050	nit (pre-HW) ppm so O* =	C implementat 0
T (°C)	T (°F)	Fen		T (°C)	T (°F)	Fen	
ō	32	2.45		0	32	2.45	
50	122	2.45		50	122	2.45	
100	212	2,45	ł	100	212	2.45	
150	. 302	2.45		150	302	2.45	
200	392	2.45		. 200	392	2.45	•
250	482	2.45		250	482	2.45	
288	550	2.45		288	550	2.45	
	Thus, maximum F _{en} =	2.45	[T = (T-150) for T > 150°C]	Thus	, maximum F _{en} =	2.45	
Carbon Steel:		- <u></u>	F _{en} = exp(0.554	0.101S*T*O*&*>		·	
			Assume S* = 0.015 (maxi Assume _{6*} = In(0.001) = -t	mum) 6.908 (minimum)			
or a BWR with HWC enviro OO = 40 ppb = 0.040 ppm < 0. hus:	nment (post-HWC implement 050 ppm soO°≈0	ation):		For a BWR with DO = 40 ppb = 0 Thus:	NWC environme .040 ppm < 0.050	nt (pre-HW∢ ppm so O* =	C implementati 0
T (°C)	T (°F)	F _{en}	7	T (°C)	T (°F)	Fan	
0	32	1.74		0	32	1.74	
50	122	1,74	1	50	122	1.74	
100	212	1.74		100	212	1.74	
150	302	1.74		150	302	1.74	
200	392	1.74	1	200	392	1.74	
250	482	1.74		250	482	1.74	
250		4 74	1	1 288	550	174	
288	550	1.74					

There is no stainless steel in the Class 1 feedwater line.

File No.: VY-16Q-303 Revision: 0 Page 16 of 24

NEC066013

Contains Vendor Proprietary Information

Low Alloy Steel:			F _{en} = exp(0.898 ·	0.101S*T*O* _E *)			
			Assume S [*] = 0.015 (maximum) Assume ε• = In(0.001) = -6.908 (minimum)				
or a BWR with HWC enviro IO ≈ 97 ppb = 0.097 ppm, so	nment (post-HWC implemen O* = In(0.097/0.04) = 0.886	tation):		For a BWR with DO = 114 ppb =	h NWC environn 0.114 ppm, so O	nent (pre-HWC)* = In(0.114/0.0	implementatio 4} = 1.047
hus:				Thus:			
T (°C)	T (°F)	Fen]	T (°C)	T (°F)	Fen	
	32	2.45		0	32	2,45	
50	122	2.45		50	122	2 45	
100	212	2.45		100	212	2 45	
150	202	2.45		150	202	2.45	
150	302	2.40		200	302	2.45	
200	392	3.90		200	392	9.25	
250	482	6.20		250	482	7.35	
288	550	8.82		288	550	11.14	
	Thus, maximum F _{en} =	8.82	[T*= {T-150} for T > 150°C]	Thus	s, maximum F _{en} =	= 11.14	
Carbon Steel:			F _{en} = exp(0.554 -	0.101S'T'O'ε')	· · · · ·		
			Assuma St - 0.015 (mayin				
			Assume 5 = 0.015 (maxin	num)			
or a BWR with HWC enviror	nment (post-HWC implement	ation):	Assume $z = 0.003$ (maxin Assume $z = \ln(0.001) = -6$	For a BWR with	NWC environm	ent (pre-HWC	implementation
or a BWR with HWC environ D ≈ 97 ppb = 0.097 ppm, so 0 nus:	nment (post-HWC implement D* = In(0.097/0.04) = 0.886	lation):	Assume _{5*} = In(0.001) = -6	Tum) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus:	n NWC environm 0.114 ppm, so O	ient (pre-HWC * = In(0.114/0.04	implementation 4) = 1.047
or a BWR with HWC environ ⊃ ≈ 97 ppb = 0.097 ppm, so 0 us: T (°C)	nment (post-HWC implement)" = In(0.097/0.04) = 0.886 T ("F)	lation): Fen	Assume ₆ + = ln(0.001) = -6	Tum) S.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C)	NWC environm 0.114 ppm, so O T (°F)	ent (pre-HWC * = In(0,114/0.04	implementation \$) = 1.047
r a BWR with HWC enviror 0 = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0	nment (post-HWC implement D' = In(0.097/0.04) = 0.886 T (°F) 32	Fen 1.74	Assume _{6*} = ln(0.001) = -6	num) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0	1 NWC environm 0.114 ppm, so O T (°F) 32	rent (pre-HWC * = In(0.114/0.04	implementatio \$) = 1.047
r a BWR with HWC environ 0 = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0 50	nment (post-HWC implement D" = in(0.097/0.04) = 0.886 T ("F) 32 122	F _{en} 1.74	Assume ₆ + = ln(0.001) = -6	num) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50	1 NWC environm 0.114 ppm, so O T (°F) 32 122	Fen 1.74	implementatio 4) = 1.047
r a BWR with HWC environ = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0 50	nment (post-HWC implement D' = In(0.097/0.04) = 0.886 T (°F) 32 122 212	F _{en} 1.74 1.74	Assume ₆ + = ln(0.001) = -6	num) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100	1 NWC environm 0.114 ppm, so O T (°F) 32 122 212	rent (pre-HWC = In(0.114/0.04 F_{en} 1.74 1.74 1.74	implementatio 4) = 1.047
r a BWR with HWC enviror = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0 50 100 160	T (°F) T (°F) 122 122 122 212 202	Fen 1.74 1.74 1.74	Assume ₆ + = In(0.001) = -6	num) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T (°C) 0 50 100 150	1 NWC environm 0.114 ppm, so O T (°F) 32 122 212 212	Fen 1.74 1.74 1.74 1.74 1.74	implementatio 3) = 1.047
r a BWR with HWC enviror 0 = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0 50 100 150	Trent (post-HWC implement D' = in(0.097/0.04) = 0.886 T (°F) 32 122 212 302 202	Fen 1.74 1.74 1.74 1.74	Assume ₆ + = ln(0.001) = -6	num) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100 150 200	1 NWC environm 0.114 ppm, so O T (°F) 32 122 212 302	Fen 1.74 1.74 1.74 1.74 1.74	implementatio 3) = 1.047
or a BWR with HWC environ D ≈ 97 ppb = 0.097 ppm, so C us: T (°C) 0 50 100 150 200	nment (post-HWC implement D' = In(0.097/0.04) = 0.886 T (°F) 32 122 212 302 392	Fen 1.74 1.74 1.74 1.74 1.74 2.77	Assume ₆ + = ln(0.001) = -6	num) 3.908 (minimum) For a BWR with DO = 114 ppb = Thus: Trus: Tr(°C) 0 50 100 150 200	NWC environm 0.114 ppm, so O T (°F) 32 122 212 302 392	Fen Fen 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74	implementatio 1) = 1.047
ar a BWR with HWC environ ⊃ ≈ 97 ppb = 0.097 ppm, so C us: T (°C) 0 50 100 150 200 250	nment (post-HWC implement D' = In(0.097/0.04) = 0.886 T (°F) 32 122 212 302 392 482	F <u>en</u> 1.74 1.74 1.74 1.74 2.77 4.40	Assume ₆ + = ln(0.001) = -6	num) S.908 (minimum) For a BWR with DO = 114 ppb = Thus: T (°C) 0 50 100 150 200 250	n NWC environm 0.114 ppm, so O T (°F) 32 122 212 302 392 482	F_{en} Fen 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74	implementatio 4) = 1.047
r a BWR with HWC environ = 97 ppb = 0.097 ppm, so C us: T (°C) 0 50 100 150 200 250 288	nment (post-HWC implement D' = In(0.097/0.04) = 0.886 T (°F) 32 122 212 302 302 392 482 550	F _{en} 1.74 1.74 1.74 1.74 1.74 2.77 4.40 6.25	Assume ₆ + = ln(0.001) = -6	num) 3.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100 150 200 250 288	т NWC environm 0.114 ppm, so O T (°F) 32 122 212 302 392 482 550	Fen Fen 1.74 1.79 1.	implementatio 4) = 1.047
or a BWR with HWC environ D = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0 50 100 150 200 250 288	Trent (post-HWC implement T = in(0.097/0.04) = 0.886 T (°F) 32 122 212 302 392 482 550 Thus, maximum F _{en} =	Fen 1.74 1.74 1.74 1.74 1.74 2.77 4.40 6.25 6.25	Assume _c + = ln(0.001) = -{ [T*= (T-150) for T > 150°C]	num) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100 150 200 250 288 Thus	n WWC environm 0.114 ppm, so O T (°F) 32 122 212 302 392 482 550 maximum F _{en} =	Fen 1,74 1,79 1,790 1,900 1	implementation a) = 1.047
or a BWR with HWC environ D = 97 ppb = 0.097 ppm, so C IUS: T (°C) 0 50 100 150 200 250 288 <u>Stainless Steel:</u>	T (°F) T (°F) 32 122 212 302 392 482 550 Thus, maximum F _{en} =	Fen 1.74 1.74 1.74 1.74 1.74 2.77 4.40 6.25 6.25	$F_{en} = exp(0.92)$	num) 3.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100 150 200 250 288 Thus 35 - T'c'O')	T (°F) 32 122 212 302 392 482 550	F_{en} F _{en} 1.74 1.74 1.74 1.74 1.74 1.74 3.01 5.21 7.90 7.90	implementation } = 1.047
or a BWR with HWC environ D = 97 ppb = 0.097 ppm, so C IUS: T (°C) 0 50 100 150 200 250 288 <u>Stainless Steel:</u>	T (°F) 32 122 212 302 392 482 550 Thus, maximum F _{en} =	Fen 1.74 1.74 1.74 1.74 1.74 2.77 4.40 6.25 6.25	F _{en} = exp(0.95	num) 3.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100 150 200 250 288 Thus 35 - T'c'O')	T (°F) 32 122 212 302 392 482 550	F_{en} Fen (0.114/0.04 Fen (0.114/0.04 1.74	implementatio }} = 1.047
or a BWR with HWC environ D = 97 ppb = 0.097 ppm, so 0 uus: T (°C) 0 50 100 150 200 250 288 <u>Stainless Steel:</u> r a BWR with HWC environ	T (°F) 32 122 212 302 392 482 550 Thus, maximum F _{en} =	Fen 1.74 1	$F_{en} = exp(0.92)$	num) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T (°C) 0 50 100 150 200 250 250 288 Thus 55 - T°e°O*) For a BWR with	NWC environm 0.114 ppm, so O T (°F) 32 122 212 302 392 482 550 , maximum F _{en} =	Fen 1.74 1	implementatio
or a BWR with HWC environ D = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0 50 100 150 200 250 250 268 <u>Stainless Steel</u> : r a BWR with HWC environ 0 = 97 ppb = 0.097 ppm > 0.0	T (*F) 32 122 212 302 392 482 550 Thus, maximum F _{en} =	Fen 1.74 1.74 1.74 1.74 1.74 1.74 6.25 6.25 6.25	$F_{en} = exp(0.92)$	hum) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100 150 200 250 288 Thus 35 - T'c O') For a BWR with DO = 114 ppb =	NWC environm 0.114 ppm, so O T (°F) 32 122 212 302 392 482 550 , maximum F _{en} =	Fen 1.74 1.790 1.90 1	implementatio a) = 1.047 implementation 0.172
or a BWR with HWC environ D = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0 50 100 150 200 250 288 <u>Stainless Steel:</u> r a BWR with HWC environ D = 97 ppb = 0.097 ppm > 0.0 nservatively use T' = 1 for T >	T (°F) 32 122 212 302 392 482 550 Thus, maximum F _{en} =	Fen 1.74 1.74 1.74 1.74 1.74 2.77 4.40 6.25 6.25 6.25	F _{en} = exp(0.93	num) 3.908 (minimum) For a BWR with DO = 114 ppb = Thus: T (*C) 0 50 100 150 200 250 288 Thus 35 - T*c*O*) For a BWR with DO = 114 ppb = Conservatively us	NWC environm 0.114 ppm, so O 7 (°F) 32 122 212 302 392 482 550 , maximum F _{en} = NWC environm 0.114 ppm > 0.05 se T* = 1 for T > 2	Fen 1.74 1	implementatio B) = 1.047 implementation D.172
or a BWR with HWC environ 0 = 97 ppb = 0.097 ppm, so (us: T (°C) 0 50 100 150 200 250 288 <u>Stainless Steel:</u> r a BWR with HWC environ 0 = 97 ppb = 0.097 ppm > 0.0 nservatively use T' = 1 for T >	T (°F) 32 122 212 302 392 482 550 Thus, maximum F _{en} =	Fen 1.74 1.74 1.74 1.74 1.74 2.77 4.40 6.25 6.25 6.25	F _{en} = exp(0.93	num) 3.908 (minimum) For a BWR with DO = 114 ppb = Thus: T (*C) 0 50 100 150 200 250 288 Thus 35 - T*c*O*) For a BWR with DO = 114 ppb = Conservatively us	NWC environm 0.114 ppm, so O 114 ppm, so O 122 212 302 392 482 550 , maximum F _{en} = NWC environm 0.114 ppm > 0.05 se T* = 1 for T > 2	Fen 1.74 1	implementatio a) = 1.047 implementation 0.172
r a BWR with HWC environ 0 = 97 ppb = 0.097 ppm, so (us: T (°C) 0 50 100 150 200 250 288 <u>Stainless Steel:</u> r a BWR with HWC environ = 97 ppb = 0.097 ppm > 0.0 nservalively use T' = 1 for T > = 0 for _£ > 0.4%/sec	Thus: Thus: Thus: Topological Topological The second	F <u>en</u> 1.74 1.74 1.74 1.74 1.74 1.74 6.25 6.25 ation): so F _{en} =	$\frac{[\Gamma^{*} = (T-150) \text{ for } T > 150^{\circ}\text{C}]}{F_{en} = \exp(0.93)}$	num) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100 150 200 250 288 Thus 35 - T'c'O') For a BWR with DO = 114 ppb = Conservatively us	NWC environm 0.114 ppm, so O T (°F) 32 122 212 302 392 482 550 , maximum F _{en} = NWC environm 0.114 ppm > 0.05 se T* = 1 for T > 2	Fen 1.74 1.790 7.90 7.90 Thus: so F _{en} =	implementatio a) = 1.047 implementation 0.172 2.55
r a BWR with HWC enviror 0 = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0 50 100 150 200 250 250 288 <u>Stainless Steel:</u> r a BWR with HWC environ = 97 ppb = 0.097 ppm > 0.0 nservatively use T' = 1 for T > = 0 for ε > 0.4%/sec = ln(ε/0.4) for 0.0004 <= ε <=	Thent (post-HWC implement T (*F) 32 122 212 302 392 482 550 Thus, maximum F _{en} = ment (post-HWC implement) 50 ppm, so O* = 0.172 200°C Thus:	Fen 1.74 1	$\frac{[\Gamma = (T-150) \text{ for } T > 150^{\circ}\text{C}]}{F_{en} = exp(0.92)}$	hum) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T (°C) 0 50 100 150 200 250 288 Thus 35 - T'c'O') For a BWR with DO = 114 ppb = Conservatively us	NWC environm 0.114 ppm, so O T (*F) 32 122 212 302 392 482 550 , maximum F _{en} = NWC environm 0.114 ppm > 0.05 se T* = 1 lor T > 2	Fent (pre-HWC = In(0.114/0.04 Fen 1.74 1.75 1.790 Thus: so F _{en} = ranges from	implementatio implementation 0.172 2.55 2.55
T a BWR with HWC environ D = 97 ppb = 0.097 ppm, so 0 us: T (°C) 0 50 100 150 200 250 288 Stainless Steel: T a BWR with HWC environ P = 97 ppb = 0.097 ppm > 0.0 nservatively use T' = 1 for T > = 0 for $\varepsilon > 0.4\%/\text{sec}$ = 1n($\varepsilon/0.4$) for 0.0004 <= ε <=	T (°F) T (°F) 32 122 212 302 392 482 550 Thus, maximum F _{en} = ment (post-HWC implement. 150 ppm, so O' = 0.172 200°C Thus: 0.4%/sec so F	Fen 1.74 1.74 1.74 1.74 1.74 2.77 4.40 6.25 6.25 6.25 ation): so Fen = en ranges from to	$F_{en} = exp(0.93)$ $\frac{[\Gamma = (T-150) \text{ for } T > 150^{\circ}\text{C}]}{F_{en} = exp(0.93)}$	hum) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100 150 200 250 288 Thus 35 - T'c O') For a BWR with DO = 114 ppb = Conservatively us	NWC environm 0.114 ppm, so O T (°F) 32 122 212 302 392 482 550 maximum F _{en} = NWC environm 0.114 ppm > 0.05 se T = 1 for T > 2 so F _{er}	ent (pre-HWC = $\ln(0.114/0.04)$ Fen 1.74 1.74 1.74 1.74 1.74 1.74 1.74 3.01 5.21 7.90 7.90 ent (pre-HWC i ippm, so O' = 0 100°C Thus: so Fen = ranges from 10	implementatio a) = 1.047 implementation 0.172 2.55 2.55 8.36
T a BWR with HWC environ D = 97 ppb = 0.097 ppm, so C us: T (°C) 0 50 100 150 200 250 250 288 Stainless Steel: T a BWR with HWC environ r = 97 ppb = 0.097 ppm > 0.0 nservatively use T' = 1 for T > $= 0 \text{ for } \epsilon > 0.4\%/\text{sec}$ $= \ln(\epsilon/0.4) \text{ for } 0.0004 <= \epsilon <=$	T (*F) 32 122 212 302 392 482 550 Thus, maximum F _{en} = ment (post-HWC implement) 50 ppm, so O* = 0.172 200°C Thus: 0.4%/sec so F	Fen 1.74 1.74 1.74 1.74 1.74 1.74 1.74 2.77 4.40 6.25 6.25 6.25 ation): so F _{en} = to so F _{en} =	$\frac{[\Gamma = (T-150) \text{ for } T > 150^{\circ}\text{C}]}{F_{en} = exp(0.9)}$ $\frac{2.55}{2.55}$ $\frac{2.55}{8.36}$ 8.36	hum) 5.908 (minimum) For a BWR with DO = 114 ppb = Thus: T(°C) 0 50 100 150 200 250 288 Thus 35 - T'c'O') For a BWR with DO = 114 ppb = Conservatively us	NWC environm 0.114 ppm, so O T (*F) 32 122 212 302 392 482 550 ., maximum F _{en} = NWC environm 0.114 ppm > 0.05 se T* = 1 lor T > 2 so F _{er}	rent (pre-HWC = In(0.114/0.04 F_{en} 1.74 1.790 Thus: so F _{en} = to so F _{en} =	implementatio implementation 0.172 2.55 2.55 8.36 8.36

Table 4: Bounding Fen Multipliers for RPV Upper Region

File No.: VY-16Q-303 Revision: 0

.

.

•

Page 17 of 24

Contains Vendor Proprietary Information

NEC066014

Low Alloy Steel:			Fen = exp(0.898	- 0.101S*T'O* _E *)			
			Assume $S^* = 0.015$ (maxi Assume $\epsilon^* = \ln(0.001) = -$	imum) -6.908 (minimum)			
For a BWR with HWC enviro O = 46 ppb = 0.046 ppm $O = 0.050 \text{ ppm}$ and $O^* = 0$	nment (post-HWC implemer	ntation):		For a BWR with DO = 123 ppb = (NWC environme 0.123 ppm, so O*	ent (pre-HWC i = ln(0.123/0.04	mplementation) = 1.123
hus:				Thus:			
T (°C)	T (°F)	Fen		T (°C)	T (°F)	Fan	
0	32	2.45		0	32	2.45	
50	122	2.45		50	122	2.45	
100	212	2.45		100	212	2.45	
150	302	2.45		150	302	245	
200	392	2 45		200	392	4 42	
269.45	517.01	2.45		269.45	517.01	10.00	
288	550	2.45	I	288	550	12.43	
200		2,40		200		12.43	
	Thus, maximum F _{en} =	2.45	[I*= (T-150) for T > 150°C]	Thus,	maximum F _{en} =	12.43	
Carbon Steel:	<u> </u>		F _{en} = exp(0.554 -	- 0.101S*T*O*s*)			
			Assume S* = 0.015 (maxi	mum)			
			Assume $g = m(0.001) = -$	0.300 (minimum)			
or a BWR with HWC enviro $O \approx 46 \text{ ppb} = 0.046 \text{ ppm}$ $O < 0.050 \text{ ppm}$, so $O^* = 0$ hus:	nment (post-HWC implemer	itation):		For a BWR with DO = 123 ppb = 0 Thus:	NWC environme).123 ppm, so O* :	nt (pre-HWC i = In(0.123/0.04	mplementatior) = 1.123
	·····			r	· · · · · · · · · · · · · · · · · · ·		
T (°C)	T (°F)	Fen		T (°C)	T (°F)	Fen	
0	32	1.74		0	32	1.74	
50	122	1.74		50	122	1.74	
100	212	1.74		100	212	1.74	
150	302	1,74		150	302	1.74	
200	392	1.74		200	392	3.13	
250	482	1.74		250	482	5.64	
288	550	1.74		288	550	8.81	
	Thus, maximum F _{en} =	1.74	[T'= (T-150) for T > 150°C]	Thus,	maximum F _{en} =	8.81	
Stainless Steel:	- <u> </u>		F _{en} = exp(0.9	935 - T* _E *O*)			
or a BWR with HWC environ $D \approx 46 \text{ ppb} = 0.046 \text{ ppm} < 0.0000000000000000000000000000000000$	nment (post-HWC implemen 050 ppm, so O* ≈ 0.260 > 200°C Thus:	tation):		For a BWR with DO = 123 ppb = 0 Conservatively use	NWC environme 0,123 ppm > 0.05 p e T* = 1 for T > 200 T	nt (pre-HWCi ppm, so O* = 0 0°C Thus:	mplementation 172
0.101 - 0.191 /0.00			0.55				0.55
= U KUI E > U.4%/SEC	0.48/ /000	SO Fen =	2.55			50 Fen =	2.55
$= III(\epsilon/0.4)$ for 0.0004 <= ϵ <=	= U.4%/SEC \$0	ren ranges from	2.55		so F _{en} r	ranges from	2.55
		to	15,35			to	8.36
$= \ln(0.0004/0.4)$ for $\epsilon < 0.000$)4%/sec	so F _{en} =	15,35			so F _{an} =	8.36
	/ Thus i	maximum E	15.35		Thus maxi	imum F	8.36

Table 5: Bounding F_{en} Multipliers for RPV Beltline Region

File No.: VY-16Q-303 Revision: 0

Contains Vendor Proprietary Information

Page 18 of 24

F0306-01R0

Low Alloy Steel:			$F_{en} = exp(0.898 -$	-0.101S*T*O* _E *)			
			Assume $S^* = 0.015$ (maximum summer $s^* = \ln(0.001) = -1000000$	mum) 6.908 (minimum)			
or a BWR with HWC enviro O = 69 ppb = 0.069 ppm, so hus:	nment (post-HWC implemen)" = In(0.069/0.04) = 0.545	itation):		For a BWR with DO = 128 ppb = Thus:	h NWC environme 0.128 ppm, so O'	nt (pre-HWC = In(0.128/0.0	implementatio 4) = 1.163
T (°C)	T (°F)		1	T (°C)	T (°F)	Fan	
0	32	2.45		0	32	2.45	
50	122	2.45		50	122	2.45	
100	212	2.45		100	212	2.45	
150	302	2.45	1	150	302	2.45	
200	392	3.27		200	392	4.51	
250	482	4.34		250	482	8.29	
288	550	5,39		288	550	13.17	
	Thus, maximum Fen =	5.39	[T*= (T-150) for T > 150°C]	Thus	s, maximum F _{en} =	13.17	
Carbon Steel:			F _{en} = exp(0.554 -	0.101S*T*O*c*)			
			Assume St = 0.015 (maxir	i num			
			A330me 0 = 0.015 (maxii	nanny			
			Assume $\varepsilon * = \ln(0.001) = -6$	6.908 (minimum)			
or a BWR with HWC enviror) = 69 ppb = 0.069 ppm, so 0 us:	ment (post-HWC implemen)* = In(0.069/0.04) ≈ 0.545	tation):	Assume ε• = I∩(0.001) = -€	6.908 (minimum) For a BWR with DO = 128 ppb = Thus:	NWC environme 0.128 ppm, so O* -	nt (pre-HWC = In(0.128/0.04	implementation I) = 1.163
r a BWR with HWC enviror D = 69 ppb = 0.069 ppm, so 0 us: T (℃)	ment (post-HWC implemen)* = In(0.069/0.04) ∝ 0.545 T (°F)	tation): F _{er}	Assume ε• = I∩(0.001) = -€	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C)	NWC environme 0.128 ppm, so O* : T (°F)	nt (pre-HWC = In(0.128/0.04 F _{en}	implementatio I) ≈ 1.163
r a BWR with HWC enviror) = 69 ppb = 0.069 ppm, so 0 us: T (°C) 0	ment (post-HWC implemen)* = In(0.069/0.04) ∞ 0.545 T (°F) 32	tation): F _{on} 1.74	Assume ε• = In(0.001) = -€	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0	NWC environme 0.128 ppm, so O' : T (°F) 32	nt (pre-HWC = In(0.128/0.04 Fon	implementatio I) = 1.163
r a BWR with HWC enviror 0 = 69 ppb = 0.069 ppm, so 0 us: T (°C) 0 50	ment (post-HWC implement)' = In(0.069/0.04) = 0.545 T (°F) 32 122	Fan 1.74 1.74	Assume ₂ • = I∩(0.001) = -{	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50	NWC environme 0.128 ppm, so O* T (°F) 32 122	nt (pre-HWC = In(0.128/0.04 Fon 1.74 1.74	implementatio I) = 1.163
r a BWR with HWC enviror 0 = 69 ppb = 0.069 ppm, so C us: T (°C) 0 50 100	T (°F) 1/2 (°F) 1/2 (°F) 1/2 (°F) 1/2 (°F) 1/2 (°F) 1/2 (°F) 1/2 (°F)	Fen 1.74 1.74 1.74	Assume ε• = I∩(0.001) = -{	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100	NWC environme 0.128 ppm, so O* = T (°F) 122 212	Fon 1.74 1.74	implementatio I) = 1.163
r a BWR with HWC enviror) = 69 ppb = 0.069 ppm, so C us: T (°C) 0 50 100 150	T (°F) 122 122 122 122 122 122 122 12	tation): Fen 1.74 1.74 1.74 1.74	Assume ε• = I∩(0.001) = -€	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150	NWC environme 0.128 ppm, so O ⁺ : T (°F) 32 122 212 302	nt (pre-HWC = In(0.128/0.04 1.74 1.74 1.74 1.74 1.74	implementatio i) = 1.163
or a BWR with HWC environ D = 69 ppb = 0.069 ppm, so C us: T (°C) 0 50 100 150 200	Trent (post-HWC implement)" = In(0.069/0.04) = 0.545 T ("F) 32 122 212 302 392	F _{en} 1.74 1.74 1.74 1.74 2.31	Assume ะ• = I∩(0.001) = -€	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200	NWC environme 0.128 ppm, so O' : 7 (°F) 32 122 212 302 392	nt (pre-HWC = In(0.128/0.04 Fon 1.74 1.74 1.74 1.74 1.74 3.20	implementatio i) = 1.163
or a BWR with HWC enviror D = 69 ppb = 0.069 ppm, so C us: T (°C) 0 50 100 150 200 250	T (°F) 122 122 122 122 122 302 392 482	Fen 1.74 1.74 1.74 1.74 1.74 2.31 3.08	Assume ε• = I∩(0.001) = -{	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200 250	NWC environme 0.128 ppm, so O* = 32 122 212 302 392 482	nt (pre-HWC = In(0.128/0.04 .74 1.74 1.74 1.74 1.74 3.20 5.88	implementatio I) = 1.163
or a BWR with HWC enviror D = 69 ppb = 0.069 ppm, so C uus: T (°C) 0 50 100 150 200 250 288	T (°F) 12° = In(0.069/0.04) = 0.545 T (°F) 32 122 212 302 392 482 550	Fen 1.74 1.74 1.74 1.74 1.74 2.31 3.08 3.82	Assume ะ• = I∩(0.001) = -€	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200 250 288	NWC environme 0.128 ppm, so O' = 32 122 212 302 392 482 550	nt (pre-HWC = In(0.128/0.04 F₀n 1.74 1.74 1.74 1.74 1.74 3.20 5.88 9.34	implementatio I) = 1.163
or a BWR with HWC enviror D = 69 ppb = 0.069 ppm, so C us: T (°C) 0 50 100 150 200 ; 250 288	ment (post-HWC implemen)' = In(0.069/0.04) ≈ 0.545 T (°F) 32 122 212 302 392 482 550 Thus, maximum F _{en} ≈	Fen 1.74 1.74 1.74 1.74 1.74 1.74 2.31 3.08 3.82 3.82	Assume ₂• = In(0.001) = -6	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200 250 288 Thus	T (°F) 128 ppm, so O* T (°F) 122 212 302 392 482 550 c, maximum F _{en} =	nt (pre-HWC = In(0.128/0.04 1.74 1.74 1.74 1.74 1.74 1.74 1.74 5.88 9.34	implementation 1) = 1.163
r a BWR with HWC enviror 0 = 69 ppb = 0.069 ppm, so C us: T (°C) 0 50 100 150 200 250 288 <u>Stainless Steel</u> :	T (°F) 122 122 122 122 122 302 392 482 550 Thus, maximum F _{en} ≈	Fen 1.74 1.74 1.74 1.74 3.08 3.82	Assume e+ = In(0.001) = -6 [T*= (T-150) for T > 150°C] F _{en} = exp(0.93	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200 250 288 Thus 35 - T', c'O')	T (°F) 32 122 212 302 392 482 550	nt (pre-HWC = In(0.128/0.04 1.74 1.74 1.74 1.74 3.20 5.88 9.34 9.34	implementation I) = 1.163
br a BWR with HWC enviror D = 69 ppb = 0.069 ppm, so C 100 100 150 200 250 288 <u>Stainless Steel:</u> r a BWR with HWC environ D = 69 ppb = 0.069 ppm > 0.0 pnservatively use T* = 1 for T >	ment (post-HWC implement)* = In(0.069/0.04) ≈ 0.545 122 212 302 392 482 550 Thus, maximum F _{en} ≈ ment (post-HWC implement 50 ppm, so O* = 0.172 200°C Thus:	Fen 1.74 1.74 1.74 1.74 3.08 3.82 3.82 1.82	Assume $\epsilon_{\bullet} = \ln(0.001) = -6$ [T*= (T-150) for T > 150°C] $F_{en} = exp(0.9)$	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200 250 288 Thus 35 - T*r,*O*) For a BWR with DO = 128 ppb = Conservatively us	NWC environme 0.128 ppm, so O* = 122 212 302 392 482 550 5, maximum F _{en} =	nt (pre-HWC = $ln(0.128/0.04)$ F_{en} 1.74 1.	implementation I) = 1.163
or a BWR with HWC environ D = 69 ppb = 0.069 ppm, so C us: T (°C) 0 50 100 150 200 250 250 288 Stainless Steel: r a BWR with HWC environ D = 69 ppb = 0.069 ppm > 0.0 nservatively use T [*] = 1 for T > = 0 for _B > 0.4%/sec	ment (post-HWC implement)* = In(0.069/0.04) = 0.545 T (*F) 32 122 212 302 392 482 550 Thus, maximum F _{en} ≈ ment (post-HWC implement 50 ppm, so O* = 0.172 200°C Thus:	tation): Fen 1.74 1.74 1.74 1.74 1.74 2.31 3.08 3.82 3.82 tation): so Fen =	Assume e+ = In(0.001) = -6 [T*= (T-150) for T > 150°C] F _{en} = exp(0.9: 2.55	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200 250 288 Thus 35 - T*r,*O*) For a BWR with DO = 128 ppb = Conservatively us	NWC environme 0.128 ppm, so O = 122 212 302 392 482 550 NWC environme 0.128 ppm > 0.05 p se T = 1 for T > 200 T	nt (pre-HWC = $ln(0.128/0.04)$ $\overline{F_{en}}$ 1.74 1.75 1.95	implementatio) = 1.163 implementation 0.172 2.55
or a BWR with HWC environ D = 69 ppb = 0.069 ppm, so C us: T (°C) 0 50 100 150 200 250 288 Stainless Steel: r a BWR with HWC environ D = 69 ppb = 0.069 ppm > 0.0 nservatively use T [*] = 1 for T > $= 0 \text{ for }_{E} > 0.4\%/\text{sec}$	ment (post-HWC implement)* = In(0.069/0.04) = 0.545 T (*F) 32 122 212 302 392 482 550 Thus, maximum F _{en} ≈ ment (post-HWC implement 50 ppm, so O* = 0.172 200°C Thus: 0.4%/sec so F	tation): Fen 1.74 1.74 1.74 1.74 1.74 1.74 2.31 3.08 3.82 3.82 1ation): So Fen = Fen ranges from	Assume $e_{\bullet} = \ln(0.001) = -6$ [T*= (T-150) for T > 150°C] $F_{en} = exp(0.9)$ 2.55 2.55	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200 250 268 Thus 35 - T'r. °C') For a BWR with DO = 128 ppb = Conservatively us	NWC environme 0.128 ppm, so O' 122 212 302 392 482 550 NWC environme 0.128 ppm > 0.05 p se T' = 1 for T > 200 T So F _{en} r	nt (pre-HWC = $ln(0.128/0.04)$ 1.74 1.74 1.74 1.74 1.74 1.74 5.88 9.34 9.34 9.34 9.34 9.34 9.34 9.34 9.34	implementatio e) = 1.163 implementation 0.172 2.55 2.55
or a BWR with HWC environ D = 69 ppb = 0.069 ppm, so C us: T (°C) 0 50 100 150 200 250 288 Stainless Steel: r a BWR with HWC environ D = 69 ppb = 0.069 ppm > 0.0 nservatively use T' = 1 for T > $= 0 \text{ for }_{E} > 0.4\%/\text{sec}$ $= \ln(e/0.4) \text{ for } 0.0004 <= e < =$	ment (post-HWC implement)* = In(0.069/0.04) = 0.545 T (*F) 32 122 212 302 392 482 550 Thus, maximum F _{en} ≈ ment (post-HWC implement 50 ppm, so O* = 0.172 200°C Thus: 0.4%/sec so F	tation): Fen 1.74 1.74 1.74 1.74 1.74 1.74 2.31 3.08 3.82 3.82 3.82 tation): so Fen = to to to the formula of t	Assume $\epsilon_{*} = \ln(0.001) = -6$ [T*= (T-150) for T > 150°C] F _{en} = exp(0.9) 2.55 2.55 8.36 9.20	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200 250 268 Thus 35 - T*r.*O*) For a BWR with DO = 128 ppb = Conservatively us	NWC environme 0.128 ppm, so O' 122 212 302 392 482 550 0.128 ppm > 0.05 p se T' = 1 for T > 200 T so F _{en} r	nt (pre-HWC = $ln(0.128/0.04)$ 1.74 1.74 1.74 1.74 1.74 1.74 1.74 3.20 5.88 9.34 9.34 9.34 9.34 9.34 9.34 9.34 9.34	implementatio implementation
br a BWR with HWC environ $D = 69 \text{ ppb} = 0.069 \text{ ppm, so } 0^{-1}$ 100 100 150 200 250 288 <u>Stainless Steel:</u> r a BWR with HWC environ D = 69 ppb = 0.069 ppm > 0.0 nservatively use $T^* = 1 \text{ for } T >$ $= 0 \text{ for }_{E} > 0.4\%/\text{sec}$ $= \ln(e^{1}/0.4) \text{ for } 0.0004 <= e <=$ $= \ln(0.0004/0.4) \text{ for }_{E} < 0.0004$	ment (post-HWC implement)* = In(0.069/0.04) ≈ 0.545 122 122 212 302 392 482 550 Thus, maximum F _{en} ≈ ment (post-HWC implement 50 ppm, so O* = 0.172 200°C Thus: 0.4%/sec so F	tation): F_{en} 1.74 1.74 1.74 1.74 2.31 3.08 3.82 3.82 3.82 3.82 4.410n): $F_{en} = \frac{1}{2}$ for an equation for a first form to first for	Assume $e^{\bullet} = \ln(0.001) = -6$ [T= (T-150) for T > 150°C] F _{on} = exp(0.93 2.55 2.55 8.36 8.36	5.908 (minimum) For a BWR with DO = 128 ppb = Thus: T (°C) 0 50 100 150 200 250 288 Thus 35 - T'r, 'O') For a BWR with DO = 128 ppb = Conservatively us	NWC environme 0.128 ppm, so O* = 122 122 212 302 392 482 550 c, maximum F _{en} = NWC environme 0.128 ppm > 0.05 p se T* = 1 for T > 200 So F _{en} r	nt (pre-HWC = $ln(0.128/0.04)$ 1.74 1.74 1.74 1.74 3.20 5.88 9.34 9.34 9.34 9.34 9.34 9.34 9.34 9.34	implementation) = 1.163 implementation 0.172 2.55 2.55 8.36 8.36

Table 6: Bounding Fen Multipliers for RPV Bottom Head Region

File No.: VY-16Q-303 Revision: 0

Contains Ventior Respectator Information

Page 19 of 24

NEC066016

Table 7: EAF Evaluation for RPV Shell/Bottom Head Location

Component: RPV Shell/Bottom Head NUREG/CR-6260 CUF: 0.032 (*tor reference only*) Reference: NUREG/CR-6260, p. 5-102 Stress Report CUF: 0.0057 (*tor Point 14, see below*) Material: Low Alloy Steel (*Material = A-533 Gr. B per References* [14] and [19])

Design Basis CUF Calculation	tor 40 years:		4					
	$E_{1 \text{ atigue curv } e} / E_{analysis} =$	1.149	Conservatively L	sed minimum E of 2	26.1 from Sec	tion S2 Appendix of RPV Stress Report.		
	Power Uprate =	1.0067	≖(549 - 100) / (546 - 100) per 4.4.1.b of 26A6019, Rev. 1 [14]					
	K _t =	1.000	stress concentra	ation factor				
	m =	2.0	NB-3228.5 of AS	ME Code, Section I	11 [11]			
	n =	0.2	NB-3228.5 of AS	ME Code, Section I	ll [11]			
	S_m =	26,700	psi (ASME Cod	e. Section II, Part D	(11))	_		
PL+PB+Q (see Note 1)	Ke (see Note 2)	S _{alt} (see Note 3)	n (see Note 4)	N (see Note 5)	U			
44,526	1.00	25,762	200	35,300	0.0057	1		
			······	Total, U ₄₀ ≈	0.0057	1		

Notes: 1. P₁+P₈+Q is obtained for Point 14 from p. A52 of VYC-378, Rev. 0.

2. K, computed in accordance with NB-3228.5 of ASME Code, Section III.

3. S_{all} = 0.5 * K_a * K_t * E_{fatigue curve} / E_{analysis} * Power Uprate * (P_L + P_B + Q).

4. n for 40 years is the number of Heatup-Cooldown cycles, per p. B8 of VYC-378, Rev. 0.

5. N obtained from Figure I-9.1 of Appendix I of ASME Code, Section III.

6. n for 60 years is the projected number of Heatup-Cooldown cycles.

Revised CUF Calculation for 60 Years:

PL+PB+Q (see Note 1)	K _e (see Note 2)	S _{alt} (see Note 3)	n (see Note 6)	N (see Note 4)	U
44,526	1.00	25,762	300	35,300	0.0085
		,		Total, U ₆₀ =	0.0085

Environmental CUF Calculation for 60 Years:

Maximum F _{en-HWC} Multiplier for HWC Conditions =	5,39	(Irom Table 6)
Maximum Fen-NWC Multiplier for NWC Conditions ⊭	13.17	(trom Table 6)
$\label{eq:Uenv60} \begin{split} U_{env60} = U_{60} \; x \; F_{en \text{-}NWC} \; x \; 0.53 + U_{60} \; x \; F_{en \text{-}HWC} \; x \; 0.47 = \\ \text{Overall Multiplier} = U_{env60}/U_{60} = \end{split}$	0.0809 9.51	

Page 20 of 24

(Contains Vendox Prophietar Antonnation

F0306-01R0

Table 8: EAF Evaluation for Limiting RPV Shell/Shroud Support Location

Component: RPV Shell at Shroud Support NUREG/CR-6260 CUF: 0.032 (for reference only) Reference: NUREG/CR-6260, p. 5-102 Stress Report CUF: 0.0549 (for Point 9, see below) Material Low Alloy Steel (Material = A-533 Gr. B per References [14] and [19]) Design Basis CUF Calculation for 40 years: Hydrotest $\sigma_{\phi} =$ 26,240 psi (p. S3-97 of RPV Stress Report) psi (p. S3-97 of RPV Stress Report) Hydrotest _{or} = -1,250 (p. S3-99d of RPV Stress Report) Stress Concentration Factor, K, = 2.40 Hydrotest K_{t06} = psi (p. S3-97 of RPV Stress Report) 62,976 Improper Startup of = 28,060 psi (p. S3-98 of RPV Stress Report) psi (p. \$3-98 of RPV Stress Report) Improper Startup or = -1,025 psi (p. S3-98 of RPV Stress Report) Improper Startup Skin Stress = 156,099 psi (p. S3-98 of RPV Stress Report) Improper Startup K₁₀₆ + Skin Stress = 223,443 psi (p. S3-99a of RPV Stress Report) Warmup of = -5,707 Warmup ₍₇₁ = -102 psi (p. S3-99a of RPV Stress Report) Warmup K_{tob} = -13,696 psi (p. S3-99a of RPV Stress Report) Etatique curve/Eanalysis = 1.0417 30.0 / 28.8 per S3-99I of RPV Stress Report and ASME Code fatigue curve 1.0067 Power Uprate = =(549 - 100) / (546 - 100) per 4.4.1.b al 26A6019, Rev. 1 [14] NB-3228.5 of ASME Code, Section III [11] 2.0 m = 0.2 NB-3228.5 of ASME Code, Section III [11] n = psi (ASME Code, Section II, Part D (11)) 26,700 S_m =

PL+PB+Q (see Note 1)	Events	Ke (see Note 2)	Salt (see Note 3) A (see I	Vote 4) N (see Note 5)	U
34,690	Improper Startup - Warmup	1.00	124,825 5	332	0.0151
33,095	Hydrotest - Warmup	1.00	40,804 32	2 8,095	0.0398
				Total, U ₄₀ =	0.0549

Notes: 1. $P_{e} + P_{e} + Q$ is computed for Point 9 based on the $\{(\sigma_{e} + \sigma_{e})_{event} + (\sigma_{e} + \sigma_{e})_{event}\}$ stress intensity.

2. K computed in accordance with NB-3228.5 of ASME Code. Section III.

3. $S_{st} = 0.5 * K_e * E_{Mayor curve} / E_{analysis} * Power Uprate * [(K_1 \sigma_o + \sigma_r)_{Event1} + (K_1 \sigma_o + \sigma_r)_{Event2}]$

4. n for 40 years is the number of cycles as follows per p.	S3∙99e and	S3-991 of the RPV Stress Report:
Improper Startup =	5	cycles
Hydratest =	2	cycles
Isothermal at 70°F and 1,000 psi =	120	cycles (same as number of Startup events
Warmup-Cooldown =	199	cycles
Warmup-Blowdown =	1	cycle
TOTAL =	327	cycles
5. N obtained from Figure I-9.1 of Appendix 1 of ASME Co.	de, Section I	И.
5. n lor 60 years is the projected number of cycles as follo	ows:	
Improper Startup =	1	cycles
Hydrotest =	1	cycles
Isothermal at 70°F and 1,000 psi =	300	cycles (same as number of Startup events
Warmup-Cooldown =	300	cycles
Warmup-Blowdown ∞	1	cycle
TOTAL	603	cycles

Revised CUF Calculation for 60 Years:

P _L +P _B +Q (see Note 1)		Ke (see Note 2)	S _{alt} (see Note 3)	n (see Note 6)	N (see Note 4)	U
34,690	Improper Startup - Warmup	1.00	124,825	1	332	0.0030
33,095	Hydrotest - Warmup	1.00	40,804	602	8,095	0.0744
					Total, U ₆₀ =	0.0774

Environmental CUF Calculation for 60 Years:

Maximum F _{en-HWC} Multiplier for HWC Conditions =	5.39	(irom Table 6)
Maximum F _{en-HWC} Multiplier for NWC Conditions =	13.17	(irom Table 6)
$J_{env-60} = U_{60} \times F_{en-NWC} \times 0.53 + U_{60} \times F_{en-HWC} \times 0.47 = Overall Multiplier = U_{env} + OUerall$	0.7364 9.51	

File No.: VY-16Q-303 Revision: 0

Contains Vender Proprietary Information

Page 21 of 24

F0306-01R0

Table 9: EAF Evaluation for RR Inlet Nozzle Forging Location

Component: Recirculation Inlet Nozzle Forging NUREG/CR-6260 CUF: 0.310 (for reference only) Reference: NUREG/CR-6260, p. 5-105 Stress Report CUF: 0.0433 (updated for Point 12, see below) Material: Low Alloy Steel (Material = A-508 CI. II per p. I-S8-4 of CBIN Stress Report Section S8) Design Basis CUF Calculation for 40 years: Elatique curve/Eanalysis = 1.1278 = 30.0 / 26.6 (per p. I-S8-24 of CBIN Stress Report Section S8 and ASME Code latigue curve) Power Uprate = 1.0067 =(549 - 100) / (546 - 100) per 4.4.1.b ol 26A6019, Rev. 1 [14] stress concentration factor (p. A270 of VYC-378, Rev. 0 [12]) $K_1 =$ 1.660 m = 2.0 NB-3228.5 of ASME Code, Section III I11 0.2 NB-3228.5 of ASME Code, Section III [11] n = psi (ASME Code, Section II, Part D [11]) S_ = 26,700 Sat (see Note 4) n (see Note 5) N (see Note 6) PI+PB+Q (see Nole 1) Skin Stress (see Note 2) Ke (see Note 3) U 43,110 15,145 1.00 49,224 200 4,614 0.0433 Total, U40 = 0.0433 Notes: 1. P_L+P_E+Q is obtained for Point 12 from p. A270 of VYC-378, Rev. 0. 2. Skin Stress is obtained for Point 12 from p. A270 of VYC-378, Rev. 0. 3. K computed in accordance with NB-3228.5 of ASME Code, Section III. 4. $S_{AB} = 0.5 + K_{\bullet} + E_{ABBCPA - CAPPA}/E_{ABABVARE} + Power Uprate + [(P_1 + P_0 + Q) K_1 + Skin Stress].$ 5. n for 40 years is the number of Heatup-Cooldown cycles, per p. B28 of VYC-378, Rev. 0. 6. N obtained from Figure I-9.1 of Appendix I of ASME Code, Section III. 7. n for 60 years is the projected number of Heatup-Cooldown cycles. Revised CUF Calculation for 60 Years: Sati (see Note 4) It (see Note 7) PL+PB+Q (see Note 1) Skin Stress (see Note 2) Ke (see Note 3) N (see Note 6) U 15,145 300 4.614 43,110 1.00 49,224 0.0650 Total, U₆₀ = 0.0650 Environmental CUF Calculation for 60 Years: Maximum Fen-HWC Multiplier for HWC Conditions = 2.45 (from Table 5) Maximum F_{en-NWC} Multiplier for NWC Conditions = 12.43 (from Table 5) $U_{env-60} = U_{60} \times F_{en-NWC} \times 0.53 + U_{60} \times F_{en-HWC} \times 0.47 =$ 0.5034 Overall Multiplier = Uenv-60/U60 = 7.74

File No.: VY-16Q-303 Revision: 0

Contains Vendor Proprietary Information

NEC066019

Page 22 of 24

Table 10: EAF Evaluation for RR Inlet Nozzle Safe End Location

Component	t: Recirculation Inlet N	ozzle Sale End			
NUREG/CR-6260 CUF	0.310	(for reference only)			
Reference	e: NUREG/CR-6260, p.	5-105			
Stress Report CUF	C 0.0017	(updated for Locatio	n 6-1, see below)		
Watena	i: Stainless Steel	(316L per p. 8 of 234	14292, Rev. 4)		
Design Basis CUF Cal	culation for 40 years:				
	E,	aligue curve/Eanalysis =	■ 1.1076	= 28.3 / 25.55 (p	er p. 62 of Reference [18] and ASME Code fatigue curve)
		Power Uprate =	1.0067	=(549 - 100) / (5	46 - 100) per 4.4.1.b of 26A6019, Rev. 1 [14]
	· ·	K, =	- 1.280	stress concentra	ation factor (p. B27 of VYC-378, Rev. 0 [12])
		m =	1.7	NB-3228.5 of AS	ME Code, Section III [11]
		n =	0.3	NB-3228.5 of AS	ME Code, Section III [11]
		S _m =	= 16,600	psi (ASME Code	e, Section II, Part D (11))
PL+PB+Q (see Note 1)	P+Q+F (see Note 2)	K _e (see Note 3)	S _{all} (see Note 4)	n (see Note 5)	N (see Note 6) U
47,183	36,972	1.00	26,385	2,076	1,242,266 0.0017
					Total, $U_{40} = 0.0017$
•		1.0.0			
. Notes:	2. PL +PE +Q is obtained to	d for Surface I (aller v • Deiet 6 I kem e. 118	eld overlay) from p.	PEOPE upld or	2 [18]. 24 24
	3 K computed in acco	r Fornt 6-1 nom p. 116 rdance with NB-3228.	5 of ASME Code Se	ection III	<i>ziay).</i>
	4. S., = 0.5 'K. 'E	/E * Powe	r Uprate * I (P+Q+F) K. I.	
	5. n for 40 years is the n	umber of cycles as fo	llows per p. 826 of	VYC-378, Rev. 0;	
	-	· 1	Design Hydrotest =	130	
	•	Loss of Feed	oumps Composite:		
		S	Startup/Shutdown =	290	
			SRV Blowdown =	8	
		Loss of	Feedwater Pumps	30	10 evenis x 3 up/down cycles per event
	i	Na	SCHAM =	270] 10 auglos of uppet aciegnia, plus 1 liqual C aciegnia supet
		740	Mormal =	739	= Sum of all of above events
			Zeroload =	598	= Startup/Shutdown + SRV Blowdown + Scram + LOFP
	-	Total n	umber of cycles =	2,076	
	6. N obtained from Figur	e I-9.2 of Appendix I d	ASME Code, Sect	ion III.	
	7. n for 60 years is the p	rojected number of cy	cles as follows:		
		£)esign Hydrotest =	120	1
		Loss of Feed	oumps Composite:		
		S	lartup/Shutdown =	300	
		1	SHV BIOWDOWN =	30	10 events x 3 voldown cycles per event
		L055 01	SCRAM -	289	All remaining scrams
•	l	Nor	mal +/- Seismic =	11	Assume the same
			Normal =	751	= Sum of all of above events
			Zeroload =	620	= Startup/Shuldown + SRV Blowdown + Scram + LOFP
		Total n	umber of cycles =	2,122	
Revised CUF Calculation	n for 60 Years:				
P. + P. + O. (see Note 1)	P+Q+F (see Note 2)	K (see Note 3)	S. (con Note 4)	n (see Note 5)	N (see Note 7)
47 193	26.072	1 00	26 285	2 1 2 2	1 242 266 0 0017
47,103	30,872	1.00	20,303	2,122	Total II = 0.0017
				1	
Environmental CUF Calc	ulation for 60 Years:				
		Max		lultiplier for HW	C Conditions = 15.35 (from Table 2)
			imum F M	ultiplier for NM	IC Conditions = 8.36 (from Table 2)
		11:		0.53 ± H v E	$1000 \times 0.47 = 0.0199$
		^U env-60 ^m	Cou ∧ ' en-NWC ∧ C)vo	rall Multinlier	$= U_{\text{new}} c_{\text{new}} c_{\text{new}} = 11.64$

File No.: VY-16Q-303 Revision: 0

Contain Vendor Proprietary Information

Page 23 of 24

NEC066020

No.	Component	Material	40-Year Design CUF ⁽¹⁾	60-Year CUF ⁽²⁾	Overall Environmental Multiplier	60-Year Environmental CUF ^(2,3)
1	RPV Shell/Bottom Head	Low Alloy Steel	0.0057	0.0085	9.51	0.0809
2	RPV Shell at Shroud Support	Low Alloy Steel	0.0549	0.0774	9.51	0.7364
3	Recirculation Inlet Nozzle Safe End	Stainless Steel	0.0017	0.0017	11.64	0.0199
4	Recirculation Inlet Nozzle Forging	Low Alloy Steel	0.0433	0.0650	7.74	0.5034

Table 11: Summary of EAF Evaluation Results for VY

Notes: 1. Updated 40-year CUF calculation based on recent ASME Code methodology and design basis cycles.

2. CUF results using updated ASME Code methodology and actual cycles accumulated to-date and projected to 60 years.

3. An Fen multiplier was used for each respective component with the following conditions:

+ 47% HWC conditions and 53% NWC conditions

File No.: VY-16Q-303 Revision: 0

(Contains Vendor Proprietary Information

Page 24 of 24

NEC066021

APPENDIX A

VY WATER CHEMISTRY INFORMATION [8]

File No.: VY-16Q-303 Revision: 0

Page A1 of A2

NEC066022

(Contains Vendor Proprietary Information

	Pre-NMCA	Post-NMCA + HWC	Post-NMCA + HWC	Future Operation
	1593 MWth (OLP)	1593 MWth (OLP)	1912 MWth (EPU)	Post-NMCA + HWC 1912 MWth (EPU)
Location		Average Availability 98.5%	Average Availability 98.5%	Average Availability 99%
	Implementation Date = 11/1972	NMCA Application Date = 04/27/2001 HWC Implementation Date = 11/01/2003	EPU Implementation Date = 5/2006	
FW Line	40 ppb	40 ppb	40 ppb	40 ppb
Recirc. Line	122 ppb	48 ppb	34 ppb	34 ppb
RPV Bottom Head **	128 ppb	69 ppb	55 ppb	55 ppb
RPV Upper Region	114 ppb	97 ppb	. 90 ppb	90 ppb
RPV Beltline Begion	123 ppb	46 ppb	31 ppb	31 ppb

** RPV Bottom head at "Lower Plenum, Downflow" (i.e. outside core support columns)

File No.: VY-16Q-303 Revision: 0 Page A2 of A2

NEC066023

(Contains Vendor Proprietary Information/

APPENDIX B

VY LICENSE DATE [10]

File No.: VY-16Q-303 Revision: 0

Contains Vendor Proprietary Information

NEC066024

Page B1 of B2

Vermont Yankee Nuclear Power Station License Renewal Application

Michael A. Balduzzi Vice President -Pilorim Nuclear Power Station

Fred R. Dacimo Vice President -Indian Point Energy Center

Randall K. Edington Vice President -Operations Support

Christopher J. Schwarz Vice President -Operations Support

Theodore A. Sullivan Vice President -Fitzpatrick Nuclear Power Station

Jay K. Thayer Vice President -Vermont Yankee Nuclear Power Station Pilgrim Nuclear Power Station 600 Rocky Hill Road Plymouth, Massachusetts 02360

Indian Point Energy Center Bleakley Avenue & Broadway Buchanon, New York 10511

Cooper Nuclear Power Station 1200 Prospect Road P.O. Box 98 Brownsville, Nebraska 68321

Entergy Nuclear Operations, Inc 440 Hamilton Avenue White Plains, New York 10601

Fitzpatrick Nuclear Power Station 268 Lake Road East Lycoming, New York 13093

Entergy Nuclear Vermont Yankee Corporate Office P.O. Box 0500 185 Old Ferry Road Braitleboro, VT 05302-0500

1.1.5 Class and Period of License Sought

ENO requests renewal of the facility operating license for VYNPS (facility operating license DPR-28) for a period of 20 years. The license was issued under Section 104b of the Atomic Energy Act of 1954 as amended. License renewal would extend the facility operating license from midnight March 21, 2012, to midnight March 21, 2032.

This application also applies to renewal of those NRC source materials, special nuclear material, and by-product material licenses that are subsumed or combined with the facility operating license.

1.1.6 Alteration Schedule

ENO does not propose to construct or alter any production or utilization facility in connection with this renewal application.

1.0 Administrative Information

Page 1-4

File No.: VY-16Q-303 Revision: 0

ins Vendor Proprietary Information

F0306-01R0

Page B2 of B2