
.'� 

Parameter Sensitivity Analyses of Modeling Results 
for the Yucca Mountain Repository from NRC's 

TPA 3.2 Computer Code 

by� 

Cheryl Hawkins� 
ACNWlntern� 

September 1999� 

Summary and Conclusions 

A statistical method was used with parameter sensitivity analyses to evaluate results from 
execution of the TPA Version 3.2 code. The TPA results consisted of several sao realization sets 
ofMonte Carlo runs pertaining to a base case scenario with a limited number of sampled 
parameters. Previously, several types of statistical and non-statistical techniques have been used 
to perform sensitivity analyses employing the TPA Version 3.2 code. Thefocus of this report was 
on a statistical test in which the sao vectors for the SO,OOO-y..ear time peri6d of interest were 
sorted into two bins depending on whether the dose was greater or less than 0.2 mrem. The . 
sampled parameters in each bin were then compared statistically to identify any statistical . 
differences between the two bins. For the SO,OOO-year time period of interest, several parameters 
were found most influential for the analysis of this limited base case scenario study. The final list 
of influential parameters was selected on the basis of the K-S test, the Mann-WhitneyU test, and 
the visual inspection of the cumulative probability curves. . 
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Introduction 

Yucca Mountain Project . . . 

Based on the provisions of the Nuclc:ar.Waste Poli~y A~H~~~~~~d the ~ergy ~~~~*'>~ 
Act (EnPA), the Nuclear Regulatory ConumsslOn (NRC) 1S ~lbiefot e.valuating the licC~ ~ 
application for a proposed geologic repository constructed for ~. ~~eniofhigh-Ievel,' _." 
nuclear waste at Yucca Mountain, Nevada. As groundwork foi1tS~re,~"tOiy review8ctivid~'s"" 
outlined in the NWPA and EnPA, the NRC is conducting detailed UfC~cal ~ormance _"_" 
assessments to understand and identify the potentially important isolationtharacieristics and io' 

capabilities ofthe proposed repository system at the Yucca Mountain 'sitet~ on the 
information currently available. An important facet of these performanCe lsSe~"sme~tndeavors' .­
is the use of the Total-system Performance Assessment computer code~ '. . ­
Total-System Performance Assessment Code . . . 

The TPA code is designed to simulate the behavior of the geologie'~PosliO~bytaking~" 
into account the essential characteristics of the natural and engineered barrier sy~fu'S:~8nd the . 
availability of information about the geologic setting and design. This"ooeUID:en(pR,~ents 
sensitivity analyses using the latest version ofthe TPA code, Version 3.2~~ .O&~.~fthe "~".~ .... 
fundamental purposes for applying the TPA Version 3.2 code to the propoSe4 repC>sitolj:is't(i: 
acquire a detailed and quantitative understanding of the key factors controllirigth~d_tio~'of' 
the engineered barrier system, the release of the waste from the repository, the'-eIiSUing~ri' 
of the waste through various pathways, and possible human exposure at the location ofth~ . 
designated receptor group. A probabilistic method is used to model the total repository system 
that takes into account significant physical and chemical processes, as well as potentially: 
disruptive events and processes. 

This paper describes a particular sensitivity analysis technique utilized with results of the 
TPA Version 3.2 code system-level calculations. In general, a sensitive parameter is defined as 
one that provides a relatively large change in the output variable for a unit change in'k input 
parameter. The goal of the sensitivity analyses presented in this report is to determine the 
parameters to which groundwater peak dose in the 50,OOO-year time period of interest shows the 
most sensitivity. The analyses were conducted for a basecase-type study using a limitednumbet 
of sampled parameters without including any igneous activity or{aulting di~~veevei1ts.. '_ "" 

The technique used relies on the Monte Carlo methoti' t~tpro~abilisifcd~t~~~. . 
system performance. This sensitivity analysis of the system fbcUs~s l;)n the gfOWldwiltet:peak ", 
dose in the 50,OOO-year time period ofinterest to an averagemenibe~ qfarecef~o~grouP'~cated- " 
20-km from the repository. Many ofthe input parameters are not preciS~lY'krioWn and fie'- '. 
variable, so their values are described by probability distributions: -The MonteCarJo tecilni~tie:. 
makes repeated calculations called realizations of the possible state~'for"ihe1Sy~~~~~siDg···· 
values for the input parameters from their probability distributions.' As-man.y as 52'pararileters'. " 
are sampled in this analysis ofthe TPA Version 3.2 code, how~ver'on1y afey;,.of.th~se :" ..... 
parameters contribute sigiuficantly to the uncertainty iIrpe8k~os~ ~ausc;o~~ gre8t. :. " 
sensitivity ofpeak doses to those parameters. It is assumed that ··th' beIia~lbr "ofthc',system is I 

simulated by appropriately sampling the random parameters an~1hen:eOmputing the;system ." . 
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,- -... output for each realization. Since it is assumed that the decisions about appropriate model 
{ assumptions have been made in advance, no additional considerations are made concerning the 

dependence of the output on those assumptions. 

Analyses Methods: Nonparametric Tests 
Nonparametric tests, also sometimes referred to as distribution free tests, are often used in 

place of their parametric counterparts when certain assumptions about the underlying populations 
are questionable. All tests involving ranked data are nonparametric. This class of tests doesn't 
depend upon knowing the distribution of the results, nor upon knowing the mean value or 
knowing the standard deviation, so they can be applied more generally. Because of that fact, 
they are often more powerful in detecting population differences when certain assumptions are 
not satisfied. However, users of these tests must be aware that they are not necessarily as likely 
to detect significant effects, since they do not require quantitative dependent variables and do not 
require Gaussian distributions. 

The analyses' methods presented in this paper consist of the·following two nonparametric tests, 
which are described in detail below. 

Mann-Whitney U Test 
The Wilcoxon Mann-Whitney Test, also known as the Wilcoxon rank sum test, is one of 

the most effective of the nonparametric tests for comparing two populations. It is used to test the 
null hypothesis that two populations have identical distribution functions against the alternative 

(� hypothesis that the two distribution functions differ only with respect to location (median), if at 
all. The Wilcoxon Mann-Whitney test does not require the assumption that the differences 
between the two samples are normally distributed. In many applications, the Wilcoxon Mann­
Whitney Test is used in place of the two-sample t-test when the normality assumption is 
questionable. This test can also be applied when the observations in a sample ofdata are ranks, 
that is, ordinal data rather than direct measurements. 

To use the Mann-Whitney U test appropriately for statistical analyses, the following assumptions 
must be made: . 
•� Within each sample, the values are independent, and identically distributed. The 

distribution does not need to be specified, but all the values in each sample follow the 
same continuous distribution. 

•� The two samples are independent ofeach other. 
•� The populations from which the two samples were taken differ only in location. That is, 

the populations may differ in their means or medians, but not in their dispersions or 
distributional shape (such as skewness). 

•� Because the test statistic for the Mann-Whitney rank sum is based only on the ranks 
within each sample, the test can be performed when the only data available are those 
relative ranks. 
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Kolmogorov-Smirnov Test (K-S Test) 
For a single sample ofdata, the Kolmogorov-Smirnov nonparametric test is used to test 

whether or not the sample of data is consistent with a specified distribution function. When there 
are two samples ofdata, it is used to test whether or not these two samples may reasonably be 
assumed to come from the same distribution. The Kolmogorov-Smirnov test does not require the 
assumption that the population is normally distributed. 

The K-S test is a goodness-of-fit test for any distribution. The test relies on the fact that 
the value of the sample cumulative density function is asymptotically normally distributed. To 
apply the K-S test, the cumulative frequency (normalized by the sample size) of the observations 
is calculated as a function ofclass, the cumulative frequency for a true distribution (most 
commonly, the normal distribution) is then calculated, and then the greatest discrepancy between 
the observed and expected cumulative frequencies, which is called the "D-Statistic", is 
determined. This value is compared against the critical D-statistic for that sample size. If the 
calculated D-statistic is greater than the critical one, then the null hypothesis that the distribution 
is of the expected form is rejected. Failure to understand and properly apply uniform distribution 
tests by the K-S test may result in drawing erroneous conclusions from your data. 

Methods 

Total-System Performance Assessment (TPA) Code: Data Input. Execution. & Output Files 
The TPA Version 3.2 code is executed in batch mode using primary and some auxiliary 

input data files. Primary input data for the TPA Version 3.2 code are contained in the tpa. inp 
file. The tpa. inp file contains the information necessary for the user to specify the 
configurations, number of realizations, simulation time, number of subareas, and parameters to 
be sampled. The input data for the TPA Version 3.2 Code was prepared by modifying the 
tpa.inp.meanvalues file, which contains the mean values for all quantitative parameters contained 
in the TPA code. A limited number of parameters were selected and changed to their values as 
listed in tpa.inp.basecase. Once the alterations to the tpa.inp file were completed, the TPA 
Version 3.2 code was executed in a UNIX operating system with the command tpa.e. 

During execution, the TPA Version 3.2 code generated a number ofoutput files. Four of 
these files were used in the sensitivity analyses described in this paper. The output files of 
interest to this project are as follows: 

Output Files Used for Calculation Purposes 
(1)� gwpkdos.res - data file containing the total groundwater peak dose, time ofpeak dose, 

and dose from each nuclide at the time ofpeak dose. 
(2)� samplpar.res - data file consisting of the sample parameter values for each vector 

Output Files Used for Labeling and Identification Purposes 
(3)� samplpar.abb - header file for samplpar.res with sampled parameter abbreviations 
(4)� samplpar.hrd - header description file for samplpar.res with sampled parameter 

abbreviations accompanying the complete sampled parameter names. 
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~, The TPA Version 3.2 code was executed for three separate 500-realization runs, which 
are as follows: 

(1) Run 1 consisted ofan input file with mean values for all parameters except for 52 parameters 
selected to be sampled. There were no parameter correlations introduced in this run. Also, 
the input file provided a seven-subarea discretization of the repository. 

(2) Run 2 consisted ofan input file with mean values for all parameters except for 52 parameters 
selected to be sampled. Parameter correlations were introduced for pairs represented within 
the 52 sampled parameters. Also, the input file provided a seven subarea discretization of the 
repository. 

(3) Run 3 consisted of an input file with mean values for all parameters except for 40 parameters 
selected to be sampled. Parameter correlations were introduced for pairs represented within 
the 52 sampled parameters. Also, the input file was modified to define the repository area as 
one rectangular subarea to minimize the number of loops required for each realization during 
the execution of the TPA Version 3.2 code. 

Dose Criteria 
To simulate a regulatory approach, a dose criterion for the total groundwater peak dose 

(as contained in the gwpkdos.res file) at the 50,000-year time period of interest was initially 
chosen as 1.0 millirem. This criterion was only utilized with the results for Run 1. The output 

(� files ofall the runs were processed using a total groundwater peak dose criterion of 0.2 mrem. 

Code to Bin AcceptablelUnacceptable Realizations Based on the Chosen Dose Criteria 
A FORTRAN computer code was written (see Appendix A) that processes the data 

contained in the gwpkdos.res file by determining whether the total groundwater peak dose at the 
50,000-year time period of interest is greater than, equal to, or less than the selected dose 
criterion. Realizations resulting in peak doses less than the dose criterion were denoted as 
behaviors and realizations resulting in peak doses greater than or equal to the dose criterion were 
denoted as non-behaviors. This computer code also writes the values of the sampled parameters 
for behaviors in one file (behaviorfile) and for non-behaviors in a second file (nonbehavefile). 

General Sensitivity (GENSENl Program 
The GENSEN program is a FORTRAN program created by G.M. Hornberger and R.C. 

Spear (see Appendix B for additional details) which analyzes the differences between the two 
bins of parameters from the behaviorfile and nonbehavefile by looking at covariances as well as 
simple univariate separations. This statistical investigation is accomplished by using the 
Kolmogorov-Smimov and the Mann-Whitney U tests as described above. 

The Kolmogorov-Smirnov statistic (denoted as DAA in the GENSEN program) is the 
difference between cumulative distribution function curves. The critical statistic is the maximum 
distance between the two cumulative curves. The critical value of the difference was chosen at 
the 95-percent confidence level; when the difference was greater than that, the two curves were 

(� considered statistically different. The parameters from both behavioral and non-behavioral 
situations were mapped onto a standardized probability axis for plotting. In the GENSEN 
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---" program, this value is denoted as "U" (the Mann-Whitney statistic). The underlying cumulative 
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probability associated with the parameter is labeled "PROB". The other values listed in the 
output tables from GENSEN are SNB-the cumulative probability under behavior, SNNB-the 
cumulative probability under non-behavior, DELB-distance between underlying and behavior, 
DELNB-distance between underlying and non-behavior, and DELBNB-distance between 
behavior and non-behavior. 

Analysis of Output from the GENSEN Program 
The output from the GENSEN program was analyzed in two interdependent ways. (i) 

The DAA values for each parameter were used to rank order them; this yielded a straightforward 
sensitivity ranking for all the sampled parameters. (ii) Cumulative probability plots were 
constructed by plotting U (the Mann-Whitney statistic) against SNB and SNNB (the cumulative 
probabilities under behavior and non-behavior, respectively). The cumulative probability plots 
were visually inspected to determine which parameters displayed the biggest differences, which 
correlates to large DAA values and to ensure that the K-S test did not yield any false results. 
This analysis was completed with the results of four different configurations. These 
configurations and their distinguishing characteristics are listed in Table 1. 

Table 1: Description of Configurations Used in this Sensitivity Analysis 

(� IIConfiguration� 1 2 3 4 
II II II I 

IData from Run # 1 1 2 3 
II II I 

1# of Parameters 52 52 52 40 
II II I 

1# of Realizations 500 500 500 500 
II II I 

Icorrelated Input Parameters? No No Yes Yes 
II II I 

IDose Criteria (mrem) 1.0 0.2 0.2 0.2 
II� II I 

1# of Subareas� 7 7 7 1II� II I 

(� 
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Results 

Parameter Ranking by DAA Statistic 
For each of the four configurations considered, the top ten parameters as assessed by the 

ranking of their DAA values yielded from the GENSEN program are listed in Table 2. Please 
refer to Appendix C for a complete listing of all the sampled parameters, their DAA values, and 
their rankings for each ofthe four configurations. 

Table 2: Top Ten Parameten Based on the Ranking ofDAA Values for Four 
Configurations 

Ranking II Contlguration 1 II Configuration 2 II Configuration 3 II Configuration 4 

1 ARDSAVNp SbArWt% SbArWt«'1cl SFWt«'IclClII II II II 
2 II MAPM@GM WPRRG@20 AAMAI@S SbArWt%II II II 
3 APrs SAY MAPM@GM WPRRG@20 AAMAI@SII II II II 
4 RD IV I APrs SAY MAPM@GM MAPM@GMII II II II 
5 ARDSAV I ARDSAV I APrs SAY APrs SAY II II II II 
6 WPRRG@20 ARDSAVNp Fow· WPRRG@20( II II II II 
7 RD IV Ra SFWt%C5 ARDSAVPu ARDSAV I II II II

I'II II II II8 MixZnT20 SFWt%C2 ARDSAVAm Fow· 

9 MATI@GM RD IV I ARDSAVNp MixZnT20II II II II 
10 II ARDSAVRa II RD IV Np II ARDSAV I II ARDSAVPu 

Visual Inspection of Cumulative Probability Plots 
As previously described, the cumulative probability plots for each of the top ten 

parameters for each analyzed configuration were constructed by plotting the Mann-Whitney 
statistic (U) against the cumulative probabilities under behavior and non-behavior (SNB and 
SNNB, respectively). Please refer to Appendix D for a full listing of these plots. Since the K-S 
test yields erroneous results under certain circumstances (see Figure 1 below), each cumulative 
probability plot for each of the statistically significant parameters was checked for this 
phenomenon. The results of this visual analysis are contained in Tables 3,4,5, and 6 below. 

(� 



Maximum DAA Value Is Much Greater 
than the General DAA Trend 

~ i·I·················J············ 

-----------------_.­

D Yields Erroneous DAA Value 

Figure 1: Example ofK-S Test Yielding Erroneous Results, which Stresses the Importance 
of Visually Inspecting the Cumulative Probability Plots for Each Parameter 

( Table 3: Results For The Visual Inspection of the K-S Test Results for Configuration 1� 

Ranking Parameter Name Passed Visual Inspection� 
(Yes or Questionable)� II I 

1 ARDSAVNpII QuestionableII� 
2 MAPM@GMII YesII� 
3 APrs SAV QuestionableII� 
4 RD IV I II I' YesII� 
5 ARDSAV I II YesII� 
6 WPRRG@10II QuestionableII� 
7 WPRRG@20II YesII� 
8 RD IV Ra1/ Yes�II� 
9 MixZnTIOII Questionable�II� 
10 II MATI@GM II Yes�( 

7� 



Table 4: Results For The Visual Inspection of the K-S Test Results for Configuration 2� 

Ranking Parameter Name Passed Visual Inspection� 
(Yes or Questionable)� II I 

1 SbArWt%II YesII� 
2 WPRRG@20II YesII� 
3 MAPM@GMII QuestionableII� 
4 APrs SAV II QuestionableII� 
5 ARDSAV I II YesII� 
6 ARDSAVNpII YesII� 
7 SFWt%C5II YesII� 
8 SFWt"J'oC2II YesII� 
9 RD IV I QuestionableII� 
10 II WPRRG@lO II Questionable" 

( Table 5: Results For The Visual Inspection of the K-S Test Results for Configuration 3� 

Ranking Parameter Name Passed Visual Inspection� 
(Yes or Questionable)� II I 

1 SbArWt%II YesII� 
2 AAMAI@SII YesII� 
3 WPRRG@20II YesII� 
4 MAPM@GMII QuestionableII� 
5 APrs SAY QuestionableII� 
6 Fow· YesII "II 
7 ARDSAVPu Yes 

8 ARDSAVAm QuestionableII" " 
9 ARDSAVNp " Yes 

10 II ARDSAV I II Yes" "( 



Table 6: Results For The Visual Inspection of the K-S Test Results for Configuration 4 

Ranking Parameter Name Passed Visual Inspection 
(Yes or Questionable)II I� 

1 SFWt%Cl YesII II� 
2 SbArWtG,Io YesII II� 
3 AAMAI@S YesII II� 
4 MAPM@GM QuestionableII II� 
5 APrs_SAV QuestionableII II� 
6 WPRRG@20 YesII II� 
7 ARDSAV I YesII II� 
8 Fow* YesII II� 
9 MixZnTIO Questionablerl I' 
10 ARDSAVPu YesII II� 

( Parameters Found Siimificant in Both Analysis Methods 
This portion of the paper presents the overall sensitivity analyses based on the statistical 

analysis ofa 500-vector Monte Carlo analysis ofa configuration involving a limited number of 
selected parameters to be sampled for the 50,OOO-year time period of interest. Table 7 contains 
the parameters that were determined to be significant for each configuration, which were 
determined as parameters that passed both the K-S test and the visual inspection of their 
cumulative probability plots. 



Table 7: Influential Parameters that Have Satisfied the Sensitivity Requirements for the 
K-S Test and the Visual Inspection of their Cumulative Probability Profiles 

IConfiguration I� 2 3 4II II� II II I 
I MAPM@GM SbArWt% SbArWt% SFWt%CIII� II II I 

RD IV I WPRRG@20 AAMAI@S SbArWt<'!clI - - II� II II I 
Influential I ARDSAV I ARDSAV I WPRRG@20 AAMAI@SII� II II IParameters 

I WPRRG@20 ARDSAVNp Fow* WPRRG@20II� II II I 
I RD IV Ra SFWt%CS ARDSAVPu ARDSAV I - - II II� II I 
I MATI@GM SFWt%C2 ARDSAVNp Fow*II II� II I 

ARDSAV I ARDSAVPuI -- II -- II� II I 

Discussion 

Selection of Overall Influential Parameters 

(� This portion of the paper attempts to identify influential parameters using the analyses presented 
above. For the 50,OOO-year time period of interest, several parameters were found most 
influential for the four configurations using a limited basecase scenario. Previously, a sensitivity 
analysis method consisting ofa combination of the K-S test, the Mann-Whitney U test, and 
visual inspection of the cumulative probability curves was utilized to detennine the most 
influential parameters. Since it is not clear that anyone method is superior to another for this 
detennination of sensitivity, the final list ofparameters was selected on the combination of all 
the analytical methods used. 

The selected parameters are presented in Table 8, which summarizes the sensitive parameters as 
dete~ined by using an analysis method composed of a combination of the tests as described 
above for each statistically significant parameter. The scores listed in Table 8 specifies the 
number ofconfigurations that selected a particular parameter among the ten most statistically 
significant. The parameters that did not make the final list include those that did not have 
statistically significant DAA values yielded by the K-S test and those that did not pass the visual 
inspection of the cumulative probability plot. It should be noted that there is one sampled 
parameter (the water use parameter at 10 km - WPRRG@IO)whichhas been disregarded, 
because it is not used in the execution of the TPA code and therefore could not have had an effect 
on the results. The analyses resulted in only eight parameters being selected as influential for the 
SO,OOO-year time period of interest. It is apparent that significant variations can exist for this 
particular time period of interest. 

( 
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Table 8: Overall Influential Parameters Determined for the SO,OOO-year Time Period of 
Interest from Sensitivity Analysis Studies 

IParameter Abbreviation II Parameter Name S~ore 
II 

ISbArWt% II Subarea Wet Fraction 3/3­
II 

IwpRRG@20 Ilwell Pumping Rate at 20-km Receptor Group 3/3
II 

IARDSAV_I IIAlluvium Ret for 1291 3/3
II 

IARDSAVNP II Alluvium Ret for 231Np 2/3
II 

ISFWt%C II Spent Fuel Wet Fraction for Corrosion Failures 2/3II 
IAAMAI@S IIAreal Average Mean Annual Infiltration at Start 2/3

II

IFow* II Flow focusing factor 2/3 

IARDSAVPu II Alluvium R.ct for 239pU 2/3II . . . . " ** Note: The results of the statistical analyses for ConfiguratIon 1 were not used m the 
designation of overall influential parameters due to the selection of a different dose 
criterion (0.2 mrem) for the remaining configurations. 

( 
Key Integrated Subissues for 50.000-year Time Period of Interest 
Parameters that have been identified as influential for the 50,OOO-year time period of interest will 
be considered in conjunction with their corresponding NRC integrated subissues. These 
important connections are presented in Table 9. 
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Table 9: Influential Parameters for the SO,OOO-year Time Period of Interest with their 
Corresponding Integrated Subissues. 

IIntegrated Subissues IIInfluential Parameters 

Iwaste Package Degradation ISpent Fuel Wetted Fraction for Corrosion Event 
(SFWt%C) 

Quantity and Chemistry of Water Subarea Wet Fraction (SbArWt%)� 
Contacting Waste Packages and Flow Focusing Factor (pow·)� 
Waste Fonns� 

Spatial and Temporal Areal Average Mean Annual Infiltration at Start 
Distributions ofFlow (AAMAI@S) 

Retardation of Water Production Alluvium Matrix RcJ for 1291 (ARDSAV_I) 
Zones and Alluvium Alluvium Matrix RcJ for 231Np (ARDSAVNp) 

Alluvium Matrix RcJ for 239pU (ARDSAVPu) 

Dilution of Radionuclides in Well Pumping Rate at Receptor Group at 20 km 
Groundwater through Well (wpRRG@20) 
Pumping 

( 
Discussion ofCorrelation Effects on Influential Parameters and Peak Dose 

The effects of parameters in the models for the TPA code are due in large part to the 
deliberate correlations of several of the radionuclide retardation parameters, particularly those for 
neptunium, iodine, plutonium, and uranium. It is likely that some of these factors show up 
because of the large contribution to peak dose of 231Np. In the case of 214Am, some dose also 
may be indirectly attributed to 241Am decaying to 231Np. 

The consequences of these correlated pairs can be ascertained by comparing the results of 
Run 2 with its non-correlated parameters and the results ofRuns 3 and 4 (see Table 2), which 
were modified to include parameter correlations. Table 10 presents the correlations that were 
utilized in Runs 3 and 4. 

(� 
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Table 10: Correlations Between Two Input Parameten Selected to Be Utilized in the 
Execution of the TPA Venion 3.2 Code. 

Parameter 1 Correlated with Parameter 2 II Correlation Factor I 
SbArWt«'J'o� AAMAI@S 0.631I II� II 

-0.224Fow·� AAMAI@SI II� II 
Fow·� SbArWt% -0.366I II� II 

ARDSAVAm� ARDSAVPu 0.964I II� II 
ARDSAVAm� ARDSAV U 0.346I II� II 
ARDSAVAm� ARDSAVNp 0.837I II� II 
ARDSAVPu� ARDSAV U 0.489I II� II 
ARDSAVPu� ARDSAVNp 0.881I II� II 
ARDSAVNp� ARDSAV U 0.610I II� II 

(� Before correlations were introduced, the subarea wet fraction and the alluvium matrix retardation 
values for iodine and neptunium were determined to be statistically significant and influential 
parameters. As a consequence of their correlations to other sampled parameters as introduced 
into Runs 3 and 4, three factors experienced large increases in their statistical significance. (1) 
The mean areal average infiltration into the subsurface at the start was ranked 4200 out of 52 
parameters in Run 1, however when its positive correlation to the subarea wet fraction was 
added, it quickly transitioned from its initial stage as an unimportant parameter to one which 
ranked extremely high in the sensitivity analyses. (2) Another example ofan extensive change 
stemming from the addition ofa correlation is the alluvium matrix retardation value for 
americium; it was converted from 37th place in the Run 1 (with no correlations) to a significant 
position in the sensitivity results for Run 3, which contained a positive correlations for the 
alluvium matrix retardation values for americium and the retardation factors for plutonium and 
neptunium. (3) Once the alluvium matrix retardation value for uranium had been modified to 
include positive correlations between it and the retardation values for plutonium and neptunium, 
its parameter ranking value changed from 43rd to the 15th and 8th places in Runs 3 and 4, 
respectively. 

Comparison to the Previous Sensitivity Analyses Using TPA Version 3.2 Code 
Extensive sensitivity analyses using various statistical and non-statistical methods have been 
conducted with data resulting from the execution ofTPA Version 3.2 Code. The influential 

( 

13� 



parameters for the 50,000-year time period of interest from sensitivity analysis studies are 
presented in Table 11. I 

Table 11: Influential Parameters for the 50,OOO-year Time Period of Interest from 
Sensitivity Analysis Studies 

Iparameter Abbreviation IIParameter Name I 
ISbArWt% II Subarea Wet Fraction 

I 
IWPRRG@20 IIwell Pumping Rate at 20-km Receptor Group 

I 
I 

IARDSAVNP IIAlluvium ~ for 237Np 

IARDSAVTc IIAlluvium ~ for 99Tc 
I 

IFmult* I Fmult factor for Water Flow Entering a Waste Package 
I 

IARDSAV_I IlAlluvium ~ for 1291 I 
IARDSAV_U IIAlluvium ~ for 234U 

I 
IAAMAI@S IIAreal Average Mean Annual Infiltration at Start I 

( 
A comparison was conducted between the results of the statistical analysis presented in this 
report and the results previously obtained from the statistical and non-statistical analysis of the 
investigation ofa basecase scenario executed using the TPA Version 3.2 Code. Dependence of 
several parameters, particularly the flow focusing factor, the spent fuel wet fraction for corrosion 
failures, and the alluvium matrix retardation factor for 239pU, are suspicious, since these 
parameters were sampled but have not reliably shown up as significant in other sensitivity 
studies using TPA Version 3.2 code. Contradiction between the present analysis and previous 
analyses also occurs with the enigmatic absence of parameters previously deemed influential, 
such as the retardation factor for technetium and the Fmult factor. 

Conclusions 

The information yielded from execution of the TPA Version 3.2 code was used with sensitivity 
analyses to apply a statistical method to a 500 realization set ofMonte Carlo runs pertaining to a 
basecase scenario with a limited number of sampled parameters. Even though several types of 
statistical and non-statistical techniques have been used to perform sensitivity analyses 
employing the TPA Version 3.2 code, the focus of this report was on a statistical test in which 
the 500 vectors for the 50,000-year time period of interest were sorted into two bins depending 
on whether the dose was greater or less than 0.2 mrem. The sampled parameters in each bin 

( were then compared statistically to identify any statistical differences between the two bins. 
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For the 50,OOO-year time period of interest, several parameters were found most influential for 
the analysis of this limited basecase scenario study. The final list of influential parameters (see 
Table 8) was selected on the combination of all the K-S test, the Mann-Whitney U test, and the 
visual inspection of the cumulative probability curves. The most influential parameters were 
determined as follows: 

• Subarea Wet Fraction 
• Well Pumping Rate at 20-km Receptor Group 
• Alluvium Rd for 1291 

This study resulted in determining three influential parameters (the mean areal average 
infiltration into the subsurface at the start, the subarea wet fraction, the flow focusing factor, and 
the spent fuel wet fraction for corrosion failures) whose primary effects were altering the spatial 
and temporal distributions of flow, the quantity and chemistry ofthe flow ofwater, the 
contacting ofwater with the waste packages, and the subsequent waste package degradation and 
eventual failure. Insight provided also by this study included highlighting the importance of 
alluvium matrix retardation factors for various radionuclides including 23'Np, 1291, and 239pU. As 
supported by previous scientific evidence and sensitivity studies as well as this report, the 
retardation factor for 23'Np is ofupmost importance because the large peak doses for any 
radionuclide for any type of realization comes from 23'Np. Since the retardation ofradionuclides 
in the alluvium matrix has been determined as been identified as influential parameters, it 
follows that the dilution ofradionuclides in groundwater through well pumping is also a ( parameter that is essential to the peak dose. 

The investigation of integrated subissues along with their corresponding influential parameters 
suggests that the geologic repository for the containment ofhigh-level nuclear waste in Yucca 
Mountain may provide better total-system performance with the introduction of additional 
engineered characteristics. The results of this report focuses on the necessity to provide better 
methods for controlling the flow ofwater onto and eventually into failed waste packages, as well 
as to constrain radionuclide sorption in the alluvium that to help cause a significant decrease in 
radionuclide transport or a longer delay in the arrival time ofradionuclides at the location ofthe 
selected receptor group. 
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

I NAMES OF SAMPLED PARAMETERS (NON-CONSTANT) 

-- .-Jlrameter ill # IAbbreVIation Ilfull Name 
AA~AA 

.~ 
"I;:
~~ 

IMAo. 
MA', 
...UC-R 
J'UCIK 
IJ'UCIK-R 
AA _2_ 1 
·Chlorid 
Wow· 
IFmult· 
ISbArWtolo 
WP-Det% 
RD_JVYu 
KDJVU 
RD IV Am 
RD JV_Np 
RD_IV Th 
RD_ IV_Ra 
KU_JV Pb 
RD IV J 
RD.JV _Tc 
RD_JV_NI 
RD__IV_Se 
RD_ IV_Nb 
i:SJ' wt"/ol1 
i:SrW17012 
SFWtoloI3 
SFWtOfol4 
i:SJ' wt"/o15 
i:Sr W17016 
SFWt%I7 
SFwtoloCl 
i:SJ' Wt"/oL:l 
i:Sr wt"/oLJ 
SFWt%C4 
SFWt%C5 
i:SJ' Wt"/oLb 
i:SJ' Wt"/oLI 
IlnvMPerm 
ARDSAVAm 
AKJ:sAVNp 
ARnsAV.J 
ARDSAVIc 
ARDSAV.U 
AU ~1;:,\VPu 

AlUlSAVRa 
ARDSAVSe 

IAPrs SAY 
i W.r...... , ';'fnr II 

PiumeTh5� 
I AqThick5� 

IMiXZnTIO� 

IArealAverageMeanAnnuallntHtratlOnAt:startLmmlyrJ 
IMeanAveragePreclpltatlonMUltlpllerAtlilaclalMaxwum 
MeanAverageIemperatureIncreaseAtGlaclalMaxImum[degC] 
1"'-ractIonUtCondensateRemoved[ l/yrj 
1""ractlOn01CondensateTowardReposltoryLl/yrj 
1""ractIon01CondensateTowardReposltoryRemovedLlIyrj 
AA _2_ lLC/m21yrJ 
IChiorideMultFactor 
IFowFactor 
IFmultFactor 
ISubAreaWetFractIon 
DetectlveFractlonOfWPs/cel1 
IRDJnvert_Pu 
IRD_lnvert _U 
RD Invert Am 
RD Jnvert_Np 
IRDJnvert Th 
IRD_Jnvert _Ra 
IRD_Jnvert Pb 
IRD. Invert I 
IRD_Jnvert _Ic 
IRD_Jnvert_NI 
IRD_Jnvert _Se 
RD Invert_Nb 
ISFWettedFractlon Imtlal..l 
ISFWettedFractlon JmtlaC2 
SFWettedFractlon Imtlal._3 
ISFWettedFractlon Jmtlal_4 
IS""Wettedf'ractlon Jmtlal__5 
I~il' Wettedl'Tactlon Jmtlal. _6 
ISFWettedFractlon Imtlal 7 
Sf'WettedFractlon Corrosion 1� 
I:s...·Wettedl'TactIon Corroslon_2� 
ISFWettedFractIon _Corrosion 3� 
ISFWettedFractlon Corrosion 4� 
SFWettedFractIon _Corrosion 5� 
I:s...·WettedFractIon _Corrosion _6� 
I:s...·Wetted...Tactlon _Corrosion 7� 
InvertMatrixPermeabilltyLmAlj 
AJluvlUmMatrixRD_ SAV Am 
IAlluvlumMatnxtt }_SAV. _Np 
IAlluvlUmMatrixRD__SAV 1 
AlJuvlUmMatrixRD._SAV Ic 
AlluvlumMatrixRD__SAV _U 
IA11uvlUmMatrixRU. SAV _Pu 
IAlluvlumMatrixRD__:SAV _Ra 
AJluvlUmMatrixRD__SAV _:Se 
AlluvlUmMatrixPoroslty _:SAV 
WellPumpmgRateAtReceptorGroup20km[gaVday] 

IPlume'l'hlckoeSS5kmLmj 
Aquiterl'hlCkneSS5kmLmJ 
MlxmgZoneThickness20km[m] 
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BEHAVELINK.F: 
A CODE TO BIN REALIZATIONS BASED ON A CHOSEN DOSE CRITERION 

Behavelink.fis a FORTRAN computer code that was written to process the data 
contained in the gwpkdos.res file (an output file created by the execution ofTPA Version 3.2 
code) by determining whether the total groundwater peak dose at the 50,OOO-year time period of 
interest is greater than, equal to, or less than the selected dose criterion. Realizations resulting in 
peak doses less than the dose criterion were denoted as behaviors and realizations resulting in 
peak doses greater than or equal to the dose criterion were denoted as non-behaviors. This 
computer code also writes the values of the sampled parameters for behaviors in one file 
(behaviorfile) and for non-behaviors in a second file (nonbehavefile). The code is also versatile; 
it is equipped to easily handle modifications by the user, including changes to the value for the 
chosen dose criterion, the number of sampled parameters, the number of realizations, as well as 
the names for the output files. 

( 

(­
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c
c
c 

c� 

Program BehaveLink 

Declarations 
array v initialized with number of realizations and parameters 
real*4 v(500,52) 

C pkdose.inp is input file containing numbers of vectors 
open (unit=5, file='pkdose.inp') 

C 
C

c� 

skip first four lines of input file (heading) 
do i=1,4 

read (5,*) 
end do 

C Initial arrays to zero 
open (11,file='gwpkdos.res') 
open (12,file='samplpar.res') 
open (13,file='samplpar.abb') 
open (21,file='behaviorfile') 
open (22,file='nonbehavefile') 

C 

(� 

C

C

C 

C� 

read number of vectors 
read (5,*) nvector 
skip first 8 lines of input file 8 (header lines) 
do i=1,8 

read{11,*) 
end do 
skip first 7 lines of input file 12 (header lines) 
do i=1,7 

read(12,*) 
end do 
skip first 5 lines of input file 13 (header lines) 
do i=1,5 

read(13,*) 
end do 

C 
C Labeling output files 

write (21,*) 
write (22,*) 
write (21,*) 'Behavior File' 
write (22,*) 'Non-Behavior File' 
do i=1,5 
write (21,*) 
write (22,*) 
end do 
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Program BehaveLink (cont'd) 

C� write parameter numbers 
do vl=1,52 
write (21,*) vi 
write (22,*) vi 
end do 

C binning using dose criteria 
do nv=1, nvector 

read (11,*) vector, pktime, pktede 
If (pktede.LT.(2e-4» then 

read (12,*) vectorn 
read (12,*)(v(i,j),j=1,52) 
write (21 ,'(12x,15e7.1e2)')(v(i,j),j=1,52) 

else 
read (12,*) vectorn 
read (12,*)(v(i,j),j=1 ,52) 
write (22,'(12x,15e7.1e2)')(v(i,j),j=1 ,52) . 

endif� 
end do� 
end� 
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GENSEN.F: 
A GENERAL SENSITIVITY PROGRAM FOR STATISTICAL ANALYSES 

GENSEN.fis a FORTRAN program created by G.M. Hornberger and R.C. Spear (see 
Appendix B for additional details) which analyzes the differences between the two bins of 
parameters from two input files (behaviorfile and nonbehavefile) by looking at covariances as 
well as simple univariate separations. This statistical investigation is accomplished by using two 
nonparametric tests: the Kolmogorov-Smimov and the Mann-Whitney U tests. This code is also 
adjustable; it is can be quickly modified to process input files with any given number of 
parameters. The example given in this appendix has been altered to compensate for statistical 
calculations involving 52 sampled parameters. 

( 

( 
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PROGRAM GENSEN� 

C STATISTICS FOR GENERALIZED SENSITIVITY ANALYSIS 
C KOMOGOROV-SMIRNOV STATISTIC; FUKUNAGA-KOONTZ TRANSFORMATION 
C� 
C PROGRAM BY G.M.HORNBERGER AND R.C.SPEAR APRIL 1978(CANBERRA) 
C REVISED AUG (GMH) 1979(BERKELEY) 
C 
c
c
c
c
C
C 

REVISED (BJC) 1983(CVILLE) 
adapted for pc (gmh) 1986(cYille) 

{LAHEY FORTRAN} 
further modified and commented for 

pc bjc (1987) cyille 

FOR INFORMATION CONTACT G.M.HORNBERGER 
C DEPT. ENVIRON. SCI. 
C CLARK HALL 
C UNIVERSITY OF VIRVINIA 
C
C
C
C
C� 

CHARLOTTESVILLE, VA 22903 
************************************************************ 

SELECTED VARIABLE LIST: 
PSI-PARAMETER VECTOR 

C NB -BEHAVIOR CODE� 
LAB-PARAMETER LABEL� 

(� 
C
C
C� 

NPAR-NUMBER OF PARAMETERS 
NS -NUMBER OF REPLICATIONS 
VMAP -MAPPED PARAMETER VECTOR C� 

C
C
C
C� 

MAP-CODE FOR EXECUTION: 
=0 FOR STATISTICS IN ORIGINAL PARAMETER SPACE 
=1 FOR F-K TRANSFORMATION BEHAVIORS 
=2 FOR F-K TRANSFORMATION NON-BEHAVIORS 

C =3 FOR ALL THREE ABOVE� 
C� =4 FOR ORIGINAL AND BEHAVIOR ONLY� 
C *************************************************************� 
C
C
C� 

DECLARATIONS: 

CHARACTER*10 TITLE(7},LAB(S2),L1N(100),CBL,CBB,CNN,LB1(S2), 
2 LB2(S2) 

CHARACTER*20 fileb,filenb,fileout,lbb*1 0,Ibnb*1 0 
LOGICAL*4 LFLAG 

DIMENSION PSI(3000,S2},NB(3000),VMAP(3000,S2),COVB(S2,S2), 
2 COVNB(S2,S2},XMB(S2},XMNB(52),EV(52,52},EVAL(52), 
3 AA(52,52),BB(52,52),DD(52,52),A(3000),B(3000}, 
4 CC(52,52),C1 (52,52),C2(52,52),UG(19), 
5 SNN1 (50),SNN2(50),XMBNB(52),EVALB(52),D1 (6),02(6), 
6 XMEAN(52),VAR(52),COVBNB(52,52),CT(52,52),EVB(52,52) 

( 
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Program GENSEN (cont'd) 

DATA UG/-1.643,-1.285,-1.037,-.845,-.676,-.528, 
2 -.386,-.255,-.128,0.,.128,.255,.386,.528,.676, 
3 .845,1.037,1.285,1.643/ 

DATA 0211.22,1.36,1.48,1.63,1.73,1.95/ 
DATACBU '/ 
DATA CBBrBBBBBBBBBB'/ 
DATA CNNrNNNNNNNNNN'/ 
DATA LBBrBEHAVIOR= '/ 
DATA LBNBrNOTBEHAV= '/ 

DATA LB1rEVB(1) ','EVB(2) ','EVB(3) ','EVB(4) , 
2 'EVB(5) ','EVB(6) ','EVB(7) ','EVB(8) " 
3 'EVB(9) ','EVB(10) ','EVB(11) ','EVB(12) , 
4 'EVB(13) ','EVB(14) ','EVB(15) ','EVB(16) 
5 'EVB(17) ','EVB(18) ','EVB(19) ','EVB(20) 
6 'EVB(21) ','EVB(22) ','EVB(23) ','EVB(24) 
7 'EVB(25) 1,'EVB(26) ','EVB(27) ','EVB(28) 
8 'EVB(29) ','EVB(30) 1,'EVB(31) ','EVB(32) 
9 'EVB(33) ','EVB(34) ','EVB(35) ','EVB(36) 
1 'EVB(37) ','EVB(38) ','EVB(39) ','EVB(40) 
2 'EVB(41) ','EVB(42) ','EVB(43) ','EVB(44) , 
3 'EVB(45) ','EVB(46) 1,'EVB(47) ','EVB(48) " 
4 'EVB(49) ','EVB(50) ','EVB(51) ','EVB(52) '/

( 
DATA LB2rEVNB(1) ','EVNB(2) ','EVNB(3) ','EVNB(4) " 

2 'EVNB(5) ','EVNB(6) ','EVNB(7) ','EVNB(8) " 
3 'EVNB(9) ','EVNB(10) ','EVNB(11) ','EVNB(12) " 
4 'EVNB(13) ','EVNB(14) ','EVNB(15) ','EVNB(16) " 
5 'EVNB(17) ','EVNB(18) ','EVNB(19) ','EVNB(20) " 
6 'EVNB(21) ','EVNB(22) ','EVNB(23) ','EVNB(24) " 
7 'EVNB(25) 1,'EVNB(26) 1,'EVNB(27) ','EVNB(28) " 
8 'EVNB(29) ','EVNB(30) ','EVNB(31) ','EVNB(32) I, 

9 'EVNB(33) ','EVNB(34) 1,'EVNB(35) 1,'EVNB(36) " 
1 'EVNB(37) ','EVNB(38) ','EVNB(39) ','EVNB(40) I, 

2 'EVNB(41) 1,'EVNB(42) ','EVNB(43) 1,'EVNB(44) " 
3 'EVNB(45) ','EVNB(46) ','EVNB(47) ','EVNB(48) I, 

4 'EVNB(49) 1,'EVNB(50) ','EVNB(51) ','EVNB(52) '/ 

C *********************************************************** 
C 
C INPUT DATA 
C 
C CALL UNDFL(LFLAG) 

write(*,1901) 
1901 formate' input name for behavior file in a20 format',/) 

( 
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Program GENSEN (cont'd) 

read(*,1902)fileb� 
1902 format(a20)� 

write(*,1907) 
1907 format(' input name for non-behavior file in a20 format' ,I) 

read(*,1902)filenb 

write(*,1903) 
1903� format(' input name for output file in a20 format' ,I) 

read(*, 1902)fileout 

write(*,1997) 
1997 format(' input number of parameters in i2 format' ,I) 

read(*,107)npar 

write(*,1998) 
1998 format(' input mapping control in i2 format' ,I) 

read(*,107)map 

write(*,1999) 
1999 format(' input 1 for full printout, 0 for reduced,', 

1 'in i2 format' ,I)
( read(*,107)ipmt 

write(*, 1996) 
1996 format(' input K-s probability level code for generating', 

1 'prob. plots',1,' (in i2 format)' ,II, 
2 'prob. level: 1.0 .10 .05 .025 .01 .005 .001',1, 
3' code: 0 1 2 3 4 5 6' ,I) 

read(*,107)iprob 

open(unit=13,file=filemb)� 
open(unit=12,file=fileb)� 
open(unit=11,file=fileout)� 

MAPO=MAP� 
NOF=1� 

DO 907 JK=1,NOF 

MAP=MAPO 
REWIND 12 
REWIND 13 
READ(13,1919)(TITLE(I),1=1,7)

( 
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Program GENSEN (cont'd) 

READ(12,1919}(TITLE(I},1=1,7} 
1919 FORMAT(/,7A10} 

WRITE(11,9709}LBB,FILEB,LBNB,FILENB 
9709 FORMAT(3X,A10,1X,A20,5X,A10,1X,A20} 
C WRITE(11,9074}(TITLE(I},1=1,7} 

WRITE(11,908}JK 

DO 1921 1=1,5 
READ(13,1920}XYZ� 

1921 READ(12,1920}XYZ� 
1920 FORMAT(A1O}� 

DO 900 1=1,NPAR 
READ(13,1920}XYZ� 

900 READ(12,1922}LAB(I}� 
1922 FORMAT(1X,A10}� 

J=1 

901 READ(12,1924,END=2096)(PSI(J,I},1=1,NPAR} 
1924 FORMAT(12X,15F7.0}

(� NB(J}=1 
J=J+1 
GO TO 901 

2096 READ(13,1924,END=3096}(PSI(J,I},1=1,NPAR} 
NB(J}=O 
J=J+1 
GO TO 2096 

3096 N5=J-1 

write(*, 1235}npar,n5,map 
1235 formatC number of parameters=',i4,1,' number of realizations=' 

+ ,i4,1,' map=',i4,1,' **************** computing ************', 
+ III} 

C ********************************************************************* 
C 
0****** CALCULATE MEANS AND VARIANCES OF RAW DATA 
C 

DO 903 1=1,NPAR� 
XMEAN(I}=O.� 
DO 902 J=1,N5� 

( 
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Program GENSEN (cont'd) 

902 XMEAN(I)=XMEAN(I)+PSI(J,I) 
XMEAN(I)=XMEAN(I)/N5 

903 CONTINUE 

DO 905 1=1,NPAR� 
VAR(I)=O.O� 
DO 906 J=1,N5� 

906 VAR(I)=VAR(I)+(PSI(..I,I)-XMEAN(I»-2 
VAR(I)=VAR(I)/(FLOAT(N5)-1.) 

905 CONTINUE 

C***-* NORMALIZE DATA TO OBSERVED RAW MEANS AND VARIANCES (0-1 RESULT)� 
C CALCULATE MEANS AND COVARIANCES OF NORMALIZED DATA FOR BOTH� 
C CLASSES (B, NB) AND ALL DATA (BNB)� 
C 

DO 2 K=1,NPAR� 
XMBNB(K)=O.� 
XMB(K)=O.� 
XMNB(K)=O.� 
DO 2 J=1,NPAR� 
COVBNB(K,J)=O.O� 
COVB(K,J)=O.� 

2 COVNB(K,J)=O. 
KB=O 
KNB=O 

DO 10 1=1,N5� 
IF(NB(I).EQ.O) GO TO 5� 
KB=KB+1� 
DO 4 K=1,NPAR� 
PSI(I,K)=(PSI(I,K)-XMEAN(K»/SQRT(VAR(K»� 
XMB(K)=XMB(K)+PSI(I,K)� 
XMBNB(K)=XMBNB(K)+PSI(I,K)� 

4 CONTINUE 
GO TO 10 

5 KNB=KNB+1 
DO 6 K=1 ,NPAR 
PSI(I,K)=(PSI(I,K)-XMEAN(K»/SQRT(VAR(K» 
XMNB(K)=XMNB(K)+PSI(I,K) 
XMBNB(K)=XMBNB(K)+PSI(I,K) 

6 CONTINUE 
10 CONTINUE 

XKB=KB� 
XKNB=KNB� 

(� 
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Program GENSEN (cont'd) 

DO 12 K=1,NPAR� 
XMBNB{K)=XMBNB{K)/{XKB+XKNB)� 
XMB(K)=XMB{K)IXKB� 

12 XMNB(K)=XMNB(K)IXKNB 

DO 40 J=1 ,NPAR 
DO 40 K=1,NPAR 
D0401=1,N5 
COVBNB(J,K)=COVBNB{J,K)+(PSI(I,J)-XMBNB(J»*(PSI(I,K)-XMBNB(K» 
IF(NB(I).EQ.O)GO TO 30 
COVB(~I,K)=COVB(~I,K)+(PSI(I,J)-XMB(J»*(PSI(I,K)-XMB(K» 

GO TO 40 
30 COVNB{J,K)=COVNB(J,K)+{PSI(I,J)-XMNB(J»*{PSI{I,K)-XMNB(K» 
40 CONTINUE 

DO 9002 K=1,NPAR� 
DO 9002 J=1 ,NPAR� 
COVB{~I,K)=COVB(~I,K)/(XKB-1.) 

COVNB(J,K)=COVNB(J,K)/(XKNB-1.)� 
9002 COVBNB(J,K)=COVBNB(J,K)/(XKB+XKNB-1.)� 

C****** PRINT RAW AND NORMALIZED MEANS AND VARIANCES 
( C 

WRITE(11,101) NPAR,N5� 
WRITE(11,190) KB,KNB� 
WRITE(11,9000)� 
DO 9001 K=1,NPAR� 

9001 WRITE(11 ,21 O)K,LAB(K),XMEAN(K),XMBNB(K),VAR(K),COVBNB(K,K) 
WRITE(11 ,200) 
DO 45 K=1,NPAR 

45 WRITE(11,21 O)K,LAB(K),XMB(K),XMNB{K),COVB(K,K),COVNB(K,K) 

C****** PRINT NORMALIZED COVARIANCE MATRICES 
C� 

IF(IPRNT.EQ.1 )THEN� 
WRITE{11,2300)� 
DO 4901 K=1,NPAR� 

4901 WRITE(11,230)K,(COVB(K,J),J=1,NPAR)� 
WRITE(11,2301)� 
DO 4902 K=1,NPAR� 

4902 WRITE{11,230)K,{COVNB{K,J),J=1,NPAR)� 
WRITE(11,2303)� 
DO 4903 K=1,NPAR� 

4903 WRITE(11,230)K,(COVBNB(K,J),J=1,NPAR)� 
ENDIF� 

( 
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Program GENSEN (cont'd) 

C****** CALCULATE CORRELATION MATRICES 
C 

DO 50 J=1,NPAR� 
DO 50 K=1,NPAR� 
AA(J,K)=COVB(J,K)/SQRT(COVB(J,J)*COVB(K,K»� 
BB(J,K)=COVNB(J,K)/SQRT(COVNB(J,J)*COVNB(K,K»� 
CC(J,K)=COVBNB(J,K)/SQRT(COVBNB(J,J)*COVBNB(K,K»� 

50 CONTINUE 

C-** PRINT CORRELATION MATRICES 
C� 

WRITE(11,220)� 
DO 60 K=1,NPAR� 

60 WRITE(11,230)K,(AA(K,J),J=1,NPAR)� 
WRITE(11 ,240)� 
DO 70 K=1,NPAR� 

70 WRITE(11,230)K,(BB(K,J),J=1,NPAR)� 
WRITE(11,241 )� 
DO 68 K=1,NPAR� 

68 WRITE(11,230)K,(CC(K,J),J=1,NPAR) 

C****** CALCULATE AND PRINT EIGENVECTORS FOR COVARIANCE MATRICES 
( C 

IF(IPRNT.EQ.1)THEN 

WRITE(11,8001 )� 
CALL MATCOPY(COVB,NPAR,DD)� 
CALL JACOBI(DD,NPAR,52,EVAL,EV,NROT)� 

CALL EIGSRT(EVAL,EV,NPAR,52)� 
WRITE(11,8003) NROT� 
WRITE(11,8004) (EVAL(LL),LL=1,NPAR)� 
WRITE(11,8006)� 
DO 8222 J=1,NPAR� 
WRITE(11,230) J,(EV(J,LL),LL=1,NPAR)� 

8222 CONTINUE 

WRITE(11,8002)� 
CALL MATCOPY(COVNB,NPAR,DD)� 
CALL JACOBI(DD,NPAR,52,EVAL,EV,NROn� 

CALL EIGSRT(EVAL,EV,NPAR,52)� 
WRITE(11,8003)NROT� 
WRITE(11,8004)(EVAL(LL),LL=1,NPAR)� 
WRITE(11,8006)� 
DO 8033 J=1,NPAR� 
WRITE(11,230)J,(EV(J,LL),LL=1,NPAR)�

( 
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Program GENSEN (cont'd) 
( 

8033 CONTINUE 

ENDIF 

C****** CALCULATE CROSS-PRODUCT OF MEANS MATRICES FOR EACH CLASS 
C 

DO 6191=1,NPAR� 
DO 619 K=1,NPAR� 
AA(I,K)=XMB(I)*XMB(K)� 
BB(I,K)=XMNB(I)*XMNB(K)� 

619 CONTINUE 

C****** PRINT CROSS PRODUCT OF MEANS MATRICES 
C 

IF(IPRNT.EQ.1)THEN� 
WRITE(11,209)� 
DO 620 J=1,NPAR� 

620 WRITE(11,230) J,(AA(J,K),K=1 ,NPAR)� 
WRITE(11,208)� 
DO 621 J=1,NPAR� 

621 WRITE(11 ,230)J,(BB(J,K),K=1 ,NPAR)� 
ENDIF� 

( 
C****** CALCULATE AND PRINT EIGENVECTORS FOR CROSS-PROD OF MEANS 
MATRICES 
C 

IF(IPRNT.EQ.1)THEN 

WRITE(11,8008)� 
CALL MATCOPY{AA,NPAR,DD)� 
CALL JACOBI(DD,NPAR,52,EVAL,EV,NROT)� 

CALL EIGSRT(EVAL,EV,NPAR,52)� 
WRITE(11,8003) NROT� 
WRITE(11 ,8004) (EVAL(LL),LL=1,NPAR)� 
WRITE(11,8006)� 
DO 8999 J=1,NPAR� 
WRITE(11,230) J,(EV(J,LL),LL=1,NPAR)� 

8999 CONTINUE 

WRITE(11,8009)� 
CALL MATCOPY(BB,NPAR,DD)� 
CALL JACOBI(DD,NPAR,52,EVAL,EV,NROn� 

CALL EIGSRT(EVAL,EV,NPAR,52)� 
WRITE(11,8003)NROT� 
WRITE(11 ,8004)(EVAL(LL),LL=1 ,NPAR)� 
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Program GENSEN (cont'd) 

WRITE(11,8006)� 
DO 8110 J=1,NPAR� 
WRITE(11 ,230)J,(EV(J,LL),ll=1 ,NPAR)� 

8110 CONTINUE 

ENDIF 

C-**** CALCULATE AND PRINT SUM OF COVAR AND CROSS-PROD MATRICES 
C (F-K MATRICES) FOR EACH CLASS, AND THE WEIGHTED SUM OF 
C THE TWO F-K MATRICES 
C 

DO 81211=1,NPAR� 
DO 8121 K=1,NPAR� 
C2(I,K)=COVB(I,K)+AA(I,K)� 
C1(I,K)=COVNB(I,K)+BB(I,K)� 

8121 CONTINUE 

DO 9003 1=1 ,NPAR 
DO 9003 K=1 ,NPAR 

9003 CT(I,K)=(C1(I,K)*XKNB+C2(I,K)*XKB)/(XKNB+XKB) 

IF(IPRNT.EQ.1)THEN� 
WRITE{11,8888)� 
DO 8877 K=1,NPAR� 

8877 WRITE{11 ,230) K,{C2{K,J),J=1,NPAR) 
WRITE(11 ,8889) 
DO 8878 K=1,NPAR 

8878 WRITE{11 ,230)K,(C1 (K,J),J=1,NPAR) 
WRITE(11 ,9004) 
DO 9005 K=1,NPAR 

9005 WRITE(11,230)K,(CT(K,J),J=1,NPAR) 
ENDIF 

C****** CALCULATE AND PRINT EIGENVECTORS, EIGENVALUES AND PRIOR 
C WEIGHTED EIGENVALUES FOR THE F-K MATRICES FOR EACH CLASS 
C 

WRITE(11,8010)� 
CALL MATCOPY{C2,NPAR,DD)� 
CALL JACOBI(DD,NPAR,52,EVAl,EV,NROn� 

CALL EIGSRT(EVAL,EV,NPAR,52)� 
WRITE(11,8003)NROT� 
WRITE(11 ,8004) (EVAl(l),l=1 ,NPAR)� 
DO 8866 l=1,NPAR� 

8866 EVAL(L)=EVAL(L)*XKB/(XKB+XKNB) 
WRITE{11 ,232){EVAL{l),l=1 ,NPAR) 
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WRITE(11,8006)� 
DO 8011 J=1,NPAR� 
WRITE(11 ,230) J,(EV(J,L),L=1 ,NPAR)� 
EVALB(J)=EVAL(J)� 
DO 8011 L=1,NPAR� 
EVB(J,L)=EV(J,L)� 

8011 CONTINUE 

WRITE(11,8111 )� 
CALL MATCOPY(C1.'NPAR,DD)� 
CALL JACOBI(DD,NPAR,52,EVAL,EV,NROn� 

CALL EIGSRT(EVAL,EV,NPAR,52) 
WRITE(11,8003)NROT 
WRITE(11 ,8004)(EVAL(L),L=1 ,NPAR) 
DO 8867 L=1,NPAR 

8867 EVAL(L)=EVAL(L)*XKNB/(XKB+XKNB) 
WRITE(11,232)(EVAL(L),L=1,NPAR) 
WRITE(11 ,8006) 
DO 8112 J=1 ,NPAR 
WRITE(11,230)J,(EV(J,L),L=1,NPAR) 

8112 CONTINUE 

C****** CALCULATE AND PRINT THE SUM OF THE EIGENVALUES FOR EACH CLASS 
C 

DO 9090 J=1 ,NPAR 
K=NPAR-J+1 

9090 EVAL(J)=EVAL(J)+EVALB(K) 
WRITE(11 ,9009)(EVAL(J),J=1 ,NPAR) 

C********************************************************************* 
C 
C****** ANALYZE DISTRIBUTIONS OF DATA FOR TWO CLASSES 
C ANALYSES ARE FOR RAW DATA (MAP=O) OR TRANSFORMED (MAPPED) DATA 
C USING EGENVECTORS FROM F-K MATRICES (1=B, 2=NB) 
C 
C THE DATA ARE STORED IN VMAP WITH OR WrrHOUT TRANSFORMATIONS 
C 

IF(MAP.EQ.O) GO TO 6502 
9010 IF(MAP.GT.2)GO TO 6502 

C****** PERFORM MAPPING 
C 

IF(MAP.EQ.1)THEN 
DO 91091=1,NPAR 

9109 LAB(I)=LB1(1) 
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Program GENSEN (cont'd) 

ELSE� 
DO 92091=1,NPAR� 

9209 LAB(I)=LB2(I)� 
ENDIF� 

DO 6610 K=1 ,NPAR� 
XMEAN(K)=O.� 

6610 VAR(K)=O.� 

DO 6500 1=1,N5� 
DO 6500 K=1 ,NPAR� 
SUM=O.� 
DO 6499 L=1,NPAR� 
IF(MAP.EQ.1 )SUM=SUM+EVB(L,K)*PSI{I,L)� 
IF(MAP.EQ.2)SUM=SUM+EV(L,K)*PSI(I,L)� 

6499� CONTINUE� 
XMEAN(K)=XMEAN(K)+SUM� 
VAR(K)=VAR(K)+SUM*SUM� 

6500� VMAP(I,K)=SUM 

DO 6620 K=1,NPAR� 
XMEAN(K)=XMEAN(K)/N5� 

6620 VAR(K)=(VAR(K)-N5*XMEAN(K)*XMEAN(K»/(N5-1)� 

DO 6600 1=1,N5� 
DO 6600 K=1 ,NPAR� 

6600 VMAP(I,K)=(VMAP(I,K)-XMEAN(K»/SQRT(VAR(K»� 

IF(MAP.EQ.1)THEN� 
WRITE(11 ,9076)(K,K=1 ,NPAR)� 
ELSE� 
WRITE(11,9077)(K,K=1,NPAR)� 
ENDIF� 

C****** CALCULATE CORRELATION MATRIX BETWEEN MAPPED AND UNTRANSFORMED 
C DATA 

DO 9050 J=1,NPAR� 
DO 9050 K=1,NPAR� 
SX=O.� 

SY=O.� 
SXY=O.� 
SX2=O.� 
SY2=0.0� 

DO 9060 1=1,N5
( 
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Program GENSEN (cont'd) 

SX=SX+VMAP(I,K)� 
SY=SY+PSI(I,J)� 
SX2=SX2+VMAP(I,K)**2� 
SY2=SY2+PSI(I,J)**2� 

9060 SXY=SXY+VMAP(I,K)*PSI(I,J) 
S1 =(N5*SX2-SX**2)*(N5*SY2-SY**2) 

9050 CC{K,J)=(N5*SXY-SX*SY)/SQRT(S1) 
DO 9080 J=1,NPAR 

9080 WRITE(11,9075)J,(CC(I,J),1=1,NPAR) 
GO TO 6501 

6502 CONTINUE 
DO 6504 1=1,N5 
DO 6504 K=1,NPAR 

6504 VMAP(I,K)=PSI(I,K) 

6501 CONTINUE 

C************************************************************ 
C 
C***** CALCULATE AND PRINT MANN-WHITNEY AND KOLMOGOROV-SMIRNOV 
STATISTICS 
C STEP THROUGH EACH PARAMETER 1 BY 1 (500 LOOP) 

C 
C***** RANK ORDER THE PARAMETERS 
C 

DO 500 K2=1,NPAR� 
KC=1� 
KD=1� 

DO 501 KA=1,N5� 
IF{NB(KA).EQ.O) GO TO 102� 
A(KC)=VMAP(KA,K2)� 
KC=KC+1� 
GO TO 501� 

102 B{KD)=VMAP(KA,K2) 
KD=KD+1 

501 CONTINUE 
KC=KC-1 
KD=KD-1 

CALL SORT(KC,A)� 
CALL SORT(KD,B)� 
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RASUM=RASUM+K 
K=K+1� 

21 CONTINUE� 
22 ASTAT=NA*KD+NA*(NA+1)/2.-RASUM� 

BSTAT=NA*KD+KD*(KD+1}/2.-RBSUM 
USTAT=AMIN1(ASTAT,BSTAn 

C*-*** ERROR CHECK 
C 

BUG=NA*KD-ASTAT-BSTAT� 
IF(ABS(BUG).GT.0.5) GO TO 27� 
Z=SQRT(NA*KD*(NA+KD+1 )/12.)� 
Z=(USTAT-(NA*KD/2.»/Z� 
GO TO 28� 

27 Z=10.E10� 
28 CONTINUE� 

C****** PRINT MANN-WHITNEY AND K-S MAX DN STATISTICS 
C 

WRITE(11,701) K2,LAB(K2)� 
WRITE(11,702) RASUM,RBSUM,ASTAT,BSTAT,Z� 
SQ=SQRT«ANA+AKD)/(ANA*AKD»�

( DO 1938 KK=1,6 
1938 D1 (KK)=D2(KK)*SQ� 

WRITE(11,7011) (D1(KK),KK=1,6)� 
WRITE(11,7001) DAA,ADA,BDA� 
IF(IPROB.EQ.O)GO TO 1351� 
IF(DAA.LT.D1(IPROB»GO TO 500� 

1351 CONTINUE 

C****** CALCULATE AND PRINT K-S DN VALUES FOR POINTS IN 
C CUMULATIVE PROB SPACE 
C 

IF(IPRNT.EQ.1 )WRITE(11 ,399)� 
KK=1� 
KJ=1� 
DO 350 M=1,19� 
PROB=.05*M� 

351 IF(A(KK).GE.UG(M» GO TO 352� 
KK=KK+1� 
IF(KK.GT.NA) GO TO 352� 
GO TO 351� 

352 SN1=(KK-1)/ANA� 
353 IF(B(KJ).GE.UG(M» GO TO 354� 

KJ=KJ+1� 
( 

C-15 



( 
\ 

(� 

Program GENSEN (cont'd) 

IF(KJ.GT.KD) GO TO 354� 
GO TO 353� 

354 SN2=(KJ-1 )/AKD 
DA=SN1-PROB 
DB=SN2-PROB 
DC=SN1-SN2 
IF(IPRNT.EQ.1 )WRITE(11 ,400) UG(M),PROB,SN1,SN2,DA,DB,DC 
SNN1(M)=SN1 
SNN2(M)=SN2 

350 CONTINUE 
IF(IPRNT.EQ.1)WRITE(11,9071) 

9071 FORMAT(/I) 

C****** PLOT CUMULATIVE PROB CURVE FOR BOTH CLASSES 
C 

DO 9091=1,100 
L1N(I)=CBL 

909 CONTINUE 

WRITE(11,910)LAB(K2) 
910 FORMAT(II,1X,'CUMULATIVE PROBABILITY PLOr,3X,A10, 

2 1I,9X,'0.O',17X,'O.2',17X,'0.4',17X,'O.6',17X,'0.8', 
2 17X,'1.0',1,10X,10('* .'),'*') 

DO 911 M=1,19� 
MY=SNN1(M)*1 00� 
MX=SNN2(M)*100� 
IF(MY.GT.O)L1N(MY)=CBB� 
IF(MX.GT.O)L1N(MX)=CNN� 
WRITE(11,912)UG(M),(L1N(I),1=1,100)� 

912 FORMAT(1X,F8.3,' *',100A1) 
IF(MY.GT.O)L1N(MY)=CBL 
IF(MX.GT.O)L1N(MX)=CBL 

911 CONTINUE 

WRITE(11,913) 
913 FORMAT(1 OX,10('* .'),'*') 

C****** PLOT PROBABILITY DENSITY HISTOGRAMS FOR EACH CLASS 
C 

KK=1 
KJ=1 
DO 920 M=1,49 
PROB=(M-1)*.1-2.4 

921 IF(A(KK).GT.PROB)GO TO 922 
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KK=KK+1� 
IF(KK.GT.NA)GO TO 922� 
GO TO 921� 

922 SNN1(M)=(KK-1)/ANA 
923 IF{B{KJ).GT.PROB)GO TO 924� 

KJ=KJ+1� 
IF{KJ.GT.KD)GO TO 924� 
GO TO 923� 

924 SNN2(M)={KJ-1)/AKD� 
920 CONTINUE� 

SNN1(50)=1.0 
SNN2(50)=1.0 

DO 925 M=1,49 
SNN1{51-M)=SNN1(51-M)-SNN1(50-M) 
SNN2{51-M)=SNN2(51-M)-SNN2(50-M) 

925 CONTINUE 

BMX=O. 
BNMX=O.O 

DO 926 M=1,50 
BMX=AMAX1 (BMX,SNN1 (M)) 

( BNMX=AMAX1 (BNMX,SNN2{M)) 
926 CONTINUE 

IF(BMX.GT.BNMX)THEN� 
BNMX=BMX� 
ELSE� 
BMX=BNMX� 
ENDIF� 

DMX=BMXl15.� 
DNMX=BNMXl15.� 
WRITE{11,936)� 

936 FORMAT(/,1X,'PROBABILITY DISTRIBUTION PLOTS',!/) 

DO 931 MM=1,15� 
YB=BMX-MM*DMX� 
YNB=BNMX-MM*DNMX� 
DO 930 M=1,50� 
L1N(M)=CBL� 

L1N{50+M)=CBL 
IF{SNN1{M).GT.YB)L1N{M)=CBB 
IF{SNN2{M).GT.YNB)L1N{M+50)=CNN 

930 CONTINUE 
( 
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MXM=15-(MM-1 }� 
IF(MOD(MXM,5}.EQ.0}GO TO 932� 
WRITE(11,933}(L1N(I},1=1,50},(L1N(I},1=51,100}� 

933 FORMAT(1 OX,'.',50A1,1OX,'.',50A1} 
GO TO 931 

932 YB=YB+DMX 
YNB=YNB+DNMX 
WRITE(11,934}YB,(L1N(I},1=1,50},YNB,(L1N(I},1=51,100} 

934 FORMAT(1X,F8.3,' *',50A1 ,F9.3,' *',50A1} 
931 CONTINUE 

WRITE(11,935} 
935 FORMAT(2(6X,'O.0 *',6('* .'},'*.'},!, 

2 2(9X,'-2.4',4X,'-1.6',4X,'-0.8',5X,'0.O',5X, 
2 '0.8',5X,'1.6',5X,'2.4'}} 

WRITE(11,9020} 
9020 FORMAT(/} 

500 CONTINUE 

C****** END OF ANALYSIS LOOP 
C 
C************************************************** 

IF(MAP.LE.2.AND.MAP.EQ.MAPO}GO TO 907 

MAP=MAP-1� 
IF(MAP.EQ.3)MAP=1� 
IF(MAP.EQ.O)GO TO 907� 
GO TO 9010� 

907 CONTINUE 

C***************************************************************** 
C 
C FORMATS: 
C 
100 FORMAT(314)� 
107 FORMAT(12}� 
108 FORMAT(A1,!,A1)� 
9000 FORMAT(/,1X,'FOR ALL VALUES (BEHAVIOR AND NON-BEHAVIOR}',!,� 

2 1X,'PARAMETER',5X,'ORIGINAL MEAN',9X,'NORMALIZED MEAN', 
3 9X,'ORIGINAL VARIANCE',9X,'NORMALIZED VARIANCE') 

9004 FORMAT(/,1X,'CT MATRIX----SUM OF C1 AND C2 MATRICES', 
2 ' WEIGHTED BY PRIOR PROBABILITIES'} 

(� 
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9006 FORMAT(/,1X,'OBSERVED COVARIANCE MATRIX FOR ALL " 
2 'NORMALIZED VALUES',1,1X,'(BEHAVIOR AND NON-BEHAVIOR)') 

9009 FORMAT(/,1X,'SUM OF EIGENVALUES OF C1 AND C2 MATRICES', 
2 '(REVERSELY ORDERED)',I,1X,19(F4.2,2X» 

908 FORMAT(II,1X,'SENSITIVITY ANALYSIS FOR OBJECTIVE', 
2 'FUNCTION ',12) 

9074 FORMAT(II,1X,7A10) 
9078 FORMAT(7A10) 
9070 FORMAT(/,1X,'PARAM',19(5X,12» 
9075 FORMAT(4X,12,19(2X,F5.2» 
9076 FORMAT(II,1X,'CORRELATIONS BETWEEN PARAMETER AND', 

2 'EIGENVECTOR VALUES FOR THE BEHAVIOR (C2) MATRIX', 
3 1I,20X,'EIGENVECTOR',1,' PARAM',1917) 

9077 FORMAT(II,1 X,'CORRELATIONS BETWEEN PARAMETER AND " 
2 'EIGENVECTOR VALUES FOR THE NON-BEHAVIOR (C1)', 
3 'MATRIX',1I,20X,'EIGENVECTOR',I,' PARAM',1917) 

9079 FORMAT(7A10,414)� 
625 FORMAT(1 OE1 0.3)� 
101 FORMAT(/,1X,'PARAMETER STATISTICS(NORMALIZED) FOR ',12,� 

2 'PARAMETERS AND ',14,' REPLICATIONS')� 
624 FORMAT(12)� 
698 FORMAT(1X,A5)�

( 190 FORMAT(/,1X,'NO. OF BEHAVIORS=',14,8X,'NO. OF NON-BEHAVIORS=' 
2 ,14) 

200 FORMAT(II,1X,'NORMALlZED',1, 
2 1X,'PARAMETER',2X,'MEAN UNDER BEHAVIOR',2X,'MEAN', 
2 'UNDER NON-BEHAVIOR',2X,'VARIANCE UNDER BEHAVIOR',2X, 
3 'VARIANCE UNDER NON-BEHAVIOR') 

210 FORMAT(1X,12,1X,A10,1X,F15.3,6X,F15.3,10X,F15.3,8X,F15.3) 
2301 FORMAT(/,1X,'COVARIANCE MATRIX FOR NON-BEHAVIOR (NORMALIZED)') 
8002 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR NON-BEHAVIOR', 

2 'COVARIANCE MATRIX') 
208 FORMAT(/,1X,'CROSS PRODUCT OF MEANS FOR NON-BEHAVIOR') 
8009 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR CROSS PRODUCTS', 

2 'OF MEANS FOR NON-BEHAVIOR') 
232 FORMAT(/,1X,'EIGENVALUES TIMES PRIOR PROBABILITIES',I, 

2 1X,10(E9.3,3X),I,1X,9(E9.3,3X» 
8889 FORMAT(/,1X,'C1 MATRIX--SUM OF COVARIANCE AND CROSS PRODUCT', 

2 'OF MEANS MATRICES FOR NON-BEHAVIOR') 
8111 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR C1 MATRIX', 

2 '(NON-BEHAVIOR)') 
2300 FORMAT(/,1X,'COVARIANCE MATRIX FOR BEHAVIOR (NORMALIZED)') 
2303 FORMAT(/,1X,'COVARIANCE MATRIX FOR ALL DATA (NORMALIZED)') 
8888 FORMAT(/,1X,'C2 MATRIX---SUM OF COVARIANCE AND CROSS PRODUCT OF 

2 MEANS MATRICES FOR BEHAVIOR') 
( 

C-19� 



Program GENSEN (cont'd) 
t . 

220 FORMAT(/,1X,'CORRELATION MATRIX FOR BEHAVIOR') 
230 FORMAT(1 X,J2, 19(2X,F5.2» 
240 FORMAT(/,1X,'CORRELATION MATRIX FOR NON-BEHAVIOR') 
241 FORMAT(/,1X,'CORRELATION MATRIX FOR ALL DATA') 
8001 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR BEHAVIOR', 

2 'COVARIANCE MATRIX') 
8003 FORMAT(/,1X,'EIGENVALUES ',2X,'NROT= ',14) 
8004 FORMAT(1X,10(E9.3,3X)/1 X,9(E9.3,3X» 
8006 FORMAT(/,1X,'EIGENVECTOR MATRIX----') 
622 FORMAT(1 X, 1X, 19(5X,12» 
209 FORMAT(/,1X,'CROSS PRODUCTS OF MEANS FOR BEHAVIOR') 
8008 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR CROSS PRODUCTS', 

2 'OF MEANS FOR BEHAVIOR') 
8010 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR C2 MATRIX', 

2 '(BEHAVIOR)') 
701 FORMAT(II,1X,'MANN-WHITNEY U STATISTIC FOR PARAMETER', 

2 1X,12,1X,'- ',A10) 
7001 FORMAT(1X,'DAA=',E15.8,2X,'ADA=',E15.8,2X,'BDA=',E15.8) 
702 FORMAT(1X,'RASUM=',E10.3,2X,'RBSUM=',E10.3, 

2 2X,'ASTAT=',E10.3,2X,'BSTAT=',E10.3,2X,'Z=',E10.3) 
7011 FORMAT(/,1X,'KOLMOGOROV-SMIRNOV ON STATISTIC. CRITICAL', 

2 'ON FOR P=.1 ,.05,.025,.01 ,.005,.001=',6(2X,F7.3» 
399 FORMAT(1X,8X,'U',1OX,'PROB',1OX,'SNB',10X,'SNNB',9X,'DELB', 

2 9X,'DELNB',8X,'DELBNB') 
400 FORMAT(1X,7(F10.3,3X» 
C*********************************************************************** 

STOP� 
END� 

SUBROUTINE MATCOPY(A,N,B) 
C COPY MATRIX A ONTO MATRIX B� 

DIMENSION A(52,52),B(52,52)� 
DO 301=1,52� 

DO 30 J=1,52� 
IF(I.GT.N.OR.J.GT.N)THEN� 
B(I,J)=O.� 
ELSE� 

B(I,J)=A(I,J)� 
ENDIF� 

30� CONTINUE� 
RETURN� 
END� 

SUBROUTINE EIGSRT(D,V,N,NP) 
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DIMENSION D(52),V(52,52) 
DO 131=1,N-1� 

K=I� 
P=D(I)� 
DO 11 J=I+1,N� 

IF(D(J).GE.P)THEN� 
K=J� 
P=D(J)� 

ENDIF� 
11 CONTINUE� 

IF(K.NE.I)THEN� 
D(K)=D(I)� 
D(I)=P� 
DO 12 J=1,N� 

P=V(J,I)� 
V(J,I)=V(J,K)� 
V(J,K)=P� 

12 CONTINUE 
ENDIF� 

13 CONTINUE� 
RETURN� 

( 
END 

SUBROUTINE JACOBI(A,N,NP,D,V,NROT)� 
PARAMETER (NMAX=100)� 
DIMENSION A(52,52),D(52),V(52,52),B(NMAX),Z(NMAX)� 
DO 12IP=1,N� 
D011IQ=1,N� 
V(IP,IQ)=O.� 

11 CONTINUE� 
V(IP,IP)=1.� 

12 CONTINUE� 
DO 13IP=1,N� 

B(IP)=A(IP,IP)� 
D(IP)=B(IP)� 
Z(IP)=O.� 

13 CONTINUE� 
NROT=O� 
DO 241=1,50� 

SM=O.� 
DO 15 IP=1,N-1� 

DO 14 IQ=IP+1,N� 
SM=SM+ABS(A(IP,IQ»� 

14 CONTINUE� 
15 CONTINUE� 

( 
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IF(SM.EQ.O.)RETURN 
IF(l.lT.4)THEN 
TRESH=O.2*SM/N**2 

ELSE 
TRESH=O.� 

ENDIF� 
DO 22 IP=1,N-1� 

DO 21 IQ=IP+1,N 
G=100.*ABS(A(lP,IQ» 
IF«I.GT.4).AND.(ABS(D(IP»+G.EQ.ABS(D(IP») 

*� .AND.(ABS(D(IQ»+G.EQ.ABS(D(IQ»»THEN 
A(IP,IQ)=O. 

ELSE IF(ABS(A(IP,IQ».GT.TRESH)THEN 
H=D(IQ)-D(IP) 
IF(ABS(H)+G.EQ.ABS(H»THEN 
T=A(IP,IQ)/H 

ELSE 
THETA=O.5*H/A(IP,IQ) 
T=1.1(ABS(THETA)+SQRT(1.+THETA**2» 
IF(THETA.lT.O.)T=-T 

ENDIF 
C=1.1SQRT(1 +T**2) 

(� S=T*C 
TAU=S/(1.+C) 
H=T*A(IP,IQ} 
Z(IP)=Z(lP)-H 
Z(lQ)=Z(IQ)+H 
D(IP)=D(IP)-H 
D(IQ)=D(IQ)+H 
A(IP,IQ)=O. 
DO 16 J=1,IP-1 
G=A(~I,IP) 

H=A(J,IQ) 
A(J,IP)=G-S*(H+G*TAU) 
A(J,IQ}=H+S*(G-H*TAU} 

16 CONTINUE 
DO 17 J=IP+1,IQ-1 

G=A(IP,J) 
H=A(J,IQ) 
A(IP,J)=G-S*(H+G*TAU) 
A(J,IQ)=H+S*(G-H*TAU) 

17 CONTINUE 
DO 18 J=IQ+1,N 

G=A(IP,J) 
H=A(IQ,J) 

( 
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Program GENSEN (cont'd) 

A(IP,J)=G-S*(H+G*TAU) 
A(IQ,J)=H+S*(G-H*TAU) 

18 CONTINUE 
DO 19 J=1,N 
G=V(J,IP) 
H=V(J,IQ) 
V(~I,IP)=G-S*(H+G*TAU) 

V(J,IQ)=H+S*(G-H*TAU) 
19 CONTINUE 

NROT=NROT+1 
ENDIF 

21 CON1"INUE 
22 CONTINUE 

D023IP=1,N 
B(IP)=B(IP)+Z(lP) 
D(IP)=B(lP) 
Z(IP)=O. 

23 CONTINUE 
24 CONTINUE 

PAUSE '50 iterations should never happen' 
RETURN 

( 
END 

SUBROUTINE SORT(N,RA)� 
DIMENSION RA(3000)� 
L=N/2+1 )� 
IR=N� 

10 CONTINUE 
IF(L.GT.1)THEN 

L=L-1 
RRA=RA(L) 

ELSE 
RRA=RA(IR) 
RA(IR)=RA(1 ) 
IR=IR-1 
IF(IR.EQ.1)THEN 

RA(1)=RRA 
RETURN 

ENDIF� 
ENDIF� 
I=L� 
J=L+L� 

20 IF(J.LE.IR)THEN 
IF(J.LT.IR)THEN 

IF(RA(J).LT.RA(J+1»J=J+1 

( 
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.---_._-- Program GENSEN (cont'd) 
( 

ENDIF 
IF(RRA.LT.RA(J»THEN 

RA(I)=RA(J) 
I=J 
J=J+J 

ELSE 
J=IR+1 

ENDIF 
GO TO 20 
ENDIF 
RA(I)=RRA 

GO TO 10 
END 

(� 
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Table D-I: Output Data from the GENSEN program for Configuration I 

Dose Criteria: 1 mreml No Correlated Parameters! 7 Subareas 

Parameter ID II Ranking Parameter Abb. DAA 
40 I AU 

"I' 9.ME-OI 
2 2 MAPM@GM 9.29E-OI 
47 3 APrs SAV 9.29E-OI 
19 4 RD IV I 5.84E-OI 
41 5 ARDSAV I 4.30E-OI 
48 6 WPRRG@IO 4.22E-QI 
49 7 WPRRG@.-20 3.96E-QI 
17 8 RD IV Ra 3.42E-QI 
52 9 MixZnT20 3.4lE-QI 
3 10 MATI@GM 3.22E-OI 

45 II ARDSAVRa 3.09E-QI 
30 12 SFWtGAll7 2.95E-QI 
28 13 SFWtG/oI5 2.80E-OI 
7 14 ·Chlorid 2.59E-QI 

51 IS AqThick5 2.46E-OI 
44 16 ARDSAVPu 2.38E-OI 
18 17 RD IV Pb 2.20E-OI 
15 18 RD IV Np 2.l7E-OI 
23 19 RD IV Nb 2. I6E-0I 
12 20 RD IV Pu 2.12E-0I 
26 21 SFWtGAlI3 2.12E-OI 
50 22 PiumeTh5 2.IOE-OI 
10 23 SbArWtGAl 2.00E-QI 
8 24 Fow· 1.96E-OI 

46 25 ARDSAVSe 1.86E-QI(, 16 26 RD IV Th 1.85E-OI 
25 27 SFWtGAlI2 1.82E-0I 
43 28 ARDSAV U 1.66E-OI 
21 29 RD IV Ni 1.65E-OI 
29 30 SFWtGAlI6 1.60E-OI 
32 31 SFWtG/oC2 l.S7E-OI 
38 32 InvMPenn l.S7E-QI 
42 33 ARDSAVTc 1.55E-OI 
20 34 RD IV Ie 1.4IE-Ol 
24 35 SFWtGAlII 1.40E-OI 
13 36 RD IV U 1.39E-OI 
27 37 SFWtGAlI4 1.38E-OI 
33 38 SFWto/oC3 1.38E-OI 
II 39 WP-Def% 1.37E-OI 
36 40 SFWtG/oC6 1.37E-OI 
37 41 SFWto/oC7 1.37E-OI 
9 42 Fmult· 1.36E-OI 
35 43 SFWtG/oC5 1.35E-OI 
31 44 SFWtG/oCI 1.32E-OI 
I 45 AAMAI(Q}S 1.29E-OI 

22 46 RD_ IV_Se 1.2IE-OI 
4 47 FOC-R 1.16E-OI 
34 48 SFWtG/oC4 1.12E-QI 
39 49 ARDSAVAm 1.12E-OI 
5 SO FOCIR 1.05E-OI 
14 51 RD IV Am 7.96E-02 
6 52 FOCTR-R 7.60E-02 

(� •• DAA -- Maximum Vertica! Distance Between The Distribution Under Behavior and the 
Distribution Under Non-Behavior 

0·1 
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Table 0-2: Output Data from the GENSEN program for Configuration 2 
,- - ~ 

~ 
Dose Criteria: 0.2 mrem/ No Correlated Parameters/7 Subareas 

Parameter 10 # Ranking Parameter Abbreviation OAA 
1U 1 0 5.42t:-01 
49 2 WPRRG@20 3.43E-01 
2 3 MAPM@GM 3.33E-01 

47 4 APrs SAV 3.33E-01 
41 5 ARDSAV I 2.57E-Q1 
40 6 ARDSAVNp 2.52E-01 
35 7 SFWt%C5 1.75E-01 
32 8 SFWt%C2 1.75E-01 
19 9 RD IV I 1.48E-01 
48 10 WPRRG@10 1.47E-01 
15 11 RD IV Np 1.42E-Q1 
52 12 MixZnT20 1.40E-01 
8 13 Fow* 1.38E-01 
3 14 MATI@GM 1.32E-01 
7 15 *Chlorid 1.32E-01 

46 16 ARDSAVSe 1.28E-01 
36 17 SFWt%C6 1.25E-01 
9 18 Fmult* 1.23E-01 
23 19 RD IV Nb 1.17E-Q1 
22 20 RD IV Se 1.10E-01 
30 21 SFWt%17 1.07E-01 
42 22 ARDSAVTe 1.03E-01 
31 23 5 FWt%C1 1.00E-01 
44 24 ARDSAVPu 9.83E-02 
45 25 ARDSAVRa 9.67E-02 
17 26 RD IV Ra 9.33E-02( 16 27 RD IV Th 9.00E-02 
25 28 SFWt%12 9.00E-02 
28 29 SFWt%15 9.00E-02 
12 30 RD IV Pu 8.33E-02 
27 31 SFWt%14 8.33E-02 
34 32 SFWt%C4 8.33E-02 
51 33 AQThiek5 8.17E-02 
11 34 WP-DefOAl 8.17E-02 
37 35 SFWt%C7 7.67E-02 
21 36 RD IV Ni 7.17E-Q2 
39 37 ARDSAVAm 7.17E-02 
5 38 FOCTR 6.67E-02 
18 39 RD IV Pb 6.67E-02 
20 40 RD IV Te 6.67E-02 
50 41 PiumeTh5 6.17E-02 
1 42 AAMAICCI2S 6.00E-02 

43 43 ARDSAV U 6.00E-Q2 
33 44 SFWt%C3 5.83E-02 
14 45 RD IV Am 5.83E-02 
6 46 FOCTR-R 5.67E-Q2 
38 47 InvMPerm 5.67E-02 
4 48 FOC-R 5.33E-02 
29 49 SFWt%16 5.33E-Q2 
24 50 SFWt%11 5.00E-02 
13 51 RD IV U 4.67E-02 
26 52 SFWt%13 4.50E-Q2 

- DAA -- Maximum Vertical Distance Between the Distribution Under Behavior and the 
Distribution Under Non-Behavior 
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Table 0-3: Output Oata from the GENSEN program for Configuration 3,-- .......,,,� 

~ 

Dose t;r1terla: U.2 mreml t;orrelatea Input Parametersl 7 5ubareas 

Parameter 10 ." 

lU 
1 

49 
2 

47 
8 

44 
39 
40 
41 
33 
32 
52 
35 
43 
19 
23 
48 
30 
18 
5 

31 
9 
36 
20 
7 

22 
3 

51 
4 
15 
45 
12 
26 
42 
34 
17 
29 
38 
11 
21 
16 
46 
13 
27 
24 
50 
14 
37 
6 
25 
28 

Ranking 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

Parameter Abbreviation OM 

0 o.lll:-Ul 
AAMAI S 3.79E-01 

WPRRG 20 3.65E-01 
MAPM@GM 3.28E-01 
APrs SAV 3.28E-01 

Fow* 2.00E-01 
ARDSAVPu 2.00E-01 
ARDSAVAm 1.94E-01 
ARDSAVNp 1.94E-01 
ARDSAV I 1.91E-01 
SFWt%C3 1.71E-01 
SFwt%C2 1.61E-01 

MbeZnT20 1.51E-01 
SFwt%C5 1.39E-01 

ARDSAV U 1.33E-Q1 
RD IV I 1.30E-Q1 

RD IV Nb 1.28E-01 
WPRRG@10 1.26E-01 

SFWt%17 1.08E-01 
RD IV Pb 1.07E-01 

FOCTR 1.06E-01 
SFWt%C1 1.04E-01 

Fmult* 9.97E-02 
SFWt%C6 9.53E-02 
RD IV Te 9.52E-02 
*Chlorid 9.50E-02 

RD IV Se 9.13E-02 
MATI@GM 8.77E-02 
AaThick5 8.45E-02 

FOC-R 8.25E-02 
RD IV Np 8.17E-02 

ARDSAVRa 8.04E-02 
RD IV Pu 7.98E-02 
SFWt%13 7.97E-02 

ARDSAVTe 7.95E-02 
SFWt%C4 7.86E-02 
RD IV Ra 7.51E-Q2 
SFwt%16 6.89E-02 
InvMPeml 6.73E-02 
WP-DefOlo 6.72E-02 
RD IV Ni 6.42E-02 

RD IV Th 6.09E-Q2 
ARDSAVSe 6'04E-02 

RD IV U 5.81E-02 
SFWt%14 5.56E-02 
SFWt%11 5.55E-02 
PiumeTh5 5.09E-02 
RD IV Am 5.03E-02 

SFWt%C7 4.62E-Q2 
FOCTR-R 4.60E-Q2 
SFWt%12 4.39E-02 
SFWt%15 4.06E-02 

** DAA - Maximum Vertical Distance Between the Distribution Under Behavior and the ( Distribution Under Non-Behavior 
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• Table.D-4: Output Data from the GENSEN program for Configuration 3 

I uose \,Omena: U." mreml \,Oorrelatea t"arametersl 1 ~uDareas 

H parameter 10 " , Ranking, Parameter Abbreviation 
~f-vvt"loc;, 

OAA 
0."'01 IH 1 U.3 

26 2 SbArWt% 0.43730348 
11 3 AAMAI@S 0.27286422 
2 4 MAPM@GM 0.2638889 
36 5 APrs SAV 0.2638889 
37 6 WPRRGca220 0.25694442 
30 7 ARDSAV I 0.19542712 
9 8 Fow* 0.15421909 

40 9 MiXZnT20 0.13541669 
33 10 ARDSAVPu 0.11170071 
29 11 ARDSAVNp 0.10776991 
8 12 *Chlorid 0.10547692 
32 13 ARDSAV U 0.10521489 
12 14 WP-DefOlo 0.095322341 
7 15 AA 2 1 0.094732702 
10 16 Fmult* 0.094536126 
14 17 RD IV U 0.093881071 
28 18 ARDSAVAm 0.093422413 
39 19 AQThick5 0.092636287 
6 20 FOCTR-R 0.089557111 
20 21 RD IV I 0.087460697 
13 22 RD IV Pu 0.084316015 
38 23 PiumeTh5 0.078878433 
34 24 ARDSAVRa 0.074751019 
27 25 InvMPenn 0.074554503 
25 26 SFWt%11 0.073702827 
19 27 RD IV Pb 0.072785646 
16 28 RD IV Np 0.071671903 
31 29 ARDSAVTc 0.070230618 

( 17 
22 

30 
31 

RD IV Th 
RD IV Ni 

0.069444418 
0.068592727 

18 32 RD IV Ra 0.067151427 
21 33 RD IV Tc 0.064006805 
24 34 RD IV Nb 0.062172413 
4 35 FOC-R 0.060731113 
23 36 RD IV Se 0.058110595 
35 37 ARDSAVSe 0.054900408 
3 38 MATI~GM 0.053066045 
5 39 FOCTR 0.052410901 
15 40 RD IV Am 0.041273594 

- DAA - Maximum Vertical Distance Between the Distribution Under Behavior and the 
Distribution Under Non-Behavior 
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Cumulative Probability Plot for RD_IV_Ra 
(Configuration 1) 
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Cumulative Probability Plot for SFWt%C5 
(Configuration 2) 
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DEPARTMENT OF ENVIRONMENTAL SCIENCES 
CLARK HALL • UNIVERSIlY OF VIRGINIA • CHARLOlTESVILLE, • VIRGINIA • 22903 

FAX # (804) 982-2137 (804) 924-7761 

5 July, 1999 

Andy C. Campbell 
Advisory Conunittee on Nuclear Waste 
U.S. Nuclear Regulatory Conunission 
WASHINGTON, DC, 20555 

Dear Andy, 
Enclosed is a copy ofa paper that appeared in the Journal 01Environmental 

Management that covers the idea that I had for another examination ofMonte-Carlo results from 
the TPA-3 code. (I also enclose a few other reprints that may be helpful in visualizing how the 
analysis might go.) Basically, the idea is similar to that covered in Dick Codell's "t-test" results. 
What I envision is an analysis ofthe Monte-carlo results in the context ofa dose standard, rather 
than just a simple statistical investigation. Because the results at 10,000 years do not show 
violations ofany reasonable standard, I would suggest that we use 50,000 years for illustrative 
purposes. This approach might be OK anyway in the context ofa conservative regulatory 
approach. I list below a possible way for us to proceed. 

(1)� Get results from Monte-carlo runs. Ifwe can get the 4,000 runs used by Nonn and Budhi, that 
would be great. If so, we can do the analysis below for four separate 1,000-realization runs 
and look at the robustness to sample size. Ifnot, then we could just use Dick Codell's 1000 
realizations and wony about robustness later. 

(2)� Choose a criterion (or criteria) for an acceptable behavior. I suggest a dose ofless than 5 mrem 
at 50,000 years. (The argument might be that ifthere are aspects ofthe model that lead to this 
level ofdose at 50,000 years, then these aspects can be viewed as critical uncertainties for 
meeting the standard as well.) " 

(3) Write a code to go through the realizations and detennine whether the run is acceptable or 
unacceptable; write the parameters for behaviors in one file and for non-behaviors in a second 
file. 

(4)� Analyze the differences between the two bins of parameters. (I have a FORTRAN code for the 
analysis that we can use as is or can modify as we see fit.) The analysis looks at covariances as 
well as simple univariate separations. 

Let me know ifyou think this idea is worth pursuing. As long as we don't have to exercise the 
TPA code ourselves, I think the effort would not be too burdensome. 
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. 
[n the preliminary analysis of environmental problems, mathematical modelling 
studies can sometimes aid in hypothesis development and in the integration of 
preliminary data. Circumstances usually require models used in this way to be 
simulation models closely based on traditional scientific descriptions of component 
processes. As a result, such models contain many ill-defined parameters, a fact 
which severely limits the reliance that can be placed on the outcome of any sinaIe 
simulation. In an attempt to overcome this difficulty, it has been proposed that 
parameters be assigned statistical distributions which reflect the degree of 
parametric uncertainty and that these distributions be used in Monte Carlo 
simulation analyses. We propose a variation on this theme in which we first 
stipulate the systems' problem-defining behaviour and define a classification 
algorithm to be applied to the model's output. This algorithm results in each 
simulation run being classified as a behaviour, B, or not a behaviour,ll. The 
par~eteR leading to the result are stored accordini to the behavioural outcome. 
Subsequently, all parameter VectOR are subjected to analysis to determine the 
degree to which the Q priori distributions separate under the behavioural mapping. 
This separation, or lack thereof, forms the basis for a generalized sensitivity 
analysis in which parameteR and their related processes important to the 
simulation of the behaviour are singled out. The procedure has been applied to a 
eutrophication problem in the Peel-Harvey Inlet of Western Australia with 
encouraging results. 

Keywords: systems analysis, sensitivity analysis, simulation, Monte Carlo anaJys~ 
parametric uncertainty. 
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1. IDtrocluc:tioD 

The majority of environmental problems that have come to the public's notice in the 
last several decades have possessed the common characteristics of being scientifically 
quite complex yet requiring some governmental action for their alleviation in the short 
term. These characteristics have led to patterns of study and investigation of such pro­
blems in two major phases. Initially, large-scale literature searches are conducted, teams 
of specialists assembled and a variety of background studies begun. This first phase is 
then concluded by some form of assessment procedure which culminates in the speci­
fication of a strategy for the second phase of the study, an important feature of which 
is a detailed ordering of research priorities. 

This paper is concerned with the scientific aspects of the assessment procedure and 
the process of establishing the second phase research priorities. In particular, we are 
interested in the suitability of mathematical models as vehicles for the organization of 
both qualitative and quantitative scientific data. We develop here a new method for 
examining a simulation model to determine whether it is capable of mimicking the 
salient qualitative aspects -of the system behaviour that defines the environmental 
problem and, if so, to identify the segments of the model that are most important to a 
successful simulation. In this sense, the method is a generalized sensitivity analysis and 
can be used at an early stage of a research project to isolate the critical uncertainties in 
knowledge of the system and thereby to derive information of use in focusing the next 
phase of the research. 

At the stage of the investigation with which we are here concerned, there is no 
alternative to utilizing some type of simulation model as the mathematical format into 
which assumptions regarding causal relations and parameter values are summarized. 
By simulation model, we mean one whose structure and parameters are explicitly related 
to physical, chemical or biological processes. Data in the literature on algal growth rates 
as a function of nutrient level, for example, are often given in terms of Michaelis 
constants, a fact which points out that simulation models are constrained to be written 
in the language of the various disciplines which have studied the component processes 
of the system. This constraInt immediately leads to the result that most simulation models 
will be complex with many parameters, state variables and non-linear relations. Under 
the best circumstances, such models have many degrees of freedom and, with judicious 
fiddling, can be made to produce virtually any desired behaviour, often with both 
plausible structure and parameter values. Because of this problem, simulation modelling 
has limited importance in cases where extensive data sets that quantify the system 
behaviour are lacking. 

In spite of the problems cited above, the potential utility of information yielded by 
simulation models in planning experiments has been recognized. For example, widl 
reference to ecological models,lefl'ers (1972) states that: 

"much time can be saved in the early stages of hypothesis formulation by the exploration 
of these hypotheses through mathematical models. Similarly mathematical models can 
be used readily to investigate phenomena from the viewpoint ofexisting theories, by the 
integration'of disparate theories into a single working hypothesis, for example. Such 
models may quickly reveal inadequacies in the current theory and indicate gaps where 

. new theory is required". 
Similarly, Mar (1974) in his review of multidisciplinary modelling studies pointed 
out that: 

"The strategy to construct models without data and then employ sensitivity analysis to 
identify critical components where research and new data would enhance model per­
formance is not commonly practised". 
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Stenseth (1977), while roundly criticizing simulation modelling, admits that a simple 
model, when used to explore or to generate hypotheses, can be a valuable research tool. 
Unfortunately, little work has been done to elucidate exactly how mathematical models 
can actually be used in such a "hypothesis generating" mode. 

Several workers (e.g. Adams, 1972; Meyer, 1972; Maddock, 1973; McCuen, 1976) 
have suggested that parameter sensitivity analysis can be used to guide future data 
collection efforts and/or to order research priorities. Traditional parameter sensitivity 
analysis, however, pertains to a particular point in the parameter space (the vector space 
spanned by all possible combinations of parameter values). This requires that point 
estimates of all parameters be available, which, in turn, for complex environmental 
models, implies that sufficient input-output data for model calibration exist, and this 
is counter to our original premise that application was to be for an early stage of the 
investigation. Although Meyer (1972) advocates the use of a "tentatively calibrated 
model" to overcome this particular dilemma, the structure of models of environmental 
systems is not likely to be well defined a priori, and such an approach is therefore suspect. 

In light of the discussion above, we contend that, in the early stages of the analysis 
of real problems, simulation models can be useful only in a probabilistic context. That 
is, given the model and the inherent uncertainties in structure and parameter values, 
the only meaningful analysis must focus on the probabilities of various behaviours. 
Most importantly, it must focus on the probable structures and parametric relations 
which appear consistent with that behaviour which is associated with the "environmental 
problem" under consideration. One method for applying simulation models in a probabi­
listic context is to use Monte-Carlo techniques. (For example, see Tiwari and Hobbie 
(l976a, b) and Tiwari et al. (1978) for an application of Monte-Carlo simulation in 
ecological modelling.) The methodology developed below adjoins the notion ofqualitative 
or semi-quantitative descriptors of the behaviour of the system to Monte-Carlo simula­
tion to obtain a useful technique for the preliminary analysis of environmental systems. 

2. Class or mathematical models coasidered 

For clarity of exposition, we restrict our attention to a specific class of models and 
introduce nomenclature which will be required subsequently. Assume the processes 
are to be modelled by a set of first order ordinary differential equations. (Different 
mathematical structures can be dealt with in an analogous way.) Let these equations be 
given in the form: 

"I 

dx(t}- =x(t) - j[x(t), ~,%(t)] (1)
dt 

where xCt) is the state vector and z(t) a set of time variable functions which include input 
or forcing functions. The vector ~ is a set of constant parameters described more fully 
below. Thus, for~, Z(/) and xCO) specified, xCI) is the solution of the system of equations 
and is a deterministic or a stochastic function of time as determined by the nature of 
Z(/). For simplicity of exposition, z(/) will be treated hereafter as a deterministic function 
of t. Under this assumption, there are two types of uncertainty with which we will deal: 
uncertainty in the model structure, i.e. in the functions, f, and uncertainty in the para­
meter values, ~. Different model structures would pertain to competing hypotheses on 
system functioning (e.g. phosphorus limitation versus nitrogen limitation in a eutro­
phication problem); we use the term scenario to indicate a particular structure. 
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For a given scenario, each element of the vector, is defined as a random variable 
the distribution of which is a measure of our uncertainty in the "real" but unknown value 
of the parameter. These parameter distributions are formed from data available from 
the literature and from experience with similar structures. For example, the literature 
suggests that the maximum growth rate of Chlorella vulgaris is almost certainly between 
I'S and 2· 5 days-1 at water temperatures near 2SoC. Interpreting these limits as the 
range of a rectangularly distributed random variable, and forming similar a priori 
estimates for the other elements of, result in the definition of an ensemble of models •, 
for a given scenario. Some of these models will, we hope, mimic the real system with 
respect to the behaviour of interest. 

3. ne probJem-eleftDiDg bebaYlour 

Turning now to the question of behaviour, recall that, for a given scenario, every sample 
value of " drawn from the a priori distribution, results in a unique state trajectory, x(t). 
Following the usual practice, we assume that there are a set of observed variables y(t), 
calculable from the state vector, which are important to the problem at hand. So, for 
each randomly chosen parameter set '., there corresponds a unique observation vector 
y·(t). Since-the elements of yet) are observed (that is we assume that they are measured 
in the real system), it is sensible to define behaviour in terms ofy(t). For example, suppose 
y, is the concentration of phytoplankton in a body of water and the problem in question 
concerns unwanted algal blooms due to nutrient enrichment. Then, there is some value 
of y, above which a bloom is defined to have occurred and the behaviour is defined by 
this critical value. 

In general, a number of behaviour categories CaD be used. Without loss of generality, 
however, we can consider the case for which behaviour is defined in a binary sense, i.e. 
it either occurs or does not occur for a given scenario and set of parameters ,. It follows 
that a rule must be specified for determining the occurrence or non-occurrence of the 
behaviour on the basis of the pattern of yet). It is also possible that the behaviour might 
depend on the vector z(t). For example, suppose one element of z(t) was water tempera­
ture. We might be interested only in extreme values of yet) when adjusted or controlled 
for temperature variations. In any event, the detailed definition of behaviour is problem­
dependent and, for present purposes, it is sufficient to keep in mind that a set of numerical 
values of, leads to a unique time functiony(t) which, in tum, determines the occurrence 
or non-occurrence of the behaviour conditioned, perhaps, by z(t)• 

•4. A generalized sensitivity analysis procedure 
t. 

, We have now presented the class of models to be studie4, defined the scenario concept 
and described how we propose to deal with parametric uncertainty. For a given scenario, 
behaviour and set of parameter distributions " it is possible to explore the properties 
of the ensemble via computer simulation studies. In particular, a random choice of the 
parameter vector, from the predefined distributions leads to a state trajectory xCt), an 
observation vector yet) and, via the behaviour-defining algorithm, to a determination 
of the occurrence or non-occurrence of the behaviour. A repetition of this process for 
many sets of randomly chosen parameters results in a set of sample parameter vectors 
for which the behaviour was observed and a set for which the behaviour was not 
observed. The key idea is then to attempt to identify the subset of physically, chemically 
or biologically meaningful parameters which appear to account for the occurrence or 
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non-occurrence ofthe behaviour, More traditional sensitivity analyses of large ecological 
models inevitably show that a surprisingly large fraction of the total number ofparameters 

" is simply unimportant to the critical model behaviour. We maintain that this unimportant 
subset or, conversely, the critical subset, may be tentatively specified rather early in any 
study, 

Ranking the elements of , in order of importance in the behavioural context is 
accomplished through an analysis of the Monte-Carlo results. The essential concept can 
best be illustrated by considering a single element, ~t, of the vector ~ and its a priori 
cumulative distribution, as shown in Figure 1. Recall that the procedure is to draw a 

Fi~ 1. Cumulative distribution functions for parameter l~, F(l~) - parent, a priori distribution, 
F<taIB) - distribution of l~ in the behaviourcategory, F(I~1 S) - distributiOD ofl~ iD the Doo-behaviour 

categOry, 

random sample from this parent distribution (a similar procedure is followed for all 
other elements of~), run the simulation with this value and record the observed behaviour 
and the total vector ~ therewith associated. A repetition of this procedure results in two 
sets of values of ~t, one associated with the occurrence of the behaviour B, and the other 
without the behaviour B. That is, we have split the distribution F(et) into two parts as 
indicated in the figure. This particular example would suggest that et was important to 
the behaviour since F(~t) is clearly divided by the behavioural classification. Alter­
natively, if the sample values under Band B appeared both to be from the original dist­
ribution F(~J, then we would conclude that ~I: was not important. 

• 
5. Sensitivity rank1Da of parameten 

For the case where z(t) is a deterministic function of time, the parameter space is cleanly 
divided by the behavioural mapping; that is, there is no ambiguity regarding whether 
a given parameter vector results in B or B~ Our analysis then focuses on the determination 
ofwhich parameters or combinations ofparameters are most important i~ distinguishing, 
between B and B. We will restrict the discussion to the case for which the parameter 
vector mean is zero and the parameter covariance matrix is the identity matrix. (A suit- . 
able transformation can always be found to convert the general problem to this case.) 

( The problem ofidentifying how the behaviou~.l ma~ping separates the, parent pa~ameter 
'(..., \. space can then be approached by eXamInlDg mduced mean shifts and mduced 

covariance structure. 
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For example, we can base a sensitivity ranking on a direct measure of the separation 
.' of the cumulative distribution functions, F(~tIB) and F("I.!). In particular, we utilize 

the statistic: 

d... - s~p r·(X~-S.(X) I 
where S. and S. are the sample distribution functions corresponding to F(~tIB) and 
F(~tIB) for 11 behaviours and m non-behaviours. The statistic d..." is that used in the 
Kolmogorov-Smimov two sample test and both its asymtotic and small sample distri­
butions are known for any continuous cumulative distribution function F('.IB) and 
F('tIB). Since S. and Sill are estimates of F('tIB) and F('tIB); we see that d.... is the 
maximum venical distance between these two curves and the statistic is, therefore, 
sensitive not only to differences in central tendency but to any difference in the distribu­
tion functions. Thus, large values of d..11 indicate that the parameter is important for 
simulating the behaviour and, at least in cases where induced covariance is small, the 
converse is true for small values of that statistic. 

In general, however, ranking on the basis of the separation in the distribution func­
tions along the original axes of the parameter space (the individual parameter values) 
is not sufficient. It is possible, for example, that the first and second moments for a single 
parameter might exhibit no separation and yet this parameter could be crucial to a 
successful simulation by virtue of a strong correlation with other parameters under the 
behaviour. For example, Figure 2 depicts a two-dimensional parameter space for which 

B 

I--..-.~-+----i--~ e, 
.8 

Fil\lft 2. Schematic diaaram or a two parameter case for. which separation UDder the behavioural 
classification is total but for which discrimination by univariate tests is not possible. 

the cumulative distributions would not separate under the behavioural classification. 
Nevertheless, both parameters are important in determining whether the behaviour 
occurs. Clearly, it is the interaction between parameters which is crucial, and informatioD 
on the covariance between the two parameters will give insight into the degree ofsensi­
tivity in a case such as this. In fact, as shown more formally below, inSpectiOD of the 
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covariance matrices of the parameter vectors in the two classes can provide important 
clu~s in assessing sensitivity. 

This notion can be formalized as follows. Let , be the parameter vector. Since these 
vectors were normalized to have zero mean, unity variance and zero covariance, it follows 
that: 

_£(,,7) .. 1 - P(B)£(ZI Zl7)+P(B)PI p/+ P(B)£(Z2 zl)+ P(!)P2 p:l (2) .. where: 

PCB) and PC!) are probabilities of obtaining the behaviour and of not doing so, 
respectively 

~l is a parameter vector associated with B�'2 is a parameter vector associated with B� 
PI" £"1)� 

P2 - £('2)� 

Zl-'l-PJ� 
Z2 - '2-1-'2� 
£ is the expectation operator. 

The case illustrated in Figure 2 suggests that incidences in which separation is not 
indicated in the univariate analyses should be singled out in the multivariate procedure. 
Assume that m ofthe distributions F(~J did not separate under the behavioural mapping. 
Then Ptt - P2t .. 0 for each of these distributions. For two parameters for which no 
mean shift is observed (say, I and ~J)' the ijth elements of PI PIT and P2 P2T are zero 
and, according to equation (2), the corresponding oft'·diagonal elements ofthe covariance 
matrices are such that: 

P(B)E(ZUZI/) - -P(B)£(Z2iZ2/) 

where i "j. Therefere, ifa distribution does not separate under the behavioural mapping 
but does show induced covariance, the situation depicted in Figure 2, this covariance 
will be seen in both the covariance matrices under B and ! and the magnitudes of the 
covariances will be related as indicated above. This is easily checked by inspection of the 
two matrices. 

The problem of identifying "important" parameters in a situation where induced 
covariance is significant (e.g. the case shown schematically in Figure 2) can also be 
addressed by considering an analogy with the problem .f discriminant analysis in the 
race of negligible differences in mean between groups. Kendall and Stuart (1969) suggest 
that a principal components transformation may be useful for such problems. In fact, 
for the case depicted in Figure 2 it is intuitively obvious that the principal components of 
the covariance matrix of para~eters in the behaviour class (or of those in the non­
behaviour class) define a new set of co-ordinate axes at 450 from the original ~lt ~2 axes. 
The cumulative distributions of the projections of the parameter vectors on these 
principal axes would indeed separate, and the value of the d_ statistic for these would 
again provide a useful measure of the separation. 

In a more general case, the behavioural classification would result both in separation 
along some of the original axes and in induced covariance. A principal components 
transformation of the covariance matrix of either the behaviour class or the 
non·behaviour class defined with respect to the ,rand mean can be used to advantage 
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when information on both mean and covariance differences is important (Fukunaga and 
Koontz, 1970). That is, equation (2) can be written: 

£(",,> = 1- P(B)E"1 '12)+P(B)E('2 '22) 

and, if T is the matrix that diagonalizes the covariance matrix under the behaviour, 
E('1 '12), then the same transformation mustdiagonalize the covariance matrix under the 
non-behaviour classification, E"2 '22): 

T'l' £(,,2)T -1- P(B)T'l' £('1 ,?)T+P.(B) T'l' £('2 ,l)T, or 

1 - P(B)A1 +P(B)A2 (4) 

where Al and A2 are diagonal matrices with the eigenvalues of the respective covariance 
matrices as the diagonal elements. The columns of the matrix T are eigenvectors of the 
covariance matrices, and the (normalized) components of those vectors are the 
direction cosines of the transformed axes relative to the original parameter axes. Thus, 
if the projections of the parameters OD to a transformed axis exhibit significant 
separation under the classification in terms of the d... statistic, the weights on individual 
parameters in that eigenvector indicate the importance of each parameter in explaining 
the separation. 

A simple example can be used to illustrate the general procedure. Figure 3 depicts a 
three-dimensional parameter space in which the univariate analysis should indicate 

F' 3 D'apm of a three parameter space. Parameter values ill the shaded resions are defined to be 
19u1'e • I in class B; those ill the unshaded resions are ddiDed to be ill c1asI S. 

separation on the '3 axis but should not isolate the separation due to induced covari~ce 
. th l' l' plane Five hundred samples of parameter vectors were generated usmg 
m e "1"2 . . F' 3
random numbers and classified according to the scheme shown 1D lJUre • 
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The univariate analysis of these vectors showed ad.... of 0,09, 0·08 and 0'56 for ~1' 
~2 and ~3 respectively. The first two are not significant at the 90% level whereas the last 
is significant at well above the 99 %level. 

The correlation matrices under the behaviour and non-behaviour are: 

1'00 -0,34 0.05] [1.00 0·40 -0.04] 
- C(B).. -0'34 1·00 -0·08 ; C(B).. 0·40 1·00 0·0 . .' [ . 0·05 -0'08 1·00 -0,04 0·0 1·00 

As expected, there is a large correlation between the ~1 and ~2 parameters. Further, the 
off-diagonal elements of C(B) and c(B) are approximately of equal magnitude and of 
opposite sign. These large correlations between variables for which no univariate separa­
tion was seen suggest a principal components analysis as outlined above. Carrying out 
this analysis yi~lds the eigenvectors of the matrix E(~l ~ 1T), which are the columns of 
the T matrix and, for this example, are: 

-0.72 -0,00 -0.070] 
-0,70 -0,00 -0,72

T­ [ -0,00 -1·00 -0'00 

The d••• statistics are 0'18, 0'56 and 0·24 for the three eigenvectors. The second eigen­
vector (column 2) is, of course, the ~3 axis and reflects the mean separation in the 
original co-ordinates. The d•.• statistics for the other two directions are now significant 
at above the 99% level and the magnitude of the direction cosines in the ~l ~2 plane 
( - 0 .7) indicates the equal importance of each of these original parameters in explaining 
this separation. 

6. Application of the methodology 

As one example of the application of the proposed method for preliminary analysis of 
environmental systems, we consider a problem of cultural eutrophication in a coastal 
plain estuary in Western Australia. Over the last decade, the Peel Inlet near Perth has 
been plagued by excessive growth of benthic alga Cladophora afr. albida. In 1976, the 
Estuarine and Marine Advisory Committee of the Environmental Protection Authority 
of Western Australia organized a consortium of academic and governmental research 
groups to assist in collecting data and developing the strategy necessary for the long-term 
management of the Cladophora nuisance. " 

The nature and extent of data available for Peel. Inlet are such that the quantitative 
aspects of a conventional modelling exercise would not be of ~nefit. However, the 
information on similar types of problems reported in. the open literature, coupled with 
the preliminary data from a survey of seasonal changes in Cladophora biomass and 
nutrient concentrations in Peel Inlet conducted by Dr A.J. McComb and his associates 
from the Botany Department of the University of We~tern Australia (Atkins et aI., 
1977), provide enough information for applying the method we propose. 

We chose to investigate a phosphorus scenario, and, in addition to the Cladophora 
compartment, included in the model compartments for phosphorus in the water column, 
in the sediment and in phytoplankton. The model included 19 parameters. The six 
criteria for defining the behaviour derived from the survey data in Atkins et aI. (1977) 
and included limits for a Cladophora "bloom", timing of peak biomass, and maximum 



concentrations of phytoplankton and dissolved phosphorus concentrations during the 
"bloom". A full description of the model of the behaviour criteria is given by Hornberger 
and Spear (1980). 

Of 626 simulation runs conducted in the Monte-Carlo cxperimentst 281 fell in the 
behaviour category with 345 in the non-behaviour class. Sample distribution functionS . 
under Band B for two of the 19 parameters are shown in Figure 4. The Kolmogorov­
Smirnov statistict d..; - 0·20t indicates that F()'lIB) rio F(Y11B) at well above the 99% 
level of significance. The distributions of the light shading coefficient. k. on the other 

1·0 ......------,.....----....,........� 

0I.-0Il1::.- --1 

1·0 

-z.Q 

hand 
t 
differ by a maximum of 0·05. a value which corresponds to a level of significance 

well below 90%. We interpret these results to indicate" that "1 is an important determinant 
of the behaviour and k is not, at least in terms of a univariate analysis. A ranking of 
individual parameters on this basis classified seven of the 19 parameters as unimportant 

! 
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.,� 
for mimicking the behaviour and, as discussed below, isolated one set of processes as 
the critical linkage for successful simulation. 

The analysis of induced covariance in this particular example indicated that all of 
the significant information on discrimination between groups was contained in the 
univariate analysis. The induced correlations between the parameters under the 
behavioural classification were, in general, small. The largest off-diagona! element of the 
correlation matrix was 0'23 and most were less than 0'1. Principal components analysis 
of the induced covariance showed that the vast majority of the discriminating informa­
tion for the Peel Inlet problem is concentrated in mean shifts and can be determined 
directly from a ranking of the d..• values for the individual parameters. The value of 
d..• for the distributions projected on to the axis connecting P1 and 1J2 {i.e. the line 
connecting the centroid of the region associated with B and that associated with J) was 
0,56, roughly twice the largest value for a single parameter. . 

7. Discussion 

We have developed a method for preliminary analysis of environmental systems that 
makes it possible to utilize a simulation model in conjunction with data from the litera­
ture and any available data for the system itself to determine areas of critical uncertainty. 
For example, the results of the Peel Inlet study described above indicated that the 
phosphorus scenario provides a feasible explanation of the nuisance algal problem if 
Cladophora have access to phosphorus in the sediment and if significant quantities of 
sediment-bound phosphorus are carried into the growth area by the Murray River 
(Hornberger and Spear, 1980; Spear and Hornberger, 1980). Critical uncertainties, as 
indicated by the statistical analyses, were associated with this supply of nutrient from 
sediments. Options for environmental management would obviously be tightly pro­
scribed if the hypothesis generated by the preliminary analysis is true, and we concluded 
in an earlier report (Spear and Hornberger, 1980) that work should be initiated to test 
the hypothesis by quantifying the river input of sediment-bound nutrient, by establishing 
the extent to which this sediment is deposited in the areas where Clodophora are pro­
minent, and by determining the rates of transfer of available phosphorus from the 
sediment to where the algae can utilize it. 

As indicated above, the separation under the behavioural classification may not be 
so dominated by mean shifts in all problems. For eXample, we are currently apploying 
our generalized sensitivity method to the model of the evolution of the earth's atmosphere 
proposed by Hart (1978). In this instance, the "correct" behaviour requires that the 
atmosphere evolve along lines that lead to approximately the present composition, 
temperature, etc. This requires that the successful simulation avoids "runaway glaciation" 
on the one hand and a "runaway greenhouse" on the other. We expect then that the para­
meters that lead to S may be on "both sides" of parameterS that lead to B and that 
induced covariance may very wen prove to be of considerable importance relative to 
mean shifts. 

In addition to the obvious utility of the methodology to ordering research priorities, 
we feel that there is an even more direct link to environmental management. In any 
complex environmental system, only a relatively few processes are amenable to control 
This fact can be used to examine management alternatives by augmenting the simulation 
model to include a set o( "control" parameters and by performing the analysis with the 
full set of parameters. In this way, important control parameters can be isolated and ~e 

linkage with process parameters studied to formulate experiments to test control pro­
cedures. We are currently exploring this expanded use of the technique• 

• > 
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In concluding, we wish to emphasize that the approach we advocate is not equivalent 
to the typical simulation modelling effort and that we do not necessarily view it as a 
precursor to such an effort. Simulation modelling ofenvironmental systems for purposes 
of management has been widely criticized (e.g. Hedgpeth, 1977; Young, 1977) 'and we 
feel that much of this criticism is justified. The methodology developed in this paper 
avoids the problems inherent in the use of simulation models as deterministic predictors, 
by concentrating on the probability of obtaining a result that is consistentwith qualitative 

'.aspects of the behaviour under a full range of parameter uncertainty. Thus, it provides 
the basis for making practical use of simulation models in the field of environmental 
management. 
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'. 
~ previously developed regionalized sensitivity analysis for exposing critical uncertainties in models of 

en.vuo~ental systems i.s extended to study control of systems for which there is a good deal of uncer­
tamty an the mathemat~cal model used. to descrilJ:e th~ appropriate physical, chemical, and biological 
~rocesses: The method IS ~ased on .a bmary classdicatlon of Monte Carlo simulation results as being 
either ~tlsfactory or unsatisfactory 10 terms of controller performance. Contrasts in parameters associ­
ated With the two classes are elucidated by statistical analysis. This allows the selection of a set of control 
parameters that maximizes the .proba?ility of acceptable behavior in the presence of uncertainty in 
proces~ parameters. ~e method 15 apphed to the problem of regulating the discharge from a lagoon with 
the object of prevenung DO from falling below a predetermined standard. Jt was found that for this 
syst~ the d~ired behavior of th~ controlled process can be achieved with a probability of 0.84 with a 
~rtlcu.larly Simple controller design. Nevertheless, the results suggest that even modest levels of uncer­
talO.t~ In the pr~ss parameters can have a considerable effect on the controller performance and that 
additional attention should be devoted to the design of robust controllers for environmental systents. 

IN11l0DUcnON� logical components, uncertainty must be regarded as the rule 
rather than the exception. To investigate this issue in the con·Over the past 10 or 15 years there has been a sustained 
text of the DOjBOD problem, we chose to study the impli­interest in the application of control theory to water quality 
cations of parametric uncertainty on the rather practical ap­problems in river systems. Many of these investigations have 
proach to the single-reach control problem taken by Youngfocused on DOjBOD dynamics and have employed either dis­
and Beck [1974]. tributed [Tarassov et al., 1969] or lumped parameter models 

We carried their rejection of the optimal control approach of one sort or another [Kendrick et al.,1970; Young and Beck. 
one step further by assuming that the important practical 1974; Ozunger and Perkins, 1979]. The control methodologies 
issue was simply to keep the DO concentration in the reach applied to these models have included dynamic programing 
above some minimum level. The issue, then, was to determine [Naito et al., 1972], duality theory [Varaiya, 1972], differ­
the likelihood that the controller would be able to maintainential game theory [Ozunger and Perkins, 1979], procedures 
an acceptable DO level in the presence of significant para­based on pole placement [Young and Beck, 1974; Gourishank­
metric uncertainty and, furthermore,� to identify the keyar and Raman, 1977], forms of hierarchical control [Tamura, 
sources of uncertainty that affect controller performance. 1974] and Monte Carlo methods [Whitehead and Young, 

We have p~viously developed a regional sensitivity analysis 1979]. 
procedure for exposing the critical uncertainties in models ofSingh [1975] pointed out that many of these approaches are 
environmental systems [Spear and Hornberger, 1980; Hornber­characterized by the considerable computational burden re­
ger and Spear, 1981]. This procedure depends upon an abilityquired to implement the control scheme. He proposed a sub­
to construct plausible model structures, to estimate broadoptimal control scheme with more modest computational re­
ranges of parameter values from limited field data or from the quirements to deal with this practical problem, but the fact 
literature, and to define, rather loosely, the system behavior remains that much of the reported work is of principally theo­
that is associated with the environmental problem (e.g., see retical interest. An exception is the work of Young and Beck 
Hornberger and Spear [1980]). The last of these, the behav­[1974], who carried out field studies aimed at giving some 
ioral definition, is crucial to the method, and it is worth em­insight into the adequacy of their modeling approach for con­
phasizing that the defining algorithm need not be analytic:trol purposes. Their model was subsequently used, in a sim­
thresholds, topological conditions, logical conditions, etc. areplified form, for theoretical studies by Singh [1975], Ozunger 
all permissible. and Perkins [1979], and Gourishankar and Raman [1977]. 

The essential features of our sensitivity analysis procedure However, none of these authors included the "sustained sun­
are based on the following assumptions. 

light" term that Young and Beck found necessary to account 
1. The problem under investigation can be qualitatively 

for photosynthetic activity in the river and which their data 
characterized by specific patterns of system response that

suggested to be important to the overall DOjBOD dynamics. 
define the "behavior" of concern.

This omission led us to speculate on the effect of uncertainty 
2. One or more mathematical models of the system can be

in model structure or in process parameter values on the 
developed based on the relevant physical, chemical, or biologi­

design and/or operation of the rather elaborate control 
cal mechanisms that are assumed to underlie the problem 

schemes that have been developed. In systems with major bio­
behavior. 

3. These models can be parameterized by statistical distri­
Copyright by the American Geophysical Union.� butions rather than point estimates as a means of incorpor­

ating the uncertainty in the "actual" values of the parameters. Paper number 3W1224. 
0043-1 397/83/003W·1224S05.00� If, in a particular case, these conditions can be met, it is 
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possi~le to conduct a Monte Carlo simulation by randomly at which point QE = QL' Also, VL> O. The state variables, 
selectmg a parameter set from the predefined multivariate dis­ input variables, and process parameters are as follows: 
tribution, integrating the system equations, and classifying 

Xl output (downstream) DO, mg 1-1; each simulation run according to the occurrence or nonoccur­
X2 output BOD, mg I-I;rence of the problem defining behavior. A repetition of this 
L input (upstream) BOD, mg 1-1; procedure n times leads to the accumulation of n parameter 

C1 input DO, mg 1-1; vectors which led to the behavior B and n - m which led to 
C. saturation concentration of DO, mg I-I; , not-the-behavior H. The essential idea concerns the separation 

QE discharge from lagoon, m3 d - I ; of the a priori parameter distributions under the behavioral 
Q river discharge, m3 d -I;mapping. That is, given the a priori cumulative distribution 

VIII mean volume of the reach, m3
;for the parameter ~, as F(~J, the issue concerns the degree to.. VL lagoon volume, m3 ;

which F('iIB) differs from F(',IB). Clearly, if F("IB) = a1 reaeration rate constant. day-I;
F("IB) = F('i)' then it would seem that the parameter 'I was 

02 BOD decay constant. day-I;not important in determining the occurrence or nonoccur­
a3 sedimentation rate constant. day-I;rence of the behavior. It transpires that this is a sufficient but 
LA mean rate of addition of BOD to the reach by local not necessary condition for insensitivity, but together with its 

runoff, mg 1-1 d- I;
elaborations it is the central Dotion of the approach. 

DB net rate of removal of DO from the reach due to variousIn this report we extend the sensitivity concept to the study 
components of respiration, mg 1- I d - I; of control of parametrically iIl-defined systems in the context 

11 . a "sustained sunlight" term to account for the observed of the DO/BOD problem. Here the binary classification 
correlation between sunlight and high concentrations ofnotion of the sensitivity approach is retained in the form of 
DO and BOD, hid;adequate or inadequate system performance, i.e., whether or r the threshold level of the sustained sunlight effect, hid;not the DO criterion can be met. The new feature is that the 

a. DO rate constant for the sustained sunlight term, mg I-I
controller design problem has two parameter sets, those as­ h- I ;
sociated with the control algorithm which can be specified by 

as BOD rate constant for the sustained sunlight effect, the designer and those associated with the physical, chemical, mgl- I h- I ; 
or biological processes to be controlled. The former set will be 

QL discharge to the lagoon, m3 d -I;
referred to as control parameters and the latter set, which are 

L E BOD concentration of lagoon effluent. mg 1-1; 
assumed to be uncertainly known, will be called process pa­

CE DO concentration oflagoon effluent. mg I-I. 
rameters, in conformity with usual practice. The specific� 
design problem is, for a given feedback control algorithm, to The sustained sunlight term is� 
select a fixed set of control parameters that maximize the� 1 ( (81 - 0) )
probability of acceptable behavior in the presence of uncer­ 11 = Itc-I + ~ htc --0- -ltc-I (4) 

tainty in the process parameters. 
where� 

DESCRIPTION OF THE PROBLEM� 
k time index;� 

As stated above, our point of departure is the model of a time constant of the low-pass filter, days;� T. 
single river reach proposed by Young and Beck [1974]. A� 
waste stream of constant strength and constant discharge� 

TABLE 1. Pr~s Parametcr Means and Values of thc Kolmogo­flows into a lagoon. Releases from the lagoon to the river are rov Statistic for Monte Carlo Runs 
to be scheduled such that dissolved oxygen in the river is not� 
driven below a specified water quality standard (the behav­ d...� 
ioral criterion in our formulation) and such that the lagoon� 

Mean Value RUD 1 Run 2 Run 3does not overflow nor fall below some minimum level.� 
The model for a reach of the River Cam given by Young� Process Parameters 

and Beck is in terms of dissolved oxygen (DO) and biochemi­ 13 1 0.2 0.096 0.205 0.375 
cal oxygen demand (BOD): 132 0.32 0.293 0.284 0.317 

D. 0.5 0.183 0.109 0.216 
a. 0.31 0.102 0.146 0.159dX I [ Q+ QE} Qdt = - al + ----v,:-- 1 - °2X 2 + V. CI + ai C. - DB Gs 0.129 0.0990.32 0.124 
CE 20 0.115 0.102 0.142, L E 20.0 0.154 0.232 0.141 

+ a.(ll - T) + ~E CE (1) 1 6.0 0.309 0.321 0.343 
III 'ts 4.0 0.138 0.099 0.125 

V. 15.1 )( 1()4 0.148 0.184 0.375.. d;'2 -= -[a2 + 03 + Q ;IIIQE
}2 + ~ L + LA 2.8 x 1()4- 0.097 0.136 0.192~L 8.0 0.297 0.311 0.687 

Control Parameters 
+ aill - T) + QE LE (2) 

VIII 
k l see text 0.219 0.093 fixed 
k2 see text 0.132 0.293 fixed 

A simple m'ass balance on the lagoon yields a third equation: k3 see tcxt 0.094 0.104 fixed 
Y. see text '0.320 0.170 fixed 

dVL xa see text 0.166 0.271 fixed
dt = QL - QE (3) 9.5% Value ofd... 

0.182 0.173 0.232 
where VL is constrained to be less than some maximum value 
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h.� period of sunlight during the kth day, hours;� 
8 river water temperature, °C;� 
lJ a mean water temperature, 0c.� 

The process parameters associated with the model of the 
DO-BOD dynamics are listed in Table 1. (We followed Young 
and Beck [1974] and set a3 == 0 and LA = 0.) 

The controlled variable in this problem is QE' the lagoon 
discharge, which must be positive or zero. The value of this 
variable was determined from a control law which uses state 
variable feedback on output DO and BOD and integral error 
on DO. The control law for positive ftowrates is 

QE = -[kl(x i - Yr) + k2(X2 - X2) + k3X3] (5) 

where Y. is the dissolved oxygen set point. X2 is the mean 
BOD level in the stream, k l , k 2 , and k 3 are controller gain 
parameters, and X3 is the integral error variable, defined by a 
third state equation, 

dx3 /dt == Xl - Y. 

which was introduced by Young and Beck in order to control 
XI to the desired set point Yr In our treatment we modified 
this equation such that only values of Xl less than Y. are of 
concern, and 

dX3/dt = Xl - Y. Xl < Y. 

dX3/dt = 0 XI > Y, 

Also, when XI rises above Y.. X3 is reset to zero.·The control 
parameters to be specified are then k l , k2, k 3, Y.. and X2' 

The method for examining the robustness of the controller 
design is similar to that for performing a regional sensitivity 
analysis. A range of possible values for the process parameters 
listed in Table 1 is chosen to reflect the system uncertainty. In 
this instance we simply used a rectangular probability density 
with a range of ±25% of the listed values to characterize the 
process parameter distributions. An example of how these dis­
tributions are specified in practice is contained in the work of 
Hornberger and Spear [1980]. The control parameters, how­
ever, are not uncertainly known but are to be determined from 
a range of allowable or feasible values. If we are prepared to 
stipulate this range, then it is possible to treat both control 
and process parameters similarly as far as the mechanics of 
the Monte Carlo simulation are concerned. The interpretation 
of the results of the Monte Carlo procedure will, of course, be 
quite different for the control versus the process parameters, as 
will be seen. A broad range of values was used for the parame­
ters of the control law: the a priori distributions for k l , k2, and 
k3 were bounded by [-2.0 X 10',0], [0, 1.0 x 10'], and [0, 
1.0 x 10'], respectively. The distribution bounds on the set 
point parameters, Y. and X2' were taken to be [5.0, S.O] and 
[5.0, 10.0], respectively. The stream standard for DO was 
taken as 5.0 mg/l. As indicated above, this value constitutes 
the behavioral definition. If during a simulation run, Xl goes 
below 5.0 mg/l, the run is a nonbehavior and, conversely, if Xl 

remains above 5.0 mg/l, the run is a behavior. Input data (i.e., 
time series for L, C I , Q, h., and 8J for the 80 days of each 
simulation run were those for the River Cam as reported by 
Beck [197S]. 

As indicated above, given the foregoing model and data, it 
is possible to carry out a number of Monte Carlo simulations 
by randomly selecting a parameter set from the predefined 
distributions, integrating the systems equations over the 
SO-day period and classifying each simulation run according 

to the occurrence or nonoccurrence of the "behavior." In 
order to assess the benefits of control, however, it is necessary 
to know the behavioral probability in the absence of control. 
Many systems, of course, will not operate at all without con­
trol, but environmental systems will often do so. Therefore the 
first simulation runs assumed the waste stream to be dis­
charged directly to the river. Once the probability of behavior 
of the uncontrolled system, P(Bo1 is estimated, the marginal 
benefit of control, M. == P(B) - p(Bo). can be found for 
various controller designs. 

In each of the Monte Carlo runs described below, we chose 
to conduct 250 replications based largely on our previous ex­
perience that the statistical methods employed seem well­
behaved for sample sizes of this magnitude and greater. In this 
study the principal statistic employed was the Kolmogorov 
statistic, d...... sup IS.<'J - S.(',)I, where the S(,J are the 
sample distribution functions of the parameter " for n behav­
ior and m nonbehaviors. Here, "well-behaved" implies that 
d•.• tends toward a relatively constant value for n + m ~ 250 
and both n and m greater than SO or so. Of course, the signifi­
cance level associated with a given d•.• continues to change 
with m and n even though d•.• itself approaches a constant 
value as m and n get large. Hence we regard the d•.• corre­
sponding to a 95% level of significance as a "threshold" of 
separation between F("IB) and F("ID) but beyond that the 
magnitude of d•.• is probably a better index of the degree of 
separation than any measure based on significance level. 

REsULTS AND DISCUSSION 

The initial Monte Carlo run of 250 replications was carried 
out with process parameter bounds of ±25% of the values 
shown in Table 1 and without control. There occurred 20 
behaviors, resulting in an estimate of 0.08 for P(Bo)' 

A second run of 250 replications (Table I, run 1) was carried 
out with the process parameter bounds unaltered and the con­
trol parameter bounds as given above. The ranges for the gain 
parameters k l , k2, and k3 contain the fixed set selected by 
Young and Beck on the basis of desirable pole locations for 
the linearized ~stem. The rationale for such wide bounds on 
these parameters is simply to give the analysis ample op­
portunity to discover those portions of the control parameter 
space in which behaviors are particularly dense. 

Of the 250 Monte Carlo runs, 85 were behaviors and 165 
nonbehaviors (P. == 0.34). The values of the Kolmogorov sta­
tistic given in Table 1 (run 1) indicated that four of the 13 
process parameter distributions and two of the five control 
parameter distributions separated under the behavioral map­
ping at above the 95% level of significance (d••• == 0.182). 
These were a2' D.. r. B, and the control parameters kl and Yr 
Among these process parameters, d,.,JI was approximately 
0.300 for a2, r. and lJ and 0.183 for D.. the latter value just 
marginally in excess ofthe 95% value of 0.182. Figure 1 shows 
smoothed versions of S. (a2IB) and S..(a2 1B) to illustrate the 
separation of the distributions under the behavioral mapping. 

From an inspection of the cumulative distributions for the 
control parameters it was found that the portion of the con­
trol parameter subspace in which a higher proportion of be­
haviors will be found is at the low end of both the k l distri­
bution and the Y. distribution, with k2, k3 , and X2 being of 
little apparent consequence. The correlation matrix under the 
behavior contained values generally less than 0.2 with some 
interesting exceptions occurring for lJ with the control param­
eters: 0.29 with k l , -0.32 with k2, and -0.31 with Yr 



1269 SPEAR. AND HORNBERGER.: CoNTROL OF R1vEJuNE 00 LEvEL 

.' 

~ 
;;: 
I.. 

• ...� .11 .11 ... 

I, 

Fig. 1.. ~e ~ priori d~tribution of paramete~ D,. and smoothed 
sample distnbuuon funeuons under the behavior B and not-the­
behavior B. 

Utilizing the results of the previous run, the bounds for k 1 

and Y. were altered to [-2 X 105, -1.5 X 105] and [5, 6], 
respectively, for run 2. All other bounds were as before. These 
changes resulted in raising the behavior probability to 54% 
from the original 34%. The d•.• values are given in Table 1, 
run 2. In this region of parameter space there are some 
changes in the list of sensitive process parameters, with DB 
dropping below the 95% significance level and °1, LE, and VIII 
appearing as important by virtue of rising above this level of 
significance. Of greater interest, however, are the changes in 
the control parameter sensitivities. As expected, k 1 and y, 
become less important with d... values of 0.09 and 0.17, re­
spectively. However, k,. and x,. now have d•.• values of about 
0.3. This result and the low correlation between the DO and 
BOD control parameters suggests that this region of control 
parameter space is good as far as the DO component of the 
controller is concerned but that further improvements are pos­
sible in the BOD component, i.e., k,. and x,.. As before, k3 
appears to be of little importance, which is not surprising in 
view of our behavioral definition. Hence, setting k3 = 0 leads 
to a desirable simplification. 

The distribution S.(k,.IB) indicates that behaviors are prefer­
entially associated with values of k,. on the low end of the 
range. As before, we might alter the k,. distribution to cover 
the bottom 25% or SO of the present range. Alternatively, we 
might recognize the practical fact that BOD analysis takes 5 
days to accomplish and a scheme using x,. feedback is not 
feasible for real time control purposes. The latter course leads 
to a choice of k,. = 0 which, fortunately, is consistent with k,. 
being at the low end of the range. 

These choices simplify the design problem to that of 
choosing specific values for k1 and y, from the narrowed 
ranges given above. However, since neither the distribution of 
k1 nor y, separate under the behavioral mapping, the strategy •� used to arrive at the present region provides little further guid­
ance. That is, it is knowledge of the fine structure of F(k1IB) 
and F(Y,IB) that is necessary to obtain further information. To 

• obtain such information is costly in terms of computer time, 
since large numbers of replications are required to obtain a 
good picture of the details of F from S•. Before proceeding 
further on the practical questions, let us digress briefly to 
indicate what could be done with a good estimate of F if it 
were available. 

We are seeking regions of the control parameter subspace in 
which the probability of behavior is high or, conversely, the 
probability of not-the-behavior is near zero. Let V be the 
event that the m-dimensional co~trol: par~meter vector lies 

within a bounded region such that 0i ~ ki ~ hi for j = 1, m 
where 0, and hi lie within the limits of the rectangular distri­
bution defined for k,. Then 

p(HIu) = P(H)p(UIH) 
P(U) 

where p(B) is the probability of not-the-behavior in the entire 
parameter space as originally defined. Since we assume each 
element of the control vector k is independently distributed, 

• 
P(UIH) = TI P(U,IB) 

'=1 

where V, is the event that 0i ~ ki ~ h,. Likewise, 

III 
P(V)= TIp(UJ 

i=1 

Since we desire to find the region V such that P(BIV) = 0, this 
is equivalent to finding regions where 

To locate this region we may inspect the cumulative distri­
bution of each of the ki under B, since P(ViIB) = F(btl1l) 
- F(aiIB). That is, we are looking for "flat" places on each of 
the functions F(k,IB). 

If the behavioral mapping had resulted in appreciable c0­

variance among the elements of k(B), an analogous argument 
can be developed for dealing with a parameter set transformed 
by the matrix which diagonalizes the covariance matrix 
E[(k - p)(k - p)T] where p = E(kIB). 

Returning to the practical issue, one can either use S.(k11H) 
and S.(y.IB) for n = 250 and assume that any apparent flat 
spots are real or carry out further runs to increase n. The 
choice clearly depends on the cost/benefit situation for the 
problem at hand. Here we take the former course and select 
k 1 = -1.8 X 105 and Y. = 5.4. These values, together with 
k,. = k3 = 0, constitute a controller design which, in an ad­
ditional 250 replications, resulted in an estimate of the behav­
ioral probabilitf of 0.84 (Table 1, run 3). We cannot contend 
that this is the best that can be done, but it is a design which 
raises the probability of keeping the DO in the stream above 5 
mg/l from 0.08 without control to 0.84 with a particularly 
simple control scheme. 

Under the above design conditions the occurrence of the 
behavior is sensitive to five process parameters. They are ai' 
0,., T, V.. and 6. Of these, 6 is overwhelmingly important with 
a dill.• of 0.687 as contrasted with the 95% value of 0.232. In 
fact, s.(61H) is zero until 6 is near its mean value. Hence, if in 
the real system the value of 6 is low, behaviors will be ob­
tained with a probability very near to unity with this control­
ler design. 

CoNCLUSION 

The final result, then, is that with the defined inputs and the 
process parameter distributions the desired behavior of the 
controlled process can be achieved with a probability of 0.84 
with a particularly simple controller design. If this probability 
were deemed insufficient, three courses of action are open, at 
least in theory: one might enlarge the lagoon thereby increas­
ing the overall control capacity, one might engage in further 
research to narrow the process parameter uncertainty, or one 
might investigate other controller structures. In the case of 
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process uncertainty, the results of the analysis strongly suggest 
that algal photosynthetic activity is critical in that the distri­
bution of the parameter iJ separated with a d"'.ft of 0.687 in the 
final Monte Carlo run as discussed above. The related param­
eter Talso was marginally important. 

Although we cannot argue that the ±25% variabilityas­
signed to the process parameters is "realistic," neither do we 
feel that it reflects an unrealistic degree of uncertainty for 
biological parameters in systemswitbout real time estimation 
capability. Oearly, this degree of uncertainty has had a pro­
found effect upon the controller design with which we began. 
Two of its three terms were dropped since they appeared to 
have little effect on the outcome. With DO feedback alone the 
controller is able to do quite a decent job of attaining the 00 
goal. A key result, however, is that two of the parameters 
associated with algal photosynthesis were critical to the con­
troller's ability to maintain acceptable DO levels. That is, even 
with a rather modest control objective, the uncertainty in the 
process parameters strongly conditions the ability of the 
system to attain its goal. This result is, perhaps, not surprising, 
but it would seen to suggest that the design of robust control­
lers for such systems is a subject that deserves more attention 
than it has received in the past. The extension of the re­
gionalized sensitivity analysis developed previously by Spear 
and Hornberger [1980] and Hornberger and Spear [1981] is 
one method for dealing with the design of robust controllers 
for uncertain environmental systems. The use of the method 
has already proved to be attractive for the design of control­
lers for well-defined processes where nonanalytic performance 
criteria are desirable or in cases where the process is nonlinear 
or otherwise analytically intractable [Auslander et al., 1982]. 
We have shown here that the method retains this basic utility 
for natural environmental systems for which thoroughly vali­
dated and verified mathematical models are not available. It 
would appear that the general approach can be modified and 
elaborated to address a wide variety of practical problems. 
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Selection of Parameter Values in 
Environmental Models Using Sparse Data: 
A Case Study 

George M. Hornberger and Bernard J. Cosby 
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ABSTRACT 

Models of environmental processes must often be constructed without the use of 
extensive data sets. This can occur because the exercise is preliminary (aimed at 
guiding future data collection) or because requisite data are extremely difficult, 
expensive, or even impossible to obtain. In such cases traditional, statistically based 
methods for estimating parameters in the model cannot be applied; in fact, parameter 
estimation cannot be accomplished in a rigorous way at all. We examine the use of a 
regionalized sensitivity analysis procedure to select appropriate values for parameters 
in cases where only sparse, imprecise data are available. The utility of the method is 
examined in the context of equilibrium and dynamic models for describing water 
quality and hydrological data in a small catchment in Shehandoah National Park, 
Virginia. Results demonstrate that (1) models can be "tentatively calibrated" using 
this procedure; (2) the data most likely to provide a stringent test of the model can be 
identified; and (3) potential problems with model identifiability can be exposed in a 
preliminary analysis. 

INTRODucnON 

Mathematical modeling of environmental systems is now a we]]~stablished 

practice. In certain instances problems are well defined, appropriate data can 
be collected, and statistical methods can be applied to ensure that inferences 
drawn from the model are supportable. In other instances the obverse 
situation may prevail: the problem is poorly defined, suitable data are lacking, 
and traditional statistical analyses either are impossible to perform or do not 
lead to any useful results. We are interested here in the utility of mathemati­
cal models in the latter situation. 
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We will refer to the class of models that we consider as speculative 
simulation models. By "simulation model" we mean one whose strocture and 
parameters are explicitly related to physical, chemical, or biological processes. 
(In hydrology,· the term "conceptual model" is generally used [5].) We 
append the qualifier "speculative" to indicate that, for cases with which we 
are concerned, available data, or at least portions of the data, are 50 sparse 
that rigorous calibration and validation of the models are not possible; we are 
interested in the analysis of "badly defined systems," as described in [28]. 

We believe that speculative simulation models, despite their wide use as 
predictive, deterministic representations of reality, are useful only in a prob­
abilistic context. Specifically, because of uncertainty surrounding the entire 
conceptual basis of the model, we maintain that analysis should focus on the 
probable model structures and parameter values that appear to be consistent 
with available information. Our approach to such analysis is to use a method­
ology referred to here as a •• regionalized sensitivity analysis" (RSA), first 
proposed in [26] and [11]. The method has proved useful in a number of 
studies of badly defined natural systems [10, 11,26,27, 1,8, 7, 29, 13,30,6]. 

Research reported here deals with the application of the RSA to the 
problem of selecting parameter values for a particular model strocture in the 
face of sparse and/or unavailable data. In particular, we apply the method to 
the problem of modeling hydrology and water chemistry in a small catchment 
in Shenandoah National Park, Virginia. 

THE RSA PROCEDURE 

The basis of the RSA method is the utilization of a simulation model 
together with a classification algorithm. The classification allows any particu­
lar trajectory of the state variables of the system'generated by the model to be 
identified as either representative of the observed (or desired) behavior of the 
system or not representative of the behavior. The idea is to inject uncertainty 
into the simulation model of the system by specifying the parameters via 
probability density functions (rather than point estimates) and then to per­
form Monte Carlo simulations, choosing parameter values from the specified 
distributions. The result of each Monte Carlo replication is classified as either 
behavior, B, or nonbehavior, B. Subsequent to the Monte Carlo bials, 
statistical analysis of the parameter vectors is used to isolate those parameters 
important in simulating the salient features defining the observed behavior. 
The sensitivity rankings of the parameters are taken to be indicative of the 
relative importance of uncertainties in various component processes. 

Assume an environmental system to be modeled by a set of first order 
ordinary differential equations. Let these equations be given in the form 

dx{t)lit ... i( t) == f(x{ t), ~,z{t», 

----_. ----------------­
.. 
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where x(t) is the state vector and z(t) a set of time-variable functions which 
include input or forcing functions. The vector Eis a set of constant parame­
ters described more fully below. Thus for E, z(t), and x(O) specified, x(t) is 
the solution of the system of equations and is a deterministic or stochastic 
function of time as determined by the nature of z( t). For simplicity of 
exposition, z(t) will be treated hereafter as a deterministic function of t. 
Under this assumption, there are two types of uncertainty with which we will 
deal: uncertainty in the model structure, i.e. in the functions f, and uncer­
tainty in the parameter values E. Different model structures would pertain to 
competing hypotheses on system functioning. We use the term scenario to 
indicate a particular structure. 

For a given scenario each element of the vector Eis defined as a random 
variable, the distribution of which is a measure of our uncertainty in the 
.. real" but unknown value of the parameter. These parameter distributions 
are formed from data available from the literature and from experience with 
similar structures. In most situations, the available data can best be used to 
give allowable limits of parameter values. Interpreting these limits as the 
range of a rectangularly disbibuted random variable for each element of E 
results in the definition of an ensemble of models for a given scenario. Some 
of these models will, we hope, mimic the real system with respect to the 
behavior of interest. 

Turning now to the question of behavior, recall that for a given scenario 
every sample value of E, drawn from the a priori distribution, results in a 
unique state trajectory, x( t). Following the usual practice, we assume that 
there is a set of observed variables y( t), which can be calculated from the 
state vector important to the problem at hand. So, for each randomly chosen 
parameter set E*, there corresponds a unique observation vector y*( t). Since 
the elements of y(t) are observed (i.e., they are measured in the real system) 
it is sensible to define behavior in terms of y(t). For example, suppose Yi is 
the runoff in a given stream and the study relates to floods equaling or 
exceeding a given magnitude. The behavior in this case will be defined by the 
occurrence of a predicted discharge at or above the ~ified level. 

In general a number of behavior categories can be used. In fitting 
rainfall-runoff models one might be interested in discerning differences among 
classes of response that: (1) matched a number of storms by total volume of 
discharge within some percentage difference and matched peak flows within 
some specified difference; (2) matched the peaks but not the volumes; (3) 
matched neither. That is, one might want to isolate modeled processes that 
were most important to a variety of modes of behavior. Without loss of 
generality, however, we can consider the case for which behavior is defined in 
a binary sense, that is, it either occurs or does not occur for a given scenario 
and set of parameters E. 

We have now presented the class of models to be studied, defined the 
scenario concept, and described how we propose to deal with parametric 
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uncertainty. For a given scenario, behavior, and set of parameter distributions 
E, it is possible to explore the properties of the ensemble via computer 
simulation studies. In particular, a random choice of the parameter vector E 
from the predefined distributions leads to a state trajectory x(t), an observa­
tion vector y( t), and (via the behavior-defining algorithm) a determination of 
the occurrence or nonoccurrence of the behavior. A repetition of this process 
for many sets of randomly chosen parameters results in a set of sample 
parameter vectors for which the behavior was observed and a set for which 
the behavior was not observed. The key idea is then to attempt to identify the 
subset of physically, chemically, or biologically meaningful parameters which 
appear to account for the occurrence or nonoccurrence of the behavior. More 
traditional sensitivity analyses of large environmental models inevitably show 
that a surprisingly large fraction of the total number of parameters are simply 
unimportant to the critical model behavior. We maintain that this unim­
portant subset, or conversely the critical subset, may be tentatively specified 
in a reasonably objective fashion. 

Ranking the elements of Ein order of importance in the behavioral context 
is accomplished through an analysis of the Monte Carlo results. The essential 
concept can be best illustrated by considering a single element €" of the 
vector Eand its a priori cumulative distribution as shown in Figure 1. Recall 
that the procedure is to draw a random sample from this parent distribution 
(a similar procedure is followed for all other elements of ~), run the simulation 
with this value, and record the observed behavior and the total vector E 
therewith associated. A repetition of this procedure results in two sets of 
values of €", one associated with the occurrence of the behavior B, and the 
other with nonbehavior B. That is, we have split the distribution F(€,,) into 
two parts as indicated in Figure 1. This particular example would suggest that 
€" was important to the behavior, since Fa,,) is ~learly divided by the 
behavioral classification. Alternatively, if the sample values under B and B 
appeared both to be from the original distribution F(€,,), then we would 
conclude that €" was not important. 

For the case where z( t) is a deterministic function of time, the parameter 
space is cleanly divided by the behavioral mapping; that is, there is no 
ambiguity regarding whether a given parameter vector results in B or B. Our 
analysis then focuses on the determination of which parameters or combina­
tions of parameters are most important in distinguishing between B and B. 
We will restrict the discussion to the case for which the parameter vector 
mean is zero and the parameter covariance matrix is the identity matrix. (A 
suitable transformation can always be found to convert the general problem 
to this case.) The problem of identifying how the behavioral mapping 
separates the parent parameter space can then be approached by examining 
induced mean shifts and induced covariance structure. 

-~._------
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Flc. 1. Cumulative distribution functions for parameter Ek' where F<Ek)- parent, Q priori 
distribution. F<EkIB) - distribution of Ek in the behavior category. F<EkIE) - distribution of 
Ek in the nonbehavior category. 

For example, we can base a sensitivity ranking on a direct measure of the 
separation of the cumulative distribution functions, F(~dB) and F(~djh 
In particular, we utilize the statistic 

d.... n= sup \Sn(r) - Sm(x) I, , 
" 

where 8n and S... are the sample distribution functions corresponding to 
F(EdB) and F(~Ic/B) for n behaviors and m nonbehaviors. The statistic 
d m. n is that used in the Kolmogorov-Smimov two sample test, and both its 
asymptotic and small sample distributions are known for any continuous 
cumulative distribution functions F(EdB) and F(~dB). Since Sn and 8m 

are estimates of F(EdB) and F(~dB), we see that d m • n is the maximum 
vertical distance between these two curves, and the statistic is therefore 
sensitive not only to differences in central tendency but to any difference in 
the distribution functions. Thus, large values of d.... n indicate that the 
parameter is important for simulating the behavior, and, at least in cases 



340 GEORGE M. HORNBERGER AND BERNARD J. COSBY 

where the induced covariance is small, the converse is true for small values of 
that statistic. For our purposes this analysis of univariate distributions suffices. 
Hornberger and Spear [11] describe the extension to cases where induced 
covariance is important. 

APPUCATION OF THE PROCEDURE 

One area in studies of natural environmental systems that has proven to be 
especially fertile for the development of simulation models is catchment 
dynamics. Eliciting a quantitative relationship between rainfall and runoff 
from catchments has been of great concern to environmental scientists 
throughout the modem period of the science of hydrology. The additional 
problem of accounting for chemical transformations of water as it passes 
through a catchment has also led to the development of hydrochemical 
simulation models in recent years. These models, be they purely hydrological 
or hydrochemical, must be speculative simulation models, inasmuch as even 
the most physically based of them cannot reflect the complexity and hetero­
geneity of processes as demonstrated in the field. Furthermore, the more 
complex the models become, the more difficult the problems of identification 
and parameter estimation become. Nevertheless, a host of important questions 
can only be approached via the application of simulation models to catch­
ments. The RSA procedure can be put to good use in these applications. 

The Shenandoah Watershed Acidification Study (SWAS), initiated in 
October 1979, focuses on processes in White Oak Run (WOR), a 5.15 km2 

forested catchment in Shenandoah National Park, Va. The purpose of the 
project is to estimate the probable past effects and the potential future effects 
of acid precipitation on soils and streams in the Park [23]. To this end we 
have examined the application of speculative simulation models to WOR. 
Below we describe two aspects of the study: a hydrological model and an 
equilibrium chemistry model. 

HYDROLOGICAL MODEUNG 

We use a model that derives from one used in a study by Beven and 
Kirkby [3]. This model is semidistributed in that it can predict the spread of a 
variable saturated contributing area on the basis of catchment topography 
and soil characteristi~s. The predicted patterns show a good resemblance to 
patterns of saturation measured in the field [3]. 

Beven and Wood [4] showed that the model could be further improved by 
taking into account the areal pattern of saturation storage deficits which may 
be predicted by the model in routing flow through the unsaturated zone. This 
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revised model gave good predictions of stonn nmoff volumes for several 
catchments, including WOR. The model can predict very different contrib­
uting areas for the same stonn nmoff, depending on catchment characteris­
tics, stonn rainfall distribution, and antecedent conditions. 

We further extended the model to enable simulation of flows on a 
time-rontinuous basis in WOR. We included modifications that conceptually 
covered all types of hydrological behavior that were observed or inferred from 
field measmements [31, 32]. The final model contained 13 adjustable parame­
ters. (See [9] and [12] for a complete description of the model.) 

It is well known that calibration of rainfall-nmoff models, especially when 
the model contains a rather large number of parameters and when the data 
available for calibration relate to whole catchment input-output, is prob­
lematic [14, 5, 15, 18, 17, 16,25]. In most cases the instability of parameter 
estimates sterns from the fact that the structural complexity of the model is 
greater than is warranted on the basis of the calibration data set; the model 
has ..surplus content." The RSA procedure can be used to elucidate which 
processes in the model appear to be responsible for observed behavior and, 
conversely, which of the modeled processes appear to make little or no 
difference in model predictions. 

In the case of rainfall-nmoff modeling there are usually extensive input-out­
put data sets available for calibration. For WOR, for example, we used 
approximately 1.5 years of 3 hourly measured values of precipitation and 
stream discharge in the calibration study. Why, then, should we consider this 
to be a situation with ••sparse data"? For simulation models such as the 
modified Beven-Wood model which we employed, there are several unob­
served states (e.g., soil moisture) intrinsic to the model. Observations of these 
states might greatly facilitate the calibration and testing of hydrological 
simulation models [16], but these data are not generally available. 

The calibration is therefore most often implemented using only rainfall and 
runoff data, a procedure that we followed for WOR. 11:IF parameter values are 
selected on the basis of some goodness-of-fit criterion, an objective function 
such as the sum of squared errors between simulated and observed runoff. 
One of the advantages of the RSA procedure is that nonstandard objective 
functions can be used to define the behavioral classification. It is possible, for 
example, to define a behavior criterion that would consider a simulation 
successful if three-quarters of the predicted stonn volumes were within 5% of 
measured values and the remaining predictions were within 15% of measured 
values. Examination of results from such unorthodox (but perhaps highly 
meaningful to field scientists) criteria can be very revealing in exposing how 
different portions of the simulation model work. To keep the discussion 
manageable, we report here results using two traditional objective functions 
to define the behavior categories: (1) the sum of squared errors (SSE) and (2) 

.. 
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the log likelihood function proposed by Sorooshian and Dracup [24]. For all 
optimizations we used the Rosenbrock [22] method. 

In implementing the RSA procedure for the hydrology model, values of 
each parameter were selected randomly from uniform distributions over the 
physicalJy meaningful ranges of the thirteen parameters. (If the parameter 
was one whose values can range over several orders of magnitude, we chose 
the logarithm of the parameter from a uniform distribution.) The model was 
run for the calibration period and .the SSE calculated for that particular 
realization of the simulation model. After 330 realizations were accumulated, 
the distribution of parameter values for the lowest 30% of the SSE values was 
compared with the distribution of values for the highest 70%. The comparison 
was made using the Kolmogorov-5mimov statistic dm• • If these distributions n
differed greatly, then the model output was deemed sensitive to that parame­
ter (as measured by the SSE). If the difference between the distributions was 
small, however. the model output was deemed indifferent to the value of that 
parameter, so that any value within the prespecified range could be consid­
ered as .. reasonable" as any other. 

The model output was sensitive (as judged by the SSE) to only four of the 
thirteen model parameters. The cumulative distributions of these four param­
eters when the SSEs were in the lowest 30% differed significantly (p = .01) 
from the cumulative distributions of the parameters when the SSEs were in 
the highest 70% (Figure 2). If a statistical optimization of the parameter 
values (using SSE as the objective function) were attempted, we might expect 
that the response surface for the four sensitive parameters would be well 
behaved and that the optimization routine would converge to the same global 
optimum values of these four parameters regardJess of the values of the nine 
insensitive parameters. AJternatively, we could interpret the RSA results as 
indicative of "surplus content" in the model and redu~ the model structure 
by removing the processes represented by the insensitive parameters. The 
expectation in this case would be that the response surface of the reduced 
model would be better behaved than that of the full model and the global 
convergence of the optimization routine would be improved. We examine 
both premises. 

The Rosenbrock routine was used to select "optimal" values for the 
thirteen parameters in the full model. Starting values for each parameter to be 
used in the iterative routine were chosen at random from the ranges of 
parameter values used in the RSA. This procedure was repeated ten times to 
determine whether the optimization procedure (based on SSE) consistently 
converged to unique ..optimal" values of the four sensitive parameters and 
whether the final SSEs of each optimization run were similar (i.e. the routine 
converges to a global minimum SSE regardJess of the values of the insensitive 
parameters). The SSEs for these random starting point optimizations ranged 

..._..__.­ _-­
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Flc. 2. Cumulative distributions of the four parameters in the hydrology model which 
significantly affected the value of the SSE criterion of model goodness of fit. The parameter 
distributions when the SSE was in the lowest 30% are indicated by F( P/ B); those when the SSE 
was in the highest 70% are indicated by F(P/B). 
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up to 1.5 times the lowest SSE value obtained (Table 1). The parameter 
values corresponding to the "optimal" SSEs showed little consistency (Table 
1). There appears to be a fairly large region of the parameter space from 
which ..optimal" values can be chosen. These "optimal" values appear to 
represent local minima in a badly behaved SSE response surface. 

A set of results similar to that for the SSE objective function was generated 
using the log likelihood function presented in [24]. The results were, of 
course, quantitatively different from those using the SSE, but the qualitative 
picture is very similar (Table 2). The response surface for the full model is 
evidently not improved by going from the SSE to the log likelihood criterion. 
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. TABLE 1 
PAJlAMETEII VALUES FOil SSE OPTIMIZATIONS-

Nonnalized Parameter Relative C') 
Run 1 2 3 4 5* 6 7* 8* 9* 10 11 12 13 SSE t'l1 

0 
1 0.0015 0.56 0.05 0.01 1.34 2.50 5.04 0.33 2.08 0.93 0.04 0.27 1.80 1.49 ~ 

tr:I2 0.0015 0.08 0.67 0.02 1.07 0.23 0.89 0.52 1.43 0.82 1.00 1.91 0.81 1.27 
3 1.26 0.22 0.001 0.92 1.15 0.84 4.42 1.25 0.27 0.95 0.01 1.36 0.14 1.16 ~ 

4 0.23 0.0015 0.89 O.oI 1.43 0.66 3.36 0.28 2.88 0.97 0.05 1.59 0.01 1.59 =0
5 0.19 1.15 0.95 0.18 0.82 0.56 5.43 0.59 1.42 0.62 0.06 0.33 0.70 1.13 ~ 

Z6 1.46 0.0010 0.97 O.oI 0.97 0.55 8.03 0.33 1.44 0.50 0.12 0.002 0.80 1.35 t:l:l 
tr:I7 0.0015 0.74 0.001 1.19 0.45 0.01 1.08 2.11 0.58 0.74 1.00 1.31 1.11 1.28 ~ 

C')8 0.62 0.57 0.99 0.03 1.07 1.96 1.27 0.59 0.47 0.63 0.13 1.31 0.64 1.37 tr:I 
9 0.12 0.000 0.001 3.44 0.83 0.06 4.18 3.34 0.33 0.91 0.49 1.40 0.06 1.26 ~ 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 > 
~  

t:l:laOn the full model, starting with random inltlal estimates. Parameter values are nonnallzed to the values 
for the best run (run 10). Asterisks Indicate the sensitive parameters as detennlned by the RSA procedure. ~
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TABLE 2 i 
PARAMETEJI VALUES FOR MAXIMUM LIKELIHOOD OPTIMIZATIONS" INonnalized parameter 

[ 
~ Run 1 2 3 4 5· 6 7· 8· 9· 10 11 12 13 MLFI. 

1 0.03 89.11 0.02 0.44 0.83 0.43 4.48 1.39 0.67 0.86 0.94 0.07 1.33 1.11 
2 24.26 88.93 1.12 5.37 0.71 0.14 1.46 7.49 0.13 1.04 0.53 0.05 3.58 5.25 
3 2.26 16.68 0.17 0.03 1.29 0.96 0.69 1.21 0.30 0.64 0.92 7.82 3.64 5.08 
4 0.03 85.36 0.02 0.68 0.29 0.03 0.61 9.19 0.08 0.86 0.002 1.23 0.16 1.05 
5 2.21 2.07 0.52 0.01 0.93 4.13 0.71 0.38 1.23 0.68 0.64 0.77 0.01 1.21 
6 0.03 4.20 10.70 3.41 1.03 1.34 1.63 0.86 0.27 0.71 0.01 1.38 0.87 1.13 
7 11.32 85.71 0.02 0.01 0.76 0.06 0.87 0.38 0.85 1.15 0.96 0.01 3.04 1.49 
8 7.66 0.88 0.02 9.10 0.92 0.32 2.72 8.97 0.05 1.04 1.00 0.73 5.21 5.05 
9 0.03 3.21 2.45 3.97 0.82 1.20 0.29 2.47 0.32 0.80 0.00 0.69 3.83 1.68� 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1� 

"On tile full model, starting with random initial estimates. Parameter values are nonnalized to the 
values for the best run (run 10). Asterisks indicate the senslUve parameter as detennined by the RSA 
procedure. 
I. Relative maximum likelihood function. 

~ 
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TABLE 3 
PARAMETER VALUES fOR SSE OPTIMIZATIONS" 

Nonnalized parameter Relative 
Roo 5 7 8 9 SSE 

1 1.05 1.26 0.98 0.71 1.01 
2 1.05 1.23 0.98 0.71 1.01 
3 0.96 0.79 1.02 1.35 1.03 
4 0.94 0.81 4.42 1.45 1.20 
5 0.45 0.17 2.11 3.64 2.98 
6 1.00 0.97 1.00 1.00 1.00 
7 1.05 1.20 0.98 0.72 1.01 
8 1.00 0.96 1.00 1.01 1.00 
9 1.00 0.99 1.00 1.00 1.00 

10 1 1 1 1 1 

"On the reduced model, starting with random initial esti­
mates. Parameter values are nonnalized to the values for the 
best ron (ron 10). 

We next examined the alternative of reducing the model structure by 
eliminating all processes in the model that were not identified as sensitive in 
the RSA. The resulting model, which still retains the topography-based 
structure of the original model, contains four parameters. 

The SSEs for 10 optimizations of the four parameters from random starting 
points ranged up to 3 times that of the lowest value (Table 3). Even with the 
reduced model structure there are apparently local "depressions" in the 
response surface, some of which may be far from the global optimum. Most of 
the SSEs for the reduced model, however, are very close to the minimum 
value, and the parameter values associated with the~e are all within a few 
percent of each other (Table 3). Furthermore, even though the number of 
parameters has been reduced from 13 to 4, there is little loss in terms of the 
SSE criterion. The minimum SSE for the reduced model exceeds the mini­
mum SSE for the full model by only 5%. 

Sorooshian and Gupta [25] summarize much previous work that has 
addressed calibration of conceptual rainfall-runoff models and point out 
problems that have been noted. These include interdependence among model 
parameters, indifference of the objective function to certain parameters, 
discontinuities in the response surface, and nonuniqueness of the optimum 
values of parameters. It is clear from the results of both the regionalized 
sensitivity analysis and the optimizations that the objective function is, in fact, 
indifferent to all but a small number of the 13 model parameters in the full 
model and that the "optimum" value of the parameters is not well defined. 

--~,.----
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Sorooshian and Dracup [24] pointed out that in certain cases the shape of 
the response surface using a maximum likelihood function was much better 
than the SSE response surface. For calibration of our full hydrological model 
to WOR, this was not the case. The shapes of the response surfaces for the 
SSE and the maximum likelihood functions were very similar. No improve­
ment in fitting the observed hydrograph using the full model was realized by 
employing the Sorooshian-Draeup method. 

The use of the RSA to reduce the dimension of the parameter estimation 
problem appeared to work reasonably well in this case. The parameter 
estimates, with only a few exceptions, are stable in the sense that convergence 
was to approximately the same point in the parameter space. Thus, from the 
standpoint of the input~utput data, there is little to recommend the full 
model over the reduced model, regardless of the fact that the processes that 
were included in the full model were inferred to be important from direct 
field observations. 

EQUILIBRIUM CHEMISTRY MODEL 

The hydrological model routes almost all precipitation through a single 
saturated zone store. Except during storm conditions, the water in WOR 
might therefore be considered to be in chemical equilibrium with a single 
(lumped) storage element. We have modeled the equilibrium chemistry of 
WOR using just such an assumption [6]. 

In applying the chemical model we again had a considerable quantity of 
data for WOR itseH. Major ion chemistry has been analyzed on a weekly basis 
for WOR for several years [9]. On the other hand, data for soils and soil water 
(the store that presumably determines the chemistry) are sparse-certain data 
are available from isolated points in the catchment, but spatial coverage is 
necessarily limited and samples are usually not matched temporally with 
streamwater samples. 

The questions that we address in this case are whether the model we 
propose is consistent with the sparse available data and, if so, whether we can 
identify the best measurements that might be made to test the model's 
adequacy using a quantitative (statistical) analysis. Because it is most natural 
to posit the behavioral criteria in terms of soil properties, we invert the 
.. normal" calculation procedure and, using streamwater chemistry as .. inputs," 
compute values of soil variables. (The .. normal" procedure would be to 
compute streamwater chemistry from soil properties, since the water is 
presumed to flow from the soil to the stream.) The calculated soil variables are 
then the trajectories used in the behavioral classification. 

In keeping with the lumped approach to modeling catchments, we pos­
tulated that a relatively small number of important soil processes-processes 
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that could be treated by reference to average soil properties-detennine 
streamwater chemistry. In two papers, Reuss [19, 20] proposed a simple 
system of reactions describing the equilibrium between dissolved and ad­
sorbed ions in the soil-soilwater system. Reuss and Johnson (in press) ex­
panded this system of equations to include the effects of carbonic acid 
resulting from elevated CO2 partial pressure in soils. Chemical conditions in 
the soil were assumed to be uniform throughout the depth being considered. 
Surface water chemistry was determined in the model by .. removing" the 
soilwater from contact with the soil, allowing the excess CO2 to degas to 
the atmosphere with subsequent precipitation of aluminum hydroxides as the 
solution pH increased. 

We have extended this conceptual approach to include all of the important 
cations and anions present in WOR streamwater, and to include important 
complexation reactions involving dissolved aluminum. A total of twenty-four 
equations and five adjustable parameters describe the reactions that de­
termine the chemical composition of soilwater in the model [6]. 

If the lumped equilibrium model is adequate and the parameters correctly 
chosen, the soil properties predicted by the model when driven with the 
observed streamwater chemistry should agree with actual measurements of 
the soil properties. Herein lie two problems: 

(1) With which particular soil measurement should the model prediction at 
a given time be compared? Our measurements of soil properties are much less 
frequent in time than the stream measurements and additionally are spatially 
distributed. 

(2) Are the parameter values used for the predictions consistent with the 
physical processes they are supposed to represent? The model is based on a 
lumped formulation, and the value chosen for a cation selectivity coefficient 
in the model, for example, may not be numerically equal-to the experimen­
tally determined cation exchange selectivity measured at some discrete point 
in the catchment. 

Given the spatial heterogeneity of measured soil properties and little 
knowledge of the true values of the lumped model parameters, the question is 
best posed as what ranges of parameter values are most likely to produce 
model predictions of soil properties that are within the ranges of our 
distributed measurements of these properties. The adequacy of the model can 
then be judged in two ways. If we constrain the ranges of the parameters to 
some subset of possible values (e.g. based on literature values or a few field 
observations) and we are not able to reproduce the observed soil properties 
using parameter values chosen from these limited ranges, the model must be 
judged inadequate. Conversely, if we are able to reproduce the soil properties 
only by selecting parameter values that are unrea1istic (e.g. solubility con­

- --- ---------------- ----- .­
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stants that are clearly incompatible with the hypothesized solid phase of a 
substance in the model), the model again must be judged inadequate. 

For this problem, then, the allowable ranges of selected soil properties 
form the basis of the behavioral classification. We chose four criteria for 
WOR. The first behavior criterion (BI) is that predicted base saturation of the 
soil, the percentage of exchange sites occupied by base cations (as opposed to 
alwninwn), must be within the range that is realistic for the type of soil at 
WOR. The other three criteria (B2, B3, and B4) define ranges for acceptable 
values of soil-water pH, total dissolved aluminum, and the partial pressure of 
CO2 , respectively. 

Values of five parameters must be selected in the model. Three of these 
(labeled PI, P2, and P3) are selectivity coefficients. coefficients which indi­
cate the affinity of the soil exchange sites for cations of different valence. The 
fourth parameter (P4) is an aluminum solubility coefficient which indicates 
the extent to which the concentration of hydrogen ion in soilwater is buffered 
by the dissolution of an aluminum mineral. The last parameter (P5) specifies 
the fraction of sodium that is adsorbed on the soil. 

Three hWldred Monte-Carlo runs of the model were made and subse­
quently analyzed using the RSA procedure. Each of the five parameters 
showed sensitivity (as measured by the K·S statistic with p - 0.01) in at least 
one of the behavioral categories. 

How might a particular set of parameter values, a set that would result in 
satisfactory simulation of all behavior criteria, be chosen? If such a set of 
values can be fOWld, we will have, in a sense, "tentatively calibrated" the 
model inasmuch as we will have identified at least one scenario that was 
consistent with the sparse data available. We will have failed to reject this 
particular model structure on the basis of available information. 

To determine a set a values for the parameters that would be consistent 
with available information, we adopted the ad hoc procedl.rre described 
below. Under behavioral category B2, only the distribution of parameter PI 
showed significant separation. This separation defined a value for acceptable 
results [Figure 3(a)]. Likewise, the distribution of parameter P5 showed a 
significant separation on behavior B4, allowing a value for P5 to be chosen 
[Figure 3(b»). We selected values for these parameters as indicated in 
Figure 3. 

The structure of the model is such that, by definition, behavior BI is 
conditioned only by parameters, PI, P2, and P5. Having already chosen a 
value for P5, a contour plot of soil base saturation as a function of PI and P2 
can be constructed by running the model for different combinations of values 
of PI and P2. The region of base saturation predictions that agrees with our 
field measurements determines an acceptable model behavior (Figure 4). 
Given that a value of PI has also already been selected, a value of P2 can be 
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Flc. 3. Distributions of parameter values over their predefined ranges when the model 

produced acceptable behaviors (8, unshaded bars) and nonbehaviors (S. shaded bars). The 
distributions are significantly different (p - .01) as determined by the Komolgorov-Smimov 
statistic. (a) Parameter PI and behavior criterion B2. (h) Parameter P5 and behavior criterion B4. 
In both cases, the arrows indicate the values of each parameter chosen as most likely to produce 
<.'Orre<:t behavior and least likely to produce incorre<.'t behavior. 

chosen such that the point in the contour space of Figure 4 corresponding to 
the selected values PI and P2 falls in the region of acceptable results. A value 
for P2 that maximizes the distance between this point and the boundaries of 
the acceptable region (intersecting lines in Figure 4) should give a high 
probability of the model producing acceptable values in terms of behavior 81. 

Having selected values for PI, P2, and PS, we examined the two dimen­
sional response surfaces of behaviors 82, 83, and 84 as functions of P3 and P4 

-----_ ... ~ ..._._ .._-_.----------------------­
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IFIG. 4. A contour plot of model predictions of soil base saturation as a function of 
parameters PI and P2. The enclosed region indicates the values of soil base saturation observed in 
the field. Model scenarios (choices of PI and P2) that predicted base saturation in this region are iclassified as acceptable behaviors (B). Scenarios which predict base saturation outside this region I 
are nonbehaviors (B). f 
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FIG. 5. Contour plots of (a) soilwater pH, (b) total dissolved aluminum in the soilwater, and 
(c) soil CO2 partial pressure as functions of parameters P3 and P4. 10 each plot, the enclosed 
region indicates the values of the soil properties observed in the field. Model scenarios (choices of 
P3 and P4) that predicted soil properties that fell within these regions were classified as 
ac,..eptable behaviors (B). The intersection of the regions in (a), (b), and (c) is indicated by the 
shaded region in (d). Choosing values of P3 and P4 in this region results in model scenarios for 
which all three behaviors (82, 83, and 84) can be Simultaneously obtained. A particular pair of 
values for P3' and P4 chosen by reference to the center of this region were considered to be most 
likely to result in all behaviors occurring Simultaneously and were used for the final calibrated 
version of the model. 

[Figure 5(a), (b), and (c)]. To complete the "calibration" of the model, 
specific values of P3 and P4 are selected such that behaviors B2, B3, and B4 
are Simultaneously obtained [Figure 5(d)]. The shaded area in Figure 5(d) is 
the intersection of the three behavioral regions indicated in (a), (b), and (c) 
respectively. 

When the model is run with the values of the parameters selected 
according to the above procedure, the predicted properties for soilwater at 

-----_._------------­
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WOR are consistent with the available infonnation. There are, obviously, any 
number of other combinations of values of the five parameters that would also 
be consistent. However, the model clearly points to certain soil properties and 
processes as being of critical importance in detennining streamwater chem­
istry. Several of these, such as CO2 partial pressure and cation selectivity, are 
not routinely measured in investigations of the role of acid deposition in soil 
and surface water acidification. If the conceptual basis of this model is 
correct, such infonnation will be necessary in understanding the relationship 
between soil solution and streamwater chemistry. 

DISCUSSION 

Efforts aimed at the rigorous calibration and testing of complex models of 
environmental systems are often vitiated by the sparseness (or absence) of 
certain important data. In such cases a simpler model structure that is also 
compatible with available infonnation may be devised. Often, however, a 
scientific study demands that certain structural aspects of the model be 
retained in that these pertain to the questions of importance to the study. The 
dilemma posed by Beck [2] intrudes: a small (rigorously calibrated) model 
may be all that the data can support in a statistical sense, given the premise of 
parsimony, but may be incapable of simulating certain physically interesting 
modes of behavior. On the other hand, a larger, complex model may produce 
behaviors that would never be observed in practice. In many problems in the 
environmental sciences the larger models are required, at least during certain 
phases of a study. We have presented a regionalized sensitivity analysis 
procedure that we maintain allows valuable inferences to be drawn in a 
speculative simulation modeling study. 

The RSA procedure is more a heuristic than a rigo~ous statistical analysis. 
One of the more useful aspects of a study with the RSA is what might be 
called .. hypothesis generation." By identifying the critical uncertainties in 
application of the model, one can argue that the RSA may lead to programs of 
study to reduce the uncertainties, i.e., to generate data to test critical 
hypotheses. This type of analysis was the motivation for the original develop­
ment of the procedure [10, 26]. In the present study, the results have in fact 
led us to implement certain field studies. For example, the analysis of the 
equilibrium chemistry modelled us to postulate that the production of CO2 in 
the soil is extremely important in conditioning the streamwater chemistry in 
WOR and that the seasonal variability in this parameter should be pro­
nounced, with CO2 levels reaching a peak in September and a minimum in 
March. We have initiated a measurement program at WOR to test these 
ideas. 

; 
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Another use of the RSA is as an objective means for reducing the 
dimensionality of a parameter estimation problem. Whitehead and 
Hornberger [30] showed that use of the RSA in this fashion led to the 
resolution of a problem of divergence when applying the extended Kalman 
filter to estimate the parameters in a mechanistic model of algal growth. Here 
we have shown that a hydrological model must be greatly reduced in 
complexity if stable parameters are to be obtained using only input-output 
data for WOR. 

Perhaps the most important aspect of the regionalized sensitivity method is 
the ability to utilize nonstandard goodness-of-fit criteria. Because of the 
admissibility of nonanalytic and semiquantitative behavior criteria, we can 
deal with curve fitting in very broad terms and thus potentially develop 
insight into the system functioning that would not be readily gained in any 
other way. Auslander [1], in a study involving a complex, uncertain system, 
used the regionalized sensitivity method and concluded the following: 

The use of a statistically-based identification/sensitivity method is essential in such 
problems.... A further observation, however, is that the type of information obtained 
from this technique gives a much stronger feeling for applicable parameter ranges 
than either identification procedures or sensitivity analyses based on point-by-point 
comparisons. 

The fact that the RSA procedure worked to our satisfaction in this 
application to WOR cannot be taken as an indication that it will prove to be 
universally beneficial. The method proposed herein is not a weU-defined and 
specific procedure for model identification and calibration, but rather an 
experimental approach that uses the computer as a .. blunt instrument" as 
well as techniques of statistical inference. Nevertheless, it would appear that 
the general approach can be modified and elaborated to address a wide 
variety of practical problems. , 
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