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Summary and Conclusions

A statistical method was used with parameter sensitivity analyses to evaluate results from
execution of the TPA Version 3.2 code. The TPA results consisted of several 500 realization sets
of Monte Carlo runs pertaining to a base case scenario with a limited number of sampled
parameters. Previously, several types of statistical and non-statistical techniques have been used
to perform sensmv1ty analyses employing the TPA Version 3.2 code. The focus of this report was
on a statistical test in which the 500 vectors for the 50,000-year time period of interest were
sorted into two bins dependmg on whether the dose was greater or less than 0.2 mrem. The
sampled parameters in each bin were then compared statistically to identify any statistical -
differences between the two bins. For the 50,000-year time period of interest, several parameters
were found most influential for the analysis of this limited base case scenario study. The final list
of influential parameters was selected on the basis of the K-S test, the Mann-Wthney U test, and
the visual inspection of the cumulative probability curves.
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Introduction

Yucca Mountain Project
Based on the provisions of the Nuclear Waste Policy Act (N\VPA) and the Energy Poh(:y

Act (EnPA), the Nuclear Regulatory Commission (NRC) is respohslhle for ‘evaluating the lweﬁ‘ée
application for a proposed geologic repository constructed for the empﬁc’étﬂent of lngh-level
nuclear waste at Yucca Mountain, Nevada. As groundwork for its regu;latory review activitiés
outlined in the NWPA and EnPA, the NRC is conducting detailed technwa.l performance

‘.

- assessments to understand and identify the potentially important 1solatlon charactensucs and"

capabilities of the proposed repository system at the Yucca Mountam s:te baSed on the
information currently available. An important facet of these performance asses‘Smenf Endeavors )
is the use of the Total -system Performance Assessment computer code.

Total- System Performance Assessment Code
The TPA code is designed to simulate the behavior of the geologlc i‘epository by taking ¥

into account the essential characteristics of the natural and engineered barrier sysscems "and the
availability of information about the geologic setting and design. This document presents
sensitivity analyses using the latest version of the TPA code, Version 3.2. Onp of the

fundamental purposes for applying the TPA Version 3.2 code to the proposed repos:tory is o _
acquire a detailed and quantitative understanding of the key factors controllmg the degradatlon of"
the engineered barrier system, the release of the waste from the repository, the ensuing tra
of the waste through various pathways, and possible human exposure at the location of the
designated receptor group. A probabilistic method is used to model the total repository system
that takes into account significant physical and chemical processes, as well as potentially -
disruptive events and processes.

This paper describes a particular sensitivity analysis technique utilized with results of the
TPA Version 3.2 code system-level calculations. In general, a sensitive parameter is defined as
one that provides a relatively large change in the output variable for a unit change in'an input
parameter. The goal of the sensitivity analyses presented in this report is to determine the
parameters to which groundwater peak dose in the 50,000-year time period of interest shows the
most sensitivity. The analyses were conducted for a basecase-type study using a limited number
of sampled parameters without including any igneous activity or ufaultmg dtsruptlve events.

The technique used relies on the Monte Carlo method for‘probablhsuc detenmmﬁk
system performance. This sensitivity analysis of the system focuses on the gmundwater :
dose in the 50,000-year time period of interest to an average member qf arece ‘ptor group lo cated N
20-km from the repository. Many of the input parameters are not precls ly’known and dre+ -
variable, so their values are described by probability distributions. The Monte Carlo techxuque ,
makes repeated calculations called realizations of the possible states for'the system, _choosmg ‘
values for the input parameters from their probability dlstnbutlons As many as 52 parameters’, -
are sampled in this analysis of the TPA Version 3.2 code, howevei‘ only a fewi of these - '
parameters contribute significantly to the uncertainty in- peak doses because of the great
sensitivity of peak doses to those parameters. It is assumed that the behavfor of the systém is
simulated by appropriately sampling the random parameters and T.Een computmg the system
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output for each realization. Since it is assumed that the decisions about appropriate model
assumptions have been made in advance, no additional considerations are made concerning the
dependence of the output on those assumptions.

Analyses Methods: Nonparametric Tests
Nonparametric tests, also sometimes referred to as distribution free tests, are often used in

place of their parametric counterparts when certain assumptions about the underlying populations
are questionable. All tests involving ranked data are nonparametric. This class of tests doesn’t
depend upon knowing the distribution of the results, nor upon knowing the mean value or
knowing the standard deviation, so they can be applied more generally. Because of that fact,
they are often more powerful in detecting population differences when certain assumptions are
not satisfied. However, users of these tests must be aware that they are not necessarily as likely
to detect significant effects, since they do not require quantitative dependent variables and do not
require Gaussian distributions.

The analyses’ methods presented in this paper consist of the following two nonparametric tests,
which are described in detail below.

Mann-Whitney U Test

The Wilcoxon Mann-Whitney Test, also known as the Wilcoxon rank sum test, is one of
the most effective of the nonparametric tests for comparing two populations. It is used to test the
null hypothesis that two populations have identical distribution functions against the alternative
hypothesis that the two distribution functions differ only with respect to location (median), if at
all. The Wilcoxon Mann-Whitney test does not require the assumption that the differences
between the two samples are normally distributed. In many applications, the Wilcoxon Mann-
Whitney Test is used in place of the two-sample t-test when the normality assumption is
questionable. This test can also be applied when the observations in a sample of data are ranks,
that is, ordinal data rather than direct measurements.

To use the Mann-Whitney U test appropriately for statistical analyses, the following assumptions

must be made: ‘

. Within each sample, the values are independent, and identically distributed. The
distribution does not need to be specified, but all the values in each sample follow the
same continuous distribution.

The two samples are independent of each other.

The populations from which the two samples were taken differ only in location. That s,
the populations may differ in their means or medians, but not in their dispersions or
distributional shape (such as skewness).

o Because the test statistic for the Mann-Whitney rank sum is based only on the ranks
within each sample, the test can be performed when the only data available are those
relative ranks.
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Kolmogorov-Smirnov Test (K-S Test)

For a single sample of data, the Kolmogorov-Smirnov nonparametric test is used to test
whether or not the sample of data is consistent with a specified distribution function. When there
are two samples of data, it is used to test whether or not these two samples may reasonably be
assumed to come from the same distribution. The Kolmogorov-Smirnov test does not require the
assumption that the population is normally distributed.

The K-S test is a goodness-of-fit test for any distribution. The test relies on the fact that
the value of the sample cumulative density function is asymptotically normally distributed. To
apply the K-S test, the cumulative frequency (normalized by the sample size) of the observations
is calculated as a function of class, the cumulative frequency for a true distribution (most
commonly, the normal distribution) is then calculated, and then the greatest discrepancy between
the observed and expected cumulative frequencies, which is called the “D-Statistic”, is
determined. This value is compared against the critical D-statistic for that sample size. If the
calculated D-statistic is greater than the critical one, then the null hypothesis that the distribution
is of the expected form is rejected. Failure to understand and properly apply uniform distribution
tests by the K-S test may result in drawing erroneous conclusions from your data.

Methods

Total-System Performance Assessment (TPA) Code: Data Input. Execution, & Output Files

The TPA Version 3.2 code is executed in batch mode using primary and some auxiliary
input data files. Primary input data for the TPA Version 3.2 code are contained in the #pa.inp
file. The tpa.inp file contains the information necessary for the user to specify the
configurations, number of realizations, simulation time, number of subareas, and parameters to
be sampled. The input data for the TPA Version 3.2 Code was prepared by modifying the
tpa.inp.meanvalues file, which contains the mean values for all quantitative parameters contained
in the TPA code. A limited number of parameters were selected and changed to their values as
listed in #pa.inp.basecase. Once the alterations to the #pa.inp file were completed, the TPA
Version 3.2 code was executed in a UNIX operating system with the command #pa.e.

During execution, the TPA Version 3.2 code generated a number of output files. Four of
these files were used in the sensitivity analyses described in this paper. The output files of
interest to this project are as follows:

Output Files Used for Calculation Purposes

(1)  gwpkdos.res - data file containing the total groundwater peak dose, time of peak dose,
and dose from each nuclide at the time of peak dose.

(2)  samplpar.res - data file consisting of the sample parameter values for each vector

Output Files Used for Labeling and Identification Purposes ,

(3)  samplpar.abb - header file for samplpar.res with sampled parameter abbreviations

(4)  samplpar.hrd - header description file for samplpar.res with sampled parameter
abbreviations accompanying the complete sampled parameter names.
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The TPA Version 3.2 code was executed for three separate 500-realization runs, which
are as follows:

(1) Run 1 consisted of an input file with mean values for all parameters except for 52 parameters
selected to be sampled. There were no parameter correlations introduced in this run. Also,
the input file provided a seven-subarea discretization of the repository.

(2) Run 2 consisted of an input file with mean values for all parameters except for 52 parameters
selected to be sampled. Parameter correlations were introduced for pairs represented within
the 52 sampled parameters. Also, the input file provided a seven subarea discretization of the

repository.

(3) Run 3 consisted of an input file with mean values for all parameters except for 40 parameters
selected to be sampled. Parameter correlations were introduced for pairs represented within
the 52 sampled parameters. Also, the input file was modified to define the repository area as
one rectangular subarea to minimize the number of loops required for each realization during
the execution of the TPA Version 3.2 code.

Dose Criteria

To simulate a regulatory approach, a dose criterion for the total groundwater peak dose
(as contained in the gwpkdos.res file) at the 50,000-year time period of interest was initially
chosen as 1.0 millirem. This criterion was only utilized with the results for Run 1. The output
files of all the runs were processed using a total groundwater peak dose criterion of 0.2 mrem.

Code to Bin Acceptable/Unacceptable Realizations Based on the Chosen Dose Criteria
A FORTRAN computer code was written (see Appendix A) that processes the data

contained in the gwpkdos.res file by determining whether the total groundwater peak dose at the
50,000-year time period of interest is greater than, equal to, or less than the selected dose
criterion. Realizations resulting in peak doses less than the dose criterion were denoted as
behaviors and realizations resulting in peak doses greater than or equal to the dose criterion were
denoted as non-behaviors. This computer code also writes the values of the sampled parameters
for behaviors in one file (behaviorfile) and for non-behaviors in a second file (nonbehavefile).

General Sensitivity (GENSEN) Program
The GENSEN program is a FORTRAN program created by G.M. Homberger and R.C.

Spear (see Appendix B for additional details) which analyzes the differences between the two
bins of parameters from the behaviorfile and nonbehavefile by looking at covariances as well as
simple univariate separations. This statistical investigation is accomplished by using the
Kolmogorov-Smimov and the Mann-Whitney U tests as described above.

The Kolmogorov-Smirnov statistic (denoted as DAA in the GENSEN program) is the
difference between cumulative distribution function curves. The critical statistic is the maximum
distance between the two cumulative curves. The critical value of the difference was chosen at
the 95-percent confidence level; when the difference was greater than that, the two curves were
considered statistically different. The parameters from both behavioral and non-behavioral
situations were mapped onto a standardized probability axis for plotting. In the GENSEN
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program, this value is denoted as “U” (the Mann-Whitney statistic). The underlying cumulative
probability associated with the parameter is labeled “PROB”. The other values listed in the
output tables from GENSEN are SNB-the cumulative probability under behavior, SNNB-the

cumulative probability under non-behavior, DELB-distance between underlying and behavior,
DELNB-distance between underlying and non-behavior, and DELBNB-distance between

behavior and non-behavior.

Analysis of Output from the GENSEN Program

The output from the GENSEN program was analyzed in two interdependent ways. (i)

The DAA values for each parameter were used to rank order them; this yielded a straightforward
sensitivity ranking for all the sampled parameters. (ii) Cumulative probability plots were
constructed by plotting U (the Mann-Whitney statistic) against SNB and SNNB (the cumulative
probabilities under behavior and non-behavior, respectively). The cumulative probability plots
were visually inspected to determine which parameters displayed the biggest differences, which
correlates to large DAA values and to ensure that the K-S test did not yield any false results.
This analysis was completed with the results of four different configurations. These
configurations and their distinguishing characteristics are listed in Table 1.

Table 1: Description of Configurations Used in this Sensitivity Analysis

Configuration 1 _TWE—__ITT
Data from Run # 1 _—T———-i—— T
# of Parameters 52 52 52 40
# of Realizations ) 500 500 500 500
1Correlated Input Parameters? No No Yes Yes |
Dose Criteria (mrem) 1.0 0.2 0.2 0.2
# of Subareas 7 7 7 1 J




Results

Parameter Ranking by DAA Statistic

For each of the four configurations considered, the top ten parameters as assessed by the
ranking of their DAA values yielded from the GENSEN program are listed in Table 2. Please
refer to Appendix C for a complete listing of all the sampled parameters, their DAA values, and

their rankings for each of the four configurations.

Table 2: Top Ten Parameters Based on the Ranking of DAA Values for Four

Configurations

mn 1 || Configuration 2 Tnfiguration 3 Conﬁgu;ti_on4—.
1 ARDSAVNp SbArWt% || SbArWi% || SFW%Cl |
2 MAPM@GM || WPRRG@20 || AAMAI@S SbAIWt% |
3 [ Apssav__ || MAPM@GM || WPRRG@20 || AAMAI@S |

[ 4 ][ roavi | apssav_ || MAPM@GM | MAPM@GM |

[ 5 [ arpsavi ARDSAV I APrs SAV__||_APrs SAV |
6 || WPRRG@20 |[ ARDSAVNp Fow* WPRRG@20 |

[ 7 | _RDIVRa || SFW%Cs ARDSAVPu ARDSAV 1|

B MixZnT20 SFWi%C2__||_ARDSAVAm Fow*

[ s MATI@GM || RDIV.I || ARDSAVNp || MixZaT20

=

i
i

Visual Inspection of Cumulative Probability Plots

ARDSAVRa " RD IV Np |

ARDSAV I_|[_ARDSAVPu_|

As previously described, the cumulative probability plots for each of the top ten
parameters for each analyzed configuration were constructed by plotting the Mann-Whitney
statistic (U) against the cumulative probabilities under behavior and non-behavior (SNB and
SNNB, respectively). Please refer to Appendix D for a full listing of these plots. Since the K-S
test yields erroneous results under certain circumstances (see Figure 1 below), each cumulative
probability plot for each of the statistically significant parameters was checked for this
phenomenon. The results of this visual analysis are contained in Tables 3, 4, 5, and 6 below.




Maximum DAA Value Is Much Greater

than the General DAA Trend

ﬁ Yields Erroneous DAA Value

Figure 1: Example of K-S Test Yielding Erroneous Results, which Stresses the Importance
of Visually Inspecting the Cumulative Probability Plots for Each Parameter

Table 3: Results For The Visual Inspection of the K-S Test Results for Configuration 1

Ranking Parameter Name Passed Visual Inspection
(Yes or Questionable)
1 ARDSAVNp N Questionable
2 MAPM@GM Yes
3 APrs_SAV Questionable
—
4 RD 1V 1 Yes
5 ARDSAV 1 Yes
6 WPRRG@10 Questionable
7 [ wPRRG@20 Yes
8 RD IV _Ra Yes
9 MixZnT20 Questionable
| 10 MATI@GM [ Yes
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Table 4: Results For The Visual Inspection of the K-S Test Results for Configuration 2

Ranking Parameter Name Passed Visual Inspection
(Yes or Questionable)
1 SbArwt% Yes |
2 WPRRG@20 Yes
| 3 MAPM@GM | Questionable
4 I APrs SAV Questionable '
5 ARDSAV_1 Yes
6 ARDSAVNp Yes
7 SFWt%C5 Yes
8 SFWt%C2 Yes
9 RD IV I Questionable
10 | WPRRG@10 Questionable I

Table 5: Results For The Visual Inspection of the K-S Test Results for Configuration 3

Ranking Parameter Name Passed Visual Inspection
(Yes or Questionable)

[  SbAIW®H Yes |
[ 2 T AAMAI@S | Yes

3 ﬂRRG@% L Yes
L 4 @M@GM I_ Questionable
[ 5 A;rs_SAV Questionable

6 . _l_?ow* Yes

7 T ESAVPu Yes

8 ARDﬂAm LQuestionable

9 - ARD_KVNp ; Yes

0 ] ARDSAV I — Yes
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Table 6: Results For The Visual Inspection of the K-S Test Results for Configuration 4

Ranking [ Param_e;r Name r_Passed Visual Inspection
(Yes or Questionable)
1 [ SFWt%C1 Yes :I
2 | SbArwWt% Yes
— —— —— —
3 AAMAI@S Yes
4 MAPM@GM I Questionable
5 APrs SAV L Questionable
[ 5 [ wrrro@20 [ Yes
[ 7 ARDSAV _I Yes
8 Fow* Yes ]
9 | MixZnT20 Questionable |
—
10 | ARDSAVPu | Yes |

Parameters Found Significant in Both Analysis Methods
This portion of the paper presents the overall sensitivity analyses based on the statistical
analysis of a 500-vector Monte Carlo analysis of a configuration involving a limited number of
selected parameters to be sampled for the 50,000-year time period of interest. Table 7 contains
the parameters that were determined to be significant for each configuration, which were
determined as parameters that passed both the K-S test and the visual inspection of their

cumulative probability plots.



Table 7: Influential Parameters that Have Satisfied the Sensitivity Requirements for the
K-S Test and the Visual Inspection of their Cumulative Probability Profiles

Configuration 1 __2 3 4
—W@GMI SbArWt% SbArW% || SFWt%Cl |
[ RD.IV I WPRRG@20 || AAMAI@S SbArWI
|[Influential ARDSAV 1 | ARDSAV | WPRRG@20 | AAMAI@S
Parameters =
: WPRRG@20 ARDSAVNp Fow* WPRRG@20
RD_IV Ra SFWE%4C5 ARDSAVPu || ARDSAV 1 |

[ MATI@GM || SFWt%C2 ARDSAVNp Fow*
- ~ — [ ARDSAVI ][ ARDSAVPu

Discussion

Selection of Overall Influential Parameters

This portion of the paper attempts to identify influential parameters using the analyses presented
above. For the 50,000-year time period of interest, several parameters were found most
influential for the four configurations using a limited basecase scenario. Previously, a sensitivity
analysis method consisting of a combination of the K-S test, the Mann-Whitney U test, and
visual inspection of the cumulative probability curves was utilized to determine the most
influential parameters. Since it is not clear that any one method is superior to another for this
determination of sensitivity, the final list of parameters was selected on the combination of all
the analytical methods used.

The selected parameters are presented in Table 8, which summarizes the sensitive parameters as
determined by using an analysis method composed of a combination of the tests as described
above for each statistically significant parameter. The scores listed in Table 8 specifies the
number of configurations that selected a particular parameter among the ten most statistically
significant. The parameters that did not make the final list include those that did not have
statistically significant DAA values yielded by the K-S test and those that did not pass the visual
inspection of the cumulative probability plot. It should be noted that there is one sampled
parameter (the water use parameter at 10 km - WPRRG@10) which has been disregarded,
because it is not used in the execution of the TPA code and therefore could not have had an effect
on the results. The analyses resulted in only eight parameters being selected as influential for the
50,000-year time period of interest. It is apparent that significant variations can exist for this
particular time period of interest.

/0
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Table 8: Overall Influential Parameters Determined for the 50,000-year Time Period of
Interest from Sensitivity Analysis Studies

_Pr;lmeter Abbreviﬁon Parameter Name | T—@
[SbArwt% Subarea Wet Fraction — 303

F_“}-TRRG@N Well Pumping Rate at 20-kﬁieceptor Group r -3@
ARDSAV I Alluvium R, for ™1 — I 33 |
ARDSAVNp Alluvifm R, for ?'Np - 2/3,=r
SFWt%C rS;e_n;?;el Wet Fraction fo-TCorrosion Failurﬁ_t ZE
AAMAI@E= Areal Average Meaf Annual Inﬁ@ion at Start 2/3:
Fow* — =l‘:low focusing factor o 2/3_|
ARDS@ ] Alluvium R, for ®Pu__ _= Il 23 |

** Note: The results of the statistical analyses for Conﬁguratiﬁl were not used in the
designation of overall influential parameters due to the selection of a different dose
criterion (0.2 mrem) for the remaining configurations.

Key Integrated Subissues for 50,000-year Time Period of Interest

Parameters that have been identified as influential for the 50,000-year time period of interest will
be considered in conjunction with their corresponding NRC integrated subissues. These
important connections are presented in Table 9.
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- Table 9: Influential Parameters for the 50,000-year Time Period of Interest with their
: Corresponding Integrated Subissues.

Integrated Subissues [Influential Parameters
Waste Package Degradation ] Spent Fuel Wetted F raction for Corrosion Event
(SFWt%C)

Quantity and Chemistry of Water ||Subarea Wet Fracti;(SbArWt%)

Contacting Waste Packages and  ||[Flow Focusing Factor (Fow*)
Waste Forms

Spatial and Temporal Areal Average Mean Annual Infiltration at Start

Distributions of Flow (AAMAI@S)

Retardation of Water Production ||Alluvium Matrix R, for %] (AR]%AV_I)

Zones and Alluvium Alluvium Matrix R, for 2?’Np (ARDSAVNp)
Alluvium Matrix R, for ?’Pu (ARDSAVPu)

Dilution of Radionuclides in Well Pumping Rate at Receptor Group at 20 km

Groundwater through Well (WPRRG@20)

Pumping

Discussion of Correlation Effects on Influential Parameters and Peak Dose
~ The effects of parameters in the models for the TPA code are due in large part to the

deliberate correlations of several of the radionuclide retardation parameters, particularly those for
neptunium, iodine, plutonium, and uranium. It is likely that some of these factors show up
because of the large contribution to peak dose of ’Np. In the case of ?*Am, some dose also
may be indirectly attributed to >*' Am decaying to Z"Np.

The consequences of these correlated pairs can be ascertained by comparing the results of
Run 2 with its non-correlated parameters and the results of Runs 3 and 4 (see Table 2), which
were modified to include parameter correlations. Table 10 presents the correlations that were
utilized in Runs 3 and 4.
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Table 10: Correlations Between Two Input Parameters Selected to Be Utilized in the
Execution of the TPA Version 3.2 Code.

Parameter -l_Correlated with Parameter 2 Conm—
Fow*—l — AAMAI@S | -0.224
Fow* | ~ SbATW(% ] -0.366
ARDSAVAm I ArDsavee | 0.964
ARDSAVAm _WAV_U: 0.346
ARDSAVAm j =ARDSAVNp:] 0837 |
[ ARDSAVPw | ARDSAV U | 0.489
ARDSAVPu ] ARDSAVNp — 0.881

ARD&VNp _"__

ARDSAV U |

| 0.610 |

Before correlations were introduced, the subarea wet fraction and the alluvium matrix retardation
values for iodine and neptunium were determined to be statistically significant and influential
parameters. As a consequence of their correlations to other sampled parameters as introduced
into Runs 3 and 4, three factors experienced large increases in their statistical significance. (1)
The mean areal average infiltration into the subsurface at the start was ranked 42™ out of 52
parameters in Run 1, however when its positive correlation to the subarea wet fraction was
added, it quickly transitioned from its initial stage as an unimportant parameter to one which
ranked extremely high in the sensitivity analyses. (2) Another example of an extensive change
stemming from the addition of a correlation is the alluvium matrix retardation value for
americium,; it was converted from 37 place in the Run 1 (with no correlations) to a significant
position in the sensitivity results for Run 3, which contained a positive correlations for the
alluvium matrix retardation values for americium and the retardation factors for plutonium and
neptunium. (3) Once the alluvium matrix retardation value for uranium had been modified to
include positive correlations between it and the retardation values for plutonium and neptunium,
its parameter ranking value changed from 43 to the 15% and 8" places in Runs 3 and 4,

respectively.

Comparison to the Previous Sensitivity Analyses Using TPA Version 3.2 Code
Extensive sensitivity analyses using various statistical and non-statistical methods have been
conducted with data resulting from the execution of TPA Version 3.2 Code. The influential
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parameters for the 50,000-year time period of interest from sensitivity analysis studies are
presented in Table 11. . /

Table 11: Influential Parameters for the 50,000-year Time Period of Interest from
Sensitivity Analysis Studies

Parameter Abbreviation Parame_ter Name

== — — ——

SbArwWt% Subarea Wet Fraction

— — | — —
WPRRG@20 Well Pumping Rate at 20-km Receptor Group .

ARDSAVNp Alluvium R, for 2’Np
—— — = —
ARDSAVTc Alluvium R, for ®Tc :|
Fmult* Fmult factor for Water Flow é;tering a Waste Package ]

ARDSAV 1 |[ATluvium R, for 1 T
- N — —
ARDSAV_ U Alluvium R for 24U

AAMAI@S J Areal Average Mean Annual Infiltration at Start I

A comparison was conducted between the results of the statistical analysis presented in this
report and the results previously obtained from the statistical and non-statistical analysis of the
investigation of a basecase scenario executed using the TPA Version 3.2 Code. Dependence of
several parameters, particularly the flow focusing factor, the spent fuel wet fraction for corrosion
failures, and the alluvium matrix retardation factor for **Pu, are suspicious, since these
parameters were sampled but have not reliably shown up as significant in other sensitivity
studies using TPA Version 3.2 code. Contradiction between the present analysis and previous
analyses also occurs with the enigmatic absence of parameters previously deemed influential,
such as the retardation factor for technetium and the Fmult factor.

Conclusions

The information yielded from execution of the TPA Version 3.2 code was used with sensitivity
analyses to apply a statistical method to a 500 realization set of Monte Carlo runs pertaining to a
basecase scenario with a limited number of sampled parameters. Even though several types of
statistical and non-statistical techniques have been used to perform sensitivity analyses
employing the TPA Version 3.2 code, the focus of this report was on a statistical test in which
the 500 vectors for the 50,000-year time period of interest were sorted into two bins depending
on whether the dose was greater or less than 0.2 mrem. The sampled parameters in each bin
were then compared statistically to identify any statistical differences between the two bins.
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For the 50,000-year time period of interest, several parameters were found most influential for
the analysis of this limited basecase scenario study. The final list of influential parameters (see
Table 8) was selected on the combination of all the K-S test, the Mann-Whitney U test, and the
visual inspection of the cumulative probability curves. The most influential parameters were
determined as follows:

o Subarea Wet Fraction
. Well Pumping Rate at 20-km Receptor Group
Alluvium Rd for 1291

This study resulted in determining three influential parameters (the mean areal average
infiltration into the subsurface at the start, the subarea wet fraction, the flow focusing factor, and
the spent fuel wet fraction for corrosion failures) whose primary effects were altering the spatial
and temporal distributions of flow, the quantity and chemistry of the flow of water, the
contacting of water with the waste packages, and the subsequent waste package degradation and
eventual failure. Insight provided also by this study included highlighting the importance of
alluvium matrix retardation factors for various radionuclides including »*"Np, '®1, and 2*Pu. As
supported by previous scientific evidence and sensitivity studies as well as this report, the
retardation factor for #’Np is of upmost importance because the large peak doses for any
radionuclide for any type of realization comes from Z’Np. Since the retardation of radionuclides
in the alluvium matrix has been determined as been identified as influential parameters, it
follows that the dilution of radionuclides in groundwater through well pumping is also a
parameter that is essential to the peak dose.

The investigation of integrated subissues along with their corresponding influential parameters
suggests that the geologic repository for the containment of high-level nuclear waste in Yucca
Mountain may provide better total-system performance with the introduction of additional
engineered characteristics. The results of this report focuses on the necessity to provide better
methods for controlling the flow of water onto and eventually into failed waste packages, as well
as to constrain radionuclide sorption in the alluvium that to help cause a significant decrease in
radionuclide transport or a longer delay in the arrival time of radionuclides at the location of the
selected receptor group.
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NAMES OF SAMPLED PARAMETERS (NON-CONSTANT)

-~ arameter ID# |[Abbreviation Full Name
1 AAMAl@S ArealAverageMeanAnnualinfiltrationAtStartimm/yr]
2 MAPM@GM MeanAveragePrecipitationMultiplierAtGlacialMaximum
3 MATI@GM MeanAverageTemperaturelncreaseAtGlacialMaximum|degC]
4 FOC-R FractionOfCondensateRemoved| 1/yr
5 FOCTR FractionOfCondensate TowardRepository| 1/yr]
6 FOCTR-R FractionOfCondensateTowardRepositoryRemoved| 1/yr]
7 AA 2 1 AA_2 1[C/m2/yr]
~ 8 Chlorid ChlorideMultFactor
9 Fow?* FowFactor
10 Fmult* FmultFactor
11 SbArWt% SubAreaWetFraction
12 WP-Def% DefectiveFractionOfWPs/cell
13 RD_IV_Pu RD_Invert Pu
14 RD_IV_ U RD _Invert U
15 RD_IV_Am RD_Invert Am
16 RD_IV_Np RD Invert Np
17 RD _IV_Th RD Invert Th
18 RD_IV_Ra RD Invert Ra
19 RD IV_Pb RD_Invert_Pb
20 RD IV I RD_Invert 1
21 RD_IV_Tc RD_Invert_Tc
22 RD_IV_Ni RD_Invert_Ni
23 RD_IV_Se RD Invert_Se
- 24 RD_IV_Nb RD Invert Nb
25 SFWt%I1 SFWettedFraction_Initial_1
26 SEWt%I2 SFWettedFraction_Initial 2
27 SFWt%I3 SFWettedFraction_Initial_3
~ 28 SFWt%I4 SFWettedFraction Initial_4
29 SFWt%l5 SFWettedFraction_Initial 5
30 SFWt%l6 SFWettedFraction_Initial_6
- 31 SFWt%l7 SFWettedFraction_Initial_7
32 SEWt%C1 SkWettedFraction_Corrosion_1
33 SFWt%C2 SFWettedFraction_Corrosion_2
34 SFWt%C3 SFWettedFraction_Corrosion_3
- 35 SFWt%C4 SFWettedFraction_Corrosion_4
36 SFWt%C5 SFWettedFraction_Corrosion_5
- 37 SFWt%Cé SFWettedFraction_Corrosion_6
38 SFWt%C7 SFWettedFraction_Corrosion_7
39 InvMPerm InvertMatrixPermeability[m”2]
40 ARDSAVAm AlluviumMatrixRD _SAV_Am
- 41 ARDSAVNp AlluviumMatrixRD_SAV_Np
42 ARDSAV T AlluviumMatrixRD_SAV_1
43 ARDSAVTc AlluviumMatrixRD_SAV_Tc
- 44 ARDSAV U AlluviumMatrixRD_SAV_U
45 ARDSAVPu AlluviumMatrixRD_SAV Pu
46 ARDSAVRa AlluviumMatrixRD_SAV_Ra
47 ARDSAVSe AlluviumMatrixRD_SAV_Se
48 APrs_SAV AlluviumMatrixPorosity SAV
49 WPRRG@20 WellPumpingRateAtReceptorGroup20km|gal/day]
50 PlumeThS PlumeThicknessSkm[m]
51 AqThick$ AquiferThickness5km[m]
52 MixZnT20 MixingéoneThicknessZOkm[m]
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APPENDIX B

BEHAVELINK.F:
A CODE TO BIN REALIZATIONS BASED ON A CHOSEN DOSE CRITERION

Behavelink.f is a FORTRAN computer code that was written to process the data
contained in the gwpkdos.res file (an output file created by the execution of TPA Version 3.2
code) by determining whether the total groundwater peak dose at the 50,000-year time period of
interest is greater than, equal to, or less than the selected dose criterion. Realizations resulting in
peak doses less than the dose criterion were denoted as behaviors and realizations resulting in
peak doses greater than or equal to the dose criterion were denoted as non-behaviors. This
computer code also writes the values of the sampled parameters for behaviors in one file
(behaviorfile) and for non-behaviors in a second file (nonbehavefile). The code is also versatile;
it is equipped to easily handle modifications by the user, including changes to the value for the
chosen dose criterion, the number of sampled parameters, the number of realizations, as well as
the names for the output files.



ey
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Program Behavelink

Declarations

array v initialized with number of realizations and parameters

real*4 v(500,52)

pkdose.inp is input file containing numbers of vectors

open (unit=5, file="pkdose.inp')

skip first four lines of input file (heading)
doi=1,4

read (5,%)
end do

Initial arrays to zero

open (11 file="gwpkdos.res')
open (12 file="'samplpar.res')
open (13,file="'samplpar.abb')
open (21,file='behaviorfile')
open (22, file="nonbehavefile')

read number of vectors
read (5,*) nvector
skip first 8 lines of input file 8 (header lines)
doi=1,8
read(11,*)
end do
skip first 7 lines of input file 12 (header lines)
doi=1,7
read(12,*)
end do
skip first 5 lines of input file 13 (header lines)
doi=1,5
read(13,*)
end do

Labeling output files

write (21,%)

write (22,%)

write (21,*) '‘Behavior File'
write (22,*) 'Non-Behavior File'
doi=1,6

write (21,%)

write (22,%)

end do



Program BehaveLink (cont'd)

C

write parameter numbers
do vI=1,52
write (21,*) vl
write (22,*) vl
end do
binning using dose criteria
do nv=1, nvector
read (11,*) vector, pktime, pktede
If (pktede.LT.(2e-4)) then
read (12,*) vectorn
read (12,*)(v(i,j),j=1,52)
write (21,'(12x,15e7.1e2)")(v(i,j),j=1,52)
else ‘
read (12,*) vectorn
read (12,*)(v(i,j),j=1,52)
write (22,'(12x,15e7.1e2)')(v(i,j),j=1,52)
endif
end do
end
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APPENDIX C

GENSEN.F:
A GENERAL SENSITIVITY PROGRAM FOR STATISTICAL ANALYSES

GENSEN.fis a FORTRAN program created by G.M. Hornberger and R.C. Spear (see
Appendix B for additional details) which analyzes the differences between the two bins of
parameters from two input files (behaviorfile and nonbehavefile) by looking at covariances as
well as simple univariate separations. This statistical investigation is accomplished by using two
nonparametric tests: the Kolmogorov-Smirnov and the Mann-Whitney U tests. This code is also
adjustable; it is can be quickly modified to process input files with any given number of
parameters. The example given in this appendix has been altered to compensate for statistical
calculations involving 52 sampled parameters.
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PROGRAM GENSEN

STATISTICS FOR GENERALIZED SENSITIVITY ANALYSIS
KOMOGOROV-SMIRNOV STATISTIC; FUKUNAGA-KOONTZ TRANSFORMATION

PROGRAM BY G.M.HORNBERGER AND R.C.SPEAR APRIL 1978(CANBERRA)
REVISED AUG (GMH) 1979(BERKELEY)
REVISED (BJC) 1983(CVILLE)
adapted for pc (gmh) 1986(cville)
{LAHEY FORTRAN}
further modified and commented for
pc bjc (1987) cville

FOR INFORMATION CONTACT G.M.HORNBERGER
DEPT. ENVIRON. SCI.
CLARK HALL
UNIVERSITY OF VIRVINIA
CHARLOTTESVILLE, VA 22903

drhkhkhkhhhrhhkhdhhrtdhdhkiddihhhhtdhhhdthhhidddhilihhikhtidtdhdid

SELECTED VARIABLE LIST:

PSI-PARAMETER VECTOR

NB -BEHAVIOR CODE

LAB-PARAMETER LABEL

NPAR-NUMBER OF PARAMETERS

N5 -NUMBER OF REPLICATIONS

VMAP -MAPPED PARAMETER VECTOR

MAP-CODE FOR EXECUTION:
=0 FOR STATISTICS IN ORIGINAL PARAMETER SPACE
=1 FOR F-K TRANSFORMATION BEHAVIORS
=2 FOR F-K TRANSFORMATION NON-BEHAVIORS
=3 FOR ALL THREE ABOVE
=4 FOR ORIGINAL AND BEHAVIOR ONLY

hehkkkhhhhkhkhhkdhhhhkhdihhhhhdhhhdhidhikhidkhiiikhrikidiidthiiid

DECLARATIONS:

CHARACTER*10 TITLE(7),LAB(52),LIN(100),CBL,CBB,CNN,LB1(52),
2 LB2(52)
CHARACTER*20 fileb,filenb,fileout,Ibb*10,lbnb*10
LOGICAL*4 LFLAG
DIMENSION PSI(3000,52),NB(3000),VMAP(3000,52),COVB(52,52),
2 COVNB(52,52),XMB(52),XMNB(52),EV(52,52),EVAL(52),
3 AA(52,52),BB(52,52),DD(52,52),A(3000),B(3000),
4 CC(52,52),C1(52,52),C2(52,52),UG(19),
5 SNN1(50),SNN2(50), XMBNB(52),EVALB(52),D1(6),D2(6),
6 XMEAN(52),VAR(52),COVBNB(52,52),CT(52,52),EVB(52,52)
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Program GENSEN (cont'd)

DATA UG/-1.643,-1.285,-1.037,-.845,-.676,-.528,

2 -.386,-.255,-.128,0.,.128,.255,.386,.528,.676,

3 .845,1.037,1.285,1.643/

DATA D2/1.22,1.36,1.48,1.63,1.73,1.95/

DATA CBL/ v

DATA CBB/'BBBBBBBBBB'/

DATA CNN/'NNNNNNNNNNY/

DATA LBB/'BEHAVIOR= '/

DATA LBNB/NOTBEHAV= "/

DATALB1/EVB(1) ''EVB(2) ''EVB(3) ''EVB4) ',
'EVB(5) ''EVB() ''EVB(7) ''EVB(8) °,
'EVB(9) ''EVB(10) ''EVB(11) ''EVB(12) '
'EVB(13) ''EVB(14) ''EVB(15) ''EVB(16)
'EVB(17) ''EVB(18) ''EVB(19) ''EVB(20)
'EVB(21) ''EVB(22) ''EVB(23) ''EVB(24)
'EVB(25) '’EVB(26) '/EVB(27) '’'EVB(28)
'EVB(29) ''EVB(30) ''EVB(31) ''EVB(32)
'EVB(33) ''EVB(34) ''EVB(35) ''EVB(36)
'EVB(37) ''EVB(38) ''EVB(39) ''EVB(40)
'EVB(41) ''EVB(42) ''EVB(43) ''EVB(44)
'EVB(45) ''EVB(46) ''EVB(47) ''EVB(48)
'EVB(49) ''EVB(50) ''EVB(51) ''EVB(52) Y

¥
L
?
’
1
’
1)
1
?

BDON2COONONDLWN

DATA LB2/EVNB(1) ''EVNB(2) ‘'EVNB(3) ''EVNB@4) ',

2  'EVNB(5) ''EVNB(6) ''EVNB(7) ''EVNB(8) °,
3 'EVNB(9) ''EVNB(10) ''EVNB(11) ''EVNB(12) ',
4  'EVNB(13) ''EVNB(14) ''EVNB(15) ''EVNB(16) ',
5  'EVNB(17) ''EVNB(18) ''EVNB(19) ''EVNB(20) ',
6  'EVNB(21) ''EVNB(22) ''EVNB(23) ''EVNB(24) ',
7  'EVNB(25) ''EVNB(26) ''EVNB(27) ''EVNB(28) °,
8  'EVNB(29) ''EVNB(30) ''EVNB(31) ''EVNB(32) °,
9  'EVNB(33) ''EVNB(34) ''EVNB(35) ''EVNB(36) ',
1 'EVNB(37) ''EVNB(38) ''EVNB(39) ''EVNB(40) ',
2  'EVNB(41) ''EVNB(42) ''EVNB(43) ''EVNB(44) ',
3 'EVNB(45) ''EVNB(46) ''EVNB(47) ''EVNB(48) ',
4  'EVNB(49) ''EVNB(50) ''EVNB(51) ''EVNB(52) "

C RERREAREERARERERAARRREARRREEE TR AR L Rk hdkddidhhhidhidiiiidhikik

C

C  INPUTDATA

c

C  CALL UNDFL(LFLAG)

write(*,1901)
1901 format(' input name for behavior file in a20 format',/)
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Program GENSEN (cont'd)

read(*,1902)fileb
1902 format(a20)

write(*,1907)
1907 format(' input name for non-behavior file in a20 format',/)
read(*,1902)filenb

write(*,1903)
1903 format(' input name for output file in a20 format',/)
read(*,1902)fileout

write(*,1997)
1997 format(' input number of parameters in i2 format',/)
read(*,107)npar

write(*,1998)
1998 format(' input mapping control in i2 format',/)
read(*,107)map

write(*,1999)
1999 format(' input 1 for full printout, O for reduced,',
1 'ini2 format',/)
read(*,107)ipmt

write(*,1996)
1996 format(' input K-S probability level code for generating',
1 ' prob. plots'/,' (in i2 format)',//,
2 'prob. level: 1.0 .10 .05 .025 .01 .005 .001'/,
3 code. 0 1 2 3 4 5 #6,))
read(*,107)iprob

open(unit=13,file=filenb)
open(unit=12, file=fileb)
open(unit=11,file=fileout)

MAPO=MAP

NOF=1

DO 907 JK=1,NOF
MAP=MAPO

REWIND 12

REWIND 13
READ(13,1919)(TITLE(1),1=1,7)
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Program GENSEN (cont'd)

READ(12,1918)(TITLE(l),1=1,7)
1919 FORMAT(/,7A10)

WRITE(11,9709)LBB,FILEB,LBNB,FILENB
9709 FORMAT(3X,A10,1X,A20,5X,A10,1X,A20)
Cc WRITE(11,9074)(TITLE(l),1=1,7)
WRITE(11,908)JK

DO 1921 I1=1,5

READ(13,1920)XYZ
1921 READ(12,1920)XYZ
1920 FORMAT(A10)

DO 900 I=1,NPAR
READ(13,1920)XYZ
900 READ(12,1922)LAB(l)
1922 FORMAT(1X,A10)

J=1

901 READ(12,1924, END=2096)(PSI(J,I),l=1,NPAR)
1924 FORMAT(12X,15F7.0)

NB(J)=1

J=J+1

GO TO 901

2096 READ(13,1924 END=3096)(PSi(J,I),1=1,NPAR)
NB(J)=0
J=J+1
GO TO 2096

3096 N5=J-1

write(*,1235)npar,n5,map
1235 format(' number of parameters=',i4,/,' number of realizations='
+ ’i4,/‘l map=',i4,/,' Rhhhkkhkikhkdhihid computing ************l’
+ /)

C RRRAEXERKEREKTNREIRIEARAREANERETAXRRRARAATARRRRETTAAT AR RAI A Ak hhhr

c
C***** CALCULATE MEANS AND VARIANCES OF RAW DATA
c

DO 903 I=1,NPAR

XMEAN(1)=0.

DO 902 J=1,N5



Program GENSEN (cont'd)

902 XMEAN(l)=XMEAN(I)+PSI(J,1)
XMEAN(1)=XMEAN(I)/NS
903 CONTINUE

DO 905 I=1,NPAR
VAR(1)=0.0
DO 906 J=1,N5
906  VAR(I)=VAR(I)+(PSI(J,}-XMEAN(I))**2
VAR(1)=VAR(l)/(FLOAT(N5)-1.)
905 CONTINUE

C*+++++ NORMALIZE DATA TO OBSERVED RAW MEANS AND VARIANCES (O-1 RESULT)
C  CALCULATE MEANS AND COVARIANCES OF NORMALIZED DATA FOR BOTH
C CLASSES (B, NB) AND ALL DATA (BNB)
C

DO 2 K=1,NPAR

XMBNB(K)=0.

XMB(K)=0.

XMNB(K)=0.

DO 2 J=1,NPAR

COVBNB(K,J)=0.0

COVB(K,J)=0.
2 COVNB(K,J)=0.

KB=0

KNB=0

DO 10 I=1,N5
IF(NB(1).EQ.0) GO TO 5
KB=KB+1
DO 4 K=1,NPAR
PSI(1,K)=(PSI({1,K)-XMEAN(K))/SQRT(VAR(K))
XMB(K)=XMB(K)+PSI(1,K)
XMBNB(K)=XMBNB(K)+PSI(1,K)

4  CONTINUE
GO TO 10

5  KNB=KNB+1
DO 6 K=1,NPAR
PSI(1,K)=(PSI(I,K)-XMEAN(K))/SQRT(VAR(K))
XMNB(K)=XMNB(K)+PSI(1,K)
XMBNB(K)=XMBNB(K)+PSI(l,K)

6 CONTINUE

10 CONTINUE

XKB=KB
XKNB=KNB



—

Program GENSEN (cont'd)

DO 12 K=1,NPAR
XMBNB(K)=XMBNB(K)/(XKB+XKNB)
XMB(K)=XMB(K)/XKB

12 XMNB(K)=XMNB(K)/XKNB

DO 40 J=1,NPAR
DO 40 K=1,NPAR
DO 40 I=1,N5
COVBNB(J,K)=COVBNB(J,K)+(PSI(1,J)-XMBNB(J))*(PSI(i,K)}-XMBNB(K))
IF(NB(I).EQ.0)GO TO 30
COVB(J,K)=COVB(J,K)+(PSI(1,J)-XMB(J))*(PSI{1,K)-XMB(K))
GO TO 40 .
30 COVNB(J,K)=COVNB(J,K)+(PSI(1,J)-XMNB(J))*(PSI(I,K)-XMNB(K))
40 CONTINUE

DO 9002 K=1,NPAR
DO 9002 J=1,NPAR
COVB(J,K)=COVB(J,K)/(XKB-1.)
COVNB(J,K)=COVNB(J,K)/(XKNB-1.)

9002 COVBNB(J,K)=COVBNB(J,K)/(XKB+XKNB-1.)

c*+* PRINT RAW AND NORMALIZED MEANS AND VARIANCES
c
WRITE(11,101) NPAR,N5
WRITE(11,190) KB,KNB
WRITE(11,9000)
DO 9001 K=1,NPAR
9001 WRITE(11,210)K,LAB(K), XMEAN(K), XMBNB(K),VAR(K), COVBNB(K,K)
WRITE(11,200)
DO 45 K=1,NPAR
45  WRITE(11,210)K,LAB(K), XMB(K), XMNB(K),COVB(K,K),COVNB(K,K)

C***** PRINT NORMALIZED COVARIANCE MATRICES
C
IF(IPRNT.EQ.1)THEN
WRITE(11,2300)
DO 4901 K=1,NPAR
4901 WRITE(11,230)K,(COVB(K,J),J=1,NPAR)
WRITE(11,2301)
DO 4902 K=1,NPAR
4902 WRITE(11,230)K,(COVNB(K,J),J=1,NPAR)
WRITE(11,2303)
DO 4903 K=1,NPAR
4903 WRITE(11,230)K,(COVBNB(K,J),J=1,NPAR)
ENDIF
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Program GENSEN (cont'd)

Cr+**** CALCULATE CORRELATION MATRICES

o

50

DO 50 J=1,NPAR

DO 50 K=1,NPAR

AA(J K)=COVB(J,K)/SQRT(COVB(J,J)*COVB(K,K))

BB(J,K)=COVNB(J,K)/SQRT(COVNB(J,J)*COVNB(K,K))

CC(J,K)=COVBNB(J,K)/SQRT(COVBNB(J,J)*COVBNB(K K))
CONTINUE

C***** PRINT CORRELATION MATRICES

Cc

60

70

68

WRITE(11,220)

DO 60 K=1,NPAR
WRITE(11,230)K,(AA(K,J),J=1,NPAR)

WRITE(11,240)

DO 70 K=1,NPAR
WRITE(11,230)K,(BB(K,J),J=1,NPAR)

WRITE(11,241)

DO 68 K=1,NPAR
WRITE(11,230)K,(CC(K,J),J=1,NPAR)

C****** CALCULATE AND PRINT EIGENVECTORS FOR COVARIANCE MATRICES

C

IF(IPRNT.EQ.1)THEN

WRITE(11,8001)

CALL MATCOPY(COVB,NPAR,DD)

CALL JACOBI(DD,NPAR,52,EVAL,EV,NROT)
CALL EIGSRT(EVAL,EV,NPAR,52)

WRITE(11,8003) NROT

WRITE(11,8004) (EVAL(LL),LL=1,NPAR)

WRITE(11,8006)

DO 8222 J=1,NPAR

WRITE(11,230) J,(EV(J,LL),LL=1,NPAR)

8222 CONTINUE

WRITE(11,8002)

CALL MATCOPY(COVNB,NPAR,DD)

CALL JACOBI(DD,NPAR,52,EVAL,EV,NROT)
CALL EIGSRT(EVAL,EV,NPAR,52)

WRITE(11,8003)NROT

WRITE(11,8004)(EVAL(LL),LL=1,NPAR)

WRITE(11,8006)

DO 8033 J=1,NPAR

WRITE(11,230)J,(EV(J,LL),LL=1,NPAR)
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Program GENSEN (cont'd)
8033 CONTINUE
ENDIF

C***** CALCULATE CROSS-PRODUCT OF MEANS MATRICES FOR EACH CLASS
c

DO 619 I=1,NPAR

DO 619 K=1,NPAR

AA(,K)=XMB(I)*XMB(K)

BB(I,K)=XMNB(I)*XMNB(K)
619 CONTINUE

C*+++++ PRINT CROSS PRODUCT OF MEANS MATRICES
c
IF(IPRNT.EQ.1)THEN
WRITE(11,209)
DO 620 J=1,NPAR
620 WRITE(11,230) J,(AA(J,K),K=1,NPAR)
WRITE(11,208)
DO 621 J=1,NPAR
621 WRITE(11,230)J,(BB(J.K),K=1,NPAR)
ENDIF

C*+**** CALCULATE AND PRINT EIGENVECTORS FOR CROSS-PROD OF MEANS
MATRICES
o

IF(IPRNT.EQ.1)THEN

WRITE(11,8008)

CALL MATCOPY(AA,NPAR,DD)

CALL JACOBI(DD,NPAR,52,EVAL,EV,NROT)

CALL EIGSRT(EVAL,EV,NPAR,52)

WRITE(11,8003) NROT

WRITE(11,8004) (EVAL(LL),LL=1,NPAR)

WRITE(11,8006)

DO 8999 J=1,NPAR

WRITE(11,230) J,(EV(J,LL),LL=1,NPAR)
8999 CONTINUE

WRITE(11,8009)

CALL MATCOPY(BB,NPAR,DD)

CALL JACOBI(DD,NPAR,52,EVAL,EV,NROT)
CALL EIGSRT(EVAL,EV,NPAR,52)

WRITE(11,8003)NROT

WRITE(11,8004)(EVAL(LL),LL=1,NPAR)

C-9



Program GENSEN (cont'd)

WRITE(11,8006)

DO 8110 J=1,NPAR

WRITE(11,230)J,(EV(J,LL),LL=1,NPAR)
8110 CONTINUE

ENDIF

C***+ CALCULATE AND PRINT SUM OF COVAR AND CROSS-PROD MATRICES
C  (F-K MATRICES) FOR EACH CLASS, AND THE WEIGHTED SUM OF
C  THE TWO F-K MATRICES
c
DO 8121 I=1,NPAR
DO 8121 K=1,NPAR
C2(1,K)=COVB(I,K)+AA(I,K)
C1(1,K)=COVNB(I,K)+BB(l,K)
8121 CONTINUE

DO 9003 I=1,NPAR
DO 9003 K=1,NPAR
9003 CT(,K)=(C1(l,K)*XKNB+C2(l,K)*XKB)/(XKNB+XKB)

IF(IPRNT.EQ.1)THEN
WRITE(11,8888)
DO 8877 K=1,NPAR

8877 WRITE(11,230) K,(C2(K,J),J=1,NPAR)
WRITE(11,8889)
DO 8878 K=1,NPAR

8878 WRITE(11,230)K,(C1(K.J),J=1,NPAR)
WRITE(11,9004)
DO 9005 K=1,NPAR

9005 WRITE(11,230)K,(CT(K.J),J=1,NPAR)
ENDIF

C*++*+* CALCULATE AND PRINT EIGENVECTORS, EIGENVALUES AND PRIOR
C  WEIGHTED EIGENVALUES FOR THE F-K MATRICES FOR EACH CLASS
c ,

WRITE(11,8010)

CALL MATCOPY(C2,NPAR,DD)

CALL JACOBI(DD,NPAR,52,EVAL,EV,NROT)

CALL EIGSRT(EVAL,EV,NPAR,52)

WRITE(11,8003)NROT

WRITE(11,8004) (EVAL(L),L=1,NPAR)

DO 8866 L=1,NPAR
8866 EVAL(L)=EVAL(L)*XKB/(XKB+XKNB)

WRITE(11,232)(EVAL(L),L=1,NPAR)
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Program GENSEN (cont'd)

WRITE(11,8006)
DO 8011 J=1,NPAR
WRITE(11,230) J,(EV(J,L),L=1,NPAR)
EVALB(J)=EVAL(J)
DO 8011 L=1,NPAR
EVB(J,L)=EV(J,L)

8011 CONTINUE

WRITE(11,8111)
CALL MATCOPY(C1,NPAR,DD)
CALL JACOBI(DD,NPAR,52,EVAL,EV,NROT)

CALL EIGSRT(EVAL,EV,NPAR 52)

WRITE(11,8003)NROT
WRITE(11,8004)(EVAL(L),L=1,NPAR)
DO 8867 L=1,NPAR

8867 EVAL(L)=EVAL(L)*XKNB/(XKB+XKNB)
WRITE(11,232)(EVAL(L),L=1,NPAR)
WRITE(11,8008)
DO 8112 J=1,NPAR
WRITE(11,230)J,(EV(J,L),L=1,NPAR)

8112 CONTINUE

C*+*+++ CALCULATE AND PRINT THE SUM OF THE EIGENVALUES FOR EACH CLASS
c

DO 9090 J=1,NPAR

K=NPAR-J+1
9090 EVAL(J)=EVAL(J)+EVALB(K)

WRITE(11,9009)(EVAL(J),J=1,NPAR)

C**********'k***************************************************'k******

C

C***** ANALYZE DISTRIBUTIONS OF DATA FOR TWO CLASSES

C  ANALYSES ARE FOR RAW DATA (MAP=0) OR TRANSFORMED (MAPPED) DATA
USING EGENVECTORS FROM F-K MATRICES (1=B, 2=NB)

Cc
C
C  THE DATA ARE STORED IN VMAP WITH OR WITHOUT TRANSFORMATIONS
C

IF(MAP.EQ.0) GO TO 6502

9010 IF(MAP.GT.2)GO TO 6502

C**+* PERFORM MAPPING
c

IF(MAP.EQ.1)THEN

DO 9109 I=1,NPAR
9109 LAB(I)=LB1(l)
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Program GENSEN (cont'd)

ELSE

DO 92089 I=1,NPAR
9209 LAB(l)=LB2(l)

ENDIF

DO 6610 K=1,NPAR
XMEAN(K)=0.
6610 VAR(K)=0.

DO 6500 I=1,N5
DO 6500 K=1,NPAR
SUM=0.

DO 6499 L=1,NPAR
IF(MAP.EQ.1)SUM=SUM+EVB(L,K)*PSI(l,L)
IF(MAP.EQ.2)SUM=SUM+EV(L,K)*PSI(i,L)
6499 CONTINUE
XMEAN(K)=XMEAN(K)+SUM
VAR(K)=VAR(K)+SUM*SUM
6500 VMAP(I,K)=SUM

DO 6620 K=1,NPAR
XMEAN(K)=XMEAN(K)/N5
6620 VAR(K)=(VAR(K)-N5*XMEAN(K)*XMEAN(K))/(N5-1)

DO 6600 I1=1,N5
DO 6600 K=1,NPAR
6600 VMAP(I,K)=(VMAP(I,K)-XMEAN(K))/SQRT(VAR(K))

IF(MAP.EQ.1)THEN
WRITE(11,9076)(K,K=1,NPAR)
ELSE
WRITE(11,9077)(K,K=1,NPAR)
ENDIF

C****** CALCULATE CORRELATION MATRIX BETWEEN MAPPED AND UNTRANSFORMED
C DATA

DO 9050 J=1,NPAR
DO 9050 K=1,NPAR
SX=0.

SY=0.

SXY=0.

SX2=0.

SY2=0.0
DO 9060 1=1,N5
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Program GENSEN (cont'd)

SX=SX+VMAP(,K)
SY=SY+PSI(l,J)
SX2=SX2+VMAP(l,K)**2
SY2=SY2+PSI(I,J)**2
9060 SXY=SXY+VMAP(I,K)*PSI(i,J)
S1=(N5*SX2-SX**2)*(N5*SY2-SY**2)
9050 CC(K,J)=(N5*SXY-SX*SY)/SQRT(S1)
DO 9080 J=1,NPAR |
9080 WRITE(11,9075)J,(CC(1.J),I=1,NPAR)
GO TO 6501

6502 CONTINUE
DO 6504 I=1,N5
DO 6504 K=1,NPAR
6504 VMAP(I,K)=PSI(1,K)

6501 CONTINUE

C Kl R R RRIREA kAR hidikddddddiddidiihidddididdidodiiddddid il

C

C**** CALCULATE AND PRINT MANN-WHITNEY AND KOLMOGOROV-SMIRNOV
STATISTICS

C  STEP THROUGH EACH PARAMETER 1 BY 1 (500 LOOP)

C
C**** RANK ORDER THE PARAMETERS
c

DO 500 K2=1,NPAR
KC=1
KD=1

DO 501 KA=1,N5
IF(NB(KA).EQ.0) GO TO 102
A(KC)=VMAP(KA K2)
KC=KC+1
GO TO 501

102 B(KD)=VMAP(KA,K2)
KD=KD+1

501 CONTINUE
KC=KC-1
KD=KD-1

CALL SORT(KC,A)
CALL SORT(KD,B)

C-13



Program GENSEN (cont'd)

C****** RANK ORDERING COMPLETE

C

c***** MANN-WHITNEY CODE FOR N>20

C KOLMOGOROV-SMIRNOV TWO SAMPLE TEST

C
RASUM=0.

RBSUM=0.
DAA=0.
i=1
J=1

K=1
NA=KC
ANA=NA
AKD=KD

1010 SNA=(l-1)/ANA
SNB=(J-1)/AKD
DA=SNA-SNB
IF(ABS(DA).GT.DAA) GO TO 211
GO TO 201

211 DAA=ABS(DA)
ADA=A(l)

BDA=B(J)

201  IF(LGT.NA) GO TO 11
IF(J.GT.KD) GO TO 712
IF(B(J)-A(l)) 130,14,13

130 RBSUM=RBSUM+K
K=K+1
J=J+1
GO TO 1010

13 RASUM=RASUM+K
I=1+1
K=K+1
GO TO 1010

14 RASUM=RASUM+K+.5
RBSUM=RBSUM+K+.5
I=1+1
J=J+1
K=K+2
GO TO 1010

11 DO 20 KK=J,KD
RBSUM=RBSUM+K
K=K+1

20 CONTINUE
GO TO 22

712 DO 21 KK=1,NA
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Program GENSEN (cont'd)

RASUM=RASUM+K
K=K+1

21  CONTINUE

22 ASTAT=NA*KD+NA*(NA+1)/2.-RASUM
BSTAT=NA*KD+KD*(KD+1)/2.-RBSUM
USTAT=AMIN1(ASTAT,BSTAT)

C*+++++ ERROR CHECK

C
BUG=NA*KD-ASTAT-BSTAT
IF(ABS(BUG).GT.0.5) GO TO 27
Z=SQRT(NA*KD*(NA+KD+1)/12.)
Z=(USTAT-(NA*KD/2.))/Z
GO TO 28

27  Z=10.E10

28 CONTINUE

C****+ PRINT MANN-WHITNEY AND K-S MAX DN STATISTICS
C
WRITE(11,701) K2,LAB(K2)
WRITE(11,702) RASUM,RBSUM,ASTAT,BSTAT,Z
SQ=SQRT((ANA+AKD)/(ANA*AKD))
DO 1938 KK=1,6
1938 D1(KK)=D2(KK)*SQ
WRITE(11,7011) (D1(KK),KK=1,6)
WRITE(11,7001) DAA,ADA,BDA
IF(IPROB.EQ.0)GO TO 1351
IF(DAA.LT.D1(IPROB))GO TO 500
1351 CONTINUE

C****** CALCULATE AND PRINT K-S DN VALUES FOR POINTS IN

C  CUMULATIVE PROB SPACE

c
IF(IPRNT.EQ.1)WRITE(11,399)
KK=1
KJ=1
DO 350 M=1,19
PROB=.05"M

351  IF(A(KK).GE.UG(M)) GO TO 352
KK=KK+1
IF(KK.GT.NA) GO TO 352
GO TO 351

352  SN1=(KK-1)/ANA

353  IF(B(KJ).GE.UG(M)) GO TO 354
KJ=KJ+1
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Program GENSEN (cont'd)

IF(KJ.GT.KD) GO TO 354
GO TO 353
354 SN2=(KJ-1)/AKD
DA=SN1-PROB
DB=SN2-PROB
DC=SN1-SN2
IF(PRNT.EQ.1)WRITE(11,400) UG(M),PROB,SN1,SN2,DA,DB,DC
SNN1(M)=SN1
SNN2(M)=SN2
350 CONTINUE
IF(IPRNT.EQ.1)WRITE(11,9071)
9071 FORMAT(//)

C***** PLOT CUMULATIVE PROB CURVE FOR BOTH CLASSES
C

DO 909 1=1,100

LIN()=CBL
909 CONTINUE

WRITE(11,910)LAB(K2)
910 FORMAT(//,1X,'CUMULATIVE PROBABILITY PLOT',3X,A10,
2 11,9X,'0.0',17X,'0.2',17X,'0.4',17X,'0.6',17X,'0.8",
2 17X'1.0'/,10X,10(*........),")

DO 911 M=1,19
MY=SNN1(M)*100
MX=SNN2(M)*100
IF(MY.GT.0)LIN(MY)=CBB
IF(MX.GT.0)LIN(MX)=CNN
WRITE(11,912)UG(M), (LIN(1),I=1,100)

912 FORMAT(1X,F8.3, * 100A1)
IF(MY.GT.0)LIN(MY)=CBL
IF(MX.GT.0)LIN(MX)=CBL

911 CONTINUE

WRITE(11,913)
913 FORMAT(10X,10(*......... ™)

C***+** PLOT PROBABILITY DENSITY HISTOGRAMS FOR EACH CLASS
c

KK=1

KJ=1

DO 920 M=1,49

PROB=(M-1)*.1-2.4
921  IF(A(KK).GT.PROB)GO TO 922
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Program GENSEN (cont'd)

922
923

924
820

925

926

936

930

KK=KK+1

IF(KK.GT.NA)GO TO 922

GO TO 921
SNN1(M)=(KK-1)/ANA
IF(B(KJ).GT.PROB)GO TO 924

KJ=KJ+1

IF(KJ.GT.KD)GO TO 924

GO TO 923
SNN2(M)=(KJ-1)/AKD
CONTINUE

SNN1(50)=1.0
SNN2(50)=1.0
DO 925 M=1,49
SNN1(51-M)=SNN1(51-M)-SNN1(50-M)
SNN2(51-M)=SNN2(51-M)-SNN2(50-M)
CONTINUE

BMX=0.
BNMX=0.0
DO 926 M=1,50
BMX=AMAX1(BMX,SNN1(M))
BNMX=AMAX1(BNMX,SNN2(M))
CONTINUE

IF(BMX.GT.BNMX)THEN
BNMX=BMX

ELSE

BMX=BNMX

ENDIF

DMX=BMX/15.
DNMX=BNMX/15.
WRITE(11,936)
FORMAT(/,1X,'PROBABILITY DISTRIBUTION PLOTS'//)

DO 931 MM=1,15
YB=BMX-MM*DMX
YNB=BNMX-MM*DNMX
DO 930 M=1,50
LIN(M)=CBL
LIN(50+M)=CBL
IF(SNN1(M).GT.YB)LIN(M)=CBB
IF(SNN2(M).GT.YNB)LIN(M+50)=CNN
CONTINUE
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Program GENSEN (cont'd)

MXM=15-(MM-1)
IF(MOD(MXM,5).EQ.0)GO TO 932
WRITE(11,933)(LIN(1),I=1,50),(LIN(1),I=51,100)
933 FORMAT(10X,"." 50A1,10X,"",50A1)
GO TO 931
932 YB=YB+DMX
YNB=YNB+DNMX
WRITE(11,934)YB, (LIN(I),1=1,50), YNB, (LIN(I),1=51,100)
934 FORMAT(1X,F8.3, *,50A1,F9.3,' * 50A1)
931 CONTINUE

WRITE(11,935)

935 FORMAT(2(6X,'0.0 *,6(*.......")," ),
2 2(9X,-2.4'4X,-1.6'4X,"-0.8',5X,'0.0", 5X,
2 '0.8'5X,'1.6',5X,'2.4)
WRITE(11,9020)

9020 FORMAT())

500 CONTINUE

C***** END OF ANALYSIS LOOP
c

(:****************************************t**ﬁ******

IF(MAP.LE.2. AND.MAP.EQ.MAPO)GO TO 907

MAP=MAP-1
IF(MAP.EQ.3)MAP=1
IF(MAP.EQ.0)GO TO 907
GO TO 9010

907 CONTINUE

(:*****************************************************************

c

C FORMATS:

c

100 FORMAT(314)

107 FORMAT(12)

108 FORMAT(A1,/,A1)

9000 FORMAT(/,1X,'FOR ALL VALUES (BEHAVIOR AND NON-BEHAVIORY)'/,
2 1X,'PARAMETER',5X,'ORIGINAL MEAN',9X,'NORMALIZED MEAN!,
3 9X,'ORIGINAL VARIANCE',9X,'NORMALIZED VARIANCE")

9004 FORMAT(/,1X,'CT MATRIX--SUM OF C1 AND C2 MATRICES",
2 ' WEIGHTED BY PRIOR PROBABILITIES')
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Program GENSEN (cont'd)

9006 FORMAT(/,1X,'OBSERVED COVARIANCE MATRIX FOR ALL ',
2 'NORMALIZED VALUES',/,1X,(BEHAVIOR AND NON-BEHAVIORY))
9009 FORMAT(/,1X,'SUM OF EIGENVALUES OF C1 AND C2 MATRICES ',
2 '(REVERSELY ORDERED)'/,1X,19(F4.2,2X))
908  FORMAT(/,1X, SENSITIVITY ANALYSIS FOR OBJECTIVE,
2 'FUNCTION ',12)
9074 FORMAT(/,1X,7A10)
9078 FORMAT(7A10)
9070 FORMAT(/,1X,'PARAM',19(5X,12))
9075 FORMAT(4X,12,19(2X,F5.2))
9076 FORMAT(//,1X,'CORRELATIONS BETWEEN PARAMETER AND ",
2 'EIGENVECTOR VALUES FOR THE BEHAVIOR (C2) MATRIX,
3 /,20X,'EIGENVECTOR",/,;' PARAM',1917)
9077 FORMAT(//,1X,'CORRELATIONS BETWEEN PARAMETER AND°,
2 'EIGENVECTOR VALUES FOR THE NON-BEHAVIOR (C1)',
3 ' MATRIX',//,20X, EIGENVECTOR',/,' PARAM',1817)
9079 FORMAT(7A10,414)
625 FORMAT(10E10.3)
101 FORMAT(/,1X,'PARAMETER STATISTICS(NORMALIZED) FOR ',12,
2 ' PARAMETERS AND ',14,' REPLICATIONS')
624 FORMAT(I2)
698 FORMAT(1X,A5)
190 FORMAT(/,1X,'NO. OF BEHAVIORS="',14,8X,'NO. OF NON-BEHAVIORS="
2 14
200 FORMAT(/,1X,NORMALIZED',/,
2 1X,'PARAMETER',2X,'MEAN UNDER BEHAVIOR',2X,'MEAN!,
2 ' UNDER NON-BEHAVIOR',2X,'VARIANCE UNDER BEHAVIOR',2X,
3 'VARIANCE UNDER NON-BEHAVIOR')
210 FORMAT(1X,12,1X,A10,1X,F15.3,6X,F15.3,10X,F15.3,8X,F15.3)
2301 FORMAT(/,1X,'COVARIANCE MATRIX FOR NON-BEHAVIOR (NORMALIZEDY')
8002 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR NON-BEHAVIOR',
2 ' COVARIANCE MATRIX')
208 FORMAT(/,1X,/CROSS PRODUCT OF MEANS FOR NON-BEHAVIOR')
8009 FORMAT(/,1X, EIGENVALUES AND VECTORS FOR CROSS PRODUCTS',
2 ' OF MEANS FOR NON-BEHAVIOR!)
232 FORMAT(/,1X,'EIGENVALUES TIMES PRIOR PROBABILITIES',/,
2 1X,10(E9.3,3X),/,1X,9(E9.3,3X))
8889 FORMAT(/,1X,'C1 MATRIX--—-SUM OF COVARIANCE AND CROSS PRODUCT,
2 ' OF MEANS MATRICES FOR NON-BEHAVIOR)
8111 FORMAT(/,1X, EIGENVALUES AND VECTORS FOR C1 MATRIX',
2 ' (NON-BEHAVIORY))
2300 FORMAT(/,1X,'COVARIANCE MATRIX FOR BEHAVIOR (NORMALIZED))
2303 FORMAT(/,1X,'COVARIANCE MATRIX FOR ALL DATA (NORMALIZEDY)")
8888 FORMAT(/,1X,'C2 MATRIX-—SUM OF COVARIANCE AND CROSS PRODUCT OF
2 MEANS MATRICES FOR BEHAVIOR')
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Program GENSEN (cont'd)

220 FORMAT(/,1X,'CORRELATION MATRIX FOR BEHAVIOR)

230 FORMAT(1X,12,19(2X,F5.2))

240 FORMAT(/,1X,'CORRELATION MATRIX FOR NON-BEHAVIOR')

241 FORMAT(/,1X,/CORRELATION MATRIX FOR ALL DATA')

8001 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR BEHAVIOR!,
2 ' COVARIANCE MATRIX')

8003 FORMAT(/,1X,'EIGENVALUES-———————'2X,'NROT=',14)
8004 FORMAT(1X,10(ES.3,3X)/1X,9(ES.3,3X))
8006 FORMAT(/,1X'EIGENVECTOR MATRIX--s-seemme—eeet)

622 FORMAT(1X,1X,19(5X,12))

209 FORMAT(/,1X,/CROSS PRODUCTS OF MEANS FOR BEHAVIOR')

8008 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR CROSS PRODUCTS',
2 ' OF MEANS FOR BEHAVIOR)

8010 FORMAT(/,1X,'EIGENVALUES AND VECTORS FOR C2 MATRIX,
2 '(BEHAVIOR)")

701  FORMAT(//,1X,'MANN-WHITNEY U STATISTIC FOR PARAMETER,
2 1X,12,1X,'- ',A10)

7001 FORMAT(1X,'DAA="E15.8,2X,'ADA="E15.8,2X,'BDA="E15.8)

702 FORMAT(1X,'RASUM="E10.3,2X,'RBSUM="E10.3,
2 2X'ASTAT='E10.3,2X,'BSTAT="E10.3,2X,'2=",E10.3)

7011 FORMAT(/,1X,'KOLMOGOROV-SMIRNOV DN STATISTIC. CRITICAL',
2 'DN FOR P=.1,.05,.025,.01,.005,.001=",6(2X,F7.3))

399 FORMAT(1X,8X,'U',10X,'PROB',10X,'SNB',10X,'SNNB',9X,'DELB',
2 9X,'DELNB',8X,'DELBNB")

400 FORMAT(1X,7(F10.3,3X))

C******'k*********t*********************t***************t**************ﬁ

STOP
END

SUBROUTINE MATCOPY(A,N,B)
C COPY MATRIX A ONTO MATRIX B
DIMENSION A(52,52),B(52,52)
DO 30 I=1,52
DO 30 J=1,52
IF(LGT.N.OR.J.GT.N)THEN
B(1,J)=0.
ELSE
B(1,J)=A(l,J)
ENDIF
30  CONTINUE
RETURN
END

SUBROUTINE EIGSRT(D,V,N,NP)
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11

12

13

11

12

13

14
15

DIMENSION D(52),V(52,52)

DO 13 1=1,N-1
K=l
P=D(l)
DO 11 J=I+1,N
IF(D(J).GE.P)THEN
K=J
P=D(J)
ENDIF
CONTINUE
IF(K.NE.I)THEN
D(K)=D(l)
D(l)=P
DO 12 J=1,N
P=V(J,])
V(J,1)=V(J.K)
V(J,K)=P
CONTINUE
ENDIF
CONTINUE
RETURN
END

SUBROUTINE JACOBI(A,N,NP,D,V,NROT)

PARAMETER (NMAX=100)

DIMENSION A(52,52),D(52),V(52,52),B(NMAX),Z(NMAX)

DO 12 IP=1,N
DO 111Q=1,N
V(IP,1Q)=0.
CONTINUE
V(IP,IP)=1.
CONTINUE
DO 13 IP=1N
B(IP)=A(IP,IP)
D(IP)=B(IP)
Z(IP)=0.
CONTINUE
NROT=0
DO 24 1=1,50
SM=0.
DO 15 IP=1,N-1
DO 14 1Q=IP+1,N
SM=SM+ABS(A(IP,IQ))
CONTINUE
CONTINUE
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Program GENSEN (cont'd)

IF(SM.EQ.0.)RETURN
IF(I.LT.4)THEN
TRESH=0.2*SM/N**2
ELSE
TRESH=0.
ENDIF
DO 22 IP=1,N-1
DO 21 1Q=IP+1,N
G=100.*ABS(A(IP,1Q))
IF((1.GT.4).AND.(ABS(D(IP))+G.EQ.ABS(D(IP)))
*  AND.(ABS(D(IQ))+G.EQ.ABS(D(1Q))))THEN
A(IP,1Q)=0.

ELSE IF(ABS(A(IP,IQ)).GT.TRESH)THEN
H=D(1Q)-D(IP)
IF(ABS(H)+G.EQ.ABS(H)) THEN

T=A(IP,IQ)/H
ELSE
THETA=0.5*H/A(IP,1Q)
T=1./(ABS(THETA)+SQRT(1.+THETA**2))
IF(THETA.LT.0.)T=-T
ENDIF
C=1./SQRT(1+T**2)
s=T*C
TAU=S/(1.+C)
H=T*A(IP,IQ)
Z(IP)=Z(IP)-H
Z(1Q)=Z(1Q)+H
D(IP)=D(IP)-H
D(IQ)=D(IQ)+H
A(IP,IQ)=0.
DO 16 J=1,IP-1
G=A(J,IP)
H=A(J,IQ)
A(J,IP)=G-S*(H+G*TAU)
A(J,1Q)=H+S*(G-H*TAU)
16 CONTINUE
DO 17 J=IP+1,1Q-1
G=A(IP,J)
H=A(J,IQ)
A(IP J)=G-S*(H+G*TAU)
A(J,1Q)=H+S*(G-H*TAU)
17 CONTINUE
DO 18 J=IQ+1,N
G=A(IP.J)
H=A(IQ,J)
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A(IP,J)=G-S*(H+G*TAU)
A(IQ,J)=H+S*(G-H*TAU)
18 CONTINUE
DO 19 J=1,N
G=V(J,IP)
H=V(J,1Q)
V(J,IP)=G-S*(H+G*TAU)
V(J,1Q)=H+S*(G-H*TAU)
19 CONTINUE
NROT=NROT+1 .
ENDIF
21 CONTINUE
22 CONTINUE
DO 23 IP=1,N
B(IP)=B(IP)+Z(IP)
D(IP)=B(IP)
Z(IP)=0.
23 CONTINUE
24 CONTINUE
PAUSE '50 iterations should never happen'
RETURN
END

SUBROUTINE SORT(N,RA)
DIMENSION RA(3000)
L=N/2+1 J
IR=N
10 CONTINUE
IF(L.GT.1)THEN
L=L-1
RRA=RA(L)
ELSE
RRA=RA(IR)
RA(IR)=RA(1)
IR=IR-1
IF(IR.EQ.1)THEN
RA(1)=RRA
RETURN
ENDIF
ENDIF
I=L
J=L+L
20  IF(J.LE.IR)THEN
IFJ.LT.IR)THEN
IF(RA(J).LT.RA(J+1))J=J+1
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Program GENSEN (cont'd)

ENDIF
IF(RRA.LT.RA(J))THEN
RA(I)=RA(J)
I=J
J=J+J
ELSE
J=IR+1
ENDIF
GO TO 20
ENDIF
RA()=RRA
GOTO 10
END
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Table D-1: Output Data from the GENSEN program for Configuration 1

Dose Criteria: 1 mrem/ No Correlated Parameters/ 7 Subareas

Parameter 1D # Ranking Parameter Abb. " DAA
40 1 ARDSAVNp 9.64E-01
2 2 MAPM@GM 9.29E-01
47 3 APrs_SAV 9.29E-01
19 4 RD IV 1 5.84E-01
41 5 ARDSAV 1 4.30E-01
48 6 WPRRG@10 4.22E-01
49 7 WPRRG@20 3.96E-01
17 8 RD IV Ra 3.42E-01
52 9 MixZnT20 3.41E-01
3 10 MATI@GM 3.22E-01
45 i1 ARDSAVRa 3.09E-01
30 12 SFWt%I7 ~2.95E-01
28 13 SFWt%lI5 2.80E-01
7 14 *Chlorid 2.59E-01
51 15 AqThick3 2.46E-01
44 16 ARDSAVPu 2.38E-01
18 17 RD IV_Pb 2.20E-01
15 18 RD_IV_Np 2.17E-01
23 19 RD_IV_Nb 2.16E-01
12 20 RD IV Pu 2.12E-01
26 21 SFWt%I3 2.12E-01
50 22 PlumeTh5 2.10E-01
10 23 SbAIW1% 2.00E-01
8 24 Fow* 1.96E-01
46 235 ARDSAVSe 1.86E-01
16 26 RD_IV_Th 1.85E-01
25 27 SFWi%I2 1.82E-01
43 28 ARDSAV_U 1.66E-01
21 29 RD_IV Ni 1.65E-01
29 30 SFWt%I6 1.60E-01
32 31 SFWt%C2 1.57E-01
38 32 InvMPerm 1.57E-01
42 33 ARDSAVTc 1.55E-01
20 34 RD_IV_Tc 1.41E-01
24 35 SFWt%I1 1.40E-01
13 36 RD_IV_U 1.39E-01
27 37 SFWt%l4 1.38E-01
33 38 SFW1%C3 1.38E-01
11 39 WP-Det% 1.37E-01
36 40 SFWt%C6 1.37E-01
37 41 SFWt%C7 1.37E-01
9 42 Fmult* 1.36E-01
35 43 SFWt%C5 1.35E-01
31 44 SFWt%C1 1.32E-01
1 45 AAMAI@S 1.29E-01
22 46 RD IV _Se 1.21E-01
4 47 FOC-R 1.16E-01
34 48 SFWt%C4 1.12E-01
39 49 ARDSAVAm 1.12E-01
3 50 FOCTR T.05E-01
4 51 RD_IV_Am 7.96E-02
6 52 FOCTR-R 7.60E-02

** DAA -- Maximum Vertical Distance Between The Distribution Under Behavior and the
Distribution Under Non-Behavior
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e Table D-2: Output Data from the GENSEN program for Configuration 2

Dose Criteria: 0.2 mrem/ No Correlated Parameters/ 7 Subareas
Parameter ID # Ranking Parameter Abbreviation DAA
10 1 SbArWt% - 5.42E-01
49 2 WPRRG@ZO 3.43E-01
2 3 MAPM@GM 3.33E-01
47 4 APrs_SAV 3.33E-01
41 5 ARDSAV | 2.57E-01
40 6 ARDSAVNp 2.52E-01
35 7 SFWt%C5 1.75E-01
32 8 SFWt%C2 1.75E-01
19 9 RD IV | 1.48E-01
48 10 WPRRG@10 1.47E-01
15 11 RD_IV_Np 1.42E-01
52 12 MixZnT20 _1.40E-01
8 13 Fow* 1.38E-01
3 14 MATI@GM 1.32E-01
7 15 *Chlorid 1.32E-01
46 16 ARDSAVSe 1.28E-01
36 17 SFWt%C6 1.25E-01
9 18 Fmult* 1.23E-01
23 19 RD_IV_Nb 1.17E-01
22 20 RD_IV _Se 1.10E-01
30 21 SFWt%I7 1.07E-01
42 22 ARDSAVTc 1.03E-01
31 23 SFWt%C1 1.00E-01
44 24 ARDSAVPu 9.83E-02
45 25 ARDSAVRa 9.67E-02
17 26 RD_IV_Ra 9.33E-02
16 27 RD_IV_Th 9.00E-02
25 28 SFWt%I2 9.00E-02
28 29 SFWt%I5 _9.00E-02
12 30 RD IV Pu 8.33E-02
27 31 SFWt%|4 8.33E-02
34 32 SFWt%C4 8.33E-02
51 33 AqThick5 8.17E-02
11 34 WP-Def% 8.17E-02
37 35 SFWt%C7 7.67E-02
21 36 RD IV _Ni 7.17E-02
39 37 ARDSAVAmM 7.17E-02
5 38 FOCTR 6.67E-02
18 39 RD_IV_Pb 6.67E-02
20 40 RD IV Tec 6.67E-02
50 41 PlumeTh5 6.17E-02
1 42 AAMAI@S 6.00E-02
43 43 ARDSAV U 6.00E-02
33 44 SFWt%C3 5.83E-02
14 45 RD_IV_ Am 5.83E-02
6 46 FOCTR-R 5.67E-02
38 47 InvMPerm 5.67E-02
4 48 FOC-R 5.33E-02
29 49 SFWt%I6 5.33E-02
24 50 SFWt%I1 5.00E-02
13 51 RD IV U 4.67E-02
26 52 SFWt%I3 4.50E-02

** DAA -- Maximum Vertical Distance Between the Distribution Under Behavior and the
Distribution Under Non-Behavior
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Table D-3: Output Data from the GENSEN program for Configuration 3

 Dose Criteria: 0.2 mrem/ Correlated Input Parameters] 7 Subareas
Parameter ID # Ranking Parameter Abbreviation DAA
10 1 SbAVVIZ0 O.1E01 |
1 2 AAMAI@S 3.79E-01
49 3 WPRRG@20 3.65E-01
2 4 MAPM@GM 3.28E-01
47 5 APrs_SAV 3.28E-01
8 6 Fow* 2.00E-01
44 7 ARDSAVPu 2.00E-01
39 8 ARDSAVAmM 1.94E-01
40 9 ARDSAVNp 1.94E-01
41 10 ARDSAV _| 1.91E-01
33 11 SFWt%C3 1.71E-01
32 12 SFWt%C2 1.61E-01
52 13 MixZnT20 1.51E-01
35 14 SFWt%C5 1.39E-01
43 15 ARDSAV_U 1.33E-01
19 16 RD_IV_| 1.30E-01
23 17 RD_IV_Nb 1.28E-01
48 18 WPRRG@10 1.26E-01
30 19 SFWt%I7 1.08E-01
18 20 RD_IV_Pb 1.07E-01
5 21 FOCTR 1.06E-01
31 22 SFWt%C1 1.04E-01
9 23 Fmuit* 9.97E-02
36 24 SFWt%C6 9.53E-02
20 25 RD_IV_Tc 9.52E-02
7 26 *Chilorid 9.50E-02
22 27 RD_IV_Se 9.13E-02
3 28 MATI@GM 8.77E-02
51 29 AqThickb 8.45E-02
4 30 FOC-R 8.25E-02
15 31 RD_IV_Np 8.17E-02
45 32 ARDSAVRa 8.04E-02
12 33 RD_IV_Pu 7.98E-02
26 34 SFWt%I3 7.97E-02
42 35 ARDSAVTc 7.95E-02
34 36 SFWt%C4 7.86E-02
17 37 RD_IV_Ra 7.51E-02
29 38 SFWt%I6 6.89E-02
38 39 InvMPerm 6.73E-02
11 40 WP-Def% 6.72E-02
21 41 RD_IV_Ni 6.42E-02
16 42 RD_IV_Th 6.09E-02
46 43 ARDSAVSe 6.04E-02
13 44 RD_IV_U 5.81E-02
27 45 SFWt%l4 5.56E-02
24 46 SFWt%I1 5.55E-02
50 47 PlumeTh5 5.09E-02
14 48 RD_IV_Am 5.03E-02
37 49 SFWt%C7 4.62E-02
6 50 FOCTR-R 4.60E-02
25 51 SFWt%I2 4.39E-02
28 52 SFWt%I5 4.06E-02

** DAA -- Maximum Vertical Distance Between the Distribution Under Behavior and the

Distribution Under Non-Behavior
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Table D-4: Output Data from the GENSEN program for Configuration 3

Dose Griteria: 0.2 mrem/ Gorrelated Parameters] 7 Subareas

ot

Parameter ID # anking arameter reviation
1 1 SFWt%CA 0.2311 87103
26 2 SbArWt% 0.43730348
11 3 AAMAI@S 0.27286422
2 4 MAPM@GM 0.2638889
36 5 APrs_SAV 0.2638889
37 6 WPRRG@20 0.25694442
30 7 ARDSAV | 0.19542712
9 8 Fow* 0.15421909
40 9 MixZn120 0.13541669
33 10 ARDSAVPu 0.11170071
29 11 ARDSAVNp 0.10776991
8 12 *Chlorid 0.10547692
32 13 ARDSAV U 0.10521489
12 14 WP-Def% 0.095322341
-7 15 AA 2 1 0.094732702
10 16 Fmult* 0.094536126
14 17 RD IV U 0.093881071
28 18 ARDSAVAmM 0.093422413
39 19 AqThick5 0.092636287
6 20 FOCTR-R 0.089557111
20 21 RD_IV_| 0.087460697
13 22 RD_IV_Pu 0.084316015
38 23 PlumeThb 0.078878433
34 24 ARDSAVRa 0.074751019
27 25 InvMPerm 0.074554503
25 26 SFWt%I1 0.073702827
19 27 RD_IV_Pb 0.072785646
16 28 RD_IV Np 0.071671903
31 29 ARDSAVTc 0.070230618
17 30 RD_IV_Th 0.060444418
22 31 RD_IV_Ni 0.068592727
18 32 RD _IV_Ra 0.067151427
21 33 RD_IV Tc 0.064006805
24 34 RD_IV_Nb 0.062172413
4 35 FOC-R 0.060731113
23 36 RD_IV _Se 0.058110595
35 37 ARDSAVSe 0.054900408
3 38 MATIQGM 0.053066045
5 39 FOCTR 0.052410901
15 40 RD_IV_Am 0.041273594

** DAA - Maximum Vertical Distance Between the Distribution Under Behavior and the
Distribution Under Non-Behavior
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Cumulative Probability Plot for RD IV Ra
(Configuration 1)
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Cumulative Probability Plot for SFWt%C5
(Configuration 2)
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DEPARTMENT OF ENVIRONMENTAL SCIENCES

CLARK HALL .  UNIVERSITY OF VIRGINIA' « CHARLOTTESVILLE, e« VIRGINIA « 22903
Fax # (804) 982-2137 (804) 924-7761

5 July, 1999

Andy C. Campbell

Advisory Committee on Nuclear Waste
U.S. Nuclear Regulatory Commission
WASHINGTON, DC, 20555

Dear Andy,

Enclosed is a copy of a paper that appeared in the Journal of Environmental
Management that covers the idea that I had for another examination of Monte-Carlo results from
the TPA-3 code. (I also enclose a few other reprints that may be helpful in visualizing how the
analysis might go.) Basically, the idea is similar to that covered in Dick Codell’s “t-test” results.
What I envision is an analysis of the Monte-Carlo results in the context of a dose standard, rather
than just a simple statistical investigation. Because the results at 10,000 years do not show
violations of any reasonable standard, I would suggest that we use 50,000 years for illustrative
purposes. This approach might be OK anyway in the context of a conservative regulatory
approach. I list below a possible way for us to proceed.

(1) Get results from Monte-Carlo runs. If we can get the 4,000 runs used by Norm and Budhi, that
would be great. If so, we can do the analysis below for four separate 1,000-realization runs
and look at the robustness to sample size. If not, then we could just use Dick Codell’s 1000
realizations and worry about robustness later.

(2) Choose a criterion (or criteria) for an acceptable behavior. I suggest a dose of less than 5 mrem
at 50,000 years. (The argument might be that if there are aspects of the model that lead to this
level of dose at 50,000 years, then these aspects can be viewed as critical uncertainties for
meeting the standard as well.)

(3) Write a code to go through the realizations and determine whethcr the run is acceptable or
unacceptable; write the parameters for behaviors in one file and for non-behaviors in a second
file.

(4) Analyze the differences between the two bins of parameters. (I have a FORTRAN code for the
analysis that we can use as is or can modify as we see fit.) The analysis looks at covariances as
well as simple univariate separations.

Let me know if you think this idea is worth pursuing. As long as we don’t have to exercise the
TPA code ourselves, I think the effort would not be too burdensome.
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An Approach to the Preliminary Analysis of Environmental Systems

George M. Hornberger

. Department of Environmental Sciences, University of Virginia,
: Charlottesville, Virginia 22903, U.S.A.

and

Robert C. Spear

Department of Biomedical and Environmental Health Sciences, University of California,
Berkeley, California 94720, U.S.A.
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In the preliminary analysis of environmental problems, mathematical modelling
studies can sometimes aid in hypothesis development and in the integration of
preliminary data. Circumstances usually require models used in this way to be
simulation models closely based on traditional scientific descriptions of component
processes. As a result, such models contain many ill-defined parameters, a fact
which severely limits the reliance that can be placed on the outcome of aay single
simulation. In an attempt to overcome this difficulty, it has been proposed that
parameters be assigned statistical distributions which reflect the degree of
parametric uncertainty and that these distributions be used in Monte Carlo
simulation analyses. We propose a variation on this theme in which we first
stipulate the systems® problem-defining behaviour and defing a classification
algorithm to be applied to the model’s output. This algorithm results in each
simulation run being classified as a behaviour, B, or not a behaviour, B. The
parameters leading to the result are stored according to the behavioural outcome,
Subsequently, all parameter vectors are subjected to analysis to determine the
degree to which the a priori distributions separate under the behavioural mapping.
This separation, or lack thereof, forms the basis for a generalized sensitivity
analysis in which parameters and their related processes important to the
simulation of the behaviour are singled out. The procedure has been applied to a
eutrophication problem in the Peel~Harvey Inlet of Western Australia with
encouraging results.

Keywords: systems analysis, sensitivity analysis, simulation, Monte Carlo analysis,
parametric uncertainty.
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8 . Analysis of environmental systems
1. Introduction

The majority of environmental problems that have come to the public’s notice in the
last several decades have possessed the common characteristics of being scientifically
quite complex yet requiring some governmental action for their alleviation in the short
term. These characteristics have led to patterns of study and investigation of such pro-
blems in two major phases. Initially, large-scale literature searches are conducted, teams
of specialists assembled and a variety of background studies begun. This first phase is
then concluded by some form of assessment procedure which culminates in the speci-
fication of a strategy for the second phase of the study, an important feature of which
is a detailed ordering of research priorities.
This paper is concerned with the scientific aspects of the assessment procedure and
the process of establishing the second phase research priorities. In particular, we are
interested in the suitability of mathematical models as vehicles for the organization of
both qualitative and quantitative scientific data. We develop here a new method for
examining a simulation model to determine whether it is capable of mimicking the
salient qualitative aspects -of the system behaviour that defines the environmental
problem and, if so, to identify the segments of the model that are most important to a
successful simulation. In this sense, the method is a generalized sensitivity analysis and
can be used at an early stage of a research project to isolate the critical uncertainties in
knowledge of the system and thereby to derive information of use in focusing the next
phase of the research.
At the stage of the investigation with which we are here concerned, there is no
alternative to utilizing some type of simulation model as the mathematical format into
which assumptions regarding causal relations and parameter values are summarized.
By simulation model, we mean one whose structure and parameters are explicitly related
to physical, chemical or biological processes. Data in the literature on algal growth rates
as a function of nutrient level, for example, are often given in terms of Michaelis
constants, a fact which points out that simulation models are constrained to be written
in the language of the various disciplines which have studied the component processes
of the system. This constraint immediately leads to the result that most simulation models
will be complex with many parameters, state variables and non-linear relations. Under
the best circumstances, such models have many degrees of freedom and, with judicious
fiddling, can be made to produce virtually any desired behaviour, often with both
plausible structure and parameter values. Because of this problem, simulation modelling
has limited importance in cases where extensive data sets that quantify the system
behaviour are lacking.
In spite of the problems cited above, the potential utility of information yielded by
simulation models in planning experiments has been recognized. For example, with
reference to ecological models, Jeffers (1972) states that:
“much time can be saved in the early stages of hypothesis formulation by the exploration
of these hypotheses through mathematical models. Sxmxlarly mathematical models can
be used readily to investigate phenomena from the viewpoint of existing theories, by the
integration of disparate theories into a smgle working hypothesis, for example. Such
models may quickly reveal inadequacies in the current theory and indicate gaps where
new theory is required™.

Sumlarly, Mar (1974) in his review of multidisciplinary modelling studies pointed

out that:

“The strategy to construct models without data and then employ sensitivity analysis to
identify critical components where research and new data would enhance model per-
formance is not commonly practised™.
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Stenseth (1977), while roundly criticizing simulation modelling, admits that a simple
model, when used to explore or to generate hypotheses, can be a valuable research tool. -
Unfortunately, little work has been done to elucidate exactly how mathematical models
can actually be used in such a “hypothesis generating” mode.

Several workers (e.g. Adams, 1972; Meyer, 1972; Maddock, 1973; McCuen, 1976)
have suggested that parameter sensitivity analysis can be used to guide future data
collection efforts and/or to order research priorities. Traditional parameter sensitivity
analysis, however, pertains to a particular point in the parameter space (the vector space
spanned by all possible combinations of parameter values). This requires that point
estimates of all parameters be available, which, in turn, for complex environmental
models, implies that sufficient input-output data for model calibration exist, and this
is counter to our original premise that application was to be for an early stage of the
investigation. Although Meyer (1972) advocates the use of a “tentatively calibrated
model” to overcome this particular dilemma, the structure of models of environmental
systems is not likely to be well defined a priori, and such an approach is therefore suspect.

In light of the discussion above, we contend that, in the early stages of the analysis
of real problems, simulation models can be useful only in a probabilistic context. That
is, given the model and the inherent uncertainties in structure and parameter values,
the only meaningful analysis must focus on the probabilities of various behaviours.
Most importantly, it must focus on the probable structures and parametric relations
which appear consistent with that behaviour which is associated with the “environmental
problem” under consideration. One method for applying simulation models in a probabi-
listic context is to ase Monte-Carlo techniques. (For example, see Tiwari and Hobbie
(19764, b) and Tiwari et al. (1978) for an application of Monte-Carlo simulation in
ecological modelling.) The methodology developed below adjoins the notion of qualitative
or semi-quantitative descriptors of the behaviour of the system to Monte-Carlo simula-
tion to obtain a useful technique for the preliminary analysis of environmental systems.

2. Class of mathematical models considered

For clarity of exposition, we restrict our attention to a specific class of models and
introduce nomenclature which will be required subsequently. Assume the processes
are to be modelled by a set of first order ordinary differential equations. (Different
mathematical structures can be dealt with in an analogous way.) Let these equations be
given in the form:

L]

d
2 o 50 = f1x), £, 20 M

where x(t) is the state vector and z(?) a set of time variable functions which include input
or forcing functions. The vector ¢ is a set of constant parameters described more fully
below. Thus, for &, z(t) and x{(0) specified, x(t) is the solution of the system of equations
and is a deterministic or a stochastic function of time as determined by the nature of
2(¢). For simplicity of exposition, z(¢) will be treated hereafter as a deterministic function
of ¢. Under this assumption, there are two types of uncertainty with which we will deal:
uncertainty in the model structure, i.e. in the functions, f, and uncertainty in the para-
meter values, £. Different model structures would pertain to competing hypotheses on
system functioning (e.g. phosphorus limitation versus nitrogen limitation in a eutro-
phication problem); we use the term scenario to indicate a particular structure.
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For a given scenario, each element of the vector £ is defined as a random variable
the distribution of which is a measure of our uncertainty in the “real” but unknown value
of the parameter. These parameter distributions are formed from data available from
the literature and from experience with similar structures. For example, the literature
suggests that the maximum growth rate of Chlorella vulgaris is almost certainly between
1-5 and 2-5 days™! at water temperatures near 25°C. Interpreting these limits as the
range of a rectangularly distributed random variable, and forming similar a priori
estimates for the other elements of § result in the definition of an ensemble of models
for a given scenario. Some of these models will, we hope, mimic the real system with
respect to the behaviour of interest.

3. The problem-defining behaviour

Turning now to the question of behaviour, recall that, for a given scenario, every sample
value of ¢, drawn from the a priori distribution, results in a unique state trajectory, x(t).
Following the usual practice, we assume that there are a set of observed variables y(z),
calculable from the state vector, which are important to the problem at hand. So, for
each randomly chosen parameter set {*, there corresponds a unique observation vector
y*(t). Since-the elements of y(t) are observed (that is we assume that they are measured
in the real system), it is sensible to define behaviour in terms of y(r). For example, suppose
y, is the concentration of phytoplankton in a body of water and the problem in question
concerns unwanted algal blooms due to nutrient enrichment. Then, there is some value
of y, above which a bloom is defined to have occurred and the behaviour is defined by
this critical value.

In general, a number of behaviour categories can be used. Without loss of generality,

however, we can consider the case for which behaviour is defined in a binary sense, i.e.

it either occurs or does not occur for a given scenario and set of parameters §. It follows
that a rule must be specified for determining the occurrence or non-occurrence of the
behaviour on the basis of the pattern of y(z). It is also possible that the behaviour might
depend on the vector z(¢). For example, suppose one element of z(f) was water tempera-
ture. We might be interested only in extreme values of y(f) when adjusted or controlled
for temperature variations. In any event, the detailed definition of behaviour is problem-
dependent and, for present purposes, it is sufficient to keep in mind that a set of numerical
values of £ leads to a unique time function y(t) which, in turn, determines the occurrence
or non-occurrence of the behaviour conditioned, perhaps, by 2(¢).

4. A generalized sensitivity analysis procedure

" We have now presented the class of models to be studied, defined the scenario concept
and described how we propose to deal with parametric uncertainty. For a given scenario,
bebaviour and set of parameter distributions &, it is possible to explore the properties
of the ensemble via computer simulation studies. In particular, a random choice of the
parameter vector ¢ from the predefined distributions leads to a state trajectory x(t), an
observation vector y(t) and, via the behaviour-defining algorithm, to a determination
of the occurrence or non-occurrence of the behaviour. A repetition of this process for
many sets of randomly chosen parameters results in a set of sample parameter vectors
for which the behaviour was observed and a set for which the behaviour was not
observed. The key idea is then to attempt to identify the subset of physically, chemically
or biologically meaningful parameters which appear to account for the occurrence or
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non-occurrence of the behaviour. More traditional sensitivity analyses of large ecological
models inevitably show that a surprisingly large fraction of the total number of parameters
is simply unimportant to the critical model behaviour. We maintain that this unimportant
subset or, conversely, the critical subset, may be tentatively specified rather early in any
study.

Ranking the elements of ¢ in order of importance in the behavioural context is
accomplished through an analysis of the Monte-Carlo results. The essential concept can
best be illustrated by considering a single element, ,, of the vector ¢ and its a priori
cumulative distribution, as shown in Figure 1. Recall that the procedure is to draw a

Fie @) ,”
/

/
// FLED

Cumulative distribution

Fi 1. Cumulative distribution functions for parameter {z. F(f;) = parent, a priori distribution,
F(¢z| B) = distribution of {xin the behaviour category, F({x|B) = distribution of g in the non-behaviour
category. - ' .

random sample from this parent distribution (a similar procedure is followed for all
other elements of £), run the simulation with this value and record the observed bebaviour
and the total vector ¢ therewith associated. A repetition of this procedure results in two
sets of values of §,, one associated with the occurrence of the bebaviour B, and the other
without the behaviour B. That is, we have split the distribution F({,) into two parts as
indicated in the figure. This particular example would suggest that &, was important to
the behaviour since F(&,) is clearly divided by the behavioural classification. Alter-
natively, if the sample values under B and B appeared both to be from the original dist-
ribution F({,), then we would conclude that ¢, was not important.

%, Sensitivity ranking of parameters

For the case where z(7) is a deterministic function of time, the parameter space is cleanly

divided by the behavioural mapping; that is, there is no ambiguity regarding whether

a given parameter vector results in B or B. Our analysis then focuses on the determination

of which parameters or combinations of parameters are most important in distinguishing.
between B and B. We will restrict the discussion to the case for which the parameter

vector mean is zero and the parameter covariance matrix is the identity matrix. (A suit-
able transformation can always be found to convert the general problem to this case.)

The problem of identifying how the behavioural mapping separates the parent parameter
space can then be approached by examining induced mean shifts and induced

covariance structure. .
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For example, we can base a sensitivity ranking on a direct measure of the separation
of the cumulative distribution functions, F(§,|B) and F(¢|,B). In particular, we utilize
the statistic: )

dny = SUD |S.<x>—5..<3c)

where S, and S,, are the sample distribution functions corresponding to F(£,|B) and
F(¢,)B) for n behaviours and m non-behaviours. The statistic dy, is that used in the
Kolmogorov-Smirnov two sample test and both its asymtotic and small sample distri-
butions are known for any continuous cumulative distribution function F(£,|B) and
F(&,|B). Since S, and S,, are estimates of F(£,|B) and F(£,/5), we see that d,,, is the
maximum vertical distance between these two curves and the statistic is, therefore,
sensitive not only to differences in central tendency but to any difference in the distribu-
tion functions. Thus, large values of d, , indicate that the parameter is important for
simulating the behaviour and, at least in cases where induced covariance is small, the
converse is true for small values of that statistic.

In general, however, ranking on the basis of the separation in the distribution func-
tions along the original axes of the parameter space (the individual parameter values)
is not sufficient. It is possible, for example, that the first and second moments for a single
parameter might exhibit no separation and yet this parameter could be crucial to a
successful simulation by virtue of a strong correlation with other parameters under the
behaviour. For example, Figure 2 depicts a two-dimensional parameter space for which

3
}

i

Figure 2. Schematic diagram of a two parameter case for which separation under the behavioural
classification is total but for which discrimination by univariate tests is not possible.

the cumulative distributions would not separate under the behavioural classification.
Nevertheless, both parameters are important in determining whether the behaviour
occurs. Clearly, it is the interaction between parameters which is crucial, and information
on the covariance between the two parameters will give insight into the degree of sensi-
tivity in a case such as this. In fact, as shown more formally below, inspection of the



?

G. M. Hornberger and R. C. Spear 13

covariance matrices of the parameter vectors in the two classes can provide important
clues in assessing sensitivity.

This notion can be formalized as follows. Let { be the parameter vector. Since these
vectors were normalized to have zero mean, unity variance and zero covariance, it follows °
that:

EEEN =1 = P(BEZ,Z,7)+P(B)ity 1"+ PBEZ: 25+ PBs i )
where:

P(B) and P(B) are probabilities of obtaining the behaviour and of not doing so,
respe;tively

£, is a parameter vector associated with B

£, is a parameter vector associated with B

uy = E({,)

#2 = E({;)

Zy =8 -y

Z,=§—u,

E is the expectation operator.

The case illustrated in Figure 2 suggests that incidences in which separation is not
indicated in the univariate analyses should be singled out in the multivariate procedure.
Assume that m of the distributions F({,) did not separate under the behavioural mapping.
Then py, = u,, = 0 for each of these distributions. For two parameters for which no
mean shift is observed (say £, and ¢{)), the ijth elements of u, u,” and p, u,7 are zero

and, according to equation (2), the corresponding off-diagonal elements of the covariance
matrices are such that: :

P(BE(ZyZ,)) = - PBYEZ;12Zs)

where i # j. Therefere, if a distribution does not separate under the behavioural mapping
but does show induced covariance, the situation depicted in Figure 2, this covariance
will be seen in both the covariance matrices under B and B and the magnitudes of the
covariances will be related as indicated above. This is easily checked by inspection of the
two matrices.

The problem of identifying “important™ parameters in a situation where induced
covariance is significant (e.g. the case shown schematically in Figure 2) can also be
addressed by considering an analogy with the problem eof discriminant analysis in the
face of negligible differences in mean between groups. Kendall and Stuart (1969) suggest
that a principal components transformation may be useful for such problems. In fact,
for the case depicted in Figure 2 it is intuitively obvious that the principal components of
the covariance matrix of parameters in the behaviour class (or of those in the non-
behaviour class) define a new set of co-ordinate axes at 45° from the original £, &, axes.
The cumulative distributions of the projections of the parameter vectors on these
principal axes would indeed separate, and the value of the d,,, statistic for these would
again provide a useful measure of the separation.

In a more general case, the behavioural classification would result both in separation
along some of the original axes and in induced covariance. A principal components
transformation of the covariance matrix of either the behaviour class or the
non-behaviour class defined with respect to the grand mean can be used to advantage
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when information on both mean and covariance differences is important (Fukunaga and
Koontz, 1970). That is, equation (2) can be written:

E@) =1 = P(B)E, 5, D)+ P(B)E(: ¢,

and, if T is the matrix that diagonalizes the covariance matrix under the behaviour, -
E(Z, &,7), then the same transformation must diagonalize the covariance matrix under the
non-behaviour classification, E(¢; £,7):

TTEEENT =1= P(B)TTE(, &) T+P(B)TTE(E, E,NT, or

where A, and A, are diagonal matrices with the eigenvalues of the respective covariance
matrices as the diagonal elements. The columns of the matrix T are eigenvectors of the
covariance matrices, and the (normalized) components of those vectors are the
direction cosines of the transformed axes relative to the original parameter axes. Thus,
if the projections of the parameters on to a transformed axis exhibit significant
separation under the classification in terms of the d,, , statistic, the weights on individual
parameters in that eigenvector indicate the importance of each parameter in explaining
the separation.

A simple example can be used to illustrate the general procedure. Figure 3 depicts a
three-dimensional parameter space in which the univariate analysis should indicate

&
A

el/_,v~.' !

i jagram of a three parameter space. Parameter values in the shadgd regions are defined to be
Figure 3. Disgradt Crass B; e in the unshaded regions are defined to be in class B.

separation on the {3 axis but should not isolate the separation due to induced covariax.we
in the & &, plane. Five hundred samples of parameter vectors were generated using
random numbers and classified according to the scheme shown in Figure 3.
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The univariate analysis of these vectors showed a d,, , of 0-09, 0-08 and 0-56 for ¢,
&, and ¢, respectively. The first two are not significant at the 909 level whereas the last
is significant at well above the 999/ level.

The correlation matrices under the behaviour and non-behaviour are:

100 -0-3¢4 005 1-:00 040 -0-04
- C(B) = -034 100 -0-08 ;. C(B) = 040 1:00 00 )
005 -0-08 1-00 -004 00 1-00

As expected, there is a large correlation between the &, and ¢, parameters. Further, the
off-diagonal elements of C(B) and C(B) are approximately of equal magnitude and of
opposite sign. These large correlations between variables for which no univariate separa-
tion was seen suggest a principal components analysis as outlined above. Carrying out
this analysis yields the eigenvectors of the matrix E(¢, £,7), which are the columns of
the T matrix and, for this example, are: :

-0-72 —0:00 —0-070
ro|-070 -000 -072
: -0:00 —100 -0-00

The d,, , statistics are 018, 0-56 and 0-24 for the three eigenvectors. The second eigen-
vector (column 2) is, of course, the §, axis and reflects the mean separation in the
original co-ordinates. The d, , statistics for the other two directions are now significant
at above the 999 level and the magnitude of the direction cosines in the §, £, plane
(~0:7) indicates the equal importance of each of these original parameters in explaining
this separation.

6. Application of the methodology

As one example of the application of the proposed method for preliminary analysis of
environmental systems, we consider a problem of cultural eutrophication in a coastal
plain estuary in Western Australia. Over the last decade, the Peel Inlet near Perth has
been plagued by excessive growth of benthic alga Cladophora aff. albida. In 1976, the
Estuarine and Marine Advisory Committee of the Environmental Protection Authority

of Western Australia organized a consortium of academic and governmental research

groups to assist in collecting data and developing the strategy necessary for the long-term
management of the Cladophora nuisance. " .

The nature and extent of data available for Peel. Inlet are such that the quantitative
aspects of a conventional modelling exercise would not be of benefit. However, the
information on similar types of problems reported in the open literature, coupled with
the preliminary data from a survey of seasonal changes in Cladophora biomass and
nutrient concentrations in Peel Inlet conducted by Dr A. J. McComb and his associates
from the Botany Department of the University of Western Australia (Atkins et al.,
1977), provide enough information for applying the method we propose.

We chose to investigate a phosphorus scenario, and, in addition to the Cladophora
compartment, included in the model compartments for phosphorus in the water column,
in the sediment and in phytoplankton. The mode! included 19 parameters. The six
criteria for defining the behaviour derived from the survey data in Atkins e al. (1977)
and included limits for a Cladophora *“‘bloom”, timing of peak biomass, and maximum

~
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concentrations of phytoplankton and dissolved phosphorus concentrations during the
“bloom™. A full description of the model of the behaviour criteria is given by Hornberger
and Spear (1980). :

Of 626 simulation runs conducted in the Monte-Carlo experiments, 281 fell in the
behaviour category with 345 in the non-behaviour class. Sample distribution functions
under B and B for two of the 19 parameters are shown in Figure 4. The Kolmogorov-
Smirnov statistic, d,,; = 0-20, indicates that F(y,|B) # F(y,|B) at well above the 99%;
level of significance. The distributions of the light shading coefficient, k, on the other

-0

-20 (o] 20

Figure 4. Cumulative distribution functions under the behavioural classification for () Xt Cladopl.:ou '
growth coefficient, which showed a distinct separation and (b) k, phytoplankton shading coefficient,
which showed no significant separation. @, —B8; +, —B.
hand, differ by a maximum of 0-05, a value which corresponds to a level of significance
well below 90%. We interpret these results to indicate that y, is an important determinaat
of the bebaviour and k is not, at least in terms of a univariate analysis. A ranking of
individual parameters on this basis classified seven of the 19 parameters as unimportant
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for mimicking the behaviour and, as discussed below, isolated one set of processes as
the critical linkage for successful simulation. ,

The analysis of induced covariance in this particular example indicated that all of
the significant information on discrimination between groups was contained in the
univariate analysis. The induced correlations between the parameters under the
behavioural classification were, in general, small. The largest off-diagonal element of the
correlation matrix was 0-23 and most were less than 0- 1. Principal components analysis
of the induced covariance showed that the vast majority of the discriminating informa-
tion for the Peel Inlet problem is concentrated in mean shifts and can be determined
directly from a ranking of the d,,, values for the individual parameters. The value of
d, . for the distributions projected on to the axis connecting u, and p, (i.e. the line
connecting the centroid of the region associated with B and that associated with B) was
0-56, roughly twice the largest value for a single parameter. '

7. Discussion

We have developed a method for preliminary analysis of environmental systems that
makes it possible to utilize a simulation model in conjunction with data from the litera-
ture and any available data for the system itself to determine areas of critical uncertainty.
For example, the results of the Peel Inlet study described above indicated that the
phosphorus scenario provides a feasible explanation of the nuisance algal problem if
Cladophora have access to phosphorus in the sediment and if significant quantities of
sediment-bound phosphorus are carried into the growth area by the Murray River
(Hornberger and Spear, 1980; Spear and Hornberger, 1980). Critical uncertainties, as
indicated by the statistical analyses, were associated with this supply of nutrient from
sediments. Options for environmental management would obviously be tightly pro-
scribed if the hypothesis generated by the preliminary analysis is true, and we concluded
in an earlier report (Spear and Hornberger, 1980) that work should be initiated to test
the hypothesis by quantifying the river input of sediment-bound nutrient, by establishing
the extent to which this sediment is deposited in the areas where Cladophora are pro-
minent, and by determining the rates of transfer of available phosphorus from the
sediment to where the algae can utilize it.

As indicated above, the separation under the behavioural classification may not be
so dominated by mean shifts in all problems. For example, we are currently apploying
our generalized sensitivity method to the model of the evolution of the earth’s atmosphere
proposed by Hart (1978). In this instance, the “correct” behaviour requires that the
atmosphere evolve along lines that lead to approximately the present composition,
temperature, etc. This requires that the successful simulation avoids “runaway glaciation™
on the one hand and a ‘“‘runaway greenhouse” on the other. We expect then that the para-
meters that lead to B may be on “both sides™ of parameters that lead to B and that.
induced covariance may very well prove to be of considerable importance relative to
mean shifts.

In addition to the obvious utility of the methodology to ordering research priorities,
we feel that there is an even more direct link to environmental management. In any
complex environmental system, only a relatively few processes are amenable to control.
This fact can be used to examine management alternatives by augmenting the simulation
model to include a set of “control” parameters and by performing the analysis with the
full set of parameters. In this way, important control parameters can be isolated and the
linkage with process parameters studied to formulate experiments to test control pro-
cedures. We are currently exploring this expanded use of the technique.
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In concluding, we wish to emphasize that the approach we advocate is not equivalent
to the typical simulation modelling effort and that we do not necessarily view it as a
precursor to such an effort. Simulation modelling of environmental systems for purposes
of management has been widely criticized (e.g. Hedgpeth, 1977; Young, 1977) and we
feel that much of this criticism is justified. The methodology developed in this paper
avoids the problems inherent in the use of simulation models as deterministic predictors,
by concentrating on the probability of obtaining a result that is consistent with qualitative
aspects of the behaviour under a full range of parameter uncertainty. Thus, it provides

the basis for making practical use of simulation models in the field of environmental
management.
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Control of DO Level in a River Under Uncertainty
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A previously developed regionalized sensitivity analysis for exposing critical uncertainties in models of
environmental systems is extended to study control of systems for which there is a good deal of uncer-
tainty in the mathematical mode! used to describe the appropriate physical, chemical, and biological
processes. The method is based on a binary classification of Monte Carlo simulation results as being
either satisfactory or unsatisfactory in terms of controller performance. Contrasts in parameters associ-
ated with the two classes are elucidated by statistical analysis. This allows the selection of a set of control
parameters that maximizes the probability of acceptable behavior in the presence of uncertainty in
process parameters. The method is applied to the problem of regulating the discharge from a lagoon with
the object of preventing DO from falling below a predetermined standard. It was found that for this
systemn the desired behavior of the controlled process can be achieved with a probability of 0.84 with a
particularly simple controller design. Nevertheless, the results suggest that even modest levels of uncer-
tainty in the process parameters can have a considerable effect on the controller performance and that
additional attention should be devoted to the design of robust controllers for environmental systems.

INTRODUCTION

Over the past 10 or 15 years there has been a sustained
interest in the application of control theory to water quality
problems in river systems. Many of these investigations have
focused on DO/BOD dynamics and have employed either dis-
tributed [ Tarassov et al., 1969] or lumped parameter models
of one sort or another [Kendrick et al., 1970; Young and Beck,
1974; Ozunger and Perkins, 1979]. The control methodologies
applied to these models have included dynamic programing
[Naito et al, 1972}, duality theory [Varaiya, 1972), differ-
ential game theory [Ozunger and Perkins, 1979], procedures
based on pole placement [ Young and Beck, 1974; Gourishank-
ar and Raman, 1977], forms of hierarchical control [Tamura,
1974] and Monte Carlo methods [Whitehead and Young,
1979].

Singh [1975] pointed out that many of these approaches are
characterized by the considerable computational burden re-
quired to implement the control scheme. He proposed a sub-
optimal control scheme with more modest computational re-
quirements to deal with this practical problem, but the fact
remains that much of the reported work is of principally theo-
retical interest. An exception is the work of Young and Beck
[1974], who carried out field studies aimed at giving some
insight into the adequacy of their modeling approach for con-
trol purposes. Their model was subsequently used, in a sim-
plified form, for theoretical studies by Singh [1975], Ozunger
and Perkins [1979], and Gourishankar and Raman [1977].
However, none of these authors included the “sustained sun-
light” term that Young and Beck found necessary to account
for photosynthetic activity in the river and which their data
suggested 1o be important to the overall DO/BOD dynamics.
This omission led us to speculate on the effect of uncertainty
in model structure or in process parameter values on the
design and/or operation of the rather elaborate control
schemes that have been developed. In systems with major bio-
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logical components, uncertainty must be regarded as the rule
rather than the exception. To investigate this issue in the con-
text of the DO/BOD problem, we chose to study the impli-
cations of parametric uncertainty on the rather practical ap-
proach to the single-reach control problem taken by Young
and Beck [1974].

We carried their rejection of the optimal control approach
one step further by assuming that the important practical
issue was simply to keep the DO concentration in the reach
above some minimum level. The issue, then, was to determine
the likelihood that the controller would be able to maintain
an acceptable DO level in the presence of significant para-
metric uncertainty and, furthermore, to identify the key
sources of uncertainty that affect controller performance.

We have pgeviously developed a regional sensitivity analysis
procedure for exposing the critical uncertainties in models of
environmental systems [Spear and Hornberger, 1980; Hornber-
ger and Spear, 1981]. This procedure depends upon an ability
to construct plausible model structures, to estimate broad
ranges of parameter values from limited field data or from the
literature, and to define, rather loosely, the system behavior
that is associated with the environmental problem (e.g., see
Hornberger and Spear [1980]). The last of these, the behav-
ioral definition, is crucial to the method, and it is worth em-
phasizing that the defining algorithm need not be analytic:
thresholds, topological conditions, Jogical conditions, etc. are
all permissible.

The essential features of our sensitivity analysis procedure
are based on the following assumptions.

1. The problem under investigation can be qualitatively
characterized by specific patterns of system response that
define the “behavior” of concern.

2. One or more mathematical models of the system can be
developed based on the relevant physical, chemical, or biologi-
cal mechanisms that are assumed to underlie the problem
behavior.

3. These models can be parameterized by statistical distri-
butions rather than point estimates as a means of incorpor-
ating the uncertainty in the “actual” values of the parameters.

If, in a particular case, these conditions can be met, it is
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possible to conduct a Monte Carlo simulation by randomly
selecting a parameter set from the predefined multivariate dis-
tribution, integrating the system equations, and classifying
each simulation run according to the occurrence or nonoccur-
rence of the problem defining behavior. A repetition of this
procedure n times leads to the accumulation of n parameter
vectors which led to the behavior B and n — m which led to
not-the-behavior B. The essential idea concerns the separation
of the a priori parameter distributions under the behavioral
mapping. That is, given the a priori cumulative distribution
for the parameter £, as F(£), the issue concerns the degree to
which F(£/|B) differs from F(¢4B). Clearly, if F(\B) =
F(¢1B) = F(&), then it would seem that the parameter {; was
not important in determining the occurrence or nonoccur-
rence of the behavior. It transpires that this is a sufficient but
not necessary condition for insensitivity, but together with its
elaborations it is the central notion of the approach.

In this report we extend the sensitivity concept to the study
of control of parametrically ill-defined systems in the context
of the DO/BOD problem. Here the binary classification
notion of the sensitivity approach is retained in the form of
adequate or inadequate system performance, i.c., whether or
not the DO criterion can be met. The new feature is that the
controller design problem has two parameter sets, those as-
sociated with the control algorithm which can be specified by
the designer and those associated with the physical, chemical,
or biological processes to be controlied. The former set will be
referred to as control parameters and the latter set, which are
assumed to be uncertainly known, will be called process pa-
rameters, in conformity with usual practice. The specific
design problem is, for a given feedback control algorithm, to
select a fixed set of control parameters that maximize the
probability of acceptable behavior in the presence of uncer-
tainty in the process parameters.

DESCRIPTION OF THE PROBLEM

As stated above, our point of departure is the model of a
single river reach proposed by Young and Beck [1974]. A
waste stream of constant strength and constant discharge
flows into a lagoon. Releases from the lagoon to the river are
to be scheduled such that dissolved oxygen in the river is not
driven below a specified water quality standard (the behav-
ioral criterion in our formulation) and such that the lagoon
does not overflow nor fall below some minimum level.

The model for a reach of the River Cam given by Young
and Beck is in terms of dissolved oxygen (DO) and biochemi-
cal oxygen demand (BOD):

dx,

dr

a, + Q+—Q5]x, — a,x; + —Q— C,+a,C,— Dy
L V- Vn

+adl, -1)+-?,—Ecs )

dx [~ 0+0 Q
d_tzg__az+a3+ V t]Xz"“ZL"’LA

+as(l,‘-1')+gy—£L,_. )

A simple mass balance on the lagoon yields a third equation:

ay,
"a’: = QL - Qa (3)

where V is constrained to be less than some maximum value
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at which point Qp = Q,. Also, ¥, > 0. The state variables,
input variables, and process parameters are as follows:

x; output (downstream) DO, mg1™!;
x, output BOD, mgl~!;
L input (upstream) BOD, mg 17*;
C, input DO, mgl™%;
C, saturation concentration of DO, mg17*;
Q; discharge from lagoon, m® d™!;
Q river discharge, m® d™;
¥, mean volume of the reach, m?;
V. lagoon volume, m3;
a, reaeration rate constant, day~!;
a, BOD decay constant, day™';
a, sedimentation rate constant, day~*;
L, mean rate of addition of BOD to the reach by Iocal
runoff, mg1~'d™!;
Dy net rate of removal of DO from the reach due to various
components of respiration, mg1~'d™!;
1, ~a “sustained sunlight” term to account for the observed
correlation between sunlight and high concentrations of
DO and BOD, h/d;
I the threshold level of the sustained sunlight effect, h/d;
a, DO rate constant for the sustained sunlight term, mg 17!
ht;
as BOD rate constant for the sustained sunlight effect,
mgl~'h™!;
Q, discharge to the lagoon, m® d™};
L; BOD concentration of lagoon effluent, mg 171;
C: DO concentration of lagoon effluent, mg 1.

The sustained sunlight term is
1 0,— 8 "
Ih=Il-l+—(hk( * )-11—1) @)
Ts

0

where

k time index;
7, time constant of the low-pass filter, days;

TABLE 1. Prqeess Parameter Means and Values of the Kolmogo-
rov Statistic for Monte Carlo Runs

duy

Mean Value Run 1 Run 2 Run 3

Process Parameters
a, 0.2 0.096 0.205 0375
a, 0.32 0.293 0.284 0.317
D, 0.5 0.183 0.109 0216
a, 0.31 0.102 0.146 0.159
as 0.32 0.129 0.124 0.099
(o 20 0.115 0.102 0.142
Lg 20.0 0.154 0.232 0.141
I 6.0 0.309 0.321 0.343
T 40 0.138 0.099 0.125
V. 15.1 x 10* 0.148 0.184 0.375
g,_ 2.8 x 10*- 0.097 0.136 0.192
80 0.297 0.311 0.687

Control Parameters
ky see text 0.219 0093 fixed
k, sce text 0.132 0.293 fixed
ky see text 0.094 0.104 fixed
A see text "0.320 0.170 fixed
X, see text 0.166 0.271 fixed

95% Value of d,,,
0.182 0.173 0.232
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h, period of sunlight during the kth day, hours;
0 river water temperature, °C;
§ a mean water temperature, °C.

The process parameters associated with the model of the
DO-BOD dynamics are listed in Table 1. (We followed Young
and Beck [1974] and set a; = Oand L, = 0.

The controlled variable in this problem is Q;, the lagoon
discharge, which must be positive or zero. The value of this
variable was determined from a control law which uses state
variable feedback on output DO and BOD and integral error
on DO. The control law for positive fiowrates is

Or = —[k,(x; — y) + ky(x; — %3) + k3x3] (5)

where y, is the dissolved oxygen set point, X, is the mean
BOD level in the stream, k,, k,, and k, are controller gain
parameters, and x; is the integral error variable, defined by a
third state equation,

dX3/dt =Xy

which was introduced by Young and Beck in order to control
x; to the desired set point y,. In our treatment we modified
this equation such that only values of x, less than y, are of
concern, and

de/dt =X3= W
dx,/dt =0

Also, when x, rises above y,, x, is reset to zero. The control
parameters to be specified are then k,, k,, k3, y,, and x,.

The method for examining the robustness of the controller
design is similar to that for performing a regional sensitivity
analysis. A range of possible values for the process parameters
listed in Table 1 is chosen to reflect the system uncertainty. In
this instance we simply used a rectangular probability density
with a range of +25% of the listed values to characterize the
process parameter distributions. An example of how these dis-
tributions are specified in practice is contained in the work of
Hornberger and Spear [1980]. The control parameters, how-
ever. are not uncertainly known but are to be determined from
a range of allowable or feasible values. If we are prepared to
stipulate this range, then it is possible to treat both control
and process parameters similarly as far as the mechanics of
the Monte Carlo simulation are concerned. The interpretation
of the results of the Monte Carlo procedure will, of course, be
quite different for the control versus the process parameters, as
will be seen. A broad range of values was used for the parame-
ters of the contro] law: the a priori distributions for k,, k,, and
k, were bounded by [—2.0 x 10%, 0], [0, 1.0 x 10°], and [0,
1.0 x 10%], respectively. The distribution bounds on the set
point parameters, y, and X,, were taken to be [5.0, 8.0] and
[5.0, 10.0], respectively. The stream standard for DO was
taken as 5.0 mg/l. As indicated above, this value constitutes
the behavioral definition. If during a simulation run, x, goes

Xy <yr

xl_>y'

below 5.0 mg/l, the run is a nonbehavior and, conversely, if x,

remains above 5.0 mg/l, the run is a behavior. Input data (ie,
time series for L, C,, @, h,, and 6,) for the 80 days of each
simulation run were those for the River Cam as reported by
Beck [1978].

As indicated above, given the foregoing model and data, it
is possible to carry out a number of Monte Carlo simulations
by randomly selecting a parameter set from the predefined
distributions, integrating the systems equations over the
80-day period and classifying each simulation run according
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to the occurrence or nonoccurrence of the “behavior.” In
order to assess the benefits of control, however, it is necessary
to know the behavioral probability in the absence of control.
Many systems, of course, will not operate at all without con-
trol, but environmental systems will often do so. Therefore the
first simulation runs assumed the waste stream to be dis-
charged directly to the river. Once the probability of behavior
of the uncontrolled system, P(B,), is estimated, the marginal
benefit of control, My = P(B)— P(B,), can be found for
various controller designs.

In each of the Monte Carlo runs described below, we chose
to conduct 250 replications based largely on our previous ex-
perience that the statistical methods employed seem well-
behaved for sample sizes of this magnitude and greater. In this
study the principal statistic employed was the Kolmogorov
statistic, d,,, = sup |S() — S (&), where the S(&) are the
sample distribution functions of the parameter &, for n behav-
ior and m nonbehaviors. Here, “well-behaved” implies that
d, ., tends toward a relatively constant value for n 4+ m x 250
and both n and m greater than 50 or so. Of course, the signifi-
cance level associated with a given d,,, continues to change
with m and n even though d,,, itself approaches a constant
value as m and n get large. Hence we regard the d,,, corre-
sponding to a 95% level of significance as a “threshold” of
separation between F(¢,|B) and F(¢;|B) but beyond that the
magnitude of d,,, is probably a better index of the degree of
separation than any measure based on significance level.

RESULTS AND DiscussioNn

The initial Monte Carlo run of 250 replications was carried
out with process parameter bounds of +25% of the values
shown in Table 1 and without control. There occurred 20
behaviors, resulting in an estimate of 0.08 for P(B,).

A second run of 250 replications (Table 1, run 1) was carried
out with the process parameter bounds unaltered and the con-
trol parameter bounds as given above. The ranges for the gain
parameters k,, k,, and k, contain the fixed set selected by
Young and Beck on the basis of desirable pole locations for
the linearized system. The rationale for such wide bounds on
these parameters is simply to give the analysis ample op-
portunity to discover those portions of the control parameter
space in which behaviors are particularly dense.

Of the 250 Monte Carlo runs, 85 were behaviors and 165
nonbehaviors (P = 0.34). The values of the Kolmogorov sta-
tistic given in Table 1 (run 1) indicated that four of the 13
process parameter distributions and two of the five control
parameter distributions separated under the behavioral map-
ping at above the 95% level of significance (d,,, = 0.182).
These were a,, Dy, I, 8, and the control parameters k, and y,.
Among these process parameters, d,, was approximately
0.300 for a,, I, and 0 and 0.183 for Dy, the latter value just
marginally in excess of the 95% value of 0.182. Figure 1 shows
smoothed versions of §, (a,|B) and $,(a,|B) to illustrate the
separation of the distributions under the behavioral mapping.

From an inspection of the cumulative distributions for the
control parameters it was found that the portion of the con-
trol parameter subspace in which a higher proportion of be-
haviors will be found is at the low end of both the k, distri-
bution and the y, distribution, with k,, k,, and %, being of
little apparent consequence. The correlation matrix under the
behavior contained values generally less than 0.2 with some
interesting exceptions occurring for § with the control param-
eters: 0.29 with k,, —0.32 with k,,and —0.31 with y,.
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Fig. 1. The a priori distribution of parameter a, and smoothed

sample distribution functions under the behavior B and not-the-
behavior B.

Utilizing the results of the previous run, the bounds for k,
and y, were altered to [—2 x 10%, —1.5 x 10*] and [5, 6],
respectively, for run 2. All other bounds were as before. These
changes resulted in raising the behavior probability to 54%
from the original 34%. The d,,, values are given in Table 1,
run 2. In this region of parameter space there are some
changes in the list of sensitive process parameters, with Dy
dropping below the 95% significance level and a,, Ly, and ¥,
appearing as important by virtue of rising above this level of
significance. Of greater interest, however, are the changes in
the control parameter sensitivities. As expected, k; and y,
become less important with d,,, values of 0.09 and 0.17, re-
spectively. However, k, and x, now have d,, , values of about
0.3. This result and the low correlation between the DO and
BOD control parameters suggests that this region of control
parameter space is good as far as the DO component of the
controller is concerned but that further improvements are pos-
sible in the BOD component, ic., k, and X,. As before, k4
appears to be of little importance, which is not surprising in
view of our behavioral definition. Hence, setting k; = 0 leads
to a desirable simplification.

The distribution S,(k,|B) indicates that behaviors arc prefer-
entially associated with values of k, on the low end of the
range. As before, we might alter the k, distribution to cover
the bottom 25% or so of the present range. Alternatively, we
might recognize the practical fact that BOD analysis takes §
days to accomplish and a scheme using x, feedback is not
feasible for real time contro! purposes. The latter course leads
to a choice of k, = 0 which, fortunately, is consistent with k,
being at the low end of the range.

These choices simplify the design problem to that ol
choosing specific values for k, and y, from the narrowed
ranges given above. However, since neither the distribution of
k, nor y, separate under the behavioral mapping, the strategy
used to arrive at the present region provides little further guid-
ance. That is, it is knowledge of the fine structure of F(k,|B)
and F(y,|B) that is necessary to obtain further information. To
obtain such information is costly in terms of computer time,
since large numbers of replications are required to obtain a
good picture of the details of F from S,. Before proceeding
further on the practical questions, let us digress briefly to
indicate what could be done with a good estimate of F if it
were available.

We are seeking regions of the control parameter subspace in
which the probability of behavior is high or, conversely, the
probability of not-the-behavior is near zero. Let U be the
event that the m-dimensional control parameter vector lies
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within a bounded region such that o, <k, < b, for i=1, m
where a, and b, lie within the limits of the rectangular distri-
bution defined for k;. Then

PB)P(UIB)

P(BIU) = PU)

where P(B) is the probability of not-the-behavior in the entire
parameter space as originally defined. Since we assume each
element of the control vector k is independently distributed,

P(U|B) = [] P(UJB)
i=1
where U, is the event that g; < k; < b,. Likewise,
PU) = [[PW)
i=1

Since we desire to find the region U such that P(B|U) = 0, this
is equivalent to finding regions where

iI'[lP(U 1B)=0
To locate this region we may inspect the cumulative distri-
bution of each of the k; under B, since P(U/|B)= F(b|B)
— F(a;|B). That is, we are looking for “flat” places on each of
the functions F(k;B).

If the behavioral mapping had resulted in appreciable co-
variance among the elements of k(B), an analogous argument
can be developed for dealing with a parameter set transformed
by the matrix which diagonalizes the covariance matrix
E[(k — p)k — p)"] where p = E(k|B).

Returning to the practical issue, one can either use S,(k,|B)
and S, (y,|B) for n = 250 and assume that any apparent flat
spots are real or carry out further runs to increase n. The
choice clearly depends on the cost/benefit situation for the
problem at hand. Here we take the former course and select
k, = —18 x 10° and y, = 54. These values, together with
k, = k3 = 0, constitute a controller design which, in an ad-
ditional 250 replications, resulted in an estimate of the behav-
ioral probability of 0.84 (Table 1, run 3). We cannot contend
that this is the best that can be done, but it is a design which
raises the probability of keeping the DO in the stream above 5
mg/l from 0.08 without control to 0.84 with a particularly
simple control scheme.

Under the above design conditions the occurrence of the
behavior is sensitive to five process parameters. They are a,,
a,, I, V,,, and 8. Of these, § is overwhelmingly important with
a d,, of 0.687 as contrasted with the 95% value of 0.232. In
fact, S,(9|B) is zero until § is near its mean value. Hence, if in
the real system the value of  is low, behaviors will be ob-
tained with a probability very near to unity with this control-
Jer design.

CONCLUSION

The final result, then, is that with the defined inputs and the
process parameter distributions the desired behavior of the
controlled process can be achieved with a probability of 0.84
with a particularly simple controller design. If this probability
were deemed insufficient, three courses of action are open, at
least in theory: one might enlarge the lagoon thereby increas-
ing the overall control capacity, one might engage in farther
research to narrow the process parameter uncertainty, or one
might investigate other controller structures. In the case of
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process uncertainty, the results of the analysis strongly suggest
that algal photosynthetic activity is critical in that the distri-
bution of the parameter 8 separated with a d,, , of 0.687 in the
final Monte Carlo run as discussed above. The related param-
eter I also was marginally important.

Although we cannot argue that the +25% variability as-
signed to the process parameters is “realistic,” neither do we
feel that it reflects an unrealistic degree of uncertainty for
biological parameters in systems without real time estimation
capability. Clearly, this degree of uncertainty has bad a pro-
found effect upon the controller design with which we began.
Two of its three terms were dropped since they appeared to
have little effect on the outcome. With DO feedback alone the
controller is able to do quite a decent job of attaining the DO
goal. A key result, however, is that two of the parameters
associated with algal photosynthesis were critical to the con-
troller’s ability to maintain acceptable DO levels. That is, even
with a rather modest control objective, the uncertainty in the
process parameters strongly conditions the ability of the
system to attain its goal. This result is, perhaps, not surprising,
but it would seen to suggest that the design of robust control-
lers for such systems is a subject that deserves more attention
than it has received in the past. The extension of the re-
gionalized sensitivity analysis developed previously by Spear
and Hornberger [1980]) and Hornberger and Spear [1981] is
one method for dealing with the design of robust controllers
for uncertain environmental systems. The use of the method
has already proved to be attractive for the design of control-
Jers for well-defined processes where nonanalytic performance
criteria are desirable or in cases where the process is nonlinear
or otherwise analytically intractable [Auslander et al., 1982].
We have shown here that the method retains this basic utility
for natural environmental systems for which thoroughly vali-
dated and verified mathematical models are not available. It
would appear that the general approach can be modified and
elaborated to address a wide variety of practical problems.
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Selection of Parameter Values in
Environmental Models Using Sparse Data:
A Case Study

George M. Homberger and Bernard J. Cosby
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ABSTRACT

Models of environmental processes must often be constructed without the use of
extensive data sets. This can occur because the exercise is preliminary (aimed at
guiding future data collection) or because requisite data are extremely difficult,
expensive, or even impossible to obtain. In such cases traditional, statistically based
methods for estimating parameters in the model cannot be applied; in fact, parameter
estimation cannot be accomplished in a rigorous way at all. We examine the use of a
regionalized sensitivity analysis procedure to select appropriate values for parameters
in cases where only sparse, imprecise data are available. The utility of the method is
examined in the context of equilibrium and dynamic models for describing water
quality and hydrological data in a small catchment in Shebandoah National Park,
Virginia. Results demonstrate that (1) models can be “tentatively calibrated” using
this procedure; (2) the data most likely to provide a stringent test of the model can be
identified; and (3) potential problems with model identifiability can be exposed in a
preliminary analysis.

INTRODUCTION

Mathematical modeling of environmental systems is now a well-established
practice. In certain instances problems are well defined, appropriate data can
be collected, and statistical methods can be applied to ensure that inferences
drawn from the model are supportable. In other instances the obverse
situation may prevail: the problem is poorly defined, suitable data are lacking,
and traditional statistical analyses either are impossible to perform or do not
Jead to any useful results. We are interested here in the utility of mathemati-
cal models in the latter situation.
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We will refer to the class of models that we consider as speculative
simulation models. By “‘simulation model” we mean one whose structure and
parameters are explicitly related to physical, chemical, or biological processes.
(In hydrology, the term “conceptual model” is generally used [5].) We
append the qualifier “speculative” to indicate that, for cases with which we
are concerned, available data, or at least portions of the data, are so sparse
that rigorous calibration and validation of the models are not possible; we are
interested in the analysis of “badly defined systems,” as described in [28].

We believe that speculative simulation models, despite their wide use as
predictive, deterministic representations of reality, are useful only in a prob-
abilistic context. Specifically, because of uncertainty surrounding the entire
conceptual basis of the model, we maintain that analysis should focus on the
probable model structures and parameter values that appear to be consistent
with available information. Our approach to such analysis is to use a method-
ology referred to here as a “regionalized sensitivity analysis” (RSA), first
proposed in [26] and [11]. The method has proved useful in a number of
studies of badly defined natural systems [10, 11, 286, 27, 1, 8, 7, 29, 13, 30, 6].

Research reported here deals with the application of the RSA to the
problem of selecting parameter values for a particular model structure in the
face of sparse and /or unavailable data. In particular, we apply the method to
the problem of modeling hydrology and water chemistry in a small catchment
in Shenandoah National Park, Virginia.

THE RSA PROCEDURE

The basis of the RSA method is the utilization of a simulation model
together with a classification algorithm. The classification allows any particu-
lar trajectory of the state variables of the system ‘generated by the model to be
identified as either representative of the observed (or desired) behavior of the
system or not representative of the behavior. The idea is to inject uncertainty
into the simulation model of the system by specifying the parameters via
probability density functions (rather than point estimates) and then to per-
form Monte Carlo simulations, choosing parameter values from the specified
distributions. The result of each Monte Carlo replication is classified as either
behavior, B, or nonbehavior, B. Subsequent to the Monte Carlo trials,
statistical analysis of the parameter vectors is used to isolate those parameters
important in simulating the salient features defining the observed behavior.
The sensitivity rankings of the parameters are taken to be indicative of the
relative importance of uncertainties in various component processes.

Assume an environmental system to be modeled by a set of first order
ordinary differential equations. Let these equations be given in the form

d_det'_)g x(t) = £(x(t), &,2(t)),
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where x(t) is the state vector and z(t) a set of time-variable functions which
include input or forcing functions. The vector £ is a set of constant parame-
ters described more fully below. Thus for £, z(¢), and x(0) specified, x(¢) is
the solution of the system of equations and is a deterministic or stochastic
function of time as determined by the nature of z(t). For simplicity of
exposition, z(t) will be treated hereafter as a deterministic function of t¢.
Under this assumption, there are two types of uncertainty with which we will
deal: uncertainty in the model structure, i.e. in the functions f, and uncer-
tainty in the parameter values £. Different model structures would pertain to
competing hypotheses on system functioning. We use the term scenario to
indicate a particular structure.

For a given scenario each element of the vector ¢ is defined as a random
variable, the distribution of which is a measure of our uncertainty in the
“real” but unknown value of the parameter. These parameter distributions
are formed from data available from the literature and from experience with
similar structures. In most situations, the available data can best be used to
give allowable limits of parameter values. Interpreting these limits as the
range of a rectangularly distributed random variable for each element of &
results in the definition of an ensemble of models for a given scenario. Some
of these models will, we hope, mimic the real system with respect to the
behavior of interest.

Turning now to the question of behavior, recall that for a given scenario
every sample value of §, drawn from the a priori distribution, results in a
unique state trajectory, x(t). Following the usual practice, we assume that
there is a set of observed variables y(t), which can be calculated from the
state vector important to the problem at hand. So, for each randomly chosen
parameter set &€*, there corresponds a unique observation vector y *(¢). Since
the elements of y(t) are observed (i.e., they are measured in the real system)
it is sensible to define behavior in terms of y(t). For example, suppose y; is
the runoff in a given stream and the study relates to floods equaling or
exceeding a given magnitude. The behavior in this case will be defined by the
occurrence of a predicted discharge at or above the specified level.

In general a number of behavior categories can be used. In fitting
rainfall-runoff models one might be interested in disceming differences among
classes of response that: (1) matched a number of storms by total volume of
discharge within some percentage difference and matched peak flows within
some specified difference; (2) matched the peaks but not the volumes; (3)
matched neither. That is, one might want to isolate modeled processes that
were most important to a variety of modes of behavior. Without loss of
generality, however, we can consider the case for which behavior is defined in
a binary sense, that is, it either occurs or does not occur for a given scenario
and set of parameters £

We have now presented the class of models to be studied, defined the
scenario concept, and described how we propose to deal with parametric
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uncertainty. For a given scenario, behavior, and set of parameter distributions
§, it is possible to explore the properties of the ensemble via computer
simulation studies. In particular, a random choice of the parameter vector ¢
from the predefined distributions leads to a state trajectory x(t), an observa-
tion vector y(t), and (via the behavior-defining algorithm) a determination of
the occurrence or nonoccurrence of the behavior. A repetition of this process
for many sets of randomly chosen parameters results in a set of sample
parameter vectors for which the behavior was observed and a set for which
the behavior was not observed. The key idea is then to attempt to identify the
subset of physically, chemically, or biologically meaningful parameters which
appear to account for the occurrence or nonoccurrence of the behavior. More
traditional sensitivity analyses of large environmental models inevitably show
that a surprisingly large fraction of the total number of parameters are simply
unimportant to the critical model behavior. We maintain that this unim-
portant subset, or conversely the critical subset, may be tentatively specified
in a reasonably objective fashion.

Ranking the elements of £ in order of importance in the behavioral context
is accomplished through an analysis of the Monte Carlo results. The essential
concept can be best illustrated by considering a single element §, of the
vector § and its a priori cumulative distribution as shown in Figure 1. Recall
that the procedure is to draw a random sample from this parent distribution
(a similar procedure is followed for all other elements of ), run the simulation
with this value, and record the observed behavior and the total vector §
therewith associated. A repetition of this procedure results in two sets of
values of £,, one associated with the occurrence of the behavior B, and the
other with nonbehavior B. That is, we have split the distribution F(£,) into
two parts as indicated in Figure 1. This particular example would suggest that
£, was important to the behavior, since F(§;) is glearly divided by the
behavioral classification. Alternatively, if the sample values under B and B
appeared both to be from the original distribution F(§,), then we would
conclude that §, was not important.

For the case where z(t) is a deterministic function of time, the parameter
space is cleanly divided by the behavioral mapping; that is, there is no
ambiguity regarding whether a given parameter vector results in B or B. Our
analysis then focuses on the determination of which parameters or combina-
tions of parameters are most important in distinguishing between B and B.
We will restrict the discussion to the case for which the parameter vector
mean is zero and the parameter covariance matrix is the identity matrix. (A
suitable transformation can always be found to convert the general problem
to this case.) The problem of identifying how the behavioral mapping
separates the parent parameter space can then be approached by examining
induced mean shifts and induced covariance structure.

e —
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1

Cumulative Distribution

L

Fic. 1. Cumulative distribution functions for parameter &,, where F( £, ) = parent, a priori
distribution, F(§, /B)= distribution of §, in the behavior category, F({, /B)= distribution of
. in the nonbehavior category.

For example, we can base a sensitivity ranking on a direct measure of the
separation of the cumulative distribution functions, F(¢, /B) and F(¢, /B).
In particular, we utilize the statistic

-

d"l.'l= sup lsn(x)-sm(x)l’

where S, and S, are the sample distribution functions corresponding to
F({,./B) and F(£,/B) for n behaviors and m nonbehaviors. The statistic
d,, , is that used in the Kolmogorov-Smirnov two sample test, and both its
asymptotic and small sample distributions are known for any continuous
cumulative distribution functions F(¢,/B) and F(§,/B). Since S, and S,
are estimates of F(§, /B) and F(ék/ﬁ), we see that d,, , is the maximum
vertical distance between these two curves, and the statistic is therefore
sensitive not only to differences in central tendency but to any difference in
the distribution functions. Thus, large values of d, , indicate that the
parameter is important for simulating the behavior, and, at least in cases
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where the induced covariance is small, the converse is true for small values of
that statistic. For our purposes this analysis of univariate distributions suffices.
Hornberger and Spear [11] describe the extension to cases where induced
covariance is important.

APPLICATION OF THE PROCEDURE

One area in studies of natural environmental systems that has proven to be
especially fertile for the development of simulation models is catchment
dynamics. Eliciting a quantitative relationship between rainfall and runoff
from catchments has been of great concern to environmental scientists
throughout the modern period of the science of hydrology. The additional
problem of accounting for chemical transformations of water as it passes
through a catchment has also led to the development of hydrochemical
simulation models in recent years. These models, be they purely hydrological
or hydrochemical, must be speculative simulation models, inasmuch as even
the most physically based of them cannot reflect the complexity and hetero-
geneity of processes as demonstrated in the field. Furthermore, the more
complex the models become, the more difficult the problems of identification
and parameter estimation become. Nevertheless, a host of important questions
can only be approached via the application of simulation models to catch-
ments. The RSA procedure can be put to good use in these applications.

The Shenandoah Watershed Acidification Study (SWAS), initiated in
October 1979, focuses on processes in White Oak Run (WOR), a 5.15 km?
forested catchment in Shenandoah National Park, Va. The purpose of the
project is to estimate the probable past effects and the potential future effects
of acid precipitation on soils and streams in the Park [23]. To this end we
have examined the application of speculative simulation models to WOR.
Below we describe two aspects of the study: a hydrological model and an
equilibrium chemistry model.

HYDROLOGICAL MODELING

We use a model that derives from one used in a study by Beven and
Kirkby [3]. This model is semidistributed in that it can predict the spread of a
variable saturated contributing area on the basis of catchment topography
and soil characteristics. The predicted patterns show a good resemblance to
patterns of saturation measured in the field [3].

Beven and Wood [4] showed that the model could be further improved by
taking into account the areal pattern of saturation storage deficits which may
be predicted by the model in routing flow through the unsaturated zone. This
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revised model gave good predictions of storm runoff volumes for several
catchments, including WOR. The model can predict very different contrib-
uting areas for the same storm runoff, depending on catchment characteris-
tics, storm rainfall distribution, and antecedent conditions.

We further extended the model to enable simulation of flows on a
time-continuous basis in WOR. We included modifications that conceptually
covered all types of hydrological behavior that were observed or inferred from
field measurements [31, 32]. The final model contained 13 adjustable parame-
ters. (See [9] and [12] for a complete description of the model.)

It is well known that calibration of rainfall-runoff models, especially when
the model contains a rather large number of parameters and when the data
available for calibration relate to whole catchment input-output, is prob-
lematic [14, 5, 15, 18, 17, 16, 25]. In most cases the instability of parameter
estimates stems from the fact that the structural complexity of the model is
greater than is warranted on the basis of the calibration data set; the model
has “surplus content.” The RSA procedure can be used to elucidate which
processes in the model appear to be responsible for observed behavior and,
conversely, which of the modeled processes appear to make little or no
difference in model predictions.

In the case of rainfall-runoff modeling there are usually extensive input-out-
put data sets available for calibration. For WOR, for example, we used
approximately 1.5 years of 3 hourly measured values of precipitation and
stream discharge in the calibration study. Why, then, should we consider this
to be a situation with “sparse data”? For simulation models such as the
modified Beven-Wood model which we employed, there are several unob-
served states (e.g., soil moisture) intrinsic to the model. Observations of these
states might greatly facilitate the calibration and testing of hydrological
simulation models [16], but these data are not generally available.

The calibration is therefore most often implemented using only rainfall and
runoff data, a procedure that we followed for WOR. Thg parameter values are
selected on the basis of some goodness-of-fit criterion, an objective function
such as the sum of squared errors between simulated and observed runoff.
One of the advantages of the RSA procedure is that nonstandard objective
functions can be used to define the behavioral classification. It is possible, for
example, to define a behavior criterion that would consider a simulation
successful if three-quarters of the predicted storm volumes were within 5% of
measured values and the remaining predictions were within 15% of measured
values. Examination of results from such unorthodox (but perhaps highly
meaningful to field scientists) criteria can be very revealing in exposing how
different portions of the simulation model work. To keep the discussion
manageable, we report here results using two traditional objective functions
to define the behavior categories: (1) the sum of squared errors (SSE) and (2)
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the log likelihood function proposed by Sorooshian and Dracup [24]. For all
optimizations we used the Rosenbrock [22] method.

In implementing the RSA procedure for the hydrology model, values of
each parameter were selected randomly from uniform distributions over the
physically meaningful ranges of the thirteen parameters. (If the parameter
was one whose values can range over several orders of magnitude, we chose
the logarithm of the parameter from a uniform distribution.) The model was
run for the calibration period and .the SSE calculated for that particular
realization of the simulation model. After 330 realizations were accumulated,
the distribution of parameter values for the lowest 30% of the SSE values was
compared with the distribution of values for the highest 70%. The comparison
was made using the Kolmogorov-Smimnov statistic d,, ,. If these distributions
differed greatly, then the mode! output was deemed sensitive to that parame-
ter (as measured by the SSE). If the difference between the distributions was
small, however, the model output was deemed indifferent to the value of that
parameter, so that any value within the prespecified range could be consid-
ered as “‘reasonable” as any other.

The model output was sensitive (as judged by the SSE) to only four of the
thirteen model parameters. The cumulative distributions of these four param-
eters when the SSEs were in the lowest 30% differed significantly (p =.01)
from the cumulative distributions of the parameters when the SSEs were in
the highest 70% (Figure 2). If a statistical optimization of the parameter
values (using SSE as the objective function) were attempted, we might expect
that the response surface for the four sensitive parameters would be well
behaved and that the optimization routine would converge to the same global
optimum values of these four parameters regardless of the values of the nine
insensitive parameters. Alternatively, we could interpret the RSA results as
indicative of “surplus content” in the model and reducg the model structure
by removing the processes represented by the insensitive parameters. The
expectation in this case would be that the response surface of the reduced
model would be better behaved than that of the full model and the global
convergence of the optimization routine would be improved. We examine
both premises.

The Rosenbrock routine was used to select *“optimal” values for the
thirteen parameters in the full model. Starting values for each parameter to be
used in the iterative routine were chosen at random from the ranges of
parameter values used in the RSA. This procedure was repeated ten times to
determine whether the optimization procedure (based on SSE) consistently
converged to unique “optimal” values of the four sensitive parameters and
whether the final SSEs of each optimization run were similar (i.e. the routine
converges to a global minimum SSE regardless of the values of the insensitive
parameters). The SSEs for these random starting point optimizations ranged
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up to 1.5 times the lowest SSE value obtained (Table 1). The parameter
values corresponding to the “optimal” SSEs showed little consistency (Table
1). There appears to be a fairly large region of the parameter space from
which “optimal” values can be chosen. These “optimal” values appear to
represent local minima in a badly behaved SSE response surface.

A set of results similar to that for the SSE objective function was generated
using the log likelihood function presented in [24]. The results were, of
course, quantitatively different from those using the SSE, but the qualitative
picture is very similar (Table 2). The response surface for the full model is
evidently not improved by going from the SSE to the log likelihood criterion.




TABLE 1
PARAMETER VALUES FOR SSE OPTIMIZATIONS®
Normalized Parameter Relative

Run 1 2 3 4 5* 6 7+ 8 9 10 11 12 13 SSE

1 0.0015 0.56 005 001 134 250 504 033 208 093 004 027 180 149

2 0.0015 0.08 067 002 107 023 089 052 143 082 100 19Ft 081 127

3 126 0.22 0001 092 115 084 442 125 027 095 001 136 0.14 116

4 023 00015 089 001 143 066 336 028 288 097 005 159 001 159

5 019 1.15 095 018 082 056 543 059 142 062 006 033 070 113

6 1.46 0.0010 097 001 097 055 803 033 144 050 0.12 0002 080 135

7 00015 074 0001 119 045 001 108 211 058 0.74 100 131 111 128

8 062 0.57 099 003 107 19 127 059 047 063 013 131 064 137

9 012 0000 0001 344 083 008 418 334 0335 091 049 140 006 126
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-

“On the full model, starting with random initial estimates. Parameter values are normalized to the values
for the best run (run 10). Asterisks indicate the sensitive parameters as determined by the RSA procedure.
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TABLE 2

PARAMETER VALUES FOR MAXIMUM LIKELIHOOD OPTIMIZATIONS"

Normalized parameter

Run 1 2 3 4 5* 6 7+ 8+ 9* 10 11

12

13 MLF®

003 89.11 002 044 083 043 448 139 067 0868 0.94

2426 8893 112 537 071 0.14 146 749 013 104 053
226 1668 0.17 003 129 096 069 121 030 064 092
003 8536 002 068 029 003 061 919 008 086 0.002
221 207 052 001 093 413 071 038 123 068 0.64
003 420 1070 341 103 134 163 086 027 071 001

11.32 8571 0.02 001 076 006 087 038 085 115 096
766 088 002 910 092 032 272 897 005 104 1.00
003 321 245 397 082 120 029 247 032 080 0.00
1 1 1 1 1 1 1 1 1 1 1

SO XIS RN -

g

0.07
0.05
7.82
1.23
0.77
1.38
0.01
0.73
0.69
1

1.33
3.58
3.64
0.16
0.01
0.87
3.04
5.21
3.83
1

1.11
525
5.08
1.05
121
1.13
1.49
5.05
1.68
1

*On the full model, starting with random initial estimates. Parameter values are normalized to the
values for the best run (run 10). Asterisks indicate the sensitive parameter as determined by the RSA

procedure.
" Relative maximum likelihood function.
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TABLE 3
PARAMETER VALUES FOR SSE OPTIMIZATIONS"
Normalized parameter Relative
Run 5 7 8 9 SSE
1 1.05 1.26 0.98 0.71 101
2 1.05 1.23 0.98 0.71 1.01
3 0.96 0.79 1.02 1.35 1.03
4 0.94 0.81 442 145 1.20
5 045 0.17 211 3.64 2.98
6 1.00 0.97 1.00 1.00 1.00
7 1.05 1.20 0.98 0.72 101
8 1.00 0.96 1.00 101 1.00
9 1.00 0.99 1.00 1.00 1.00
10 1 1 1 1 1

“On the reduced model, starting with random initial esti-
mates. Parameter values are normalized to the values for the
best run (run 10).

We next examined the alternative of reducing the model structure by
eliminating all processes in the model that were not identified as sensitive in
the RSA. The resulting model, which still retains the topography-based
structure of the original model, contains four parameters.

The SSEs for 10 optimizations of the four parameters from random starting
points ranged up to 3 times that of the lowest value (Table 3). Even with the
reduced model structure there are apparently local “depressions” in the
response surface, some of which may be far from the global optimum. Most of
the SSEs for the reduced model, however, are very close to the minimum
value, and the parameter values associated with thege are all within a few
percent of each other (Table 3). Furthermore, even though the number of
parameters has been reduced from 13 to 4, there is little loss in terms of the
SSE criterion. The minimum SSE for the reduced model exceeds the mini-
mum SSE for the full model by only 5%.

Sorooshian and Gupta [25] summarize much previous work that has
addressed calibration of conceptual rainfall-runoff models and point out
problems that have been noted. These include interdependence among model
parameters, indifference of the objective function to certain parameters,
discontinuities in the response surface, and nonuniqueness of the optimum
values of parameters. It is clear from the results of both the regionalized
sensitivity analysis and the optimizations that the objective function is, in fact,
indifferent to all but a small number of the 13 model parameters in the full
model and that the “optimum” value of the parameters is not well defined.
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Sorooshian and Dracup [24] pointed out that in certain cases the shape of
the response surface using a maximum likelihood function was much better
than the SSE response surface. For calibration of our full hydrological model
to WOR, this was not the case. The shapes of the response surfaces for the
SSE and the maximum likelihood functions were very similar. No improve-
ment in fitting the observed hydrograph using the full model was realized by
employing the Sorooshian-Dracup method.

The use of the RSA to reduce the dimension of the parameter estimation
problem appeared to work reasonably well in this case. The parameter
estimates, with only a few exceptions, are stable in the sense that convergence
was to approximately the same point in the parameter space. Thus, from the
standpoint of the input-output data, there is little to recommend the full
model over the reduced model, regardless of the fact that the processes that
were included in the full model were inferred to be important from direct
field observations. :

EQUILIBRIUM CHEMISTRY MODEL

The hydrological model routes almost all precipitation through a single
saturated zone store. Except during storm conditions, the water in WOR
might therefore be considered to be in chemical equilibrium with a single
(lumped) storage element. We have modeled the equilibrium chemistry of
WOR using just such an assumption [6].

In applying the chemical model we again had a considerable quantity of
data for WOR itself. Major ion chemistry has been analyzed on a weekly basis
for WOR for several years [9]. On the other hand, data for soils and soil water
(the store that presumably determines the chemistry) are sparse—certain data
are available from isolated points in the catchment, but spatial coverage is
necessarily limited and samples are usually not matched temporally with
streamwater samples.

The questions that we address in this case are whether the model we
propose is consistent with the sparse available data and, if so, whether we can
identify the best measurements that might be made to test the model’s
adequacy using a quantitative (statistical) analysis. Because it is most natural
to posit the behavioral criteria in terms of soil properties, we invert the
*“normal” calculation procedure and, using streamwater chemistry as “inputs,”
compute values of soil variables. (The “normal” procedure would be to
compute streamwater chemistry from soil properties, since the water is
presumed to flow from the soil to the stream.) The calculated soil variables are
then the trajectories used in the behavioral classification.

In keeping with the lumped approach to modeling catchments, we pos-
tulated that a relatively small number of important soil processes—processes
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that could be treated by reference to average soil properties—determine
streamwater chemistry. In two papers, Reuss [19, 20] proposed a simple
system of reactions describing the equilibrium between dissolved and ad-
sorbed ions in the soil-soilwater system. Reuss and Johnson (in press) ex-
panded this system of equations to include the effects of carbonic acid
resulting from elevated CO, partial pressure in soils. Chemical conditions in
the soil were assumed to be uniform throughout the depth being considered.
Surface water chemistry was determined in the model by “removing” the
soilwater from contact with the soil, allowing the excess CO, to degas to
the atmosphere with subsequent precipitation of aluminum hydroxides as the
solution pH increased.

We have extended this conceptual approach to include all of the important
cations and anions present in WOR streamwater, and to include important
complexation reactions involving dissolved aluminum. A total of twenty-four
equations and five adjustable parameters describe the reactions that de-
termine the chemical composition of soilwater in the model [6].

If the lumped equilibrium model is adequate and the parameters correctly
chosen, the soil properties predicted by the model when driven with the
observed streamwater chemistry should agree with actual measurements of
the soil properties. Herein lie two problems:

(1) With which particular soil measurement should the model prediction at
a given time be compared? Our measurements of soil properties are much less
frequent in time than the stream measurements and additionally are spatially
distributed.

(2) Are the parameter values used for the predictions consistent with the
physical processes they are supposed to represent? The model is based on a
lumped formulation, and the value chosen for a cation selectivity coefficient
in the model, for example, may not be numerically equal to the experimen-
tally determined cation exchange selectivity measured at some discrete point
in the catchment.

Given the spatial heterogeneity of measured soil properties and little
knowledge of the true values of the lumped model parameters, the question is
best posed as what ranges of parameter values are most likely to produce
model predictions of soil properties that are within the ranges of our
distributed measurements of these properties. The adequacy of the model can
then be judged in two ways. If we constrain the ranges of the parameters to
some subset of possible values (e.g. based on literature values or a few field
observations) and we are not able to reproduce the observed soil properties
using parameter values chosen from these limited ranges, the model must be
judged inadequate. Conversely, if we are able to reproduce the soil properties
only by selecting parameter values that are unrealistic (e.g. solubility con-
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stants that are clearly incompatible with the hypothesized solid phase of a
substance in the model), the model again must be judged inadequate.

For this problem, then, the allowable ranges of selected soil properties
form the basis of the behavioral classification. We chose four criteria for
WOR. The first behavior criterion (B1) is that predicted base saturation of the
soil, the percentage of exchange sites occupied by base cations (as opposed to
aluminum), must be within the range that is realistic for the type of soil at
WOR. The other three criteria (B2, B3, and B4) define ranges for acceptable
values of soil-water pH, total dissolved aluminum, and the partial pressure of
CO,, respectively.

Values of five parameters must be selected in the model. Three of these
(labeled P1, P2, and P3) are selectivity coefficients, coefficients which indi-
cate the affinity of the soil exchange sites for cations of different valence. The
fourth parameter (P4) is an aluminum solubility coefficient which indicates
the extent to which the concentration of hydrogen ion in soilwater is buffered
by the dissolution of an aluminum mineral. The last parameter (P5) specifies
the fraction of sodium that is adsorbed on the soil.

Three hundred Monte-Carlo runs of the model were made and subse-
quently analyzed using the RSA procedure. Each of the five parameters
showed sensitivity (as measured by the K-S statistic with p = 0.01) in at least
one of the behavioral categories.

How might a particular set of parameter values, a set that would result in
satisfactory simulation of all behavior criteria, be chosen? If such a set of
values can be found, we will have, in a sense, “tentatively calibrated” the
model inasmuch as we will have identified at least one scenario that was
consistent with the sparse data available. We will have failed to reject this
particular model structure on the basis of available information.

To determine a set a values for the parameters that would be consistent
with available information, we adopted the ad hoc procedure described
below. Under behavioral category B2, only the distribution of parameter P1
showed significant separation. This separation defined a value for acceptable
results [Figure 3(a)]. Likewise, the distribution of parameter P5 showed a
significant separation on behavior B4, allowing a value for P5 to be chosen
[Figure 3(b)]. We selected values for these parameters as indicated in
Figure 3.

The structure of the model is such that, by definition, behavior B1 is
conditioned only by parameters, P1, P2, and P5. Having already chosen a
value for P5, a contour plot of soil base saturation as a function of P1 and P2
can be constructed by running the model for different combinations of values
of P1 and P2. The region of base saturation predictions that agrees with our
field measurements determines an acceptable model behavior (Figure 4).
Given that a value of P1 has also already been selected, a value of P2 can be
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F1c. 3. Distributions of parameter values over their predefined ranges when the model
produced acceptable behaviors (B, unshaded bars) and nonbehaviors (B, shaded bars). The
distributions are significantly different (p =.01) as determined by the Komolgorov-Smirnov
statistic. (a) Parameter P1 and behavior criterion B2. (b) Parameter P5 and behavior criterion B4.
In both cases, the arrows indicate the values of each parameter chosen as most likely to produce
correct behavior and least likely to produce incorrect behavior.

chosen such that the point in the contour space of Figure 4 corresponding to
the selected values P1 and P2 falls in the region of acceptable results. A value
for P2 that maximizes the distance between this point and the boundaries of
the acceptable region (intersecting lines in Figure 4) should give a high
probability of the model producing acceptable values in terms of behavior B1.

Having selected values for P1, P2, and P5, we examined the two dimen-
sional response surfaces of behaviors B2, B3, and B4 as functions of P3 and P4
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Fi1c. 4. A contour plot of model predictions of soil base saturation as a function of

parameters P1 and P2. The enclosed region indicates the values of soil base saturation observed in

the field. Model scenarios (choices of P1 and P2) that predicted base saturation in this region are

classified as acceptable behaviors (B). Scenarios which predict base saturation outside this region
are nonbehaviors (B).
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Fic. 5. Contour plots of (a) soilwater pH, (b) total dissolved aluminum in the soilwater, and
(c) soil CO, partial pressure as functions of parameters P3 and P4. In each plot, the enclosed
region indicates the values of the soil properties observed in the field. Model scenarios (choices of
P3 and P4) that predicted soil properties that fell within these regions were classified as
acceptable behaviors (B). The intersection of the regions in (a), (b), and (c) is indicated by the
shaded region in (d). Choosing values of P3 and P4 in this region results in model scenarios for
which all three behaviors (B2, B3, and B4) can be simultaneously obtained. A particular pair of
values for P3 and P4 chosen by reference to the center of this region were considered to be most
likely to result in all behaviors occurring simultaneously and were used for the final calibrated
version of the model.

[Figure 5(a), (b), and (¢)]. To complete the “calibration” of the model,
specific values of P3 and P4 are selected such that behaviors B2, B3, and B4
are simultaneously obtained [Figure 5(d)]. The shaded area in Figure 5(d) is
the intersection of the three behavioral regions indicated in (a), (b), and (¢)
respectively.

When the model is run with the values of the parameters selected
according to the above procedure, the predicted properties for soilwater at
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WOR are consistent with the available information. There are, obviously, any
number of other combinations of values of the five parameters that would also
be consistent. However, the model clearly points to certain soil properties and
processes as being of critical importance in determining streamwater chem-
istry. Several of these, such as CO, partial pressure and cation selectivity, are
not routinely measured in investigations of the role of acid deposition in soil
and surface water acidification. If the conceptual basis of this model is
correct, such information will be necessary in understanding the relationship
between soil solution and streamwater chemistry.

DISCUSSION

Efforts aimed at the rigorous calibration and testing of complex models of
environmental systems are often vitiated by the sparseness (or absence) of
certain important data. In such cases a simpler model structure that is also
compatible with available information may be devised. Often, however, a
scientific study demands that certain structural aspects of the model be
retained in that these pertain to the questions of importance to the study. The
dilemma posed by Beck [2] intrudes: a small (rigorously calibrated) model
may be all that the data can support in a statistical sense, given the premise of
parsimony, but may be incapable of simulating certain physically interesting
modes of behavior. On the other hand, a larger, complex model may produce
behaviors that would never be observed in practice. In many problems in the
environmental sciences the larger models are required, at least during certain
phases of a study. We have presented a regionalized sensitivity analysis
procedure that we maintain allows valuable inferences to be drawn in a
speculative simulation modeling study.

The RSA procedure is more a heuristic than a rigofous statistical analysis.
One of the more useful aspects of a study with the RSA is what might be
called “hypothesis generation.” By identifying the critical uncertainties in
application of the model, one can argue that the RSA may lead to programs of
study to reduce the uncertainties, i.e., to generate data to test critical
hypotheses. This type of analysis was the motivation for the original develop-
ment of the procedure [10, 26]. In the present study, the results have in fact
led us to implement certain field studies. For example, the analysis of the
equilibrium chemistry model led us to postulate that the production of CO, in
the soil is extremely important in conditioning the streamwater chemistry in
WOR and that the seasonal variability in this parameter should be pro-
nounced, with CO, levels reaching a peak in September and a minimum in
March. We have initiated a measurement program at WOR to test these
ideas.




Selection of Parameter Values 353

Another use of the RSA is as an objective means for reducing the
dimensionality of a parameter estimation problem. Whitehead and
Hornberger [30] showed that use of the RSA in this fashion led to the
resolution of a problem of divergence when applying the extended Kalman
filter to estimate the parameters in a mechanistic model of algal growth. Here
we have shown that a hydrological model must be greatly reduced in
complexity if stable parameters are to be obtained using only input-output
data for WOR.

Perhaps the most important aspect of the regionalized sensitivity method is
the ability to utilize nonstandard goodness-of-fit criteria. Because of the
admissibility of nonanalytic and semiquantitative behavior criteria, we can
deal with curve fitting in very broad terms and thus potentially develop
insight into the system functioning that would not be readily gained in any
other way. Auslander [1], in a study involving a complex, uncertain system,
used the regionalized sensitivity method and concluded the following:

The use of a statistically-based identification /sensitivity method is essential in such
problems. ... A further observation, however, is that the type of information obtained
from this technique gives a much stronger feeling for applicable parameter ranges
than either identification procedures or sensitivity analyses based on point-by-point
comparisons.

The fact that the RSA procedure worked to our satisfaction in this
application to WOR cannot be taken as an indication that it will prove to be
universally beneficial. The method proposed herein is not a well-defined and
specific procedure for model identification and calibration, but rather an
experimental approach that uses the computer as a “blunt instrument” as
well as techniques of statistical inference. Nevertheless, it would appear that
the general approach can be modified and elaborated to address a wide

variety of practical problems. .
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