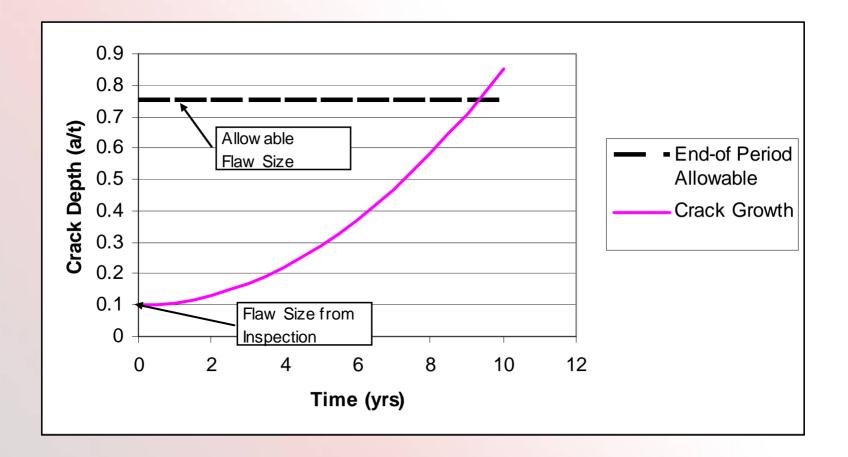
UPDATE ON OWOLS

Pete Riccardella

at

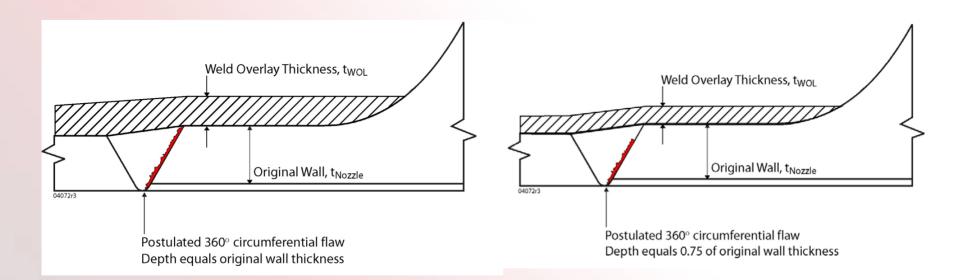
Industry Briefing to NRC on PWSCC Mitigation Research Rockville, MD July 16, 2008



Outline of Presentation

- Weld Overlays (the basics)
- Verification of Weld Overlay Effectiveness
 - Overview of Prior Programs
 - Recent Large Diameter OWOL Mockup
- Current OWOL Design/Analysis Results
- NDE Qualification Issues/Solutions

ASME Section XI Flaw Evaluation Concept



Weld Overlay Attributes

- Weld overlays (both repair and preemptive) possess attributes that enable SCC susceptible welds to pass Section XI flaw evaluation:
 - Structural reinforcement to ASME XI margins
 with large "design basis" flaws assumed
 - Crack growth barrier of SCC resistant material
 - Favorable residual stress reversal (both ID surface and thru-wall gradient)
- They also enhance inspectability

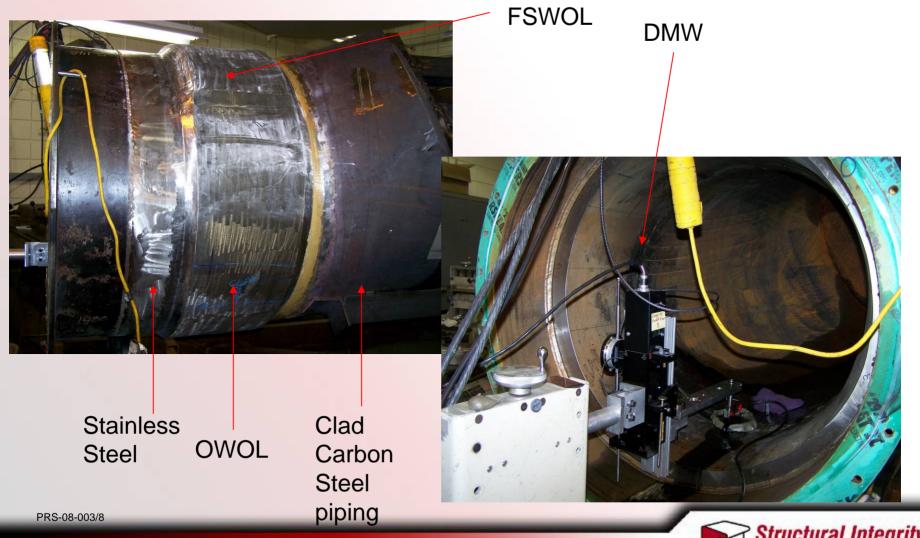
WOL Design Concepts

Full Structural Overlay (FSWOL)

Optimized Overlay (OWOL)

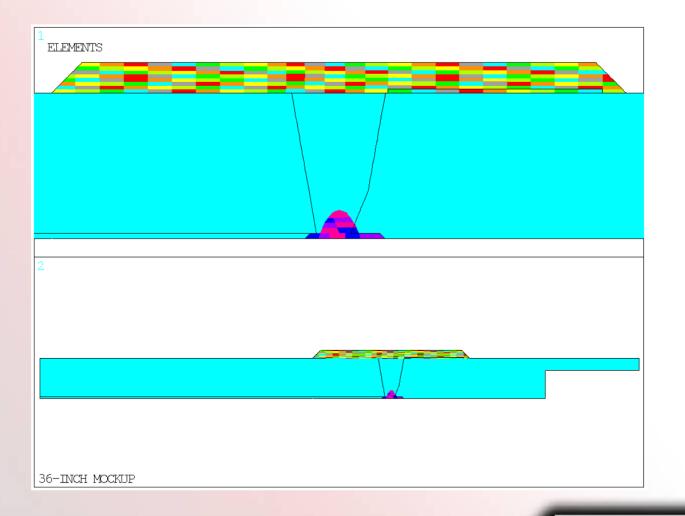
Summary of WOL Terminology

WOL Function	WOL Type
Mitigation	Full Structural
(PWOL)	Optimized
Repair (WOL)	Full Structural
	Optimized

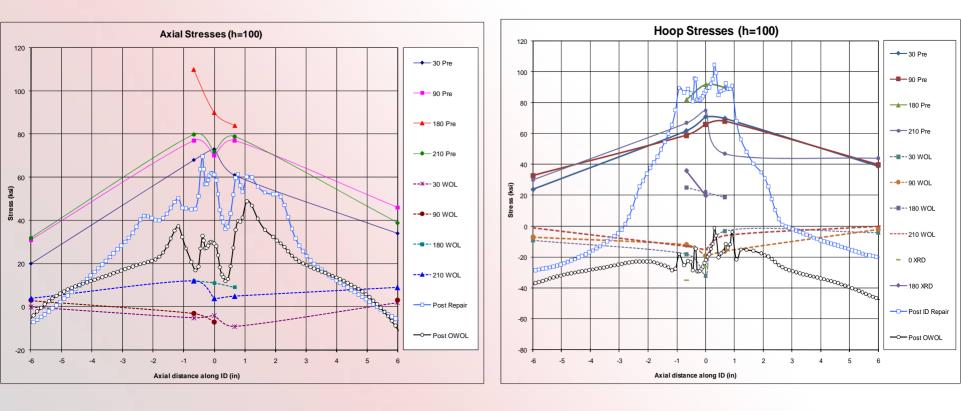


Prior Experimental Verification of Weld Overlay Effectiveness

- 28-Inch Notched Pipe Test
- Battelle/NRC Degraded Pipe Tests
- EPRI/MRP PWOL Mockup (simulated surge nozzle)
- Documented in MRP-169, Rev. 1



EPRI 36-inch Diameter Mockup with WOL



36-inch Mockup – Finite Element Model

Residual Stress Analysis vs. Measurements (EPRI 36" Mockup)

PRS-08-003/10

Summary of Mockup Results (In Terms of Stress Improvement due to Overlay)

		Average Delta (ksi) Axial Hoop		Minimum Delta (ksi) Axial Hoop	
36" Mockup	Analysis	25.20	80.27	19.30	77.64
	Measured	75.71	75.29	61.00	57.00
PWOL (surge)	Analysis	78.45	82.21	63.02	18.35
Mockup	Measured	127.29	73.50	107.00	47.00

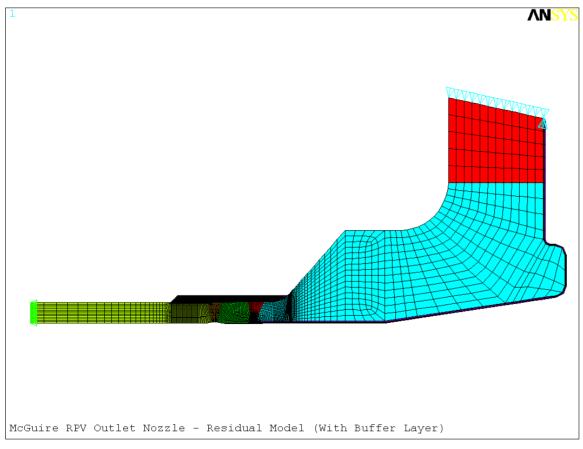
Verification of Weld Overlay Effectiveness – Field Experience

• BWRVIP-75

- Published in 1999
- Evaluated WOL performance in 33 BWRs (262 overlays still in service)
- 15 years of service history w/no evidence of crack growth or new crack initiation
- Included several A-82/52 overlays on DMWs (1st performed at VY in 1986)
- Accepted as basis to extend WOL inspection schedules relative to NRC Generic Letter 88-01

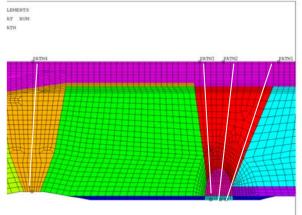
Verification of Weld Overlay Effectiveness – Field Experience (cont'd)

- Experience since BWRVIP-75
 - Flawless performance of BWR overlays has continued (some in place ~25 yrs)
 - Numerous DMW overlays applied to PWRs (beginning w/TMI in 2003)
 - PWR overlay OE still young, but to date has paralleled BWR performance



Current Large Diameter OWOL Design & Analysis Results

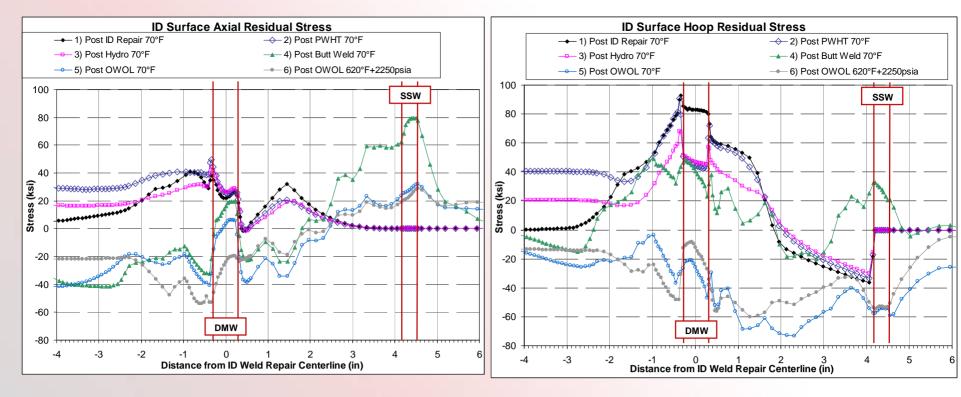
- Structural Sizing
- Residual Stress
- Crack Growth



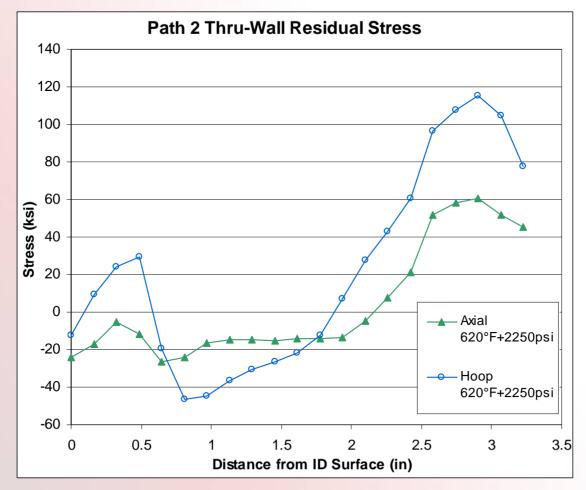
Typical RPV Nozzle WOL Design - FEM

Finite Element Model

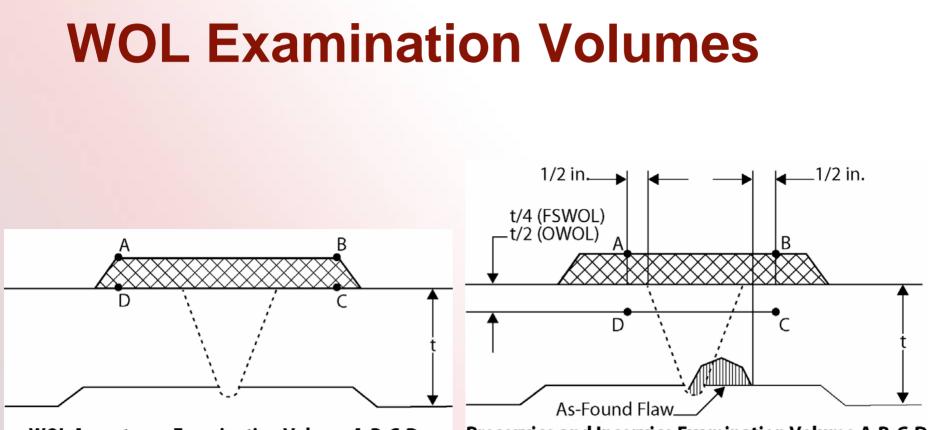
Stress Paths for Fracture Mechanics Evaluation



McGuire RPV Outlet Nozzle - Residual Model (With Buffer Layer)


PRS-08-003/15

RPV Nozzle ID Surface Residual Stress Results



RPV Nozzle Thru-Wall Path Stresses (Resid + Op. Temp & Press)

PRS-08-003/17

WOL Acceptance Examination Volume A-B-C-D

Preservice and Inservice Examination Volume A-B-C-D

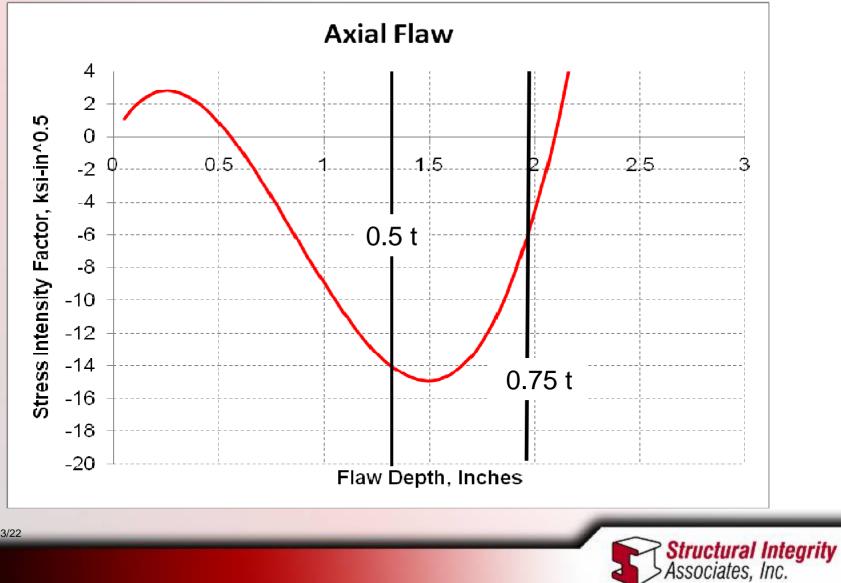
OWOL NDE Qualification Status

- EPRI/PDI has fabricated 3 new blind test specimens for OWOL UT Qualification
 - Specimen 1 Shutdown Cooling Nozzle (13" OD)
 - Specimen 2 Surge Nozzle (14" OD)
 - Specimen 3 RCP Nozzle (37" OD)
- All Specimens "material faithful" (i.e. SS safeend w/Alloy-182 weld to CS/LAS nozzle and Alloy-52 WOL
- Axial and circ flaws embedded at depths down to 50% thru original DMW thickness
- Specimens/flaws/demonstrations & acceptance criteria comply with intent of ASME XI, Appendix VIII, Supplement 11

Structural Integrity Associates, Inc.

Status of SI UT Qualification Effort

- Detection for all circ flaws successfully demonstrated
- Thru-wall depth sizing of circ. flaws successfully demonstrated
- Length sizing issues on individual circ. flaws detected has been noted; overall RMS for length sizing not reported
- Axial flaw inspection not attempted on largest specimen (PDI fingerprinting issues)
- Two smaller OWOL specimens examined for axial flaws with one missed detection noted



The Hybrid WOL Approach

- If full PSI UT qualification not achieved in time for initial OWOL application, following approach will be proposed on an interim basis:
 - OWOL design will be established based on 360° circumferential flaw, 75% thru-wall
 - NDE will be conducted with expanded UT procedure which is PDI qualified to 50% thru-wall for circ flaws only
 - Design will be shown to meet Section XI Appendix C flaw evaluation rules for 100% thruwall axial flaw (including fatigue and PWSCC crack growth with 75% assumed initial flaw)
 - NDE for axial flaws will be performed using existing, FSWOL procedure (PDI qualified to 75% thru-wall)

Crack Growth Evaluation for Axial Flaws

PRS-08-003/22

OWOL Conclusions

- EPRI 36" Dia. Mockup further demonstrates OWOL residual stress improvement
 - 60~75 ksi ID surface stress improvement due to overlay
 - Analysis technique updated to provide reasonable agreement with test data (accurate for hoop stress; conservative for axial stress)
- OWOL NDE qualification achieved for circ flaws; still some issues with axial flaw qualification
- OWOLs demonstrated to be effectively full structural for axial flaws:
 - Therefore, hybrid approach proposed in interim, until full qualification achieved

WELD ONLAY MITIGATION & REPAIR

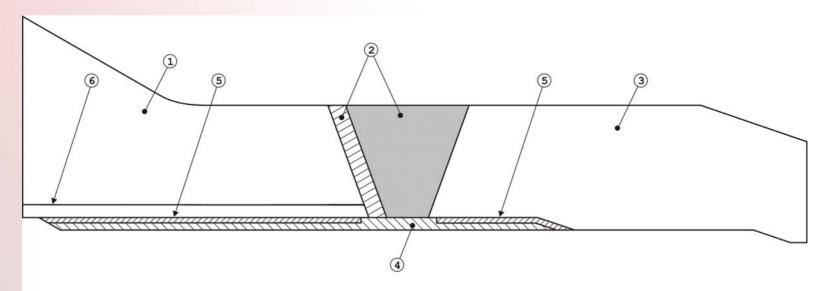
William Sims Entergy July 16, 2008

CONTENTS

- Repair Concepts
- Non-Structural Onlay Evaluations
- Structural Onlay Evaluations
- Examination Requirements

REPAIR CONCEPTS

- Non-Structural Onlay (Preemptive)
 - Provides Protection from Environment
 - Implemented for Indication-Free Conditions or Small
 Flaw Conditions
- Structural Onlay (Repair)
 - Provides Protection from Environment
 - Design Basis is Through-wall Circumferential Flaw
 - Equivalent to "Full Structural Overlay"

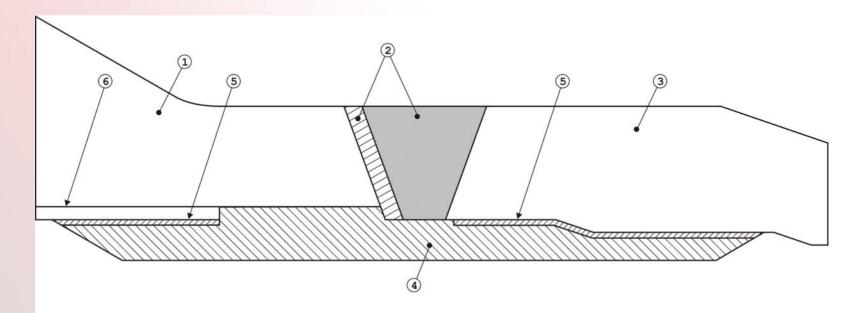

NON-STRUCTURAL ONLAY EVALUATIONS

- Onlay Sizing
 - ~3/16" Thick
- Allowable Circumferential and Axial Flaws Developed
 - Compliance with Section XI
 - Onlay Not Considered
- Onlay Evaluation
 - Finite Element Model
 - Stress Analysis for All Loads/Load Combinations
 - Section III Code Compliance
 - Fatigue Crack Growth Analysis
 - Onlay Integrity Evaluation

Indications Identified During ISI Examination Compared to Allowable
 Flaws
 PRS-08-003/27

NON-STRUCTURAL ONLAY

PARTS LIST		MATERIALS
1.	NOZZLE FORGING	A-508 CL.2
2.	WELD/BUTTER	ALLOY 82/182
3.	SAFE-END	SA-336 GR.F8M
4.	WELD ONLAY	ALLOY 52M
5.	BUFFER LAYER	ER308L
6.	CLADDING	ER308L



STRUCTURAL ONLAY EVALUATIONS

- Onlay Sizing
 - Methodology Similar to That for "Full Structural Overlays"
- Onlay Evaluation
 - Finite Element Model
 - Stress Analysis for All Loads/Load Combinations
 - Section III Code Compliance
 - Fatigue Crack Growth Analysis
 - o Based upon Through-wall Circumferential Flaw with 8:1 Aspect Ratio
 - Thickness Accounts for Fatigue Crack Growth
- Nozzle Cladding
 - Non-Structural
 - Must be Removed
- Indications Identified During ISI Examination Evaluated to Determine Required Thickness

STRUCTURAL ONLAY

PARTS LIST		MATERIALS
1.	NOZZLE FORGING	A-508 CL.2
2.	WELD/BUTTER	ALLOY 82/182
3.	SAFE-END	SA-336 GR.F8M
4.	WELD ONLAY	ALLOY 52M
5.	BUFFER LAYER	ER308L
6.	CLADDING	ER308L

Preemptive Mitigation Onlay Implementation

- Will be Installed per 10CFR50.59
- Meets ASME Code Requirements
 - Guidance from Code Cases N-740,N-770, and N-XXX (07-1682)

EXAMINATION REQUIREMENTS

- Pre-Repair UT
 - PDI Qualified
- Onlay UT
 - Guidance from Code Cases N-740 and N-770
 - Laminations and Planar Flaws
- Post-Repair UT
 - PDI Qualified

