
TENNESSEE VALLEY AUTHORITY DIVISION OF WATER MANAGEMENT GEOLOGIC SERVICES BRANCH

# SOUTHERN APPALACHIAN TECTONIC STUDY



JANUARY 1979

DWM-26

Tennessee Valley Authority Division of Water Management Geologic Services Branch

### SOUTHERN APPALACHIAN TECTONIC STUDY

William M. Seay Task Force Chairman

## 300 125

7907060316 :

Knoxville, Tennessee January 1979

### TABLE OF CONTENTS

|                                               |   |     |   | Page |
|-----------------------------------------------|---|-----|---|------|
| Abstract                                      | • | • * | • | 1    |
| Introduction                                  | • | •   | • | 3    |
| Methodology                                   | • | •   | • | 11   |
| Aeromagnetic Data                             | • | •   | • | 11   |
| Gravity Data                                  | • |     | • | 12   |
| Historical Seismicity                         | • | •   | • | 13   |
| Regional Photo-Imagery Lineament Analysis .   | • | •   | • | 35   |
| Interpretation                                | • | •   | • | 57   |
| East-West Trending Tectonic Structural Zone   | • |     |   | 57   |
| Boundaries Forming Eight Tectonic Subdivision | s | •   | • | 59   |
| Other Features                                | • | •   | • | 64   |
| Summary of Interpretation                     | • | •   | • | 64   |
| Report Summary                                |   |     | • | 66   |

### SOUTHERN APPALACHIAN TECTONIC STUDY

#### ABSTRACT

Within the southern Appalachian region, tectonic provinces have heretofore been defined on the basis of surface geologic structural subdivisions. Although this is consistent with the definition in Appendix A to 10 CFR Part 100, few relationships appear to exist between present-day seismicity and these subdivisions.

A regional geophysical-geological study has been conducted by TVA to delineate basement tectonic structures and to redefine tectonic provinces of the southern Appalachian region. Regional magnetic and gravity data, in part collected for this study, have been composited and correlated with seismicity, surface structural lineaments seen on satellite photo-imagery, and other related geologic data, into an integrated analysis of the data sets. Examination of basement-derived anomalies identified in these studies, and their surface manifestations, shows that the Precambrian crust underlying the folded Appalachians and the younger rocks in adjacent geologic provinces have a much more complex structural pattern than heretofore realized. This complex pattern defines a series of tectonic subdivisions or provinces on the basis of lithology and structure.

A major east-west structural discontinuity is interpreted to exist in the vicinity of 37°20'N. latitude. The prevailing gravity and magnetic anomaly pattern is discontinuously interlupted along this zone, reflecting a series of structural disruptions. The discontinuity is also marked by abnormal structure in the rocks of the folded Appalachians and very significantly by an east-west zone of earthquake epicenters, including the 1897 Giles County, Virginia earthquake.

The southern Appalachian region is crossed by several major discontinuities observed on three or more of the data sets and by many minor disruptions. Primary criteria that distinguish major from minor discontinuities are their length and the number of data sets on which they can be observed. Major discontinuities are used to define the tectonic subdivisions or provinces.

One of the major discontinuities transecting the region is the seismically inactive north-northeast-striking structural boundary that passes through Knoxville and is referred to by King and Zietz (1978) as the New York-Alabama lineament. Southeast of this lineament the region is characterized by northeast-striking basement trends and felsic

lithologies, principally metamorphic rc ks intruded by a few plutons of felsic to intermediate composition. Northwest of this lineament the region is generally composed of mafic rocks and northerly-striking lithologic trends. The vast majority of the earthquake epicenters of the southern Appalachian region lie to the southeast of this boundary.

The New York-Alabama lineament is transected in the area of study by three major linear, northwest-striking basement discontinuities. These northwest trends are interpreted as major lithologic and/or structural boundaries that extend into the midcontinent. The southeastern extensions of these discontinuities are complicated by the effect of Appalachian lithologic and structural features. The transection of the New York-Alabama lineament by the three northwest-trending basement disruptions results in the formation of eight separate tectonic subdivisions or provinces.

The Giles County earthquake is in a zone of earthquake epicenters on an east-west-trending structural discontinuity. It is furthermore separated from the Sequoyah site by several intervening tectonic provinces that show marked differences in lithology, structure, and seismicity. This significantly reduces the probability of finding structural continuity that warrants migration of the Giles County earthquake to the Sequoyah plant site.

### INTRODUCTION

The definition of a tectonic province and the implementation of the tectonic province approach to establishing the Safe Shutdown Earthquake have, since their inception in 1969 and subsequent entry in 1971 into 10 CFR Part 100 as part of Appendix A, caused considerable difficulty in the siting of nuclear plants in the eastern United States.

As defined in Appendix A,

A 'tectonic province' is a region of the North American continent characterized by a relative consistency of the geologic structural features contained therein.

The apparent intent is to bound such regions, assume the "structural features contained therein" cause earthquakes, and then assume that events equal in intensity to the largest historic event can occur anywhere on any of these structural features and, therefore, anywhere within the tectonic province.

Difficulties arise (1) in defining the term "geologic structural features," (2) in identifying the "geologic structural features," (3) in establishing boundaries around the area of "relative consistency of the geologic structural features contained therein" so as to differentiate the established "tectonic province" from adjacent "tectonic provinces", and finally (4) in providing some defensible basis for limiting the mobility of the largest historical earthquake defined for the "tectonic province" to the area within its boundaries. 300 130

-3-

Past practice has been to define tectonic provinces in the Appalachian region on the basis of geologic structures expressed at the surface and largely of Paleozoic age, without consideration as to whether these visible structures are significant in assessing earthquake potential. The boundaries for the Southern Appalachian Tectonic Province as defined for Sequoyah on November 4, 1969, by Dr. Howard H. Waldron, who at the time was the USGS consultant to the AEC, are as follows: on the east by the western margin of the Piedmont Province; on the west by the western limits of the Cumberland Plateau; on the south by the overlap of the Gulf Coastal Plain Province; and on the north by the re-entrant in the Valley and Ridge Province near Roanoke, Virginia. These are predominantly physiographic boundaries that have questionable association with geologic structure (west, north, and south) and seemingly have no significance in assessing earthquake potential. Sequoyah was the first nuclear plant in the United States licensed under Appendix The Southern Appalachian Tectonic Province, as defined Α. by Waldron, was listed also as the controlling tectonic province in the Watts Bar PSAR, Bellefonte PSAR, Phipps Bend PSAR, and Watts Bar FSAR.

NRC, in its <u>Safety Evaluation Report</u> for Phipps Bend (p. 2-21), later determined that the

300 131

-4-

... site is within the Southern Valley and Ridge Tectonic Province based on provinces that are more in accord with those proposed by King, Eardley, Rodgers, and Hadley and Devine for eastern North America. This province is bounded on the east by the western extent of the Piedmont Tectonic Province; on the west by the Cumberland Plateau; on the south by the Gulf Coastal Plain; and on the north by the northern part of the Valley and Ridge Province.

As indicated by the NRC Staff Working Group in their <u>Report</u> on <u>TVA Seismic Issue</u> dated May 1978, provinces such as those identified by Eardley or Hadley and Devine "were based strictly on geologic structure." An obvious question that arises from this judgment is, "What is the structural significance of establishing a boundary based on the overlap of Gulf Coastal Plain sediments?"

There is no basis to assume a relationship between the surficial geologic structures of Paleozoic age in the southern Appalachian region and present-day earthquake activity. The same noted geological and seismological experts that NRC cites in defining "classical" province boundaries neither describe, imply, nor infer any movement of these surficial geologic structures since the Paleozoic. Even Hadley and Devine (1974, p. 1), in their <u>Seismotectonic</u> Map of the Eastern United States, the purpose of which

... is to describe the distribution of historic seismic activity in relation to geologic structures and tectonic provinces and to identify structures or regions that are characterized by consistent relations between seismic activity and structural features

state (on Map C) that the southern part of the "fold belt (roughly the Valley and Ridge physiographic province)" is an

-5-

... in which major faults are known, but the epicentral distribution does not indicate that they are the source of recorded earthquakes.

The NRC staff appears to be in agreement that the past methods of defining tectonic provinces have been ambiguous. Their <u>Geosciences Staff Recommendations for</u> Revisions to Appendix A (p. 5) states that,

It is the staff's view that the weight given to 'classical' evaluations of structural geologic provinces is, for the most part, inappropriate because the provinces derived from such a synthesis do not reflect the more recent tectonic events which we believe may dominate the character of the various earthquake source regions which we strive to define.

In the same recommendations (p. 6) the staff, in regard to the Indian Point appeal board hearings, states that

Although the staff expressed that it used as guidance the classic structural provinces established by several eminent geologists, the staff recognized that the provinces, although meeting the Commission's definition of tectonic provinces did not meet the intent (i.e., regions of equal earthquake potential) of the Regulation.

The preponderance of existing geologic and seismic information indicates that earthquakes of the southern Appalachian region occur in the Precambrian crystalline basement beneath the overthrusted Paleozoic strata and structures. J. C. Stepp, in a meeting on March 1, 1978, between the NRC and TVA staffs regarding the TVA seismic issue, stated that two of the assumptions NRC uses are that earthquakes in the Valley and Ridge (1) occur at a depth of 10 miles or less, and (2) are not related to visible structure.

300 133

-6-

area

In order to obtain a better understanding of present-day seismicity of the southern Appalachian region, in October 1977 TVA initiated a program involving the acquisition of magnetic, gravity, and photo-imagery data, and the most detailed and reliable historic and instrumental earthquake data available. These data sets were thought to have the greatest potential for looking beneath overthrust strata to define structures, trends, or patterns in the crystalline basement that could serve to localize seismicity or at least provide some reasonable basis for delineating "tectonic provinces" in the southern Appalachian region.

Coincidentally, in December 1977, TVA received copies of NRC staff documents that were discussed at the December 15, 1977, meeting of the ACRS Seismic Subcommittee. Included in these documents was the previously mentioned <u>Geosciences Staff Recommendations for Revisions to Appendix A</u>. This report stresses that, in order to properly identify earthquake source areas and their relation to geologic structure, one must look to the present stress regime based on earthquake source mechanisms and in-situ stress analyses, remote sensing techniques (including photo-imagery, reflection, refraction, aeromagnetic and gravity surveys, etc.), and historic seismicity. It was further stated (p. 6) that

The pattern and intensity of historic seismicity is one of the best and most direct indicators of present-day tectonic activity, and, as such, it should play a significant role in our determination of tectonic provinces;

## 300 134

-7-

### and (p. 8) that

It is our view that the patterns and rates of historic seismicity yield, in some cases, compelling evidence for the existence or lack of existence of a structure capable of generating earthquakes.

The report also states (p. 9) that the staff favors interpretations that

... would consider the association of particular earthquakes with zones which are not necessarily specifically defined by structure but are inferred on the basis of geophysical data, geologic data, or tectonic history and seismicity ...

Upon receipt of the December 27, 1977, letter from NRC stating their concern regarding the seismic design bases for the Sequoyah, Watts Bar, and Bellefonte nuclear plants, TVA accelerated various phases of its ongoing study in the hope that some definitive results might materialize within a reasonable time to assist TVA and the staff in assessing the conservatism of the seismic design bases for the three plants.

Aeromagnetic data previously acquired in central Tennessee and south-central Kentucky as part of TVA's mineral resource program were supplemented by in-house flying in southeast Kentucky. For expediency, GeoMetrics, Inc., was contracted to supply coverage in the area between Roanoke, Virginia, and Chattanooga, Tennessee, with concentrated coverage in the areas of Giles County, Virginia, and the Sequoyah-Watts Bar plants. These data were photomosaiced to

300 135

-8-

existing data available both in-house and from outside sources into a regional scale aeromagnetic anomaly map covering approximately 110,000 square miles. QEB, Inc., was subcontracted by GeoMetrics, Inc., to produce an interpreted Compudepth (depth to magnetic basement) map of the aeromagnetic data flown by GeoMetrics. Dr. Douglas O'Brien was the principal interpreter of these data. Data on a gravity tape obtained from NOAA in 1978 were plotted by Dr. G. R. Keller, University of Texas at El Paso, and contoured by TVA to produce a regional scale simple Bouguer map covering most of the area between 33° to 39°N. latitude and 79° to 88°W. longitude. The Geological Services Section of Texas Instruments, Inc., was contracted to analyze LANDSAT and SKYLAB photoimagery within a 79,488 square mile area in order to annotate lineaments and curvilinears that may be indicative of basement structure. The principal interpreter of the photoimagery was Andres B. Zuzek. Available seismic reflection profiles and data from deep wells were reviewed. A detailed in-house historic earthquake epicenter study was made, resulting in the production of an epicenter map and a catalogue of historical epicenters. All of these studies are described in the following section entitled METHODOLOGY.

Data were compiled at various scales but, for ease in interpretation and presentation, are all provided in final form as 1:1,000,000 scale maps included separately with this report.

### 300 136

-9-

Outside consultants other than the contractors and their principals were:

- Dr. William J. Hinze Purdue University, consultant for aeromagnetics and gravity
- Dr. Robert D. Hatcher, Jr. The Florida State University, consultant for regional geology, tectonics and structure
- Dr. Shelton S. Alexander The Pennsylvania State University, consultant for seismicity and photo-imagery interpretation

The conclusions reached in this report are the result of the combined interpretation of the data by the TVA staff and the above-listed contract principals and consultants.

#### Reference Cited

Hadley, J. B., and Devine, J. F., 1974, Seismotectonic map of the Eastern United States: U. S. Geol. Survey Misc. Field Studies Map MF-620, 3 sheets (scale 1:5,000,000) and text.

#### METHODOLOGY

### AEROMAGNETIC DATA

Aeromagnetic investigations consisted of (1) collecting existing data and (2) acquiring new data.

Existing data covering approximately 78,000 square miles were photoreduced to 1:1,000,000 scale and mosaiced. New data acquisition--mainly restricted to the Valley and Ridge--consisted of approximately 32,000 square miles contracted to GeoMetrics, Inc.

Data reduction by GeoMetrics was limited to production of (1) a total intensity magnetic anomaly map, and (2) Compudepth profiles. QEB, Inc., was subcontracted by GeoMetrics to interpret the Compudepth profiles, in conjunction with the total intensity magnetic anomaly map, and the results of their interpretation are presented as the COMPUDEPTH MAP. Separate reports submitted to TVA by GeoMetrics (Noise Analysis) and by QEB, Inc. (Compudepth interpretation) are available for inspection.

Existing and new aeromagnetic data were combined to produce the COMPOSITE TOTAL FIELD MAGNETIC ANOMALY MAP, which includes an index map that shows critical specifications of aeromagnetic surveys.

The accompanying flow chart illustrates the general acquisition, data reduction, and interpretation performed to date.

300 103

-11-

# DOCUMENT/ PAGE PULLED

# ANO. 7907060316

### GRAVITY DATA

Gravity investigations consisted of compiling existing data from a gravity station magnetic tape which Purdue University purchased from the National Oceanographic and Atmospheric Administration (NOAA) in January 1978. This tape basically represents Defense Mapping Agency file data covering the area between latitudes 33° and 39°N. and longitudes 79° and 88°W.

Dr. G. R. Keller, University of Texas at El Paso, and Dr. William J. Hinze of Purdue University reviewed the raw data for obvious erroneous values. The raw data were gridded on a 2 kilometer spacing and supplied to TVA. TVA then contoured the data on a 4 kilometer grid spacing at a 1:250,000 scale. The map was then photoreduced to 1:1,000,000 and is presented as the SIMPLE BOUGUER GRAVITY MAP.

The accompanying flow chart shows the various phases of data acquisition, reduction, and interpretation performed to date.

# DOCUMENT/ PAGE PULLED

# ANO. 1907060316

| NO. OF PAGES            |              |    |     |
|-------------------------|--------------|----|-----|
| REASON:                 |              |    |     |
|                         |              |    |     |
| HARD COPY FILED AT:     | PDR<br>OTHER | CF |     |
| BETTER COPY REQUEST     | ED ON        | /- | /   |
| PAGE TOO LARGE TO FILM: |              |    |     |
| HARD COPY FILED AT:     | PDR<br>OTHER | CF |     |
| FILMED ON APERTURE      | CARD NO.     |    |     |
|                         | 3            | 00 | 141 |

#### HISTORICAL SEISMICITY

### Objective

A catalogue of historical seismicity (Table I), incorporating most of the southeast region of the United States, has been compiled for use in the evaluation of the seismic hazard in the eastern part of the TVA area. This compilation was performed in order to (1) eliminate duplicate reporting of events; (2) resolve conflicts in locations; and (3) provide a consistent evaluation of intensities.

### Study Area

Available data for earthquakes located between approximately 31° and 39°N. latitude and approximately 76° and 87°W. longitude were evaluated, although the actual epicenters plotted on the enclosed EARTHQUAKE EPICENTER MAP are restricted to a 79,500 square mile study area. Historical earthquake epicenters from the Southern Appalachian Tectonic Province, the Piedmont Tectonic Province, the Coastal Plain Tectonic Province (exclusive of Charleston-Summerville), and a part of the Central Stable Region are represented in the compilation.

-13-

### Data Sources

The initial phase of data collection began with the collation of earthquake data from seven principal sources: (1) various U.S. Departments of Interior and Commerce (USC&GS, USGS, NOAA) publications; (2) W. C. McClain and O. H. Meyers, Oak Ridge National Laboratory; (3) Gilbert A. Bollinger, Virginia Polytechnic Institute; (4) George P. Woollard, University of Hawaii; (5) Berlen C. Moneymaker, former Chief, Geologic Branch, Tennessee Valley Authority; (6) Stephen Taber, University of South Carolina; and (7) Gerald R. MacCarthy, University of North Carolina.

Data from these sources were assembled and collated to form a basic reference list. A process was then begun to obtain all available published references for each event, for the purpose of tracing back to the original source (i.e., newspaper account, personal report).

### Data Analysis

Three basic objectives in compiling the catalogue of historical seismicity (Table I) are:

(1) Elimination of duplicate reporting of events. Through the analysis of dates, times, descriptions and references cited, it was possible to eliminate some duplicate events and "non-events." In several instances, events in the study area were found to

be related to larger events located outside the study area and were thus misassociated. The principal causes of duplicate reporting were the confusion of local versus GMT (Greenwich Mean Time) date/times and the transposition of descriptive information from event to event. Several new events are listed in this compilation as the result of separating previously reported single events based on confused accounts.

- (2) Resolution of conflicts in epicenter placements based on macro-seismic effects. The most abundant and simplest form of conflict arises from a selection of different coordinates for the same geographical location. Another problem arises when the evidence for a macro-center is ambiguously defined, and placement of the epicenter has to be based on the reviewer's judgment. The locations of events compiled in this catalogue were interpreted by analyzing the spatial distribution of intensity data and the reported foreshock and aftershock activity when available.
- (3) Consistent evaluation of intensities throughout the entire catalogue. It is well understood that intensity is subjective and depends on the evaluation of the reported effects of the earthquake. No attempt was made in this evaluation to account for

-15- 300 144

variation in effects caused by changes in quality of construction, foundation conditions, or earthquake source parameters, etc. Event intensities were assigned principally on the basis of reported physical effects, although numerous events of Intensity IV or less were assigned intensities solely on the basis of reported character and/or accompanying sounds.

Some of the listings in the accompanying catalog are based on reported effects which are characteristic of one intensity but which also include a few reported effects of the next higher intensity. In order to indicate the "transitional" nature of the source data, such events are shown in the catalog as two intensity numbers separated by a dash (i.e., VI-VII). A more specific designation would be to assign the event to the upper range of the lower intensity value.

### Earthquake Source Listing

Table I (Catalogue of Historical Epicenters) is a comprehensive listing of earthquakes reported from the area within 31° to 39°N. latitude and 76" to 87°W. longitude, beginning with an event reported in 1735 and ending in

## 300 145

-16-

December 1977. An attempt was made to make all dates and times consistent with GMT and to give locations to the nearest tenth of a degree.

Table II is a comparison of location and intensity data for events reported in this catalogue with those in the NOAA publication, <u>Earthquake History of the United States</u> (Coffman and von Hake, 1973), which has been accepted by the NRC. Only events of intensity IV-V and greater are routinely listed in <u>Earthquake History</u>, and the most recent compilation ends with 1970. This comparison is made to show any differences.

### TABLE I

### CATALOGUE OF HISTORICAL EPICENTERS

|              |      |    | Approx. |      |      |                    |          |
|--------------|------|----|---------|------|------|--------------------|----------|
| YR           | MO   | DA | ORIGIN  | NLAT | WLON | LOCALE             | <u> </u> |
| 1735         | Mar. | 8  |         | 35.5 | 76.8 | Bath, NC           |          |
| 1755         | Nov. |    |         | 33.4 | 79.3 | Georgetown, SC     |          |
| 1774         | Feb. | 21 | 19:00   |      |      | central VA         | v        |
| 1775         | Mar. |    | 19:15   | 37.7 | 78.8 | Nelson Co., VA     | IV-V     |
| 1775         | Aug. |    | 07:00   | 37.7 | 78.8 | Nelson, Co., VA    | III-IV   |
| 1776         | Nov. | 5  | P.M.    | 35.4 | 83.4 | Bryson City, NC    | IV       |
| 1787         | Nov. | 9  | P.M.    | 36.1 | 80.2 | Winston-Salem, NC  |          |
| 1789         | Nov. | 19 | 11:00   | 38.3 | 77.5 | Fredericksburg, VA |          |
| 1791         | Jan. | 13 | 09:00   | 37.7 | 78.8 | Nelson Co., VA     | IV       |
| 1791         | Jan. | 15 | 10:00   | 37.5 | 77.4 | Richmond, VA       | IV       |
| 1791         | Apr. |    | 13:00   |      |      | northeastern KY    | IV-V     |
| 1792         | Aug. | 12 | 02:00   | 36.1 | 80.2 | Winston-Salem, NC  | IV       |
| 1795         | Feb. | 12 | 01:00   |      |      | central VA         | IV       |
| 1801         | Feb. | 11 | 02:00   | 37.4 | 79.1 | Lynchburg, VA      |          |
| 1802         | Aug. | 23 | 10:00   | 37.5 | 77.4 | Richmond, VA       | IV-V     |
| 1807         | Apr. | 30 | 09:00   |      |      | central VA         | V        |
| 1808         | Dec. |    | 10:30   | 35.8 | 78.6 | Raleigh, NC        | IV       |
| 1811         | Nov. | 27 | 08:00   | 36.1 | 80.2 | Winston-Salem, NC  | IV       |
| 1812         | Feb. |    | 14:30   | 37.5 | 77.4 | Richmond, VA       | v        |
| 1812         | Apr. | 22 | 09:00   | 37.5 | 77.4 | Richmond, VA       | IV-V     |
| 1817         | Jan. | 8  | 09:34   |      |      | southwestern VA    | IV-V     |
| 1817         | Dec. |    | 03:00   |      |      | GA-SC              | IV       |
| 1817         | Dec. |    |         |      |      | KY                 | IV       |
| 1820         | Sep. |    | 08:00   | 33.4 | 79.3 | Georgetown, SC     |          |
| 1823         | Aug. | 23 | P.M.    | 36.1 | 80.2 | Winston-Salem, NC  | IV       |
| 1825         |      |    |         | 36.2 | 81.2 | Wilkesboro, NC     |          |
| 1825         | Mar. |    | A.M.    | 35.6 | 87.0 | Columbia, TN       |          |
| 1826         | Aug. |    | 02:00   | 37.5 | 77.4 | Richmond, VA       |          |
| 1826         | Oct. |    | 1       | 32.1 | 81.1 | Savannah, GA       | IV       |
| 1827         | May  | 11 | P.M.    | 36.2 | 81.2 | Wilkesboro, NC     | IV       |
| 1828         | Mar. | 10 | 03:00   |      |      | southwestern VA    | V        |
| 1829         |      |    |         | 35.2 | 83.8 | Andrews, NC        |          |
| 1833         | Aug. |    | 11:00   | 37.6 | 77.7 | central VA         | V        |
| 1834         | Nov. |    | 19:40   | ~ .  |      | northern KY        | v        |
| 1834         | Nov. |    |         | 36.1 | 80.2 | Winston-Salem, NC  |          |
| 1836         | May  | 7  |         | 36.0 | 83.9 | Knoxville, TN      |          |
| 1843         | Apr. |    |         | 34.3 | 80.6 | Camden, SC         |          |
| 1844         | Jun. |    | 12.00   | 35.4 | 83.4 | Bryson City, NC    |          |
| 1844         | Nov. |    | 13:00   | 35.8 | 84.0 | Maryville, TN      | VI       |
| 1846         | Oct. | 19 | 02:00   | 38.9 | 78.5 | Woodstock, VA      | IV       |
| 1848         | Man  | 20 | 15.00   | 35.7 | 82.1 | MeDowell Co., NC   |          |
| 1850         | Mar. |    | 15:00   | 35.4 | 78.0 | Goldsboro, NC      | 1V-V     |
| 1850<br>1851 | Oct. |    | A.M.    | 37.3 | 78.4 | Farmville, VA      | IV       |
| 1852         | Aug. |    | 01:55   | 35.6 | 82.6 | Asheville, NC      | v        |
| 1032         | Jan. | 20 |         | 38.2 | 85.8 | Louisville, KY     |          |

300 147

| YR   | MO   | DA | Approx.<br>ORIGIN | NLAT | WLON | LOCALE                   | Io     |
|------|------|----|-------------------|------|------|--------------------------|--------|
| 1852 | Apr. | 29 | 17:51             | 37.3 | 80.7 | southwestern VA          | VI-VII |
| 1852 | May  | 3  | 08:00             | 36.7 | 82.0 | Abingdon, VA             |        |
| 1852 | Sep. |    | 08:00             | 36.7 | 82.0 | Abingdon, VA             |        |
| 1852 | Oct. |    | 00:00             | 33.0 | 83.5 | Clinton, GA              |        |
| 1852 | Oct. |    | 05:00             | 33.0 | 83.5 | Clinton, GA              |        |
| 1852 | Nov. | 2  | 23:35             | 37.6 | 78.6 | Buckingham, VA           | VII    |
| 1853 | Jan. | 30 | 07:00             | 38.9 | 78.5 | Woodstock, VA            | IV     |
| 1853 | May  | 2  | 14:20             |      |      | VA-WV                    | V      |
| 1853 | May  | 20 | A.M.              | 34.0 | 81.2 | Lexington, SC            | V-VI   |
| 1854 | Feb. | 13 | 00:00             | 37.2 | 83.8 | Manchester, KY           |        |
| 1854 | Feb. | 28 | A.M.              | 37.2 | 83.8 | Manchester, KY           | IV     |
| 1854 | Nov. | 22 | 21:00             | 37.1 | 81.5 | Tazewell, VA             |        |
| 1855 | Feb. | 2  | 08:00             | 37.1 | 78.6 | Charlotte Courthouse, VA | VI     |
| 1856 | Mar. | 21 | 14:00             | 37.7 | 78.8 | Nelson Co., VA           | IV     |
| 1857 | Dec. | 11 | 03:00             | 37.8 | 80.4 | Lewisburg, WV            |        |
| 1859 | Mar. | 22 |                   | 37.1 | 81.5 | Tazewell, VA             | IV     |
| 1860 | Jan. | 20 | 00:00             |      |      | NC-SC-GA                 |        |
| 1861 | Aug. | 31 | 10:22             | 36.2 | 81.2 | Wilkesboro, NC           | VI-VII |
| 1869 | Feb. | 20 | P.M.              | 38.0 | 84.5 | Lexington, KY            | IV     |
| 1871 | Apr. | 16 | 05:00             | 34.2 | 77.9 | Wilmington, NC           | v      |
| 1871 | Apr. | 21 | 02:00             | 36.3 | 78.6 | Oxford, NC               |        |
| 1872 | Mar. | 1  | P.M.              | 36.8 | 79.4 | Chatham, VA              | IV     |
| 1872 | Jun. | 5  | 03:00             | 37.6 | 77.7 | central VA               | IV     |
| 1872 | Jun. | 17 | 21:00             | 33.1 | 83.2 | Milledgeville, GA        | IV     |
| 1873 | Oct. | 3  | 12:45             | 37.2 | 78.2 | Burkeville, VA           | IV     |
| 1874 | Feb. |    |                   | 35.7 | 82.1 | McDowell Co., NC         | V      |
| 1875 | Mar. |    | 05:00             |      |      | Goochland Co., VA        | IV     |
| 1875 | Jul. |    | 00:05             | 33.1 | 83.2 | Milledgeville, GA        | IV     |
| 1875 | Nov. |    | 02:55             | 33.7 | 82.7 | Washington, GA           | IV     |
| 1875 | Nov. |    | 08:00             | 36.0 | 83.9 | Knoxville, TN            | IV     |
| 1875 | Dec. |    | 04:45             | 37.6 | 77.7 | central VA               | VII    |
| 1875 | Dec. |    | 06:00             | 37.0 | 77.9 | Powhatan, VA             | IV     |
| 1876 | Jan. |    |                   | 35.7 | 82.1 | McDowell Co., NC         |        |
| 1876 | Dec. |    | 15:30             | 37.0 | 81.1 | Wytheville, VA           |        |
| 1877 | Apr. |    | 22:00             | 35.2 | 83.4 | Franklin, NC             |        |
| 1877 | May  | 25 |                   | 36.0 | 83.9 | Knoxville, TN            |        |
| 1877 | Jun. |    |                   | 37.5 | 84.7 | Stanford, KY             |        |
| 1877 | Oct. |    | 01:00             | 35.3 | 82.5 | Hendersonville, NC       |        |
| 1877 | Nov. |    | 08:38             | 36.0 | 83.9 | Knoxville, TN            | IV     |
| 1878 | Jan. | 2  | 23:55             | 38.0 | 78.0 | Louisa, VA               | IV     |
| 1878 | Nov. |    | 15:00             | 35.1 | 84.0 | Murphy, NC               | IV     |
| 1879 | Oct. |    | 01:00             | 34.4 | 81.1 | Winnsboro, SC            | IV     |
| 1879 | Dec. |    | 00:00             | 35.2 | 80.8 | Charlotte, NC            | IV     |
| 1880 | Jan. |    |                   | 35.7 | 82.1 | McDowell Co., NC         | IV     |
| 1880 | Feb. | 10 |                   | 35.7 | 82.1 | McDowell Co., NC         |        |

-19-

| YR   | MO DA    | Approx.<br>ORIGIN | NLAT | WLON | LOCALE              | Io     |
|------|----------|-------------------|------|------|---------------------|--------|
| 1882 | Jan. 8   | 22:10             | 34.6 | 76.5 | Cape Lookout, NC    | IV     |
| 1882 | Apr. 3   | 02:00             | 38.6 | 78.7 | New Market, VA      | IV     |
| 1882 | Oct. 15  | 17:30             | 35.1 | 84.0 | Murphy, NC          |        |
| 1882 | Oct. 23  | 12:00             | 35.1 | 77.0 | New Bern, NC        | IV     |
| 1883 | May 23   | 05:30             | 38.4 | 82.6 | Catlettsburg, KY    | IV     |
| 1883 | Sep. 21  | 11:45             | 36.1 | 77.4 | Greensboro, NC      | IV     |
| 1884 | Jan.     |                   | 35.7 | 82.1 | McDowell Co., NC    |        |
| 1884 | Jan. 18  | 13:00             | 34.7 | 76.7 | Beaufort, NC        | v      |
| 1884 | Mar. 30  | 01:00             | 54.7 | ,    | Accomak Co., VA     | IV     |
| 1884 | Mar. 31  | 10:00             | 33.1 | 83.2 | Milledgeville, GA   |        |
| 1884 | Apr. 30  | 11:46             | 35.1 | 84.0 | Cherokee Co., NC    | IV     |
| 1884 | (Summer) |                   | 35.7 | 82.5 | Elk Mt., NC         |        |
| 1884 | Aug. 25  | 00:45             | 36.0 | 83.9 | Knoxville, TN       | IV     |
| 1885 | Jan. 3   | 02:16             | 39.0 | 77.7 | Middleburg, VA      | VI     |
| 1885 | Feb. 2   | 12:10             | 37.0 | 81.1 | Wytheville, VA      | IV     |
| 1885 | Aug. 13  | 13:00             | 36.1 | 81.7 | Blowing Rock, NC    | IV     |
| 1885 | Oct. 10  | 04:35             | 37.7 | 78.0 | central VA          | V      |
| 1885 | Oct. 17  | 22:30             | 33.0 | 82.8 | Sandersville, GA    |        |
| 1886 | Feb. 5   | 01:00             | 34.6 | 85.6 | Valley Head, AL     | IV     |
| 1886 | Sep. 2   | 03:00             | 38.0 | 78.5 | Charlottesville, VA |        |
| 1886 | Sep. 4   | 05:00             | 38.4 | 78.9 | Dale Enterprise, VA | v      |
| 1886 | Sep. 25  | 02:56             | 37.0 | 81.1 | Wytheville, VA      |        |
| 1888 | Mar. 17  |                   | 36.3 | 82.5 | Jonesboro, TN       |        |
| 1889 | Sep. 28  | P.M.              | 35.1 | 84.6 | Parksville, TN      |        |
| 1892 | Dec. 2   | 08:00             | 35.0 | 85.3 | Chattanooga, TN     | V      |
| 1895 | Oct. 6   | 16:30             | 35.9 | 77.5 | Tarboro, NC         | IV     |
| 1896 | Feb. 11  | 01:45             | 36.3 | 78.6 | Oxford, NC          | IV     |
| 1897 | May 3    | 17:18             | 37.3 | 80.7 | Giles Co., VA       | VI-VII |
| 1897 | May 31   | 18:58             | 37.3 | 80.7 | Giles Co., VA       | VIII   |
| 1897 | Jun. 29  | 04:00             | 37.3 | 80.7 | Giles Co., VA       | IV     |
| 1897 | Sep. 3   | 12:00             | 37.3 | 80.7 | Giles Co., VA       |        |
| 1897 | Gct. 22  | 03:25             | 37.3 | 80.7 | Giles Co., VA       | IV-V   |
| 1897 | Nov. 27  | 20:56             | 37.8 | 77.5 | Ashland, VA         | IV     |
| 1897 | Dec. 18  | 23:45             | 37.6 | 77.6 | central VA          | IV     |
| 1898 | Feb. 5   | 20:00             | 37.2 | 80.6 | southwestern VA     | VI-VII |
| 1898 | Feb. 11  | 04:30             | 35.8 | 78.6 | Raleigh, NC         | IV     |
| 1898 | Mar. 30  | 01:30             | 36.8 | 85.8 | Mt. Hermon, KY      |        |
| 1898 | Jun. 6   | 08:30             | 37.8 | 84.3 | Richmond, KY        |        |
| 1898 | Nov. 25  | 20:00             | 37.2 | 80.6 | southwestern VA     | V-VI   |
| 1899 | Feb. 13  | 09:30             | 37.3 | 80.7 | Giles Co., VA       | V-VI   |
| 1899 | Mar. 3   | A.M.              | 36.8 | 76.3 | Norfolk, VA         | v      |
| 1902 | May 18   | 04:00             | 37.3 | 80.7 | Giles Co., VA       | IV     |
| 1902 | May 29   | 07:30             | 35.0 | 85.3 | Chattanooga, TN     | IV     |
| 1902 | Oct. 18  | 22:00             | 35.0 | 85.3 | GA-TN Border        | V-VI   |
| 1903 | Jan. 24  | 01:15             | 32.1 | 81.1 | Savannah, GA        | IV     |
| 1904 | Mar. 5   | 00:30             | 35.8 | 84.0 | Maryville, TN       | III-IV |
| 1905 | Apr. 29  |                   | 37.3 | 79.5 | Bedford, VA         | IV     |
| 1907 | Feb. 11  | 13:22             | 37.7 | 78.3 | Arvonia, VA         | VI     |
| 1908 | Aug. 23  | 09:30             | 37.6 | 77.6 | central VA          | IV     |

|      |         | Approx. |      |        |                    |        |
|------|---------|---------|------|--------|--------------------|--------|
| YR   | MO DA   | ORIGIN  | NLAT | WLON   | LOCALE             | Io     |
| 1909 | Oct. 8  | 10:00   | 34.8 | 85.0   | Dalton, GA         |        |
| 1910 | Feb. 8  | 14:00   | 38.6 | 78.7   | New Market, VA     | IV     |
| 1910 | May 8   | 21:10   | 37.7 | 78.3   | Arvonia, VA        | IV     |
| 1911 | Feb. 10 | 10:22   | 36.6 | 79.8   | Danville, VA       | IV     |
| 1911 | Apr. 22 | 03:00   | 35.3 | 82.5   | Hendersonville, NC | IV     |
| 1912 | Jun. 20 |         | 32.1 | 81.1   | Savannah, GA       | IV     |
| 1912 | Aug. 8  | 01:00   | 37.7 | 78.3   | Arvonia, VA        | IV     |
| 1912 | Oct. 23 | 01:15   | 32.8 | 83.6   | Macon, GA          | IV     |
| 1912 | Dec. 7  | 19:10   | 34.7 | 81.8   | West Springs, SC   | V      |
| 1913 | Jan. 1  | 18:28   | 34.7 | 81.8   | West Springs, SC   | VII    |
| 1913 | Mar. 13 | 05:00   | 34.5 | 85.0   | Calhoun, GA        | IV     |
| 1913 | Mar. 28 | 22:50   | 36.0 | 83.9   | Knoxville, TN      | VI-VII |
| 1913 | Apr. 17 | 17:30   | 35.5 | 84.4   | Madisonville, TN   | VI     |
| 1913 | May 2   | 07:00   | 35.5 | 84.4   | Madisonville, TN   | IV     |
| 1913 | Aug. 3  | 17:45   | 36.0 | 83.9   | Knoxville, TN      | IV     |
| 1913 | Nov. 11 | 14:00   | 38.2 | 85.8   | Louisville, KY     |        |
| 1914 | Jan. 24 | 04:24   | 35.5 | 84.6   | Niota, TN          | IV-V   |
| 1914 | Mar. 5  | 20:05   | 33.5 | 84.0   | central GA         | IV     |
| 1914 | Mar. 6  | 20:30   | 34.7 | 81.2   | Chester, SC        |        |
| 1914 | Mar. 7  | 01:20   | 34.4 | 80.1   | Hartsville, SC     | IV     |
| 1914 | Jun. 1  | 04:03   | 32.9 | 80.7   | Walterboro, SC     |        |
| 1915 | Jan. 14 | 09:20   | 36.6 | 82.2   | Bristol, TN        | IV     |
| 1915 | Oct. 29 | 05:45   | 35.8 | 82.7   | Marshall, NC       | v      |
| 1916 | Feb. 21 | 22:39   | 35.5 | 83.0   | Waynesville, NC    | VII    |
| 1916 | Mar. 2  | 05:02   | 34.5 | 82.7   | Anderson, SC       | IV     |
| 1916 | Aug. 26 | 19:35   | 35.9 | 81.2   | Taylorsville, NC   | V-VI   |
| 1916 | Oct. 18 | 22:04   | 33.5 | 86.2   | Easonville, AL     | VII    |
| 1916 | Nov. 4  | 12:15   | 33.5 | 86.8   | Birmingham, AL     | VI     |
| 1917 | Jan. 2  | .10:30  |      |        | McMillan, TN       | IV     |
| 1917 | Jan. 25 | 22:15   | 36.1 | 83.5   | Jefferson City, TN |        |
| 1917 | Mar. 5  | 03:07   | 36.0 | 83.9   | Knoxville, TN      |        |
| 1917 | Mar. 27 | 21:00   | 36.1 | 83.5   | Jefferson City, TN | v      |
| 1917 | Apr. 19 |         |      |        | southwestern VA    |        |
| 1918 | Jan. 17 | 16:45   | 36.0 | 83.9   | Knoxville, TN      | V      |
| 1918 | Apr. 10 | 01:09   | 38.6 | 78.5   | Luray, VA          | VI     |
| 1918 | Apr. 16 | 12:40   | 38.6 | 78.5   | Luray, VA          | IV     |
| 1918 | Apr. 19 |         | 36.8 | 76.3   | Norfolk, VA        | IV     |
| 1918 | Apr. 19 |         | 37.3 | 79.9   | Roanoke, VA        |        |
| 1918 | Jun. 22 | 00:59   | 35.8 | 84.3   | Lenoir City, TN    | IV     |
| 1919 | Sep. 6  | 01:46   | 38.9 | 78.2   | Arco, VA           | VI-VII |
| 1920 | Jul. 24 |         | 38.6 | 78.5   | Luray, VA          | IV     |
| 1920 | Dec. 24 | 08:30   | 35.8 | 84.7   | Glen Alice, TN     | v      |
| 1921 | Jul. 15 |         | 36.7 | 3 82.3 | Mendota, VA        | V-VI   |
| 1921 | Aug. 7  | 06:30   | 37.7 | 78.3   | New Canton, VA     | V-VI   |
| 1921 | Sep. 2  | 14:00   | 36.0 | 86.1   | Statesville, TN    | IV     |
| 1921 | Dec. 15 | 14:30   | 35.9 | 84.5   | Kingston, TN       | VI     |

|      |         | Approx. |      |      |                      |          |
|------|---------|---------|------|------|----------------------|----------|
| YR   | MO DA   | ORIGIN  | NLAT | WLON | LOCALE               | <u> </u> |
| 1922 | Mar. 30 | 02:21   | 36.6 | 82.5 | Arcadia, TN          |          |
| 1923 | Oct. 18 | 19:30   | 35.3 | 82.5 | Hendersonville, NC   | IV       |
| 1924 | Jan. 1  | 01:06   | 34.8 | 82.4 | Greenville, SC       | IV       |
| 1924 | Jan. 1  | 04:45   | 36.6 | 79.8 | Danville, VA         | IV       |
| 1924 | Oct. 20 | 08:30   | 34.9 | 82.7 | Pickens, SC          | V        |
| 1924 | Nov. 13 |         | 36.6 | 82.2 | Bristol, VA          | v        |
| 1924 | Dec. 25 |         | 37.3 | 79.9 | Roanoke, VA          | VI       |
| 1925 | May 16  |         | 37.2 | 77.4 | Colonial Heights, VA | VI       |
| 1925 | Jul. 14 |         | 37.5 | 77.4 | Richmond, VA         | IV       |
| 1926 | Ju1. 8  | 09:50   | 35.7 | 82.1 | McDowell Co., NC     | VII      |
| 1927 | Jun. 10 | 07:16   | 37.7 | 78.0 | central VA           | V        |
| 1927 | Jun. 16 | 13:00   | 34.7 | 86.0 | Scottsboro, AL       | V        |
| 1927 | Jul. 20 | 08:58   | 36.0 | 83.9 | Knoxville, TN        | V        |
| 1927 | Oct. 8  | 13:58   | 35.0 | 85.3 | Chattanooga, TN      | IV       |
| 1927 | Oct. 27 | A.M.    | 36.3 | 76.2 | Elizabeth City, NC   | IV-V     |
| 1927 | Nov. 22 | 23:50   | 33.9 | 78.0 | Southport, NC        | IV-V     |
| 1928 | Mar. 7  | 02:45   | 35.6 | 87.0 | Columbia, TN         | IV       |
| 1928 | Oct. 30 | 11:45   | 37.5 | 77.4 | Richmond, VA         | IV       |
| 1928 | Nov. 3  | 04:04   | 35.9 | 82.8 | Hot Springs, NC      | VI-VII   |
| 1928 | Nov. 20 | 03:45   | 35.9 | 82.8 | Hot Springs, NC      | IV       |
| 1928 | Nov. 22 |         | 33.9 | 78.0 | Southport, NC        | IV       |
| 1928 | Dec. 23 | 02:30   | 35.3 | 80.8 | Charlotte, NC        | IV       |
| 1929 | Jan. 3  | 12:05   | 33.9 | 80.4 | Sumter, SC           | IV       |
| 1929 | Oct. 28 | 02:15   | 34.3 | 82.4 | Due West, SC         | IV       |
| 1929 | Dec. 26 | 02:56   | 38.0 | 78.5 | Charlottesville, VA  | VI-VII   |
| 1930 | Aug. 30 | 10:28   | 35.8 | 84.3 | Lenoir City, TN      | V-VI     |
| 1930 | Sep. 15 | 07:40   | 37.5 | 77.4 | Richmond, VA         | IV       |
| 1930 | Oct. 16 | 21:50   | 36.0 | 83.9 | Knoxville, TN        | VI-VII   |
| 1930 | Dec. 10 | 00:02   | 34.3 | 82.4 | Due West, SC         | III-IV   |
| 1930 | Dec. 26 | 03:00   | 34.4 | 80.1 | Hartsville, SC       | IV       |
| 1931 | May 5   | 13:18   | 33.5 | 86.8 | Birmingham, AL       | VI       |
| 1931 | Oct. 6  | 03:15   | 37.7 | 78.3 | New Canton, VA       | IV       |
| 1931 | Nov. 27 | 09:23   | 36.2 | 86.8 | Nashville, TN        |          |
| 1932 | Jan. 5  | 04:05   | 37.7 | 78.3 | New Canton, VA       | v        |
| 1932 | Dec. 25 | P.M.    | 37.2 | 77.4 | Petersburg, VA       |          |
| 1933 | Jan. 27 | 03:00   | 37.2 | 77.4 | Petersburg, VA       | IV       |
| 1933 | May 28  | 15:10   | 38.6 | 83.8 | Maysville, KY        | IV       |
| 1933 | Jul. 23 | 15:00   | 37.7 | 78.3 | New Canton, VA       | IV       |
| 1934 | Apr. 3  | 02:05   | 37.2 | 77.4 | Petersburg, VA       |          |
| 1935 | Jan. 1  | 08:15   | 35.0 | 83.7 | Shooting Creek, NC   | V-VI     |
| 1935 | Feb. 10 | 23:45   | 37.2 | 77.4 | Petersburg, VA       | IV       |
| 1935 | Nov. 1  | 08:30   | 38.9 | 79.9 | Elkins, WV           | IV       |
| 1936 | Jan. 1  | 08:00   | 34.9 | 84.3 | Blue Ridge, GA       | IV       |
| 1936 | Apr. 10 | 00:42   | 38.0 | 78.5 | Charlottesville, VA  | IV       |
| 1936 | Sep. 6  | )       | 35.4 | 80.2 | Albemarle, NC        |          |
| 1937 | Feb. 2  | 2 01:26 | 37.8 | 78.5 | Scottsville, VA      | IV       |

<sup>300 151</sup> 

|      | •                  | Approx. |      |      |                     |        |
|------|--------------------|---------|------|------|---------------------|--------|
| YR   | MO DA              | ORIGIN  | NLAT | WLON | LOCALE              | Io     |
| 1938 | Mar. 31            | 10:10   | 35.5 | 84.0 | Tapoco, NC          | v      |
| 1939 | May 5              | 03:45   | 33.7 | 85.8 | Anniston, AL        | V-VI   |
| 1939 | Jun. 24            | 11:27   | 34.7 | 86.6 | Huntsville, AL      | IV     |
| 1940 | Jan. 8             | 20:05   | 38.2 | 85.8 | Louisville, KY      |        |
| 1940 | Mar. 26            | 03:28   | 38.9 | 78.5 | Woodstock, VA       | V      |
| 1940 | May 27             | 08:30   | 38.2 | 85.8 | Louisville, KY      |        |
| 1940 | Oct. 19            | 05:55   | 35.0 | 85.1 | Ryall Springs, TN   | v      |
| 1940 | Dec. 25            | 06:50   | 35.9 | 82.8 | Hot Springs, NC     | V      |
| 1941 | Mar. 4             | 06:15   | 35.8 | 83.9 | Rockford, TN        | IV     |
| 1941 | May 10             | 11:12   | 35.6 | 82.6 | Asheville, NC       | IV     |
| 1941 | Sep. 8             | 09:45   | 35.0 | 85.4 | Lookout Mt., TN     | V      |
| 1942 | Jan. 3             | 08:30   | 37.4 | 79.1 | Lynchburg, VA       |        |
| 1942 | Oct. 7             | 03:15   | 37.5 | 78.4 | Dillwyn, VA         | IV     |
| 1942 | Nov. 1             | 03:20   | 34.4 | 81.1 | Winnsboro, SC       |        |
| 1943 | Apr. 13            | 17:00   | 38.2 | 85.8 | Louisville, KY      |        |
| 1945 | Jun. 14            | 03:25   | 35.2 | 84.9 | Cleveland, TN       | v      |
| 1945 | Jul. 26            | 10:32   | 34.0 | 81.2 | Murray Lake, SC     | VI     |
| 1945 | Oct. 10            | 20.43   | 37.7 | 78.3 | New Canton, VA      | IV     |
| 1945 | Oct. 12            | 20:00   | 37.5 | 78.4 | Dillwyn, VA         | IV     |
| 1945 | Oct. 30            | 02:29   | 37.5 | 78.4 | Dillwyn, VA         | IV     |
| 1946 | Apr. 7             | 05:00   | 35.2 | 84.9 | Cleveland, TN       | IV     |
| 1946 | May 24             | 19:40   | 38.0 | 78.5 | Charlottesville, VA | IV     |
| 1947 | Jun. 6             | 12:55   | 36.0 | 83.9 | Knoxville, TN       | IV-V   |
| 1947 | Dec. 28            | 00:05   | 35.0 | 85.3 | Chattanooga, TN     | IV     |
| 1948 | Jan. 5             | 03:20   | 37.5 | 78.4 | Dillwyn, VA         | V-VI   |
| 1948 | Feb. 10            | 00:04   | 36.4 | 84.0 | Wells Springs, TN   | VI     |
| 1948 | Mar. 26            | 23:48   | 38.0 | 78.5 | Charlottesville, VA |        |
| 1940 | May 8              | 11:01   | 37.0 | 77.9 | Powhatan, VA        | V-VI   |
| 1949 | Sep. 17            | 09:30   | 36.8 | 83.0 | Pennington Gap, VA  | IV     |
| 1950 | Jun. 19            | 04:19   | 35.8 | 84.0 | Maryville, TN       | v      |
| 1950 | Nov. 26            | 07:45   | 37.7 | 78.3 | Arvonia, VA         | v      |
| 1950 | Mar. 9             | 07:00   | 37.5 | 77.4 | Richmond, VA        | IV-V   |
| 1952 | Feb. 6             | 16:12   | 33.5 | 86.8 | Birmingham, AL      | V-VI   |
| 1952 | Jun. 11            | 20:20   | 36.3 | 82.4 | Johnson City, TN    | VI     |
| 1952 | Sep. 11            | 03:15   | 38.0 | 78.4 | Shadwell, VA        | IV     |
| 1952 | Feb. 7             | 07:05   | 37.6 | 77.8 | Sabot, VA           | IV     |
| 1953 | Nov. 10            | 14:53   | 36.0 | 83.9 | Knoxville, TN       | IV     |
| 1953 | Dec. 5             | 13.45   | 36.0 | 83.9 | Knoxville, TN       | IV     |
| 1955 | Jan. 1             | 01:30   | 37.2 | 83.2 | Hazard, KY          | IV     |
| 1954 | Jan. 2             | 01.50   | 37.2 | 83.2 | Hazard, KY          | VI-VII |
| 1954 | Jan. 14            | P.M.    | 36.0 | 83.9 | Knoxville, TN       | IV     |
|      |                    | 01:00   | 35.3 | 84.5 | Etowah, TN          | v      |
| 1954 | Jan. 23            | 20:30   | 36.6 | 82.2 | Bristol, TN         | IV     |
| 1955 | Jan. 6             | 17:25   | 35.8 | 84.0 | Maryville, TN       | IV     |
| 1955 | Jan. 12            | 12:37   | 37.3 | 78.4 | Farmville, VA       | v      |
| 1955 | Jan. 17            | 12:37   | 35.8 | 83.9 | Rockford, TN        | V-VI   |
| 1955 | Jan. 25<br>Sep. 28 | 07:02   | 36.6 | 81.3 | Piney Creek, NC     | VI     |
| 1955 |                    |         | 34.3 | 82.4 | Due West, SC        | IV     |
| 1956 | Jan. 5             | 08:00   | 34.3 | 82.4 | Due West, SC        | IV     |
| 1956 | May 19             | 19:00   |      |      | Due West, SC        | IV     |
| 1956 | May 27             | 23:25   | 34.3 | 82.4 | Due west, 50        |        |

-23-

|              |                    | Approx.        |              |              |                             |             |
|--------------|--------------------|----------------|--------------|--------------|-----------------------------|-------------|
| YR           | MO DA              | ORIGIN         | NLAT         | WLCN         | LOCALE                      | <u> </u>    |
| 1956         | Sep. 7             | 13:36          | 36.2         | 83.8         | Maynardville, TN            | VI-VII      |
| 1956         | Sep. 9             | 22:45          | 35.8         | 86.7         | College Grove, TN           | IV-V        |
| 1957         | Jan. 25            | 18:15          | 36.6         | 83.7         | Middlesboro, KY             | IV          |
| 1957         | Apr. 23            | 09:24          | 33.5         | 86.8         | Birmingham, AL              | VI          |
| 1957         | May 13             | 14:25          | 35.8         | 82.0         | Sevier, NC                  | VI          |
| 1957         | Jun. 23            | 06:34          | 35.9         | 84.2         | Dixie Lee Junction, TN      | IV          |
| 1957         | Jul. 2             | 09:33          | 35.6         | 82.6         | Asheville, NC               | VI          |
| 1957         | Nov. 7             | 17:15          | 36.0         | 84.0         | Powell, TN                  | IV          |
| 1957         | Nov. 24            | 20:06          | 35.4         | 83.4         | Bryson City, NC             | VI-VII      |
| 1958         | Mar. 5             | 11:54          | 34.2         | 77.9         | Wilmington, NC              | v           |
| 1958         | Apr. 8             | 17:00          | 31.4         | 83.5         | Tifton, GA                  | 111         |
| 1958         | May 16             | 22:30          | 35.6         | 82.6         | Asheville, NC               | IV          |
| 1958         | Oct. 20            | 06:16          | 34.5         | 82.7         | Anderson, SC                | v           |
| 1959         | Apr. 23            | 20:59          | 37.3         | 80.7         | Giles Co., VA               | VI-VII      |
| 1959         | Jun. 13            | 01:00          | 35.4         | 84.3         | Tellico Plains, TN          | IV          |
| 1959         | Jul. 7             | 23:17          | 37.3         | 80.7         | Giles Co., VA               | IV .        |
| 1959         | Aug. 12            | 18:06          | 34.8         | 86.6         | Meridianville, AL           | VI-VII      |
| 1959         | Aug. 21            | 17:20          | 37.3         | 80.7         | Giles Co., VA               | IV          |
| 1959         | Oct. 27            | 02:07          | 34.5         | 80.2         | McBue, SC                   | v           |
| 1960         | Jan. 3             | 07:33          | 35.9         | 82.1         | Spruce Pine, NC             | and the set |
| 1960         | Feb. 9             | 14:00          | 35.4         | 82.4         | Edneyville, NC              | VI          |
| 1960         | Apr. 15            | 10:10          | 35.8         | 84.0         | Maryville, TN               | v           |
| 1960         | Sep. 4             | 23:40          | 37.4         | 79.2         | Boonsboro, VA               | IV          |
| 1963         | Jan. 17            | 11:40          | 37.3         | 80.1         | Salem, VA                   | IV-V        |
| 1963         | Apr. 11            | 17:45          | 34.8         | 82.4         | Greenville, SC              | IV          |
| 1963         | Oct. 28            | 22:39          | 36.6         | 81.0         | Ennice, NC                  | VI          |
| 1963         | Nov. 14            | P.M.           | 36.2         | 86.8         | Nashville, TN               | IV          |
| 1963         | Dec. 5             | 11:32          | 37.2         | 87.0         | Beechmont, KY               |             |
| 1963         | Dec. 15            | 05:32          | 37.2         | 87.0         | Beechmont, KY               | IV-V        |
| 1965         | Jan. 20            | 13:38          | 35.8         | 82.3         | Pensacola, NC               | IV          |
| 1964         | Feb. 18            | 10:31          | 34.6         | 85.6         | Mentone, AL                 | VI          |
| 1964         | Mar. 13            | 01:20          | 33.0         | 83.4         |                             | IV          |
| 1964         | Apr. 20            | 19:05          | 34.1         | 81.2         | Haddock, GA<br>Irmo, SC     | IV          |
| 1964         | Jul. 28            | 19:45          | 36.0         | 84.0         | Inskip, TN                  | 14          |
|              |                    |                | 36.0         |              |                             |             |
| 1964         | Oct. 13<br>Apr. 7  | 16:30          |              | 83.9         | Knoxville, TN               |             |
| 1965         |                    | 02:19          | 33.9         | 82.3         | McCormick, SC               |             |
| 1965         | Apr. 26<br>Jul. 22 | 15:26<br>23:56 | 37.4         | 81.6         | Wilcoe, WV                  | IV          |
| 1965         |                    | 23:36          | 33.0         | 82.8         | Sandersville, GA            | IV          |
| 1965         | Sep. 9<br>Nov. 8   | 12.59          | 34.7<br>34.2 | 81.2<br>84.6 | Chester, SC                 | IV          |
| 1965         |                    | 12:58          |              |              | Canton, GA                  | VI          |
| 1966         | May 31<br>Aug. 24  | 06:19 06:00    | 37.6<br>35.8 | 77.7<br>84.0 | central VA<br>Maryville, TN | IV          |
| 1966<br>1967 |                    |                | 37.4         | 81.6         |                             | 1.          |
|              |                    | 12:24          |              | 80.7         | Wilcoe, WV                  | V-VI        |
| 1968         | Mar. 8<br>Sep. 22  | 05:38          | 37.3         |              | Giles Co., VA               | IV          |
| 1968         | Nov. 10            | 21:41          | 34.1         | 81.2         | Irmo, SC<br>Oak Ridge TN    | IV          |
| 1968         |                    | 01.00          | 36.0<br>34.2 | 84.3         | Oak Ridge, TN               | IV          |
| 1968         | Nov. 26            | 01:00          |              | 77.9         | Wilmington, NC              |             |
| 1968         | Dec. 11            | 15:00          | 38.2         | 85.8         | Louisville, KY              | V-VI        |

|      |         | Approx. |      |      |                          |        |
|------|---------|---------|------|------|--------------------------|--------|
| YR   | MO DA   | ORIGIN  | NLAT | WLON | LOCALE                   | Io     |
| 1969 | May 5   | 12:14   | 33.9 | 82.5 | GA-SC Border             |        |
| 1969 | Jul. 13 | 21:51   | 36.0 | 83.9 | Knoxville, TN            | VI     |
| 1969 | Jul. 24 | 18:10   | 36.0 | 83.9 | Knoxville, TN            |        |
| 1969 | Nov. 20 | 01:00   | 37.4 | 80.9 | Elgood, WV               | VI-VII |
| 1969 | Dec. 11 | 23:45   | 37.6 | 77.7 | central VA               | V-VI   |
| 1969 | Dec. 13 | 10:20   | 35.0 | 83.0 | SC-NC Border             | v      |
| 1970 | Aug. 11 | 06:14   | 38.4 | 81.7 | South Charleston, WV     | IV     |
| 1970 | Sep. 10 | 01:41   | 36.2 | 81.7 | Boone, NC                | V-VI   |
| 1971 | May 19  | 12:54   | 33.4 | 80.7 | Bowman, SC               | v      |
| 1971 | Jul. 13 | 03:03   | 35.9 | 84.5 | Kingston, TN             | IV     |
| 1971 | Jul. 13 | 11:42   | 34.7 | 82.9 | Newry, SC                | VI     |
| 1971 | Jul. 31 | 20:17   | 33.4 | 80.9 | Cardova, SC              | IV     |
| 1971 | Aug. 11 | 03:52   | 33.5 | 80.9 | Orangeburg, SC           |        |
| 1971 | Sep. 12 | 00:06   | 38.2 | 77.6 | Post Oak, VA             | V-VI   |
| 1971 | Oct. 9  | 16:44   | 35.7 | 83.5 | Gatlinburg, TN           | VI     |
| 1972 | Feb. 3  | 23:11   | 33.5 | 80.6 | Elloree, SC              | VI     |
| 1972 | Feb. 7  | 02:46   | 33.5 | 80.6 | Elloree, SC              |        |
| 1972 | Aug. 14 | 15:05   | 33.5 | 80.9 | Orangeburg, SC           | IV     |
| 1972 | Sep. 5  | 16:00   | 37.6 | 77.7 | central VA               | V      |
| 1973 | Jan. 7  | 22:56   | 37.4 | 87.5 | Madisonville, KY         |        |
| 1973 | Mar. 28 | 08:00   | 33.8 | 81.1 | Gaston, SC               |        |
| 1973 | Apr. 9  | 23:11   | 37.4 | 77.5 | Chesterfield, VA         | IV     |
| 1973 | Oct. 30 | 22:59   | 35.8 | 84.0 | Maryville, TN            | V-VI   |
| 1973 | Nov. 30 | 07:49   | 35.8 | 84.0 | Maryville, TN            | VI     |
| 1974 | Mar. 23 | 09:47   | 38.9 | 77.9 | Marsnall, VA             |        |
| 1974 | May 30  | 21:29   | 37.4 | 80.4 | Simmonsville, VA         | v      |
| 1974 | Jun. 5  | 00:17   | 38.5 | 84.8 | Owenton, KY              |        |
| 1974 | Aug. 2  | 08:52   | 33.9 | 82.5 | McCormick Co., SC        | V-VI   |
| 1974 | Oct. 8  | 18:22   | 34.0 | 82.3 | Clark Hill Reservoir, SC |        |
| 1974 | Oct. 28 | 12:33   | 33.8 | 81.9 | Edgefield, SC            | IV     |
| 1974 | Nov. 5  | 03:00   | 33.7 | 82.2 | Clark Hill, SC           |        |
| 1974 | Nov. 7  | 21:32   | 37.8 | 78.2 | central VA               | IV     |
| 1974 | Dec. 3  | 08:25   | 34.0 | 82.5 | Mt. Carmel, SC           |        |
| 1975 | Feb. 10 | 18:53   | 35.7 | 83.5 | Gatlinburg, TN           |        |
| 1975 | Mar. 7  | 12:45   | 37.3 | 80.7 | Giles Co., VA            |        |
| 1975 | May 2   | 16:23   | 36.0 | 84.6 | Oakdale, TN              |        |
| 1975 | May 14  | 23:03   | 36.0 | 84.3 | Oak Ridge, TN            |        |
| 1975 | Aug. 29 | 04:23   | 33.8 | 86.6 | Palmerdale, AL           | VI     |
| 1975 | Oct. 18 | 04:31   |      |      | Jocassee Lake Dam, SC    | IV     |
| 1975 | Nov. 11 | 08:11   | 37.3 | 80.7 | Giles Co., VA            | v      |
| 1975 | Nov. 16 | 01:01   | 34.3 | 80.6 | Camden, SC               |        |
| 1975 | Nov. 25 | 15:18   | 34.9 | 83.0 | Salem, SC                | IV     |
| 1976 | Jan. 19 | 06:31   | 36.9 | 83.0 | Knox Co., KY             | VI     |
| 1976 | Feb. 4  | 19:54   | 35.0 | 84.7 | Conasauga, TN            | VI     |

| YR   | MO   | DA | ORIGIN | NLAT | WLON | LOCALE          |    | Io |
|------|------|----|--------|------|------|-----------------|----|----|
| 1976 | Apr. | 28 | 06:16  | 33.7 | 81.8 | Trenton, SC     |    |    |
| 1976 | Jun. | 19 | 05:54  | 37.4 | 81.6 | Wilcoe, WV      |    | V  |
| 1976 | Sep. | 13 | 18.55  | 36.5 | 80.6 | Toast, NC       |    | VI |
| 1976 | Dec. | 27 | 06:57  | 32.0 | 82.4 | Cedar Crossing, | GA | v  |
| 1977 | Feb. | 27 | 20:06  | 37.9 | 78.6 | Carters Bridge, |    | v  |
| 1977 | Jul. | 27 | 22:03  | 35.4 | 84.4 | Wilson Station, |    |    |
| 1977 | Aug. | 25 | 04:20  | 33.4 | 80.7 | Bowman, SC      |    |    |
| 1977 | Sep. | 1  | 21:05  | 33.8 | 83.7 | Kingville, SC   |    |    |
| 1977 | Sep. | 25 | 06:23  | 36.0 | 82.6 | NC-TN Border    |    |    |
| 1977 | Oct. | 23 | 07:58  | 37.0 | 82.0 | Honaker, VA     |    |    |
| 1977 | Nov. | 10 | 11:25  | 33.4 | 80.7 | Bowman, SC      |    |    |
|      |      |    |        |      |      |                 |    |    |

### TABLE II

### COMPARISON OF TVA CATALOGUE OF HISTORICAL EPICENTERS

### WITH NOAA EARTHQUAKE HISTORY OF THE UNITED STATES

|       |         |      | TVA  |         | NOA     | A        |                    |
|-------|---------|------|------|---------|---------|----------|--------------------|
| D     | ATE     | NLAT | WLON | Io      | NLAT    | WLON     | Io                 |
| 1774  | Feb. 21 | _    | -    | v       | -       | -        | N/R                |
| 1775  | Mar. 16 | 37.7 | 78.8 | IV- V   | NOT LIS | TED      |                    |
| 1791  | Apr.    | -    | -    | IV- V   | NOT LIS | TED      |                    |
| 1802  | Aug. 23 |      | 77.4 | IV- V   | NOT LIS | TED      |                    |
| 1807  | Apr. 30 |      |      | v       | -       | -        | V                  |
| 1812  | Feb. 2  |      | 77.4 | VV      | NOT LIS | TED      |                    |
| 1812  | Apr. 22 |      |      | IV- V   | NOT LIS | TED      |                    |
| 1817  | Jan. 8  | -    |      | IV- V   | NOT LIS | TED      |                    |
| 1828  | Mar. 10 | -    | -    | v       | - 2     | -        | V                  |
| 1833  | Aug. 27 |      | 77.7 | v       | -       | -        | V                  |
|       | Nov. 20 |      | -    | V       | NOT LIS | STED     |                    |
| 1844  | Nov. 28 |      | 84.0 | VI      | NOT LIS | STED     |                    |
|       | Mar. 30 |      |      | IV- V   | NOT LIS | STED     |                    |
| 1851  | Aug. 11 | 35.6 | 82.6 | V       | NOT LIS | STED     |                    |
| 1852  | Apr. 29 | 37.3 | 80.7 | VI-VII  | -       | -        | VI                 |
| 1852  | Nov. 2  | 37.6 | 78.6 | VII     | NOT LIS | STED     |                    |
| 1853  | May 2   | _    | -    | v       | -       | -        | V                  |
| 1853  | May 20  | 34.0 | 81.2 | V- VI   | NOT LIS | STED     |                    |
| 1855  | Feb. 2  |      |      | VI      | 37.0    | 78.6     | V                  |
| 1861  | Aug. 31 |      | 81.2 | VI-VII  | -       |          | VI                 |
| 1871  | Apr. 16 |      | 77.9 | V       | NOT LIS | STED     |                    |
| 1872  | Jun. 17 | 33.1 |      | IV      | 33.1    | 83.3     | V                  |
| 1874  | Feb. 22 |      |      | V       | 35.7    | 82.1     | V                  |
| 1875  | Nov. 2  | 33.7 | 82.7 | IV      | 33.8    | 82.5     | VI                 |
| 1875  | Dec. 23 | 37.6 | 77.7 | VII     | 37.6    | 78.5     | VII                |
| 1877  | Nov. 16 | 36.0 | 83.9 | IV      | 35.5    | 84.0     |                    |
| 1879  | Dec. 13 | 35.2 |      | IV      | 35.2    |          |                    |
| 1884  | Jan. 18 | 34.7 | 76.7 | v       | 34.3    | 78.0     |                    |
| 1885  | Jan. 3  | 39.0 | 77.7 | VI      | 39.2    |          |                    |
| 1885  | Aug. 13 | 36.1 | 81.7 | IV      | 36.2    |          |                    |
| 1885  | Oct. 10 | 37.7 | 78.0 | v       | 37.7    | 78.8     | VI                 |
| 1886  | Feb. 5  | 34.6 | 85.6 | IV      |         | 88.0     | V                  |
| [1886 | Feb. 13 | 32.5 | 87.8 | VI-VII] | LISTED  | TOGETHER | R WITH ABOVE EVENT |
| 1886  | Sept. 4 | 38.4 | 78.9 | v       | NOT LI  | STED     |                    |
| 1892  | Dec. 2  | 35.0 | 85.3 | v       | NOT LI  | STED     |                    |
| 1897  | May 3   | 37.3 | 80.7 | VI-VII  | 37.1    | 80.7     | VI                 |
| 1897  | May 31  | 37.3 | 80.7 | VIII    | 37.3    | 80.7     | VII                |
| 1897  | Oct. 22 | 37.3 | 80.7 | IV- V   | 37      | 81       | ۷                  |

|      |                   |      | TVA   |              |      | NOAA   |         |
|------|-------------------|------|-------|--------------|------|--------|---------|
| 1    | DATE              | NLAT | WLON  | <u>10</u>    | NLAT | WLON   | Io      |
| 1897 | Dec. 18           | 37.6 | 77.6  | IV           | 37.7 | 77.5   | v       |
| 1898 | Feb. 5            | 37.2 | 80.6  | VI-VII       | 37.0 | 80.7   | VI      |
| 1898 | Nov. 25           | 37.2 | 80.6  | V- VI        | -    |        | v       |
| 1899 | Feb. 13           | 37.3 | 80.7  | V- VI        | 37   | 81     | V       |
| 1899 | Mar. 3            | 36.8 | 76.3  |              |      | LISTED |         |
| 1902 | May 29            |      |       | IV           | 35.1 | 85.3   | v       |
| 1902 | Oct. 18           | 35.0 | 85.3  |              | 35.0 | 85.3   | v       |
| 1903 | Jan. 24           | 32.1 | 81.1  | IV           |      | 81.1   | VI      |
| 1904 | Mar. 5            | 35.8 |       | III- IV      |      |        | v       |
| 1905 | Jan. 27           |      | NOT L |              | 34   |        | VII     |
| 1907 | Feb. 11           | 37.7 |       | VI           | 37.7 |        | VI      |
| 1908 | Aug. 23           | 37.6 | 77.6  |              | 37.5 |        | V       |
| 1910 | May 8             |      | 78.3  | IV           | 37.7 |        | v       |
| 1911 | Apr. 22           | 35.3 | 82.5  | TV           | 35.2 |        | v       |
| 1912 | Jun. 20           | 32.1 | 81.1  |              | 32   | 81     | v       |
| 1912 | Dec. 7            | 34.7 | 81.8  | v            |      | LISTED |         |
| 1913 | Jan. 1            | 34.7 | 81.8  |              | 34.7 |        | VI-VII  |
| 1913 | Mar. 28           |      |       | VI-VII       |      | 83.7   | VII     |
| 1913 | Apr. 17           |      |       |              |      | 84.2   | v       |
| 1914 | Jan. 24           | 35.5 |       | IV- V        |      | 84.5   | v       |
| 1914 | Mar. 5            | 33.5 | 84.0  |              |      | 83.5   |         |
| 1915 | Oct. 29           | 35.8 | 82.7  |              |      | 82.7   | VI      |
| 1915 | Feb. 21           |      | 83.0  |              | 35.0 | 82.5   |         |
| 1916 | Aug. 26           | 35.9 | 81.2  | VII<br>V- VI |      |        | VI<br>V |
| 1916 | Oct. 18           |      |       | VII          | 36   | 81     |         |
|      |                   | 33.5 | 86.2  |              | 33.5 | 86.2   | VII     |
| 1916 | Nov. 4<br>Mar. 27 | 33.5 | 86.8  | VI           |      | LISTED |         |
| 1917 |                   | 36.1 | 83.5  |              |      | LISTED |         |
| 1918 | Jan. 17           | 36.0 | 83.9  |              |      | LISTED |         |
| 1918 | Apr. 10           | 38.6 | 78.5  |              | 38.7 |        | VI      |
| 1918 | Jun. 22           | 35.8 | 84.3  |              |      | 84.1   | V       |
| 1919 | Sept. o           | 38.9 |       |              |      | 78.2   | VI      |
| 1920 | Dec. 24           | 35.8 |       | ν            | 36   |        | R.S.    |
| 1921 | Jul. 15           | 36.7 | 82.3  | V- VI        | 36.6 |        | V1      |
| 1921 | Aug. 7            | 37.7 | 78.3  | V- VI        | 37.8 |        | v       |
| 1921 | Dec. 15           | 35.9 | 84.5  | VI           |      | LISTED |         |
| 1924 | Oct. 20           | 34.9 | 82.7  | V            | 35.0 |        | v       |
| 1924 | Nov. 13           | 36.6 | 82.2  | v            |      | LISTED |         |
| 1924 | Dec. 25           | 37.3 | 79.9  | VI           | 37.3 |        | v       |
| 1925 | May 16            | 37.2 | 77.4  | VI           |      | LISTED |         |
| 1926 | Jul. 8            | 35.7 | 82.1  | VII          | 35.9 |        | VI      |
| 1927 | Jun. 10           | 37.7 | 78.0  | v            | 38   | 79     | v       |
| 1927 | Jun. 16           | 34.7 | 86.0  | v            | 34.7 |        | v       |
| 1927 | Jul. 20           | 36.0 | 83.9  | v            |      | LISTED |         |
| 1927 | Oct. 27           | 36.3 | 76.2  | IV- V        |      | LISTED |         |
| 1927 | Nov. 22           | 33.9 | 78.0  | IV- V        |      | LISTED |         |
| 1928 | Nov. 3            | 35.9 | 82.8  | VI-VII       | 36.0 | 82.6   | VI      |
| 1929 | Dec. 26           | 38.0 | 78.5  | VI-VII       | 38.1 | 78.5   | VI      |

-28-

|      |          |      | TVA  |           | NOAA          |       |
|------|----------|------|------|-----------|---------------|-------|
| DATE |          | NLAT | WLON | <u>Io</u> | NLAT WON      | Io    |
| 1930 | Aug. 30  | 35.8 | 84.3 | V- VI     | NOT LISTED    |       |
| 1930 | Oct. 16  | 36.0 |      |           | NOT LISTED    |       |
| 1931 | May 5    | 33.5 |      |           | 33.7 86.6     | V- VI |
| 1932 | Jan. 5   | 37.7 | 78.3 | v         | NOT LISTED    |       |
| 1935 | Jan. 1   | 35.0 | 83.7 | V- VI     |               | v     |
| 1938 | Mar. 31  | 35.5 |      |           | NOT LISTED    |       |
| 1939 | May 5    | 33.7 | 85.8 |           | 33.7 85.8     | v     |
| 1940 | Mar. 26  | 38.9 | 78.5 | V         | NOT LISTED    |       |
| 1940 | Oct. 19  | 35.0 | 85.1 | v         | NOT LISTED    |       |
| 1940 | Dec. 25  | 35.9 | 82.8 | V         | NOT LISTED    |       |
| 1941 | Sept. 8  | 35.0 | 85.4 | V         | NOT LISTED    |       |
| 1945 | Jun. 14  | 35.2 | 84.9 |           | 35 84 1/2     | v     |
| 1945 | Jul. 26  | 34.0 |      | VI        |               | IV- V |
| 1947 | Jun. 6   | 36.0 |      |           | NOT LISTED    |       |
| 1948 | Jan. 5   |      |      | V- VI     |               |       |
| 1948 | Feb. 10  | 36.4 | 84.0 | VI        |               |       |
| 1949 | May 8    | 37.0 | 77.9 | V- VI     | NOT LISTED    |       |
| 1950 | Jun. 19  |      | 84.0 |           | NOT LISTED    |       |
| 1950 | Nov. 26  | 37.7 | 78.3 | v         | NOT LISTED    |       |
| 1951 | Mar. 9   | 37.5 |      | IV- V     |               |       |
| 1952 | Feb. 6   | 33.5 | 86.8 | V- VI     |               |       |
| 1952 | Jun. 11  | 36.3 | 82.4 | VI        | NOT LISTED    |       |
| 1954 | Jan. 2   | 37.2 | 83.2 | VI-VII    | NOT LISTED    |       |
| 1954 | Jan. 23  | 35.3 | 84.5 |           | NOT LISTED    |       |
| 1955 | Jan. 17  | 37.3 |      |           | NOT LISTED    |       |
| 1955 | Jan. 25  | 35.8 | 83.9 | V- VI     |               |       |
| 1955 | Sept. 28 | 36.6 | 81.3 | VI        |               | v     |
| 1956 | Sept. 7  | 36.2 |      | V1-V11    | 35.5 84.0     | VI    |
| 1956 | Sept. 9  |      |      |           | NOT LISTED    |       |
| 1957 | Apr. 23  |      |      | VI        |               | VI    |
| 1957 | May 13   | 35.8 | 82.0 | VI        |               | VI    |
| 1957 | Jun. 23  | 35.9 | 84.2 | IV        | 36 1/2 84 1/2 | v     |
| 1957 | Jul. 2   | 35.6 | 82.6 | VI        | 35 1/2 82 1/2 | VI    |
| 1957 | Nov. 24  | 35.4 | 83.4 | VI-VII    | 35 83 1/2     | VI    |
| 1958 | Mar. 5   |      | 77.9 | v         | 34 1/4 77 3/4 | V     |
| 1958 | Oct. 20  | 34.5 |      | v         | 34 1/2 82 3/4 | v     |
| 1959 | Anr. 23  |      |      | VI-VII    | 37 1/2 80 1/2 | VI    |
| 1959 | Aug. 12  | 34.8 | 86.6 | VI-VII    | 35 87         | VI    |
| 1959 | Oct. 27  | 34.5 | 80.2 | v         | 34 1/2 80 1/4 | VI    |

|      |           |      | TVA  |           | NOAA     |        |
|------|-----------|------|------|-----------|----------|--------|
| I    | DATE      | NLAT | WLON | <u>10</u> | NLAT W   | LON I  |
| 1960 | Feb. 9    | 35.4 | 82.4 | VI        | NOT LIST | ED     |
| 1960 | Apr. 15   | 35.8 | 84.0 | v         | 35 3/4 8 | 4 V    |
| 1963 | Jan. 17 🕚 | 37.3 | 80.1 | IV- V     | NOT LIST | ED     |
| 1963 | Oct. 28   | 36.6 | 81.0 | VI        | 36.7 8   | 1.0 V  |
| 1963 | Dec. 15   | 37.2 | 87.0 | IV- V     | NOT LIST | ED     |
| 1964 | Feb. 18   | 34.6 | 85.6 | VI        | 34.8 8   | 5.5 V  |
| 1964 | Mar. 13   | 33.0 | 83.4 | 1V        | 33.2 8   | 3.4 V  |
| 1964 | Apr. 20   | 34.1 | 81.2 | IV        | 34 8     | 1 V    |
| 1966 | May 31    | 37.6 | 77.7 | VI        | 37.6 7   | 8.0 V  |
| 1968 | Mar. 8    | 37.3 | 80.7 | V- VI     | NOT LIST | ED     |
| 1968 | Dec. 11   | 38.2 | 85.8 | V- VI     | 38.3 8   | 5.7 V  |
| 1969 | Jul. 13   | 36.0 | 83.9 | VI        | 36.1 7   | 4.3 V  |
| 1969 | Nov. 20   | 37.4 | 80.9 | VI-VII    |          | 1.0 VI |
| 1969 | Dec. 11   | 37.6 | 77.7 | V- VI     | 37.8 7   | 7.4 V  |
| 1969 | Dec. 13   | 35.0 | 83.8 | V         | 35.1 8   | 3.0 V  |
| 1970 | Sept. 10  | 36.2 | 81.7 | V- VI     | 36.1 8   | 1.4 V  |

Note: Data reported in Earthquake History of the United States terminates at the end of 1970.

### Seismic Analysis

There is no wniform seismic activity in the study area. Although there are events scattered throughout most of the Southern Appalachian Tectonic Study area, there are only two areas of persistently significant seismic activity. One area includes part of southwestern Virginia and may extend into central Virginia; the second area includes parts of eastern Tennessee, western North Carolina, and western South Carolina. The localization of historical seismic activity in these two areas is further confirmed by those events which have been instrumentally recorded and located and which are also confined to these two areas.

Seismic activity in the contiguous area made up of the southwestern and central Virginia zones is aligned eastwest, representing the only significant alignment of historical epicenters presently identifiable in the Southern Appalachian Tectonic Study area. This east-west trend is also very evident in the instrumental epicenters located by J. W. Dewey (written communication, 1979) who used a joint-epicenter determination method. The strikingly linear alignment of epicenters in this area is interpreted to be the expression of an active east-west structure.

Further confirmation of an east-west structure can be found in the strong east-west orientation of the meizoseismal regions plotted for the larger historical events in this area. Although it is acknowledged that orientations 300 100

-31-

of meizoseismal regions can be controlled by anomalous geologic conditions, it should be noted that in southwestern Virginia those orientations cut across structure. Similar trends are observed for central Virginia earthquakes. This suggests that the east-west orientation of the meizoseismal regions for these events is controlled by an east-weststriking fault plane.

Analysis of the long-period Love and Raleigh waves for one of these events, the 1969 Elgood, West Virginia earthquake, indicates a strike-slip mechanism for a fault plane striking nominally east-west. Given the present day stress regime as defined by Sbar and Sykes (1977) an eastwest trending fault is interpreted to be a preferred mechanism. Recorded first motion of P-wave arrivals for this event, although not numerous, tend to agree with this interpretation.

All of this evidence taken together strongly infers the existence of an active east-west structure with which the 1897 Giles County earthquake, as well as present seismic activity in that area, can be associated.

Epicenters located in Tectonic Subdivision 4 (see TECTONIC SUBDIVISIONS map) are more diffuse; that is, they are not clearly represented by linear trends. However, there is some suggestion of an east-west alignment of instrumentally located epicenters (J. W. Dewey, written communication, 1979) and some of the larger historical epicenters (equal to or greater than Intensity VI), although one

300 161

-32-

focal mechanism available for this area, the 1973 Maryville, Tennessee earthquake, was determined to have a northweststriking fault plane solution.

When the EARTHQUAKE EPICENTER MAP is superimposed on the TECTONIC SUBDIVISIONS map, it is evident that certain areas have a higher frequency of events. These seismically active areas are bounded in part by rectilinear features. One such feature, the New York-Alabama lineament (NY-A), restricts a vast majority of events, equal to or greater than Intensity VI, to the southeast. A second set of boundaries oriented northwest-southeast (Boundaries A, B, and C, on the TECTONIC SUBDIVISIONS map) are also seismically significant. Events in the area of Tennessee-North Carolina-South Carolina (Tectonic Subdivision 4) appear to be well constrained by Boundaries A and B, and seismic activity in the contiguous area made up of the southwestern and central Virginia zones (Tectonic Subdivision 8) occurs northeast of Boundary C.

During the study, additional analyses were made of the data, because many researchers have recently indicated strong correlations between mafic intrusions and earthquakes. The best interpretation at this time suggests that no such correlation exists in the southern Appalachians.

### 300 162

-33-

### References Cited

- Coffman, J. L., and von Hake, C. A., eds., 1973, Earthquake history of the United States: U. S. Dept. Commerce Pub. 41-1 (revised edition through 1970), 208 p.
- Sbar, M. L., and Sykes, L. B., 1977, Seismicity and lithospheric stress in New York and adjacent areas: Jour. Geophys. Research, v. 82, no. 36, p. 5771-5786.

300 163