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Introduction and PhilosophyIntroduction and Philosophy
The industry has made a huge investment in moving to the 

more SCC resistant Alloy 690 and its weld metals

Vulnerabilities will be understood and resolved, and specs
developed to prevent problem conditions/microstructures

One vulnerability is related to a synergy among: 
• inhomogeneous microstructures,
• directional deformation and 
• crack plane orientation relative to structure & deformation

Cracks find the problem areas, so we must evaluate
these problem areas without just focusing on ugly material.
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InhomogeneitiesInhomogeneities
Inhomogeneity results from melting & processing: 
• dendritic segregation during solidification is inherent
• more pronounced in highly alloyed (Nb,C):  690,718…
• single melting – vs. double or triple melt
• air melting gives more inclusions & perhaps loss of Cr
• not achieving critical strains of ~70% during processing

Inhomogeneities can include:
• compositional banding – gives rise to gs & MC banding
• large variation in carbide content, including gb carbides
• stringers or sheets of oxide or C,N inclusions
• large variation in grain size

Processing causes uneven deformation & poor properties
• SCC and toughness are both affected
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ThermoThermo--Mechanical ProcessingMechanical Processing

Steps used to melt and Thermo-Mechanical-Process (TMP) 
Ni-Fe base superalloys from ingot to billet

 

Segregation and inhomogeneities are much bigger issues 
in high Cr,Nb alloys like Alloys 690 and (esp.) 718
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Processing of an ESR IngotProcessing of an ESR Ingot

Large ESR ingot (left) after heating for drawing operation (right)
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Metal SpecificationsMetal Specifications
Good specifications should eliminate inhomogeneities and 
banding without adding to cost.  

Processing Alloy 690 is not complex or poorly understood, 
but some forms (e.g., plate) are more prone to 
inhomogeneities. 

Vendors work to the spec, so it must address compositional 
banding and related inhomogeneities, including large or 
banded grain size, MC carbides, gb carbide decoration, etc.

Macro-etching of full cross-sections or center-mid-edge 
sampling will identify banding. 
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Technical BackgroundTechnical Background
Factors that enhance SCC growth rates include:

Water chemistry – high Cr 690 is very resistant here
Yield strength – all materials seem to suffer at high YS
Stress Intensity Factor – often higher in high YS materials

Weld HAZ affects microstructure and imposes high residual ε
EBSD is very effective in quantifying/mapping strain

YS increases CGR by ~10X.  Additional ~10X effect of:
Inhomogeneous microstructures +
Directional deformation +
Crack plane orientation relative to structure & deformation
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Effects of Yield Strength / Cold WorkEffects of Yield Strength / Cold Work

Nickel alloys & stainless steels are not fundamentally different
Roughly 10X increase from 15 – 30% cold work in most cases 
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SCC ResponseSCC Response 
vs. YSvs. YS

Effect of Yield Strength on Crack Growth Rate
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Effects of Yield Strength / Cold WorkEffects of Yield Strength / Cold Work

Weld residuals 
strains are highest 
at the fusion line 
and then drop off.

Residual strain is 
highest at weld root 
due to repeated 
weld passes.
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Weld Residual Strain Affects SCC Like CWWeld Residual Strain Affects SCC Like CW

Weld HAZ aligned CT specimen of high quality German 348 SS.
8 – 10 weld HAZ aligned specimens of various materials tested 

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

0 100 200 300 400 500 600 700 800

Time, hours

C
ra

ck
 L

en
gt

h,
 m

m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
on

du
ct

iv
ity

, u
S/

cm
 o

r P
ot

en
tia

l, 
V s

he

3.2 x 10-7 mm/s

0.5T CT of HAZ Aligned 348 Weld 
288C, 2 ppm O2, 25 ksi√in

Corrosion Potential of CT

Outlet Conductivity

Corrosion Potential of Pt

2.2 x 10-7 mm/s

To
 2

00
 p

pb
 O

2 

@
 5

65
h



Alloy 690 Base Metal Strategy

12

EBSD of DoubleEBSD of Double--Cone Compression of Alloy 182Cone Compression of Alloy 182
• Six transverse direction specimens. 

Upset at strain rate = 0.01/sec
• Final Strains: 0.05, 0.11, 0.22, 0.36, 0.51, 0.69
• Six longitudinal direction specimens. 

Upset at strain rate = 0.01/sec
• Final Strains: 0.05, 0.11, 0.22, 0.36, 0.51, 0.69
• 140°C isothermal, corrected for adiabatic heating
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Double-cone compression specimens give very well defined strain contours

EBSD of DoubleEBSD of Double--Cone Compression of Alloy 182Cone Compression of Alloy 182
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Misorientation map compared to FEM prediction of strain contours after 
application of geometric 0.23 compressive strain to double cone.

EBSD Finite Element Modeling

EBSD of DoubleEBSD of Double--Cone Compression of Alloy 182Cone Compression of Alloy 182
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Inverse Pole Figure – x orientation maps

Sample MR2911-L3 longitudinal to weld 
direction 0.237 geometric strain

EBSD of DoubleEBSD of Double--Cone Compression of Alloy 182Cone Compression of Alloy 182

Misorientation (strain) map

Sample MR2911-L3 – Dendrite long 
axes parallel to compression axis
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EBSD CharacterizationEBSD Characterization
Given its proven capability, EBSD should be used to 
characterize a wider cross-section of welds and structures:

HAZ and weld metal of std. “planar” welds
HAZ and weld metal of std. circular (e.g., CRDM) welds
uniformity of cold work and surface layers in base metals
uniformity of deformation in banded microstructures

Weld HAZ aligned SCC specimens should also be used, but:
a planar interface is critical; not all welds are suitable
larger radius side-grooves give flexibility to crack plane 
must plan on only perhaps 33% of tests working well
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SCC Response in Alloy 690SCC Response in Alloy 690
Alloy 690 is not immune, but cracks appear to grow slowly 
unless there is a confluence of: 

Inhomogeneous microstructures
Directional deformation
Crack plane orientation relative to structure & deformation

Microstructure Cold Work* Crack Plane CGR, mm/s
Excellent None Any <2 x 10–9

Excellent 2D Forging Out-of-bands, TL ~5 x 10–9

Excellent 1.5D Rolling In-bands, SL ~4 x 10–8

Banded 1.5D Rolling In-bands, SL ~4 x 10–7

* Cold work levels of perhaps 10 – 30%; Rolling produces spreading = 1.5D

Approximate / Conceptual SCC Response
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Orientation of Banding, Deformation & SCC Orientation of Banding, Deformation & SCC 

In a pipe buttIn a pipe butt--weld, weld, 
the L direction is the L direction is 
considered to be the considered to be the 
pipe length, but in the pipe length, but in the 
weld HAZ the strains weld HAZ the strains 
and crack orientation and crack orientation 
represent the Srepresent the S--L L 
orientation in a plate.orientation in a plate.

Rolling mill

Rolling mill
Pipe
PipeCrack growth direction

Crack growth direction

Like welds (dendrite orientation), must consider orientation of
banding, deformation & crack plane – not just orientation of 
component geometry.
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Hot crack found in Alloy 52 archive weld

Alloys 52/152 Weld MetalsAlloys 52/152 Weld Metals
Weld shrinkage strain = “tensile forging” 

Can consider HAZ equivalent to S–L orientation in rolled plate
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Orientation of Banding, Deformation & SCC Orientation of Banding, Deformation & SCC 

Banding in S planesBanding in S planes

Rolled in L directionRolled in L direction

SS--L specimen = high CGRL specimen = high CGR

SS--T specimen = high CGRT specimen = high CGR

LL--T / TT / T--L & TL & T--S / LS / L--S = lowerS = lower

Rolling mill

Rolling mill

Like welds (dendrite orientation), must consider orientation of
banding, deformation & crack plane – not just orientation of 
component geometry.
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Orientation of Banding, Deformation & SCC Orientation of Banding, Deformation & SCC 
Like welds (dendrite orientation), must consider orientation of

banding, deformation & crack plane – not just orientation of 
component geometry.

Banding in L planesBanding in L planes

Rolled in L directionRolled in L direction

SS--L specimen = med CGR?L specimen = med CGR?

SS--T specimen = med CGR?T specimen = med CGR?

LL--S specimen = high CGR?S specimen = high CGR?
It’s unclear how deformation will distribute 

in the banded crack plane and thereby affect SCC

Rolling mill

Rolling mill
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Orientation of Banding, Deformation & SCC Orientation of Banding, Deformation & SCC 
Like welds (dendrite orientation), must consider orientation of

banding, deformation & crack plane – not just orientation of 
component geometry.

Tensile straining produces Tensile straining produces 
more uniform deformationmore uniform deformation 
if banding is parallel (A).if banding is parallel (A).

It produces nonIt produces non--uniform uniform 
deformation if banding is deformation if banding is 
perpendicular (B), & tensile perpendicular (B), & tensile 
straining can be more straining can be more 
damaging than compression.damaging than compression.

Tensile StrainingTensile Straining

(A)         (B)(A)         (B)
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1800F Anneal   1800F Anneal   20% CW Alloy 69020% CW Alloy 690 
LL--T Orientation (good)T Orientation (good)

Banded microstructure, 2D CW (forging), butBanded microstructure, 2D CW (forging), but 
crack is outcrack is out--ofof--plane vs. banding & deformationplane vs. banding & deformation

SCC#2 - c248 - 690, 25%RA, NX8244HK111, 1800F Anneal
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41% Cold Work Alloy 690 CRDM41% Cold Work Alloy 690 CRDM

L-T Orientation (good) 
Very homogeneity microstructure

SCC#8 - c280 - 690, 41%RA, WN415 CRDM
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20% Cold Work Alloy 690 CRDM20% Cold Work Alloy 690 CRDM

SCC#2 - c286 - Alloy 690, 20%RA, WN415 CRDM
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L-T Orientation (good) 
Very homogeneity microstructure
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1D, 20% Cold Worked GE GRC Alloy 6901D, 20% Cold Worked GE GRC Alloy 690
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Medium CGR in S-L orientation 
Very homogeneous microstructure 
1D cold rolled
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1D, 26% Cold Worked ANL Alloy 6901D, 26% Cold Worked ANL Alloy 690

High CGR in S-L orientation 
Inhomogeneous microstructure 
1D cold rolled
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1D, 26% Cold Worked ANL Alloy 6901D, 26% Cold Worked ANL Alloy 690

No effect of 
temperature 
would be 12X 
normally

SCC#7a - c372 - Alloy 690, 26%RA 1D, S-L Orientation, NX3297HK12, ANL
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High CGR in S-L orientation 
Inhomogeneous microstructure 
1D cold rolled
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1D, 26% CW ANL Alloy 690 1D, 26% CW ANL Alloy 690 –– Test #2Test #2
Specimen c400Specimen c400

SCC#1a - c400 - Alloy 690, 26%RA 1D, S-L Orientation, NX3297HK12, ANL
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High CGR in S-L orientation 
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10-6 mm/s

2 S-L specimens from ANL material

3 S-L, 1 S-T specimens from GE &
KAPL materials

Bettis Labs

5 T-L specimens from Duke CRDM & EPRI 
materials

High CGR data in S-L orientation 
Inhomogeneous microstructure 
1D cold rolled

Comparison Comparison 
of GE & of GE & 
BettisBettis 
DataData
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Metallography of Alloy 690, c248Metallography of Alloy 690, c248

Microstructure of plate with 1800F anneal 
shows compositional and carbide banding 

Shows relative orientation of banding vs. crack plane
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InhomogeneityInhomogeneity in in BettisBettis 690690

Composition & microstructural banding affects 
grain size and gb carbide decoration
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InhomogeneityInhomogeneity in 1D, 26% CR ANL 690in 1D, 26% CR ANL 690

Composition & microstructural 
banding affects grain size and 

gb carbide decoration
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InhomogeneityInhomogeneity in 1D, 26% CR ANL 690in 1D, 26% CR ANL 690

Composition & microstructural banding affects grain size and 
gb carbide decoration, and distribution of large MC carbides. 
Double melted by VIM-VAR; annealed at 1900F & air cooled
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InhomogeneityInhomogeneity in 1D, 26% CR ANL 690in 1D, 26% CR ANL 690

Strain localized in streaked / banded areas of larger grains

Streaks ⇒
 

Streaks ⇒
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InhomogeneityInhomogeneity in 1D, 26% CR ANL 690in 1D, 26% CR ANL 690

Different color thresholds 
Strain localized in streaked / banded areas of larger grains

Streaks ⇒
 

Streaks ⇒
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InhomogeneityInhomogeneity in Alloy Xin Alloy X--750 HTH750 HTH

Large primary and small second Ti,Nb carbides exist 
Prior grain boundaries with carbides can also be seen

Primary Ti,Nb(C,N)

Secondary Ti,Nb(C)

Primary Ti,Nb(C,N)

Secondary Ti,Nb(C)



Alloy 690 Base Metal Strategy

39

Parallel Issues in Parallel Issues in BettisBettis LT Cracking DataLT Cracking Data

KJC In 130°F water degraded for S-T orientation in cold worked Alloy 690

Strong driving force to Crack in rolling plane even with apparent high KJC

0.8”

T

SL

Rolling plane parallel to T direction.
Loading direction out of page.

T

SL

Rolling plane parallel to T direction.
Loading direction out of page.

24% cold rolled, L-T
Rising Load Test
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HTA2 + 24%CR (Lot 5-9)

L-T
50 cc/kg

S-T
17 cc/kg

S-T
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S-T
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Weld HAZ CharacteristicsWeld HAZ Characteristics
Good microstructures can be degraded by the 
thermo-mechanical “processing” during weld solidification, 
including the partially melted and heat-affected zones. 

Weld shrinkage strains will be more inhomogeneous in 
banded microstructures.

More characterization of weld HAZs is needed, as is 
SCC testing of weld-HAZ-aligned specimens, but with a 
limited emphasis because of testing challenges which limit 
the probability of successful tests. 
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Evaluation of Alloy 690Evaluation of Alloy 690
Demonstration on at least one additional heat (in addition to 
the ANL material) that banding + cold work + crack in 
banding-plane produces high growth rate.

Evaluation of banding effect: 
• at ~10% cold work 
• with 20 & 30% forging (2D) 
• with 20 & 30% tensile strain perpendicular & parallel 
• 20% CW with crack plane perpendicular to banding

Detailed characterization of various heats and product forms, 
& EBSD characterization of strained variants, including HAZ. 
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Alloy 52/152 Weld Metal Alloy 52/152 Weld Metal 
StrategyStrategy

Peter Andresen and Martin Morra
GE Global Research Center

John Hickling, Al Ahluwalia & 
John Wilson

NRC–Rockville, MD
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Introduction and PhilosophyIntroduction and Philosophy
The industry has made a huge investment in moving to 

more SCC resistant Alloy 690 and its weld metals

One significant vulnerability is weld cracking, from which 
SCC has been shown to nucleate (in Alloy 182)

• the KAPL 27% Cr weld metal is vastly superior

To date, no large vulnerability in SCC resistance of 
52/152 weld metal has been observed. 

• the ANL weld should be tested & characterized to 
identify the origin of the ~10X higher growth rates

• other welds should be procured or fabricated,
including a repeat of the ANL weld
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“Specimen was 
transitioned to SCC twice, 
maintained growth under 
constant load conditions 
only in 2 of 7 attempts”

SCC of SCC of 
52/152 Weld 52/152 Weld 

MetalMetal
Moderate growth rates, 
but 5X lower than worst 

Alloy 690 base metal
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Alloy 152 & 52 Weld MetalAlloy 152 & 52 Weld Metal
SCC#4 - c300 - Alloy 152 As-welded - heat WC10E7
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Growth rates are very low, < 2 x 10–9 mm/s
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Alloy 52 Weld MetalAlloy 52 Weld Metal

Growth rates are very low 
< 2 x 10–9 mm/s

SCC#4 - c337 - Alloy 52 As-welded - heat NX0B05TS - GENE
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SCC#2 - c337 - Alloy 52 As-welded - heat NX0B05TS - GENE
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Evaluation of Alloy 52/152 Weld MetalsEvaluation of Alloy 52/152 Weld Metals
Characterization of welds for macro- and micro-cracking, 
compositional variations in dendrites, and EBSD strains

Characterization of ANL weld to determine origin of 
moderately high CGRs, and comparison to lower CGR welds

Re-creation of additional ANL weld metal, if possible

SCC evaluation of KAPL 25 & 27% Cr weld metals

Acquisition of additional plant and archive welds for 
microstructural characterization and SCC evaluation
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