Experimental Guidelines for Generating High Quality Data on SCC on Alloy 690 in Hot Water

Peter L. Andresen Bogdan Alexandreau Steve Bruemmer Mychailo Toloczko

NRC Meeting

1

Experimental Issues in SCC

SCC is an unusually complex experimental area in physical science Many overlapping disciplines make SCC studies among toughest Among the critical factors of good experiments are:

- 1. Broad knowledge of mechanics, chemistry, electrochemistry, metallurgy, radiation damage, physical measurements
- 2. Excellence not only in 5 or 10 experimental areas, but in all "twenty"; Don't focus just on just mechanics or chemistry issues

Important Experimental Issues

Our ability to obtain reproducible CGR data depends on:

- 1 Must transition from TG fatigue precrack to IG SCC
- 2 Loading control/stability including constant K, dK/da
- 3 Pressure pulse dampening & seal friction
- 4 Crack length resolution & accuracy (need <10 μ m)
- 5 Temperature control (need <0.2 °C fluctuation)
- 6 Water chemistry control (need <0.1 μ S/cm outlet)
- 7 Reference electrode accuracy & reliability
- 8 Stability of test conditions over long times (& patience)
- 9 Wise management of testing / specimen response (we cannot simply "dunk" a specimen in water)
 10 – Perhaps also ability to make changes "on-the-fly"

ICG-EAC 1998 SCC Experimental Guidelines

- 1. Stress intensity (K)
- 2. Test preliminaries
- 3. Test temperature
- 4. Inlet and outlet solution conductivity
- 5. Inlet and outlet oxygen & hydrogen
- 6. Corrosion potentials
- 7. Flow rate
- 8. Continuous crack monitoring
- 9. "No growth" data
- 10. Material characteristics
- 11. Individual crack length vs. time
- 12. Accelerated testing & interpretation

Repercussions of Weak Experiments

Our inability to obtain reproducible CGR data causes:

- 1 CGR <u>scatter</u> by ~1000X
- 2 <u>Inability</u> to define dependencies with statistical confidence from our collective data
- 3 Mechanisms and modeling <u>disagreements</u>
- 4 <u>Inefficient</u> progress in understanding/quantifying SCC

5 – A necessary <u>emphasis</u> on experimental observations and engineering data to resolve confusion vs.

probing new, key phenomena & enhancing understanding

SCC Testing & Data Base Issues

Historical data shows large scatter due to testing problems

Scatter is related to testing problems, so the "mean" of the data ≠ the mean SCC response

SCC Testing & Data Base Issues

Even with best empirical model, scatter produces very poor statistical fit, $R^2 \approx 0.07$

Statistics can't overcome bad experiments

Experimental Guidelines

Experimental Error: Corrosion Potential

Effect of dc potential drop on ECP

ECP of identical 304SS & water by 5 labs

Transgranular Fatigue Precracking

TG fatigue cracks very poorly simulate lab or field IGSCC Morphology change, plastic zone, crack front pinning issues Transition needed to IG crack and "monotonic" plastic zone

Typical SCC Crack Growth Data

Compact tension (CT) specimen of annealed 316L SS +50% cold work by cross-roll at +140C

Transgranular fatigue pre-crack transitioned to IG SCC crack at constant K No recipe – must monitor & manage cracking behavior

Experimental Guidelines

SCC Growth Not Always Well-Behaved

Even with the best experimental techniques, slowing or cessation of crack growth can be observed. This must be actively managed to avoid large scatter

Alloy 690 and 152/52 Weld Metals

Good experiments are needed to define the "reality" of SCC susceptibility in resistant materials

Example of Crack Growth Data

Compact tension (CT) specimen of annealed XM-19 (Nitronic 50) +20% cold work by crossroll at +140C

Usually acquire data by repeating the changes to demonstrate reproducibility, e.g., low \leftrightarrow high potential

Experimental Issues: 690 Emphasis

Ability to obtain high quality CGR data depends on: 1 - Crack length resolution & accuracy (need <10 μ m) *Error* = (*Measured* <u>growth</u> – dcpd) / (*Measured* growth) 2 – Must transition from TG fatigue precrack to IG SCC Must monitor in-situ; no "recipe" is guaranteed to work 3 – Must manage specimen response, esp. for "no growth" 4 – Sufficient increment & crack front straightness 5 – K within validity; constant K preferred to data with cycling Need loading stability & good pulse dampening 6 – Control & documentation of heat, treatment, microstucture, machining, precracking, surface, pre-oxidation, etc.

Experimental Issues: 690 Emphasis

7 – Test controls: temperature fluctuation <0.2 °C, Water & gas chemistry, adequate refresh rate, full flow demineralizers, measure corrosion potentials...
8 – Ability to make changes "on-the-fly", e.g., for B/Li, H₂, temperature, K, etc.

9 – Detailed reporting of: Material – heat, composition, heat treatment, processing/cold-work, microstructure, banding, inclusion, orientation....

Also, precracking, system design, loading, insulation, plots of crack depth & temperature & chemistry & potential vs. time, autoclave volume & refresh rate, post test fractography, dcpd error, etc.