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Experimental Issues in SCCExperimental Issues in SCC
SCC is an unusually complex experimental area in physical science

Many overlapping disciplines make SCC studies among toughest 

Among the critical factors of good experiments are:
1. Broad knowledge of mechanics, chemistry, electrochemistry, 

metallurgy, radiation damage, physical measurements

2. Excellence not only in 5 or 10 experimental areas, but in all “twenty”; 
Don’t focus just on just mechanics or chemistry issues
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Important Experimental IssuesImportant Experimental Issues
Our ability to obtain reproducible CGR data depends on: 

1 – Must transition from TG fatigue precrack to IG SCC 
2 – Loading control/stability including constant K, dK/da 
3 – Pressure pulse dampening & seal friction 
4 – Crack length resolution & accuracy  (need <10 μm) 
5 – Temperature control  (need <0.2 °C fluctuation) 
6 – Water chemistry control  (need <0.1 μS/cm outlet) 
7 – Reference electrode accuracy & reliability 
8 – Stability of test conditions over long times (& patience) 

9 – Wise management of testing / specimen response 
(we cannot simply “dunk” a specimen in water) 

10 – Perhaps also ability to make changes “on-the-fly”
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ICGICG--EAC 1998 SCC Experimental GuidelinesEAC 1998 SCC Experimental Guidelines
1.  Stress intensity (K) 
2.  Test preliminaries 
3.  Test temperature 
4.  Inlet and outlet solution conductivity 
5.  Inlet and outlet oxygen & hydrogen 
6.  Corrosion potentials 
7.  Flow rate 
8.  Continuous crack monitoring 
9.  “No growth” data 
10.  Material characteristics 
11.  Individual crack length vs. time 
12.  Accelerated testing & interpretation
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Repercussions of Weak ExperimentsRepercussions of Weak Experiments
Our inability to obtain reproducible CGR data causes: 

1 – CGR scatter by ~1000X 
2 – Inability to define dependencies with statistical 
confidence from our collective data 
3 – Mechanisms and modeling disagreements 
4 – Inefficient progress in understanding/quantifying SCC 
5 – A necessary emphasis on experimental observations 
and engineering data to resolve confusion vs. 
probing new, key phenomena & enhancing understanding
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SCC Testing & Data Base IssuesSCC Testing & Data Base Issues
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SCC Testing & Data Base IssuesSCC Testing & Data Base Issues

Even with best 
empirical model, 
scatter produces very 
poor statistical fit, 
R2 ≈ 0.07
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Experimental Error:  Corrosion PotentialExperimental Error:  Corrosion Potential
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Transgranular Fatigue PrecrackingTransgranular Fatigue Precracking
TG fatigue cracks very poorly simulate lab or field IGSCC 
Morphology change, plastic zone, crack front pinning issues
Transition needed to IG crack and “monotonic” plastic zone
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Typical SCC Crack Growth DataTypical SCC Crack Growth Data

Transgranular fatigue pre-crack transitioned to 
IG SCC crack at constant K 

No recipe – must monitor & manage cracking behavior
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Even with the best experimental techniques, 
slowing or cessation of crack growth can be observed.
This must be actively managed to avoid large scatter
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Alloy 690 and 152/52 Weld MetalsAlloy 690 and 152/52 Weld Metals

Good experiments are needed to define the 
“reality” of SCC susceptibility in resistant materials

SCC#2 - c286 - Alloy 690, 20%RA, WN415 CRDM
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Example of Crack Growth DataExample of Crack Growth Data

Usually acquire data by repeating the changes to 
demonstrate reproducibility, e.g., low ↔ high potential

Compact tension 
(CT) specimen of  
annealed XM-19 

(Nitronic 50) +20% 
cold work by cross- 

roll at +140C
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Experimental Issues:  690 EmphasisExperimental Issues:  690 Emphasis
Ability to obtain high quality CGR data depends on: 
1 – Crack length resolution & accuracy  (need <10 µm) 

Error = (Measured growth – dcpd) / (Measured growth) 
2 – Must transition from TG fatigue precrack to IG SCC 

Must monitor in-situ; no “recipe” is guaranteed to work 
3 – Must manage specimen response, esp. for “no growth” 
4 – Sufficient increment & crack front straightness 
5 – K within validity; constant K preferred to data with cycling 

Need loading stability & good pulse dampening 
6 – Control & documentation of heat, treatment, microstucture, 

machining, precracking, surface, pre-oxidation, etc.
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Experimental Issues:  690 EmphasisExperimental Issues:  690 Emphasis
7 – Test controls:  temperature fluctuation <0.2 °C, 

Water & gas chemistry, adequate refresh rate, 
full flow demineralizers, measure corrosion potentials… 

8 – Ability to make changes “on-the-fly”, e.g., for B/Li, H2 , 
temperature, K, etc. 

9 – Detailed reporting of:   Material – heat, composition, heat 
treatment, processing/cold-work, microstructure, banding, 
inclusion, orientation…. 

Also, precracking, system design, loading, insulation, 
plots of crack depth & temperature & chemistry & potential vs. 
time, autoclave volume & refresh rate, post test fractography, 
dcpd error, etc. 
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