AN ECOLOGICAL STUDY OF THE SUSQUEHANNA RIVER NEAR THE THREE MILE ISLAND NUCLEAR STATION ANNUAL REPORT FOR 1989
 Prepared For
 GPU Nuclear Corporation P. O. Box 480, Route 441 South Middletown, Pennsylvania 17057

By

RMC Environmental Services, Inc. Muddy Run Ecological Laboratory 1921 River Road, P. O. Box 10 Drumore, Pennsylvania 17518
Page
LIST OF TABLES iii
LIST OF FIGURES xviii

1. INTRODUCTION AND SUMMARY 1-1
2. BENTHIC MACROINVERTEBRATES
2.1 Methods 2-1
2.2 Temporal and Spatial Distribution: 1989 2-4
2.2.1 Spatial Distribution 2-6
2.2.2 Temporal Distribution 2-8
2.3 Community Analysis: Diversity and Similarity 2-10
2.4 Multiple-Year Comparison 2-12
3. ICHTHYOPLANKTON
3.1 Methods 3-1
3.2 Composition, Abundance, and Size Distribution 3-4
3.3 Community Analysis: Diversity and Similarity. 3-10
3.4 Multiple-Year Comparison 3-12
4. SEINE
4.1 Methods 4-1
4.2 Composition, Relative Abundance, and Distribution: 1989 4-4
4.3 Condition Factor and Reproductive Status 4-6
4.4 Communty Analysis: Diversity and Similarity. 4-8
4.5 Multiple-Year Comparisons: Relative Abundance 4-10
4.6 Parasites, Disease, and Morphological Anomalies 4-13
5. ELECTROFISHING
5.1 Methods 5-1
6. 2 Composition, Relative Abundance, and Distribution: 1989 5-4
5.3 Growth and Condition Factor 5-7
5.4 Community Analysiss Diversity and Similarity 5-11
5.5 Multiple-Year Comparison of Fish Abundance 5-15
5.6 Parasites, Disease, and Morphological Anomalies 5-18

Page

6. CREEL SURVEYS

6.1 Methods 6-1
6.2 Evaluation of Effort, Catch, and Harvest 6-5
6.3 Characterization of Angler Community 6-11
6.4 Multiple-Year Comparison 6-12
7. WATER QUALITY
7.1 Methods 7-I
7.2 Comparison with State Water Quality Criteria 7-2
7.3 Spatial and Temporal Distribution: 1989 7-3
7.4 Multiple-Year Comparison 7-5
8. REFERENCES 8-1
APPENDIX A: BENTHIC MACROINVERTEBRATE DATA A-1.
APPENDIX B: ICHTHYOPLANKTON DATA $\mathrm{B}-1$
APPENDIX C: SEINE DATA. C-1
APPENDIX D: ELECTROFISHING DATA. D-1
APPENDIX E: CREEL SURVEY DATA. E-1
APPENDIX F: WATER QUALITY DATA F-1
Table Page
2-1 Location and description of benthic macroinvertebrate stations sampled in the Susquehanna River near Three Mile Island Nuclear Station. 2-17
2-2 Number and percent abundance of macroinvertebrates collected from stations near TMINS, April through November 1989 2-18
2-3 Shell length frequency and relative age of Corbicula fluminea collected by seine and Ponar grab near TMINS, May through November 1989 2-20
2-4 Number of macroinvertebrate taxa collected each month at stations near TMINS, April through November 1989 2-20
2-5 Monthly density of benthic macro- invertebrates collected at the sampling stations near TMINS, April through November 1989 2-20
2-6 Density and percent composition of macroinvertebrates collected at each station near TMINS, April through November 1989 2-21
2-7 Monthly biomass of benthic macro- invertebrates collected at sampling stations near TMINS, April through November 1989 2-23
2-8 Biomass and percent composition of macroinvertebrates collected at each station near TMINS, April through November 1989 2-24
2-9 Monthly density of the dominant macroinvertebrate taxa collected from stations near TMINS, April through November 1989 2-26
2-10 Monthly biomass of key macro- invertebrate taxa collected from stations near TMINS, April through November 1989 2-27
2-11 Three-factor analysis of variance test results for Limnodrilus hoffmeisteri collected from stations near TMINS, April through November 1989 2-28
2-12 Summary of Tukey's studentized range test for Limnodrilus hoffmeisteri collected near TMINS, April through November 1989 2-28
2-13 Monthly diversity values for the macroinvertebrates collected at stations near TMINS, April through November 1989 2-29
2-14 Percent similarity indices for the macroinvertebrate communities collected at stations near TMINS, April through November 1989 2-29
2-15 Percent similarity indices for the macroinvertebrate communities collected at stations near TMINS, 2-30
3-1 Location and description of ichthyoplankton stations sampled in York Haven Pond. 3-17
3-2 List of scientific and common names of ichthyoplankton collected from the Susquehanna River near TMINS, 1989 3-18
3-3 Spatial distribution of ichthyoplankton numbers and diversity taken by push net at eight stations in York Haven Pond, April through August 1989 3-19
3-4 Temporal distribution of ichthyoplankton number taken at eight stations in York Haven Pond, April through August 1989 3-20
Table Page
3-5 Summary of ichthyoplankton densities taken at eight stations in York Haven Pond, April through August 1989 3-21
3-6 Length frequency distribution and life stage of common carp taken by push net in York Haven Pond, 1989 3-21
3-7 Length frequency distribution and life stage of spottail shiner taken by push net in York Haven Pond, 1989 3-22
3-8 Length frequency distribution and life stage of spotfin shiner taken by push net in York Haven Pond, 1989 3-22
3-9 Length frequency distribution and life stage of mimic shiner taken by push net in York Haven Pond, 1989 3-23
3-10 Length frequency distribution and life stage of quillback taken by push net in York Haven Pond, 1989 3-23
3-11 Length frequency distribution and life stage of channel catfish taken by push net in York Haven Pond, 1989 3-24
3-12 Length frequency distribution and life stage of pumpkinseed/bluegill taken by push net in York Haven Pond, 1989 3-24
3-13 Length Erequency distribution and life stage of tessellated darter taken by push net in York Haven Pond, 1989 3-25
3-14 Length frequency distribution and life stage of banded darter taken by push net in York Haven Pond, 1989 3-25
3-15 Three-factor analysis of variance test results for ichthyoplankton densities collected at eight stations in York
Haven Pond, April through August 1989 3-26
3-16 Summary of Tukey's studentized range test for ichthyoplankton densities collected at eight stations in York Haven Pond, April through August 1989 3-27

4-8	Length frequency, total and mean weight, condition factor, and reproductive status per 5 mm FL interval of mimic shiner collected by seine near TMINS in 1989..............	4-25
4-9	Percent similarity indices of species composition between seine stations near TMINS, April through November 1989...................	4-27
4-10	Relative contribution of key species to the annual seine catches near TMINS, 1977 through 1989.	4-28
4-11	```Incidence of parasites, diseases, and/or morphological anomalies on fishes captured by seine near TMINS, April through November 1989```	4-29
5-1	Location and description of AC electro- fishing stations sampled in York Haven Pond......	5-21
5-2	List of scientific and common names of fishes collected by the AC electrofisher from the Susquehanna River near TMINS in 1989....	5-22.
5-3	Temporal distribution of fishes taken by the AC electrofisher near TMINS in 1989...........	5-23
5-4	Distribution of fishes taken by the AC electrofisher at stations sampled near TMINS in 1989.	5-24
5-5	Percent family composition at the AC electrofishing stations sampled in York Haven Pond, April through November 1989...........	5-25
5-6	Spatial and temporal catch-per-minute data for fishes taken by the AC electrofisher near TMINS in 1989.................................	5-26
5-7	Two-factor analysis of variance test results for electrofishing catch-per-minute data collected near TMINS, April through November 1989.	5-27

Table Page
5-9 Percent similarity indices of speciescomposition between the electrofishingstations near TMINS, 19895-29
5-10 Comparison of percent similarity indices of species composition between the electrofishing stations near TMINS, 1976 through 1988 vs. 1989 5-30
5-11 Three-factor analysis of variance test results for electrofishing catch-per-minute data collected near TMINS, April through November 1976 through 1989 5-31
5-12 Summary of Tukey's studentized range test for electrofishing catch-per-minute data collected near TMINS, Apríl through November 1976 through 1989 5-32
5-13 Incidence of parasites, diseases, and/or morphological anomalies on fishes captured by the AC electrofisher near TMINS, April through November 1989 5-33
6-1 List of scientific and common namesof fishes observed during creel surveyinterviews from the Susquehanna Rivernear TMINS, 19896-18
6-2 Monthly summary of anglers, fish caught, fish kept, hours fished, catch/effort, and harvest/effort from areas near TMINS, 1989 6-19
6-3 Two-factor analysis of variance testresults for anglers, fish caught, fishkept, and hours fished near TMINS,April through November 19896-20
6-4 Summary of Tukey's studentized range test for creel survey data by area, 1989 6-21
6-5 Comparison of weekday and weekend day creel surveys from each survey area near TMINS, 1989. 6-22
6-6 Comparison of anglers, fish caught, fish kept, hours fished, catch/effort, and harvest/effort between creel survey zones in the General Reservoir, 1989 6-23
6-7 Comparison of General Reservoir boat and shore anglers by fish caught, fish kept, hours fished, catch/effort, and harvest/ effort, 1989 6-23
6-8 Monthly summary of Eishes caught and kept by anglers in the Susquehanna River near TMINS, 1989 6-24
6-9 Number and percent composition of fishes caught and kept from areas near TMINS, April through November 1989 6-25
6-10 Percent similarity indices of species composition of fishes caught and harvested from the creel survey areas near TMINS, 1989 6-26
6-11 Use of catch by anglers interviewed near TMINS in 1989 6-27
6-12 Summary of annual creel survey totals for anglers, fish caught, fish kept, hours fished, catch/effort, and harvest/effort near TMINS, 1975 through 1989 6-28
6-13 Two-factor analysis of variance test results for creel survey data near TMINS, 1975 through 1989 6-29
6-14 Summary of Tukey's studentized range test for creel survey data by area and year, 1975 through 1989 6-30
7-1 Water quality criteria for selected physicochemical parameters analyzed near Three Mile Island 7-9

7-2	Monthly mean, minimum, and maximum values of water quality parameters at all York Haven Pond biological stations, Three	
	Mile Island Nuclear Station, 1989	7-10
7-3	Two-factor analysis of variance test results for selected water quality parameters collected near TMINS,	
	April through November 1989	7-11
7-4	Summary of Tukey's studentized range test for selected water quality parameters collected in York Haven	
	Pond, April through November 1989...................	7-12
7-5	Mean, minimum, and maximum values of water quality and physical parameters at the macroinvertebrate stations near TMINS,	
	April through November 1989.....	7-13
7-6	Range and mean river flow obtained from the River Forecast Center for April through November 1980 through 1989....................	7-14
7-7	Mean, minimum, and maximum values of water quality parameters taken at the macroinvertebrate stations near TMINS, April through November, 1974 through 1989...............	7-15
7-8	```Three-factor analysis of variance test results for selected water quality parameters collected near TMINS, 1974 through l989..```	7-16
7-9	Summary of Tukey's studentized range test for selected water quality parameters collected near TMINS, 1974 through 1989............	7-17
A-1	Number and biomass of benthic macroinvertebrates by station, replicate, and life stage taken near TMINS, April 1989.......	A-1
A-2	Number and biomass of benthic macroinvertebrates by station, replicate, and life stage taken near TMINS, May 1989................	A-4
A-3	Number and biomass of benthic macroinvertebrates by station, replicate, and life stage taken near TMINS, June 1989.......	A-7

Table Page
A-4 Number and biomass of benthic macro- invertebrates by station, replicate, and life stage taken near TMINS, July 1989 A-10
A-5 Number and biomass of benthic macro- invertebrates by station, replicate, and life stage taken near TMINS, August 1989 A-13
A-6 Number and biomass of benthic macro- invertebrates by station, replicate, and life stage taken near TMINS, September 1989 A-16
A-7 Number and biomass of benthic macro- invertebrates by station, replicate, and life stage taken near TMINS, October 1989 A-19
A-8 Number and biomass of benthic macro- invertebrates by station, replicate, and life stage taken near TMINS, November 1989 A-22
B-1 Number and density of ichthyoplankton collected from York Haven Pond on 6 April 1989 B-1
B-2 Number and density of ichthyoplankton collected from York Haven Pond on 11 April 1989 B-2
B-3 Number and density of ichthyoplankton collected from York Haven Pond on 17 April 1989 B-3
B-4 Number and density of ichthyoplankton collected from York Haven Pond on 24 April 1989 B-4
B-5 Number and density of ichthyoplankton collected from York Haven Pond on 3 May 1989 B-5
B-6 Number and density of ichthyoplankton collected from York Haven Pond on 22 May 1989 B-6
B-7 Number and density of ichthyoplankton collected from York Haven Pond on 29 May 1989 B-7
Table Page
B-8 Number and density of ichthyoplankton collected from York Haven Pond on 6 June 1989 B-8
B-9 Number and density of ichthyoplankton collected from York Haven Pond on 12 June 1989 B-10
B-10 Number and density of ichthyoplankton collected from York Haven Pond on 21 June 1989 B-12
B-11 Number and density of ichthyoplankton collected from York Haven Pond on 27-28 June 1989 B-14
B-12 Number and density of ichthyoplankton collected from York Haven Pond on 6 July 1989 B-16
B-13 Number and density of ichthyoplankton collected from York Haven Pond on 10 July 1989 B-18
8-14 Number and density of ichthyoplankton collected from York Haven Pond on 17 July 1989 B-20
B-15 Number and density of ichthyoplankton collected from York Haven Pond on 24 July 1989 B-22
B-16 Number and density of ichthyoplankton collected from York Haven Pond on 1 August 1989 B-23
B-17 . Number and density of ichtyoplankton collected from York Haven Pond on 7 August 1989 B-24
B-18 Number and density of ichthyoplankton collected from York Haven Pond on 16 August 1989 B-26
B-19 Number and density of ichthyoplankton collected from York Haven Pond on 21 August 1989 B-28
B-20 Number and density of ichthyoplankton collected from York Haven Pond on 29 August 1989 B-30
C-1 Fishes taken by seine on 13 April 1989 near TMINS. $\mathrm{c}-1$
C-2 Fishes taken by seine on 22 May 1989 near TMINS. C-2
C-3 Fishes taken by seine on 30 May 1989 near TMINS. C-3
C-4 Fishes taken by seine on 8 June 1989 near TMINS. C-4
C-5 Fishes taken by seine on 21 June 1989 near TMINS. C-5
C-6 Fishes taken by seine on 14 July 1989 near TMINS C-6
C-7 Fishes taken by seine on 3 August 1989 near TMINS. C-7
C-8 Fishes taken by seine on 16 August 1989 near TMINS C-8
C-9 Fishes taken by seine on 7 September 1989 near TMINS. C-9
C-10 Fishes taken by seine on 18 September 1989 near TMINS C-10
C-ll Fishes taken by seine on 18 October 1989 near TMINS. C-11
C-12 Fishes taken by seine on 2 November 1989 near TMINS C-12
D-1 Fishes taken by the AC electrofisher on 19-20 April 1989 near TMINS D-1
D-2 Fishes taken by the AC electrofisher on 24-25 May 1989 near TMINS D-2
D-3 Fishes taken by the AC electrofisher on 30-31 May 1989 near TMINS. D-3
D-4 Fishes taken by the AC electrofisher on 13-14 June 1989 near TMINS D-4
D-5 Fishes taken by the AC electrofisher on 28-29 June 1989 near TMINS D-5
D-6 Fishes taken by the AC electrofisher on 25-26 July 1989 near TMINS D-6
D-7 Fishes taken by the AC electrofisher on 9-10 August 1989 near TMINS D-7
D-8 Fishes taken by the AC electrofisher on 22-23 August 1989 near TMINS D-8
D-9 Fishes taken by the AC electrofisher on 12-13 September 1989 near TMINS D-9
D-10 Fishes taken by the AC electrofisher on 26-27 September 1989 near TMINS D-10
D-ll Fishes taken by the AC electrofisher on 4-5 October 1989 near TMINS D-11
D-12 Fishes taken by the AC electrofisher on 7 November 1989 near TMINS D-12
E-1 Creel data reported for each survey day in April 1989, at the General Reservoir E-1
E-2 Creel data reported for each survey day in April 1989, at the West Dam. E-2
E-3 Creel data reported for each survey day in April 1989, at the East Dam. E-3
E-4 Creel data reported for each survey day in April 1989, at the York Haven Generating Station. E-4
E-5 Creel data reported for each survey day in May 1989, at the General Reservoir. E-5
E-6 Creel data reported for each survey day in May 1989, at the West Dam E-6
E-7 Creel data reported for each survey day in May 1989, at the East Dam E-7
E-8 Creel data reported for each survey day in May 1989, at the York Haven Generating Station. E-8
E-9 Creel data reported for each survey day in June 1989, at the General Reservoir E-9
E-10 Creel data reported for each survey day in June 1989, at the West Dam. E-10
E-ll Creel data reported for each surveyday in June 1989, at the East Dam.E-11
E-12 Creel data reported for each survey day in June 1989, at the York Haven Generating Station E-12
E-13 Creel data reported for each survey day in July 1989, at the General Reservoir. E-13
E-14 Creel data reported for each survey day in July 1989, at the West Dam. E-14
E-15 Creel data reported for each survey day in July 1989, at the East Dam. E-15
E-16 Creel data reported for each survey day in July 1989, at the York Haven Generating Station E-16
E-17 Creel data reported for each survey day in August 1989, at the General Reservoir E-17
E-18 Creel data reported for each survey
day in August 1989, at the West Dam E-18
E-19 Creel data reported for each survey day in August 1989, at the East Dam E-19
E-20 Creel data reported for each survey day in August 1989, at the York Haven Generating Station E-20

E-22 Creel data reported for each survey day in September 1989, at the West Dam.E-22E-23 Creel data reported for each surveyday in September 1989, at the East Dam.E-23
E-24 Creel data reported for each survey day in September 1989, at the York Haven Generating Station. E-24
E-25 Creel data reported for each survey day in October 1989, at the General Reservoir E-25
E-26 Creel data reported for each surveyday in October 1989, at the West DamE-26
E-27 Creel data reported for each survey day in October 1989, at the East Dam $\mathrm{E}-27$
E-28 Creel data reported for each survey day in October 1989, at the York Haven Generating Station. E-28
E-29 Creel data reported for each survey day in November 1989, at the General Reservoir E-29
E-30 Creel data reported for each survey day in November 1989, at the West Dam E-30
E-31 Creel data reported for each surveyday in November 1989, at the East Dam.E-31
E-32 Creel data reported for each surveyday in November 1989, at the York HavenGenerating StationE-32
F-1 Water quality data collected from Zone 1 near TMINS, 1989 F-1
F-2 Water quality data collected from Zone 2 near TMINS, 1989 F-2
F-3 Water quality data collected from Zone 4 near TMINS, 1989 $\mathrm{F}-3$
Table Page
F-4 Water quality data collected from Zone 7 near TMINS, 1989 $\mathrm{F}-5$
F-5 Water quality data collected from Zone 8 near TMINS, 1989. F-7
F-6 Water quality data collected from Zone 9 near TMINS, 1989 F-9
F-7 Water quality data collected from Zone 10 10
near TMINS, 1989. F-11
Figure Page
1-1 Map of the Three Mile Island Nuclear Station aquatic study area 1-15
2-1 Location of benthic macroinvertebratestations sampled in the SusquehannaRiver near TMINS2-31
2-2 Total taxa collected at the benthic macroinvertebrate stations near TMINS, 1976 through 1989 2-32
2-3 Diversity values for the macroinvertebrate communities near TMINS, 1976 through 1989. 2-33
2-4 Annual mean total macroinvertebrate density from stations near TMINS, 1976 through 1989 2-34
2-5 Annual mean densities of Limnodrilus hoffmeisteri at the macroinvertebrate stations near TMINS, 1976 through 1989 2-35
2-6 Annual mean densities of Chironomus decorus group at the macroinvertebrate stations near TMINS, 1976 through 1989 2-36
3-1 Location of ichthoplankton stations sampled in York Haven Pond 3-33
3-2 Percent composition by density of the nine most abundant ichthyoplankton taxa taken in York Haven Pond, April through August 1989 3-34
3-3 Mean river temperature, mean ichtyo- plankton density, and river flow recorded in York Haven Pond, April through August 1989 3-35
3-4 Annual variation in total ichthyoplankton density at selected stations near TMINS, 1977 through 1989 3-36
3-5 Annual variation in total ichthyoplankton density at selected stations near TMINS, 1977 through 1989 3-37
Figure Page
4-1 Location of seine stations sampled in York Haven Pond 4-30
4-2 Annual range of sampling station diversity values, months combined, for seine catches, TMINS aquatic studies 4-31
4-3 Annual range of monthly diverșity values, stations combined, for seine catches, TMINS aquatic studies 4-32
4-4 Annual variation in percent similarity values for selected seine station comparisons, TMINS aquatic studies 4-33
4-5 Annual abundance of spottail shiner in seine catches near TMINS 4-34
4-6 Annual abundance of spotfin shiner in seine catches near TMINS 4-35
4-7 Annual abundance of white sucker in seine catches near TMINS 4-36
5-1 Location of electrofishing stations sampled in York Haven Pond 5-34
5-2 Annual range of sampling station diversity values, months combined, for electrofishing catches, TMINS aquatic studies 5-35
5-3 Annual range of monthly diversity values, stations combined, for electrofishing catches, TMINS aquatic studies 5-36
5-4 Annual variation in percent similarity values for selected station comparison, TMINS aquatic studies 5-37
5-5 Mean annual catch-per-minute data for electrofishing stations near TMINS 5-38
5-6 Mean annual catch-per-minute data for electrofishing stations nearest the TMINS discharge 5-39
Figure Page
6-1 TMINS creel survey area showing survey route and General Reservoir zones 6-31
6-2 Percent of anglers by age group andcounty interviewed in the SusquehannaRiver near TMINS in 1989................................. 6-326-3 Percent composition of channel catfishand smallmouth bass caught and harvestedby anglers near TMINS, 1975 through 19896-33
6-4 Percent composition of rock bass and walleye caught and harvested by anglers near TMINS, 1975 through 1989 6-346-5 Annual trends in the percent of anglerseating at least some of their catch andthose indicating a change in their useof catch due to the 1979 TMINS accident........... 6-35
7-1 York Haven Pond showing numbered water quality zones, macroinvertebrate sampling stations, and the remaining biological sampling stations 7-18

This report presents the 1989 results of aquatic monitoring studies conducted in York Haven Pond, a mainstem impoundment on the Susquehanna River near the Three Mile Island Nuclear station (TMINS) (Figure l-l). Monitoring was executed by personnel of RMC Environmental Services, Inc. under contract to GPU Nuclear Corporation. These monitoring studies were mandated by the TMINS Environmental Technical Specification (ETS) for Unit 2, dated 6 May 1983. All field and laboratory procedures followed specifications provided in the TMI Environmental Controls Policy and Procedures Manual (GPU 1987). The 1989 survey was the third conducted by RMC following 10 years of monitoring by Ichthyological Associates, Inc., and 3 years by EA Engineering, Science, and Technology, Inc.

The objective of the aquatic monitoring studies, as detailed in the Unit 2 ETS, is to obtain a comprehensive data base necessary to establish the natural fluctuations and baseline conditions of various parameters within the ecosystem and on site, and thereby identify any significant biological alterations resulting from the operation of TMINS. The studies focus on water quality, benthic macroinvertebrates, and fish populations; the latter include angler use, harvest, and attitudes. The 1989 studies were
the fourth conducted during TMINS (Unit 1) operation following shutdown in 1979.

The TMINS is located on Three Mile Island about 275 m from the east bank of the Susquehanna River in Londonderry Township, Dauphin County, Pennsylvania (Figure 1-1). The site is at river kilometer 90 , about 16 km southeast of Harrisburg, Pennsylvania. The Station is surrounded, except along its southern border, by a small reservoir formed by York Haven and Red Hill dams. The (York Haven) pond created by the dams extends about 6 km upstream. At the site, the Susquehanna River is about $2,135 \mathrm{~m}$ wide and divided by islands into three channels (west, center, and east). The Intake and Discharge structures for TMINS are located along the west shore of $T M I$ and utilize water from the center channel. The aquatic studies program is conducted within the impounded area, except for creel survey interviews below both dams.

The format of this report is generally consistent for all disciplines studied, and is divided into chapters. The first section in each chapter contains descriptions of sampling stations, methods, and schedules. The next section contains statistical and analytical results of the 1989 studies. Sections on community analysis and multiple-year comparisons form important components of most chapters. Depending on the discipline, other sections cover Eish condition, parasites/anomalies, and comparisons with state

Abstract

water quality criteria. Tables and Eigures are located at the end of each chapter. All references were combined and appear in Chapter 8, which precedes the appendices. Each appendix corresponds to a discipline and contains, at a minimum, individual data points by date, station, taxon, and/or replicate.

SUMMARY

Aquatic monitoring was conducted in York Haven Pond (Susquehanna River) near TMINS between 1 April and 30 November 1989. Program elements consisted of benthic macroinvertebrates, ichthyoplankton, seine, electrofishing, creel surveys, and water quality. This is the 16 th annual report of aquatic monitoring studies at TMINS, and the second prepared by RMC Environmental Services, Inc.

Benthic Macroinvertebrates

Macroinvertebrates were collected monthly at three stations, April through November 1989. A total of 30,588 specimens of 101 taxa was taken. Seven taxa comprised over 87\% of the benthic organisms. Chironomus decorus group and Limnodrilus hoffmeisteri were the most abundant organisms collected. Chironomus decorus group also had the greatest biomass.

In 1989, a total of 356 Asiatic clams Corbicula fluminea) was collected throughout York Haven Pond; most were juveniles.

The community composition at the three stations was compared by number of taxa, diversity and percent similarity indices, density, and biomass. The number of taxa was highest at Station 1A2, followed by $11 A 1$ and 9 Bl . Relative abundance of individuals among the taxa was also similar, as reflected in diversity values of $2.95,2.91$, and 2.53 for Stations 1A2, llAl, and 9Bl, respectively. The percent similarity between stations downstream of the TMINS discharge (11Al and 9Bl) was more similar than comparisons with the control station upstream (lA2). Total station density and biomass were variable and highest at station 9Bl; density and biomass at 1 A2 was lowest, and Station llAl was intermediate.

The monthly number of taxa, density, and biomass was variable. Values tended to be high in the spring (April through June) and fall (September through November) and low in the summer (July and August). These differences were attributed to the variable abundance of Chironomus decorus group, Limnodrilus hoffmeisteri, and to a lesser extent Pisidium and Hexagenia. Because L: hoffmeisteri has historically been the most abundant taxa at TMINS, its 1989 densities were subjected to analysis of variance. Monthly and station densities were significantly different. The
densities of L. hoffmeisteri at the stations were significantly different from each other.
The community measures of number of taxa, diversity, and similarity were also examined from 1976 through 1989. Each measure showed variation among stations and years, but no consistent trends were evident to suggest any influence of TMINS.
In general, macroinvertebrate densities were within the ranges observed previously, but showed a slight decrease from 1988, due principally to decreased densities of Limnodrilus hoffmeisteri. Trends in macroinvertebrate densities were suggestive of natural fluctuations in environmental variables, especially river flow and water temperature, rather than TMINS operation.

Ichthyoplankton

Ichthyoplankton samples were collected weekly from April through August 1989. A total of 9,537 individuals of at least 26 taxa was taken. Six families were represented; cyprinids were the most abundant. Nine taxa comprised over 93\% of the total catch; common carp and quillback were most common.

Larvae were first collected in mid-April, and were abundant from mid-May through mid-June and mid-July through August. Early season spawners were dominated by cyprinids,
catostomids, and percids. Members of the clupeid, cyprinid, ictalurid, and centrarchid families dominated the summer spawn.

Peak densities at individual stations were variable and keyed to the local abundance of one or more of the nine most common taxa. Stations located upstream (13A2) and downstream (11Al) of the TMINS discharge had similar densities. Statistical analysis revealed significant difference for dates, stations, and the date-station interaction. Densities were significantly higher on 6 June and at Station 14Bl. Stations near TMINS were statistically undifferentiated.

Community composition was evaluated by diversity and percent similarity indices. Diversity values ranged from 1.47 to 3.24 for the eight stations. The results were influenced by the extreme abundance of the common carp compared to the other taxa taken at a station. percent similarity values ranged from 20.9 to 88.1%. Stations near TMINS exhibited high diversity and percent similarity values, indicating a similar community compositon.

The 1989 data were compared to data collected from 1977 through 1988. Generally, the number, density, and common species of ichthyoplankton collected in 1989 were within ranges reported previously. Analysis of variance of ichthyoplankton densities for the study period revealed significant differences among years, dates, and stations.

The fluctuations within the ichthyoplankton community were attributed to natural variation in the physical and/or environmental conditions in York Haven Pond.

Seine

Seine surveys at six shoreline stations were conducted once in April, July, October, and November and semimonthly May, June, August, and September 1989. A total of 45,980 fish of 33 species was collected. Most fish (19,616) and greatest biomass (2;974.3 g) occurred at Station 13B5, while most species (26) were taken at Station 16 Al . Most fish (11,821) were captured on 18 September. Peak biomass $(1,836.3 \mathrm{~g})$ occurred on 21 June.

Minnows ranked first in family composition, and comprised 91.5% of the total catch. The mimic shiner comprised 59.9% of the catch and was the most abundant species. Other common species were the spotfin shiner (28.1뭄), bluegill (2.5\%), pumpkinseed (2.1娄), bluntnose minnow (1.6%), gizzard shad (1. 2%), spottail shiner (1.1\%), and tessellated darter (1.0\%).

The length-weight measure of Eish condition (K) was calculated for spotfin shiner and mimic shiner. The mean weights for each species were similar among stations. There was a general trend of increasing K factor with increasing length for each species.

Community composition among stations was compared by diversity and percent similarity indices. Diversity values ranged from 0.88 to 2.88. Diversity values at stations immediately upstream (16Al) and downstream (10A2) of the TMINS discharge were similar. Percent similarity values ranged from 20.0 to 88.3%. The similarity of community composition at stations immediately above and below the TMINS discharge was also high. Examination of both diversity and percent similarity over time (1976 through 1989) revealed no pattern which differentiated TMINS operational periods from non-operational periods.

The 1989 catch abundance was within the range observed since 1977. Patterns of annual abundance of spotfin shiner, spottail shiner, and white sucker at stations near TMINS were suggestive of natural spatial and temporal variation rather than any influence of TMINS.

Occurrence of parasites, diseases, and morphological anomalies was identified on 24 species. Black spot (fluke cysts), glochidia, pugheadedness, and skin infections were most prevalent. Patterns of parasitic infection and morphological anomalies observed in 1989 were similar to those reported previously, and reflected natural trends in parasite life cycles, water temperature, and natural conditions in York Haven Pond.

Electrofishing surveys at six nearshore stations were conducted once in April, July, October, and November, and semimonthly in May, June, August, and September 1989. A total of 6.299 fish of 28 species was taken. Most fish (1,234) were taken at Station l0A3, while species ranged from 18 to 22 among the stations. No consistent pattern of temporal abundance was evident.

Sunfishes ranked first in family composition at all stations, comprising at least 75.1% of the catch. The pumpkinseed comprised 32.4% of the catch and was the most abundant species in 1989. Other common fishes were smallmouth bass (14.8\%) and bluegill (12.0\%).

Analysis of the spatial and temporal differences in the 1989 catch-per-minute data revealed no significant differences among seasons, yet stations were significantly different. The seasonal catch-per-minute data at the individual stations were variable and revealed only minor differences. Thus, the 1989 distribution of Eish in York Haven Pond appeared unrelated to TMINS operation.

The length-weight measure of fish condition (K) was calculated for pumpkinseed, bluegill, and smallmouth bass. The monthly mean length and weight for pumpkinseed decreased from April through August, and fluctuated thereafter. The monthly mean length and weight for bluegill declined from

April through July, fluctuated in August and September, before increasing through November. The mean length and weight for smallmouth bass fluctuated throughout the study period. In general, K factors for these species were highest in May and were probably associated with the reproductive condition of the fish. The K factors of these species were similar to those reported from other water bodies. A comparison of annual K factors for pumpkinseed and smallmouth bass revealed year to year differences for each species, which were related to the natural variation in the populations of these fishes.

Community composition was compared among stations by diversity and percent similarity indices. Diversity ranged from 2. 60 to 3.21. Pairwise station comparisons of percent similarity ranged from 41.0 to 82.8%. For stations upstream and downstream of the TMINS discharge, station diversity and percent similarity were generally within historic ranges.

Annual, monthly, and spatial trends in fish abundance were analyzed by ANOVA; all factors were significant. Substantial year to year variation in catch rates obscured any trend. The 1989 catch ranked second highest among all years (1976 through 1989). There was no statistical grouping of operational and non-operational years. Stations immediately above and below the TMINS discharge were undifferentiated statistically for the study period. This
suggested that fish abundance was affected by natural fluctuations in fish populations and environmental factors.

A variety of parasites, diseases, and/or morphological anomalies was observed on 22 fishes in 1989. The most prevalent were skin infections, anchor worms (Lernaea spp.), and leeches. Patterns of parasitic infection and morphological anomalies observed in 1989 were similar to those reported previously. The low frequencies of affliction encountered on fishes in York Haven Pond reflected natural conditions.

Creel Surveys

Roving creel surveys were conducted on two weekend days and two weekdays each month, April through November 1989. A total of 2,535 anglers was interviewed. They fished for 5,751.00 hours and caught 9,607 fish of which 2,018 were. harvested. The resultant catch and harvest per hour was 1.67 and 0.35 fish, respectively. The angler community was made up primarily of middle-aged York County residents who fished from boats or from shore on weekends. No angler reported a change in catch usage as a result of the 1979 TMINS accident. Most angler effort and success took place in the General Reservoir creel area. Fishes most frequently caught were smallmouth bass, rock bass, sunfishes (Lepomis spp.), and channel catfish.

Analysis of variance revealed that fishing pressure and success varied among creel survey areas in 1989, but months were not significant in terms of number of anglers, fish caught, fish kept, and hours fished. The General Reservoir supported the highest number of anglers, fish caught, and hours fished. Harvest was slightly higher at the York Haven Generating Station, but was statistically undifferentiated from the General Reservoir and East Dam areas.

Creel data from 1975 through 1989 were examined to identify any trends in the York Haven Pond sport fishery. The number of anglers interviewed in 1989, their hours fished, and the fish caught and harvested were among the highest for the study period. Analysis of variance of the multiple-year data set identified the General Reservoir and York Haven Generating Station creel areas as supporting higher levels for all measures of effort and success than the East and West Dam areas. Yearly ranking for number of anglers, fish caught and kept, and hours fished placed 1989 second highest for all variables.

Channel catfish, rock bass, smallmouth bass, and walleye have been the most abundant fishes caught and harvested over the study period. Relative to other years, 1989 produced slight decreases in percent catch of channel catfish and walleye, and a slight increase for rock bass and smallmouth bass. The percent of harvest for rock bass and smallmouth
bass increased slightly, while channel catfish and walleye harvest decreased.

Water Quality

Selected water quality parameters were measured at specific locations throughout York Haven Pond in 1989. Values determined for water temperature, pH , dissolved oxygen (DO), and total dissolved solids (TDS) were compared to specific water quality criteria established by the Pennsylvania Department of Environmental Resources for the Susquehanna River. Only pH exceeded the specified criteria, but no adverse effects were observed that were related to the operational status of TMINS.

The water quality data collected in 1989 was largely influenced by the high river flow, but some typical seasonal patterns were evident for a number of parameters. Generally, mean values for water temperature, surface and bottom velocities, and river flow tended to be higher in the spring or summer than in the fall. The TDS, pH , and conductivity readings were lower in the spring or summer and higher in the fall. Do was inversely related to water temperature. Seasonal and spatial differences in water temperature, pH, DO, and TDS were analyzed. All parameters exhibited significant differences among months. Only pH and

TDS produced significant differences among sampling zones, but they were considered biologically insignificant.

Water quality and physical characteristics measured at the stations along the west shore of TMI appeared quite homogeneous. Mean river flow in 1989 was the highest to date. Water temperature, pH, DO, and TDS data for the macroinvertebrate stations were examined for 1974 through 1989. Although some year to year differences were evident, the 1989 data generally fell within the ranges observed previously.

Individual measurements of water temperature, pH, DO, and TDS were analyzed to evaluate annual differences (1974 through 1989). Years and months differed significantly for all parameters. Sampling station differences were significant only for TDS. Statistically significant yeargroup differences were unrelated to years of TMINS operation or non-operation.

Based on analysis of 16 years of data for water temperature, pH , and DO, and 12 years for TDS, there is no evidence of significant influence of the TMINS discharge on these parameters. Annual and spatial trends appear to be natural and related to meteorological and/or hydrological cycles.

Figure 1-1. Map of Three Mile Island Nuclear Station aquatic study area.

2.1 METHODS

Benthic macroinvertebrate samples were collected at three nearshore stations in the Susquehanna River near Three Mile Island Nuclear Station (TMINS) (Figure 2-1). Specific locations and habitat characteristics are described in Table 2-1. Samples were collected monthly at each station, April through November 1989. Benthic macroinvertebrate field and laboratory methods followed GPU (1987).

Four replicate samples were collected at each station on each sampling date with a standard Ponar grab sampler (529 cm^{2}). Samples were washed through a U. S. Standard No. 30 sieve in the field to remove excess mud, placed in one or more sample containers, and preserved in a mixture of 70 to 80% isopropanol and rose bengal stain. The stain facilitated sorting of macroinvertebrates from the detritus and sediment present in the sample. Samples were labeled, data sheets completed, and water quality measurements taken in accordance with GPO (1987).

In the laboratory, stained samples were washed through a U. S. Standard No. 30 sieve to remove excess dye and isopropanol. A portion of the sample was placed into a white enamel pan and all macroinvertebrates removed; this procedure was repeated until all macroinvertebrates had been removed from the entire sample. Organisms were placed in
vials with 70 to 80% isopropanol according to taxonomic group (i.e., Mollusca, Oligochaeta, Chironomidae). Specimens damaged beyond identification were not enumerated. Every tenth oligochaete was placed into a separate vial for species identification. After completing a sample, the remaining detritus was preserved in 70 to 80% isopropanol and retained for quality control purposes.

All specimens from each sample were enumerated and identified to the lowest possible taxon using taxonomic keys, reference collections, and pertinent literature, with the exception of the chironomid and oligochaete groups. Only portions of these two groups were used for identification in order to retain a sufficient number of organisms for biomass estimates $\left(\mathrm{mg} / \mathrm{m}^{2}\right)$. The subsampling protocol for chironomids and oligochaetes is discussed in GPU (1987). The oligochaetes and chironomids used in weight determinations were not identified directly. Identifications were inferred from the subsamples mounted for species determinations. After the molluscs were identified, they were placed in a 7 M solution of HCl to dissolve the calcareous shells, and rinsed in water. This was necessary to permit biomass comparisons with the other taxonomic groups collected. Once identified, organisms were dried at 55 C for 24 hours to determine weight.

Macroinvertebrate counts were converted to density (number $/ \mathrm{m}^{2}$) for all analyses. All weights are presented
as biomass ($\mathrm{mg} / \mathrm{m}^{2}$). Temporal and spatial comparisons were made using analysis of variance (ANOVA) and indices of diversity and percent similarity. Diversity values were computed using the Shannon-Wiener diversity index (H^{\prime}). This index is expressed as:

$$
H^{\prime}=-\sum_{i=1}^{s}\left(\frac{n_{i}}{N}\right) \quad \log _{2}\left(\frac{n_{i}}{N}\right)
$$

where

$$
\begin{aligned}
& \mathrm{H}^{\prime}=\text { information per individual, } \\
& \mathrm{n}_{\mathrm{i}}=\text { total number of individuals in } \mathrm{i}^{\text {th }} \text { species, and } \\
& \mathrm{N}=\text { total number of individuals. }
\end{aligned}
$$

This index takes both total abundance and number of taxa into account when arriving at an estimate of diversity (Brower and Zar 1977).

Since diversity is primarily concerned with the distribution of organisms among the taxa collected, two communities made up of completely different species assemblages may have identical diversity values. Therefore, it is desirable to estimate community similarity in conjunction with the diversity estimation. Similarity in community composition among stations was investigated by an index of percent similarity, which is expressed as:

$$
\mathrm{PSC}=100-0.5 \sum|\mathrm{~A}-\mathrm{B}|
$$

where
PSC = the percent similarity and
$|A-B|=$ absolute value of the difference between the percentage of a species in samples A and B. This is a quantitative measure of the relative similarity of the community composition and species abundance between two samples being compared (Whittaker and Fairbanks 1958). Values of this index range from 0 (no similarity) to 100 (identical communities).

Analysis of variance (ANOVA) was used to determine whether any observed variations in Limnodrilus hoffmeisteri densities among dates, stations, or replicates were significant in 1989. ANOVAs were performed on logarithmic transformed densities |loge (density+1)| as was done in previous years (EA 1985, 1986, 1987; RMC 1988a, 1989). If ANOVA indicated significant differences, Tukey's studentized range test was used to determine which data group(s) differed significantly. The ANOVAs were conducted using SAS software, Version 6 (SAS Institute, Inc., Cary, NC).

2.2 TEMPORAL AND SPATIAL DISTRIBUTION: 1989

Results of 1989 macroinvertebrate collections are presented in Appendix A. A total of 30,588 specimens of 101 taxa was taken in 96 collections (Table 2-2). A chironomid, Chironomus decorus group (11,845 specimens, 38.7%) and an
oligochaete, Limnodrilus hoffmeisteri (9,539, 31.2\%), together comprised 69.9% of the total macroinvertebrate abundance. Five other taxa: Pisidium (1,721, 5.6\%), Hexagenia (1,252, 4.1\%), Procladius (1,092, 3.6\%), Gammarus fasciatus (685, 2.2\%), and Cryptochironomus fulvus group (619, 2.0\%) comprised an additional 17.5\% of the benthic abundance. The remaining 94 taxa accounted for less than 13\% of the total abundance; 64 taxa contributed less than 10 specimens each.

Following collection of an Asiatic clam, Corbicula fluminea, by seine in 1984, special effort was made to look for this species during routine collections for all study disciplines. During the 1989 benthic and fisheries surveys, a total of 356 C. fluminea was collected (Table 2-3). The benthic surveys accounted for 195 specimens, and represented the first collection of C. fluminea since the inception of the program. Standard shell lengths ranged from 1.0 to 19.3 mm. Over 96% were juveniles ($\leq 10.0 \mathrm{~mm}$), while the others were considered adults about one to two years old. Age structure followed RMC (1988b). Most (92.4\%) were taken at fisheries seine station 13B5 (along the west shore of York Haven Pond) and macroinvertebrate station $1 A 2$ (upstream of the TMINS discharge). However, additional specimens were taken at six other locations throughout York Haven Pond.

2.2.1 Spatial Distribution

During 1989, 69 taxa were collected at Station 1A2 and 61 and 53 were collected at 11 Al and 9 Bl , respectively (Table 2-4). Total station density was variable ranging from 3,918 organisms $/ \mathrm{m}^{2}$ at Station 1A2 to $7,849 / \mathrm{m}^{2}$ at Station 9Bl (Table 2-5). The midge, Chironomus decorus group and the oligochaete, Limnodrilus hoffmeisteri were numerically dominant at all stations (Table 2-6). These two taxa accounted for over 65% of the total benthic abundance at Stations 1A2 and 11A1, and 75.3\% at 9B1. C. decorus group density was greatest at Stations 9Bl (2,635/m²) and llal ($2,462 / \mathrm{m}^{2}$); the overall density at lA2 was slightly less $\left(1,900 / \mathrm{m}^{2}\right)$. L. hoffmeisteri was second in total benthic abundance; density was highest at Station 9B1 (3,270/m2). The mollusc, Pisidium, was the third most abundant taxa at Station llAl $\left(532 / \mathrm{m}^{2}\right)$, and was common at Stations $9 B 1\left(286 / \mathrm{m}^{2}\right)$ and $1 \mathrm{~A} 2\left(199 / \mathrm{m}^{2}\right)$. The mayfly, Hexagenia, was the third most abundant taxa at Stations $9 \mathrm{Bl}\left(298 / \mathrm{m}^{2}\right)$ and $\mathrm{lA} 2\left(228 / \mathrm{m}^{2}\right)$. The midge, Procladius, was most abundant at Station llal (302/m²), and was also numerous at Station $9 \mathrm{Bl}\left(239 / \mathrm{m}^{2}\right)$. The amphipod, Gammarus fasciatus, was abundant at Stations llal ($179 / \mathrm{m}^{2}$) and $9 \mathrm{Bl}\left(162 / \mathrm{m}^{2}\right)$. The midge,

Cryptochironomus fulvus group was abundant at Stations 9Bl
($162 / \mathrm{m}^{2}$) and liAl $\left(151 / \mathrm{m}^{2}\right)$, but occurred less frequently at station $1 \mathrm{~A} 2\left(53 / \mathrm{m}^{2}\right)$.

Biomass trends for the three stations were similar to those observed for density (Table 2-7). The total biomass was highest at station $9 \mathrm{BI}\left(1,796.8 \mathrm{mg} / \mathrm{m}^{2}\right)$, intermediate at Station llal ($1,624.4 \mathrm{mg} / \mathrm{m}^{2}$), and lowest at Station 1A2 ($1,379.0 \mathrm{mg} / \mathrm{m}^{2}$). Three taxa (Chironomus decorus group, Limnodrilus hoffmeisteri, and Hexagenia) made up 82.8% of the biomass at station 1A2, 76.4% at Station 11A1. and 86.8% at Station $9 B 1$. The midge, C. decorus group, the most dominant taxon in terms of annual density was also the dominant taxon in terms of biomass $\left(580.0 \mathrm{mg} / \mathrm{m}^{2}\right.$) (Table 2-8). It was also the dominant taxon at each station, comprising from 33.6 to 40.3% of the individual station biomass. The numerically abundant taxon, L. hoffmeisteri $\left(273.2 \mathrm{mg} / \mathrm{m}^{2}\right.$) and the mayfly, Hexagenia (460.6 $\mathrm{mg} / \mathrm{m}^{2}$) also made up a large portion of the annual biomass. L. hoffmeisteri comprised a large portion of the biomass at stations 9 Bl and 11A1; it ranked second at Station $9 \mathrm{Bl}\left(473.7 \mathrm{mg} / \mathrm{m}^{2}\right)$, and third at Station llal $\left(264.5 \mathrm{mg} / \mathrm{m}^{2}\right)$. Hexagenia composed a large portion of the biomass at all stations, and ranked second at Staions 1A2 and 11A1. Among stations, biomass at Station 9B1 supported the most even distribution of these three taxa.

2.2.2 Temporal Distribution

Numbers of macroinvertebrate taxa collected at each station varied with sampling date, but were generally highest in the fall. Monthly, the number of taxa collected ranged from 34 in July to 52 in November. Variation in number of taxa was least at Station liAl, ranging from 24 (August) to 32 (May), and greatest at Stations 1A2 and 9Bl (range 16 to 40). However, the number of taxa collected from August through November were similar at Stations llal and 9B1 (Table 2-4).

Monthly densities in 1989 increased from April to a peak in June, declined in July, and increased to a secondary peak in September (Table 2-5). Generally, individual station densities followed similar trends, peaking in June, then decreasing only to increase to a secondary peak in September (1A2 and 1lAl) or November (9Bl). These peaks were largely attributable to increased densities of Chironomus decorus group and Limnodrilus hoffmeisteri, and to a lesser extent, Pisidium and Hexgenia (Table 2-9). L. hoffmeisteri densities showed two peaks of abundance: in September at Stations 1A2 and llAl and May at 9Bl. Differences in periods of peak abundance may indicate that the L. hoffmeisteri breeding cycles were not synchronous among the stations. \mathbf{C}. decorus group were more limited in their abundance, as most (64.08) were collected in June.

Populations of \underline{C}. decorus group peaked in June at all stations.

Monthly biomass values increased Erom April to a minor peak in June, declined through August, and peaked in November (Table 2-7). Individual station biomass values followed similar trends. High biomass values in June were primarily due to Chironomus decorus group, which comprised nearly 67% of the monthly biomass (Table 2-10). The elevated biomass in November resulted mostly from C. decorus group and Hexagenia nymphs, which accounted for 80.9% of the monthly biomass. Biomass trends for C. decorus group were similar to density trends; peak biomass occurred in June and November, and represented 63.6% of its annual biomass. L. hoffmeisteri biomass values generally followed density trends; high in the spring (May at Stations la2 and llal or June at 9B1), low during the summer (July and August), and increasing in the Eall (September at Stations 11Al and 9Bl or November at 1A2). The slight difference between density and biomass peaks at the stations indicated the presence of smaller individuals. Biomass trends for Hexagenia were similar to those for density at Station 9Bl. However, biomass at Stations 1A2 and 11Al was low during peak abundance in September, indicating that these, too, were smaller individuals.

A three-factor ANOVA was performed on log-transformed densities of Limnodrilus hoffmeisteri, to assess trends with
respect to sampling month and station (Table 2-11). L. hoffmeisteri was selected because of its historical abundance at all stations. The ANOVA indicated significant differences among stations and months. Tukey's studentized range test was used to determine which stations and months were significantly different (Table 2-12). Comparison of the monthly means showed June to rank lowest and September highest; they were significantly different from each other. However, mean densities for all other months were similar. The Tukey's studentized range test for station differences indicated that densities of L . hoffmeisteri were significantly different from each other. Interaction of station and month differences was also significant. Thus, densities for the three stations did not exhibit the same trends from one sample month to another, which weakens any meaningful interpretation of these differences.

2.3 COMMUNITY ANALYSIS: DIVERSITY AND SIMILARITY

Diversity of benthic macroinvertebrates in 1989 was calculated with the Shannon-Wiener Index (H^{\prime}). Annual station values were very similar at Stations IA2 (2.95) and llal (2.91) (Table 2-13). Monthly station H^{\prime} values were variable and ranged from 0.97 in June at lA2 to 3.35 in November at llal. Overall, diversity was low in the spring and summer and high in the fall (September through November). This generally reflected the evenness component
(distribution of individuals within taxa) rather than richness (number of taxa). Lower diversity values were usually associated with the numerical dominance of a particular taxon. The low diversity value observed in June was attributed to a substantial increase in the abundance of Chironomus decorus group at all stations, especially la2 where it comprised over 86% of the organisms (21 taxa). Higher H^{\prime} values in the fall were the result of a more even distribution of individuals amont the taxa.

Such variability in diversity probably reflect a relatively low habitat complexity (Poole 1974). The primarily silt and clay substrate at all three stations limits community composition to predominantly infaunal species. A more varied substrate composition, including greater amounts of other substrate components (i.e., cobble, gravel, coarse detritus) may provide a more diverse habitat and increase available niches for a greater number of taxa.

Substantial seasonal variability in community composition characterized the 1989 benthic macroinvertebrate collections. Monthly percent similarity indices (PSc) among station pairs varied from 44.1% between Stations $1 A 2$ and $9 B 1$ in April, to 90.3% between Stations $11 A 1$ and $9 B 1$ in June (Table 2-14). The low PSc between Stations $1 A 2$ and 9Bl in April was due to the high proportion of Limnodrilus hoffmeisteri at Station $9 B 1$ relative to its proportion at 1A2. Pair-wise station comparisons for 1989 indicate that
the stations downstream of the TMINS discharge (llAl and 9BI) has a higher percent similarity (81.8%) than the other station pairs. Benthic communities at Stations 1 A2 and 9Bl were least similar to each other (70.08). The differences among PSc values in 1989 were probably attributed to microhabitat differences among stations.

2.4 MULTIPLE-YEAR COMPARISON

To determine differences between the 1989 benthic community data and data collected previously (1976 through 1988), comparisons were made of the number of taxa, diversity and percent similarity indices, total macroinvertebrate density, and density of key taxa.

Total number of macroinvertebrate taxa collected at each station over the l4-year period has been highly variable, especially at Station lA2 (Figure 2-2). Number of taxa in 1989 was within the range observed previously at all stations. Compared to 1988, the number of taxa in 1989 was higher at each station. Number of taxa collected in 1989 was generally comparable to that collected from 1984 through 1988, which was a period of reduced taxa at all stations. The 1989 spatial trends in number of taxa differed from those of 1984 to 1986, with Station 1A2 having the greatest number of taxa, followed by Stations llal and 9Bl. In previous years (1984 to 1986), Station llal yielded the
greatest number of taxa; Station lA2 was greatest in 1976 through 1983 and 1988; and Station 9Bl was greatest in 1987.

Comparison of 1989 Shannon-Wiener diversity values (H') with those for 1976 through 1988 indicated that the 1989 values were among the highest observed in the 14 -year period (Figure 2-3). In fact, the H^{\prime} values at Stations llAl and 9Bl were the highest to date. The H^{\prime} values have steadily increased since 1984 at Station llal. Diversity at Station $1 A 2$ declined slightly in 1989 but was still within the range observed previously. The 1989 values were most similar to the higher values recorded prior to 1984. Diversity relationships among stations for 1989 were similar to those observed for operational years (1976 to 1978). Diversity at Station lA2 was higher during the operational years, 1976 through 1978 and 1988, than those years following the TMINS shutdown (1979), when diversity at Stations 11A1 and 9BI was comparable to Station 1A2.

The PSc values for 1976 through 1989 ranged from 57 to 95\% (Table 2-15). Percent similarity for the three station pairs was usually greater than 75%, indicating a high degree of similarity among station communities. The l4-year PSc data, for each station pair, indicated that similarity between each of the station pairs was comparable. The two downstream stations, llAl and 9Bl, exhibited the greatest similarity (83 percent), while the least similarity (78 percent) occurred between the upstream control station (lA2)
and the station located $1,975 \mathrm{~m}$ downstream of TMINS (9Bl). In 1989, percent similarity between all station pairs increased from the values reported in 1988 , and were within the ranges reported prior to 1988. The differences that existed were attributable to minor shifts in current velocity and substrate composition. Generally, the same type of benthic community existed at all three stations. Total macroinvertebrate density (number $/ \mathrm{m}^{2}$) at all stations was highly variable over the years, suggesting the effect of variable environmental conditions (Figure 2-4). Past reports have cited fluctuating river flow (resulting from flood or drought), water temperature trends, substrate differences, and insect life cycles as some of the sources for the long-term fluctuations observed at the TMINS stations. Generally, overall densities decreased from the period of plant operation (1976 to 1978) to the period following TMINS shutdown at all stations. Total benthic density in 1989 decreased over that reported in 1988, especially at Station 1lAl. This was primarily due to a large decrease in Limnodrilus hoffmeisteri abundance. The decrease in density likely resulted from the higher river Elow (noted in Chapter 7) in 1989 which increased scouring of the bottom sediment transporting organisms downstream. Spatial density trends for 1989 showed a pattern reminiscent of that observed during non-operational years. Prior to the TMINS shutdown in 1979, densities were greatest at Station

$$
2-14
$$

11Al; after shutdown, stations $1 A 2$ or $9 B 1$ had the greatest benthic abundance.

Limnodrilus hoffmeisteri has consistently been the dominant benthic macroinvertebrate in the TMINS collections, comprising 47 to 84\% of the total abundance from 1976 through 1988. Density of L. hoffmeisteri in 1989 ranked second and comprised 31.2% of the total abundance. Generally, \underline{L}. hoffmeisteri densities were high during the period 1976 through 1980 , and much reduced from 1981 through 1984 (Figure 2-5). Since 1985, L. hoffmeisteri densities have been variable. In 1989 densities declined to a level comparable to that collected during 1981 to 1984. Density at Station $1 A 2$ (upstream of the TMINS discharge) in 1989 was the lowest to date and represented an 82.9% decrease from that reported in 1988. Densities at stations 1141 and 9B1, although reduced substantially from 1988 levels, were within the range of previous years.

The decrease in L. hoffmeisteri density in 1989 suggested a natural depression in the population. Low densities of \underline{L}. hoffmeisteri may be due to scouring of the bottom sediment from the high river flow and/or to deposition of recently transported silt and mud. Some increase in L. hoffmeisteri density occurred from August through October when river flow decreased. Cooler water temperatures in the spring and summer may have also affected
the population decrease. Thus, this taxon was likely responding to natural environmental conditions.

The midge, Chironomus decorus group, second in annual abundance prior to 1989, was the most abundant taxa accounting for 38.7% of the total density. Annual station densities of \mathbb{C}. decorus group have varied by an order of magnitude over the study period (Figure 2-6). No consistent pattern among stations was evident. In 1989, C. decorus group densities increased sharply at all stations. In fact, densities at Stations llAl and 9Bl were the highest recorded to date, while density at 1A2 was the highest since 1986.

None of the station abundance data for the benthic macroinvertebrate taxa appear to have been influenced by TMINS. Fluctuations in environmental variables, especially river flow and water temperature, seem to exert the predominant influence on the benthic communities in York Haven Pond.

TABLE 2-1.
Location and description of benthic macroinvertebrate stations sampled in the Susquehanna River near Three Mile Island Nuclear Station.
Station Number Location and Description

TM-MI-IA2*	Southwest St, Johns Island at mouth of channel between Three Mile Island and St. Johns Island, 1 to 15 m offshore. Water depth varied from 0.3 to 3.5 m. Substrate sometimes stratified ranging from silt and clay to gravel. In the absence of stratification, most substrate composed of silt,
clay, fine sands, and organic detritus.	

TABLE 2-2 CONTINUED.

TABLE 2-3
Shell length frequency (5 mm groups) and relative age (years) of Corbicula fluminea collected by seine and ponar grab near TMINS, May through November 1989.

Length (mm)	Seine*					Benthost			Total	$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$
	1385	10B5	16A1	10A2	983	1A2	11AI	9 BI		
0-5.0	91	1	1	1	1	183	2	1	281	<0.5
5.1-10.0	39	-	7	3	5	7	-	-	61	0.5-1.0
10.1-15.0	3	-	-	2	3	2	-	-	10	1.1-1.5
15.1-20.0	4	-	-	-	-	-	-	-	4	1.6-2.0
Total	137	1	8	6	9	192	2	1	356	

* Station prefix TM-SE- deleted from table.
+ Station prefix TM-MI- deleted from table.

TABLE 2-4
Number of macroinvertebrate taxa collected each month at stations near TMINS, April through November 1989.

| Station | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Total. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TM-MI-1A2 | 22 | 22 | 21 | 17 | 23 | 38 | 21 | 40 | 69 |
| TM-MI-11A1 | 27 | 32 | 29 | 25 | 24 | 27 | 25 | 27 | 61 |
| TM-MI-9B1 | 18 | 16 | 26 | 16 | 25 | 26 | 26 | 27 | 53 |
| Total | 39 | 37 | 39 | 34 | 37 | 46 | 39 | 52 | 101 |

TABLE 2-5
Monthly density (number $/ m^{2}$) of benthic macroinvertebrates collected at the sampling stations near TMINS, April through November 1989.

| Station | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Total
 Mean |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TM-MI-1A2 | 813 | 1692 | 8001 | 1262 | 2060 | 7538 | 3596 | 6385 | 3918 |
| TM-MI-11A1 | 3043 | 3818 | 14910 | 4532 | 2486 | 8672 | 6144 | 6810 | 6302 |
| TM-MI-9B1 | 5619 | 5884 | 23748 | 2297 | 5548 | 6446 | 6526 | 6725 | 7849 |
| Total Mean | 3158 | 3798 | 15553 | 2697 | 3365 | 7552 | 5422 | 6640 | 6023 |

TABLE 2-6 DENSITY (NUMBER/m2) AND PERCENT COMPOSITION OF MACROINVERTEBRATES COLLECTED AT EACH STATION NEAR TMINS, APRIL THROUGH NOVEMEER, 1989.

Spectes	iA2		11A'		981	
	Density	Percent	Dansity	Percent	Density	Parcent
	12	0.3	52	0.8	18	0.2
Actinobdelia inequiannulata	,	0.0	1	0.0	.	.
Amnicola		.	1	0.0	i	0.0
Anodonta cataracta	12	0.3	81	1.3	124	1.6
Arcteonais lomondi	12	0.3	81	1.3	124	1.6
Aulodrtlus pluriseta	5	0.1 1.6	30	0.0	80	1.0
Botnrioneurum vejdovskyanum	61	1.6	3	0.0	1	0.0
Branchiura sowerby 1	24	0.6	1	0.0	-	-
Caenis	6	0.2	1	0.0	;	0.0
Cectdomy ildae			.		1	0.0
Centroptilum	26	0.7	30	0.5	32	0.4
Ceratopogonidae Chaoborus	2	0.7		0	,	0.0
Cheumatopsyche			34	0.0	35	
Chiranamid pupae	26	0.7	34	0.5	2635.	33.6
Chironomus decorus	1900	48.5	2462	39.1	2635	
Chrysops	1	0.0	19	0.3	73	0.9
Coelotanypus	7 113	0.2	19	0.3	1	0.0
Corbicula fluminea	113	2.9	6	0.1	1	0.0
Cricotopus	53	1.3	151	2.4	162	2.1
Cryptotendipes	-	.	4	0.1	i	0.0
Demicryptochironomus	;		1	0.0	;	0.0
Dolichopodidae	1	0.0	-	-		,
Dromogomphus	18	0.0		0.1	3	0.0
Dubiraphia	18	0.5	6	0.1	3	0.0
Dugesia Dugesta tigrina	2	0.1	2	0.0	-	-
Dugesta tigrina Elimia virginica	2	0.1	1	0.0	.	.
Enchysraefdes	1	0.0	. .	.	4	0.0
Epoicocladius		.	5	0.1		
Erpobdelitdae	4		1	0.0	-	
Ferrissta	4	0.1	179	2.8	162	2.1
Gammarus fasciatus	64	1.6	179	2.8	162	0.0
Glyptatendipes	-	\bullet			1	0.0
Gomphidae	1	0.0	1	0.0	1	0.0
Harnischia Helobella elongets	24	0.6	44	0.7	27	0.3
Helobdella elongata	24	0.6	15	0.2	27	.
Helobdella stagnalis		-	15		1	0.0
Hemerodromia	228	5.8	214	. 3.4	298	3.8
Hexagenia	22		1	0.0	.	.
Hyorobaenus	1	0.0			1	
Hydrollmax grisua	6	0.2	71	1.1	81	1.0
Hydropsycne	1	0.0			5	0.0
Ilyodrilus templetoni	22	0.6	21	0.3	35	0.5
Labrundinia	1	0.0	,	.	.	-
Lepldostoma	1	0.0	'		-	-
Leptoceridae			1	0.0		
Leptophlebitdae	1	0.0			56	0.7
Limnodrilus claparedtanus	18	0.5	17	0.3	3270	0.7
Limnodrilus noffmelsteri	686	17.5	1679	26.6	3270	41.7

TABLE 2-6 CONTINUED.

Specias	142		11 A 1		881	
	Danstty	Percent	Density	Percent	Density	Percent
Limnodrilus udekemianus	19	0.5	-	,	19	0.2
Lumbriculidae	2	0.0		.	2	0.0
Macrumia sp	1	0.0	$\stackrel{\square}{6}$		i	
Manayunkia speciosa	.	.	26	0.4	1	0.0
Microchironomus	;	0.0		0.2	1	0.0
Musculium	1	0.0	12	0.2	103	13
Musculium transversum	24	0.6	76 2	0.0	103	1.3
Nanocladius	1	0.0	.			
Nematoda	24	0.6	39	0.6	6	0.1
Nema tomorpha	.	.	1	0.0	1	0.0
Neurecilipsis	;		1	0.0	2	0.0
Oecetis	1	0.0	1	0.0	2	0.0 0.0
Optioservus	-	-	-	-	2	0.0 0.0
Paratanytarsus	;	0.0				
Petrophtla	61	0.0 1.6	105	1.7	12	0.2
Prysa	1	0.0	1	0.0	.	.
Physidae	1	0.0	1	0.0		
Pisidium	199	5.1	532	8.4	286	3.6
Polycentropus sp		O.	,	-	1	0.0
Polypedilum convitum	2	0.1	,	-	.	-
Polypedilum fallax	2	0.1	11	0.2	13	0.2
Polypedilum scalaenum	32	0.8	11	0.2	13	0.2
Polypedium illinoense	1	0.0	2	0.0	-	-
Potamanthus	.	,	1	0.0	-	-
Potamia	-	\cdots	1	0.0	-	-
Pristina synclites	8	0.2	$30 \dot{0}$	4.8	239	3.0
Procladius	104	2.7	302	A.B	239	
Prodiamesa	6	0.2	-	-	1	0.0
Promoresia Prostoma	2	0.1	1	0.0	.	0.0
Protoptila	1	0.0	7		1	
Qutstadrilus multisetosus	1	0.0	\%	0.1	1	0.0
Rneotanytarsus	4	0.1	3	0.0	4	0.0 0.0
Sialis	1	0.0	$\dot{6}$	0.1	1	0.0
Stenelmis	1	0.0	.		.	.
Stylurus	2	0.1	2	0.0	7	
Tanytarsus	69	1.7	34	0.5	37	0.5
Tendipedidae=chironomidae	1	0.0	1	0.0	.	-
Thienemanamyta	2	0.1	1	0.0	i	0.0
Tipulidae	;		-	-		
Tricorythidae	1	0.0	-	-	-	
Tricorythodes	1	0.0	$\stackrel{\square}{+}$.	9	0.1
Zavrella group	1	0.0
Zavrelimyia	1	0.0	-	-	-	-

TABLE 2-7
Monthly biomass ($\mathrm{mg} / \mathrm{m}^{2}$) of benthic macroinvertebrates collected at the sampling stations near TMINS, April though November 1989.

| Station | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Total Mean |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| TM-MI-1A2 | 174.8 | 545.8 | 820.9 | 259.0 | 347.8 | 2066.2 | 1687.6 | 5130.0 | 1379.0 |
| TM-MI-11A1 | 914.9 | 1200.8 | 2653.1 | 1145.6 | 369.6 | 1772.2 | 1668.7 | 3270.3 | 1624.4 |
| TM-MI-9B1 | 1263.7 | 1310.5 | 4958.8 | 509.0 | 506.1 | 1176.3 | 1473.1 | 3150.3 | 1796.8 |
| Total Mean | 784.5 | 1019.1 | 2819.9 | 637.8 | 407.8 | 1671.6 | 1609.8 | 3850.2 | 1600.1 |

table 2-8 COntinued.

Species	142		11 A 1		981	
	Blomass	Percent	Biomess	Percent	Biomess	Percent
Limnodrilus udekemianus	2.4	0.2	-	-	2.1	0.1
Lumbriculidae	1.6	0.1	.	.	M	M
Macrumia sp	3.0	0.2	-	.		,
Manayunkia spectosa	.	.	1.1	0.1	0.1	0.0
Micrachironomus		.	-		0.1	0.0
Musculium	0.3	0.0	4.5	0.3	.	
Musculium eransversum	7.4	0.5	31.3	1.9	18.4	1.0
Na is	M	M	M	M	,	.
Nenocladus	M	M				
Nematoda	2.1	0.1	3.8	0.2	0.5	0.0
Nematomorpha	.	.	0.1	0.0	0.2	0.0
Neureclípsis	$0 \cdot$	$0 \cdot 0$	0.1	0.0	$0 \cdot 4$	
Oecetis	0.1	0.0	0.1	0.0	0.4	0.0
Opt foservus	0.6	0.0
Paratanytarsus			-	-	M	M
Petropnila	0.1	0.0				
Phaenopsectra	4.8	0.4	17.6	1.1	0.9	0.1
Physa	0.1	0.0	0.5	0.0	.	.
Physidae	0.1	0.0	0.1	0.0		
Ptstaium	24.8	1.8	64.0	3.9	36.2	2.0
Polycentropus sp			.	.	0.1	0.0
Polypedilum convitum	0.2	0.0	-	-	.	.
Polypedilum fallax	0.1	0.0	$1 \cdot$	0.1		
Polypedilum scalaenum	2.3	0.2	1.4	0.1	0.2	0.0
Polypedium 1llinaense	M	M	0.6	0.0	.	-
Potamanthus	.	.	0.2	0.0	.	-
Potamia		.	0.1	0.0	-	-
Pristina syncittes	0.1	0.0	,			
Procladius	7.2	0.5	36.2	2,2	31.2	1.7
Prodiamesa	0.6	0.6	.	.		
Promoresia	$0 \cdot 1$	$0 \cdot$	$0 \cdot 1$		0.2	0.0
Prostoma	0.1	0.0	0.1	0.0	.	.
Protoptila	0.1	0.0	-		$0 \cdot 1$	
Quistadrilus multisetosus	M	M	0.5	0.0	0.1	0.0
Rheotanytarsus	0.3	0.0	0.1	0.0	M	M
Sialis	0.1	0.0	3. 5		4.6 0.4	0.3 0.0
Stenelmis	5.3	0.4	3.5	0.2	0.4	0.0
Stenonema	0.1	0.0	1.		.	.
Stylurus	13.4	1.0	31.1	1.9	\%	
Tanytarsus	6.3	0.5	2.1	0.1	2.8	0.2
Tendipedidae=cmironomidae	M	M	M	M	.	.
Thlenemantmyia	M	M	M	M		
Tlpulidae			-	-	0.4	0.0
Tricorythidae	0.3	0.0	-	,	.	-
Tricorythodes	0.2	0.0	-	.	12	0.1
Tubificidae	i	-	.	-	1.2	0.1
Zavrella group	M	M	-	.	-	-
Zavrelimyia	M	M	-	-	-	-

Note: (.) Indicates that no indtuiduals were collected
(M) indicates that individuals were collected but the weight was less than the sensitivity of the balance, or individuals were not weighed.

TABLE 2-9
Monthly density (number $/ \mathrm{m}^{2}$) of the dominant macroinvertebrate taxa ($>2 \%$ of the total organisms) collected from stations near TMINS, April through November 1989. Dashes indicate taxa not present.

	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Total Mean
TM-MI-1A2	236 572	80 312	6890 11460	${ }_{1266}$	487	2448	1583	1564	2462
TM-MI-11AI TM MI-9El	572 539	326	17495	1293	695	378	524	832	2635
TM-MI-1A2	208	572	61	501	666 1309	1612 3379	1784	737	1679
TM-MI-11Al	1649 4050	1654 4230	1640 4064	2283 1616.	1309 3280	3426	3606	1886	3270
TM-MI-9B1									
TM-MI-1A2	52	113	42 397	142	85 109	326	2018	1158	532
TM-MI-9E1	90	80	170	85	302	487	520	553	286
						865	553	402	228
TM-MI-1n2	-	5	28	19	24	865	392	558	214
$\begin{aligned} & \text { TM-MI-IINI } \\ & T M-M I-9 B 1 \end{aligned}$	5	5	19	1989	+ 5	354	695	1295	298
TM-MI-1A2	19	236	47 52	146	80 47	532	327	227 992	302
TM-MI-11A1 TM $-\mathrm{MI}-9 \mathrm{Cl}$	+ 340	340	71	146	128	250	118	662	239
TM-MI-1A2	$\bar{\square}$	9	232	33 175	42	151	28 47	184 406	64 179
TM-MI-11A1	9	222	378	175	${ }_{38} 38$	137	38	406 66	
TM-MI-9Bl	-	-	950	66	38	137	38	66	
TM-MI-11A1	52	123	19	118	198	146	274	274	151
TM-MI-9BI	90	33	19	42	515	246	104	250	162
TM-MI-1A2 $T M-M I-I A I ~$	298 676	945 1153	704 936	402	269	1983	728	1120	783
TM-MI-9BI	506	874	959	184	586	1167	922	1181	797

TABLE 2-10
Monthly biomass $\left(\mathrm{mg} / \mathrm{m}^{2}\right)$ of key macroinvertebrate taxa ($>1.6 \%$ of the total biomass) collected from stations near TMINS, April through November 1989. Dashes indicate taxa not present.

	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Total Mean
TM-MI-IA2	137.0	86.5	638.0	160.7	136.6	1109.2	6.6	2176.7	544.8
'M-MI-21起	622.9	314.3	1542.5	303.9	70.9 107.8	667.3	157.8	679.1 330.0	G 38.7
IM-M1-リBl	534.3	368.1	3479.7	43.5	107.8	132.3	109.2	330.0	G30.7
Hexagenia - 407.71233042213 .1									
TM-MI-1A2		11.8	104.0	237.2	8.0	487.7 263.2	1233.0		429.9
TM-MI-11AI	169.6	11.8	296.8 276.0	237.2 70.4	8.0 26.0	263.2 210.3	752.4 746.2	1869.6 2078.0	447.1
TM-MI-9Bl	169.6	-	276.0	70.4	26.0	210.3	746.2	2070.0	
Limnodrilus hoffmeisteri 81.6									
TM-MI-1A2	217.8	169.2	485.3	47.2 191.9	47.7 156.9	124.8		84.1	264.5
TM-MI-11AI	217.4 404.5	311.9 626.6	485.3 986.8	191.9 333.2	156.9 223.5	413.5	254.7 441.9	300.6	473.7
TM-MI-9B1	404.5	626.6	986.8	333.2	223.5	472.1			
Pisidium 24.8									
TM-MI-1 12	6.1	14.2	5.2	17.0	10.9	25.5 39.2	238.2	135.6	64.0
TM-MI-11A1	0.9 13.2	18.9 21.3	51.5 20.3	14.6 10.9	12.8 36.4	58.6	62.4	66.2	36.2
TM-MI-9B1	13.2	21.3	20.3	10.9	36.4	58.6	62.4	66.2	
Gammarus fasciatus 21.0									
TM-MI-1A2	- 5	12.3	14.2	57.7	0.5 2.4	0.5 35.0	2.8 18.9	106.3	34.0
TM-MI-11AI	0.5	30.2	21.3 119.1	57.2 14.2	2.4	35.0 46.8	18.9 18.9	15.9	30.0
TM-MI-9B1	-	-	119.1	14.2	4.7	46.8	18.9	35.9	
TM-MI-1A2	0.9	35.4	2.8 10.9	11.3	4.7	90.3	33.1	93.1	36.2
IM-MI-11N1	10.4	35.4 73.7	10.9 10.9	11.3	8.7 8.0	39.2	12.3	40.6	31.2
TM-MI-9B1	64.7	73.7	10.9	-	0.0	3.2			
TM-MI-1^2	26.9	263.7	26.7	28.4	147.4	263.7	213.6	302.4	251.1
TM-MI-11A1	62.8	478.3 220.7	244.8	329.4 36.9	113.9 99.7	263.9 216.9	213.6 82.2	298.2	140.1
TM-MI-9BI	73.2	220.7	93.1	36.9	99.7	216.9	82.2	290.2	140.1

* Significant at $\mathrm{P} \leq 0.01$.

TABLE 2-12
Summary of Tukey's studentized range test for Limnodrilus hoffmeisteri collected near TMINS, April through November 1989. Underlined means are not significantly different ($\mathrm{P}<0.05$) and are ranked from highest to lowest transformed $\left[\log _{e}\right.$ (density +1)] mean. Meāns are listed parenthetically.

Month	$\begin{gathered} \text { Sep } \\ (7.82) \end{gathered}$	$\begin{gathered} \text { May } \\ (7.25) \end{gathered}$	$\begin{gathered} \text { Aug } \\ (7.21) \end{gathered}$	$\begin{gathered} \text { Oct } \\ (7.16) \end{gathered}$	$\begin{gathered} \mathrm{Apr} \\ (6.92) \end{gathered}$	$\begin{gathered} \text { Nov } \\ (6.89) \end{gathered}$	$\begin{gathered} \text { Jul } \\ (6.83) \end{gathered}$	$\begin{gathered} \text { Jun } \\ (6.51) \end{gathered}$
Station	$\begin{gathered} \text { TM-MI-9BI } \\ (7.97) \end{gathered}$		$\begin{gathered} \text { TM-MI-11AI } \\ (7.23) \end{gathered}$		$\begin{aligned} & -1 A 2 \\ & 03) \end{aligned}$			

TABLE 2-13
Monthly diversity values (H^{\prime}) for the macroinvertebrates collected at stations near rMINS, April through November 1989.

Station	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	
TM-MI-1A2	3.27	2.82	0.97	2.42	2.74	2.71	2.99	3.04	2.95
TM-MI-11A1	2.44	3.15	1.47	2.28	2.42	2.64	2.89	3.35	2.91
TM-MI-9B1	1.63	1.75	1.34	1.70	2.24	2.71	2.48	3.19	2.53

| Monthly
 Diversity
 (H') | \vdots | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TABLE 2-14
Percent similarity indices for the macroinvertebrate communities collected at stations near TMINS, April through November 1989.

| Station Pairs | Apr | May | Jun | Jul | Aug | Sep | Oct. | Nov | Annual |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| lA2-llAl* | 54.6 | 52.6 | 83.7. | 77.3 | 66.1 | 68.7 | 51.4 | 60.6 | |
| lA2-9Bl | 44.1 | 46.3 | 80.6 | 62.8 | 62.0 | 45.5 | 63.2 | 49.3 | 70.0 |
| llA1-9B1 | 74.3 | 63.5 | 90.3 | 72.7 | 83.3 | 70.9 | 44.8 | 65.4 | 81.8 |

* Station prefix TM-MI- deleted from table.

TABLE 2-15
Percent similarity indices for the macroinvertebrate communities
collected at stations near TMINS, 1976 through 1989 .

Figure 2-1. Location of benthic macroinvertebrate stations sampled in the Susquehanna River near TMINS (station prefix TM-MI- deleted).

STATION

Figure 2-2. Total taxa collected at the benthic macroinvertebrate stations near TMINS, 1976 through 1989.

STATION

Figure 2-3. Diversity values for the macroinvertebrate communities near TMINS, 1976 through 1989.

STATION

1 A2
11A1
$9 B 1$

Figure 2-4. Annual mean total macroinvertebrate density (No./sq.m.) from stations near TMINS, 1976 through 1989.

STATION

Figure 2-5. Annual mean densities (No./sq. m.) of Limnodrilus hoffmeisteri at the macroinvertebrate stations near TMINS, 1976 through 1989.

STATION

Figure 2-6. Annual mean densities (No./sq. m.) of Chironomus decorus group at the macroinvertebrate stations near TMINS, 1976 through 1989.

3. ICHTHYOPLANKTON

3.1 METHODS

Ichthyoplankton samples were collected weekly at eight stations in York Haven Pond, April through August 1989 (Table 3-1 and Figure 3-1). Stations were sampled at night and in a random order on each date to minimize any time bias (Nardacci and Associates 1979).

Two replicate samples were taken at each station with a pair of $0.5 \mathrm{~m}(0.5 \mathrm{~mm}$ mesh) plankton nets mounted to square frames. A detachable cup was fastened to the cod end of each net to facilitate removal of the sample. The nets were deployed off the bow of a boat, and set immediately beneath the water surface. The boat was maneuvered upstream, 10 to 20 m offshore, for four minutes. This allowed coverage of about 200 m of shoreline at each station; actual distance covered varied with river flow conditions. The volume of water filtered through each net was measured with a General Oceanics digital flowmeter (Model 2030) mounted in the center of each net mouth. Flowmeters were calibrated in accordance with GPU (1987).

At the end of each sample run, nets were rinsed three times and replicate filtrates were poured into separate sample jars. Samples were immediately preserved in 20% formalin and transported to the laboratory. Physicochemical data recorded for all collections were time, air and surface
water temperatures, dissolved oxygen concentration, pH , and surface water velocity. On each date, river flow lat 0700 h) was obtained from the River Forecast Center in Harrisburg, Pennsylvania.

In the laboratory, samples were rinsed; specimens sorted; and the ichthyoplankton stored in 40% isopropanol. Specimens were examined under a binocular dissecting microscope and identified to the lowest feasible taxon using various taxonomic references (Auer 1982; Buynak and Mohr 1978a, 1978b, 1979a, 1979b, 1979c, 1980; Hardy 1978; Jones et al. 1978; Lathrop 1982; Nardacci and Associates 1978; Snyder et al. 1977; Wang and Kernehan 1979).

Larvae that were damaged beyond recognition or too distorted to identify were tabulated as unidentifiable. Larvae of the genus Lepomis and Pomoxis, indistinguishable to species, were categorized as sunfishes or crappies. The category "sunfishes", previously (EA 1985, 1986, 1987) referred to as Lepomis gibbosus/macrochirus (pumpkinseed/bluegill), refers to the same here.

A list of fishes collected in 1989 is presented in Table 3-2. Scientific and common names and taxonomic order of presentation followed Robins et al. (1980).

Following identification, specimens were measured to the nearest 0.5 mm interval (total length, $T L$ or fork length, $F L$ when applicable) with an ocular micrometer or a dial caliper. All specimens were counted; a maximum of 100
individuals of any one species was measured per replicate. Length data for each species were categorized into larvae or young. The larval stage was defined as the early development after hatching during which the yolk sac and larval finfold were absorbed, and the fins and fin rays were formed. The larval stage was subdivided into protolarva, mesolarva, and metalarva after. Snyder (1976). The term young was used to designate fish spawned during the current season which were fully transformed larvae. Young were characterized by the attainment of the adult compliment of rays and/or spines in all fins. Fish greater than 25.0 mm FL were not included in ichthyoplankton data tabulations and consequently are not reported herein.

A quantitative expression of the ichthyoplankton catch converted the number of larvae to density. Density was defined as the number of larvae per 100 cubic meters of water (No. $/ 100 \mathrm{~m}^{3}$). As in previous reports (EA 1985, 1986, 1987; RMC 1988a, 1989), most statistical tests used log-transformed densities in order to linearize and normalize the data, and to reduce differences in catch density variances.

The similarity of species composition among stations was determined by calculating percentage similarity index (PSc), as described in Chapter 2. The ichthyoplankton community diversity was evaluated by calculating the Shannon-Wiener diversity index (H') for each station and date (Chapter 2).

High diversity values indicate an even distribution of individuals among species. Low values are indicative of high abundance of a few species and low abundance of the remainder.

Ichthyoplankton densities were used in a three-factor analysis of variance (ANOVA) to evaluate differences among stations, dates, and replicates within 1989, and among years (1977 through 1989). When significant differences were indicated by the ANOVA ($\mathrm{p} \leq 0.05$), Tukey's studentized range test was used to identify significantly different means (SAS Institute, Inc., Cary, NC).
3.2 COMPOSITION, ABUNDANCE, AND SIZE DISTRIBUTION

Results of weekly ichthyoplankton collections are presented in Appendix B. No fish were taken on 6, 11, and 24 April; therefore, these dates were excluded from most tables and figures. A total of 9,537 individuals of at least 26 taxa was distributed among six families (Table 33). Nine taxa accounted for 93.1% of the catch: common carp (45.2\%), quillback (13.5\%), pumpkinseed/bluegill (7.8\%), channel catfish (6.3\%), mimic shiner (5.9\%), spotfin shiner (4.4\%), tessellated darter (3.6\%), spottail shiner (3.2\%), and banded darter (3.2\%). The dominant families were cyprinids (9 species) and catostomids (4 species), which comprised 61.3 and 13.8% of the total catch, respectively.

Temporal distribution of ichthyoplankton collected in 1989 is shown in Table 3-4. Early spring (April) spawning activity was virtually nonexistent as unusually high river flow resulted in only one larvae being taken. In May, larvae of the early season spawners in the cyprinid, catostomid, and percid families were abundant, accounting for 99.4% of the catch. The most numerous taxa collected were spottail shiner, quillback, tessellated darter, and banded darter.

Peak seasonal abundance occurred on 6 June; the largest number of taxa was collected on 6 and 12 June. Larvae of the late spring and early summer spawners dominated, typically members of the cyprinid and catostomid families. Although taken infrequently, members of the centrarchid and percid families were also present in June. The predominant summer spawners (July and August) were clupeids, cyprinids, ictalurids, and centrarchids; most of which were gizzard shad, spotfin shiner, mimic shiner, channel catfish, and pumpkinseed/bluegill.

The temporal distribution of the most abundant taxa is shown in Figure 3-2. The May through mid-June samples were dominated by common carp, spottail shiner, quillback, tessellated darter, and banded darter. The channel catfish was collected from 21 June through 21 August, but was most abundant from mid- to late July. The pumpkinseed/bluegill was collected intermittently from June through August, but
was most abundant on 16 August. Spotfin shiner and mimic shiner, collected from 6 June through 29 August, were most abundant from late July through August.

Temporal distribution/length frequencies of the most abundant taxa collected in 1989 are presented in Tables 3-6 through 3-14. Most common carp (99.8\%) were protolarvae collected on 6 June. Most spottail shiner (99.0\%) were protolarvae; mean length of larvae was 5.2 mm TL . Spotfin shiner were represented by all life stages; mean length of larvae was 7.8 mm TL. The largest portion of the spotfin shiner catch was protolarvae (58.1\%), and their abundance in July and August was indicative of spawning. Most mimic shiner (88.0%) were protolarvae or mesolarvae from the August samples. The mean length of mimic shiner was 7.4 mm TL. Quillback were primarily protolarvae and averaged 8.3 mun TL. Channel catfish were exclusively young; they were most common on 17 and 24 July , and averaged 16.7 mm TL. The pumpkinseed/bluegill were predominantly protolarvae (88.6\%); most were caught in June and August. Mean larval length was 6.2 mm TL , as most were between 4.6 and 6.5 mm TL . Tessellated darter were primarily protolarvae (97.3\%) taken from 3 May through 24 July. Mean larval length was 5.6 mm TL; most spawning occurred from late May through mid-June. Banded darter were collected from May through August, and were most (70.9%) common between 22 May and 21 June. Most were protolarvae, with a mean length of 6.2 mm TL.

The actual spawning date for all species collected was assumed to be 5 to 10 days prior to the collection of protolarvae (Nardacci and Associates 1984). Most fish eggs hatch 3 to 10 days after fertilization. The hatching time is variable and depends on season, water temperature, and species (Hardy 1978; Jones et al. 1978). Therefore, protolarvae collected represented a relatively recent spawn and/or hatch.

Ichthyoplankton abundance appears to be influenced by water temperature, river flow, and weather conditions. The low ichthyoplankton densities recorded in 1989 may have been the result of record river flow conditions (Chapter 7) coupled with low water temperature which suppressed spawning activity (Figure 3-3). The effects of river flow and water temperature on ichthyoplankton densities may not be evident until 7 to 10 days after a change in these variables occurs. The relationship between river flow and ichthyoplankton densities appears inverse. Peaks in river flow in mid-May and late June were coincident with low ichthyoplankton densities. Ichthyoplankton densities peaked in early June as river temperature began to increase. High river flow immediately after this early peak depressed densities and water temperature. These density decreases may have resulted either from the flushing effect of increased river flow, or from high flow depressing spawning activity. A secondary peak occurred in mid-August as river temperature
began to exceed 20 C consistently and river flow remained low. The influence of temperature on spawning (and hence ichthyoplankton abundance) was similar to findings of Nardacci and Associates (1984), where spawning increased during the spring as water temperature increased.

Ichthyoplankton abundance, expressed in terms of number and density, was greatest at Station 16Al, located along the west shore of TMI (Tables 3-3 and 3-5). Stations 4AI and 1481 ranked second and third in number and density. The common carp was the most abundant larvae at Stations 16Al and 4A1, and comprised over 72% of the catch at each station. Larvae at Station 14Bl were principally mimic shiner, quillback, and pumpkinseed/bluegill. The lowest number of specimens collected at any station, as well as the lowest annual density, was recorded at station 12Al, along the west shore of Shelley Island. Peak densities at individual stations were variable and keyed to the local abundance of one or more of the most common taxa. The ichthyoplankton densities at Station 13A2 (located upstream of the TMINS discharge) and Stations llal (downstream of the TMINS discharge) appeared quite similar.

Differences in ichthyoplankton abundance among stations are related to a variety of factors, including: the availability/suitability of habitat for spawning adults immediately upriver of each station; the effects of river flow on the station area; water velocities within the
station; and recreational activity (i.e., boating, swimming, and camping) at or adjacent to the station. The highest density value in 1989 was recorded at Station 16Al, which is characterized by swift currents and a variety of substrates. In contrast, Station 12Al, with the lowest annual density, was usually characterized by moderate currents and a predominantly mud substrate. Recreational activity around Station 12Al was much heavier than that observed near Station 16Al.

The temporal distribution of ichthyoplankton, differences among stations, and between replicates were examined by a three-factor ANOVA (Table 3-15). Differences among sample dates, stations, and the date-station interaction were significant. The significance of the datestation interaction was expected because of the spatial and temporal variability among species, habitats, and/or spawning times. Tukey's studentized range test results generally indicated that densities were significantly higher from late May through August than in April and early May (Table 3-16). Densities on 6 June were highest and significantly different from all other dates, while all April dates were similar and ranked lowest. The range test of individual station densities indicated that station 14BI was ranked highest and was significantly different from all other stations. The stations located upstream (13A2 and 16A1) and downstream (11A1 and 9Bl) of the TMINS discharge
were similar to each other. These analyses suggest that the operation of TMINS had no detectable effect on ichthyoplankton in York Haven Pond.

3.3 COMMUNITY ANALYSIS: DIVERSITY AND SIMILARITY

The ichthyoplankton community was assessed by indices of species diversity and percent similarity. Shannon-Wiener diversity values (H^{\prime}) ranged from 1.47 to 3.29 for the eight stations, and 0.92 to 2.84 for sample dates (Tables 3-3 and 3-4). Diversity values were variable among sample dates, with higher values occurring in June and August. The highest E^{\prime} value occurred on 12 June. Conversely, a value of 0.92 was recorded on 17 April, as only three specimens of two taxa were collected. The 6 June collection yielded the highest number of specimens and total density, but ranked low in terms of diversity. These results were influenced by the overabundance of the common carp compared to the other taxa.

Ichthyoplankton community diversity was high and nearly equal at Stations 12 Al and $10 \mathrm{B2}$, which are located along the west shore of Shelley Island (Table 3-3). The lowest H^{\prime} value occurred at station 16A1. These results demonstrate an inverse relationship between total number of larvae and community diversity. Stations 12Al and 10 B 2 ranked low in number of individuals, yet had the highest diversity values. Conversely, Station $16 A 1$ ranked highest in number of
individuals and total density, but the species diversity was lowest. This low diversity value was attributable to an extreme abundance of common carp.

Diversities at stations located along the west shore of Three Mile Island ranged from 1.47 to 2.50 (Table 3-3). Mean H' values of the stations located upstream (13A2 and 16A1) and downstream (9Bl and llal) of the TMINS discharge were 1.90 and 2.48 , respectively. These results indicate a similar community diversity among the stations along the west shore of Three Mile Island.

Another measure of the York Haven Pond ichthyoplankton community compared species composition among stations by the percent similarity index (PSc) (Table 3-17). PSc values ranged from 20.9 to 88.1%. The highest PSc occurred between Stations 13A2 and 11A1, located upstream and downstream, respectively, of the TMINS discharge; Stations 12Al and 4Al were least similar. The former stations (13A2 and l1A1) were also very similar in total specimens, total taxa, total density, and species diversity. The mean PSc value among all west TMI stations was 77.7\%, indicating a similar species composition. Generally, stations closely related geographically and/or with similar habitats had similar PSc values.

The relative density of ichthyoplankton collected at seven stations in 1989 was within the ranges noted in previous years (1977 through 1988) (Table 3-18). The density calculated for Station 16Al was the highest to date. The number of larvae collected at individual stations was also within the ranges recorded previously with two exceptions. Station 16 Al yielded the highest number of individuals to date, while Station l4Bl yielded the fewest.

Ten taxa have dominated the catch either intermittently or consistently from 1977 through 1988 (Table 3-19); this trend continued in 1989. The total abundance of six of the dominant taxa in the 1989 catch (common carp, spottail shiner, quillback, pumpkinseed/bluegill, tessellated darter, and banded darter) was within their historical ranges. However, the density of spottail shiner, quillback, and pumpkinseed/bluegill, and the abundance and density of spotfin shiner was the lowest recorded in 13 years. Densities of all other common fishes were within previously established ranges. In addition, the abundance and density of mimic shiner and channel catfish was the highest to date. Changes in the total number and/or density of ichthyoplankton from year to year was likely related to the spawning success of one or more of the common taxa.

Annual changes in the relative abundance and density of predominant species were reflections of variable spawning success modified by environmental factors such as water temperature and river flow (Nardacci and Associates 1984). Historically, river flow has been inversely related to ichthyoplankton density. When river flow exceeded l,000 $\mathrm{m}^{3} / \mathrm{sec}$, low ichthyoplankton densities resulted (Nardacci and Associates 1983). Low density values have also been associated with water temperature below 20 C . These trends in temperature and river flow were demonstrated again in 1989 (Figure 3-3). The average river temperature first exceeded 20 C in early June and coincided with peak density. The density subsequently declined as river flow increased and depressed river temperature (Figure 3-3). Similar high density peaks from late May to early June occurred during most sample years (1977 to 1981 and 1984 to 1987) (EA 1987; Nardacci and Associates 1983; RMC 1988a).

A second, late season (August) peak in ichthyoplankton density was noted in 1989, which corresponded to abundance peaks for spotfin shiner, mimic shiner, and pumpkinseed/bluegill. During and immediately preceeding this period of high density, average river temperature exceeded 20 C and river flow remained low (Figure 3-3). Similar late season density peaks have been noted previously (EA 1987; Nardacci and Associates 1980, 1983, 1984; RMC 1989).

Peak ichthyoplankton density in 1989 was similar to other years and generally was within established ranges. Comparisons of annual density showed 1989 to rank 11 th among the 13 sample years. This low ranking suggests that high river flow conditions (Chapter 7) coupled with relatively low, unstable river temperatures resulted in reduced spawning success of many fishes. During 1989, average river flow exceeded $1,000 \mathrm{~m}^{3} / \mathrm{sec}$ on ten sample dates, while average river temperature exceeded 20 C on 12 of the 20 sample dates.

As noted earlier, high velocities adversely affect all ichthyoplankton. Fish larvae are vulnerable because their small size limits their ability to withstand swift water currents. However, low velocities would have the opposite effect on larvae, and would also benefit spawning adults. Pumpkinseed/bluegill abundances provide an example of river flow/larval density effects. Pumpkinseed and bluegill generally prefer slow water areas with sand, gravel, or mud substrates for spawning and nest-building (Scott and Crossman 1973). High current velocities, such as those recorded during 1989, would limit the amount of spawning habitat available, and lead to a reduction in spawning success. The substantial decrease in pumpkinseed/bluegill abundance in 1989 was attributed to the increase in average river flow. The higher velocties would flush phytoplankton and zooplankton out of the system. These organisms are
important components in the ichthyoplankton diet. With the decreased availability of food, spawning sites, and nursery areas, a decrease in abundance and survival of larvae may be expected.

The annual abundance of ichthyoplankton within York Haven Pond was assessed by a three-factor ANOVA (Table 320). All effects and their interactions were significant. However, date and date-year interaction terms contributed nearly 65\% of the total sum of squares; or 80% of the total explained variance. Since station densities followed similar annual trends (Figures 3-4 and 3-5), significant differences among stations and years were not confounded by the interactions.

Tukey's studentized range test was used to isolate specific differences among annual ichthyoplankton densities (Table 3-21). Sample years 1981 and 1983 were similar and higher than all other years, whereas 1984 ranked lowest and was significantly different from all years. All other years were similar and not significantly different from each other.

Sample dates were consolidated (all years combined) for statistical analyses, and categorized as those within the first to the tenth, the eleventh to the twentieth, or the twenty-first to thirty-first of a given month. Range test results indicated that April and August densities, as well as l-l0 May densities, were significantly lower than all
other sample dates (Table 3-21). Densities recorded for 110 June and 21-31 May ranked first and second, respectively, and were significantly greater than all other sample date groups. These results reinforce density trends mentioned previously.

Tukey's studentized range test, applied to ichthyoplankton station densities over the past 13 years, showed that Station 14 Bl had the highest density (Table 321). The range test also indicated that station 13A2, located upstream of the TMINS discharge, was not statistically distinguishable from the downstream stations (11A1 and 9B1).

Ichthyoplankton abundances and statistical analyses for 1989 were consistent with historical data (EA 1985, 1986, 1987; Nardacci and Associates 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984; RMC 1988a, 1989). The ichthyoplankton community was not influenced by the operation of TMINS. Fluctuations within the ichthyoplankton community appear related to dynamic physical (e.g., spawning habitat/nursery area availability) and/or environmental conditions (e.g., river flow, water temperature) within the Susquehanna River rather than the operation of TMINS.

TABLE 3-1
Location and description of ichthyoplankton stations sampled in York Haven Pond.
Station Number Location and Description

TM-LF-14B1* Beginning from a point 500 m downstream from the fall line riffles along the west shore of York Haven Pond. Water depth varied from 1.0 to 1.5 m . Substrate was mostly boulders, cobbles, pebbles, and some mud. Current velocities+ were generally moderate to slow.

TM-LF-12AI Beginning fromapoint on the west shore of Shelley Island. Water depth varied from 1.0 to 1.5 m . Bottom was mostly mud with some pebbles and gravel. Current velocities were moderate.

TM-LF-13A2 Beginning from a point upstream from the Three Mile Island Nuclear Station Unit 2 intake to a point upstream of Unit 1 intake. Water depth varied from 2.0 to 3.0 m with depths to 8.0 m in front of intake structures. Bottom type was mostly boulders and mud. Current was usually swift.

TM-LF-4AI Beginning at a point along the east shore of Three Mile Island opposite the Unit 2 cooling tower A. Water depth varied from 1.0 to 1.5 m . Bottom was mud with some tree stumps. Current velocities were slow to still.

TM-LF-10B2 Beginning at the southwestern tip of Shelley Island. Water depth varied from 1.0 to 1.5 m . Bottom was mostly mud. Current velocities were moderate.

TM-LF-9B1 Beginning at a point 200 m upstream from the York Haven Dam along the southwestern shore of Three Mile Island. Water depth was about 1 m . Bottom type was mostly mud. Current velocities were moderate.

TM-LF-11AI Beginning at a point 200 m downstream from the Three Mile Island Nuclear Station discharge. Water depth was about 1 m . Bottom was mostly mud. Current velocities were moderate.

TM-LF-l6A1	Beginning at a point 500 m downstream from the north tip of
Three Mile Island along the west shore. Water depth varied	
from 1.0 to 1.5 m . Bottom type was mostly boulders, cob-	
bles, pebbles, and some mud. Current velocities were swift	
to moderate.	

* Prefix TM-LF- deleted from station numbers for discussion in text.
+ Current velocities were surface measurements taken during summer river flow $<566 \mathrm{~m} 3 / \mathrm{sec}(20,000 \mathrm{cfs})$ and defined as $10 \mathrm{w}(<15 \mathrm{~cm} / \mathrm{sec})$, moderate ($16-40 \mathrm{~cm} / \mathrm{sec}$), and swift ($>40 \mathrm{~cm} / \mathrm{sec}$).

TABLE 3-2
List of scientific and common names of ichthyoplankton collected from the Susquehanna River near TMINS, 1989.

TABLE 3-3 SPATIAL OISTRIBUTION OF ICHTHYOPLANKTON NUMEERS, AND DIVERSITY (H)TAKEN BY PUSH NET AT EIGHT STATIONS IN YORK HAVEN POND. APRIL THROUGH AUGUST 1989.

Species	$\begin{gathered} \text { TM-LF- } \\ 14 \mathrm{~B} 1 \\ \text { Number } \end{gathered}$	$\begin{gathered} \text { TM-LF- } \\ 12 A 1 \\ \hdashline \text { Number } \end{gathered}$	$\begin{gathered} \text { TM-LF- } \\ 13 A 2 \\ - \text { Number } \end{gathered}$	$\begin{gathered} \text { TM-LF- } \\ 4 A 1 \\ \hline \text { Number } \end{gathered}$	$\begin{gathered} \text { TM-LF- } \\ \text { IOB2 } \\ \hdashline \text { Number } \end{gathered}$	$\begin{gathered} \text { TM-LF } \\ 9 B! \\ -\cdots+ \\ \text { Number } \end{gathered}$	$\begin{gathered} \text { TM-LF- } \\ 11 A 1 \\ \hdashline \text { Number } \end{gathered}$	$\begin{gathered} \text { TM-LF-- } \\ 16 A 1 \\ \hdashline \text { Number } \end{gathered}$	Total		
									Number	Density	Pct.
Gizzard shad	68		7	141		1	5	11	233	2.51	2.4
Common carp	39	35	563	1181	62	520	496	1417	4313	46.48	45.2
Golden shiner		-	1	.	;	1	-	-	3	0.01	0.0
Comely shiner	39	3	1	3	7	11	5	4	73	0.79	0.8
Spottall shiner	54	7	52	26	35	43	52	37	306	3.30	3.2
Swallowtafl shiner	4	1	1		.	4	2	-	12	0.13	0.1
Spotfin shiner	97	58	27	22	116	37	39	24	420	4.53	4.4
Mimic shiner	338	10	34	15	53	23	72	22	567	6.11	5.9
Bluntnose minnow	10	8	.	13	104	6	12	3	156	1.68	1.6
Creak chub		- ${ }^{\text {a }}$			1			102	1	0.01	0.0
Qutllback	166	116	148	48	115	311	193	192	1289	13.89	13.5
White sucker	3	1	.	1	1	.	1	.	7	0.08	0.1
Northern hog sucker	,	,		2	-		1		3	0.03	0.0
Snortnead redhorse	;	4	2	2	1	1	2		13	0.14	0.1
Yellaw bullhead	1	.	2	.	.	-			3	0.03	0.0
Chanmel cetfish	36	62	104	45	69	100	79	105	600	6.47	6.3
Rock bass	36	12	.	2	2	2	2	1	57	0.61	0.6
Redoreast sunfish	1	18	-		3	1	-	11	23	0.25	0.2
Sunfishes	600	4	11	98	13	4	4	11	745	8.03	7.8
Smallmouth bass	1		.	1		-	-	.	2	0.02	0.0
Largamouth bass	1			-	-	-	-			0.01	0.0
Crappies	2	-		.		-			2	0.02	0.0
Tessellated darter	22	36	24	3	78	139	27	10	339	3.65	3.6
Banded darter	75	44	55	7	25	25	33	37	301	3.24	3.2
Yellan perch			1	;		;	.		17	0.01	0.0
Sniela darter	i	7		1	3	j	5	4	17	0.18	0.2
Unidentifiable fish	6	1.	7	9	3	9	5	7	47	0.51	0.5
Unidentified (eggs)	2	2	.	.	.	-	1	-	5	0.05	0.1
Total number	1603	429	1040	1620	691	1238	1031	1885	9537	100.0	
Totat taxa	24	19	17	19	18	18	19	15	28	28	
Oiverstiy (H)	2.92	3.27	2.32	1.64	3,29	2.47	2.50	1.47	2.83	2.83	

TABLE 3-A TEMPORAL DISTRIBUTION OF ICHTHYOPLANKTON NUMBER TAKEN AT EIGHT STATIONS IN YORK HAVEN POND. APRIL THROUGH AUGUST 1989.

Species	$\begin{gathered} \text { Apri1 } \\ 17 \end{gathered}$	3	$\begin{array}{r} \text { May } \\ 22 \end{array}$	29	6		21	27	6	10	17	24	1	7	$\begin{gathered} \text { August } \\ 16 \end{gathered}$	21	29
Giz2ard shad	-	-	-	2	3	10		1	-	4		-	1	36	7	5	164
Comman caro	-	.	.	.	4224	5	3	2	2	64	3	.	4	3	1	2	,
Golden shiner	-	.	-	*		i	1	-	-	,	;		5	$\stackrel{+}{4}$	-		47
Comely shiner	-	-			13	2	$\dot{\square}$	-	;	1	1	-	5	4	-	-	47
Spottail shiner	-	2	4	42	231	23	2	-	1	-	-	-	*	1	-	;	.
5mallowtatl shiner	-	-	-	-	*	10	1	-	,			$\stackrel{\square}{0}$	-	5		1	
Spotfin shtner	1	.	.	.	5	4	3	1	3	81	19	15	14	57	95	90	32
Mimic shiner	.	.	.	,	B	1	.	.	3	3	21	4	3	64	219	43	198
Qluntnose minnow	.	.	.	-	3	1	-	-	-	.	*	2	14	-	41	23	72
Creek chub	-	.		-	1	-	.	-	-	,	-	*	-	-	-	-	
Quflloack	-	8	53	521	540	124	23	11	7	2	-	-	-	-	-	-	
White sucker	.	.	.	5	2	;	-	-	-	.	-	-	-	-	-	,	
Northern nog sucker	.	.	-	.	-	3			,	,			.	-	.		
Shorthead rediorse	.	-	-	,	3	3	5	9	1	-	-	-		-	-	-	
Yellow bullnead	.	-	-	'.	-	-	,	!	$\stackrel{5}{5}$	1		1	13	14		2	
Channel catfish	-	-	-	:	-		1	1	5	11	422	13	13	1			;
Rock bass	.	.	-	.	10	22	17	-	-	-	3	2	-	16	i	1	1
Redrreast sunfish	-	-		-	5	149	i	\bullet	-	2	10		17	9	466	14	23
Suntishes	-		-	-	54	149	1	-		2	10		17	9			
Smallmouth bass	-	-	-	:	.	1	1	-	-	-	i						
Largemouth bass	-	-	,	-	.	-	.	.	-	.	7						
Crapoies	-	-	3				$\dot{5}$	2	4	8	1	i		*	-		
Tessellated darter	-	9	33	84	133	59	43	15	16		13	7	i			3	1
Banded darter	.	6	78	7	30	53	43	15	16	28	13	7	1	$\stackrel{\square}{*}$	-		
Yellom derch	-	7		5	;	.	*	-	-	-	-	-		-			
Shield darter	-	7	3	5	2	13	;	2	,	;	,	;	1	-	i		
Unidentifiable fish	,	-	2	-	25	13	1	2	;	;	-	i	1	-	.		
Unidentiflad (eggs)	2	1	.	.	.	,	-	1	1	-	-	-	-	-	-	-	
Tota:	3	33	174	666	5287	483	107	38	43	206	501	164	73	205	832	184	538
70tal taxa	2	6	7	7	17	17	14	11	10	12	12	9	10	10	8	+10	\% ${ }^{\text {a }}$
glversity (H)	0.92	2.33	1.84	1.11	1.16	2.84	2.61	2.55	2.76	2.29	1.07	1,19	2.78	2.50	1.65	2.11	2,28

Note; No fish were collected on 06, Il, and 24 April.

table 3-6 Length frequency distribution (0.5 me intervals) and life stage of common carp taken gy push net in york

	table 3-9	LENGT HAVEN	frequuencypond, 1909		distribution LIFE STAGE			$\begin{aligned} & 0.5 \\ & 15 \mathrm{DE} \end{aligned}$	MM INTERVALS) SIGNATED AS P(P			and life stage Rotolarvae). M			of mimic s imesolarva		Hy NER TAKEN E). T(META		BY PUSH NET IN YORK avae). and y(young).			
																					тот	
	Lengetn Incerval (mm)	$\begin{gathered} \text { AD } \\ 17 \end{gathered}$	May_{3}	$\begin{gathered} \text { May } \\ 22 \end{gathered}$	$\begin{array}{r} \text { May } \\ 29 \end{array}$	$\underset{6}{\text { Jun }}$	$\begin{array}{r} \text { Jun } \\ 12 \end{array}$	$\underset{21}{ }$	$\begin{gathered} \text { Jun } \\ 27 \end{gathered}$	Jul_{6}	$\begin{aligned} & \text { Jul } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Jul } \\ & 17 \end{aligned}$	$\underset{24}{ }$	Aug	Aup	$\begin{gathered} \text { Aug } \\ 16 \end{gathered}$	Aug 21	$\begin{array}{r} \text { Aug } \\ 29 \end{array}$	p	\%	T	γ
	$4.1-4.5$.	-	-			-	.	-	-				,	29	1	3	2	35	-	-	
	4.6-5.0	.	;	.	.	5	;	-	-	;	2	13	2	;	21	8	9	25	85	-	.	
	$5.1-5.5$.	.	-	.	3	1	.	.	1	1	9	1	1	10	26	1	3	56	-		
	$5.6-6.0$.	,	.	-	.	.	-	-	1	.	,	;	1	.	42	1	1	46	;	.	
	$6.1-6.5$	-	.	,	.	.	-	.	-	1	-	-	1	,	2	49	.	1	50	2		
	$6.6-7.0$	-	-	.	.	-	2	39	.	5	28	19	.	
	$7.1-7.5$,	-	.	.	\cdot	.	.	-		-	-	.	-	;	25		10	4	31	.	
	$7.6=8.0$.	,	-	-	.	-	-	-	"	-	-	:	-	1	9 3	2	23	-	35 32	:	
	$8.1-8.5$ $8.6-9.0$:	:	-	:	:	:	-	-	:	:	:	:	:	-	3 1	4	25	-	32 27	-	
	8.1-9.5	:	-	\cdots	-	:	"	\bullet	\cdots	:	"	$\stackrel{\square}{*}$	\bullet	:	"	2	5	19	-	24	2	
	9.6-10.0	-	:	,	,	:	,	-	-	:	-	:	:	,	:	3	5	12		15	5	
	10.1-10.5	.	-	:	.	:	-	,	.	.	-	.	.	,	-	2	${ }^{4}$	12		4	14	
	10.6-11.0	,	:	-	,	:	-	:	,	-	-	.	,	-	-	3	2	7	.	.	12	
	11.1 \% 11.5	-	,	.	.	.	-	-	-		-	.	-	-	-	1	2	5	-	-	9	
	11.6-12.0	,	-	-	-	-	-	-	-	-	-	-	:	-	-	-	-	4	\bullet	-	4	2
	$12.1-12.5$ $12.6-13.0$:	:	:	:	*	-	;	-	:	:	\bullet	\vdots	-	"	:	i			:	1	
	13.1-13.5	-	:	:	:	:	:	:	:	"	:	\div	\div	:	:	:	i	3	,	-	.	3
	13.6-14.0	.	:	,	.	:	-	:	:	:	!	-	-	.	.	-	i	2	:	-	-	3
	14.1-14.5	.	-	.	-	-	,	.	-	-	-	.	,	-	-	-	1	1	-	,	-	$\stackrel{2}{2}$
	14.5-15.0	.	,	.	.	.	,	-	,	.	-	.	-	-	;	-	,	1	-	,	-	1
	$15.1-15.5$ 15.5 16.0	-	,	-	-	-	-	-	-	-	-	-	-	-	1	-	,	2	-	-	-	3
	15.6-17.0	:	:	:	:	\div	:	:	:	"	-	:	:	\because	',	\cdots	-	,	:	;	:	1
	17.1-17.5	.	.	-	.	-	,	-	.	:	.	.	;	-	,	1	-		-	-	-	!
	23.6-24.0	,	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	1
ω	Total Parcans ($\begin{array}{r} 304 \\ 54.29 \end{array}$	$\begin{array}{r} 189 \\ 33.75 \end{array}$	$\begin{array}{r} 49 \\ 8.75 \end{array}$	$\begin{array}{r} 18 \\ 3.21 \end{array}$

TABLE 3-11 LENGTH FREQUENCV DISTRIBUTION (0.5 MM INTERVALS) AND LIFE STAGE OF CHANNEL CATFISH TAKEN BY PUSH NET IN VOR LENGTH FREQUENCY DISTRIBUTION (0.5 MM INTERVALS) AND LIFE STAGE OF CHANNEL CATFISH TAKEN BY PUSH NET IN
HAVEN POND, $19 B G$ LIFE STAGE IS DESIGNATED AS P(PROTOLARVAE). M(MESOLARVAE), T(METALARVAE), AND Y(YOUNG).

13.6-14.0	-	-	,	-	,	,	-	.	-	-	1	1	-	-	-	-	-	-	-	-	2
14.1-14.5	.	-	.	.	-	.	-	.	,	-	7	1	,	1	-	-	-	-	-	-	9
14.6-15.0	-	-	,	.	1	8	5	1	.	-	1	-	-	-	-	16
15.1-15.5	.		.	,	.	.	.	1	-	3	22	12	2	3	-	-		-	-	-	43
$15.6-16.0$	-	.	.	-	.	.	1	.		2	86	19	1	4	-	-	-	-	-	-	113
16.1-16.5	\cdot	.	.	-	-	.	.	.	1	2	113	25	4	3	-	,	-	-	-	-	148
16.6-17.0	,	.	-	:	-	-	-	.	*		102	28	2	,	-	-	-	-	-	-	132
17.1 - 17.5	-	.	-	:	-	.	-	-	4	1	46	21	.	2	,	\cdot	,	-	-	-	
17.6-18.0	-	.	-	,	-	-	,	-	.	2	21	7	1	1	-	-	-	-	*	-	32
18.1-18.5	-	.	-	-	-	.	.	.	,	.	4	6	2	,	-	-	*	-	-	-	12
18.6-19.0	.	.	-	-	-	.	-	-	-	-	6	1	.	-	-	-	-	-	-	-	
19.1-19.5	-	.	,	-	5	1	-	-	-	-	-	-	-	-	
19.6-20.0	.	.	-	.	.	.	-	,	-	-	1	3	-	-	-	-	-	-	-	-	
21.6-22.0	-	-	-	*	-	.	-	-	-	-	-	1	-	*	-	;	-	,	-	-	
22.1-22.5	.	.	,	,	-	-	,	.	,	-	-	-	.	-	-	1	-	-	-	-	
Total Percent (0.00	0	$\begin{array}{r} 0 \\ 0.00 \end{array}$	$\begin{array}{r} 600 \\ 100.0 \end{array}$

TABLE 3-12	LENGTH haven	FR POND	QUEN 19	$\begin{aligned} & Y \\ & 9.15 \end{aligned}$	$\begin{aligned} & \text { TRIBU } \\ & \text { IFE } \end{aligned}$	$\begin{aligned} & \text { TION } \\ & \text { TAGG } \end{aligned}$	$\begin{aligned} & 10.5 \\ & 15 \mathrm{D} \end{aligned}$		TERVA TED	5) $S P(P$	ROTOL	FE ST ARVAE		$\begin{aligned} & \text { F Pu } \\ & \text { MESO } \end{aligned}$				TAKEN VAE).	By Pu AND Y(YOUNG)	IN YORK
																			Total		
Length Interval (mm)	$\begin{gathered} A D r \\ 17 \end{gathered}$	$\begin{gathered} \text { May } \\ 3 \end{gathered}$	May 22	$\begin{array}{r} \text { May } \\ 29 \end{array}$	$\underset{6}{\text { Jun }}$	$\begin{array}{r} \text { Jun } \\ 12 \end{array}$	$\begin{aligned} & \text { Jun } \\ & 21 \end{aligned}$	$\begin{array}{r} \text { Jun } \\ 27 \end{array}$	${ }_{6}{ }_{6}$	$\begin{gathered} \text { Jul } \\ 10 \end{gathered}$	$\begin{gathered} \text { Ju } \\ 17 \end{gathered}$	$\begin{array}{r} \text { JuI } \\ 24 \end{array}$	Aug 1	$\begin{gathered} \text { Aug } \\ 7 \end{gathered}$	$\begin{array}{r} \text { Aug } \\ 16 \end{array}$	$\begin{gathered} \text { Aug } \\ \mathbf{2} \end{gathered}$	$\begin{array}{r} \text { Aug } \\ 29 \end{array}$	P	M	T	Y
4.1-4.5	.	-	.			,	-	.	-	-				1	2	,	-	3		-	
$4.6-5.0$.	.	.	-	29	4	:	:	:	,	7	,	7	1	2	-	-	48	2	.	.
$5.1-5.5$,	.	.	.	24	33	,	.	-	2	1	,	9	6	29	-	1	101	4	.	-
$5.6-6.0$	78	,	.	,	.	1	.	1	1	72	.	-	153	$\stackrel{*}{ }$.	-	-
$6.1-6.5$.	.	.	,	33	.	.	,	,	76	,	.	109	-	-	
$6.6-7.0$.	-	.	,	1	-	.	-	-	-	,	-	.	14	;	,	15	-	.	
$7.1-7.5$.		,	-	.	1	.	.	-	-	-	-	-	7	2	1	5	6	-	-
$7.6-8.0$		1	-	.	.	6	5	3	-	15	-	-
8.1-8.5		.	.	.		-	-	.	.	-	.	-	.	.	2	6	3	-	11	-	-
$8.6-9.0$.	,	-	-	.	-	;	1	5	-	6	-	.
$9.1-9.5$.	.	.	-	:	.	-	-	.	.	.	-	.	.	2	-	:	-	2	-	.
9.6-10.0	.	-	.	.	.	-	.	-	.	-	*	1	-	1	;	-
10.1-10.5		.	,	.	,	-	-	.	.	-	-	-	3	-	-	,	-
10.6-11.0	-	.	.	-	.	-	-	.	-	,	-	3	-	-	3	-
11.1-11.5	.	.	.	-	.	,	-	,	-	-	.	.	1	-	:	1	.
11.6-12.0		,	-	.	.	,	-	-	-	-		-	,	-
12.1-12.5	.	-	.	,	-	.	-	.	.	-	-	.	3	-	-	3	.
Total Percent (\%)																		$\begin{array}{r} 434 \\ 88,57 \end{array}$	$\begin{array}{r} 47 \\ 9.59 \end{array}$	$\begin{array}{r} 9 \\ 1.84 \end{array}$	$\begin{array}{r} 0 \\ 0.00 \end{array}$

TABLE 3-13	LENGTH FREQUENCY HAVEN POND, 1989			DISTRIBUTION LIFE STAGE			$(0.5$	MM INTERVALS) SIGNATED AS P(E Stage o		DARTER TAKEN T(METALARVAE)					Y PUSH NET IN YORK AND Y(YOUNG).		
																			Toral		
Length Interval (mm)	$\begin{gathered} \text { Apr } \\ 17 \end{gathered}$	May 3	May 22	$\begin{array}{r} \text { May } \\ 29 \end{array}$	$\underset{6}{\text { Jun }}$	$\begin{gathered} \text { Jun } \\ 12 \end{gathered}$	$\begin{gathered} \text { Jun } \\ 21 \end{gathered}$	$\begin{aligned} & \text { Jun } \\ & 27 \end{aligned}$	اuJ	$\begin{array}{r} \mathrm{Jul} \\ 10 \end{array}$	Jul 17	301 24	Aug	ALE 7	Aug 16	Aug 21	$\begin{array}{r} \text { Aug } \\ 29 \end{array}$	P	M	T	Y
	17		22	29	6	12	21	27		10	17	24			16			P	M	1	Y
			:																		
$4.1-4.5$	-	$\dot{\square}$	-	,	1	,	;	;	-	5	-	-	-	,	,	-	-	2	.	,	
$4.6-5.0$.	3	.	4	44	4		1	.	5	-	;	.	-	-	-	-	62			
$5.1-5.5$.	4	3	55	64	30	3	,	2	3	1	1	-	.	-	.	-	166	*	-	:
$5.6-6.0$.	2.	23	24	15	22	1	.	1	B5	3	-	-
$6.1-6.5$.	.	6	1	7	2	-	.			12	4	-	:
$6.6-7.0$.	.	1	.	.	1	.	-	-	-	.	-	.	-	*	-	-	1	1	-	
$13.6-14.0$.	-	-	1	.	-	,	-	-	-	-	-	.	-	-	1
Total																		327	8	0	1
Dercent (\%)																		97.32	2.38	0.00	0.30

table 3-14	LENGTH HAVEN	$\begin{aligned} & \text { FRE } \\ & \text { DON } \end{aligned}$	$\begin{aligned} & \text { QUEN } \\ & \hline \quad 19! \end{aligned}$	$\begin{aligned} & \text { Y DIS } \\ & 9 . \quad 4 \end{aligned}$	$\begin{aligned} & \text { TRIBU } \\ & \text { IFE } \end{aligned}$	$\begin{aligned} & \text { TION } \\ & \text { TAGE } \end{aligned}$	$\begin{aligned} & 0.5 \\ & 15 \mathrm{DE} \end{aligned}$	$\begin{aligned} & \mathrm{MM} \text { If } \\ & \text { SIGN } \end{aligned}$	rerve red	S) $S P(f$		FE S ARVAE	$\begin{aligned} & A G E \\ & 1, M i \end{aligned}$	$\begin{aligned} & \text { F BAI } \\ & \text { MESO } \end{aligned}$	ED RVA	$\begin{aligned} & \text { ARTER } \\ & \text {), } \mathrm{T} \end{aligned}$	TAK META	BY PU VAE).	NET AND Y	IN YO YOUNG	
																			Total		
Length Interval (mm)	$\begin{array}{r} \text { ADr } \\ 17 \end{array}$	May 3	May 22	May 29	$\underset{6}{\text { Jun }}$	$\begin{array}{r} \text { Jun } \\ 12 \end{array}$	Jun	$\begin{array}{r} \text { Jun } \\ 27 \end{array}$	$\begin{gathered} \text { Jul } \\ 6 \end{gathered}$	$\begin{array}{r} \text { Jul } \\ 10 \end{array}$	$\begin{gathered} \text { Ju1 } \\ 17 \end{gathered}$	$\begin{array}{r} \text { Jul } \\ 24 \end{array}$	Aug 1	$\stackrel{A}{7}$	$\begin{array}{r} \text { Aug } \\ 16 \end{array}$	$\begin{array}{r} \text { A } \cup g \\ 21 \end{array}$	Aug 29	P	M	T	Y
$4.6-5.0$	-	1	,	,	2	2	2	-	*	3	2	-	-	-	-	1	*	13	-		
$5.1-5.5$.	.	3	4	9	9	16	1	.	6	6	3	-	.	.	.	*	57	-	-	
$5.6-6.0$.	1	28	.	7	16	13	.	4	14	4	4	-		-	;	;	91	,	-	
$6.1-6.5$.	2	32	2	7	17	5	6	4	4	1	.	1	-	-	1	1	83	i		
6.6-7.0	.	.	13	1	4	8	5	6	3	1	.	.	.	-	-	.		30	11	-	
$7.1-7.5$.	1	.	.	1	1	.	,	2	.	,	.	-		,	-	-	3	2	,	
$7.6-8.0$.	1		-		.	.			.	*	.						1	,	-	
17.6-18.0	-	.	,	.	-	-	-	-	-	.	-	*	-	-	-	1	-	.	-	-	1
Total Percent (\%)																		$\begin{array}{r} 278 \\ 95,21 \end{array}$	$\begin{array}{r} 13 \\ 4.45 \end{array}$	0.00	0.34

TABLE 3-15
Three-factor analysis of variance test results for ichthyoplankton densities collected at eight stations in York Haven Pond, April through August 1989.
Test was performed on logarithmic transformed densities.

Source	df	Sum of Squares	Mean Square	F Value	P Value
Model ($\mathrm{r}^{2}=0.982$)	186	1228.340	6.604	38.98	$0.0001 *$
Date ${ }^{\text {M }}$.	19	999.620	52.612	310.54	$0.0001 *$
Station	7	13.053	1.865	11.01	$0.0001 *$
Replicate	1	0.370	0.370	2.18	0.1418
Date-Station	133	209.842	1.578	9.31	$0.0001 *$
Date-Replicate	19	4.022	0.212	1.25	0.2285 0.3027
Station-Replicate	7	1.433	0.205	1.21	0.3027
Error	133	22.533	0.169		
Corrected Total	319	1250.874			

* Significant at $\mathrm{P} \leq 0.01$.
table 3-16

* Station prefix TM-LF- deleted from table.

TABLE 3-17
Percent similarity indices of species composition between the ichthyoplankton stations in York Haven Pond, 1989. Station prefix TM-LF- deleted from table.

	12 Al	13 A 2	4 Al	10 B 2	9 Bl	11 Al	16 Al
14 Bl	36.6	32.7	24.0	41.6	29.4	36.7	23.8
12 Al		48.1	20.9	69.5	60.6	51.2	31.9
I3A2			66.9	51.7	77.9	88.1	78.4
4 Al				22.9	54.1	61.1	85.1
IOB2					57.8	57.8	33.2
9 Bl						83.6	65.9
IlA1							72.4

TABLE 3-18
Annual sumnary of ichthyoplankton numbers and densities ($n / 100 \mathrm{~m}^{3}$) taken by push net at aight stations in York Haven Pond, 1977 through 1989.

TABLE 3-19
Annual summary of the most abundant ichthyoplankters taken by push net at eight stations in York Haven Pond, 1977 through 1989.

TABLE 3-20
Three-factor analysis of variance test results for ichthyoplankton densities collected at eight stations in York Haven Pond, April through August 1977 through l989. Test was performed on logarithmic transformed densities.

Source	df	Sum of Squares	Mean Square	F Value	P Value
Model ($\left.r^{2}=0.806\right)$	374	15219.440	40.694	42.81	$0.0001 *$
Year	12	268.392	22.366	23.53	$0.0001 *$
Date	14	9657.912	689.851	725.80	$0.0001 *$
Station	7	582.552	83.222	87.56	$0.0001 *$
Year-Date	159	2564.352	16.128	16.97	0.0001*
Year-Station	84	215.740	2.568	2.70	$0.0001 *$
Date-Station	98	829.735	8.467	8.91	0.0001*
Error	3865	3673.571	0.950		
Corrected Total	4239	18893.011			

[^0]

* Station prefix TM-LF- deleted from table.

Figure 3-1. Location of ichthyoplankton stations sampled in
York Haven Pond (station prefix TM-LF- deleted.

FIGURE 3-2
Percent composition by density of the nine most abundant ichthyoplankton taxa taken in York Haven Pond, April through August 1989.

FIGURE 3-3
Mean river temperature (C), mean ichthyoplankton density ($n / 100 \mathrm{~m}^{3}$), and rïver flow ($\mathrm{m}^{3} / \mathrm{sec}$) recorded in York Haven Pond, April through August 1989.

Figure 3-4. Annual variation in total ichthyoplankton density at selected stations near TMINS, 1977 through 1989.

Figure 3-5. Annual variation in total ichthyoplankton density at selected stations near TMINS, 1977 through 1989.

4.1 METHODS

Seine surveys were conducted at six shoreline stations in York Haven Pond (Figure 4-1). Specific locations and habitat characteristics are described in Table 4-1. Surveys were conducted twice each month in May, June, August, and September, and once each in April, July, October, and November 1989.

Data recorded for each survey were weather, time, duration of sample (in minutes), air and surface water temperatures, surface dissolved oxygen concentration and pH , Secchi disc, estimated water depth, substrate type; and number of hauls. River stage was obtained from the River Forecast Center in Harrisburg, Pennsylvania for 0700 hour. Instrumentation and procedures are described in Chapter 7 and GPU (1987), respectively.

A 3.05 m by 1.22 m straight seine with 0.32 cm mesh was used. The seine was deployed and moved parallel to shore for a short distance, then moved into shore to trap fish. Since size and habitat of seine stations varied (Table 4-1), effort was made to collect a representative qualitative sample (Hocutt 1981) based on complete coverage of all available habitats, rather than a specified number of hauls at each station.

All specimens collected at a station were fixed in 10% formalin except for large fish ($>150 \mathrm{~mm}$ fork length, FL) which were identified, measured, and released near the site of capture. In the laboratory, the fish were removed from formalin, rinsed twice in water, and preserved in 40\% isopropanol.

Specimens in each collection were identified and measured to within a 5 mm FL interval. Specimens within these length intervals were weighed together to the nearest 0.1 g . For collections that contained more than 125 fish of one species, a subsample of 125 fish of that species was removed for length and weight analysis; all specimens were counted. Specimens weighed and measured were also examined for the presence of external parasites, disease, or morphological anomalies.

Primary taxonomic aids were Cooper (1983), Moore (1968), and Trautman (1981). Scientific and common names of fishes and taxonomic order of presentation (Table 4-2) followed Robins et al. (1.980).

Family composition at individual stations was computed by summing the percentage contributed by fishes within each family.

Data analyses consisted of calculating condition factor (K), percent similarity (PSc) among sampling station catches, and species diversity by station and date. The percent similarity (PSc) index of Whittaker and Fairbanks
(1958), and Shannon-Wiener (Shannon-Weaver) index of
diversity (H') are described in Chapter 2.
Condition factor (Ricker 1975) for fishes that comprised more than 10% of the 1989 catch was calculated from the formula:

$$
K=\frac{\mathrm{W} \times 10^{5}}{\mathrm{FL}^{3}}
$$

where
$K=$ condition factor of the $5 \mathrm{~mm} F \mathrm{FL}$ group and
$\mathrm{W}=$ mean weight in grams per 5 mm FL group.
The upper limit of each 5 mm FL group and the mean weight for that group were used for the calculation of condition factor as was done previously (EA 1985, 1986, 1987; Nardacci and Associates 1983, 1984; RMC 1988a, 1989).

Number per seine haul was calculated by dividing the total number of fish captured by date or station by the number of hauls executed on the date or station. For species accounting for more than 10% of the catch, reproductive status was classified as follows: young were spawned during the current calendar year; juveniles were spawned in a previous calendar year but werer as yet, incapable of reproduction; and adults were capable of reproduction. Classifications were based on information in the literature (Carlander 1953, 1969, 1977; Miller and Buss

1963; Scott and Crossman 1973; Trautman 1981) and were confirmed in the field when possible.

4.2 COMPOSITION, RELATIVE ABUNDANCE, AND DISTRIBUTION: 1989

Results of 1989 seine collections are presented in Appendix C and summarized in Tables 4-3 through 4-5. A total of 305 hauls yielded 45,980 fish of 33 species (Table 4-4). Most fish $(19,616)$ were taken at Station $13 B 5$ and most species (27) at Station 16Al. The mean number of specimens per haul at individual stations ranged from 46.44 at Station $10 \mathrm{B5}$ to 502.97 at Station 13B5.

Carps and minnows (cyprinids) ranked first in family composition, and comprised 91.5% of the total catch (Table 4-5). Other common families were sunfishes, second in abundance (5.5\% of the total catch); herrings (1.2\%); and perches (1.0\%). The mimic shiner comprised 59.9% of the total catch; it was the most abundant species in 1989r and ranked first at Stations l3B5 and 9B3 (Table 4-4). The spotfin shiner ranked second in abundance (28.1\%); it was most common at Stations 10A2, 16Al, and 10B5. Other common fishes were the bluegill (2.5\%), pumpkinseed (2.1\%), bluntnose minnow (1.6\%), gizzard shad (1.2\%), spottail shiner (1.1\%), and tessellated darter (1.0\%). No other species accounted for more than 1.0% of the catch.

Total catches varied widely during the year (Table 4-3). The lowest catch occurred on 3 August when only 640 specimens were collected; the highest catch (11,821 specimens) occurred on 18 September. Generally, the seine catch decreased from 13 April through 3 August, increased sharply to a peak on 18 September, and then declined through November.

The temporal distribution of total catches was primarily influenced by spotfin shiner and mimic shiner abundance (Table 4-3). Spotfin shiner and mimic shiner were common throughout the sample period, but were most abundant from September through November when they comprised from 88.1% to 96.9% of the catch. Spotfin shiner abundance peaked on 18 October, while mimic shiner peaked on 18 September. Among other species, spottail shiner and tessellated darter were abundant from April through July. Pumpkinseed and bluegill were common throughout the sample period, but were most abundant in the spring (April through June) and fall (September through November), respectively. Bluntnose minnow occurred throughout the sample period, but was most common in April, May, and November. Gizzard shad were most comon in September, when 99.4% of their annual total occurred. This variation in species abundance generally reflected the different spawning times of Eishes, and the ensuing period when young inhabit inshore areas and become vulnerable to seine capture.

Spatial distribution of fishes in the catch is presented in Table 4-4. Station 13B5, on the west shore of York Haven Pond, produced the largest catch. The smallest catch occurred at Station 4A2, in the east channel. These catch differences were the result of the variability in the abundances of the spotfin shiner and mimic shiner.

Seine catches were also evaluated in terms of fish per seine haul. This provided a more realistic assessment of the fish encountered during any given sampling episode. Because the total number of hauls for the year was generally similar among sampling dates, the fish per haul paralleled the temporal distribution (Table 4-3). . This was generally true for the sampling stations, excepting at Station 10B5 where more effort (hauls) resulted in fewer fish per haul (Table 4-4).

Biomass totaled $12,554.3 \mathrm{~g}$ for the year (Table 4-6). Peak biomass occurred on 21 June (1,386.3 g). Station 13B5 had the highest biomass for a single station (2,974.3 g), while Station l0B5 had the lowest (l,450.8 g). The distribution of biomass among sampling stations and dates varied as the number and size of the specimens varied.

4.3 CONDITION FACTOR (K) AND REPRODUCTIVE STATUS

Condition factors and reproductive status for spotfin shiner and mimic shiner, the only fishes that comprised more
than 10% of the 1989 catch, are presented in Tables 4-7 and 4-8. The mean weights for individual length intervals were similar per species among stations with large (>25 specimens) comparable catches. The K factor for spotfin shiner ranged from 0.35 to 1.74 . There was a general trend of increasing k factor with increasing length. Mimic shiner K factors ranged from 0.52 to 1.20 . Like the spotfin shiner, K factors for mimic shiner increased as length increased, The increasing K factor for these species reflected the tendency for increased body depth with increased length.

There was no discernible pattern of K factors among sampling stations that would suggest any positive or negative influences of TMINS. Because of the mobility of these small schooling fishes, it is doubtful that they stay in any location long enough to be affected by conditions at that location. Thus, the K factors reflect general conditions in York Haven Pond.

Young and juvenile spotfin shiners were abundant at all stations, except 4 A2, while adults were uncommon 11.3% of the total catch) (Table 4-7). Young mimic shiners were common at all stations, particularly stations 13B5 and 9B3, while juveniles were most common at station l6Al. Only one adult was taken (Table 4-8).

4.4 COMMUNITY ANALYSIS: DIVERSITY AND SIMILARITY

The 1989 fish community was examined by measures of diversity and percent similarity. The Shannon-Wiener function for diversity (H^{\prime}) was calculated for the annual catch at each station (Table 4-3) and for each date with stations combined (Table 4-4). Annual station diversity ranged from 0.81 at Station 23B5 to 2.88 at Station 4A2. The low H^{\prime} at Station $13 B 5$ resulted from the large catch of spotfin shiner and minic shiner (96.9\% of the catch) in relation to the numbers caught among the other species. In contrast, the high H^{\prime} at Station 4A2 reflects a more even distribution of individuals among species. Sampling date diversity ranged from 0.83 on 2 November to 3.09 on 14 July. There was a general trend towards increased diversity from April through July, followed by a decline through November as large numbers of young spotfin shiner and mimic shiner entered the catch. Low diversities resulting from the collection of vast numbers of gregarious young fishes are a natural phenomena (Hocutt 1981).

Seine diversity in 1989 was compared to previous study years by plotting annual station H^{\prime} values with months combined (Figure 4-2), and monthly H^{\prime} values with stations combined (Figure 4-3). Compared to 1988, the 1989 monthly data increased slightly. The decreasing trend noted (EA 1987) from 1977 through 1985 was reversed trend from 1986
through 1989 (Figure 4-3). A similar trend was evident for station diversity, but it appeared to stop in 1984 and began a steady increase through 1988. In 1989, this trend was reversed again and decreased slightly. EA (1985, 1986, 1987) postulated that the decrease in diversity was related to the increased dominance of spotfin shiners. It was further suggested (EA 1986) that the increase in the trend was related to the subsequent reduction in the proportion of spotfin shiners in the total catch. The decrease in station H' values in 1989 was coincident with the dramatic increase of mimic shiner (59.9% of the total catch), and the drastic reduction of spottail shiner, bluntnose minnow, fallfish, white sucker, pumpkinseed, bluegill, and tessellated darter from their relative importance in the 1988 catch. Percent similarity (PSc) compares the station catches in terms of species composition, and provides another type of comparison of the fish community. Similarity values for pairwise station comparisons are presented in Table 4-9. Low values indicate relatively dissimilar communities between two stations, while higher values indicate similar communities. Like many of the community and abundance parameters discussed previously, the similarity data appeared to be much influenced by the abundance of spotin shiner and mimic shiner. For example, the lowest PSc (20.0\%) occurred between stations $13 B 5$ and 4A2 and resulted from the extreme dominance of mimic shiner and spotfin
shiner at Station $13 B 5$ (Table 4-4). Relative abundance of these species was similar between Stations $13 B 5$ and $9 B 3$, and resulted in the high PSc (86.7\%). There was no pattern to suggest any influence of the TMINS discharge. Sampling Station $10 A 2$ (downstream of the discharge) was quite similar (88.3\%) to Station 16Al (upstream of the discharge).

Previously (EA 1985, 1986, 1987), the percent similarity at stations upstream and downstream of the TMINS discharge was used to investigate differences between operational $(1976$ to 1978 and 1986 to 1989) and non-operational (1979 to 1985) years (Figure 4-4). The PSc values for both pairwise station comparisons were within the range observed previously. There was no pattern that distinguished operational and non-operational years, and consequently no indication that the TMINS discharge influenced the comunnity of smaller fishes.

4.5 MULTIPLE-YEAR COMPARISONS: RELATIVE ABUNDANCE

The seine catches were examined for the study period with catch per seine haul of common species (Table 4-10). The total 1989 catch $(45,980$ fish) represented a minor increase over the 1988 catch $(44,691)$. However, since 44 additional hauls were taken in 1989 , the catch in terms of fish per haul was slightly lower (171.23/haul in 1988 vs. 150.75/haul in 1989). The total 1989 catch was within the
range observed previously, and was largely influenced by the abundance of spotfin shiner, spottail shiner, and mimic shiner (since 1987). Compared to 1988, there were substantial decreases in many important species. Among these, spottail shiner decreased 93.6% to its lowest total since 1984. Decreases were also noted for bluntnose minnow (42.0\%), fallfish (94.6\%), white sucker (95.8\%), pumpkinseed (62.3\%), bluegill (54.3\%), and tessellated darter (53.5\%). However, these decreases were compensated by a major increase in mimic shiner abundance (139.1\% over its 1988 total), which attained its highest total to date. The catch of spotfin shiner also increased slightly (28.8\%).

The seine catches in 1989 appeared to further reflect the effect of natural population cycles. A strong year class was indicated for mimic shiner and spotfin shiner, but several other species suffered weak year classes as evidenced by steep downturns in their abundances. EA (1986, 1987) pointed out that a number of factors can affect the abundance of fishes from year to year, including river flow, water temperature, food availability, and competition. Substantially higher river flow in 1989 and lower water temperature, particularly April through July, Eavored the success of late summer spawning fishes.

Seasonal Susquehanna River flow patterns, normally characterized by high spring flows and lower flows in summer and fall, favor the intermittent spawning of spotfin shiner
(Gale and Gale 1976) throughout July and August. Intermittent spawning prolongs the spawning season and protects the species against the destruction of entire year classes (Nikolsky 1963). July and August river flows are normally low and stable, as occurred in 1989, and afford optimal spotfin shiner spawning conditions. Consequently, spotfin shiner were very abundant during September and October. In contrast, spottail shiner and white sucker spawn in May and June, therefore their reproductive success is subject to high and/or rapidly fluctuating river Elow. Heavy rains in May and June 1989 greatly increased river flow and depressed water temperature and may explain the downward trend in spottail shiner and white sucker numbers. Starrett (1951) documented the negative effects of similar high water on the spawning success and subsequent abundances of minnows in the Des Moines River, where the spotfin shiner and sand shiner (Notropis stramineus), another late spawner, dominated. Increased catches of the mimic shiner, a species closely related to N. stramineus, are also likely due to its July and August spawning period.

Previous reports (EA 1985, 1986, 1987; RMC 1988a, 1989) examined the annual seine catch (number per haul) of dominant fishes at stations upstream (16A1) and downstream (l0A2 and 9B3) of the TMINS discharge to determine differences. The annnual abundance of spotfin shiner, spottail shiner, and white sucker are presented in figures

4-5 through 4-7. For 1989, all species catches were similar at stations immediately upstream (16A1) and downstream (9B3) of the TMINS discharge. Unlike spotfin shiner, catches of spottail shiner and white sucker at station 10 A 2 were below those at either station 16 Al or 9 B 3 . Yet, all values were within previously established ranges, except for spottail shiner at l0A2 and 9B3 which established new lows for the study. Therefore, the variability in station catches was attributed to natural spatial and temporal distribution of these species rather than to any influence of the TMINS discharge.

4.6 PARASITES, DISEASE, AND MORPHOLOGICAL ANOMALIES

Fishes collected during routine seine surveys were examined for external parasites, diseases, or morphological anomalies. Although none of these conditions are unusual in natural fish populations, a high frequency of any affliction in one or more species may be evidence of stress.

In 1989, a total of 12,872 fish was examined; 1,711 specimens of 24 fishes had one or more types of parasites, infections, and/or morphological anomalies (Table 4-1l). With the exception of black spot (fluke cysts), glochidia (larvae of freshwater mussels), pugheadedness, and skin infections, affliction rates were less than 1.0%. Black spot was most prevalent on spotein shiner 18.3% of those
examined) and bluntnose minnow (14.8\%). Glochidia were most common on cyprinids (27.1\%) and sunfishes (53.2\%). Skin infections (which included fin rot, fin damage, fungus, and tumors) were observed on 17 fishes, mostly on spottail shiner, spotfin shiner, mimic shiner, redbreast sunfish, pumpkinseed, and bluegill. The gregarious nature of young fishes, particularly spotfin shiner in slow-moving waters, allows close proximity of parasite and host, and may explain the relatively high incidences of black spot parasitism.

A total of 342 fish exhibited morphological anomalies. Pugheadedness (abnormal formation of the skull) was most common and occurred primarily on spotfin shiner (72), and mimic shiner (202). Scoliosis (lateral spinal curvature) was observed on seven different fishes. Ten spotfin shiner, 8 mimic shiner, and 1 each of the bluntnose minnow and bluegill exhibited mouth (mandibular) deformity.
patterns of parasitic infection and morphological anomalies observed in 1989 were similar to those reported previously (EA 1985, 1986, 1987; Nardacci and Associates 1980, 1981, 1982, 1983, 1984; RMC 1988a, 1989). It appears the patterns were most affected by natural trends in parasite life cycles, water temperature, and natural conditions rather than influences associated with TMINS operation.

TABLE 4-1
Location and description of seine stations sampled in York Haven Pond.
Station Number Location and Description

TM-SE-13B5 ${ }^{(a)}$

TM-SE-10B5

TM-SE-16A1

TM-SE-10A2

TM-SE-9B3

TM-SE-4A2

Boat launch along northwest shore of York Haven Pond just downstream from southernmost Pennsylvania Fish Commission boat ramp. Bottom consisted of mud interspersed with a few large boulders. A small backwater sometimes receiving runoff was also seined. About 20 m of shoreline was sampled; depth averaged 0.7 m .

Southwest shore of York Haven Pond just upstream from York Haven Generating Station race. The station extended from a mud-bottomed beach interspersed with debris and rubble to a bedrock enclosed backwater about 100 m downstream. Water willow (Justicia americana) and wild celery (Vallisneria americana) were common. The beach averaged 0.7 m in depth; the backwater averaged 1.0 m .

West shore of TMI near Gate 19 about 500 m upstream from discharge. The station extended from a rubble and boulder shoreline to a mud-bottomed run about 25 m downstream. Coal dirt and gravel were also common along the shoreline, which supported water willow. Average depth was 0.8 m .

West shore of TMI, 150 m downstream from dịcharge. The station extended about 75 m along a gravel beach that averaged 0.7 m in depth. Gravel, mud, and coal dirt were common substrates. Water willow covered the shoreline and was often partially submerged.

West shore of TMI, 2,000 m downstream from discharge. Most sampling was done along a gravel beach and boat ramp. Offshore, the bottom changed to mud. About 20 m of shoreline was sampled; average depth was 0.7 m . Large trees lined the shoreline upstream from the boat ramp and were sometimes partially submerged. The York Haven Dam marked the downstream end of the station and created a backwater.

East shore of east channel. Main substrate was mud, but rubble and some boulders were also common. About 25 m of shoreline was sampled; the bottom dropped abruptly to a depth of about 0.9 m . The beach was supported by submerged railroad ties.
(a) Prefix TM-SE- deleted from station numbers for discussion in text.

List of scientific and common names of fishes collected by seine from the Susquehanna River near TMINS in 1989.
Scientific Name Common Name

```
Clupeidae
    Alosa sapidissima (Wilson)
    Dorosoma cepedianum (Lesueur)
Osmeridae
    Osmerus mordax (Mitchill)
Cyprinidae
    Cyprinus carpio Linnaeus
    Notemigonus crysoleucas (Mitchill)
    Notropis amoenus (Abbott)
    Notropis cornutus (Mitchill)
    Notropis hudsonius (Clinton)
    Notropis procne (Cope)
    Notropis rubellus (Agassiz)
    Notropis spilopterus (Cope)
    Notropis volucellus (Cope)
    Pimephales notatus (Rafinesque)
    Rhinichthys atratulus (Hermann)
    Semotilus corporalis (Mitchill)
Catostomidae
    Catostomus commersoni (Lacepede)
    Hypentelium nigricans (Lesueur)
    Moxostoma macrolepidotum (Lesueur)
Ictaluridae
    Ictalurus punctatus (Rafinesque)
Cyprinodontidae
    Fundulus diaphanus (Lesueur)
```

Herrings
American shad Gizzard shad

Smelts
Rainbow smelt
Carps and Minnows
Common carp
Golden shiner
Comely shiner
Common shiner
Spottail shiner
Swallowtail shiner
Rosyface shiner
Spotfin shiner
Mimic shiner
Bluntnose minnow
Blacknose dace Fallfish

Suckers
White sucker
Northern hog sucker
Shorthead redhorse
Bullhead catfishes
Channel catEish
Killifishes
Banded killifish

TABLE 4-2
Continued.

Scientific Name	Common Name
Centrarchidae	Sunfishes
Ambloplites rupestris (Rafinesque)	Rock bass
Lepomis auritus (Linnaeus)	Redbreast sunfish
Lepomis cyanellus Rafinesque	Green sunfish
Lepomis gibbosus (Linnaeus)	Pumpkinseed
Lepomis macrochirus Rafinesque	Bluegill
Micropterus dolomieui Lacepede	Smallmouth bass
Micropterus salmoides (Lacepede)	Largemouth bass
Pomoxis annularis Rafinesque	White crappie
Pomoxis nigromaculatus (Lesueur)	Black crappie
Percidae	Perches
Etheostoma olmstedi Storer	Tessellated darter
Etheostoma zonale (cope)	Banded darter
Percina peltata (Stauffer)	Shield darter
Stizostedion vitreum	Walleye
vitreum (Mitchill)	

TABLE 4-3
Temporal distribution of fishes taken by seine near TMINS in 1989.

	$\begin{array}{r} 13 \\ \text { Apr } \end{array}$	$\begin{array}{r} 22 \\ \text { May } \end{array}$	$\begin{array}{r} 30 \\ \text { May } \end{array}$	$\begin{array}{r} 8 \\ \mathrm{Jun} \end{array}$	$\begin{array}{r} 21 \\ \text { Jun } \end{array}$	$\begin{array}{r} 14 \\ \text { Ju1 } \end{array}$	$\begin{array}{r} 3 \\ \text { Aug } \end{array}$	$\begin{array}{r} 16 \\ \text { Aug } \end{array}$	$\begin{array}{r} 7 \\ \operatorname{sep} \end{array}$	$\begin{array}{r} 18 \\ \operatorname{Sep} \end{array}$	$\begin{aligned} & 18 \\ & \text { oct } \end{aligned}$	$\begin{array}{r} 2 \\ \text { Nov } \end{array}$	Total	\% Casch
American shad	. -	-	-	-	7	2	-	-	-	-	-	-	9	+
Gizzard shad	-	-	-	-	\cdots	3	-	-	267	275			545	1.2
Rainbow smelt	-	-	1	-	-	-	-	-	-	-	-		1	$+$
Common carp	-	-	-	1	1		-		2	1	1	-	12	$+$
Golden shiner	3	$\bar{\square}$	2	1	1	1	6	21	6	2	1	-	42	0.2
Comely shiner	-	2	1	-	-	1	6	21	6	2	3	-	1	\pm
Common shiner	1	-	-	73	56	77	47	13	$1{ }^{-}$	-	2	47	492	1.1
Spottail shiner	33	38	96	73	56	77	47 14	13	10	33	29	66	242	0.5
Swallowtail shiner	27	19	12	12	14	1	14	11	4	3	2	66	1	0.
Rosyface shiner	716	649	$28 \frac{1}{2}$	180	297	215	86	406	2431	2794	4062	82.	12940	28.1
Spotfin shiner	716	649 188	282 192	180 209	297 323	211	86 236	745	4162	8518	6316	5920	27560	59.9
Mimic shiner	715 197	188 115	192 32	209 57	323 31	36 49	$\begin{array}{r}236 \\ \hline\end{array}$	74 50	4121	23	18	118	738	2.6
Bluntnose minnow	197	115	32	57	31	4.	27	5		1			1	+
Blacknose dace Fallfish	-	3	3	17	16	11		2	-	-	-	-	52	0.1
White sucker	-	-	10	154	11	1	-	1	-	-	-		177	0.4
Northern hog sucker		-	-	-	2	-	2	-		-		-	3	+
Shorthead redhorse	-	-	-	-	1	-	2	-		-		-	159	0.3
Channel catfish	3	-	-	34	$\bar{\square}$	-	121	1		-		-	11	$+$
Banded killifish	3	1	1	1	2	2	1	-	1	2	2	5	25	+
Rock bass	3	-	-	14	6	6	6	5	6	2	2	3	133	0.3
Redbreast sunfish	11	45	24	14	9	8	6	5	4	4	5	5	134	0.3
Green sunfish	45	23	14	8	9	11	1	5	124	53	93	7	968	2.1
Pumpkinseed	115	93	135	80	91	60	64	53	124	53 97	93 163	16	1163	2.5
Bluegill	1.96	97	63	21	27	30	11	12	430	97	163	16	117	$\stackrel{+}{+}$
Lepomis hybrid	-	1	$\bar{\square}$	-	18	3	2	1	1	1	-		54	0.1
Smallmouth bass	-	19	B	2	18	2	2	1	1	1	6	-	10	$+$
Largemouth bass	-	-	-		1	11		1	1	$\frac{1}{2}$	6		19	+
White crappie	2	2	-	-	1	11			1	2			4	+
Black crappie	88	$1 \frac{1}{3}$	2	6	156	138	14	14	11	11	6	1	460	1.0
Tessellated darter	88	13	2	6	156	138	14	14					3	+
Banded darter	2	1	-		6	3			-				9	$+$
Shield darter	-	-	-	-	6	3		-	-	-	-	-	1	+
Walleye	-	-	-	-	-	1	-	-						
No. of Specimens	2160	1310	879	870	1086	672	640	1341	7481	21821	10706	7014	45980	
No. of Species	17	17	18	17	22	24	1.5	16	16	18	13	11	33 305	
No. of Hauls	23	26	26	26	22	30	31	32	25	20	20	24	305	
No. of Fish/Haul	93.91	50.38	33.81	33.46	49.36	22.40	20.64	41.91	299.24	591.05	535.30	292.25	150.75	
Diversity Index	2.50	2.50	2.79	3.05	2.89	3.09	2.75	1.80	1.59	1.12	1.20	0.83	1.7	

+ Less than 0.05%.

TABLE 4-4
Distribution of fishes taken by seine at the stations sampled near TMINS in 1989. Station prefix TM-SEdeleted from table.

	13B5	$10 \mathrm{B5}$	16 Al	10A2	9 B 3	4A.2	Total	\% Catch
American shad	-	2	2	5	-	-	9	+
Gizzard shad	-	29	1	1	2	512	545	1.2
Rainbow smelt	-	-	-	1	-	-	1	- +
Common carp	-	1	1	-		5	12	$+$
Golden shiner	-	3	3	1	-	5	12	$+$
Comely shiner	2	17	8	5	10	-	42	0.1
Common shiner	1	-	-	-	137		4921	+ ${ }^{+}$
Spottail shiner	105	61	132	47	137	10	492	1.1
Swallowtail shiner	112	20	19	34	19	38	242	0.5
Rosyface shiner	-	-	-	1	8	3	12940	28. ${ }^{+}$
Spotfin shiner	2287	1632	2836	4033	1818	334	12940	28.1
Mimic shiner	16716	274	1857	1779	6774	160	27560	59.9
Bluntnose minnow	136	97	10	47	72	376	738	1.6
Blacknose dace	-	$\overline{7}$	10	8		1	52	0.1
Fallfish	8	7	10	18	8	$\frac{1}{3}$	177	0.4
White sucker	55	25	48	15	31	3	177	0.4
Northern hog sucker	-	-	-	1	1	-	2	+ +
Shorthead redhorse	-	-	2	-	15	2	3 159	0.3
Channel catfish	-	-	1	-	156	2	159	- +
Banded killifish	8	\cdots	1	1	1	1	$1 \frac{1}{5}$	$+$
Rock bass	-	9	3	11	1	1	25 133	$0 .{ }^{+}$
Redbreast sunfish	16	31.	46	16	13	102	134	0.3
Green sunfish	3	11	11	2	5	102	968	2.1
Pumpkinseed	81	237	38	74	142	396	968 1163	2.5
Bluegill	13	311	10	3	15	811	1163	2.5 +
Lepomis hybrid	-	-	-	13	$\frac{1}{6}$	6	54	0.1
Smallmouth bass	11	4	14	13	6	6	54	0.1
Largemouth bass	-	1	1	-	-	8	10	$+$
White crappie	1	4	4	3	-	7	19	
Black crappie	-	-	1	7	5	3	4	${ }_{1}^{+}$
Tessellated darter	56	57	92	73	151	31	460	1.0
Banded darter	-	-	1	1.	1	-	3	$+$
Shield darter	4	-	1	3	1	-	9	+
Walleye	1	-	-	-	-	-	1	+
No. of Specimens	19616	2833	5153	6188	9365	2825	45980 33	
No. of Species	19	21	27	25	21	51	305	
No. of Hauls	39	61	888	11454	222.98	55.39	150.75	
No. of Eish/Haul	502.97	46.44	88.84	114.59 1.37	222.98 1.34	55.39 2.88	150.75 1.73	
Diversity Index	0.81	2.26	1.61	1.37	1.34	2.88		

[^1]TABLE 4-5
Percent family composition at the seine stations sampled in York Haven Pond, April through November 1989. Station prefix TM-SEdeleted from table.

Family	Station						Total
	1385	1085	16A1	10A2	9 B 3	$4{ }^{2} 2$	
Herrings	-	1.1	+	0.1	+	18.1	1.2
Smelts	-	-	-	+	-	-	+
Carps and Minnows	98.7	74.5	94.6	96.4	94.4	32.7	91.5
Suckers	0.3	0.9	1.0	0.2	0.4	0.1	0.4
Bullhead catfishes	-	-	+	-	1.7	0.1	0.3
Killifishes	+	-	+	+	-	+	+
Sunfishes	0.6	21.5	2.5	2.0	2.0	47.8	5.5
Perches	0.3	2.0	1.8	1.2	1.6	1.1	1.0

TABLE 4-6
Summary by date of fish biomass (g) at the seine stations sampled near TMINS in 1989. Station prefix TM-SE- deleted from table.

	$13 B 5$	$10 B 5$	16 Al	10 A 2	9 B 3	4 A 2	Total
13 Apr	259.6	18.1	55.0	45.5	188.6	389.8	956.6
22 May	288.3	113.3	119.6	181.7	103.8	300.4	1107.1
30 May 178.6	134.2	217.1	179.1	122.3	140.8	972.1	
8 Jun 167.4	279.9	282.4	151.4	79.8	118.3	1079.2	
21 Jun 103.6	231.0.	405.3	312.7	157.4	176.3	1386.3	
14 Jul 104.9	201.6	231.5	151.7	68.7	205.5	963.9	
3 Aug	77.8	50.8	120.9	149.3	294.8	109.6	803.2
16 Aug	102.2	110.1	256.2	47.5	229.7	46.0	791.7
7 Sep 117.5	103.5	202.5	49.8	298.8	36.1	808.2	
18 Sep	510.0	115.0	205.8	217.4	190.2	33.0	1271.4
18 Oct	655.5	48.8	147.6	158.9	148.4	95.6	1254.8
2 Nov	408.9	44.5	8.2	97.3	515.5	85.4	1159.8
Total 2974.3	1450.8	2252.1	1742.3	2398.0	1736.8	12554.3	

TABLE 4-7 CONTINUED.

Fork length (5 min intervals)	Number	Total Weight (g)	Mean Waight (g)	K	R^{*}
TM-AQF-1085					
6-10	23	0.10	0.00	0.43	Y
$11-15$	110	1.30	0.01	0.35	Y
16-20	210	11.23	0.05	0.67	Y
21-25	259	25.70	0.10	0.64	Y
$26-30$	150	28.20	0.19	0.70	Y
31-35	79	25.90	0.33	0.76	v
36-40	54	28.50	0.53	0.82	Y
$41-45$	34	26.80	0.79	0.87	J
46-50	18	20.20	1.12	0.90	J
$51-55$	20	30.20	1.51	0.91	J
56-60	13	$27.50{ }^{\circ}$	2.12	0.98	J
61-65	2	4.80	2.40	0.87	A
71-75	2	9.70	4.85	1.15	A
$76-80$	1	5.70	5.70	1.11	A
$86-90$	1	8.40	8.40	1.15	A
91-95	1	11.30	11.30	1.32	A
TM-AOF-13日					
$11-15$	15	0.26	0.02	0.51	V
16-20	192	9.70	0.05	0.63	Y
21-25	268	26.80	0.10	0.64	v
26-30	167	29.40	0.18	0.65	Y
$31-35$	82	24.70	0.30	0.70	Y
36-40	59	29.40	0.50	0.78	Y
$41-45$	42	32.70	0.78	0.85	J
46-50	26	30.10	1.16	0.93	J
51-55	19	31.20	1.64	0.99	J
56-60	7	14.60	2.09	0.97	J
61-65	6	16.10	2.68	0.98	A
66-70	4	14.90	3.72	1.09	A
$71-75$	5	24.50	4.90	1. 16	A
$86-90$	1	9.70	9.70	1.33	A

TABLE 4-7 CONTINUED.

TABLE 4-B CONTINUED.

-
$Y=y$ oung, $J=j u v a n i l e, ~ A=$ adult

TABLE 4-9

Percent similarity indices of species composition between seine stations near TMINS, ApriI through November 1989. Station prefix TM-SE- deleted from table.

	10 B 5	16 Al	10 A 2	9 B 3	4 A 2
13 B 5	24.5	50.1	43.4	86.7	20.0
10 B 5		72.9	73.1	35.6	44.8
16 Al			88.3	60.7	21.7
10 A 2			53.0	22.3	
9 B 3				22.1	

TABLE 4-10
Relative contribution of key species to the annual seine catches near TMINS, 1977 through 1989.

Study Year	$\begin{aligned} & \text { Total } \\ & \text { Catch } \end{aligned}$	Catch Per Seine-Haul				
		Spotfin Shiner	Spottail Shiner	Bluntnose Minnow	Mimic Shiner	White Sucker
1977	25,683	9	38	7	<1	4
1978	29,414	7	42	3	<1	10
1979	39,068	35	20	4	1	21
1980	37,920	31	40	2	<1	4
1981	57,117	107	13	4	6	1
1982	67,051	136	8	3	9	2
1983	67,041	175	24	4	21	<1
1984	29,524	80	1	4	9	2
1985	56,672	103	63	5	4	3
1986	26,775	66	9	1	8	2
1987	31,383	65	20	2	27	1
1988	44,691	38	30	5	44	16
1989	45,980	42	2	2	90	<1

(a) Includes all species, not just those listed.
table 4-11
Incidence of parasites, diseases, and/or morphological anomalies on fishes captured by seine near TMINS, April through November 1989.

		$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{4}{0} \\ & 0 \\ & H \end{aligned} \right\rvert\,$		$\begin{aligned} & \text { u } \\ & \text { H } \\ & \text { ry } \\ & \text { H} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{r} n \\ \text { n } \\ 0 \\ \text { rin } \\ 0 \\ 0 \\ n \end{array}$		$\begin{aligned} & 0 \\ & \text { d } \\ & \text { d } \\ & a_{0} \\ & \mathbf{n}_{4} \end{aligned}$					
American shad	-	-	-	-	-	1	-	-	-	-	1	9	11.1
Golden shiner	2	1	-	1	-	-	-	-	1	$\overline{7}$	5	12	41.7
Comely shiner	-	-	-	-	-	-	-	-	-	1	1	42	2.4
Common shiner	1	-	-	-	$\bar{\square}$	$\bar{\square}$	-	-	-	-	1	19	100.0
Spottail shiner	14	4	-	29	6	2	-	1	22	3	81	492	16.5
Swallowtail shiner	1	-	-	7	7	1	-	1	4	-	21	242 4659	8.7 12.6
Spotfin shiner	388	5	-	65	72	5	10	1	39	3	588 318	4659 3863	12.6 8.2
Mimic shiner	2	47	-	16	202	3	8	-	39	1	318	3863	8. 4
Bluntnose minnow	- 102	8	-	2	18	1	1	-	16	-	148	691	21.4 100.0
Blacknose dace	1	-	-	-	-	-	-	-	-		20	$5 \frac{1}{2}$	100.0 38.5
Fallfish	18	2	-	-	-	-	-		-	-	1	3	33.3
Shorthead redhorse	1	-	-	-	-	-	-		2	-	2	20	10.0
Channel catfish	-	-	-	-		-		-	1	-	1	11	19.1
Banded killifish	-	-	-	2				3	1		6	22	27.3
Rock bass	-	$\bar{\square}$	-	2	-	-	-	4	24	-	42	132	31.8
Redbreast sunfish	-	2	1	11			-	4	10		50	121	41.3
Green sunfish	-	2	-	38	1	-		-	10	-	154	907	17.0
Pumpkinseed	16	37	-	85	1	2		2	32	-	1.146	1071	13.6
Bluegill	16	6	1	97	-	2	1	2	22	-	146	1071 4	22.7
Smallmouth bass	-	2	1		-	-	-	-	2	-	10	46	50.0
Largemouth bass	1	-	-	$\overline{2}$	-	-		-	2		2	8	25.0
White crappie	-	$\overline{-}$	$\bar{\square}$	2	1	-	-	-	2		107	8 460	23.3
Tessellated darter	5	5	8	86	1	-	-	-	1		107	460 3	66.7
Banded darter	-	-	-	1	-	-	-	-	1	-	2	3	66.7
Total	552	121	10	442	307	15	20	12	224	$\stackrel{8}{8}$	1711	12872	13.3
Percent	4.3	0.9	0.1	3.4	2,4	0.1	0.2	0.1	1.7	0.1			

* Includes fish with fin rot, fungus, tumors, or cysts.

Figure 4-1. Location of seine stations sampled in York Haven Pond (station prefix TM-SE- deleted).

Figure 4-2. Annual range of sampling station diversity values, months combined, for seine catches. TMINS aquatic studies (open boxes are station values and crosses represent stations 10 A 2 and 9B3). Identical diversity values may result in less than six symbols.

Figure 4-3. Annual range of monthly (April-November) diversity values, stations combined, for seine catches, TMINS aquatic studies. Identical diversity values may result in less than eight symbols.

Figure 4-4. Annual variation in percent similarity values for selected seine station comparisons, TMINS aquatic studies. Years of non-operation of TMINS are represented within the large square.

Figure 4-5. Annual abundance (number per seine haul) of spottail shiner in seine catches near TMINS.

Figure 4-6. Annual abundance (number per seine haul) of spotfin shiner in seine catches near TMINS.

Figure 4-7. Annual abundance (number per seine haul) of white sucker in seine catches near TMINS.

5.1 METHODS

Electrofishing surveys were conducted at six nearshore stations in York Haven Pond (Figure 5-1). Specific locations and habitat characteristics are described in Table 5-1. Surveys were conducted twice each month in May, June, August, and September, and once each in April, July, October, and November 1989.

The electrofishing system consisted of a Coffelt VVP-10 variable voltage pulsator, powered by a 5.0 kw alternator, and mounted in a 6.4 m aluminum boat. Positive and negative electrodes of 1.2 m lengths of flexible conduit were suspended from two 0.9 m diameter aluminum hoops; these were suspended from aluminum booms about 2.0 m in front of the boat. The electric circuit was controlled by a footactivated switch on the bow of the boat; alternating current was used for all surveys. Sampling was conducted at night with the aid of bow-mounted flood lamps.

Data recorded for each survey were time, duration of sample (in minutes), air and surface water temperatures, surface dissolved oxygen concentration and pH , Secchi disc, conductivity, output voltage, and amperage. Instrumentation and procedures for these measurements are described in Chapter 7 and follow GPU (1987). To sample, the boat was maneuvered slowly downstream through the station, as close
to shore as possible (1 to 10 m offshore). Stunned fish were netted at the bow and placed in holding tubs containing water treated with the anesthetic TMS (tricaine methanesulfonate) to Eacilitate handing and reduce injury. Larger stunned specimens of common carp and quillback $1>250$ mm FL) were not placed in the tubs but were counted by the netting crew. At the end of a sampling run, the boat was returned to the center of the station, and the catch was processed.

Each fish was identified to species; measured to the nearest millimeter FL; weighed to the nearest gram; and inspected for diseases, parasites, and morphological anomalies. If a collection consisted of more than 50 specimens of a single species, a subsample of 50 specimens was selected for individual processing, and the remainder counted. Normally, fish were released after processing. Periodically, however, some specimens were retained for radiological analysis as part of the Radiological Environmental Monitoring Program.

Scientific and common names of fishes captured during the 1989 electrofishing surveys are presented in Table 5-2. Taxonomic order of presentation followed Robins et al. (1980).

Data analysis consisted of calculating percent similarity (PSC) among sampling station catches; species diversity by station and date; condition factors; and
analysis of variance (ANOVA) to analyze catch differences among stations, months (or seasons), and years. Calculation of PSc and diversity indices was identical to those described in Chapter 2. Mean lengths, weights, and condition factors (described in chapter 4) were determined for fishes that comprised more than 10% of the 1989 catch. The 1989 catch was transformed to catch-per-minute and subjected to a two-factor ANOVA with stations and seasons as factors. Seasons were defined as follows: spring, 19 April through 14 June; summer, 28 June through 23 August; and fall, 12 September through 7 November. A three-factor ANOVA (year, month, station) was used to evaluate multiple year catch-per-minute data. In both analyses, catch-per-minute data were transformed to the 4 th root to stabilize variance. When significant differences ($p \leq 0.05$) were identified among stations, months, seasons, or years, Tukey's studentized range test was used to identify significantly different means. The ANOVAs were conducted using SAS software, Version 6 (SAS Institute, Inc.r Cary, NC). Also, Cochran's Q-statistic and M-statistic (Hendrickson 1978) were applied to 1989 station totals. The Q-statistic compared the number of species per station, while the M statistic tested for differences in species composition based on the number of species in common at each station. Results were compared at the 95% probability level to values in the chi-square distribution.

Numbers of fishes collected by the electrofisher during each survey are presented in Appendix D and summarized in Tables 5-3 through 5-5. A total of 6,299 specimens of 28 fishes, representing six families, was taken in 72 collections. Sunfishes, the largest family, were represented by nine species, while carps and minnows (cyprinids) were represented by eight. All other families consisted of three or fewer species.

Sunfishes were the most abundant group numerically; 5,123 specimens comprised 81.3% of the total catch (Table 55), and included the top Eive species (redbreast sunfish, green sunfish, pumpkinseed, bluegill, and smallmouth bass) taken (Table 5-3). The second most abundant family was cyprinids which accounted for 9.6% of the total catch. The spottail shiner (seventh ranked species) and spotfin shiner (ninth ranked species) were the most common cyprinids taken. Suckers were the third most abundant family. and comprised 6.7\% of the total catch. The abundance of the sucker family was largely due to the quillback catch (sixth ranked species). Together, the sunfish, cyprinid, and sucker families accounted Eor 97.6% of the total catch.

The temporal distribution of the electrofishing catch is presented in Table 5-3. Total catch varied considerably among individual sample dates. Fluctuations in total catch
were almost entirely due to the abundance of the redbreast sunfish, green sunfish, pumpkinseed, bluegill, and smallmouth bass. A generalized seasonal pattern emerged that was characterized by high catches in the spring (April through early June), followed by a period of variable and slightly lower catches in the summer (late June through August), and increased catches in the fall (September through November). The high spring catches were predominantly redbreast sunfish, pumpkinseed, and smallmouth bass, which accounted for 63.7% of the total catch. The fall catch was dominated by green sunfish, pumpkinseed, and bluegill, which comprised 62.18 of the catch.

Spatial differences in abundance and number of species among stations is presented in Table 5-4. The total catch was high and quite similar at Stations 10A3, llBl, and 13A1 (1,234, 1,136 , and 1,127 specimens; respectively), moderate at station 9B5 (1,044), and low at stations 10B3 and 4A1 (885 and 873, respectively). The total catch and number of species were closely associated. Stations with high catches had the most species (10A3, 11Bi, and 13Al; 22 species each), while stations with low to moderate catches had fewer species $19 \mathrm{~B} 5,10 \mathrm{~B} 3$, and $4 \mathrm{AI} ; 20,20$, and 18 species, respectively). Variations in the annual station catches may reflect the spatial differences in the abundance of several key species. Among those stations with large catches, quillback, pumpkinseed, and bluegill were most abundant at

Station llBl (comprising over 77% of the catch), while redbreast sunfish, pumpkinseed, and smallmouth bass were abundant at $13 A 1$ and 10A3. The moderate catch at Station $9 B 1$ was dominated by spottail shiner, green sunfish, pumpkinseed, and smallmouth bass. Although these species were common at stations 4 Al and $10 B 3$ their abundance was reduced.

The results of the two-factor analysis of variance provide a quantitative evaluation of spatial and temporal differences in the catch-per-minute (Table 5-6). Significant differences were identified for stations, but not for seasons (Table 5-7). The variance due to the interaction between these factors was also significant, so the effect of single factors on the catch rate was not independent. An examination of the seasonal mean catch rates at each station revealed low catch rates at stations 4A1 and llBl in the spring and summer followed by an unexpected high catch rate in the fall. The catch rates at Stations 13A1, l0A3, and 9Bl were high in the spring and summer and relatively low in the fall. Station $10 B 3$ was intermediate with high catch rates in the spring and lower catch rates in the summer and fall. This variation in seasonal catch rates at individual stations resulted in the overall average showing no differences in Tukey's range test among seasonal or station means. Thus, the small
differences noted above had little, if any, effect on the

```
catch rates over the study period. The 1989 electrofishing
catch rates revealed no evidence to suggest that the
operation of TMINS had any influence on the distribution of
fish populations (total catch) in York Haven Pond.
```


5.3 GROWTH AND CONDITION FACTOR (K)

Growth (mean lengths and weights) and condition factors (K) were determined for those species comprising at least 10\% of the total catch (pumpkinseed, bluegill, and smallmouth bass).

The mean length and weight of pumpkinseed declined from April through August, and fluctuated thereafter (Table 5-8). The decline in the mean length and weight resulted from recruitment of young and juvenile fish into the sample. Larger (adult) fish were common in the spring; their importance declined in the summer as smaller (juvenile) fish became common.

Mean K of pumpkinseed increased from April (2.51) to a peak in May (2.74), declined through July, and remained relatively unchanged through November (Table 5-8). The high K factor in May was Iikely due to the reproductive condition of females.

The growth of bluegill declined from April through July, fluctuated during August and September, before increasing through November (Table 5-8). The decline in mean length
and weight resulted from a change in the catch from larger (adult) fish in the spring (April through June) to smaller (juvenile) fish in the summer (July and August). The subsequent increase in growth resulted from the continued growth and dominance of these juvenile fish in the fall (September through November).

Mean K of bluegill, like that of pumpkinseed, peaked in May (2.70); values in other months ranged from 2.57 in June to 2.09 in November (Table 5-8). Mean K declined steadily from June through November, except for a minor increase in October. The decline in condition was likely the result of the discharge or reabsorption of gametes.

The mean length and weight (growth) of smallmouth bass fluctuated substantially over the study period; highest values occurred in August while the lowest values were recorded in May (Table 5-8). No discernible temporal trend in growth was evident. The reason for this fluctuation may be related to the dominance of either juvenile or adult fish in the catch.

The mean K for smallmouth bass was highest in May and June (1.51) and lowest in July (1.39) (Table 5-8). Generally, mean K increased from April through May, remained high in June, and declined through November. The changes in mean K are probably reflective of the reproductive status of the population.

The condition factors presented herein were compared with published condition data for other water bodies. Carlander (1977) compiled condition data for pumpkinseed, bluegill, and smallmouth bass from a number of different lakes and streams in the United States and Canada. Because K factors can vary with season, sex, sexual maturity, and age, comparisons are general and are not strictly quantitative. In addition, certain "average" conversions (Carlander 1977) were used to convert published data from standard and total lengths to fork lengths for comparison to the Susuqehanna River data. Thus, cross-population comparisons are gross in nature, but nonetheless may be used to assess the well-being or fitness of a fish population.

Pumpkinseed condition factors for the 1989 TMINS study (range of monthly means, 2.31 to 2.74) (Table 5-8) were similar to data presented by Carlander (1977) for other pumpkinseed populations (range of means 1.79 to 3.03), and were near the upper end of the reported range. The bluegill condition data (range 2.09 to 2.70) were also similar to data presented in Carlander (1977) (range 1.11 to 3.27), and were within the median of the reported range. Similarly, the range of mean K for Susquehanna River smallmouth bass (1.39 to 1.51) also fell within the reported range (1.08 to 2.12). Thus, the condition of these fishes from the Susquehanna River near TMINS was comparable those from other systems.

When data are available, as in the present case, it is useful to compare condition factors for the same populations across time. Annual mean K factors for pumpkinseed (EA 1987; RMC 1988a, 1989) and smallmouth bass (EA 1986; RMC 1988a, 1989) were compared to the 1989 data. Calculation of these means obscured differences due to sex and maturity, season, age, sample size, and thus are general in nature. The annual means ranged from 2.40 (1981) to 3.09 (1985) for pumpkinseed, and 1.42 (1978) to 1.72 (1985) for smallmouth bass. Values for 1989 (2.46 and 1.48 for pumpkinseed and smallmouth bass, respectively) fell within their respective ranges. Since data varied from year to year, there was no grouping of condition data by operational (1976 through 1978 and 1986 through 1989) or non-operational (1979 through 1985) years.

Condition factors for these fishes in 1989 were near the lower end of their reported ranges, and represented a decline in condition from those determined in 1987 and 1988. Various authors (Carlander 1977; Latta 1963; Reynolds 1965) have postulated that changes in water level (river flow), precipitation, water temperature, and turbidity may be negetatively correlated to smallmouth bass growth. Data presented in Chapter 7.0 (Water Quality) revealed that 1989 had significantly higher river flow than that reported in either 1987 or 1988. Also, the water temperature regime was lower throughout 1989, particularly June through August when

Abstract

production (spawning) and growth are most critical. It is possible that the reduced condition of smallmouth bass and, to an extent, pumpkinseed in 1989 may be related to higher river flow and lower water temperature. If the operation of TMINS were exerting some detrimental effect on the condition of these fishes in York Haven Pond, the respective K factors would be consistently higher in the years following shutdown. This was not the case as the differences were related to environmental and natural variation in fish populations rather than any influence of TMINS.

5.4 COMMUNITY ANALYSIS: DIVERSITY AND SIMILARITY

The 1989 fish community in York Haven Pond was examined with measures of species diversity and percent similarity. Shannon-Wiener mean diversity (H^{2}) was calculated for annual catch at each station (Table 5-4) and for each date (Table 5-3). Mean diversity values ranged from 2.60 to 3.21 among stations and from 2.45 to 3.24 among dates. Diversity was high (>2.90) at stations 13A1, 10A3, and 9B5, reflecting both higher numbers of species and/or greater evenness of individuals among the taxa. Diversity was. low (<2.90) at Stations 4A1, l0B3, and llBl due to the numerical dominance of pumkinseed and bluegill which comprised over 48% of the catch at each station.

Spatial patterns of diversity appeared to be associated with habitat complexity. Stations characterized by a variety of substrate types and an abundance of cover in the form of fallen trees, boulders, and/or aquatic macrophytes, typically had higher diversity values. Those stations exhibiting a singleness of substrate with little cover had lower diversities. Species diversity has been shown to be strongly associated with habitat diversity (Gorman and Karr 1978).

Diversity values were variable among sampling dates, with no discernible trend over time (Table 5-3). The highest H^{\prime} values (>3.20) occurred in April, late May, and early September, while the lowest values (<2.80) occurred in early May and late June. The lower diversity values resulted when the electrofishing catch contained fewer species and/or an overabundance of one or two species, notably pumpkinseed or smallmouth bass.

The annual (19.76 through 1989) fish commenity diversity was plotted by station with months combined (Figure 5-2), and by month with stations combined (Figure 5-3). Monthly and station diversities fluctuated over the years with no clear pattern exhibited. Monthly and station diversity values were similar to those reported in RMC (1988), and were within their historical range. The minimum diversity value for 1989 was within the range reported previously.

Neither monthly nor station diversity appeared to be influenced by the operational status of TMINS.

Percent similarity compares station catches on the basis of species composition. Similarity values ranged from 41.0 (low similarity) to 82.8 (high similarity) (Table 5-9). Two groupings of stations were evident. Stations l0A3, 9B5, and l0B3 were consistently similar to each other (mean similarity $=79.1$), as were 4 Al and llBl (similarity $=$ 82.8), while similarity between these two groups was consistently low (mean similarity $=61.0$). Similarity values for Station l3al indicated that species composition and abundance were similar to l0A3 (71.8), but quite dissimilar to all the other stations (mean similarity = 45.3).

Similarity of sites was influenced by differences in habitat and species abundance. Stations 13A1, 10A3, and 9B5; located along the west shore of TMI above and below the TMINS discharge; generally have higher velocities, a wide variety of substrate types, and abundant cover. Stations 4A1 and llBl share a diverse habitat characterized by mud bottoms, extensive beds of aquatic macrophytes (particularly liBl), and other cover such as submerged trees. Habitat at Station 10 B 3 was intermediate between these types. Differences in similarity among stations also resulted from an uneven distribution of several key species, principally,
spottail shiner, redbreast sunfish, green sunfish, pumpkinseed, bluegill, and smallmouth bass.

Pairwise similarity values for electrofishing catches at sampling stations were examined for a 14 -year period (Table 5-10). In general, station pairs with high similarity values in previous years exhibited high similarity in 1989 (e.g., 13Al vs. 10A3, l0A3 vs. 9B5). Station pairs with low PSC values in 1989 also were low in previous years (e.g.. $13 A 1$ vs. 11Bl, l0A3 vs. 11B1). Generally, there appears to be a continuation of the trend towards increasing fish community similarity as reported in RMC (1988a, 1989). Many station pairs were at or above their historic mean. In fact, the similarity between Stations 4 Al and 11 Bl was the highest to date.

To examine possible effects of the mMINS discharge on fish community similarity, pSc values for pairwise comparisons of station 13Al (immediately upstream of discharge), l0A3 (immediately downstream of discharge), and 9B5 (2,000 m downstream of discharge) were plotted (Figure 5-4). The similarity of stations downstream of TMINS discharge with $13 A 1$ in 1989 showed a decrease from those reported in 1988. If the TMINS discharge were to influence the downstream fish community, station similarities would be expected to change between operational and non-operational years. The PSc values between Stations 13 Al and 10A3 and 13 Al and 9 B 5 were within the range established for
operational years, but below the range for non-operational years. These differences in similarity may reflect not so much a change in species composition as the extreme dominance of a single species. The dissimilarity of these stations with l3Al may also be related to natural environmental conditions in 1989 which was characterized by high river flow and turbidity.

Cochran's Q-statistic was not significant $Q=$ 5.318. DF $=5$) and indicated homogeneity in the total number of fishes per station. The M-statistic showed no significant difference ($M=2.698, D F=10$) in the number of species common to each station. The non-significance of the Mstatistic and Q-statistic was indicative of a homogeneous population, and suggests that differences in PSc among individual stations was not due to a change in species composition, but simply the overabundance of a single species.

5.5 MULTIPLE-YEAR COMPARISON OF FISH ABUNDANCE

To assess trends in total fish abundance in York Haven Pond over the study period, and to investigate the possible influence of TMINS on total fish abundance, total catch-perminute (catch rate) was analyzed by a three-factor ANOVA. Total catch rates were significantly different among months, years, and stations (Table 5-11). Variance due to
interaction between factors (year, month, station) was significant in all cases, so the effects of single factors on catch rate are not independent of the other factors, and ANOVA results must be interpreted with caution.

Mean annual catch rates were plotted for each station to illustrate trends (Figure 5-5). Substantial year-to-year variation in catch rates obscured any consistent trend in catch rate over the study period. There was a general decline in the catch rate from 1978 through 1986. The catch rate in 1989 showed a slight decrease from that reported in 1988 (RMC 1989). This decrease may be related to a 19.4\% increase in effort and not to declines in the catch rates of key species. Consequently, the 1989 catch rate ranked second among all years, was similar to 1988 and 1987, and significantly different from all other years (Table 5-12).

Monthly catch rates in May, October, and September were similar to each other and significantly different from all other months for the period of record (Table 5-12).

Catch rates among stations near TMINS were significantly different (Table 5-12). The lowest catch rates occurred at Stations $4 A 1$ and $9 B 5$ for the study period, and these were significantly lower than Stations 11Bl, 10A3, and 13A1. Station 1083 was differentiated statistically from Stations 11日l, 10A3, and 9B5. The size and temporal variation of catch rates at stations upstream and downstream of the TMINS discharge (Figure 5-6) were very similar for the period of
record. This latter pattern suggests that the natural variation in fish populations or variation in sampling efficiency was the factor affecting catch size, rather than any effect of the TMINS discharge.

Historical electrofishing data for York Haven Pond (EA 1985, 1986, 1987; Nardacci and Associates 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984; RMC 1988a, 1989) were examined to determine trends in specific species populations that may have influenced the multiple-year ANOVA results. As expected, common species such as quillback, pumpkinseed, and smallmouth bass exhibited annual population fluctuations that influenced the total catch-per-minute values (Figures 5-5 and 5-6). Rock bass, redbreast sunfish, bluegill, and walleye also contributed to this pattern, but to a lesser extent. Catches of quillback, pumpkinseed, and smallmouth bass at stations near the TMINS discharge also were examined for any differences in relative abundance prior to and after the shutdown. No consistent patterns emerged that would implicate the TMINS discharge as influencing station catches. Fish abundance was affected by seasonal changes in river flow and water temperature, habitat differences, and the natural fluctuations inherent in fish populations. There was little evidence that TMINS had any effect on the distribution and/or abundance of fishes sampled by the AC electrofisher in 1989.
5.6 PARASITES, DISEASE, AND MORPHOLOGICAL ANOMALIES

Fishes collected during routine electrofishing surveys were examined for the presence of external parasites, diseases, or morphological anomalies. Although these conditions occur naturally at low incidence in healthy fish populations, a high Erequency of occurrence may indicate stress in the environment.

During the April through November period, a total of 5,613 Eish was examined; 708 specimens of 22 fishes had one or more types of external parasites, infections, and/or morphological anomalies (Table 5-13). The most prevalent conditions were the presence of skin infections, anchor worms (Lernaea spp.), and leeches. These occurred on 305 (5.4\%) r 211 (3.8\%), and 64 (1.1\%) individuals, respectively. Skin infections included damaged fins, fin rot, fungus, tumors, and cysts. Skin infections occurred on 17 different fishes; anchor worms were observed on 14 fishes; and leeches occurred on 8 fishes. Skin infections occurred mostly on green sunfish, pumpkinseed, bluegill, and smallmouth bass. Anchor worms and leeches occurred almost exclusively among sunfishes (95.3\% and 98.4\%, respectively). Black spot (fluke cysts) and eye injuries, although infrequent, primarily afflicted the redbreast sunfish, green sunfish, smallmouth bass, and largemouth bass. Mouth injuries, suspected to be caused by angling, were mostly observed on
smallmouth bass. All other conditions occurred in very low Erequency.

The overall incidence of diseases, parasites and morphological anomalies for all fishes was l2.6\% (Table 513). Incidence rates for individual species varied considerably. However, small sample sizes likely yield a large degree of error in estimating the true incidence rate. Sample sizes were probably sufficient for those fishes that comprised 10% of the total catch and were collected throughout the year: pumpkinseed, bluegill, and smallmouth bass. The incidence rates for these fishes ranged from 10.0 to 14.2 \%

Some anomalies encountered in York Haven Pond can be considered unrelated to environmental stress (i.e. mouth injuries caused by angling). Light infestations of parasites are not generally considered indicative of stress (Snieszko 1970). After omitting black spot, anchor worm (Lernaea spp.), leeches, and mouth injuries from consideration, the overall incidence rate of disease and physical anomalies was 6.6\%. EA (1987) estimated incidence rates of $1.60,3.98$, and 7.09%, for 1984, 1985, and 1986, respectively. EA (1987) observed a trend toward increasing incidence of disease and anomalies from 1984 to 1986; this was not observed in 1987 or 1988. Although the incidence rate in 1989 nearly doubled that observed in 1987 or 1988, it was still within the range established by EA (1987). The
reason for this increase was unknown, but appeared unrelated to TMINS operation. Diseased and parasitized fish were encountered throughout York Haven Pond and not limited to areas immediately below the TMINS discharge.
The incidence of poor health in fishes has been shown to reflect environmental degradation. Indicators of poor health include tumors, fin damage or other deformities, heavy infestations of parasites, discoloration, excessive mucus, "redness", and hemorrhaging (Karr et al. 1986). The presence of low frequencies of parasitic infection, disease, and/or morphological anomalies is common in natural fish populations. The low frequencies of affliction encountered on fishes in York Haven Pond suggest a natural condition, and provide no evidence of environmental stress caused by TMINS operation.

TABLE 5-1
Location and description of $A C$ electrofishing stations sampled in York Haven Pond.

TM-EL-4A1*

TM-EL-13AI

TM-EL-10A3

TM-EL-9B5

TM-EL-10B3

TM-EL-11BT

Along east shore of TMI , north bridge to 500 m downstream. Mud bottom and a few fallen trees along the length of the zone. When the water ceases to flow over Red Hill Dam ($<435 \mathrm{~m}^{3} / \mathrm{sec}$), the current reverses and flows north in the zone. Extensive plankton blooms are present during the summer months.

Along west shore of TMI, 500 m downstream from north tip to discharge. Many boulders and riprap above Unit 2 intake; below Unit 2 intake, shallow, with a mud bottom, a few boulders, and some patches of water willow. Swift current, except when river flow is low ${ }^{(d)}$

Along west shore of TMI, discharge to 500 m downstream. The upper 200 m is shallow with a mud bottom and some patches of emergent vegetation (water willow). There is an eddy along shore due to the discharge. The lower 300 m has some boulders and fallen trees, with rubble and gravel on the bottom.

Along west shore of TMI, 1,500-2,000 m downstream of discharge. Shallow with a mud bottom, a few boulders and fallen trees. There is usually an eddy in the lower 100 m due to York Haven Dam.

Along west shore of Shelley Island, 500 m upstream to south tip. There are a few fallen trees and boulders; the bottom consists of mud and gravel. There are extensive beds of water weed (Elodea sp.) along the length of the zone with many floating docks present during the summer and fall months.

Along west shore of York Haven Pond from a small unnamed creek 500 m below the mouth of Fishing Creek to 500 m downstream. Shallow, with a mud bottom and. a few fallen trees. There are extensive beds of wild celery (Vallisneria americana) and curly pondweed (Potamogeton crispus) in summer and fall.

* Prefix TM-EL- deleted from station numbers for discussion in text. (a) River flow was defined as low ($1770 \mathrm{~m}^{3} / \mathrm{sec}$) or moderate ($170-1,000 \mathrm{~m}^{3} / \mathrm{sec}$).

TABLE 5-2
List of scientific and common names of fishes collected by the AC electrofisher from the Susquehanna River near TMINS in 1989.

Scientific Name	Common Name	
Clupeidae	Herrings	
Alosa sapidissima (Wilson)	American shad	
Dorosoma cepedianum (Lesueur)	Gizzard shad	
Cyprinidae	Carps and Minnows	
Cyprinus carpio Linnaeus	Common carp	
Notemigonus crysoleucas (Mitchill)	Golden shiner	
Notropis cornutus (Mitchill)	Common shiner	
Notropis hudsonius (Clinton)	Spottail shiner	
Notropis spilopterus (Cope)	Spotfin shiner	
Notropis volucellus (cope)	Mimic shiner	
Pimephales notatus (Rafinesque)	Bluntnose minnow	
Semotilus corporalis (Mitchill)	Fallfish	
Catostomidae	Suckers	
Carpiodes cyprinus (Lesueur)-	Quillback	
Catostomus commersoni (Lacepede)	White sucker	
Moxostoma macrolepidotum (Lesueur)	Shorthead redhorse	
Ictaluridae	Bullhead catfishes	
Ictalurus natalis (Lesueur)	Yellow bullhead	1
Ictalurus nebulosus (Lesueur)	Brown bullhead	
Ictalurus punctatus (Rafinesque)	Channel catfish	
Centrarchidae	Sunfishes	
Ambloplites rupestris (Rafinesque)	Rock bass	
Lepomis auritus (Linnaeus)	Redbreast sunfish	
Lepomis cyanellus Rafinesque	Green sunfish	
Lepomis gibbosus (Linnaeus)	Pumpkinseed	
Lepomis macrochirus Rafinesque	Bluegill	
Micropterus dolomieui Lacepede	Smallmouth bass	
Micropterus salmoides (Lacepede)	Largemouth bass	
Pomoxis annularis Rafinesque	White crappie	
Pomoxis nigromaculatus (Lesueur)	Black crappie	
Percidae	Perches	
Perca flavescens (Mitchill)	Yellow perch	
Etheostoma olmstedi Storer	Tessellated darter	
Stizostedion vitreum	Walleye	
vitreum (Mitchill)		

TABLE 5-3
Temporal distribution of fishes taken by the Ac electrofisher near TMINS in 1989.

	$\begin{gathered} 19-20 \\ \mathrm{Apr} \end{gathered}$	$\begin{gathered} 24-25 \\ \text { May } \end{gathered}$	$\begin{gathered} 30-31 \\ \mathrm{May} \\ \hline \end{gathered}$	$\begin{gathered} 13-14 \\ \text { Jun } \end{gathered}$	$\begin{gathered} 28-29 \\ \text { Jun } \end{gathered}$	$\begin{gathered} 25-26 \\ \text { Jul } \end{gathered}$	$\begin{aligned} & 9-10 \\ & \text { Auq. } \end{aligned}$	$\begin{gathered} 22-23 \\ \mathrm{Aug} \\ \hline \end{gathered}$	$\begin{gathered} 12-13 \\ \text { Sep } \end{gathered}$	$\begin{gathered} 26-27 \\ \text { Sep } \\ \hline \end{gathered}$	$\begin{aligned} & 4-5 \\ & \text { oct } \end{aligned}$	$\begin{array}{r} 7 \\ \text { NOV } \\ \hline \end{array}$	Tocal	8 Carch
American shad	Apr	May	Hay	Jun	-		-	-	-	1	-	-	1	\pm
Gizzard shad	2	3	6	2	6	9	-	13	2	8	10	6	67	1.1
Common carp	5	10	18	7	10	3	8	4	2	7	3	2	79	1.2
Golden shiner	2	-	2	1	-	2	4	6	3	7	9	12	48	0.8
Common shiner	-		-	-	-	-	-	-	1	2	1	-	4	0.1
Spottail shiner	33	11	23	25	3	34	11	13	25	19	49	109	355	5.6
Spotfin shiner	-	6	10	13	5	15	9	25	14	4	2	2	105	1.7 +
Nimic shiner		1		-	-	$\overline{7}$	-	-	-	1	-	-	3	$+$
Bluntnose minnow	-	-			1	1	$\bar{\square}$	-	1	-	-	-	12	0.2
Falleish	-	1	2	-	-	1	5	3	-	$\overline{2}$		43	375	6.2
Quillback	36	42	81	29	25	23	31	41	12	2	10	43	375	6.0
White sucker	2	5	1	1	3	1	-	-	-	1	-		14	0.2
Shorthead redhorse	12	2	7	1	2	10	-	1	\cdots	-	-	-	35	0.6
Yellow bullhead	-	-	-	1	-	-	-		1	1	1	-	4	0.1
Brown bullhead	-	1	-	-	1	-	1	1	-	$\overline{7}$			4	0.1
Channel catfish	1	-	2	5	1	5	4	3	${ }^{4}$	7	2	$\bar{\square}$	34	0.5
Rock bass	32	17	30	16	7	5	17	5	18	10	11	8	176	2.8
Redbreast sunfish	79	70	69	74	17	74	41	17	48	15	10	20	534	8.5
Green sunfish	17	4	15	30	3	12	100	63	52	29	46	74	445	7.1
Pumpkinseed	122	186	130	274	44	205	188	163	111	165	244	306	2038	32.4
Bluegill	20	23	40	51	4	19	155	97	117	66	82	76	758	12.0
Lepomis hybrid	1	2	-	7	-	1	7	3	13	6	7	2	49	0.8
Smallmouth bass	85	173	133	87	251	78	30	32	19	51	51	42	932	14.8
Largemouth bass	6	1	2	11	-	6	15	7	21	12	13	11	105	1.7
White crappie	4	1	6	8	-	4	3	-	2	7	6	17	58	0.9
Black crappie	3	-	1	1	-	-	4	-	2	6	2	9	28	0.4
Tessellated darter	-	-	-	-	-	-	1	-	-	-			1	+
Yellow perch	-	-	-	-	-	1	-	-	-	-	-	5	1	$\stackrel{+}{5}$
Walleye	6	1	6	4	2	2	1	-	3	1	1	5	32	0.5
No. of Specimens	476	560	584	548	285	511	635	497	471	428	560	744	6299	
No. of Species	18	19	20	20	17	21	19	17	20	22	19	16	28	
No. of Collections	6	6	6	6	6	6	6	6	6	6	6	6	72	
No. of Fish/Callection	79.33	93.33	97.33	91.33	47.50	85.17	105.83	82.83	78.50	71.33	93.33	124.00	87.49	
No. of Fish/Minute	3.78	4.34	4.32	3.86	2.06	3.68	5.00	3.38	3.18	3.27	3.52	4.56	3.74	
Diversity Index	3.20	2.64	3.21	3.18	2.45	2.93	2.99	3.03	3.24	3.12	2.82	2.84	3.24	

Diversity Index

TABLE 5-4
Distribution of fishes taken by the AC electrofisher at stations sampled near TMINS in 1989. Station prefix TM-EL- deleted from table.

	4 Al	13 Al	10 A 3	985	10B3	$11 \mathrm{B1}$	Total	\% Catch
American shad	-	1	-	-	-	-	1	+
Gizzard shad	10	11	9	3	13	21	67	1.1
Common carp	10	24	14	7	10	14	79	1.2
Golden shiner	-	1	3	-	4	40	48	0.8
Common shiner	-	-	-	-	-	4	4	0.1
Spottail shiner	12	11	81	147	91	13	355	5.6
Spotfin shinex	12	26	40	16	1	10	105	1.7
Mimic shiner	-	-	2	-	-	-	2	+
Bluntnose minnow	2	-	1	-	-	-	3	+
Fallfish	-	2	8	2	-	-	12	0.2
Quillback	61	33	34	70	68	109	375	6.0
White sucker	2	5	5	1	-	1	14	0.2
Shorthead redhorse	-	15	16	3	-	1	35	0.6
Yellow bullhead :	1	3	-	-	-	-	4	0.1
Brown bullhead	2	-	-	-	1	1	4	0.1
Channel catfish	2	16	7	5	3	1	34	0.5
Rock bass	9	65	51	28	14	9	176	2.8
Redbreast sunfish	23	172	165	96	. 67	11	534	8.5
Green sunfish	69	98	109	142	13	14	445	7.1
Pumpkinseed	386	162	365	284	298	543	2038	32.4
Bluegill	156	31	97	109	135	230	758	12.0
Lepomis hybrid	28	5	6	6	-	4	49 932	0.8
Smallmouth bass	23	429	203	111	145	21	932	14.8
Largemouth bass	55	4	5	3	5	33	105	1.7
White crappie	4	3	2	3	7	39	58	0.9
Black crappie	4	4	1	2	2	15	28	0.4
Tessellated darter	-	-	-	1	-	-	1	+
Yellow perch	-	-	-	-	$\overline{8}$	1	1	${ }_{0}^{+}$
Walleye	2	6	10	5	8	1	32	0.5
No. of Specimens	873	1127	1234	1044	885	1136	6299	
No. of Species	20	22	22	20	18	22	28	
No. of Collections	12	12	12	12	12	12	72	
No. of Fish/ Collection	72.75	93.92	102.83	87.00	73.75	94.67	87.49	
No. of Fish/Minute	3.17	4.37	4.38	3.84	3.39	3.38	3.74	
Diversity Index	2.78	2.97	3.21	3.11	2.88	2.60	3.24	

+ Less than 0.05%

TABLE 5-5
Percent family composition at the $A C$ electrofishing stations sampled in York Haven Pond, April through November 1989. Station prefix TM-EL- deleted from table.

Family	Station						
	4AI	13 Al	l0A3	9 B 5	10B3	llB1	Total
Herrings	1.1	1.1	0.7	0.3	1.6	1.8	1.1
Carps and Minnows	4.1	5.7	12.1	16.5	11.9	7.1	9.6
Suckers	7.2	4.7	4.4	7.1	7.7	9.8	6.7
Bullhead catfishes	0.6	1.7	0.6	0.5	0.4	0.2	0.7
Sunfishes	86.7	86.3	81.4	75.1	77.5	80.9	81.3
Perches	0.2	0.5	0.8	0.6	0.9	0.2	0.5

TABLE 5-6
Spatial and temporal catch-per-minute data (all species combined) for fishes taken by the AC electrofisher near TMINS in 1989. Station prefix TM-EL- deleted from table.

Date	Season	Station						Total Mean
		4Al	13A1	10A3	9B5	10B3	11B1	
19-20 Apr	Spring	2.05	5.76	4.68	2.22	3.75	4.21	3.78
24-25 May	Spring	1.75	4.35	4.04	5.04	7.15	3.80	4.34
30-31 May		1.50	6.36	5.41	4.33	5.00	3.52	4.32 3.86
13-14 Jun		3.64	4.60	4.83	5.54			3.86
Seasonal Mean		2.30	5.30	4.74	4.29	4.64	3.38	4.08
28-29 Jun	Summer	0.90	4.21	2.95	1.44	1.73	1.60	2.06
25-26 Jul		1.90	6.00	5.88	5.23	2.82	1.10	3.68
9-10 Aug		4.74	5.33	8.12	5.50	3.38	2.92	5.00
22-23 Aug		3.54	3.56	4.74	2.91	3.54	1.84	3.38
Seasonal Mean		2.77	4.72	5.45	3.65	2.89	1.82	3.50
12-13 Sep	Fall	5.20	3.04	2.83	3.00	3.16	1.92	3.18
26-27 Sep		4.13	3.00	4.12	3.63	1.59	2.72	3.27
4-5 Oct		3.50	3.44	2.73	2.82	3.71 2.48	4.51 8.74	4.56
7 Nov		4.10	3.50	2.32	4.68			
Seasonal Mean		4.21	3.25	3.00	3.56	2.79	4.79	3.66
Grand Mean		3.17	4.37	4.38	3.84	3.39	3.38	3.74

TABLE 5-7
Two-factor analysis of variance test results for electrofishing catch-per-minute data collected near TMINS, April through November 1989.

Source	df	Sum of Squares	Mean Square	F Value	P Value
Model ($r^{2}=0.441$)	17	0.7258	0.0427	2.51	$0.0054 *$
Station	5	0.2319	0.0464	2.73	0.0287**
Season	2	0.0538	0.0269	1.58	0.2150
Interaction	10	0.4401	0.0440	2.59	0.0122**
Error	54	0.9186	0.0170		
Corrected Total	71	1.6443			

* Significant at $\mathrm{P} \leq 0.01$.
** Significant at $\mathrm{P} \leq 0.05$.

TABLE 5-9

Percent similarity indices of species composition between the electrofishing stations near TMINS, 1989. Station prefix TM-EL- deleted from table.

	13 Al	10 A 3	9 B 5	10 B 3	11 BI
4 AI	41.0	60.9	64.1	69.3	82.8
13 Al		71.8	57.4	52.1	30.7
10 A 3			80.8	77.8	50.5
9 B 5				78.6	53.6
10 B 3				67.6	

TABLE 5-10
Comparison of percent similarity indices of species composition between the electrofishing stations near TMINS, 1976 through 1988 vs. 1989. Station prefix TM-EL- deleted from table.

Station Pairs	1976 through 1988		1989
	Range	Mean	
4A1-13A1	37.4-76.4	58.8	40.9
4A1-10A3	44.5-75.7	60.9	60.9
4A1-9B5	52.5-74.9	64.5	64.1
4A1-10B3	43.5-77.7	65.0	69.3
4Al-11B1	41.7-76.5	59.8	82.8
13Al-10A3	68.5-84.3	77.9	71.8
13Al-9B5	36.5-78.6	64.4	57.4
13A1-10B3	46.2-74.1	61.8	52.1
13A1-11B1	27.9-44.9	35.9	30.7
10A3-9B5	44.8-87.2	70.7	80.7
10A3-10B3	52.6-83.3	66.9	77.8
10A3-11B1	35.0-56.0	42.7	50.5
9B5-1083	43.4-82.8	68.7	78.6
9B5-11Bl	32.0-66.0	50.1	53.6
10B3-11B1	48.8-7.3.9	60.1	67.6

TABLE 5-11
Three-factor analysis of variance test results for electrofishing catch-per-minute data collected near TMINS, April through November 1976 through 1989.

Source	df	Sum of Squares	Mean Square	F Value	P Value
Model ($x^{2}=0.612$)	216	50.2695	0.2327	7.02	$0.0001 *$
Year	13	16.1588	1.2430	37.49	$0.0001 *$
Month	7	3.7291	0.5327	16.07	$0.0001 *$
Station	5	3.2274	0.6455	19.47	$0.0001 *$
Year-Month	91	13.2523	0.1456	4.39	$0.0001 *$
Year-Station	65	4.2467	0.0653	1.97	0.0001*
Month-Station	35	7.3986	0.2114	6.38	0.0001*
Error	961	31.8629	0.0332		
Corrected Total	1177	82.1324			

* Significant at $\mathrm{P} \leq 0.01$.

TABLE 5-12

make s studentized range test for electrofishing catchmer-minute data collected near TMINS, April through November 1976 through 1989. Underlined means are not significantly different (PS0.05) and April (4 th root) mean. Means are listed parentheticaliy.

* Station prefix TM-EL- deleted from table.

TABLE 5－13
Incidence of parasites，diseases，and／or morphological anomalies on fishes captured by the AC electrofisher near TMINS，April through November 1989.

	$\begin{aligned} & \text { 苟菏 } \\ & \text { 芯茄 } \end{aligned}$	？	E 		$\begin{aligned} & \text { 昫 } \\ & \overrightarrow{3} \\ & \text { 敬 } \end{aligned}$		$\begin{aligned} & 00 \\ & \text { 0 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$							
Gizzard shad	－	－	－	－	－	－	－	－	－	4	1	5	68	7.4
Common carp	－	－	－	－	－	－	－	1	－	－	－	1	6	16.7
Golden shiner	－	－	－	－	－	－	－	－	－	3	－	3	48	6.2
Common shiner	1	－	－	－	－	－	－	－	－	－	－	1	4	25.0
Spottail shiner	1	6	－	－	－	－	－	－	－	7	－	14	348	4.0
Spotfin shiner	－	1	－	－	－	－	－	－	，－	－	－	1	105	1.0
Fallfish	－	1	－	－	－	I	－	－	－	1	－	2	12	16.7
Quillback	3	1	－	－	－	1	－	－	－	21	－	26	115	22.6
white sucker	1	－	－	－	－	－	－	－	－	1	－	2	14	14.3
Shorthead redhorse	－	1	－	－	－	－	－	－	1	5	－	7	35	20.0
Brown bullhead	－	－	1	－	－	－	－	－	－	－	－	2	4	25.0
Channel catfish	－	－	－	－	－	－	－	－	1	4	－	5	34	14.7
Rock bass	－	1	3	－	－	－	－	4	2	11	5	26	176	14.8
Redbreast sunfish	－	16	12	1	－	2	1	5	2	23	3	65	534	12.2
Green sunfish	－	19	24	－	－	－	－	1	－	41	－	85	445	19.1
Pumpkinseed	－	71	3	－	－	－	10	－	4	80	7	175	1748	10.0
Bluegill	－	53	2	－	1	1	1	3	1	43	－	105	749	14.0
Lepomis hybrid	－	－	6	－	－	－	－	－	－	2	－	8	49	16.3
Smallmouth bass	－	32	9	\sim	3	－	－	24	12	44	3	127	896	14.2
Largemouth bass	10	6	4	－	－	－	－	9	1	11	－	41	105	39.0
White crappie	－	2	－	－	－	－	－	－	－	1	－	3	58	5.2
Black crappie	－	1	－	－	－	－	－	－	－	3	－	4	28	14.3
Walleye	1	－	－	－	－	－	－	－	－	－	－	1	32	3.1
Total	17	211	64	1	4	4	12	47	24	305	19	708	5613	12.6
Percent	0.3	3.8	1.1	＋	0.1	0.1	0.2	0.8	0.4	5.4	0.3			

Includes fish with fin rot，damaged fins，fungus，tumors；or cysts．

+ Less than 0.05% ．

Figure 5-1. Location of electrofishing stations sampled in York Haven Pond
(station prefix TM-EL- deleted).

Figure 5-2. Annual range of sampling station diversity values, months combined, for electrofishing catches, TMINS aquatic studies (open boxes are station values, and crosses represent stations 10A3 and 9B5). Identical diversity values may result in less than six symbols.

Figure 5-3. Annual range of monthly (April-November) diversity values, stations combined, for electrofishing catches, TMINS aquatic studies, Identical diversity values may result in less than eight symbols.

Figure 5-4. Annual variation in percent similarity (PSc) values for selected station comparisons, TMINS aquatic studies. Years of non-operation of TMINS are represented within the large square.

Figure 5-5. Mean annual catch-per-minute data for electrofishing stations near TMINS.

Figure 5-6. Mean annual catch-per-minute data for electrofishing stations nearest the TMINS discharge.

6. CREEL SURVEYS

6.1 METHODS

The survey area included over 793 hectares of the Susquehanna River immediately upstream and downstream of the York Haven and Red Hill dams (Figure 6-1). This section of river was partitioned into four areas: General Reservoir, West Dam (York Haven Dam), East Dam (Red Hill Dam), and York Haven Generating Station (YHGS); the General Reservoir was further subdivided into 12 zones. The first three areas were surveyed on a 16 km circuit by boat. All anglers fishing from boats (except those trolling) and along the shore were interviewed. The YHGS area was surveyed on foot; therefore, anglers fishing from boats were interviewed only if they were near shore or had completed fishing.

Creel surveys were conducted on two weekend days and two weekdays each month, April through November 1989. Survey dates were preselected to equally represent each weekend day and weekday. Each survey-day was divided into three 4-hour interview periods (0900-1300, 1301-1700, and 1701-2100 hours). During each period, air and surface water temperatures, weather conditions, and time were recorded at each area. River stage; obtained from River Forecast Center, Harrisburg, Pennsylvania; was recorded on each survey-day.

Anglers were interviewed concerning their residence, total time fished (to the nearest five minutes), composition of catch, use of catch (kept, released, given away, or other), and whether their use of catch was affected by the 1979 accident at Unit 2 of the Three Mile Island Nuclear Station (TMINS). Anglers interviewed during more than one survey period were considered separate anglers; however, use of catch and residence information was recorded only during their first interview. Other data recorded were whether fishing trips were complete or incomplete, estimated angler age (categorized as $<18,18$ to 29,30 to 65 , and >65 years), whether anglers fished from boat or shore (General Reservoir. only), and zone fished (Figure 6-1).

Survey results (numbers of anglers, fish caught, fish kept, and.hours fished) were used in a two-factor analysis of variance (ANOVA) to analyze differences among months and areas in 1989, and among years and areas (1975 through 1989). When significant differences were indicated by ANOVA, Tukey's studentized range test was used to determine differences between means (SAS Institute, Inc., Cary, NC).

Fishes caught by anglers in 1989 are listed in Table 6-1 with taxonomic order and scientific and common names following Robins et al. (1980). When anglers were unsure of species identification or reluctant to have their catch examined, general identifications such as suckers (Catostomidae), bullhead catfishes (Ictalurus spp.),
sunfishes (Lepomis spp.), or crappies (Pomoxis spp.) were used.

The relative similarity of species composition among survey areas for total catch and harvest was determined by calculating a percent similarity index (PSC), as decribed in Chapter 2.

Creel survey data were accepted with the assumptions that the rate of catch before and after the interview was the same, and that catch per unit effort for incomplete fishing trips was an unbiased estimator of catch per unit effort for completed trips. These assumptions were validated by DiCostanzo (1956), Frisbie and Ritchie (1963), Groen and Schmulbach (1978), Malvestuto et al. (1978), and Nardacci et al. (1976).

Catch per unit effort ($c / e=$ catch per hour) and harvest per unit effort (h/e = harvest per hour) values were calculated for specific time periods, e.g., weekend day, weekday, monthly, and annually for each survey area. Mean values (\bar{x}) of fish caught, fish kept (harvested), and hours fished per angler also were calculated for these time periods from the equation in Nardacci et al. (1976):

$$
\bar{x}=\frac{x}{y}
$$

where
$\bar{x}=$ surveyed number of fish caught, fish harvested, or hours fished, and
$y=$ surveyed number of anglers.
Data from the creel surveys were used to estimate monthly and annual angling totals. The average number of anglers were calculated without extrapolating for missed survey periods (e.g., due to equipment failure, darkness) and used in the equation (Nardacci et al. 1976):

(Awe) (Twe) $+($ Awd $)($ Twd $)$
where
$\mathrm{E}=$ estimate of total anglers,
Awe $=$ mean number of anglers per weekend day each month,
Twe $=$ total number of weekend days each month;
Awd $=$ mean number of anglers per weekday each month, and
Twd $=$ total number of weekdays each month.

Estimates of total fish caught, fish harvested, and hours fished were obtained by multiplying the surveyed mean values $(\bar{x})^{\prime}$ by the estimated number of anglers (E).

Another creel survey estimate was the computation of completed trips by assuming that anglers were interviewed
during the midpoint of their fishing trip. Doubling the time from the start of the angler's trip to the time of interview produced an estimate of the completed fishing trip (DiCostanzo 1976; Groen and Schmulbach 1978).

All creel survey estimates were considered valid only with the assumptions that anglers not interviewed during a survey-day (e.g., trolling, inaccessible) approximated those that were interviewed more than once that day; and that anglers fishing for a brief time had a chance of being interviewed equal to those fishing for an extended period of time.
6. 2 EVALUATION OF EFEORT, CATCH, AND HARVEST

Summaries of each 1989 creel survey-day are presented in Appendix E. A total of 2,535 anglers was interviewed (Table 6-2). They fished for 5,751.00 hours and caught 9,607 Eish of which 2,018 were harvested. The resultant mean annual catch (c/e) and harvest per unit effort (h/e) were 1.67 and 0.35 fish per hour, respectively. The total number of anglers, the number of fish caught, and the hours fished peaked in July and again in October before declining through November. Monthly c / e and h / e values were highest in May. The survey areas receiving the heaviest fishing pressure and yielding the most fish were the General Reservoir and YHGS (Table 6-2). Increased fishing pressure at these areas
anglers, fish caught, and fish kept. However, the General Reservoir differed from the dams with respect to number of anglers, fish caught, and hours fished. Ranking of survey area means indicated that the General Reservoir was highest for number of anglers, fish caught, and hours fished. Collectively, the General Reservoir and YHGS means ranked highest for all test variables.

Creel survey investigations elsewhere have shown that angler effort was greatest on weekends (Thuemler 1981; Von Geldern and Tomlinson 1973). Similarly, TMINS survey data showed angler effort (number of anglers and hours fished), catch, and harvest to be greatest on weekend days at all survey areas (Table 6-5). Weekend anglers accounted for 73.5% of all anglers interviewed, 77.1% of total hours fished, 70.4% of fish caught, and 70.3% of fish harvested. In contrast, average c / e and h / e values were consistently higher for weekdays than for weekend days at all areas.

General Reservoir anglers fished primarily along the west shore of Fall Island, east of Hill Island (Zone ll), and in the area along the west shore of the West Channel (Zone 1) (Table 6-6). The increased occurrence of anglers in these zones may be related to the proximity of several public and private boat launch and access areas. The highest catch and harvest within the General Reservoir occurred at Zones 11 and 1 , respectively, a reflection of high angler use. The highest c / e and h / e was recorded from

Zone 5 (South Center Channel, East shore) and Zone 7 (North Center Channel, East Shore), respectively. A relatively high c/e value was also recorded for Zone ll, while h/e values were also high at zone 8.

Over 84\% of the General Reservoir anglers fished from boats (Table 6-7). Boat anglers fished for more hours, and caught and harvested more fish than shore anglers. The greater fishing success achieved by boat anglers was due to their increased mobility, allowing them to cover a larger area, and fish a wider variety of habitats (EA 1985, 1986, 1987; Nardacci and Associates 1984; RMC 1988a, 1989). General Reservoir survey results from 1989 indicated that c/e values were highest for boat anglers on an annual basis and during four of the eight survey months. The high annual c/e value for boat anglers resulted from a relatively high c/e from June through October.

In contrast, the h / e values were higher for shore anglers than for boat anglers in seven of the survey months (Table 6-7). In fact, over 75\% of the fish harvested from shore occurred from April to July. Shore anglers harvested 38.6% of their catch, while boat anglers harvested only 13.3\% of their catch. This suggests shore anglers fish primarily for food rather than for sport. Although boat anglers enjoyed greater success, due in part to their mobility, they seemed more likely to fish for the sport or for a specific species.

Anglers fishing near TMINS caught 9,607 fish of 21 species in 1989 (Table 6-8). Four fishes formed the bulk of the catch (87.7\%) and harvest (77.0\%). Smallmouth bass (63.8\%) dominated the angler catch, and ranked first in all survey months; it ranked second in angler harvest. Over 29% of the smallmouth bass caught were of legal size, and 27% of those were kept. Most smallmouth bass were caught and harvested from the General Reservoir (Table 6-9). Rock bass ranked second in abundance and were commonly caught and harvested from the YHGS. Sunfishes (Lepomis spp.) ranked third in abundance and were most frequently caught in the General Reservoir. Channel catfish ranked fourth, and were principally caught and harvested at YHGS. Channel catfish were most abundant in July through September with 75.0% being caught and over 63% harvested during these months. Over 59% of the rock bass and 39% of all channel catfish caught were harvested in 1989. Other species of local importance were the largemouth bass, white crappie, black crappie, and walleye which were primarily caught in either the General Reservoir or YHGS.

General Reservoir anglers primarily caught and harvested smallmouth bass and sunfishes (Lepomis spp.) (Table 6-9). The West Dam catch was dominated by smallmouth bass and channel catfish; channel catfish was the most frequently harvested species. At the East Dam over 81% of the fishes caught and 76.0% of those harvested were rock bass,
bluegill, sunfishes (Lepomis spp.), and smallmouth bass. The YHGS yielded primarily channel catfish, rock bass, and smallmouth bass (76.8\% of the total catch and 68.1% of the harvest).

The relative similarity of species composition among survey areas was expressed by PSc (Table 6-10). Comparisons of PSc among survey areas for fishes caught were all above 52\%, and were generally higher than comparisons for species harvested. The greatest similarity in composition of fishes caught and harvested was between the East Dam and YHGS.

An estimate of the 1989 fishing pressure near TMINS indicated that 15,592 anglers fished for 35,862 hours (average 2.30 hours), caught 59,250 fish, and harvested 12,474 fish. This translated to annual c / e and h / e values of 1.65 and 0.35 fish per hour, respectively. Less than 3% of all anglers interviewed in 1989 indicated that they had completed their fishing trip. These anglers fished an average of 2.82 hours. A creel survey estimating procedure given in DiCostanzo (1956) and Groen and Schmulbach (1978) assumes that anglers were interviewed at the midpoint of their fishing trip. Applying this estimate to the 1989 data resulted in 118,500 fish caught and 24,948 fish harvested in 71,724 hours. Frisbie and Ritchie (1963), Nardacci et al. (1976) , and Plosila (1961) found that the average time fished per angler, when doubled, corresponded with complete fishing trip data. Average fishing time for the first
estimate was 2.30 hours, and 4.60 hours for the doubled fishing trip estimate, differing from the completed trip value (2.82 hours) by -0.52 and +1.78 hours, respectively. However, the number of anglers, c / e, and h / e remain the same for both estimates. These results imply that the first estimate (without doubling trip length) may be a better indicator of fishing pressure and angler impact in the TMINS area for 1989.

6.3 CHARACTERIZATION OF ANGLER COMMUNITY

All but 23 of the anglers interviewed in 1989 were residents of Pennsylvania. Over 72% of the anglers resided in York or Dauphin counties (Figure 6-2), which encompass the TMINS survey area; Most General Reservoir and yHGs anglers were York County residents. However, most anglers from the West and East dams were residents of Dauphin County. The remaining anglers were residents of 21 other Pennsylvania counties (primarily Cumberland, Lancaster, Lebanon, and Adams), as well as six other states. About 83\% of all anglers were between the ages of 18 and 65 (27.7\% and 55.5\% were 18 to 29 and 30 to 65, respectively).

A total of 2,535 anglers was questioned as to how they use the fish that they catch (Table 6-11). Over 60\% indicated that they ate at least a portion of their catch, 38.2\% released all they caught, and 0.2% gave away all of
their catch. No anglers reported a change in the use of their catch as a result of the 1979 accident at TMINS. This may indicate that the accident at TMINS is no longer a factor in what these anglers do with their catch.

6.4 MULTIPLE-YEAR COMPARISON

The 1989 creel survey data indicated that the number of anglers, hours fished, fish caught, and fish harvested were among the highest recorded in 15 survey years (Table 6-12). The annual c / e was the second highest to date, while the average h / e was within the range of previous years. EA (1986, 1987) indicated that fishing may be impeded by inclement weather conditions (e.g., thunderstorms, heavy rain, wind, and fog) and/or unusually high or low river flow conditions, which would result in decreased angler effort and success. For example, fishing below both dams may cease during periods of extremely low river flow. Weather conditions that might discourage anglers from fishing were encountered infrequently ($<8 \%$ of survey periods) in 1989. However, average river flow in 1989 was more than double that reported in 1988 (Chapter 7). Although weather conditions on survey dates may have been Eavorable for Eishing, heavy spring rains produced unfavorable river conditions in May and June. Historically, these months generally support high angler numbers, but the high river
flow and turbid water conditions in May and June presented anglers with the poorest fishing conditions of the year. This resulted in the poorest angler effort in recent years for May and June.

Comparison of 1989 individual survey area totals with those of previous years (EA 1985, 1986, 1987; Nardacci and Associates 1984; RMC 1988a, 1989) indicated a record number of fish kept, and the second highest number of anglers, fish caught, and hours fished reported from the General Reservoir. Similarly, the YHGS area had the highest total of fish caught and fish kept to date. The c/e at the yHgs and the General Reservoir was the highest for these areas since the inception of the program. In contrast, the h/e at the General Reservoir was the second lowest to date, and the h / e at the West Dam was the lowest. All other values from all areas were within the ranges of those reported previously (1975 through 1988).

Two-factor ANOVA tests indicated significant differences among areas, years, and their interactions for all test variables (Table 6-13). Tukey's studentized range test, when applied to survey areas, showed that the mean number of anglers, fish caught, fish kept, and hours fished were significantly higher at the General Reservoir and YHGS areas than at the West and East dams (Table 6-14). The West Dam ranked lowest for all mean values; however, there were no significant differences between the West and East dams for
all test variables. The General Reservoir and YHGS were similar for number of anglers and fish kept, but differences were noted for fish caught and hours fished. A range test for the 15 survey years showed the mean values for all test variables were ranked lowest in 1977 . The mean values for 1989 ranked second in each category except anglers, and were significantly different from 1977 for all variables except fish kept.

Creel surveys have generally indicated that the four most abundant fishes caught and harvested have been the channel catfish, rock bass, smallmouth bass, and walleye (Figures 6-3 and 6-4). The channel catfish, one of the most commonly caught ($>21 \%$) fishes from 1975 through 1978, has declined in importance. Since 1979, channel catfish percentage of total catch has been generally stable, ranging from 5.5 to 14.8\%. However, nearly half of all channel catfish caught have been harvested each year. The percent composition of rock bass caught and harvested has remained relatively stable throughout the 15 survey years, with nearly half of the catch harvested each year. Smallmouth bass, the most popular game fish in the survey area, has dominated the percent composition of fishes caught every year. The proportion of smallmouth bass harvested, however, remained relatively low, despite the large catches. In fact, the 1989 percent harvest of smallmouth bass was the second lowest to date despite the catch being the highest.

Walleye, another popular game species, has been reported Erequently by anglers; however, few were of legal size and could be harvested. The percent composition of walleye caught increased from 1975 through 1979, peaked in 1980, declined from 1981 through 1985, increased to a secondary peak in 1987, and has declined through 1989.

Specific reasons for these fluctuations, regarding species catch and harvest trends, were not apparent. Changes in angler objectives, size structure of fish populations, or production of strong year classes may have been involved. For the smallmouth bass, the 1987 change in the Pennsylvania Fish Commission harvest regulations to a trophy bass season (381.0 mm minimum size and two fish per day from mid-April through mid-June), may have resulted in the reduced harvest observed since 1987. In addition, strong year classes were produced in 1987 and 1988 which yielded many sublegal fish in 1988 and 1989.

Values of c / e appeared related to the number of anglers (Table 6-12). Generally, as the number of anglers increased the c / e also increased. Harvest rates, however, did not exhibit a similar trend. Except in 1986 when the lowest harvest rate occurred, values in all other years were quite similar. These trends may result from several factors: 1) in some years a relatively large number of sublegal fish are caught by anglers; 2) the fact that anglers were fishing primarily for recreation rather than as a source of food;
and 3) the observation that some anglers were speciesspecific or selective as to the size of fish chosen for harvest. The large number of anglers throughout the 15 survey years who have indicated that they release or give away all, or at least a portion of their catch, tends to reflect an interest in fishing for recreation. Similar findings of primarily recreational angling have been documented by Baur and Rodgers (1983), Denoncourt (1984), Harmon (1978), and Rodgers (1980) for other water bodies.

The impact of the 1979 TMINS accident was assessed by examining changes in utilization of fish caught by anglers. However, angler response to questioning the use of their catch could be biased by the legal status (size) of fishes sought and/or caught. To elicit a more specific response, anglers were subsequently asked whether they use their catch differently now than they did prior to the 1979 accident. During the year immediately following the TMINS accident (1980), 7.6 percent of the anglers interviewed indicated that they had changed their use of catch due to the accident (Figure 6-5). The proportion of anglers expressing a change in catch usage has steadily declined and no anglers reported a change in catch usage in 1989. In addition most anglers reported that they eat at least a portion of their catch although the percentage has decreased since 1986.

Creel survey information was accepted with the assumption that angler responses were accurate and
objective; therefore, some uncertainty attends any creel data set. However, these data generally indicate that (l) there was a consistent trend in that most anglers reported eating at least a portion of their catch, and (2) the proportion of anglers indicating a change in catch usage due to the TMINS accident was never large, and has generally decreased since 1980. There is no evidence of a dramatic decline in fishing effort (number of anglers and amount of time spent fishing) resulting from the accident. Since 1986, the number of anglers and hours fished have been among the highest for the study period. This would indicate that the local recreational fishery was only minimally affected by TMINS and the 1979 accident.

TABLE 6-1
List of scientific and common names of fishes observed during creel survey interviews from the Susquehanna River near TMINS, 1989.

TABLE 6-2
Monthly summary of anglers, fish caught, fish kept, hours fished, catch/effort, and harvest/effort from areas near mins, 1989.

	Apr	May	Jun	Jul	Aug	sep	Oct	Nov	Total	Percent Total
Angler							274	56	1415	55.8
GR*	184	39	168	240	316	138	274	56	144	2.9
West Lam	18	3	17	8 59	$\stackrel{9}{8}$	10	24	4	244	9. 6
East +Oam	43	37	36	59	28	8 65	24	9 19	244 802	31.6
YHGS ${ }^{+}$	102	142	148	200	64	65	62	19	802	31.6
'rotal	347	221	369	507	417	221	365	88	2535	
Fish Caught					1134	403	1050	120	4770	19.7
GR	417	135	666 142	845 65	1134 86	58	10	37	501	5.2
West Dam	82	31 390	142 208	65 320	864 204	42	92	1	1343	13.9
East Dam	86	390 910	208 464	5311	250		211	G	2903	31.1
YHGS	476	910	464							
Tocal	1061	1466	1480	1741	1674	658	1363	164	9607	
Fish Kept GR	145	51	63	120	147	58	150	31	765	37.9
West Dam	0	0	0	6	0	18	0	6	30	1.4
East Dam	13	151	92	67	33	13	34	1	404	20.0
YHGS	96	276	142	160	47	59	37	2	819	40.6
Total	254	478	297	353	227	148	221	40	2018	
Hours Fished GR	373.30	104.50	396.30	579.00	747.50	271.40	718.00	123.70	3313.70	57.6
West Dam	42.25	5.25	40.75	25.00	21.75	17.25	6.75	15.75	174.75	3.0
East Dam	58.00	89.50	77.50	132.80	85.50	15.00	37.25	- 5.75	501.30	8.7
YHGS	230.30	354.80	334:30	389.30	134.30	1.46 .50	149.50	22.25	1761.25	30.6
Total	703.85	554.05	848.85	1126.10	989:05	450.15	911.50	167.45	5751.00	
Catch/Effort										
GR	1.12	1.29	1.68	1.46	1.52	$\frac{1}{3.36}$	1.48	2.35	2.87	
West Dam	1.94	5.90	3.48	2.60	3.95	3.80	2,47	0.17	2.68	
East Dam	1.48	4.36	2.68	2.41	2.39	2.80 1.06		0.27	1.69	
XHGS	2.07	2.56	1.39	1.31	1.86	1.06	2.41			
Total	1. 51	2.65	1.74	1.55	1.69	1.46	1.50	0.92	1.67	
Harvest/Effort								0.25	0.23	
GR	0.39	0.49	0.16	0.21	0.20	1.04	0.00	0.38	0.17	
West Dam	0.00	0.00	0.00	0.24	0.39	1.80		0.17	0.81	
East Dam	0.22	1.67	1.19	0.50	0.39	0.87	0.91	0.09	0.46	
YHGS	0.42	0.78	0.42	0.41	0.35	0.40	0.25	0.09	0.46	
Total	0.36	0.86	0.35	0.31	0.23	0.33	0.24	0.24	0.35	

*. Denotes General Reservoir.

+ Denotes York Haven Generating Station.

** Significant at P ≤ 0.05
** Significant at $\mathrm{P} \leq 0.01$.

TABLE 6-4
Summary of Tukey's studentized range test for creel survey data (anglers, fish caught, fish kept, and hours fished) by area, 1989. Areas underlined are not significantly different ($P \leq 0.05$) and are ranked from highest to lowest mean number. Means are listed parenthetically and rounded to the nearest whole number.

Dependent Variable	Area			
Anglers	$\begin{array}{r} \text { GR* } \\ (177) \end{array}$	$\begin{aligned} & \text { YHGS* } \\ & (100) \end{aligned}$	$\begin{gathered} \text { East Dam } \\ (30) \end{gathered}$	West Dam (9)
Fish Caught	$\begin{gathered} \text { GR } \\ (596) \end{gathered}$	$\begin{aligned} & \text { YHGS } \\ & (373) \end{aligned}$	$\begin{gathered} \text { East Dam } \\ (168) \end{gathered}$	West Dam (64)
Fish Kept	$\begin{aligned} & \text { YHGS } \\ & (102) \end{aligned}$	$\begin{gathered} \text { GR } \\ (96) \end{gathered}$	East Dam (50)	West Dam (4)
Hours Fished	$\begin{gathered} \text { GR } \\ (414) \end{gathered}$	$\begin{aligned} & \text { YHGS } \\ & (220) \end{aligned}$	East Dam (63)	$\begin{aligned} & \text { West Dam } \\ & \text { (22) } \end{aligned}$

[^2]TABLE 6-5
Comparison of weekday and weekend day creel surveys from each area ner TMINS, 1989.

	General Reservoir	West Dam	East Dam	York Haven Generating Station	Total
Anglers					
Weekday	299	18	79	275	671
Weekend Day	-. 1116	56	165	527	1864
Fish Caught					
Weekday	966	140	444	1290	2840
Weekend Day	3804	371	899	1693	6767
Fish Kept 296					
Weekday	149	14	141	296	600
Weekend Day	616	16	263	523	1418
Hours Fished					
Weekday	611.25	37.25	152.00	517.00	1318.00
Weekend Day	2702.42	137.00	349.25	1244.01	4432.68
Catch/Effort(h)					
Weekday	1.58	3.71	2.92	2.50	2.15
Weekend Day	1.41	2.71	2.57	1.36	1.53
Harvest/Effort(h) 0					
Weekday	0.24	0.37 0.12	0.93 0.75	0.57 0.42	0.45 0.32
Weekend Day	0.23	0.12	0.75	0.42	0.32

TABLE 6-6
Comparison of anglers, fish caught, fish kept, hours fished, catch/effort, and harvest/effort between creel. survey zones in the General Reservoir. 1989.

* Numberad zones correspond to those in Figure 6-1.

Comparison of the General Reservoir boat and shore anglers by fish caught, fish kept, hours fished, catch/effort, and harvest/effort, 1989

	$\wedge \mathrm{pr}$	May	Jun	Jul	nug	Sep	Oct	Nov	Total	Percent rotal
Anglers										
Boat	144	26	139	177	294	119	243	53	1195	84.4
Shore	40	13	29	63	22	19	31	3	220	15.5
Fish Caught										
Boat	332	60	608	721	1074	380	976	111	4252	89.1
Shore	95	75	58	124	60	23	74	9	518	10.9
Hoat	84	11	42	91	129	49	128.	31	565	73.8
Shore	61	40	21	29	18	9	$22^{\text {. }}$	0	200	26.1
Boar	296.75	74.75	356.50	455.75	703.75	242.00	667.25	116.50	2913.25	87.9
Shore	76.50	29.75	39.75	123.25	43.75	29.42	50.75	7.25	400.42	12.1
Boat	1.08	0.80	1.70	1.58	1.53	1.57	1.46			
Shore	1.24	2.52	1.46	1.01	1.37	0.78	2.46	1.24	1.29	
Harvesteffort (h) 0. 0 0.19										
Boat Shore	0.28 0.80	0.15 1,34	0.12 0.53	0.20 0.23	0.41	0.31	0.43	0.00	0.50	

tades 5－a

	Apz		Hay		Jun		301		Aum		Sen		Oss		Nay		tocal		Persent	
	Caughz	kapt	Caughe	Kopt	caughe	Kapt	Caughe	Kapt	Caugnt	кер：	Caughe	Kapz								
Amarican shad	－	－	1	－	－	－	3	F	－	－	Z	－	＝	Z	\square	－	\｛	j	：	0.7
fiambou eroue	－	－	1	1	$\overline{7}$	7	2	2	－	－		\square	E			－	1	1	－	
Brown crout Drook trout	i	i	－	－	$\underline{\square}$	$\underline{ }$	－	：	－	－	－	－	$=$	：	－	－	$\frac{1}{2}$	1	：	
Hugkaliunye	－	－	2	－		－		－	2	：	－	－	－	＂	－	－	2			
Pikas（Exoeddoa）．	）	；	2	亏	39	i	4	－	${ }_{23}^{2}$	－	29	4	21	－	－		170	＂	1.8	0.4
Conmon earp	22	2	28	$\underline{-}$	3	$\underline{-}$	$\underline{-}$	－	2			－		－	－	－	$2{ }^{2}$	－	0.2	
	－	－	24	：	－	－	2	1	－		－	－	－	－	－	：	5	，	0.	
	$\overline{7}$	5	23	22	69	33	105^{2}	5	168	17	121	1	28	15	\pm	－	535	202	5.3	10.1
stripua bass	1		\cdots	－									55	21	\bar{i}	：	854	371	リ：＇	tu．，
Hoek basa	135	00	477	336	115	65	76	8	4	2	18	4	1		：	－	41	83	9．2	4.1
Medbrcost zunfien	$!$	1	，	4	5.	35	！	188			d			I			4	3	4.1	U．${ }^{\text {a }}$
treankinsaud	－	－	2	2	12	10	2	2	5	18	1	18	20	18		－	364	187	4．4	\％ 1
H1ucatil	${ }^{7}$	2	12	10	${ }^{515}$	${ }_{73}^{20}$	45	11	75	${ }_{18}^{29}$	49	18	34	13	2	－	a21	275	11．	： 5
	122	1	65	${ }_{6}$	${ }^{224}$	23	${ }_{1273}^{18}$	174	1230	125	168	17	1049	112	105	13	6130	478	0.4	－4．1
Largemouth bass	G	－	5	－	4		${ }^{4}$	2	5	i	3	1	2	$\overline{2}$	2	－	63	a）	4.7	3.6
thate erappac	12	30	4	4	4	4	23	${ }^{2}$	2	$\underline{\square}$	2	－	$\underline{-}$				13	12	0.3	－．
Dlack crappic	26 61	${ }_{21}^{26}$	19	5	11	4	11	7	10	1	11	5	29	15	20	20	172	78	6.2	1．7
Yellau peren		，	11	12	$2{ }^{-1}$		$\frac{1}{6}$	3	$\frac{1}{5}$	1	${ }_{11}^{2}$	${ }_{3}^{2}$	34	12	31	7	351	36	2.6	1．8
malleye	56	－	38	日	20	2		3												
Total	1061	254	1466	478	1400	297	1741	353	2674	227	658	149	1363	221	164	40	2607	2018		

Gancal tacnetimeta

TABLE 6-9
Number and percent composition of fishes eaught and kept from areas near TMINS, April through November 1989.

	General Reservoir				West Dam				East Dam Yor				York Haven Generating Sta.				Total	
	Caught		Kept		Caught	Kepr												
	No.	${ }_{8}$	No.	8	No.	8	No.	8	No.	8	No.	${ }_{7}$	No.	\%	No.	${ }^{8}$		
			\cdots	-	-	-	-	-	-	-	-	-	4	0.1	-	-	4	F
Amorican shad	-	-	-				-						3	0.1	3	0.4	3	3
Rainbow crout	-	-	$\bar{\square}$		-			-	1	0.1	1	0.2	-	-	-		1	1
Brown troue	5	+	1	0.1	-		-	-	$\underline{1}$	0.1	1	0.	-	-	-	-	1	1
Brook trout	1	\pm	1	0.1	-		-	-	-	-	-	-	2	0.1	-	-	2	-
Muskellunge ${ }^{\text {a }}$	1	+	-	-	-	-	-	-	-	-	-	-	1	+	-	-	2	-
Pikes (Esocidae)"	$\frac{1}{6}$	$\stackrel{+}{1}$	1	0.1	6	1.2	-	-	14	1.0	-	-	144	4.8	8	1.0	170	9
Common carp	6 2	0.1 +	1	0.1	6	1.2	-	-	14	1.0	-	-			-	-	2	-
Fallfish	2	+	-	-	-	-	-	-	-	-	-	-	24	0.8	-	-	24	-
	-	-	\pm	-	-	-	-	-	-	-	-	-	5	0.2	1	0.1	5	1
Suckers (Catostomiaae)*	139	2.9	51	6.7	86	16.8	15	50.0	56	4.2	9	2.2	244	8.2	134	16.4	525	209
Striped bass	1	+	69	9.0	$\overline{5}$	1.0	-	-	262	19.5	170	42.1	486	16.3	332	40.5	954	571
Rock bass	201	4.2	$\begin{array}{r}69 \\ \hline\end{array}$	9.0	5	1.0	-	-	37	2.8	176.	8.9	46	1.5	44	5.4	91	83
Redbreast sunfish	8	0.2	3	0.4	-		-	-	9	0.7	9	2.2	-	-	-	-	9	97
Green sunfleh	10	0.2	8	1.0	-	-	-	-	${ }_{113}$	1.9	19	4.7 12.9	61	2.0	34	$4 . \overline{2}$	36 249	27 107
Bluegill	72	1.5	21	22.7	3	0.6 1.8	-	-	113	10.4 14.4	52	12.9 8.9	61 181	2.0 6.1	34	4.2 8.2	249 821	107 275
Sunfishes (Lepomis spp.1*	437	$7{ }^{9.2}$	172	22.5	3319	1.8 64.8	-	26.7	52.3	14.4	49	12.1	1560	52.3	92	11.2	6130	498
Smallmouth bass	3716	77.9	349	45.6 0.3	331	64.8	8	26.7	57	0.5	4	12.1	3	0.1	1	0.1	38	3
Largemouth bass	28	0.6	26	0.3	-	-	-	-	6	0.4	6	1.5	29	1.0	29	3.5	69	61
White crappie	34	0.7	26	3.4 2.9	-	-	-	-	4	0.3	4	1.0	6	0.2	6	0.7	32	32
Black crappie	22 89	0.5 1.9	32	2.9 5.0	3	0.6	2	6.7	29	2.2	6	1.5	51	1.7	32	3.9	172	78
Crappies (Pomoxis spp.)*	89	1.9 0.1	38 2	5.0 0.3	3	0.6	2	6.7	2	0.1	2	0.5	10	0.3	10	1.2	15	14
Yellow perch Walleye	3	0.2	2	0.3	68	13.3	5	16.7	60	4.5	5	1.2	123	4.1	26	3.2	251	36
Total	4770		765		511		30		1343		404		2983		819		9607	2018

General identification.

+ Less than 0.058 .

TABLE 6-10
Percent similarity indices of species composition of fishes caught and harvested from the creel survey areas near TMINS, 1989.

	Caught			Harvested		
West Dam	East Dam	YHGG*		YHGS	East Dam	West Dam
71.7	60.4	70.1	General Reservoir		40.7	38.3
	52.5	69.7	West Dam		17.1	
		76.8	East Dam	77.1		

* York Haven Generating Station.

TABLE 6-11
Use of catch by anglers interviewed near TMINS in 1989.

Use of Catch	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Total
Eat	110	67	66	152	67	49	83	17	611
Release	119	52	157	182	177	85	149	48	969
Give Away	-	2	3	-	-	-	-	-	5
Eat-Release-Give Away	3	8	2	-	-	77	-	-	13
Eat-Release	115	92	138	159	162	77	132	22	896
Eat-Give Away	-	-	2	4	5	5	1	1	17
Release-Give Away	-	1	1	10	6	5	1	-	24
Total	347	221	369	507	417	221	365	88	2535

TABLE 6-12
Summary of annual creel survey totals for anglers, fish caught, fish kept, hours fished, catch/effort, and harvest/effort near TMINS, 1975 through 1989.

	Anglers	Fish Caught	Fish Kept	Fished	Catch/ Effort (h)	$\begin{aligned} & \text { Harvest/ } \\ & \text { Effort (h) } \end{aligned}$
1975	1560	2386	1255	2953.75	0.81	0.42
1976	1750	3170	1026	3114.29	1.04	0.34
1977	1126	1857	820	2186.88	0.85	0.37
1978	2221	4483	1517	4455.85	1.01	0.34
1979	2215	4861	1205	3966.15	1.23	0.30
1980	2399	5611	1421	4131.65	1.36	0.34
1981	2672	6764	1684	4627.65	1.46	0.36
1982	2751	6499	1808	4776.26	1.36	0.38
1983	2145	5102	1395	3997.73	1.28	0.35
1984	1815	4423	1200	3285.40	1.35	0.36
1985	1750	3671	1447	3458.61	1.06	0.42
1986	2093	5191	1732	4374.87	2.02	0.14
1987	2469	7656	1852	4892.44	1.56	0.38
1988	2964	10371	2020	6731.43	1.54	0.30
1989	2535	9597	2018	5751.00	1.67	0.35

* Significant at $\mathrm{P}<0.05$.
** Significant at $\mathrm{p} \leq 0.01$.
taile 6-14
Summary of Tukey's stugeritzed range nezt for creel turvey data langlers, fiah caught, fish koph, and hours fishcd) by area and

- GR, Genaral Heseraivi; YilGs, York Haven Generatang seaeion.

Figure $6-1$. TMINS creel survey area showing survey route and General

AGE GROUP

COUNTY

FIGURE 6-2
Percent of anglers by age and county interviewed in the Susquehanna River near TMINS in 1989.

Figure 6-3. Percent composition of channel catfish and smallmouth bass caught and harvested by anglers near TMINS, 1975 through 1989.

Figure 6-4. Percent composition of rock bass and walleye caught and harvested by anglers near TMINS, 1975 through 1989.

Figure 6-5. Annual trends in the percent of anglers eating at least some of their catch and those indicating a change in their use of catch due to the 1979 TMINS accident.

7.1 METHODS

Water quality and physical data were collected at all stations in conjunction with biological sampling (Figure 71). Details of procedures and instrumentation are provided in GPU (1987) and are summarized below.

Surface water temperature, pH , and dissolved oxygen (DO) were measured at all sampling stations with a Taylor Pocket Thermometer Model 21432-2, a Photovolt Model 126A pH meter or an Orion Model 05702-25 pH meter, and a YSI Model 57 Dissolved Oxygen meter, respectively. Conductivity was measured at all electrofishing stations by means of a Hach Model 16300 portable conductivity meter. Measurements of velocities at macroinvertebrate and ichthyoplankton stations were made with a Marsh-McBirney Model 201 portable water current meter.

Surface water samples were collected at each of the three macroinvertebrate stations and delivered to GPU personnel for analysis. Laboratory analysis of total dissolved solids (TDS) was performed by analytical methods defined in U. S. EPA (1979).

Data analyses consisted of tabulations of mean, minimum and maximum, and analysis of variance (ANOVA). Two-factor ANOVAs, with sampling zones and months as main effects, were implemented on 1989 water temperature, DO, pH , and TDS data.

These same parameters in the multiple-year database were subjected to a three-factor ANOVA with year, month, and sampling station (1A2, llA1, or 9B1) as main effects. When main effects were shown to be significantly different ($\mathrm{p} \leq 0.05$), the differences were investigated by Tukey's studentized range test. ANOVAs were conducted using SAS software, Version 6 (SAS Institute, Inc., Cary, NC).

7.2 COMPARISON WITH STATE WATER QUALITY CRITERIA

The Pennsylvania state water quality criteria for parameters measured during the 1989 TMINS aquatic studies are presented in Table 7-1. These criteria consist of upper and/or lower limits designed to protect a designated water use. The portion of the lower Susquehanna River which includes TMINS (York Haven Pond) is designated as a warmwater fishery.

The water quality data collected in 1989 are tabulated in Appendix F and summarized in Table 7-2. A comparison of the data in Table 7-2 with the criteria in Table 7-1 revealed that all 1989 values met the specified criteria, except for pH . The highest water temperature recorded was 28.0 C in July, well below the upper limit of 30.6 C . Values for pH equalled or exceeded the upper limit (9.0) in August and October, and the lower limit (6.0) in June. The high pH values in August and October were limited to areas within zones $2,4,7$, and 10 (Figure 7-1), which were
unaffected by the discharge from TMINS. The low pH values occurred on 8 June, and ranged from 5.4 to 5.6 in zones 8 and 9 , respectively. Since these zones are located below the TMINS discharge some aspect in the discharged water may have caused the reduced pH . The pH values immediately upstream and throughout York Haven Pond on this date ranged Erom 7.0 to 7.4. The pH values within a week after this occurrence ranged from 7.1 to 7.5 at zones 8 and 9 . As revealed in analysis of fisheries and macroinvertebrate data (Chapters 2, 3, and 5), no adverse effects were observed. TDS was always well below the specified upper limit. The lowest DO value recorded was $6.4 \mathrm{mg} / 1$ in september, considerably above the lowest permissible limit for a single measurement (4.0 mg/l).

Based on the 1989 water quality data from the TMINS aquatic studies, the designated use category of the Susquehanna River as a warmwater fishery was not compromised by the operation of TMINS.

7.3 SPATIAL AND TEMPORAL DESCRIPTION: 1989

The water quality data collected in 1989 (Table 7-2)
revealed some typical seasonal patterns for a number of variables. Mean water temperature increased from April to a peak in August, and then decreased through November. With minor deviations, mean river flow decreased through September and increased thereafter. The surface and bottom
velocities were high through July, reflecting the high river flow in 1989, and generally decreased through November. Conductivity and TDS followed a similar trend, declining through the summer, increasing to a peak in September, and declining through the fall. Secchi disc readings generally decreased throughout the summer and increased in the fall. Dissolved oxygen can be affected by water temperature, biological activity, and river flow. Mean DO in York Haven Pond exhibited an inverse relationship with water temperature (Table 7-2). Mean pH values were higher in the fall (September through November) than in the spring or summer.

To provide a more quantitative assessment of the overall water quality in York Haven Pond, a two-factor ANOVA was used to analyze the 1989 water temperature, $D O, \mathrm{pH}$, and TDS by month and water quality zone. All data collected at the various biological sampling stations within a zone (Figure 7-1) were combined for analysis of that zone. Although all parameters exhibited significant differences among months; as expected because of typical seasonal variations; only pH and TDS produced a significant difference among sampling zones (Table 7-3). Tukey's studentized range test (Table 74) revealed that the mean pH at zone 4 was significantly different from the means at zones 8 and 9. The reasons for these differences were unknown, but were considered biologically insignificant as values measured throughout the year generally met established state criteria. The Tukey's
test also showed that the mean TDS at zone 8 was significantly different from the means at zones 9 and 7 . The increased TDS in zone 8 may reflect the increased concentration of dissolved solids in the discharge water created through evaporation and condenser cooling blowdown. The higher TDS values became diluted as values at zone 9 (downstream) were near ambient (zone 7).

Water quality and physical characteristics measured at the three macroinvertebrate sampling stations are summarized in Table 7-5. Although many of these parameters were measured at the other sampling stations, the macroinvertebrate stations are important because of their proximity to the TMINS discharge, their consistent use over previous study years, and because TDS was measured only at these stations. The data appear to be quite homogeneous among the three stations. However, there was a slight decrease in secchi disc readings Station llal (the TMINS discharge), which may be related to effluent from TMINS. The surface and bottom current velocities were also higher at Station 9Bl and were probably the result of the physical configuration of the shoreline. The increase in TDS at Station llal was discussed previously.

7.4 MULTIPLE-YEAR COMPARISON

River flow can influence both biological and water quality parameters. Mean river Elow was calculated for the

April through November portion of each of the last ten years (Table 7-6). Mean river flow increased 62\% from 1980 to 1984, decreased 91\% from 1985 through 1988, and then increased 105\% in 1989 to the highest value to date. To evaluate annual trends in water quality for York Haven Pond, water temperature, DO, PH , and TDS data for the macroinvertebrate stations were examined. Mean, minimum and maximum values for these parameters are displayed in Table 7-7. Although some year-to-year differences have been evident, the 1989 data fell within the ranges observed previously. However, the maximum mDS value was exceeded at. Station 11Al.

Individual measurements of water temperature, $D O, \mathrm{pH}$, and TDS from previous years' reports were combined with the 1989 data and subjected to a three-factor ANOVA (Table 7-8). The results were similar for all four parameters in that years and months were significantly different, but there was no difference among stations except for TDS. Significant differences among months were expected, given the natural seasonal cycles exhibited by these variables. Significant differences among years for water temperature, DO, pH, and TDS were not unusual, because of the annual variation in precipitation, river flow, and air temperature cycles. The significant interaction of year and month was also attributable to these weather cycles.

In terms of possible influence of the TMINS discharge on water quality, sampling station differences would be the
first order of examination. However, as shown in Table 7-8, only TDS produced significant differences ($p \leq 0.05$) among stations. That is, stations downstream of the discharge (11AI, 9BI) were differentiated from the upstream station (1A2). The mean TDS at Station $1 A 2$ was $195 \mathrm{mg} / 1$, whereas the means at Stations 11 Al and 9 Bl were 208 and $202 \mathrm{mg} / 1$, respectively. The Tukey's test showed that Station IA2 was significantly different from Stations llal and 9B1. The increase in TDS at the downstream stations may be related to the concentration of dissolved solids during TMINS operation and subsequent discharge. However, the downstream values were still far below the state water quality criteria.

The annual means, which were significantly different for all parameters, were examined for statistical groupings that could be related to years of TMINS operation 11974 to 1978 and 1986 to 1989) versus non-operation (1979 to 1985) (Table 7-9). For water temperature, only 1985 was distinguishable from all other years. There was a tendency for $D 0$ means in operational years (1974 to 1978$)$ to group together with lower values, but 1989, an operational year, was undifferentiated from 1979 to 1982 and 1985, a nonoperational period. Values of pH exhibited no grouping that could be related to TMINS operational status. The last three non-operational years (1983 to 1985), for example, were not differentiated from operational years 1974r 1975, 1988, and 1989. Generally, pH values increased from 1974 through 1982, decreased through 1987, and rose slightly in

1988 and 1989. Total dissolved solids, available for four operational years, could not be differentiated from nonoperational years.

Based on analysis of 16 years of data for water temperature, pH , and DO , and 12 years for TDS, there is no evidence of significant influence of the TMINS discharge on these parameters. Annual and spatial trends appear natural and related to meteorological cycles and river flow. Also, most water quality parameters reflect the influences of the varied geology, land, and water use practices throughout the Susquehanna River basin rather than TMINS.

TABLE 7-1
Water quality criteria for selected physicochemical parameters analyzed near Three Mile Island.

Parameter	Criteria
Dissolved oxygen	Minimum daily average $5.0 \mathrm{mg} / \mathrm{L}$; no values less than $4.0 \mathrm{mg} / \mathrm{L}$. For the epilimnion of lakes, ponds, and impoundments, minimum daily average of $5.0 \mathrm{mg} / \mathrm{L}$, no value less than $4.0 \mathrm{mg} / \mathrm{L}$.
pH	Not less than 6.0 and not more than 9.0.
Temperature (water)	No rise when ambient temperature is 87 F (30.6 C) or above; not more than a $5 \mathrm{~F}(2.8 \mathrm{C}$) rise above ambient temperature until stream temperature reaches 87 F ; not to be changed by more than 2 F during any 1 -hour period.
Total dissolved solids	Not more than $500 \mathrm{mg} / \mathrm{L}$ as a monthly average value; not more than $750 \mathrm{mg} / \mathrm{L}$ at any time.

Source: Pennsylvania Code, Title 25, Chapter 93.
table 7-2 monthly mean. minimum. and maximum values of matea ouality parameters at all york haven pond giological. stations. three mile islano nuclear station. 1989.

Parameter	MONTH								$\begin{aligned} & \text { ALL } \\ & \text { MONTHS } \end{aligned}$
	APR	MAY	JuN	JUL	Aug	SEP	OCT	nov	
MEAN	8.9	17.0	21.7	23.2	18.8	15.5	14.3	9.3	5.1
MINIMUPM	5.1	13.0 20.0	18.0	18.0	27.4	25.2	17.5	13.0	28.0
$\underset{\mathrm{NaXI}}{\text { MAM }}$	13.8	20.0	23.2 59	28.0	67.4	${ }_{27}{ }^{26}$	15.5	15.	328
PH									
mean	7.5	7.5	7.1	7.5	8.5	8.2	8.5	8.1	5.7
Minimula	6.5	6.7	5.4	6.6	7.7 9.3	7.0 8.9	7.8 9.0	8.6	5.4 9.3
maximun	4.8	8.9	8.4	${ }_{4}^{8.5}$	$6{ }^{9.3}$	$21^{8.9}$. 15.0		316^{3}
N	47	51	59	47					
MEAN Minimuna	12.3	8.9	7.4	7.3	8.0	6.4	7.9	9.0	6.4
MJNIMUSA MaXIMUN	15.0	14.6	11.0	11.8	19.0	13.2	12.4	12.6	19.0
n max	47	51	59	47	67	27	15	15	328
MEAN	100.9	83.3	10.2	15.2	85.4	50. ${ }^{\text {a }}$	71.1	101.6	10.2
MINIMUM MAXIMUR:	25.4 167.6	124.5	139.7	101.6	203.2	106.7	127.0	195.6	203.2
Maximuns	15	27	27	15	27	27	15	15	168
TOTAL OISSOLVED SOLIDS (MG/L)									
MEAN	102.0	191.0	179.7 171.0	148.0	205.0	289.0	201.0	171.0	101.0
MINIMUM MAXIMUM	101.0 103.0	181.0 206.0	195.0	145.0	244.0	382.0	297.0	198.0	382.0
maximum	${ }_{3}$	${ }_{3}$	$1{ }^{3}$.	15.0	3	3	3	3	24
MEAN	218.3 190.0	217.5 160.0	210.8 150.0	180.0	250.0	325.0	300.0	210.0	150.0
MINIMUM MAXIMUM	190.0 240.0	160.0	260.0	300.0	450.0	500.0	425.0	310.0	500.0
${ }_{\mathrm{N}}^{\text {Maximum }}$	${ }_{6} 6$	12	12	6	12	12	6	6	72
MEAN	26.5	24.0 2.0	28.6 4.0	28.2 5.0	1.0	2.0	4.0	3.0	1.0
MINJMUM	58.0	2.0 62.0	70.0	53.0	27:0	6.0	12.0	6.0	70.0
MAXIMUM	35	27	35	35	43	3	3	3	184
MEAN	14.3 6.0	13.7 7.0	10.7 5.0	88.0	4.0	2.0	2.0	2.0	2.0
MINIMUM MAXIMUM	6.0 20.0	16.0	19.0	23.0	8.0	4.0	12.0	9.0	23.0
m N	3	3	3	3	3	3	3	3	24
KIVER FLOW (M/SEC)									
MEAN	1626.3	2585.6	1741.6	1028.9	312.5 179.0	228.8 136.8	609.6	475.7	136.8
MINIMUM	470.1	453.1	705.1 4185.2	+1784.2	523.9	436.1	2339.0	1750.0	6020.2
$\mathrm{MaXIM}_{\mathrm{N}}$	5182.0 30	6020.2	4185.2 30	1704.7 31	523.9 31	436.1 30	31.0	1750.0 30	$244{ }^{\text {c }}$

[^3]

[^4]TABLE 7-5
Mean, minimum, and maximum values of water quality and physical parameters taken at the macroinvertebrate stations near TMINS, April through November 1989.

Parameter	Station		
	TM-MI-1A2	TM-M1-11AI	TM-MI-9B1
Water temperature(C) 16.0			
Mean	16.0	16.2	16.2
Min	5.4	6.5	5.5
Max	23.2	23.0	23.0
pH .			
Mean	7.7	7.7	7.8
Min	7.1 9.0	7.1 8.6	8.15
Max	9.0	8.6	8.5
Dissolved. oxygen(mg/l) 9, ${ }^{\text {a }}$			
Mean	9.4	9.7	9.4
Min	8.2 12.0	8.5 12.1	8.1 12.2
Max		12.1	
Total dissolved solids(mg/l) 220			
Mean	183	220	193
Min Max	102	101	103 324
Max	289	382	324
Secchi disc(cm)			
Mean	98.4	69.8	87.0
Min	27.9 195.6	25.4 114.3	27.9 154.9
Surface current velocity(cm/sec)			
Mean	7.0	5.9	14.4
Min	2.0	2.0	3.0
Max	13.0	15.0	25.0
Bottom current velocity(cm/sec)			
Mean	7.6	6.4	13.1
Min	2.0	2.0	4.0
Max	17:0	12.0	23.0

TABLE 7-6
Range and mean river flow ($\mathrm{m}^{3} / \mathrm{sec}$) obtained from the River Forecast Center (Harrisburg, Pennsylvania) for April through November 1980 through 1989.

Year	N (days)	Range	Mean
1980	244	$90-5411$	643
1981	244	$119-2455$	646
1982	244	$101-5354$	674
1983	244	$86-6824$	905
1984	244	$137-10110$	1044
1985	244	$120-4416$	591
1986	244	$138-4800$	713
1987	244	$129-6230$	726
1988	244	$106-5298$	546
1989	244	$137-6020$	1118

TABLE 7-7
Mean, minimum, and maximum values of water quality parameters taken at the macroinvertebrate stations near TMINS, April through November, 1974 through 1989. Station prefix TM-MIdeleted from table.

Yeax	Water Temperature (C)			pH			Dissolved Oxygen (mg/l)			Total Dissolved Solids(mq/1)		
	la2	11A1	9B1	IA2	11A1	981	1A2	11A1	9 Bl	LA2	11A1	9 Bl
1989												
Mean	16.0	16.2	16.2	7.7	7.7	7.8	9.4	9.7	9.4	183	220	193
Min	5.4	6.5	5.5	7.1	7.1	7.1	8.2	8.5	8.1	102	101	103
Max	23.2	23.0	23.0	9.0	8.6	8.5	12.0	12.1	12.2	289	382	324
1974-1988												
Mean	17.5	17.8	18.0	8.0	8.0	8.0	9.2	9.3	9.3	196	207	202
Min	3.0	3.0	3.0	6.3	6.3	6.2	3.3	3.8	3.2	85	70	87
Max	30:0	30.0	30.5	9:4	9.1	9.0	13.2	14.4	14.0	332	362	355

TABLE 7-8
Three-factor analysis of variance test resulcs for selected water gualiry parameters collected near TMINS, Three-factor analy
1974 through 1989.

Dependent Variable	Source	df	Sum of Squares	Mean Square		F Value	p Value
Warer Temperacure	Madel ($r^{2}=0.919$)	173	23580.816	136.305		27.99	0.0001 *
		15	530.067	35.338		7.26	0.0001 "
	Month	17	18946.958	2706.708		555.90	0.0001 *
	Stacion	2	17.679	8.839		1.82	0.1640
	Year-month	105	2005.433	19.099		3.92	$0.0001{ }^{\circ}$
	Year-Starion	30	19.826	0.661		0.14	1.0000
	Month-Stacion	14	5.070	0.362 4.869		0.07	1.0000
	Error	429	2088.826	4.869			
	Corrected Total	602	25669.644				
Dissolved Oxygen	Model ($\mathrm{r}^{2}=0.850$)	173	1484.675	8.582		13.69	0.0001**
	Year	15	231.349	76.670		122.29	0.0001 .
	Month	2.	56.567	1.284		2.05	0.1304
	Year-Month	105	596.910	5.685		9.07	0.0001 *
	Year-Station	30	19.116	0.637		1.02	0.4451
	Month-Station	14	1.212	0.086		0.14	0.9999
	Error	417	261.441	0.627			
	Corrected Total	590	1746.116				
pH	Model ($r^{2}=0.762$)	172	112.440	0.654		7.69	$0.0001 *$
	Year	15	62.318	4.154	\cdots	48.87	$0.0001 *$
	Month	7	2.644	0.378		1.44	0.3404
	Station	2	0.184	0.0914	,	4.80	$0.0001 *$
	Year-Month	104	43.117 1.796	0.060		0.70	0.8786
	Year-Station Month-Station	14	0.605	0.043		0.51	0.9283
	Error	413	35.107	0.085			
	Corrected Total	585	147.547				
Total Dissolved Solids	Model ($\mathrm{r}^{2}=0.932$)	133	1633982.128	12285.580		28.77	0.0001*
	Year	11	130618.689	12601.698		29.51	$0.0001 *$
	Month	7	871094.130	124442.010		291.44	$0.0001 *$
	Station	2	13526.772	6763.386		15.64	. 0.001 .
	Year-Month	77	518009.923	672.834		1.69	0.0290 *
	Year-Station	22 14	15902.358 3457.316	246.951		0.58	0.8812
	Error Month-Station	277	318275.726	426.988			
	Corrected Total	410	1752257.854	.			

n Significant at $\bar{p} \leq 0.01$.
$n=0$.

Figure 7-1. York Haven Pond showing numbered water quality zones, macroinvertebrate sampling stations, and the remaining biological sampling stations (asterisks). Only zones containing biological sampling stations are numbered.

8. REFERENCES

Auer, N. A., ed. 1982. Identification of larval fishes of the Great Lakes basin with emphasis on the Lake Michigan drainage. Special Publ. 82-3. Great Lakes Fishery Commission. Ann Arbor, MI. 744 pp.

Baur, R. J. and R. A. Rodgers. 1983. FY 1980 Illinois sport fishing survey. Special fisheries rept. Dep. Conserv. No. 51. 47 pp.

Brower, J. E. and J. H. Zar. 1977. Field and laboratory methods for general ecology. Wm. C. Brown Co. Dubuque, IA. 194 pp .

Buynak, G. L. and H. W. Mohr, Jr. 1978a. Larval development of the northern hog sucker (Hypentelium nigricans) Erom the Susquehanna River. Trans. Am. Fish. Soc. 107(4):595-599.

1978b. Larval development of the redbreast sunfish (Lepomis auritus) from the Susquehanna River. Trans. Amer. Fish. Soc. 107(4):600-604. . 1979a. Larval development of the shorthead redhorse (Moxostoma macrolepidotum) Erom the Susquehanna River. Trans. Am. Fish. Soc. 108(2):161-165.

- 1979b. Larval development of the blacknose dace (Rhinichthys atratulus) and longnose dace (Rhinichthys cataractae) from a Susquehanna River tributary. Proc. Pa. Acad. Sci. 53(1):56-60.
. 1979c. Larval development of the bluntnose minnow (Pimephales notatus) and fathead minnow (Pimephales promelas) from northeast Pennsylvania. Proc. Pa. Acad. Sci. 53(2):172-176.
- 1980. Larval development of stoneroller, cutlips minnow, and river chub with diagnostic keys including four additional cyprinids. Prog. Fish. Cult. 42(3):127135.

Carlander, K. D. 1953. Handbook of freshwater fishery biology with the first supplement. Wm. C. Brown Co. Dubuque, IA. 430 pp .
. 1969. Handbook of freshwater fishery biology. Vol. I. Life history data on freshwater fishes of the united States and Canada, exclusive of the Perciformes. Iowa State Univ. Press. Ames, IA. $752 \mathrm{pp}$.
\qquad 1977. Handbook of freshwater Eishery biology. Vol. 2. Life history data on centrarchid fishes of the United States and Canada. Iowa State Univ. Press. Ames, IA. 431 pp .

Cooper, E. L. 1983. Fishes of Pennsylvania and the Northeastern United States. Pennsylvania State Univ. Press. University Park, PA. 243 pp.

Denoncourt, R. F. 1984. Recreational/sport fishery benefits associated with a fossil fuel generating station. pp. 170-190. In S. K. Majumdar and E. W. Miller (eds.). Solid and liquid wastes: management, methods, and socioeconomic considerations. Pa. Acad. Sci.

DiCostanzo, C. 1956. Clear Lake creel census and evaluation of sampling techniques. pp. 17-29. In Symposium on sampling problems in creel census, 1956. Iowa Coop. Fish. Res. Unit. Iowa State Coll. Press. Ames, IA.

EA Engineering, Science, and Technology, Inc. 1985. An ecological study of the Susquehanna River near the Three Mile Island Nuclear Station. Annual Report for 1984. EA. Sparks, MD.

- 1986. An ecological study of the Susquehanna River
\qquad near the Three Mile Island Nuclear Station. Annual Report for 1985. EA. Sparks, MD.
\qquad - 1987. An ecological study of the Susquehanna River near the Three Mile Island Nuclear Station. Annual Report for 1986. EA. Sparks, MD.

Frisbie, C. M. and D. E. Ritchie, Jr. 1963. Sport fishing survey of the lower Potomac estuary, 1957. Chesapeake Sci. 4(4):175-191.

Gale, W. F. and C. A. Gale. 1976. Selection of artificial spawning sites by the spotfin shiner (Notropis spilopterus). J. Fish. Res. Board Can. 33(9):19061913.

Gorman, O. T. and J. R. Karr. 1978. Habitat structure and stream fish communities. Ecology. 59:507-515.

GPU Nuclear Corporation. 1987. TMI environmental controls policy and procedure manual: non-radiological aquatic monitoring review. TMI Environmental Controls. Harrisburg, PA.

Groen, C. L. and J. C. Schmulbach. 1978. The sport fishery of the unchannelized and channelized Middle Missouri River. Trans. Am. Fish. Soc. 107(3):412-418.

Hardy, J. D., Jr. 1978. Development of fishes of the MidAtlantic Bight: an atlas of egg, larval, and juvenile stages. Vol. III. Aphredoderidae through Rachycentridae. U. S. Fish and Wildl. Serv. 394 pp.

Harmon, P. L. 1978. Survey of anglers on the Schuylkill River near Pottstown, Pennsylvania in 1976. Proc. Pa. Acad. Sci. 52(2):153-156.

Hendrickson, J. A., Jr. 1978. Statistical anlaysis of the presence-absence component of species composition data. pp. 113-124. In K. L. Dickson, J. Cairns, Jr., and R. J. Livingston (eds.). Biological data in water pollution assessments: quantitative and statistical analyses. ASTM, STP 642. Am. Soc. Test. Mater. Philadelphia, PA. 184 pp.

Hocutt, C. H. 1981. Fish as indicators of biological integrity. Fisheries. 6(6):28-31.

Jones, P. W., F. D. Martin, and J. D. Hardy, Jr. 1978. Development of fishes of the Mid-Atlantic Bight: an atlas of egg, larval, and juvenile stages. Vol. I. Acipenseridae through Ictaluridae. U. S. Fish and Wildl. Serv. 366 pp.

Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant, and I. J. Schlosser. 1986. Assessing biological integrity in running waters, a method and its rationale. IL. Nat. Hist. Survey. Special Publ. No. 5.

Lathrop, B. F. 1982. Keys to the larval and juvenile fishes from the lower Susquehanna River near Middletown, Pennsylvania. Ichthyological Associates, Inc. Etters, pa. 42 pp .

Latta, W. C. 1963. The Iife history of the smallmouth bass, Micropterus d. dolomieui, at Waugoshance Point, Lake Michigan. Bull. Inst. Fish. Res. No. 5. 56 pp.

Malvestuto, S. P., W. D. Davies, and W. L. Shelton. 1978. An evaluation of the roving creel survey with nonuniform probability sampling. Trans. Am. Fish. Soc. 107(2):255262.

Miller, J. and K. Buss. |1963?|. The age and growth of the fishes in Pennsylvania. Pa. Fish Comm. 26 pp.

Moore, G. A. 1968. Fishes. pp. 22-165. In W. F. Blair, A. P. Blair, P. Brodkorb, F. R. Cagle, and G. A. Moore (eds.). Vertebrates of the United states. 2nd edition. McGraw-Hill, Inc. NY. 616 pp.

Nardacci, G. A. and Associates. 1977. An ecological study of the Susquehanna River in the vicinity of the Three Mile Island Nuclear Station. Annual Report for 1976. Ichthyological Associates, Inc. 231 pp .

- 1978. An ecological study of the Susquehanna River In the vicinity of the Three Mile Island Nuclear Station. Annual Report for 1977. Ichthyological Associates, Inc. 685 pp .
\qquad - 1979. An ecological study of the Susquehanna River near the Three Mile Island Nuclear Station. Annual Report for 1978. Ichthyological Associates, Inc. 721 pp.
- 1980. An ecological study of the Susquehanna River near the Three Mile Island Nuclear Station. Annual Report for 1979. Ichthyological Associates, Inc. 705 pp.
- 1981. An ecological study of the Susquehanna River near the Three Mile Island Nuclear Station. Annual Report for 1980. Ichthyological Associates, Inc. 762 pp.
- 1982. An ecological study of the Susquehanna River near the Three Mile Island Nuclear Station. Annual Report for 1981. Ichthyological Associates. Inc. 742 pp.
- 1983. An ecological study of the Susquehanna River
near the Three Mile Island Nuclear Station. Annual
Report for 1982. Ichthyological Associates, Inc. 609 pp.
- 1984. An ecological study of the Susquehanna River near the Three Mile Island Nuclear Station. Annual
Report for 1983. Ichthyological Associates, Inc. 300 pp.

Nardacci, G. A., W. A. Potter, J. H. Epler, III, R. F. Eppley, Jr., R. E. Evans, H. A. Hagerty, J. H. Kennedy, B. F. Lathrop, R. W. Malick, Jr., J. D. Montgomery, J. L. Polk, P. C. Ritson, and L. M. Wike. 1976. An ecological study of the Susquehanna River in the vicinity of the Three Mile Island Nuclear Station. Supplemental Report for 1975. Ichthyological Associates, Inc. 249 pp.

Nikolsky, G. V. 1963. The ecology of fishes. Academic Press. NY. 352 pp.

Plosila, D. 1961. Lower Susquehanna River sport fishery survey, 1958-1960. pp. 56-76. In R. R. Whitney (ed.). The Susquehanna fishery study, 1957-1960. MD. Dep. Res. Educ. Contrib. 169:81 pp.

Poole, R. W. 1974. An introduction to quantitative ecology. McGraw-Hill, Inc. NY. 532 pp .

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Fish. Res. Board Can. Bull. 191:382 pp.

RMC Environmental Services. 1988a. An ecological study of the Susquehanna River near the Three Mile Island Nuclear Station. Annual Report for 1987. RMC. Drumore, PA.
_ 1988b. Distribution and abundance of the Asiatic clam (Corbicula fluminea) in the vicinity of the Holtwood Electric Station. RMC. Drumore, PA. 32 pp.

- 1989. An ecological study of the Susquehanna River near the Three Mile Island Nuclear Station. Annual Report for 1988. RMC. Drumore, PA.

Robins, C. R., R. M. Bailey, C. E. Bond, J. R. Brooker, E. A. Lachner, R. N. Lea, and W. B. Scott. 1980. A list of common and scientific names of fishes from the United States and Canada. Am. Fish. Soc. Special Publ. No. 12. 174 pp.

Rogers, R. A. 1980. FY 1980 Illinois sport fishing survey. Special fisheries rept. Dep. Conserv. No. 50. 53 pp .

Reynolds, J. B. 1965. Life history of smallmouth bass, Micropterus dolomieui Lacepede, in the Des Moines River, Boone County, Iowa. Iowa State J. Sci. 39(4):417-436.

Scott, W. B. and E. J. Crossman. 1973. Freshwater fishes of Canada. Fish. Res. Board Can. Bull. 184:966 pp.

Snieszko, S. F., ed. 1970. A symposium on diseases of fishes and shellfishes. Am. Fish. Soc. Special Publ. No. 5. 526 pp .

Snyder, D. E. 1976. Terminologies for intervals of larval fish development. pp. 4l-60. In J. Borman (ed.). Great Lakes fish egg and larvae identification: proceedings of a workshop. USFWS, National Power Plant Team. Ann Arbor, MI.
M. B. Snyder, and S. C. Douglas. 1977.

Identification of golden shiner, Notemigonus crysoleucas, spotfin shiner, Notropis spilopterus, and Eathead minnow, pimephales promelas larvae. J. Fish. Res. Board Can. 34(9):1397-1409.

Starrett, W. C. 1951. Some factors affecting the abundance of minnows in the Des Moines River, Iowa. Ecology. 32(1):13-27.

Thuemler, T. F. 1981. Creel census of 3 managed trout lakes in Florence County, Wisconsin, 1976. WI. Dep. Nat. Resour. Bur. Fish Manage. Rep. 103:15 pp.

Trautman, M. B. 1981. The fishes of Ohio with illustrated keys. Ohio State Univ. Press. Columbus, OH. 782 pp.
U. S. Environmental Protection Agency. 1979. Manual of methods for chemical analysis of water and wastes. EPA/600/4-79-020.

Von Geldern, C. E., Jr. and P. K. Tomlinson. 1973. On the analysis of angler catch rate data from warm water reservoirs. CA. Fish Game. 59(4):281-292.

Wang, J. C. S. and R. J. Kernehan. 1979. Fishes of the Delaware estuaries: a guide to the early life histories. EA Communications. Division of Ecological Analysis. Towson, MD. 410 pp .

Whittaker, R. H. and C. W. Fairbanks. 1958. A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecology. 39:46-65.

APPENDIX A
BENTHIC MACROINVERTEBRATE DATA

TABLE A-1 NUMEER AND BIOMASS (mg) OF BENTHIC MACROINVERTEBRATES BY STATION, REPLICATE (A, B.C.D)

 AND LIFE STAGE TAKEN NEAR TMINS, APRIL. 1989Date=05APR and Station IA2

	Taxa	Life Stage	A		B		c		D		
			No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	
	Ablabesmy ${ }^{\text {a }}$	Larvae	-	-	1	-		-	-	-	
	Bothrioneurum vejdovskyanum			.	,	.	1	,	;	,	
	Ceratopogonidae .	Larvae	1	0.1	4	0.1			1	0.1	
	Chironomus decorus	Larvae	20	6.7	17	14.2	3	0.3	10	7.8	
	Coelotanypus	Larvae	4	0.4	3	0.2	2	.	.	.	
	Dubiraghia	Larvae	.		2	0.2	.	-	-	-	
	Ferrissia		3	0.2	-	
	Hydrobaenus	Larvae	,		1			-	-	-	
	Limnodrilus hoffmetsteri		14	0.3	18	0.5	6	.	6	,	
	Limnodrilus udekemianus		.	.	2	0.1	1	-	-	,	
	Lumbriculidae		.	0.3	1	2.5	-	-	$\dot{\sim}$		
	Musculium transversum		3	0.3	3	0.4	.	.	2	0.2	
	Nanocladius	Larvae	2		$\stackrel{5}{5}$		-	-	;		
1	Nematoda		2	0.2	5	0.1	5	0.1	1	0.1	
$\stackrel{-}{\square}$	Oeceris	Larvae			1	0.1	1	0.1			
	Pisidium		8	1.0	1	0.1	-	.	2	0.2	
	Polypedilum convitum	Larvae	.	.	1		.	.	-	.	
	Procladius	Larvae	.	.	3	0.2	;	.	1	$0 \cdot 1$	
	Rneotanytarsus	Larvae	.	.	1	.	1	$0 \cdot$	1	0.1	
	Stenelmis	Larvae	-	-		-	1	0.1	-	.	
	Tenafpedidae=chironomidae	Larvae	;	.	2	.	-	.	-	-	
	Thienemanimyia	Larvae	1	-	3	.	-	.	-	-	
	total		58	9.2	69	18.7	21	0.6	24	8.5	

table a-i continued.

TAble a-i CONTINUED

TABLE A-2 NUMBER AND BIOMASS (mg) OF BENTHIC MACROINVERTEBRATES BY STATION, REPLICATE (A.B.C.D). ANO LIFE STAGE TAKEN NEAR TMINS: MAY. 1989.

Taxa	Life Stage	A Da		Date=02mAY and station			1A2	0		
				B		C				
		No.	wt.	No.	Wt.	No.	Wt.	No. Wt.		
Ablabesmyia	Larvae	*	-	.	-	1	-	1	-	
Arcteonais lomondi		-	-	1	.	-	-	-	-	
Bothrioneurum vejdovskyanum		-	-			6	30.5	-	$\stackrel{\square}{ }$	
Branchiura somerbyi			-	2	1.1	3	30.5	;		
Ceratopogonidae	Larvae	$\dot{5}$,		-		1	0.4	
Chironomia pupae	Pupae	3	0.1	2	0.1	9	3.0	7	4.2	
Crironomus decorus	Larvae	1	0.1	1	1.0	2	4.6	13	12.6	-
Cryprochironomus fulvus	Larvae	3	0.2	,	.	2	0.7	-	-	
Enchytraefdae		-	-	-	-	1	O. 1	1	2.5	
Gammarus fasciatus		-	.	1	3	1	0.1	1	2.5	
Helobdella elongata		;	. 7	1	1.3				- 6	
Limnodrilus noffmeisteri		7	2.7	29	8.0	60	16.5	25	8.6	
Muscullum transversum		-	.	1	0.1	.	.	4	0.4	
Nals		;	,	1	0.2	3		-	.	
Nematoda		1	0.1	$?$	0.2	3	0.2	-	-	
Phaenopsecria	Larvae	;		1	0.4	1 8	1.7	2	0.7	
Pisidium fallan		1	0.2	2	0.4	8	1.7	2	0.7	
Polypedilum fallax Polypedilum scalaenum	Larvae Larvae	4 7	0.2 0.5	2	-	13	0.9	10	1.2	
Polypedilum scalaenum	Larvae	7			-	1	-	2	\therefore	
Tanytarsus	Larvae	28	1.7	31	2.1	38	5.2	12	1.4	
Zavrelia group	Larvae	2	.	-	-	
total		57	5.8	76	14.3	149	63.4	76	32.0	

table a-2 continued.

Date=02MAY and Station IIAI
Life \quad Lifa

Arcteonais lomondi		2		6					-
Bothrioneurum vejdovskyanum		11	0.3	2	0.2	1	0.1	1	
Branchlura sowerbyi				1	0.3	-		-	
Ceratopogonidae	Larvae	4	0.3	2	0.2	4	0.7	.	
Chironomid pupae	Pupae	6	5.2	3	2.0	7	8.4	$\stackrel{\square}{*}$	
Cnironomus decorus	Larvae	23	21.5	18	18.3	21	21.5	4	5.2
Coelatanypus	Larvae	1				1	0.3	1	
Cryorochironomus fulvus	Larvae	7	1.2	7	0.2	8	1.4	4	0.8
Dubiraphia	Larvae	1	0.1	1	0.1	1	0.3	1	0.3
Dugesta tigrina		- 1	$=0.5$	1	0.3	1	- 6	;	
Gammarus fasclatus		5	0.4	26	3.2	14	2.6	2	0.2
Helobaella elongata		7	4.0	1	0.2	.	.	.	-
Helobdella stagnalis		,	.	1	3.5	-	-	-	
Heragenia	Larvae	-	$0 \cdot$	1	2.5	;	0		5
Hydralimax grisea		2	0.4	1	0.1	1	0.3	2	0.5
Ilyoarilus templetoni		4	.	3		1	-	1	-
Limnodrilus claparedianus			16.5	11	2.5	5	16.2	2	
Limnourilus hoffmeisteri		111	16.5	101	22.3	96	16.2	42	11.0
Manayunkia speciosa		-				1	0.1	*	
Musculfum transversum		4	2.9	3	0.4	1	0.1	4	0.5
Nematoda		2	0.2	1	0.1	1	0.1		
Pnaenoosectra	Larvae	24	4.8	23	5.4	30	7.6	29	8.3
Pnysidae		.		;		1	0.1	-	
Pisidium		9	2.3	2	0.2	11	1.3	2	0.2
Polypedilum scalaenum	Larvae	3	0.5	1	.	3	0.9	4	1.0
Polypedium illinoense	Larvae	.		;	\cdots	-	$0 \cdot$	4	1.0
Procladius	Larvae	22	2.8	7	1.2	4	0.4	17	3.1
Quistadrilus multisetosus				1	0.1	2	-	!	
Stenelmis	Larvae	1	0.2	-		.	-	1	0.4
stylurus	Larvae	.	.	1	30.2	;	0	-	.
Tanytarsus	Larvae.	-	-	2	.	1	0.1	-	*
Thienemanimyia	Larvae	-	-	-	-	1	-	-	-
TOTAL		250	64.1	227	93.5	211	62.5	120	32.5

table a-2 CONTINUED.

Taxa	Life Stage	A Dat		O2mAY and Station 981				D		-
				B		C				
		No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	
								3		
Ceiratopogonidae	Larvae Pupae	6	4.0	16	14.9	2	0.7	2	2.6 11.7	
Chironomid pupae	Larvae	10	8.9	41	51.6	6	5.7	12	11.7	
Chironomus decorus Coelotanypus	Larvae	19	3.3	4	1.2	14	1.2	5	1.2	
Cryptochitonomus fulvus	Larvae	1	0.4	6	2.4	;	1.4	-	:	
Helobdella elongata		1	0.6	3	$0 \cdot 4$		1.4	i	0.3	
Hyorolimax grisea		1	0.4	3 3	0.4	2	;	.	0.3	
l yodrtlus templeront		2 29	2.8	29	4.0	2	.	"		
Limnodrilus claparedianus		29 263	25.3	291	39.7	188	21.6	153	46.0	
Limnodrilus hoffmeisteri Musculium transversum		4	0.7	9	1.1	3	0.4	.	.	
Nematoda		1	0.1	2	.	.	-	-		
Phaenopsectra	Larvae			2	1.4	2	1.0	-		
Pistafum		8 43	2.1 8.5	7	2.0	21	4.8	1	0.3	
Procladius	Larvae Larvae	10	0.8	10	1.4	2	.	1	0.1	
total		398	57.9	428	120.1	241	36.8	178	62.5	

TABLE A-3 NUMBER AND BIOMASS (mg) OF bENTHIC MACROINVERTEERATES BY STATION, REPLICATE (A,B, C,D). AND LIFE STAGE TAKEN NEAR TMINS. JUNE. 1989.

Taxa	Life Stage	A Da		SJUN	no St	- laz		0	
				B		c			
		No.	Wt.	No.	Wt.	No.	Wt.	No	Wt.
Ablabesmyla	Larvae		.	2	-	1	-	.	
Arcteonais lomondi		1	-	*	-	5	$0 \cdot 1$	a	4
Bothrioneurum vejdovskyanum		5	0*	4	0.1	5	0.8	8	0.4
Ceratopogonidae	Larvae	1	0.1	$\dot{5}$,	-	-	;	
Chironomio pupae	Pupae			5	0.3	9	27.5	1	0.2
Chironomus decorus	Larvae	378	27.7	406	52.5	329	27.5	345	27.3
Cryptochironomus fulvus	tarvae	3	0.3	19	1.2	14	1.4	$1 i$	0.2
Gammarus fasciatus		5	0.2	19	1.2	14	1.4	11	0.2
Helobdella elongata		1	0.4	-	-	.	-	-	
Hexagenla	Larvae	1	22.0	4	-	3	:	$\dot{5}$	
Limnodrilus haffmeiseeri		1	,	2	'	3	-	5	
Limnodrilus udexemianus Musculium			-	2	.	1	0.3	i	0.2
Nemetoda			\cdots			1	0.1	2	0.2
Pnaenopsectra	Larvae	9	0.4	40	3.6	18	1.6	34	2.6
Physidae		.	.	;	-	1	0.1	8	1.0
Pistaium			$0 \cdot 1$	1	0.1		-	8	1.0
Polypedilum scalaenum	Larvas	2	0.1	1	-	5	0.2	\dot{a}	0.4
Procladius	Larvae	1		1		5			
Sialis Tanytarsus	Larvae	1	0.1	1	;	1	-	;	0.1
total		408	51.3	485	57.8	380	32.0	420	32.6

TABLE A-3 CONTINUED

table a-3 continued.

TABLE A-A NUMEER ANO EIOMASS (mg) OF BENTHIC MACROINVERTEBRATES bY STATION. REPLICATE (A.B.C.D): AND LIFE STAGE TAKEN NEAR TMINS, JULY. 1989.

Taxa	Life Stage	A Dat		6JUL and Station 1A2				D	
				B		c			
		No.	Wt.	No.	Wt.	No.	Wt.	No. Wt.	
Bothrioneurum vejdovskyanum		7		1	0.2	.	*	-	.
Chironomia pugae	Pupae	1	0.2		11.				
Chiranomus decorus	Larvae	44	13.2	18	11.4	16	8.3	7	1.1
Cryptochironomus fulvus	Larvae	1	0.2	.	.	.	-	1	0.3
Dubiraphia	Larvae	2	$\cdot 0.2$;	0.3	-	-	;	$0 \cdot 1$
Gammarus fasciatus		5	$\bigcirc 0.8$	1	0.3	*	-	1	0.15
Helobdella elongata		-	-	1	0.5
Ilyodrllus templeroni		1	\cdot	-	-		\bullet	.	-
Labrundinia	Larvae	10	\cdots	-	,	2	*	-	-
Limnodrilus claparedianus		10	1.0	4	0.6	8	1.1	11	
Limnodrilus hoffmeisteri		83	7.3	4	0.6	8	1.1	11	1.0
Limnodrilus udekemianus				-	-	-	.	3	0.4
Musculium transversum Nematoda		1	1.6	-	\cdots	2	0.2	,	.
Nemetoda		19	2.3	7	0.8	2	0.2	4	0.5
Polypedilum scalaenum	Larvae	,	0.7	1	.	2		-	.
Stenelmis	harvae	1	0.7	.	-	1	0.5	-	-
total		175	27.5	32	13.3	31	10.1	28	3.9

TABLE A-4 CONTINUED.

Taxa	Life Stage	A Dat		6JJUL	and S	ก 1			
				8		c		D	
		No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.
Ablabesmy fa	Larvae	1		-	,	-	-	-	.
Amnicala		1	0.2		$0 \cdot 1$;			
Bathrioneurum vejdovskyanum		3	.	3	0.1	2	0.1	4	0.2
Brachycerus	Larvae			\%	.	1	0.6	1	0.3
Ceratopogonidae	Lervae	2	0.3	;	
Cheumaropsyche	Pupae			1	0.2	;	$0 \cdot$	$\dot{\sim}$	
Chironomio pupae	Pupae	2	0.6	4	1.1	-	0.2	2	1.1
Chironomus decorus	Larvae	30	5.2	58	16.3	96	24.5	84	18.3
Cryptochironomus fulvus	Larvae	4	0.4	7	1.4	9	1.2	5	0.2
Dugesta tigrina		,		1	0.2	-	-	.	.
Erpabdellidae		1	28.3	1	23.3	1	1.4	.	.
Gammarus fasciatus		18	8.2	5	2.8	5	0.7	9	0.4
Helobdella elongata		7	1.4	6	1.5	3	1.2	1	0.1
Helobdella siagnalis		1	0.2	1	0.1	.	.	-	.
Hexagenia	Larvae	2	31.9	2	18.3	-	-		5
Hyarolimax grisea		3	0.1	3	0.1	-	-	7	0.5
Ilyoorilus templetoni				1		177	11.4	-	
Limnoarilus hoffmeisteri		50	10.0	128	10.4	177	11.4	128	8.8
Manayunkia soeciosa		1	0.1	.	.	;		4	
Musculium transversum		1	0.1			2	$0: 2$	4	0.5
Nemaroda		2	0.2	2	0.2	4	0.4	1	0.1
Pistaium		13	1.6	1	0.1	5	0.6	7	0.8
Polypedilum scalaenum	Larvae							11	
Procladius	Larvae	6	0.6	8	0.8	6	0.2	11	0.8
Stenelmis	Larvae	1	0.8	1	0.5	-	.	-	-
TOTAL		149	90.2	233	77.4	312	42.7	265	32.1

TABLE A-4 CONTINUED.

Taxa	Life Stage	A Da		6JUL	nd 5 t	- 981		.	
				B		C		D	
		No.	Wt.	No.	Wit.	No.	Wt.	No.	Wt.
Bothrioneurum vejdovskyanum		3	-	-	-	-	-	-	
Chironomid pupae	Pupae	2	,	2	1.5	-	.	1	0.6
Chironomus decorus	Larvae	59	7.1	2	1.5	.	-	1	0.6
Coelotanypus	Larvae	1	0.8	-	-	2	0.2	2	0.5
Cryptochironomus fulvus	Larvas	5	0.8	-	-	2	0.2	2	0.5
Epoicocladius	Larvae	14		.			.	.	
Gammarus fasciarus		14		-	.	-		i	10.3
Hexagenta Hydropsyche	Larvae Larvae	1	4.6	1	0.1	$\stackrel{\circ}{\circ}$	\cdots	$\dot{7}$	10.3
Hyoropsyche Limnodrilus noffmetsteri		139	19.1	71	24.6	54	13.4	78	13.4
Limnodrilus udekemianus		2	1.1	8	2.7	-		i	0.2
Muscullum transversum		2	1.1			2	0.2	2	0.4
Pisioium		8	1.0	6	0.7	2	0.2	1	0.4
Polypedilum scalaenum	Larvae	3		-	-			1	-
Quistadrtius multisetosus Tubificidae		15	0.1	-	$\stackrel{\square}{*}$.	-	.	-
total		253	38.9	88	29.6	58	13.8	87	25.4

TABLE A-5		A Da		2aUG	nd St	on		0	
				B		c			
Taxa	Lifa Stage	No.	Wt.	No.	Wt.	No.	Ht.	No.	Wt.
Aulodrilus pluriseta		3				\pm	.		
Bothrioneurum vejdovskyanum		4		3	0.1	4	0.9		
Branchiura sowerbyi		2	0.2	2	18.0	1	0.9		.
Caenis	Larvae	1	0.1	.		3	0.4		.
Ceratopogonidae	Larvae	6	0.4	2	0.1	1	0.1		.
Cnironomid pupae	Pupae	5	1.7	2	,	53	6.7		3.7
Chironomus decorus	Larvae	44	13.2	42	5.3	53	6.7	25	3.7
Coolotanypus	Larvae	2	-	-	,	;	-		.
Corbicula fluminea		3	-	$\dot{3}$	0.5	8	2.2	-	
Cryptochironomus fulvus Gammarus fasciatus	Larvae	3 3	0.1	3	0.5	8	2.2		-
Gammarus fasciatus Harnischia	Larvae	.	.	-	.	-	.	1	-
Hydrolimax grisea		1	0.1	-	-	-	\bullet		-
Ilyoarilus templezoni		7 47	0.5	44	2.6	31	2.0		2.1
Limnoarilus hoffmeisteri		47	3.4	44	2.6	31	2.0	19	2.1
Limnodrilus udekemianus		6	0.4	-	-	1	0.1		.
Lumbriculidae Musculium transversum		1	3.2		-	2	0.2		-
Nematoda		,		2	0.6	2	0.2		.
Plsidium			0.3	2	0.2	15	1.8		-
Polypedilum scalaenum	Larvae	2	0.2	6	0.3	7	0.7		-
Procladius	Larvae	9	0.7	3	0.1	5	0.2		
Quistadrilus multisetosus		1	-	-	-	-	-	,	
total		148	24.5	109	27.8	134	15.5	45	5.8

table a-5 continued.

Taxa	Life Stage	A Dat		2AUG	and St	n 11		D	
				8		c			
		No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.
Arcteonals lomondi		1	-	;	-	$\dot{3}$	0×1	-	
Bothrioneurum vejdovskyanum		1		1		3	0.1	-	0.2
Chironomus decorus	Larvae	45	7.4	29	3.2	21	4.2	8	0.2
Coelotanypus	Larvae	1	0.1	;	-	1	.	-	-
Corbicula fluminea		4	18	14	1.7	10	0.9	4	0.7
Cryptochironomus fulvus	Larvae	14	1.8	14	1.7	10	0.9	4	0.7
Erpobdellidae		1	14.9 0.1	2	0.2	1	0.1	j	0.1
Gammarus fasctatus -		5	0.1	2	0.2	1	0.1		
Harnischia Helobdella elongata	Larvae	,	-	1	0.1	,	-	i	0.2
Heloboella elongata Hexagenia	Larvae	3	1.6	.		2	0.1	;	
Hydrolimax grisea		10	0.7	6	0.3	;	-	1	0.1
Ilyodrtlus templetoni		2		1		${ }_{7}$	$7{ }^{\circ}$	54	4.9
Limnoarilus noffmeisteri		68	11.2	77	9.3	78	7.8	54	4.9
Manayunkfa speciosa		,	0.1	1	0.1	-	-	-	
muscultum		,	0.7	;	0.1	3	0.3	2	0.2
Nemetoda		4	0.3	1	0.1	3	0.3	2	0.2
Nemat omorpha					,	1	0.1	-	.
pisiatum		10	1.2	12	1.4	1	0.1	-	-
Polypedilum scalaenum	Larvae	,	,	5	$0 \cdot 5$;	0.1	,	-
Procladius	Larvae	4	0.4	5	0.5	1	0.1	;	-
Quistadrilus multisetosus		1	.	2	0.6	-	-	1	-
Tanytarsus	Larvae	-	-	1	-	;	-		
Thienemanimyia	Larvae	-	-	-	-	1	-		-
TOTAL		174	40.5	155	17.5	125	13.8	72	6.4

table a-5 continued.

table a-g continued.

table a-g continueo.

TABLE A-7 NUMBER AND BIOMASS (mg) OF BENTHIC MACROINVERTABRATES BY STATION, REPLICATE (A, B, C, D). AND LIFE STAGE TAKEN NEAR TMINS, OCTOBER, 1989.

Taxa	Life Stage	A Da		AOCT and Station laz				D		
				日		C				
		No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.	
Ablabesmyia	Larvae		-	-	-	-	.	4	0.4	
Bothrioneurum vejdovskyanum		1				2		3		
Branchiura sowerby\{		3	0.3	2	0.1	1	0.2	4	1.5	
Caenis	Larvae	2	0.2	;		-	-	2	0.1	
Ceratopogonidae	Larvae	1	0.1	1	0.2	;	,	2	0.1	
Cnironomid pupae	Pupae					1	0.1	i	$0 \cdot 2$	
Chironomus decorus	Larvae	24	0.7	14	0.2	16	0.3	12	0.2	
Chrysops	Larvae		12.7	${ }^{1}$	0.1		4.4	\cdots	9.6	
Cordicula fluminea		27	12.7	50	19.0	26	4.4	23	9.6	
Cryptochironomus fulvus	Larvae	2	0.2	10	0.8	1	0.1	2	-	
Dubiraphia	Larvae			1	0.2	3	0.1	3		
Gammarus fasciatus		2	0.3	1	0.1	.	.	3	0.2	
Heloboella elongata			1018	25			37.6	5 32	0.8 76.9	
Hexagenia	Larvae	34	101.8	25	44.6 0.3	26	37.6	32	76.9 0.2	
Hyarolimax grisea		7		1	0.3		2.1	76	0.2 15.4	
Limnodrilus hoffmeisteri		57	1.9	53	3.2	45	2.1	76	15.4	
Musculium transversum		10	1.9	+	,	2	$3 \cdot 5$	35		
pisiaium		20	2.4	13	1.6	29	3.5	35	4.2	
Prociadius	Larvae	17	0.2	14	0.2	6	0.3	11	0.2	
Stenelmis	Larvae	1	0.1	;		1	0.1	.	.	
Stylurus	Larvae	-	-	1	5.2	.	-	-	-	
TOTAL		201	122.8	187	75.8	157	48.7	216	109.8	

table a-t continued.

table a-t continued.

Taxa	Life Stage	A Da		O40CT and Station 981				D	
				B		c			
		No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.
Aolabesmyta	Larvae	1	-	;	-	*	-	2	0.1
Arcteonats 1 mondt			,	1	.	6	.	53	1.1
Bothrioneurum vejoovskyanum			.	2	,	3	.		
Centroptilum	Larvae	-	2	0.4
Ceratopogonidae	Larvae	-	-	-		;		4	0.4
Chironomid pupae	Pupae	-	*	.	\cdots	2	0.1	3	0.3
Chironomus decorus	Larvae	15	3.9	9	1.8	9	2.0	78	15.4
Coeloranypus	Larvae		.	4	1.4	4	0.5	3	0.8
Cryptochironomus fulvus	Larvae	3	-	4	0.2	6	0.6	9	0.4
Dubiraphia	Larvae	;	2.4	.	.	1	0.1	5	
Gammarus fasciatus		,	2.4	.	.	2	0.2	5	1.4
Harnischia	Larvae	1		;	-	I		-	-
Helobdella elongata		1	0.3	1	0.1	1	0.1		
Hexegenia	Larvae	48	65.7	37	32.0	40	32.3	22	27.9
Hyarilimax grisea		1	0.3	3	0.3	13	1.2	32	4.4
Ilyodrilus templetoni		70	90	109	9.0	2 169	29.6	19 415	0.6 45.9
Limnodrilus noffmeisteri		70	9.0	109	9.0	169	29.6	415	45.9
Lumbriculidae		;		1	0.6	2	0.6	1	
Musculium transversum		1	1.2	1	0.6	5	0.6	1	0.2
Nematoda	Larvae	-	.	;	0.3	2	0.1	*	-
Oecetis	Larvae	$\stackrel{*}{4}$		0	0.3	1	0.1	52	5.2
Pisioium		24	2.9	10	1.2	24	2.9	52	6.2
Polypedilum scalaenum	Larvae	3		7		11	0.9	4	0.1
Procladius	Larvee	3	0.4	7	1.2	11	0.9 0.6	4 3	0.1
Tanytarsus Tubificidae	Larvae	1	-	2	-	6	0.6	,	-
total		170	86.1	192	48.1	311	71.9	708	105.6

table a-b number ano biomass (mg) of benthic macroinvertebrates by station. replicate (a.b.C.D), AND LIFE STAGE TAKEN NEAR TMINS, NOVEMBER, 1989.

Taxa	Life Stage	Datea 0680% and Station					142		
		A		B		C		D	
		No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt:
Ablabesmyta	Larvae	2	-	1	-	.	-	5	1.0
Arcteonais lamondi		2		1				.	
Bothrioneurum vejdovskyanum		7		4	0.1	7	0.1	4	0.1
Branchlura somerby 1		7	8.0	2	0.1	3	4.5	.	
Ceratopogonidae	Larvae	3	0.1	2	0.1	2	0.1	3	0.4
Chironomus decorus	Larvae	211	307.2	150	57.9	239	71.4	39	24.1
Corbicula fluminea		10	13.1	9	6.6	19	3.7	6	1.3
Cryptochironomus fulvus	Larvae	14	0.4	4	0.2	5	0.7	1	0.3
Dolíchopodidae	Larvae	.		.		1	0.3		
Dubiraphia	Larvae	2	0.1	4	0.1	4	0.7	2	0.1
Dugesta tigrina		4	0.2	.	.	;	.	.	.
Ferrissta				.	.	3	0.7	,	.
Gammarus fasciatus		28	20.9	8	5.5	1	0.1	2	1.4
Helobdella elongata		1	0.1			2	0.1	-	
Mexagenia	Larvae	36	227.2	16	103.5	3	1.0	30	136.6
Hyorolimax grisea		4	1.2	-	.	-	-	.	.
Hyoropsyche	Larvae	4	.	7	.	2	0.9	1	.
Ilyodrtlus templetanl		4	$0 \cdot$	7	-	7	.	1	-
Leploostoma	Larvae	1	0.1	20	*	,	,	.	-
Limnodrilus claparedianus		6		20	3.1	$\dot{5}$	-	39	7.8
Limnodrilus hoffmeisteri		60	10.7	30	4.6	45	9.4	29	7.8
bimnodrilus udekemianus		8	1.3	3	0.9
Lumbriculidae		1	0.1	.	.	;		.	.
Macrumia sp	Larvae			.		1	4.9		
Muscullum transversum		7	2.8	3	0.4	.	.	2	0.9
Nais		.		1		;	.	*	$0 \cdot$
Nematoda		3	0.3	3	0.2	1	0.1	2	0.2
Petrophila	Larvae	.		.	.	1	0.1	,	.
Physa		1	0.1	20	2,	15	- 1	;	0.8
Pisidium		72	8.6	20	2,4	15	1.8	7	0.8
Polypedilum scalaenum	Larvae	1	.	,
Pristina synclites		3		3		.	.		-
Prociadius	Larvae	13	0.2	3	0.1	29	2.4	3	0.4
Prodiamesa	Larvae	10	14.6	,	
Prostama		3	0.1	1	0.1	-	-	.	.
Protoptila	Larvae	,	.	.	.	1	0.1	.	-
Stenelmis		1			-		.		
Stenelmis	Larvae	5	1.7		.	.	-	2	1.4
Stylurus	Larvae	,	0.6	-		;		.	.
Zavrelimyla	Larvae		.	*	.	1	.	-	.
Tanytarsus	Larvae	-	-	1	-	.	.	-	-
total		535	619.7	293	185.0	392	103.1	141	177.7

TABLE a-8 CONTINUED

Datesognov and Station 11At

table a-b continued.

Taxa	Life Stage	Date=06NOV and Station 9					981		
		A		8		C		D	
		No.	Wt.	No.	Wt.	No.	Wt.	No.	Wt.
ADIabesmy la	Larvae	8	3.0	-	-	11	3.5	-	
Anodonta cataracta			,	;		1	9.9	4	0.3
Arcteonais lomond		7	0.1	1		4	.	4	0.2
Bathrioneurum vejoovskyanum		2	0.2			$1{ }^{1}$			
Ceratopogonidae	Larvae	2	0.1	1	0.1	10	1.9	5	0.6
Chaoborus	Larvae		16.	1	0.1	79	359	38	
Chironomus decorus	Larvae	32	16.4	27	6.3	79	35.9	38	11.4 1.8
Coelotanypus	Larvae	1	1	3	0.4	12	0.2 1.6	12	1.8 0.8
Cryprochironomus fulvus	Larvae	13	1.1	10	0.6	12	0.2	18	0.0
Dubirapnia	Larvae	1	0.1	1	0.1	1	0.2	i	0.1
Epoicocladius Gammarus fasctatus	Larvae	10	0.8 5.3	i	0.5	2	1.5	1	0.3
Glyptotendipes	Larvae		. 0	-	18	2	1 '9	4	1.3
Helobdella elongata		5	1.0	4	1.8	27	125.9	94	128.3
Hexagenia	Larvae	55	121.7	58	64.1	67	125.6	94	128.3
Hydrolimax grisea		4	0.2	3	0.2	37 4	5.9	-	-
Ilyodrilus templetoni		119	14.2	88	8.3	118	26.1	74	15.0
Limnodrilus noffmeisteri Manayunk speciosa		119	14.2	88	8.3	1		7	0.1
Manayunkia speciosa Musculium eransvarsum		26	4.1	42	6.4	17	3.6	8	1.0
Nematoda		2	0.2	1	-	-	.	1	0.1
Oecetis	Larvae			7	0.1	34		31	0.1 3.7
Pisidium		45	5.4	7	0.8	34	4.1	3	3.7
Polycentropus sp	Larvae	1	0.1	-	-	-	-	-	-
Polypedilum scalaenum	Larvae	1				35	. 3.5	49	0.1
Prociadius	Larvae	36	2.9 3.9	20	3.6	35	. 3.5	4	0.1
Sialis	Larvae	1	3.9	1	3.6	-	-	-	
TOTAL		373	180.0	269	95.5	438	225.4	343	164.9

APPENDIX B

ICHTHYOPLANKTON DATA

	TM-LF-11A1			TM-LF-1481				TM-LF-10日2				TM-LF- 9B1			
	A		8	A		B		A		B		A		B	
volume Sampled (m)	29.00		. 80	20.10		20.10		25.20		24.70		29.00		28.40	
Taxa	N Dans.	N	Dens.	N	Dens.	N	Dens.	N	Dens.	N	Dans.	N	Dens.	N	Dens.
Total	00.00		0.00		0.00	0	0.00		0.00	0	0.00	0	0.00	0	0.00

TABLE b-2 NUMBER (N) AND DENSITY (N/100m) OF ICHTHYOPLANKTON COLLECTED FROM YORK HAVEN POND ON 11 APRIL IGB9.

	TM-LF-12A1				TM-LF-16A1				TM-LF-13A2				TM-LF- 4A1			
	A		B		A		B		A		B		A		B	
Volume Sampled (m)	28.60		28.10		33.00		32.60		30.80		30.40		32.10		31.30	
Taxa	N	Dens.	N	Dens.	N	Dens.	N	Dens.								
Total		0.00		0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00

to
1
N

TABLE B-3 CONTINUED.

	TM-LF-11A 1				TM-LF-1481				TM-LF-1082				TM-LF-981			
	A		B		A		θ		A		B		A		B	
Volume Sampled (m)	30.20		29.80		29.90		29.20		29.80		29.10		31.10		30.90	
Taxa	N	Dens.	N	Dens.	N	Dans.	N	Dens.	N	Dans.	N	Dens.	N	Dens.	N	Dens.
Young Spotfin shiner		-		-		*		-		-	1	3.44		,		-
$\begin{aligned} & \text { Egg } \\ & \text { Unidentified (eggs) } \end{aligned}$.		-		-		-		-	-	-		-		-
Total		0.00		0.00		0.00	0	0.00		0.00	1	3.44	0	0.00	0	0.00

TABLE B-4 NUMEER (N) AND DENSITY ($\mathrm{N} / 100 \mathrm{~m}^{3}$) OF ICHTHYOPLANKTON COLLECTED FROM YORK HAVEN POND ON 24 APRIL IG89.																
	TM-LF-12A1				TM-LF-16A1				TM-LF-13AZ				TM-LF- 4A1			
		A		B		A		8		A		B		A		日
3																
Taxa	N	Dens.	N	Dens.	N	Dens.	N	Dens.	N	Dens.	N	Dens.	N	Dens.	N	Dens.
Total	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00		0.00

TABLE B-5 NUMBER (N) AND DENSITY ($\mathrm{N} / 100 \mathrm{~m}^{3}$) OF ICHTHYOPLANKTON COLLECTED FROM YORK HAVEN POND ON OS MAY 1989.

	TM-LF-12A		TM-LF-16A		TM-LF-13A2		TM-LF-4A1	
	A	B	A	8	A	8	A	B
Volume Sampled (m)	32.10	31.20	27.40	\vdots 26.50	32.60	31.90	27.40	26.50
таха	N Dens.							
Larvae								
Soortall shiner			.		13.07	1 3.13	-	. \cdot
Quillback ${ }^{\text {Tessellated darter }}$	13.12	13.21		13.77	1 3.07	; 3.13	-	-
Tessellated darter	- .	412.82	13.65	: \quad :	13.07	; 3.13	-	
Banded darter	$3 \quad 9.35$	13.21	; 3.65	$\cdots \quad$.	- .	\cdots.	$\cdots \quad$.	; 3.77
```Ugidentified (eggs)```	- .		. .	.	- -	- -	- .	. .
Total	412.46	619.23	27.30	13.77	26.13	26.27	$0 \quad 0.00$	13.77

table 8-5 continued.

TM-LF-11A1		TM-LF-1481		TM-LF-1082		TM-LF-981	
A	B	A	8	A	-	A	B
33.00	31.80	28.80	28.60	29.80	29.00	31.10	29.9
N Dens	$N$ Dens	$N$ Dens	N Dens.	$N$ Den	N Den	N Dens	1 D



TABLE B-6 NUMBER ( $N$ ) AND DENSity ( $\mathrm{N} / 100 \mathrm{~m}^{3}$ ) OF IChthyoplankton COLLECTED from York haven pond on 22 may 1989.

	TM-LF-12A1				TM-LF-16A1				TM-LF-13A2				TM-LF- 4AI			
	A		B		A		8		A		B		A		B	
Volume Sampled (m)	25	00		4.50		. 00		. 20		. 20		. 90		. 00		. 10
Taxa	$N$	Dens.	$N$	Dens.	$N$	Dens.	N	Dens.	$N$	Dens.	N	Dens.	N	Dens.	N	Dens.
Spatrall shiner	-	-	-	.	-	-	-	-	-		-		-	-	-	-
Quillback	.	.	.	-	.	-	.	-	1	3.31	-			-		-
Banded darter	-	.	-	.	.	.	.	,	1	3.31	;		-	.	-	
Unidentifiable fish	.	.	-	.	-	.	.	.	.	.	1	3.46	-	-	-	-
Larvae																
Spottail shiner			-	-	1	3.33	;		-	-	$\dot{ }$		;			
Quillback	2	0.00	-	-	2	6.67	1	3.42	5	16.56	2	6.92	3	10.34	2	7.12
Tessellated darter	3	12.00	4	16.33	.		2	6.85	2	6.62	2	6.92	.	.	.	.
Yellom perch	.	.			I				.	.	1	3.46	.	.	-	.
Snield darter		- 00	1	4.0 OB	1	3.33	1	3.42	;		4	19,	.	.	.	.
Banded darter	2	8.00	1	4.08	3	10.00	4	13.70	1	3.31	4	13.84	.	.	.	-
Unidentifiable fish	.	.	.	.	1	3.33	.	.	.	.	.	.	-	.	.	.
Total	7	28.00	6	24.49	8	$26^{\circ} .67^{\circ}$	8	27.40	10	33:11		34.60	3	10.34	2	7.12

TABLE E-6 CONTINUED.

	TM-LF-11A1				TM-LF-1AB1				TM-LF-1082				TM-LF-981			
	A		B		A		8		A		B		A		8	
Volume Samplea (m)	31.00		30.20		28.30		28.00		29.80		29.00		30.10		28.90	
Taxa	$N$	Dens.	N	Dens.	N	Dens.	N	Dens.	N	Dens.	$N$	Dens.	$N$	Dens.	N	Dens.
Spottail shiner	-	-	.	-	-	-	-	-	-	.	-	-	1	3.32	-	,
Quiliback	.	.	.	.	-	.	.	.	.	.	.	.	1	3.32	.	.
Eanded darter	.	.	.	.	.	-	1	3.57	.	.	.	.	.	.	.	.
Unidentifiable fish	.	-	-		-	.	.		,	.	-	.	-	-	-	-
Larvae   Spottall shiner			-	-	-		.	-	-		-		2	6.64	-	
Qulliback	2	6.45	-	26.49	2	7.07	6	21.43	1	3.36	1	3.45	5	16.61	9	31.14
Tesselleted darter	3	9.68	2	6.62	1	3.53	1	3.57	3	10.07	7	24.14	2	6.64	1	3.46
Yellow perch	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.	.
Shield darter						77.74		$10 \cdot 5$	.	-			,		,	
Banded darter	2	6.45	1	3.31	22	77.74		103.6	.	-	5	17.24	!	3.32	1	3.46
Unidentifiable fish	.	.	.	.	.	.	.	,	-	,	.		.	.	.	-
Total		22.58		36.42	25	88.34	37	132.1	4	13.42	13	44.83	12	39.87	11	38.06

3
TABLE E-7 NUM日ER (N) AND DENSITY (N/IOOm ) OF LCHTHYOPLANKTON COLLECTED FROM YORK HAVEN PGND ON 29 MAY I 989 ,

	TM-LF-12AI				TM-LF-16A1				TM-LF-13A2				TM-LF- 4AI			
	A		B		A		B		A		8		A		B	
Volume Sampled $\left(\mathrm{m}^{3}\right)$	29.	. 80		. 80		. 30		. 20		. 60		. 90		. 10		. 80
Taxa	N	Dens.	N	Dens.	$N$	Dens.	$N$	Dens.	N	Dens.	N	Dens.	N	Dens.	N	Dens.
Quilldack	1	3.36	-	-	1	3.30	3	10.27	1	3.07	-	-	-	-	1	3.47
Larvae   Gizzard shad																
Spottail shiner	i	3.36	i	3.47	*	.	i	3.42	2	6.13	i	3.24	9	30.93	4	13.89
Quillback	29	97.32	19	65.97	26	85.81	31	106.2	18	55.21	22	71.20	11	37.80	15	52.08
White sucker	1	3.36	-		;	3.30	.	.	4	12* 7	;	6.47	-	.	*	-
Tessellated darter	5	16.78	10	34.72	1	3.30	.	.	4	12.27	2	6.47	.	.	.	-
Snield darter Banded darter	2	6.71 10.07	i	3.47	-	-	-	-	.	$\stackrel{ }{*}$	*	.	-	$\stackrel{\square}{*}$	-	$\stackrel{ }{*}$
Total	42	140.9	31	107.6	28	92.41	35	119.9	25	76.69	25	80.91	20	68.73		69.44

0
1
3
TABLE B-7 CONTINUED.

	TM-LF-11A1				TM-LF-148,				TM-LF-1082				TM-LF-981			
	A		8		A		B		A		0		A		B	
Volume Sampled (m)	31.50		30.80		30.40		29.20		31.20		30.00		32.40		30.70	
Taxa	N	Dens.	N	Dens.	$N$	Dens.	N	Dens.	N	Dens.	N	Dens.	N	Dens.	$N$	Dens.
Quillback	3	9.52	2	6.49	-	-	-	-	2	6.41	1	3.33	2	6.17	3	9.77
Larvae   Gizzard shad					2	6.58	;		1		2		2		3	
Spottati shiner	3	9.52	5	16.23	5	16.45	2	6.85	1	-3.21	21	${ }^{6} 6.67$	72	${ }_{2}^{6.17}$	3 54	9.77 175.9
Quillback	63	200.0	47	152.6	32	105.3	18	61.64	23	73.72	21	70.00	72	222.2	54	175.9
White sucker	1	3.17	;	3. 25	5	16.45	3 5	10.27 17.12	18	57.69	6	20.00	14	43.21	13	42.35
Tessellated darter Shield darter		-	1	3.25	5	16.45	5		2	6.41	1	3.33	.		.	.
Banded darter	-	-		-	1	3.29	1	3.42	.	.	1	3.33	-	-	-	
Total	70	222.2	55	178.6	45	148.0	29	99.32	46	147.4	32	106.7	90	277.8	73	237.8



TABLE B-8 CONTINUED.



TABLE B-9 CONTINUED.



TABLE B-10 CONTINUED.

		TM-LF-1\|A1				TM-LF-1481				TM-LF-10B2				TM-LF-981			
		A		B		A		B		A		B		A		B	
	Volume Sampled (m)	30.30		2B,90		23.70		23.20		28.60		27.00		27.60		25.70	
	Taxa	N	Dana.	N	Dans.	N	Dens.	N	Dens.	N	Dens.	N	Dens.	$N$	Dens.	N	Dens.
	Banded darter   Unidentifiable fish	-	-	;	3.45	-	-	-		-	-	-	-		-	-	.
	Larvae Common carp	-	-	-	-	1	4.22	2	8,62	-	-		*		-	.	-
	Golden shiner		.	.	.	.	.						-				
	Spottail shiner		.		.	-	-	1	4.31 4.31		-		-		-	1	3.89
	Swallowtail shiner		,		.	;	${ }^{\circ} \cdot 2$	1	4.31	-	*		3.70		-		
	Spotfin shiner	;	3.30	;	3.46	1	4.22	1	$4.31$	$i$	3.50	6	3.70 22.22		:	1	3.89
	Quill Shorthead redhorse	1	3.30	1	3.46 3.46	-	.	1	4.31	1	3.50 3.50	6	22.22		:	1	3.89
1	Shorthead redhorse Rock bass		.	.	3.4	9	37.97	6	25.86	1	3.50		-		-		
1	Smallmouth dass		.	.	.	.	.	1	4.31	-	.		-		.		-
$\stackrel{\rightharpoonup}{\bullet}$	Sunfishes	;		.	.	-	-	1	4,31	-	-		.		3. 62		
$\omega$	Tessellated darter Banded darter	2	3.30 6.60	i	3.46	2	8. 44	3	12.93	-	-	-	-			4	15.56
	Young Channel catfish	1	3.30	-	-	-	-	-	*	-	-	.	-		-	-	-
	Total	5	16.50	4	13.84	13	54.85	17	73.28	3	10.49		25.93		3.62	6	23.35

TABLE B-11 NUMBER ( N ) AND DENSITY ( $\mathrm{m} / 100 \mathrm{~m}$ ) OF ICHTHYOPLANKTON COLLECTED FROM YORK HAVEN POND ON $27-28$ JUNE 1989.

	TM-LF-12A1				TM-LF-16A 1				TM-LF-13A2				TM-LF- 4A,			
	A		8		A		B		A		B		A		B	
Volume Sampled (m)	31.70		30.00		30.00		29.00		32.50		29.90		29.70		28.20	
Taxa	$N$	Dens.	N	Dens.												
Quillback	-	-	.	.		-		-			1	3.34				-
Banded darter	;	.	-	-		-		*		-	-	-		-		-
Unidentiflable fish	1	3.15	-	.		.		-		-	-	-		-		
Untdentified (eggs)	.	-	-	.		-		-		-	-	,		-		-
Larvae																
Gizzard shad	-		i			-		-		-	-	-				
Common carp	.	.	1	3.33	-	.		-		-		-		-		-
Spotfin shiner	i	3.15	-	-	-	:		:	i	3.08	;	3.34		.		.
Oufllback	1	3.15	*	'	-	.		-	-	3.00	1	3.34		$\stackrel{ }{*}$		
Snorthead redhorse Yellow bullhead	-	-	*	$\stackrel{\rightharpoonup}{-}$	-	-		-			-	-		$\stackrel{ }{*}$		
Tessellated darter	$\cdot$	.	-		.	-			1	3.08	;			.		-
Banded darter	,	.	1	3.33	-	.		3.45		6.15	1	3.34		-		-
Voung channel cation	-	-	1	3.33	-	-		-	-	-	-	-		-		-
Total	2	6.31	3	10.00	0	0.00		3.45	4	12.31	3	10.03	0	0.00	0	0.00

TABLE B-11 CONTINUED.

		TM-LF-11A				TM-LF-1481				TM-LF-1082				TM-LF- 981			
		A		8		A		B		A		B		A		B	
	Volume Sampleo (m)	28.30		27.70		30.90		29.30		$30.60{ }^{\prime}$		28.60		31.90		30.20.	
	Taxa	N	Dens.	N	Dens.	$N$	Dens.	N	Dens.	$N$	Dens.	N	Dens.	N	Dens.	$N$	Dens.
	Quillback		.	-	-	-	-		:						.		-
	Bandid darter		.	*	-	.	-		-	1	3.27		-				3.31
	Unidentifiable fish Unidentified (eggs)	.	:	"	.	-	-	1	3.41	.	-		-				
	Larvae																
$\underset{1}{\infty}$	Glzzard shad Common carp	'	-	-	$\stackrel{\square}{\text { b }}$	-	-	1	3.41 3.41	-	*		3. 50		$\stackrel{ }{*}$		-
$\cdots$	Spotfin shiner		,	.	.	3	9.71		$3 \cdot 41$		,		3.50		3.13	1	3.31
	Qutllback	1	3.53	-	.	3	9.71	1	3.41		-		-		3.13		3.31
	Shorthead reahorse	-	-	*	'	i	3.24			-	,		-				
	Yellow bullhead Tessellated darter	-	$\stackrel{\square}{*}$	1	3.61	1	3.24		*	-	.		-				.
	Tessellated darter Banded darter	-	-		3.61	3	9.71	$\dot{3}$	10.24	i	3.27		.	2	6.27		-
	Young Cnannel catfish	-	-	.	-	-	-	-	-	-	-		-		.		-
	Total	1	3.53	1	3.61	7	22.65		23.89	2	6.54		3.50	3	9.40	3	9.93


	TM-LF-12A 1		TM-LF-16A		TM-LF-13A2		TM-LF-4A1	
	A	B	A	в	A	B	A	B
volume Sampled (m)	29.40	27.60	30.90	28.90	31.10	29.10	30.10	28.40
тaxa	$N$ Dens.	$N$ Dans.	$N$ Dens.	N Dens.				
Banded darter	. -	3.62	-	- -	- -	- -	. $\cdot$	
Larvae Common carp		- $\cdot$	13.24	- :	$\cdots \quad$.	i 3.44		
Spottall shiner Spotfin shiner		2 7. 25	- :	$\cdots \quad$.				
Mimic shiner				- $\cdot$	. .	13.44	. .	- $\cdot$
Quiliback	3.40	3.62	13.24	-	- -	- :		; 3.52
Shorthead redhorse				- :		- :		; 3.52
Tessellated darter Banded darter	$1 \begin{aligned} & 3.40 \\ & 1 \quad 3.40\end{aligned}$	$\begin{array}{r}1 \\ 2 \\ \hline\end{array}$	i 3.24	$\div \cdot$	$\cdots \quad$.			- .
Young   Channel catfish Tessellated darter	13.40	$\div \cdot$	$\cdots \quad$.	1   .  	$\cdots \quad$ :		$\cdots \quad$ :	$\cdots \quad$ :
Eg9   Unidentified (eggs)	. $\cdot$	.	-	- .	. .	. .	. -	- -
Total	413.61	725.36	39.71	13.46	$0 \quad 0.00$	26.87	$0 \quad 0.00$	3.52





TABLE B-14 NUMBER (N) AND DENSITY (N/100m ) OF ICHTHYOPLANKTON COLLECTED FROM YORK HAVEN POND ON 17 JULY IGES.

	TM-LF-12AI				TM-LF-16A1				TM-LF-13A2				TM-LF- 4AI			
	A		日		A		B		A		B		A		8	
Volume Samplad (m)	27.40		26.10		27.10		26.40		29.50		28.40		28.90		28.00	
Texa	N	Dens.	N	Dans.	$N$	Dens.	$N$	Dens.	N	Dans.	$N$	Dens.	N	Dens.	N	Dens.
Larvae																
Common carp	-	-	-	-	-	-	-	-	-	.	-					
Comely shiner	-	-	-	-	2	7.38	$\dot{\square}$	.	2	6.78	4	14.08	1	3.46	1	3.57
Spotfin shiner		-	-		2	7.38 3.69	$i$	7.58	6	20.34	8	28.17	,			3.57
Mimic shiner Rock dass		-	-	-	.	3.69	2	7.50	6	20.34	.	20.17	$i$	3.46		.
Reobreast sunfish	3	10.95	.	.	-	-	.	.	.	-	-	-		-		-
Largemoutn bass	;		-	-	-	-	-	-	2	6. 78			i	3.46		
Sunfishes	1	3.65	-	.	-	-	-	-	2	6.78			1	3.46		-
Crapples		.	.	-	-	-	-	-	-	-	-	,				
Tessellated darter Banded darter	-	'	,	.	-	$\stackrel{ }{*}$	i	3.79	4	13.56	2	7.04	-	.		3.57
Young Cnannel catfish	16	50.39		61.30	29	107.0		162.9	28	94.92	27	95.07		48.44		60.71
Total	20	72.99		61.30	32	118.1		174.2	42	142.4	41	144.4		58.82		67.86

TABLE B-14 CONTINUED.

	TM-LF-11A1				TM-LF-14B				TM-LF-1082				TM-LF-981			
	A		8		A		8		A		B		A		B	
Volume Sampled (m)	29.70		28.60		25.30		24.90		33.70		32.20		28.70		27.80	
Taxa	N	Dens.														
Larvae						3.95			-	-	-	-		-	2	7.19
Common carp Comely shiner	-		i	3.50		3.9	*	-	;		-	.	2	6.97	4	14.39
Spotfin shiner	-		1	3.50		,	-	-	2	5.93	-	-	2	6.97	1	14.39 3.60
Mimic sminer	-	-	1	3.50		-	i			,	.		2	6.97 3.48	1	
Roch bass	$\cdot$	-	-	-	-	.	1	4.02	-	.	i	3.11	.	3.48	,	.
Redbreast sunfish Largemouth bass	$\bullet$	-	-	.	-	$\stackrel{.}{ }$	1	4.02	-		4			.		,
Sunfismes	-	-	;	3.50			.	.	1	2.97	4	12,42		-	'	.
Crapoies	-	,	-	.	2	7.91	-	-							$i$	3.60
Tessellated darter Banded darter	-	.	-	-	-	.	-	-	1	2.97	$i$	3.11	2	6.97	1	3.60
Young Channel catifish		94.28	38	132.9		59.29		68.27	20	59.35	29	90.06		146.3	43	154,7
Total		94.20		146.9	18	71.15		80.32	24	71.22	35	108. 7	49	170.7	52	187.1

TABLE E-15 NUMEER (N) AND DENSITY (N/ $100 \mathrm{~m}^{3}$ ) OF ICHTHYOPLANKTON COLLECTED FROM YORK HAVEN POND ON 24 JULY IGB9.

	TM-LF-12AI				TM-LF-16A1				TM-LF-13A2				TM-LF- 4A:			
		A		B		A		E		A		B		A		B
Volume Sampled (m)	31.00		29.80		28.80		27.90		30.10		28.80		28.00		27.10	
Taxa	$N$	Dens.	N	Dens.	N	Dens.	N	Dens.	$N$	Dens.	$N$	Dens.	$N$	Dans.	N	Dens.


Larvae Spotfinshiner					4	14.34	-	*	3	10.42	-	-	-	-
Bluntnose minnow	.$\quad$.	.	2	6.94	.	.	.	.	-	10.	.	.	.	.
mimic shiner	. .	-		-	-	-	-	-	3	10.42		-	-	-
Rock Dass	- ${ }^{\circ}$	-	-	-	-	-	-	-	-	-	-	*		-
Tessellated darter	-	-	-	-	-		-	-			-	-	-	.
Banded derter	. .	-	-	.	1	3.58	-	-	1	3.47	.	-	-	-
Unidentifizble fisn	. .	. .	*	,	-	.	-	-	-	-	-	-	-	-
Young   Yellow bullinead Channel catfish	1238.71	$\dot{9} 30.20$	22	76.39	7	25.09	24	$\begin{array}{r} 3.32 \\ 79.73 \end{array}$	17	59.03	7	25.00	7	25.83
Total	1238.71	930.20	24	83.33	12	43.01	25	83.06	24	83.33	7	25.00	7	25.83


	TM-LF-11A1				TM-LF-14B 1				TM-LF-1082				TM-LF- 981			
		A		B		A		B		A		B		A		B
Volume Sampled (m)	30.20		29.60		30.50		29.20		30.40		28.80		29.80		29.00	
Taxa	N	Dens.	N	Dens.	N	Dens.	N	Dens.	N	Dans.	N	Dens.	$N$	Dens.	N	Dens.
Lbrvae																
Spotfin shiner	2	6.62	-	-	-	-	-	-		-		-	6	20.13	,	.
Bluntrose minnow	.	.	-	-			-	-		-	-	-		-		3.
Mimic shiner		.	-	-		-	;			*	-	.		-	1	3.45
Rack bass	-	.	-	.	.	-	2	6.85		-	-	.				-
Tessellated darter							1			*	-		1	3.36		
Banded darter Unidentifiable fish	1	3.31	1	3.38	'	3.28	1	3.42	-	-	-	-		3.36	1	3.45
Unidentifiable fish	-		-			-	-	.		-		-		3.36	-	
Young   Yellow bullhead	-														;	
Channel catfish	;	3.31	$i$	3.38	2	6.56	2	6.85	10	32.89	6	20.83	2	6.71	2	6.90
Total	4	13.25	2	6.76	3	9.84	5	17.12	10	32.89		20.83		33.56	4	13.79



TABLE B-16 CONTINUED.


table b-17 COntinued.

	TM-LF-11A				TM-LF-1481				TM-LF-1082				TM-LF- 981			
	A		B		A		B		A		日		A		B	
Volume Sampled (m)	20.20		27.20		27.90		27.40		. 28.90		28.10		27.10		26.30	
Taxa	N	Dens.	$N$	Dens.	$N$	Dens.	N	Dens.	N	Dens.	N	Dans.	$N$	Dans.	N	Dens.
Gizzard shad	-	-	-	-	,	.	,	-	-	-		-				
Larvae Gizzard shad	-		,		15	53.76	10	36.50	-	,		*				-
Common carp	-	-	-	-	.	53.76	.	.	3	$10^{\circ} 38$		.	2	7.38		-
Comely shiner	-	-	-	-	-	.			3	10.38		-		-		
Spottafl shiner	4	14.18	2		4		$\dot{9}$	32.85	1	3.46	5	17.79	3	11.07	3	11.41
Spotitin shiner	$1{ }_{1}^{4}$	14.18 39.01	12	74.35	10	14.34 35.84	4	14.60	1	3.46		17.78	7	25.83	3	11.81
Mimic shiner Rock bass	,	39.01	.	.	.	.	.	.	$\dot{ }$			-		-		-
Redbreast sunfish	;		.	.	-	.	1	3.65	2	6.92 6.92		7.12		.		7.60
Sunfishes	1	3.55	$\cdot$				$i$	3.65								
Young							1									
Spotfin shiner Mimic shiner	-	-	1	3.68	-	:	.		-	*				3. 60		80
Channel catfisn	.				.	.	,			.		3.56		3.69		
Total	16	56.74	15	55.15		103.9		91.24	B	27.68		28.47		47.97		34.22

TABLE B-1a NUMBER (N) ANO DENSITY (N/100m) OF ICHTHYOPLANKTON COLLECTED FROM YORK HAVEN POND ON 16 AUGUST IGB9.

	TM-LF-12A1				TM-LF-16A 1				TM-LF-13A2				TM-LF- 4A1			
	A		8		A		8		A		B		A		B	
Volume Sampled (m)	30.20.		28.90		28.10		27.10		29.10		28.30		29.10		28.30	
Taxa	N	Dens.	$N$	Dens.	N	Dens.	N	Dens.	N	Dans.	N	Dens.	N	Dens.	N	Dens.
Spotfin shiner		-	-	-	$\cdots$	*	-		-	-	-	-	-	-		
Mimic shiner		.	-	-	-	-	,	-							.	
Sunfishes Untaentiftable fish		$\cdots$	-	.	-	.	-	.	-	-	-	-	-	-	-	-
Larvae Gizzard shad							1	3.69	-	-	-	-	-	-	-	-
Gizzard shad Common carp		3.31	5	17.30	,	7.12	;	3. 69	;	$3 \cdot 44$	;	3.53	7	24.05	-	-
Spotfin shiner		16.56	5	17.30	2	7.12	1	3.69	1	3.44	;	3.53	7	24.05	$\stackrel{\square}{*}$	
Eluntnose minnow		3.31	2	6.92	1	3.56	1	3.69	1	3.44	-	-	1	3.44	5	17.67
Mimic shiner Redbreast sunfish		3.3	1	3.46	.	.		.	"	,	-	.		13.75	3	10.60
Sunfishes		-		10.38	-	-	-	,	-	-	-					
Young   Mimic shiner		-	-	-	-	-	-	-	-	,	-	-	-	-	1	3.53
Total		23.18	11	38.06	3	10.68	3	11.07	2	6.87	1	3.53	12	41.24		31.80







## APPENDIX C

TABLE C-1
Fishes taken by seine on 13 April 1989 near TMINS. Station prefix TM-SE- deleted from table.


Banded darter

+ Less than 0.05\%.

TABLE $\mathrm{C}-2$
Fishes taken by seine on 22 May 1989 near TMINS. Station prefix TM-SE- deleted from table.

Station	1385	10B5	16A1	10A2	9B3	4A2	Total	8 Catch
Sime	0850	0930	1130	1050	1010	1210		
Air temp (C)	19.0	20.0	23.0	22.0	21.5	25.0		
Water Temp ( $C$ )	17.0	17.0	17.6	17.4	17.5	17.0		
Dissolved Oxygen(mg/l)	8.5	8.6	8.8	9.1	9.2	8.9		
pH	6.9	6.9	6.9	7.4	6.7	6.9		
Secchi Disc(cm)	76.2	76.2	66.0	68.6	76.2	53.3		
River Stage(m)	2.13	2.13	2.13	2.13	2.13	2.13		
Weather	Partly	Partly	Over-	Partly	Partly	Partly		
	Cloudy	Cloudy	cast	cloudy	Cloudy			
No. of Specimens	279	124	124	451	113	219	1310	
No. of Species	11	9	9	11	12	4	26	
No. of Hauls	3	5	5	5	1	4	2	0.2
Comely shiner	1	-	9	2	1	-	38	2.9
Spottail shiner	19	6	-	2	4	-	19	1.4
Swallowtail shiner	12	5	-	392	23	-	649	49.5
Spotfin shiner	115	50	69	392	61	4	188	14.4
Mimic shiner	59	32	18	14	61	46	115	8.8
Bluntnose minnow	50	9	-	4	3	46	-15	0.2
Fallfish	1	-	-	1	-	-	1	0.1
Banded killifish	9			$\frac{1}{3}$		-	45	3.4
Redbreast sunfish	9	16	14	3	3	18	23	1.8
Green sunfish	1	5	1	23	3	54	93	7.1
Pumpkinseed	6	5	2	23 2	3	93	97	7.4
Bluegill	-	2	-	2	-	1	1	0.1
Lepomis hybrid		I	4	4	4	1	19	1.4
Smallmouth bass	6	1	4	4	4	2	2	0.2
White crappie	-				-	1	1	0.1
Black crappie			4	4	5	-	13	1.0
Tessellated darter	-	-	4	4	1	_	1	0.1
Banded darter	-	-	-		1			

TABLE C-3
Fishes taken by seine on 30 May 1989 near TMINS. Station prefix TM-SE- deleted from table.


TABLE C-4
Fishes taken by seine on 8 June 1989 near TMINS. Station prefix TM-SE- deleted from table.

Station	1385	1085	16A1	10A2	9B3	4 A2	Total	\% Catch
Time	1135	1037	0845	0922	0955	0815		
Air Temp ( C$)$	20.3	19.0	18.0	18.5	18.5	18.0		
Water Temp(C)	19.3	19.3	19.5	19.6	19.7	18.0		
Dissolved Oxygen(mg/l)	9.4	9.8	8.9	8.8	8.4	8.9		
pH	7.3	7.0	7.0	5.4	5.6	7.4		
Secchi Disc(cm)	139.7	124.5	94.0	88.9	91.4	124.5		
River Stage(m)	1.54	1.54	1.54	1.54	1.54	1.54		
Weather	Partly Clouduy	Overcast	Overcast	Overcast	Overcast	Overcast		
No. of Specimens	227	214	231	81	75	42	870	
No. of Species	10	11	10	11	9	6	17	
No. of Hauls	4	5	5	4	4	4	26	
Common carp	-	-	1	-	-	-	1	0.1
Golden shiner	-	-	1	-	1	-	73	0.1
Spottail shiner	4	17	48	3	1	-	73	8.4
Swallowtail shiner	5	6	-	1	-	-	12	1.4
Spotfin shiner	43	63	51	14	9	-	180	20.7
Mimic shiner	89	18	77	23	2	-	209	24.0
Bluntnose minnow	11	36	-	9	-	1	57	6.6
Fallfish	1	-	4	11	1	-	17	2.0
White sucker	55	22	41	9	25	2	154	17.7
Channel catfish	-	-	-	-	34	-	34	3.9
Banded killifish	1	-	-	-	-	-	1	0.1
Redbreast sunfish	-	3	5	2	1	3	14	1.6
Green sunfish	-	2	1	-	-	5	8	0.9
Pumpkinseed	16	39	2	5	1	17	80	9.2 2.4
Bluegill	2	4	-	-	1	14	21	2.4 0.2
Smallmouth bass	-	-	-	2	-	-	2	0.2
Tessellated darter	-	4	-	2	-	-	6	0.7

TABLE C-5
Fishes taken by seine on 21 June 1989 near TMINS. Station prefix TM-SE- deleted from table.

Station	13B5	10B5	16A1	10A2	9B3	4A2	Total	\% Catch
Time	0840	0938	1200	1116	1023	1240		
Air Temp(C)	23.0	24.5	26.0	25.3	24.0	27.0		
Water Temp ( C )	20.8	21.0	19.8	20.2	19.9	19.9		
Dissolved Oxygen (mg/l)	7.6	9.0	8.6	8.3	9.6	8.3		
pH	6.9	6.9	6.4	6.3	6.6	6.5		
Secchi Disc(cm)	71.1	73.7	33.0	33.0	38.1	40.6		
River Stage(m)	2.16	2.16	2.16	2.16	2.16	2.16		
Weather	Overcast	Partly   cloudy	Partly   cloudy	Partly   cloudy	Overcast	partly cloudy		
No. of Specimens	132	147	255	194	294	64	1086	
No. of Species	12	13	12	17	13	12	22	
No. of Hauls	4	4	4	4	3	3	22	
American shad	-	-	2	5	-	1	7	0.6
Golden shiner	-	-	-	-	-	1	56	0.1
Spottail shiner	12	26	10	4	2	2	56	5.2
Swallowtail shiner	6	1	-	6	1	$\bar{\square}$	14	17.3
Spotfin shiner	37	33	42	43	141	1	297	27.3
Mimic shiner	23	1	187	85	25	2	323	29.7
Bluntnose minnow	9	4	-	10	1	7	31 16	2.8
Fallfish	5	3	-	1	7	-	16	1.5 1.0
White sucker	-	1	2	6	2	-	11	1.0 0.2
Northern hog sucker	-	-	-	1	1	-	2	0.2
Shorthead redhorse	-	-	1	-			2	0.2
Banded killifish	2	-	-	6	-	-	6	0.6
Rock bass	-	-	-	6	-	4	6	0.8
Redbreast sunfish	1	1	-	3	-	4	9	0.8
Green sunfish	1	1	1	$1 \frac{1}{3}$	14	5 13	99	0.8 8.4
Pumpkinseed	-	49	2	13	14	13	91	8.4 2.5
Bluegill	-	5	1	-	3	18	1	0.1
Lepomis hybrid	1	2	4	3	2	6	18	1.6
Smallmouth bass	1	2	4	3	2	1	1	0.1
Largemouth bass White crappie	-	-	-	1	-	-	1	0.1
Tessellated darter	33	20	2	4	94	3	156	14.4
Shield darter	2	-	1	2	1	-	6	0.6

TABLE C-6
Fishes taken by seine on 14 July 1989 near TMINS. Station prefix TM-SE- deleted from table.

Station	1385	1085	16A1	10A2	983	4A2	Total	\% Catch
Time	1247	1155	0950	1030	1117	0907		
Air Temp ( C )	25.5	23.0	22.5	23.0	24.0	22.0		
Water Temp ( $C$ )	20.0	22.0	20.7	21.1	21.2	18.1		
Dissolved Oxygen(mg/l)	8.2	8.3	7.7	8.2	8.0	7.3		
pH	7.4	6.6	7.0	6.8	6.9	7.4		
Secchi Disc(cm)	30.5	35.6	53.3	53.3	61.0	15.2		
River Stage(m)	1.59	1.59	1.59	1.59	1.59	1.59		
Weather	Partly   Cloudy	Partly cloudy	Clear	Partly cloudy	Partly Cloudy	Partly   cloudy		
No. of Specimens	105	111	176	97	88	95	672	
No. of Species	11	15	13	12	5	13	24	
No. of Hauls	4	6	5	6	4	5	30	
American shad	-	2	-	-	-	-	2	0.3
Gizzard shad	-	3	-	-	-	-	3	0.4
Golden shiner	-	1	-	-	-	-	1	0.1
Comely shiner	-	-	1	-	-	$\bar{\square}$	1	0.1
Spottail shiner	28	9	15	3	20	2	77	11.4
Swallowtail shiner	-	1	-	-		-	1	0.1
Spotfin shiner	32	13	94	47	13	12	211	31.4
Mimic shiner	-	2	20	14	-	-	36	5.4
Bluntnose minnow	12	31	1	2	-	3	49	7.3
Fallfish	-	4	4	2	-	1	11	1.6
White sucker	-	-	-	-	-	1	1	0.1
Banded killifish	2	-	-	-	-	-	2	0.3
Rock bass	-	2	2	2	-	-	6	0.9
Redbreast sunfish	2	1	1	2	1	1	8	1.2
Green sunfish	-	-	-	-	-	11	11	1.6
Pumpkinseed	10	18	3	5	7	17	60	8.9
Bluegill	-	3	5	-	-	22	30	4.5
Lepomis hybrid	-	-	-	-	-	3	3	0.4
Smallmouth bass	1	-	-	1	-	-	2	0.3
Largemouth bass	-	-	-	-	-	1	11	0.1
White crappie	1	1	4	2	-	3	11	1.6
Black crappie	-	-	1		$\overline{-}$	2	$\begin{array}{r}3 \\ \hline\end{array}$	0.4
Tessellated darter	14	20	25	16	47	16	138	20.5
Shield darter	2	-	-	1	-	-	3	0.4
Walleye	1	-		-	-	-	1	0.1


Fishes taken by seine on 3 August 1989 near TMINS. Station prefix TM-SE- deletedfrom table.								
Station	13B5	1085	16A1	10A2	983	4 A2	Total	\% Catch
Time	1235	0835	1107	1030	0935	1150		
Air Temp(C)	30.0	27.5	28.0	27.0	26.7	29.7		
Water Temp (C)	22.4	21.7	23.5	23.2	22.9	22.5		
Dissolved Oxygen(mg/l)	8.5	10.5	8.8	8.5	9.0	8.4		
pH	8.0	8.3	8.1	8.1	8.2	8.1		
Secchi Disc (cm)	91.4	101.6	203.2	137.2	154.9	129.5		
River Stage(m)	1.28	1. 28	1.28	1.28	1.28	1.28		
Weather	Partly   Cloudy	Clear	Clear	Partly Cloudy	Clear	Partly Cloudy		
No. of Specimens	169	33	74	105	224	35	640	
No. of Species	8	8	8	6	9	8	15	
No. of Hauls	4	8	5	5	4	5	31	
Comely shiner	1	2	-	3	-	-	6	0.9
Spottail shiner	7	-	-	-	39	1	47	7.3
Swallowtail shiner	12	0	O	-	2	-	14	2.2
Spotfin shiner	10	10	30	21	9	6	86	13.4
Mimic shiner	129	3	30	60	14	12	236	36.9
Bluntnose minnow	5	4	2	1	3	12	27	4.2
Shorthead redhorse	-	-	1	-	${ }_{121}^{1}$	-	${ }^{2}$	0.3
Channel catfish	-	-	-	-	121	-	121	18.9
Banded killifish	1	-	-	-	-	-	1	0.2
Redbreast sunfish	-	1	3	-	-	2	6	0.9
Green sunfish	-	-	-	-	-	1	1	0.2
Pumpkinseed	-	4	4	18	33	5	64	10.0
Bluegill	-	4	2	-	-	5	11	1.7
Lepomis hybrid	-	-	-	-	1	1	2	0.3
Smallmouth bass	-	-	-	2	-	$\bar{\square}$	2	0.3
Tessellated darter	4	5	2	-	1	2	14	2.2

TABLE C-8
Fishes taken by seine on 16 August 1989 near TMINS. Station prefix TM-SE- deleted from table.

Station	13B5	$10 \mathrm{B5}$	16 Al	10A2	$9 \mathrm{B3}$	4 A 2	Total	\% Catch
Time	1322	1222	1016	1100	1137	0938		
Air Temp( C )	30.0	29.0	26.0	27.0	27.5	24.7		
Water Temp ( $C$ )	25.1	27.4	22.8	23.4	25.0	22.7		
Dissolved Oxygen(mg/l)	13.6	11.5	8.4	8.5	9.4	10.3		
pH	8.9	9.1	8.2	8.2	8.2	8.6		
Secchi Disc(cm)	167.6	127.0	157.5	152.4	167.6	147.3		
River Stage(m)	1.08	1.08	1.08	1.08	1.08	1.08		
Weather	Haze	Haze	Partly cloudy	Clear	Clear	Partly Cloudy		
No. of Specimens	426	350	138	10	406	11	1341	
No. of Species	7	7	11	4		6	16	
No. of Hauls	4	7	6	6	4	5	32	
Comely shiner	-	15	-	$\cdots$	6	-	21	
Spottail shiner	6	1	3	-	3	-	13	1.0 0.8
Swallowtail shiner	11	-	-	-	64	$\bar{\square}$	406	0.8 30.3
Spotfin shiner	18	270	50	3	64	1	406	30.3 55.6
Mimic shiner	383	43	57	-	262	1	745	55.6
Bluntnose minnow	5	7	-	$\bar{\square}$	37	1	5	3.7
Fallfish	-	-	1	1	-	-	1	0.1
White sucker	-	-	1	-			1	0.1
Channel catfish	-	-	$\overline{5}$	-	1	-	5	0.4
Redbreast sunfish	-	-	5	-	-	2	5	0.4
Green sunfish	$\overline{2}$	8	3 9	4	30	$\underline{-}$	53	4.0
Pumpkinseed	2		1	-	3	2	12	0.9
Smallmouth bass	-	-	1	-	-	-	1	0.1
Largemouth bass	-	-	-	2	-	1	1	0.1
Tessellated darter	1	-	7	2	-		14	1.0

TABLE C-9
Fishes taken by seine on 7 September 1989 near TMINS. Station prefix TM-SE- deleted from table.

Station	1385	10B5	16 AI	10A2	9B3	4A2	Total	\% Catch
Time	1420	1315	1040	1125	1207	0945		
Air Temp(C)	25.0	25.0	23.5	24.5	25.0	22.0		
Water Temp ( $C$ )	25.2	26.2	22.8	22.9	25.0	22.2		
Dissolved Oxygen (mg/l)	11.1	12.0	9.5	9.2	10.3	13.2		
pH	8.7	8.9	8.1	8.2	8.4	8.7		
Secchi Disc(cm)	96.5	96.5	78.7	73.7	99.1	73.7		
River Stage(m)	0.99	0.99	0.99	0.99	0.99	0.99		
Weather	Partly   cloudy	Partly cloudy	Clear	Partly   Cloudy	Partly Cloudy	Clear		
No. of Specimens	1218	486	1343	792	2958	684	7481	
No. of Species	6	9	11	7	8	9	16	
No. of Hauls	3	4	5	5	3	5	25	
Gizzard shad.	-	19	-	1	1	246	267	3.6
Golden shiner	-	-	1	-	-	1	2	+
Comely shiner	-	-	4	-	2	-	6	0.1
Spottail shiner	-	-	9	-	1	-	10	0.1
Swallowtail shiner	1	-	1	2	304	20	${ }^{44}{ }^{4}$	+ ${ }^{\text {+ }}$
Spotfin shiner	489	251	1029	338	304	20	2431	
Mimic shiner	721	32	282	440	2644 1	43 11	4162 21	55.6 0.3
Bluntnose minnow Rock bass	1	-	1	7	1	11	1	+
Redbreast sunfish	_	2	-	-	4	-	6	0.1
Green sunfish	-	-	1	-	-	3	4	+
Pumpkinseed	2	37	8	3	-	74	124	1.6
Bluegill	4	142	-	1	-	283	430	5.7
Smallmouth bass	-	-	1	-	-	-	1	+
White crappie	-	1	-	-	1	3	11	+ +

Tessellated darter

+ Less than 0.05\%.

```
TABLE C-10
```

Fishes taken by seine on 18 September 1989 near TMINS. Station prefix TM-SE- deleted from table.


+ Less than 0.05\%.

+ Less than 0.05\%.


[^5]| TABLE D-1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishes taken by the AC electrofisher on 19-20 April 1989 near TMINS. Station prefix lm (ELdeleted from table. |  |  |  |  |  |  |  |
| Station | 4A1 | 13A1 | 10A3 | 9B5 | 10B3 | 11B1 | Total |
| Station | 1956 | 2046 | 2144 | 2243 | 2338 | 0040 |  |
| Duration(min) | 19 | 21 | 19 | 23 | 20 | 24 |  |
| Air Temp (C) | 10.0 | 11.5 | 11.0 | 10.3 | 10.0 | 5.0 |  |
| Water Temp (c) | 12.5 | 11.9 | 12.0 | 11.8 | 11.5 | 13.8 10.7 |  |
| Dissolved Oxygen(mg/I) | 10.6 | 10.9 | 10.4 | 10.3 | 10.4 | 10.7 |  |
| pH | 7.5 | 7.1 | 7.1 | 7.0 | 7.1 | 78 |  |
| Conductivity (micromhos/cm) | 240 | 210 | 210 | 220 | 1390 | 240 |  |
| Secchi Disc (cm) | 167.6 | 114.3 | 116.8 | 119.4 | 132.1 | 121.9 |  |
| Volts | 215 | 215 | 215 | 215 | 220 | 210 |  |
| Amps | 5.0 | 5.0 | 5.0 | 5.0 | 4.5 | 5.5 | 2 |
| Gizzard shad | - | - | - | - | - | 5 | 5 |
| Common carp |  |  |  | - | - | 1 | 2 |
| Golden shiner | - | - | 13 | 13 | 4 | 1 | 33 |
| Spottail shinex | 1 | 2 | 13 | 13 8 | 4 6 | 6 | 36 |
| Quillback | 9 | 2 | 5 | 8 | 6 | 1 | 2 |
| White sucker | - | 3 | 1 |  |  | 1 | 12 |
| Shorthead redhorse | - | 3 | 9 | - | - | 1 | 1 |
| Channel catfish | - | 15 | 12 |  | 3 | 1 | 32 |
| Rock bass | 1 | 15 | 12 | 10 | 13 | 1 | 79 |
| Redbreast sunfish | 2 | 35 | 20 | 10 | 13 | 1 | 17 |
| Green sunfish | 2 | 10 | 1 | 4 5 | 29 | 64 | 122 |
| Pumpkinseed | 15 | 4 | 5 | 5 | 10 | 12 | 28 |
| Bluegill | 4 | - | 1 | 2 | 10 | 12 | 1 |
| Lepomis hybrid | 2 | 49 | 19 | 6 | 9 | _ | 85 |
| Smallmouth bass | 2 | 49 | 19 | 6 | 9 | 1 | 6 |
| Largemouth bass | 3 | - | - | 1 | 1 | 4 | 4 |
| White crappie | I |  |  |  | - | 2 | 3 |
| Black crappie | 1 | 1 | 2 | 1 | - | 1 | 6 |
| Walleye | $\underline{1}$ | 1 | 89 | 51 | 75 | 101 | 476 |
| No. of Specimens | 39 | 121 | 89 11 | 10 | 8 | 13 | 18 |

TABLE D-2
Fishes taken by the AC electrofisher on 24-25 May 1989 near TMINS. Station prefix TM-ELdeleted from table.

Station	4Al	13A1	10A3	$9 \mathrm{P5}$	1083	1181	Total
Time	2226	2315	0018	0121	2110	2008	
Duration(min)	20	20	22	22	20	25	
Air Temp ( $C$ )	14.0	14.0	13.0	12.0	14.5	15.0	
Water Temp(C)	16.1	16.4	16.2	16.2	16.7	15.2	
Dissolved Oxygen(mg/l)	9.3	9.3	9.0	9.1	9.4	7.4	
pH	6.9	6.7	200	200	160	240	
Conductivity (micromhos/cm)	210	210 71.1	63.5	73.7	99.1	73.7	
Secchi Disc(cm)	73.7	71.1	215	205	220	215	
Volts	210	215 5.5	210	5.0	4.5	5.0	
Amps	5.0	5.5	5.0	5.0			3
Gizzard shad	1	2	-	-	-	-	10
Common carp	2	3	3	1	1	2	11
Spottail shiner	-	-	5	$\underline{-}$	1		6
Spotfin shiner		1	5	-	-		1
Mimic shiner	-		1	-	-	-	1
Fallfish	-	-	5	13	6	10	42
Quillback	5	3	2	13	-	10	5
White sucker	2	1	1	1	-	-	2
Shorthead redhorse	-	-	1	1	1	-	1
Brown bullhead Rock bass	-	2	8	4	2	1	17
Redbreast sunfish	-	17	16	21	14	2	70
Green sunfish	-	3	-	1	$7 \overline{-}$	66	186
Pumpkinseed	19	2	8	19	72	66	186
Bluegill	1	1	-	2	9	10	23
Lepomis hybrid	-	52	37	42	37	1	173
Smallmouth bass	4	52	37			-	1
Largemouth bass	1				-	1	1
White crappie	-	-	-	-	1	-	1
No. of Specimens	35	87	89	111	143	95	560
No. of Species	8	11	11	11	9	9	19

TABLE D-3
Fishes taken by the AC electrofisher on 30-31 May 1989 near TMINS. Station prefix TM-ELdeleted from table.

Station	4A1	13A1	10A3	9B5	1083	1181	Total
Time	2007	2050	2158	2309	0017	0120	
Duration(min)	22	22	22	24	20	25	
Air Temp (C)	24.0	23.5	23.0	22.5	22.0	20.0	
Water Temp(C)	19.7	19.7	19.6	19.6	20.0	19.5	
Dissolved Oxygen (mg/l)	11.6	11.4	10.7	10.6	10.2	8.7	
pH	8.4	8.0	7.6	8.0	8.0	7.4	
Conductivity (micromhos/cm)	250	240	240	240	180	240	
Secchi Disc(cm)	81.3	76.2	78.7	88.9	101.6	101.6	
Volts	215	215	210	215	215	215	
Amps	6.5	6.0	6.0	6.5	5.0	6.5	
Gizzard shad	-	1	1	-	-	4	6
Common carp	-	3	3	4	8	-	18
Golden shiner	-	-	2	-	-	-	2
Spottail shiner	-	2	11	10	. -		23
Spotfin shiner	-	2	8	-	-	-	10
Fallfish.	-	1	1	11	13	30	81
Quillback	18	4	5	11	13	30	81
White sucker	-	-	1	-	-	$\square$	$\frac{1}{7}$
Shorthead redhorse	-	2	3	1	-	1	7
Channel catfish	-	15	5	1	3	--	2 30
Rock bass	-	15	5	7	3	-	69
Redbreast sunfish	1	16	30	16	5	1	69
Green sunfish	1	6	2	4	1	1	130
Pumpkinseed	1.0	10	20	34	24	32	130
Bluegill	-	1	2	2	23	12	40 133
Smallmouth bass	2	72	22	14	22	1	133
Largemouth bass	1	-	-	-	-	$\frac{1}{5}$	6
White crappie	-	1	-	-	-	5	6
Black crappie	$\sim$	1	3	-	1	-	6
Walleye	-	2	3	104	1	88	584
No. of Specimens	33	140	119	104	100	88 10	584 20
No. of Species	6	17	16	11	9	10	20

TABLE D-4
Fishes taken by the AC electrofisher on 13-14 June 1989 near TMINS. Station prefix TM-EL- deleted from table.

Station	4 Al	13AI	10A3	9B5	10B3	11B1	Total
Time	2025	2130	2224	2329	0047	0140	
Duration(min)	25	20	23	24	20	30	
Air Temp (C)	20.2	21.0	21.0	21.5	20.0	19.0	
Water Temp (C)	20.7	20.7	20.7	20.7	21.0	21.0	
Dissolved Oxygen(mg/1)	10.7	10.6	10.6	10.4	11.0	10.1	
pH	7.7	7.3	7.4	7.5	7.5	7.5	
Conductivity (micromhos/cm)	250	250	250	250	200	260	
Secchi Disc(cm)	83.8	78.7	71.1	81.3	99.1	127.0	
Volts	215	21.5	200	215	215	215	
Amps	6.5	6.5	7.0	6.5	5.5	7.5	
Gizzard shad	-	2	-	-	-	2	7
Common carp	-	3	2	-	-	1	1
Golden shiner	-	-	-	13	1	1	25
Spottail shiner	2	-	8	13	1	1	13
Spotfin shiner	3	2	7	1	3	15	13
Quillback	3	-	2	6	3	15	29
White sucker	-	-	-	1	-		1
Shorthead redhorse	-	-	-	1	-		1
Yellow bullhead	1	-	-	-			5
Channel catfish	-	2	1	2	-	$\bar{\square}$	16
Rock bass	-	5	5	4	-	2	16
Redbreast sunfish	-	21	26	16	11	7	74
Green sunfish	5	2	4	16	1	2	30
Pumpkinseed	46	5	26	60	20	17	174
Bluegill	13	3	4	5	7	19	51
Lepomis hybrid	4	1	23	- 1	8	1	87
Smallmouth bass	4	45	23	7	8	2	11
Largemouth bass	9	-	-	-	2	5	18
White crappie	1	-	-		2	1	1
Black crappie	-	1	3	-	-	1	4
Walleye	I	1	$\underline{3}$				548
No. of Specimens	91	92	111	133 12	53 8	68 11	$\begin{array}{r}548 \\ 20 \\ \hline\end{array}$
No. of Species	10	11	12	12	8	11	

TABLE D-5
Fishes taken by the AC electrofisher on 28-29 June 1989 near TMINS. Station prefix TM-EL- deleted from table.

Station	4 Al	13 Al	10A3	$9 \mathrm{B5}$	10B3	1181	Total
Station Time	2033	2118	2206	2258	2356	0043	
Duration(min)	20	19	22	25	22	30	
Air Temp (C)	23.0	23.0	21.0	21.0	20.0	18.7	
Water Temp ( $C$ )	22.8	22.9	22.8	22.8	22.4	22.8 7	
Dissolved Oxygen(mg/l)	7.9	7.9	7.9	7.9	8.3	7.8	
pH	7.0	7.4	7.5	. 3	7.2	200	
Conductivity (micromhos/cm)	190	175	175	180	150	200	
Secchi Disc(cm)	12.7	15.2	10.2	15.2	17.8	45.7	
Volts	220	220	220	220	220	6.0	
Amps	5.0	5.0	5.5	5.0	4.5	2	6
Gizzard shad	2	1	4	1	-	3	10
Common carp	2	1	$\underline{-}$	1	-	3	3
Spottail shiner	2	3	1	1		_	5
Spotfin shiner	1	3	1	-	-	-	1
Bluntnose minnow	1		6	1	8	6	25
Quillback	2	2	6	1	-	-	3
White sucker	-	3	2		_	-	2
Shorthead redhorse	1	-	2	-	-	-	1
Brown bullhead	1		1	-	-	-	1
Channel catfish			1	1	3	2	7
Rock bass		6	$\frac{1}{5}$	$\frac{1}{1}$	2	3	17
Redbreast sunfish	-	6	5	2	-	-	3
Green sunfish	$\overline{-}$	1	1	11	9	18	44
Pumpkinseed	5	-	1	11	9	2	4
Bluegill	2	64	42	16	15	12	151
Smallmouth bass	2	64	42	16	1	-	2
Walleye	18	80	65	36	38	48	285
No. of Specimens	18	8	10	9	6.	8	17

TABLE D-6
Fishes taken by the AC electrofisher on 25-26 July 1989 near TMINS. Station prefix TM-ELdeleted from table.

	4A1	13A1	10A3	$9 \mathrm{B5}$	10B3	1181	Total
Station	2308	0002 .	0109	0229	2204	2108	
Time	21	20	24	22	22	30	
Duration(min)	22.5	23.0	22.5	22.0	23.5	22.0	
Air Temp(C)	27.8	28.0	27.5	27.8	24.9	23.0	
Dissolved Oxygen(mg/l)	8.5	8.5	8.5	8.1	8.4	8.3	
pH	7.5	6.7	6.9	300	180	240	
Conductivity(micromhos/cm)	290	300	300	1016	43.2	40.6	
Secchi Disc(cm)	101.6	99.1	96.5 205	101.6 210	43.2 220	215	
Volts	215 9.0	215 10.0	10.0	9.5	5.5	7.0	
Amps	9.0	10.0	10.0			-	9
Gizzard shad	$\overline{3}$	$\underline{-}$	$\stackrel{4}{-}$	-	$\underline{-}$	-	3
Common carp	3	-	-	-	1	1	2
Golden shiner		-	14	14	4	-	34
Spottail shiner	2	$\overline{8}$	14	14	4	-	15
Spotfin shiner	4	8	1		-	-	1
Bluntnose minnow	1		-	1	-	-	1
Fallfish		2	1	1	7	5	23
Quillback	7	2	1	-			1
White sucker			1	-		-	10
Shorthead redhorse		9	2	-	-	-	5
Channel catfish		4	2	1		-	5
Rock bass		24	27	19	4	-	74
Redbreast sunfish		24	27	1.9	-	-	12
Green sunfish		29	67	55	26	14	205
Pumpkinseed	14	29	67	3	2		19
Bluegill	7	4	3	1	-	$\stackrel{-}{-}$	1
Lepomis hybrid		30	15	10	17	6	78
Smallmouth bass	-	3	2		-	2	6
Largemouth bass	2	1		-	1	2	4
White crappie						1	1
Yellow perch		2	-	-	-	-	2
Walleye		120	141	115	62	33	511
No. of Specimens	8	13	13	10	8	8	21

TABLE D-7
Fishes taken by the AC electrofisher on 9-10 August 1989 near TMINS. Station prefix TM-ELdeleted from table.

Station	4 Al	13A1	10A3	9B5	10B3	11B1	Total
Station Time	1958	2102	2151	2315	0020	0120	
Duration(min)	19	18	24	20	21	25	
Air Temp (C)	18.0	18.0	17.5	15.5	15.5	13.0	
Water Temp (C)	21.6	22.7	22.0	22.5	23.9	21.5	
Dissolved Oxygen(mg/l)	19.0	11.1	10.4	11.0	10.4	13.7	
pH	NA	NA	NA	NA	NA	NA	
Conductivity (micromhos/cm)	340	350	450	350 165	275 1397	250 119.4	
Secchi Disc(cm)	162.6	175.3	111.8	165.1	139.7	119.4	
Volts	200	215	200	200	215	215	
Amps	7.0	11.0	11.0	10.0	9.0	7.5	
Common carp	1	5	2	-	-	3	8
Golden shiner	-	1	-	-	2	3	1
Spottail shiner	-	2	5	1	2	1	9
Spotfin shiner	-	1	5	2	-	1	5
Fallfish	-	1	4	-	$\overline{6}$	11	31
Quillback	3	6	3	2	6	11	31
Brown bullhead	-			1	-	-	4
Channel catfish		2	1	1	2	-	17
Rock bass	1	5 7	9 12	1	7	_	41
Redbreast sunfish	6	15	34	32	3	2	100
Green sunfish	19	28	66	28	17	23	188
Pumpkinseed	26	28 10	45	34	20	23	155
Bluegill	23	10	4	2	-	1	7
Lepomis hybrid	1	10	5	5	9	-	30
Smallmouth bass	1	10	1	1	2	2	15
Largemouth bass	9		1	1	1	2	3
White crappie				-	1	3	4
Black crappie				1	$\underline{-}$	-	1
Tessellated darter	-			1	1	-	1
Walleye	O	96		110	71	73	635
No. of Specimens	90	96 13	195 13	11	12	11	19
No. of Species	9	13	13				

TABLE D-8
Fishes taken by the AC electrofisher on 22-23 August 1989 near TMINS. Station prefix TM-ELdeleted from table.

Station	4A1	13A1	10A3	985	10B3	11B1	Total
Sime	2138	2241	2346	0101	2024	1933	
Duration(min)	24	23	27	22	26	25	
Air Temp ( C )	25.0	25.0	24.5	24.3	25.3	25.5	
Water Temp(C)	25.0	25.0	25.0	25.0	26.5	25.2	
Dissolved Oxygen(mg/l)	12.2	11.0	11.5	11.2	13.0 8.8	13.4	
pH .	8.6	8.4	8.3	8.2	8.8	8.8	
Conductivity (micromhos/cm)	255	275	420	275	109	121.9	
Secchi Disc(cm)	91.4	106.7	86.4	104.1	109.2 215	121.9 215	
Volts	210	210	210 12.5	210 12.0	215 9.5	215 8.0	
Amps	9.5	10.0	12.5	12.0	9.5	8.0	13
Gizzard shad	6	-	-	-	5	2	1
Common carp	-	4			1	5	6
Golden shiner	-				1	5	13
Spottail shiner	1	1	3 10	1	1	2	25
Spotfin shiner	1	8	10	3	1	-	3
Fallfish	9	13	1	2	4	12	41
Quillback	9	13	1	2	4	12	1
Shorthead redhorse	$\overline{-}$	1					1
Brown bullhead	1	-			1		3
Channel catfish	-	2	-	3	1		5
Rock bass	2	5	1	1	7	-	17
Redbreast sunfish	3	5	30	13	2	4	63
Green sunfish	10	4	30	13	2 40	8	163
Pumpkinseed	24	19	52 25	18	17	11	97
Bluegill	22	4	25	18	17	11	3
Lepomis hybrid	2	19	-	1	7	-	32
Smallmouth bass	2	19	3	1	7	2	7
Largemouth bass	- 2	82	128	64	92	46	497
No. of Specimens	85	12	128 9	10	11	8	17


Fishes taken by the AC electrofisher on 12-13 September 1989 near TMINS. Station prefixTM-EL- deleted from table.							
Station	4A1	13A1	10A3	9B5	1083	11B1	Total
Time	1904	2018	2114	2209	2309	0015	
Duration(min)	25	24	23	24	25	27	
Air Temp (C)	22.0	22.0	22.5	20.5	21.5	19.7	
Water Temp ( $C$ )	25.1	26.1	26.0	26.1	25.9	25.9	
Dissolved Oxygen (mg/l)	10.2	10.6	9.7	10.4	9.2	8.8	
pH	8.5	8.7	8.5	8.7	8.9	8.6	
Conductivity (micromhos/cm)	450	450	500	450	350	325	
Secchi Disc(cm)	76.2	73.7	71.1	73.7	63.5	68.6	
Volts	210	210	205	205	215	21.5	
Amps	12.5	12.5	13.0	13.0	11.5	10.5	
Gizzard shad	-	1	-	-	1	-	2
Common carp	-	1	-	-	-	1	3
Golden shiner	-	-					3
Common shiner				-	$\stackrel{-}{0}$	1	25
Spottail shiner	2	I	2	1	20	1	14
Spotfin shiner	1	1	3	8	-	1	14
Bluntnose minnow			1	1	3	7	12
Quillback	1	1	-	1	3	7	1
Channel catfish	-	2	-	-	2	-	4
Rock bass	4	10	4	-	-	. -	18
Redbreast sunfish	8	20	10	7	3	-	48
Green sunfish	10	11	8	22	16	9	52
Pumpkinseed	46	10	22	88	16	9 23	117
Bluegill	32	5	8	21	28	23	13
Lepomis hybrid	12	9	$\frac{1}{3}$	1	4	-	19
Smallmouth bass	12	9	1	1	1	7	21
Largemouth bass	12	1	-	1	-	-	2
Black crappie	-	1	1	-	-	-	2
Walleye	-	-	1	2	-	-	-
No. of Specimens	130	73	65	72	79	52	471
No. of Species	10	13	12	10	10	8	20


TABLE D-10							
Fishes taken by the AC electrofisher on 26-27 September 1989 near TMINS. Station prefixTM-EL- deleted from table.							
Station	4A1	13 A1	10A3	9B5	10B3	11BI	Total
Time	2051	2153	2247	0010	1952	1855	
Duration(min)	23	22	25	19	17	25	
Air Temp (c)	15.3	15.0	14.5	13.5	17.5	16.7	
Water Temp (C)	16.3	16.1	15.7	15.5	17.2	16.5	
Dissolved Oxygen(mg/l)	10.4	10.2	10.6	10.3	11.5	10.0	
pH	NA	NA	NA	NA	NA	NA	
Conductivity (micromhos/cm)	350	360	450 58	390	360 818	325 106.7	
Secchi Disc(cm)	86.4	63.5	58.4	71.1	81.3	106.7	
Volts	200	215	210	210	210	215	
Amps	8.0	10.0	10.0	10.0	10.5	8.5	
American shad	-	1	-	-	-	-	1
Gizzard shad	1	1	1	-	5	-	8
Common carp	2	4	-	-	-	1	7
Golden shiner	-	-		-	1	6	7
Common shiner	-	-	-	-	$\bar{\square}$	2	2
Spottail shiner	-	-	6	6	6	1	19
Spotfin shiner	-	-	1	-	-	4	1
Mimic shiner	-	-	1				2
Quillback	1	-	-		1	-	2
White sucker	-	1					1
Yellow bullhead	-	1	-	-	-		7
Channel catfish	1	3	2	1	-		7
Rock bass	1	1	3	5	-	-	10
Redbreast sunfish	3	5	6	1	-	-	15
Green sunfish	3	5	10	10	$\overline{5}$	1	29
Pumpkinseed	44	14	54	23	5	25	165
Bluegill	25	-	6	15	5	15	66
Lepomis hybrid	5	-	4	$\sigma$	2	1	51
Smallmouth bass	-	29	14	6	2	-	51
Largemouth bass	8	-	-	-	I	4	12
White crappie	$\cdots$	-	-	1	1	5	6
Black crappie	1	1	-	1	1	3	1
Walleye	-	-	-	69	17	68	428
No. of Specimens	95	66	103	69	27 9	68	428 22
No. of Species	11	12	10	10	9	11	22



TABLE D-12
Fishes taken by the AC electrofisher on 7 November 1989 near TMINS. Station prefix TM-ELdeleted from table.


## APPENDIX E

 CREEL SURVEY DATATABLE E-1.

Creel data reported for each survey day in April 1989, at the General Reservoir.


Time - Morning ( $0900-1300$ ), thidday (1301-1700), Evening (1701-2100)

|  | \|Morning | Midda |  | \|Evening |Morning | Midday |  |  |  | \|Morning | Midda |  | JEvening \|Morning | Midda |  |  | \|Evening | Totals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heather | \|Clear | ICl ear | $\mid \operatorname{Prt}$ al | IPrt ol | \|Prt cl | IClear | \|Cl ear | 1Prt al | Pret | \|Clear | IC1 ear | $\mid \operatorname{lit}$ cldy |  |
| Air Temp (c) | 16.70 | 18.00 | 19.70 | 110.00 | 113.00 | 113.00 | 111.50 | 114.70 | 114.00 | 115.00 | 120.00 | 117.00 |  |
| Hater Temp (C) | 18.70 | 19.70 | 180.00 | 110.30 | 111.50 | 111.70 | 114.00 | 114.50 | 114.00 | 115.00 | 117.00 | 117.00 |  |
| Hater Mop (c) | 1 | , 1 | 1. | 10.30 | , | 1 |  |  | 1 | 1 |  | 1101 |  |
| Anglers | 10 | 10 | 10 | 131 | 135 | 124 | 134 | 135 | 14 | 15 | 16 | 110 ! |  |
| Fish Caught | 10 | 10 | 10 | 123 | 179 | 1105 | 188 | 160 | 10 | 114 | 115 | 1331 |  |
| Fish Kept | 10 | 10 | 10 | 13 | 19 | 158 | 140 | 120 | 10 | 18 | 10 | 17 1 |  |
| Hours Fished | 1. | 1. | 1. | 145.75 | 169.75 | 169.00 | 168.00 | 179.50 | 16.00 | 13.50 | 112.50 | 119.25 |  |
| Catch/Effort ( h ) | 1. | 1. | 1. | 10.50 | 11.13 | 11.52 | 11.29 | 10.75 | 10.00 | 14.00 | 11.20 | 11.71 \| |  |

Species


Totals Per Day

Anglers	0	90	73	21	1184
Fish Caught	10	207	148	62	1417
Fish Kept	10	70	60	15	1145
Hours Flished	I	184.5	153.5	35.25	1373.3
Catch/Efrort (b)	I	1.12	0.96	1.76	11.12

## $x=$ Kept

$\mathrm{R}=\mathrm{Rel}$ eased
$c=$ Total catch

TABLE E-2

Creel data roported for each survey day in April 1989, at the West Dam.


## $\mathrm{K}=\mathrm{Kept}$

n = Rel eased
$C=$ Total catch

TABLE E-3

Creel data reported for each survey day in April 1989, at the East Dam.


Spectes


[^6]TABLE E-4

Creel data reported for each survey day in April 1989, at the York Haven Generating Station.

Lay	11 Tuesday	16 Sunday	22 Saturday	27 Thursday
Hiver Stage	1.92	1.55	1.41	1.29

Time - Morning (0900-1300), Midday (1301-1700), Evening (1701-2100)

|  | \|hornins | M1dda |  | IEvening lMorning \| Midda |  |  | \|Evenin | \|Morning | Myday |  | \|Evenin | \|Morning | Midday |  | \|Evening | | Total 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heather | \|Clear | \|Clear | Pret al | aldy Prt al | Pret cl | \|Clear | \|clear | $\mid \operatorname{Prt}$ cld | IClear | IClear | \|clear | $\mid \operatorname{Prt}$ cldy $\mid$ |  |
| Air Temp (C) | 14.50 | 111.50 | 17.50 | 112.50 | 115.00 | 113.00 | 115.00 | 113.00 | 110.00 | 117.70 | 120.00 | 116.50 |  |
| Water Temp (c) | 19.00 | 110.00 | 110.70 | -111.00 | \| 12.70 | 122.50 | 114.00 | 114.00 | 113.70 | 115.50 | 116.70 | 117.00 |  |
| Water (o) | 1 | 1 | 1. | 1 | , | 1 | 1 |  | , | , | 1 | 1181 |  |
| Anglers | 13 | 17 | 12 | 15 | 111 | 110 | 113 | 117 | 13 | 17 | 16 | 1181 |  |
| Fish Caught | 13 | 17 | 14 | 11 | 12 | 12 | 131 | 157 | 12 | 174 | 191 | 12021 |  |
| Fish Kept | 10 | 11 | 12 | 10 | 10 | 10 | 10 | 115 | $10 \therefore$ | 12 | 116 | 160 |  |
| Hours Fished | 16.50 | 121.75 | 13.00 | 111.50 | 130.25 | 136.25 | 121.00 | 146.75 | 13.00 | 111.00 | 113.25 | 146.00 |  |
| Catch/Effort ( h ) | 10.46 | 10.32 | 11.33 | 10.09 | 10.07 | 10.12 | 11.48 | 11.22 | 10.67 | 16.73 | 16.87 | 14.39 |  |

Species


[^7]TABLE E-5

Creel data reported for each survey day in May 1989, at the General Reservoir.


## K = Kept <br> $\mathrm{R}=$ Released

C = Total catch
= Surveys were not conducted due to high river flow.

TABLE E-6



## K = Kept <br> $\mathrm{R}=$ Released

$C=$ Total catch $\quad=$ Surveys were not conducted due to high river flow.

TABLE E-7

Creel data reported for each survey day in Hay 1989, at the East Dam


Time - Morning (0900-1300), Midday (1301-1700), Evening (1701-2100)


Species

Walleye

					22	137
Anglers	15	I			357	1390
Fish Caught	33	,			137	1151
Fish Kept	14	,			65.00	189.50
Hours Eished	24.50				5.49	14.36

Hours Eished (h)
5.49

## $K=$ Kepr <br> R - Released

C = Tocal catch
= Surveys were not conducted due to high river flow.

TABLE E-8
Creel data reported for each survey day in May 1989, at the York Haven Generating Station.


Species
|R|K|R|K|R|K|R|K|R|K|R|K|R|K|R|R|K|R|K|R|K|R|K|R|K|R|K|R

American shad Rainbow trout Muskellunge
Common carp
TJ Suckers
E-8
Ouillback
Channel cateish
Rock bass
Rock bass
Redbreast sunfish
Redbreast sunfi
Crapples
White crappie
Black crappie
Yellow perch
Walleye




[^8]Creel data reported for each survey day in June 1989, at the General Reservoir.


[^9]TABLE E-10

Creel data reported for each survey day in June 1989, at the West Dam.

Day River Stage	3	${ }_{1.42}^{\text {Saturday }}$		I	$\begin{gathered} 7 \text { Wednesday } \\ 1.54 \end{gathered}$		25	$5{ }_{2.73}^{5 \text { Sunday }}$			$\begin{gathered} 30 \text { Friday } \\ 1.85 \end{gathered}$															
Time - Morning (0900-1300), Midday (1301-1700), Evening (1701-2100)																										
	Morning \| Midday	Evening	Morning	Miday	Evening	Morning	Midaay	Evening	Morning	Midday	Evening	Total														
weather Air Temp (C)	$\left.\right\|_{\text {Prt cldy }} \mathbf{2 3 . 3 0}$	\|Clear 128.00	$\left.\right\|_{126.00} ^{26.00}$ cldy	\|huy rain 117.70	${ }_{\text {n\|Overcast }}^{17.00}$	\|Overcast	$\left.\right\|_{122.00}$	\|Clear	${ }^{\text {Pret cldy }} 1$	\|clear	1 Cl ear 124.00	$\begin{aligned} & \text { Clear } \\ & 123.00 \end{aligned}$														
Water Temp (C)	122.30	123.50	124.00	120.70	120.30	120.00	121.00	121.00	121.70	121.30	122.00	122.50														
Water remp $(C)$			14		13	10	10	10	10	10	10															
Anglers	13 150		127	10	122	10	10	10	10	10	10	10														
Fish Kept			1.	10	1.	10	10.	10	10	10	10	10														
Hours Fished	16.00	117.00	19.25	1.	17.50		1.	.	1.	1.	I.	11.00														
Catch/Effort (h)	18.33	12.53	12.92	1.	12.93	1.	1.	1.	1.	1.	1.	10.00														
Species																										
	\|R	K	R	K	R	K	R	K				K\|R	K	R			\| K			\| K	\|R		K \| R	K	$1 \mathrm{R} \mid$	R I
Cormon carp ${ }^{\text {Channel catsish }}$	$!$		2	!	6   6		!	I	,		I	1	1   1													
Rock bass	;	1	4				;	I	i	;	1	,	4													
Sunfishes	1		8				,	I	I		1	1	8													
Bluegill		12	13		10		I	,	1		1	1	1 114													
Smallmouth bass	1.50	141			1 10							1														
					mota	als Per Day																				
Anglers	,	12		I						!																
Fish Caught	,	120		$1$	22		$1$	0		,	0		$1142$													
Fish Kept	1							0		1	1.00		140.75													
Hours Flished	,	32.25 3.72		1	7.50 2.93		1	-		1	0.00		13.48													

## K = Kept

R $=$ Released
$\mathrm{C}=$ Total catch

TABLE E-11

Creel data reported for each aurvey day in June 1989, at the East Dam.


## $\mathrm{K}=$ Kept <br> $\mathrm{R}=$ Released

$\mathrm{C}=$ Total catch

Creel data reported for each survey day in June 1989, at the York Eaven Generating Station.

Day   River Stage	1	3 Saturday ${ }_{1.42}$		17	$\begin{aligned} & 7 \text { Fednesday } \\ & 1.54 \end{aligned}$		$1 \quad 2$	$25 \operatorname{Sunday}_{2.73}$			$\begin{gathered} 30 \text { Eriday } \\ 1.85 \end{gathered}$		
	Tine - Morning (0900-1300), Midday (1301-1700), Evening (1701-2100)												
	IMornin	midday	IEvening	\| Morning	Miday	IEvening	\|Morning	1 Midday	IEvening	\|Morning	I 1 Miday	\|Evening	qotals
Weather ${ }^{\text {Air Temp (C) }}$	${ }_{1} 125.00$	${ }^{\text {Pret cldy }}$	\|Prt cldy	[17t rain	ILt rain 17.50	\|Overcast	\|Clear	${ }_{129.50}{ }^{\text {Prt cold }}$	$\left.\right\|_{123.30}{ }^{\text {Prt cldy }}$	1 Clear		${ }_{\text {\|Clear }} 122.00$	
Water Temm ( ${ }^{\text {Al }}$.	124.00	124.70	124.00	120.50	120.00	120.00	121,00	122.00	120.70	121.70	123.70	123.70	
						13	,	12	19		4		
Anglers	120			$1$		113	16	$\frac{11}{8}$	19	110	140	$\stackrel{122}{150}$	
Fish Caught:	150	182	[88	$18$	132	157	15	18	12	${ }_{129}$	110	150	
Fish Kept	${ }_{1}^{10} 10.75$	${ }_{170.00}^{11}$	$\begin{aligned} & 130 \\ & 175.00 \end{aligned}$	$12.00$	14.25	130	15.50	138	${ }_{11}^{12.25}$	${ }_{116.25}$	15.75	${ }_{1}^{26}$ 32.50	
Hours Fizhed ( ${ }_{\text {catcl/Effort ( }}$	${ }_{1}^{162.75} 10.80$	${ }_{11.17}$	175.00	14.00	12.25	${ }_{1}^{15.80}$	10.51 10.91	10.35	10.16	14.43	11.74		

## Speciea



[^10]Creel data reported for each survey day in July 1989, at the General Reservoir.


[^11]TABLE E-14

Creel data reported for each survey day in July 1989, at the West Damo


[^12]TABLE E-15

Creel data reported for each survey day in July 1989, at the East Dam.


[^13]TABLE E-16

Creel data reported for each survey day in July 1989, at the York Maven Generating Station.

Day River Stage	1	$\begin{gathered} \text { Sunday } \\ 1.62 \end{gathered}$		$12$	$\begin{aligned} & 2 \text { Wednesday } \\ & 1.49 \end{aligned}$		$17$	$\begin{gathered} 7 \text { Monday } \\ 1.91 \end{gathered}$		129	${ }_{\text {Saturday }}^{1.31}$		
Time - Morning (0900-1300), Midday (1301-1700), Evening (1701-2100)													
	[Morning	Midday	IEvening	\|Morning	Midday	[Evening	[Morning	Midday	IEvening	Morning	Midaday	\|Evening	Totais
Weather   Air Temp (C)		${ }_{\text {[Prt cla }}^{127.00}$ (	124.00	OVercast 124.00	$\left.\right\|_{\mid 23.30} ^{\mid \text {Prt cldy }}$	$\left.\right\|_{\text {Prt cldy }} \mathbf{2 2 . 3 0}$	$\left.\right\|_{125.50}$	$\left\lvert\, \begin{aligned} & \text { Prt cldy } \\ & 123.00\end{aligned}\right.$	\|clear	1 Prt clay	Prt cldy 124.00	$\mid$ Prt cldy 19.00	
Water Temp (C)	125.30	125.00	125.00 .	125.50	[26.30	125.50	120.00	123.00	121.50	126.30	126.50	125.30	
Water reme ( C	19	122		18	7	125	17	19		12	17	131	
Anglers	129	132	133	124	65	148	19	144	174	150	137	168	
Fish Caught	110	111	117	16			13	116	126	119	19	121	
Fish Kept   Hours Fished	140.50	131.00	138.75	19.50	120.50	132.50	17.50	129.75	150.50	119.50	136.25	173.00	
Cotch/Effort ( h )	10.72	10.97	10.85	12.53	13.17	11.48	\|1. 20	11.48	11.47	12.56	11.02	10.93	



## American shad Painnow trout

 Common carpSunfishes
Redbreast gunfish
Bluegill
Smallmouth bass
Srappies
Crappies
White crapple
Black crappie
Kalleye

Anglers
Fish Caught.
Fish Rept
Boura FiEhed
Catch/Effort (h)

63	40
92	137
38	28
110.2	62.50
0.83	2.19


| 37 | 60 | 1200 |
| :--- | :--- | :--- | :--- |
| 127 | 155 | 1511 |
| 45 | 49 | 1160 |
| 87.75 | 128.8 | 1389.3 |
| 1.45 | 1.20 | 11.31 |

[^14]Creel aata reported for each survey day in August 1989, at the General Reservoir.

Day River Stage	i	$\begin{gathered} \text { Sunday } \\ 1.19 \end{gathered}$		1	Tuesclay 1.10		$1$	$\begin{gathered} 6 \text { Saturday } \\ 1.04 \end{gathered}$			$\begin{aligned} & \text { Thurscay } \\ & 1.00 \end{aligned}$														
Time - Yorning (0900-1300), Midday (1301-1700) , Evening (1701-2100)																									
	\| H orning	Midday	Evening	Morning	Midday	Evening	Morning	Midayy	Evening	horning	Miday	Evening	Totals												
weather   Air Temp (C)		$\left.\right\|_{\text {Prt aldy }}$	1 Prt clay		1Overcast 124.50	$\left.\right\|_{\text {L2 }} ^{24.00}$ rain	\|Clear 120.70	$\left.\right\|_{\text {Prt cldy }} \mathbf{2 6 . 7 0}$	\|Prt cldy	$1 \begin{aligned} & \text { Clear } \\ & 123.50\end{aligned}$	IClear 125.00	\|Clear 123.50													
	129.00 129	[128.30	$1 \begin{aligned} & 129.00\end{aligned}$	124.00	124.50	125.50	124.70	27.00	127.00	125.00	126.70	127.70													
					18	15																			
Anglers	${ }_{1}^{161}$	123	121	121			1281	148	1150	151	18	124													
Fish Caught Fish Kept	${ }_{132}^{1331}$	15	140	1	$\begin{aligned} & 28 \\ & 16 \end{aligned}$	11	138		129	110	10	10													
Fish Kept Hours Fished	$\stackrel{132}{151.8}$	15 160.25	1108.00	134.00	114.50	18.25	1187.3	160.00	196.00	145.25	14.00	118.25													
Catct/Effort ( h )	12.18	11.83	10.72	11.50	11.93	10.36	1.50	10.80	13.56	11.13	12.00	11.32													




Crappies
rotals Per Day


[^15]TABLE E-18
Creel data reported for each survey day in August 1989, at the Hest Dam.


[^16]TABLE E-19

Creel data reported for each survey day in August 1989, at the East Dam.


[^17]$C=$ Total catch

TABLE E-20

Creel data reported for each survey day in August 1989, at the York Haven Generating Station.

Day River Stage	$\begin{gathered} 6 \text { Sunday } \\ 1.19 \end{gathered}$	15 Tuesday 1.10	$\begin{gathered} 26 \text { saturday } \\ 1.04 \end{gathered}$	$31 \text { Thursclay }$	1
Time - sorning (0900-1300), Midayy (1301-1700), Evening (1701-2100)					


	\|Morning	\| Midcay	\|Evening	1 Morning	1 Nidaay	IEvening	\|Morning	\| Midaay	\|Evening	\|Hornin	1 Midday	IEvening	1 Tot																				
Weather (C)																																	
Air Tenp (C)	131.00 128.30	1329.00	128.70	122.00	123.00	123.00	123.50	124.00	24.00	124.30	124.70	125.00																					
piater terme ( $C$ )	$\left.\right\|^{28.30}$	29.00	128.0	122.00	123.00	123.00	23.50	17	200			13	1																				
Anglers		15	19			13				10	13	13   17	$1$																				
Fish Caught	117	17	124	16		10	14	121		10	11	14																					
Fish Kept		18.50			13.00	10.75	18.50	124.25	138.25		18.50	13.50	,																				
Hours Fished	${ }_{12.42}^{12.00}$	18.50 10.82	${ }_{120.50}^{12}$	116.50 10.36	13.00 1.00	10.00	10.47	13.30	13.29	1.	11.06	12.00	1																				
species																																	
	\|R	K	R		/R\|K	R	K	R	K	R	K				R\|K	R	K	R	K				1 R	\|R	K	R	K	R	K	C			
Fikes	1		I										\| $\begin{aligned} & 1 \\ & 9\end{aligned}$																				
Common carp	12							$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	\| $\begin{aligned} & 6 \\ & 5\end{aligned}$			3	4115	23 38																			
Channel catfish	12	2						16	1		,	1	,	11																			
Fock bass	,						1					1	1 5	$\because 7$																			
Sunfishes	-		61	$1)$	1		1					I		22																			
Probreast sumfish		4	$14 \quad 2$	1 3	1	,	1	$24 \quad 14$	1051		- 7	$1)$	172	18190																			
Smallmouth bass Wite cramp			14	,	11	1	1	24	\| 1				1	11																			
White crappie Walleye					1	1	1			1		1	1	11																			
fotals Per Day																																	
Anglers	1	17		1	11		I	30			${ }^{6}$		164 1250																				
Fish Caught	1	48		1	9		,	371																									
Fish Kept	I	5		,			,	34.00			12.00		1134.3																				
Hours Fished	,	41.00		1	20.25		1	2.90		1	1.33		11.86																				
Catch/Eifort ( h )	1	1.17		1	0.44		1																										

[^18]TABLE E-21

Creel cata reported for each survey cay in Septeriber 1989, at the General Reservoir.

Day River Stage	1	$\begin{gathered} 8 \text { Friazy } \\ 0.99 \\ \hline \end{gathered}$		1	$\begin{gathered} 10 \text { Sunday } \\ 0.99 \\ \hline \end{gathered}$			$\begin{gathered} 23 \text { Saturcay } \\ 1.12 \end{gathered}$		$1$	$\begin{gathered} 28 \text { Thurscay } \\ 1.22 \end{gathered}$															
Tine - Mornimg (0900-1300), Midday (1301-1700), Evening (1701-2100)																										
	\|Horning	Hidany	Evening	morning	bidday	Evening	Horning	Ifday	Evening	forning	iticiay	Evening	Totals													
Weather		$\begin{aligned} & \text { \|Overcast } \\ & \mid 23.00 \\ & 124.70 \end{aligned}$	Overcast 123.70 124.70	Fiaze 127.00 125.70			$\begin{aligned} & \text { \| Hvy rain } \\ & \mid 21.00 \\ & \mid 22.00 \end{aligned}$	in\|livy rain ${ }^{15.00} \mid$	LLt rain 111.50 120.50	$\begin{aligned} & \text { \|Clear } \\ & 111.00 \\ & 16.00 \end{aligned}$	$\begin{aligned} & \text { \|Clear } \\ & 117.00 \end{aligned}$	iclear   116.00														
Fater Temp (C)	122.50		124.70	125.70			121.00	120.50	117.00		116.30															
Anglers	114			136	13	113		113	12.2	10	113	18	12													
Fish Caught	147	175	118	196	125	132	141	120	10	114.	135	10														
Fish :ept	19	112	15		12	12	14	15	10	13.	110	10														
Hours Fished	124.25	130.00		176.75	119.50	118.50	135.17	115.00	1.	113.50	122.75	14.00														
Catcl/Efiort ( l )	11.94	12.50	11.50	11.25	12.28	11.73	11.17	11.33	1.	11.04	11.54	10.00														
Species																										
	\|R	K	R	S	R			$\mid \mathrm{R} \mathrm{\mid}$	K \\| R	K	\|R		R \| H	K\|R	K		R I	R 1	K\|R	K	1 R	P	: 1 c			
Channel catfish	11	$1 \mid$ 4 1   31 2 5   11 6    11 49 6	$1 \mid$ 5 3   1 1    1     1     1 1    1 4 1   1     1			$\|$1    2    2    27   	$\left\lvert\, \begin{aligned} & 2 \\ & 3 \\ & 1 \\ & 1 \\ & \\ & \\ & \\ & \\ & \end{aligned}\right.$			1	(1)	311313111	15 13													
Rocl hass	14												\|13 18	$\begin{array}{ll}8 & 21 \\ 2 & 20\end{array}$												
Sunfishes	12												1	24												
Redbreast sunfish														57												
Bluegill Smaulmouth bass	\| 31												285	33318												
Largerouth bass														2												
Crappies	I																									
Yellon parch	1																									
motals Per cay																										
Anglers	1	28			62		1	25		I	23		1138													
Fish Caught		140		I	153		!	${ }_{9} 6$			13															
Fish Kept	!	26		1	10		,	$\stackrel{9}{50} 17$		,			1371.4													
llours Fished	1	66.25		1	114.7		,	50.17 1.22		1.			11.10													
Catcl/Effort ( h )	1	2.11		1	1.33		1	1.22		1.	1.22															

[^19]TABLE E-22

Creel data reported for each survey day in Septerber 1989, at the West Dam.

Lay	8 Friday 0	1	$10 \begin{gathered}\text { Sunday } \\ 0.99\end{gathered}$	$\begin{gathered} 23 \text { saturday } \\ 1.12 \end{gathered}$	1	$\begin{gathered} 28 \text { Thursday } \\ 1.22 \end{gathered}$	1


Time - Vorning (0900-1300), Nioday (1301-1700), Evening (1701-2100)																										
	\|Horning	tioday	mvening	rorning	Lidday	Evening	horning	liouklay	Evening	lorning	Eiciday	Evening	Totels													
Weather	$\begin{aligned} & \text { IFog } \\ & 118.00 \end{aligned}$				$\begin{aligned} & \text { \|Prt clay \|Clear } \\ & \|31.50 \quad\| 30.00 \end{aligned}$		\|Overcast	Overcast jovercast	Clear$122.70\|14.70\| 11.50$				$\begin{aligned} & \text { \|Clear } \\ & \mid 16.00 \end{aligned}$	$\begin{aligned} & \text { Clear } \\ & 117.30 \end{aligned}$												
Air Temp ( C )		lovercast 123.30	Overcastiraze   \|22.00   28.00																							
Viater Tenq (C)	122.30	124.00	124.30	125.00	128.50	129.50					122.00	121.00	119.70	125.70	116.30	116.50										
							11	10	10	10	10	1														
Anglers	10			116	12	1	15	10	10	10	10	10														
Fish Kept	10		19	16	1.	11	12	10	10	10	10	10														
Hours Fished	1.	15.25	14.00	13.00	11.00	12.50	12.50	1.	1.	1.	1.	1.														
Catch/Efiort (h)	1.	14.00	13.50	13.00 15.33	11.00	10.67	12.00	1.	1.	1.	1.	1.														
Species																										
	\|R	K	R	K			\| R	K		\|R1\%	R I K	R I	$\mathrm{R} \mid \mathrm{K}$	R \| K	R I	R	R I	R 1	R	K 1 C						
Channel catfish	$\begin{aligned} & i \\ & i \\ & i \\ & i \end{aligned}$	$\|$12   1   $\mid$   1   1	$\left\lvert\, \begin{array}{lll}3 & 8 \\ \mid & 2 & 1\end{array}\right.$	$\|$8           	$\left\lvert\, \begin{array}{ll}1 \\ 1\end{array}\right.$				$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$			$\|$1 23 15 38   1 1  1   1 13 1 14   1 1 2 2   1 2  2														
Fock bass																										
Bluegill																										
Smallmouth bass																										
Crappies																										

$\longrightarrow$ totals Per Day

Anglers	1	3	I	6	I	1	I	0	110
Fish Caught	1	35	,	18	,	5		0	58
Fish Fept	1	9	I	7	1	2	I	0	118
Hours rished	I	9.25	,	5.50	1	2.50	!	-	117.25
Catch/effort (h)	1	3.78	I	3.27	1	2.00	1		13.36

[^20]Creel data rejorted for each survey day in September 1969r at the East Dam.


[^21]TABLE E-24

Creel iata rejorted for each survey day in Septenber 1989, at the York Haven Generating Station.


[^22]TABLE E-25

Creel cata reportaci for ench survey chy in cetober 1909, at the General Reservoir.

Day: River Stage	1	$\begin{gathered} \text { Boncay } \\ 1.12 \end{gathered}$		114	$\begin{aligned} & \text { Saturciay } \\ & 0.99 \end{aligned}$		124	$\begin{gathered} \text { Muesday } \\ 1.96 \end{gathered}$		$29$	$\begin{gathered} \text { Sunclay } \\ 1.39 \end{gathered}$	1		
	Time - Iorning (0900-1300), Midaly (1301-1700), Evening (1701-2100)													
	\|horning	1 Hidazy		lltorning	1 Hidday	\| Wvening	\|ltorning	Niciday	\|Evening	\|Horning	\| sidcay	\|Evening*		rotals
! ieather	1 s t rain	IOvercast	IOvercast	ICvercast	Clear	\|Clear	\|clear	\|Clear	\|Clatar	IClear	IClear			
nir Term (C)	119.30	120.50	119.70	114.00	120.00	117.00	19.50	116.30	114.70 111.00	116.30   113.70	110.00	1		
Water Terne (C)	117.00	117.70	117.70	116.30	117.50	117.00	110.70	11.50	111.00	113.70				
	14	18	16	147	151	118	18	113	16	174	139	1		
Anglers Fish Caught	117	116	145	1164	1203	1132	132	129	15	1255	1152			
Fish !epe	12	15	15	124	135	111	14	12	13	128	131			
Ilours Figher	18.00	19.25	123.00	1105.7	1152.3	178.50	112.75	131.50	112.50	1180.3	106.25	1		
Catch/ifitort (h)	12.1\%	12.73	11.96	11.55	12.33	11.68	12.51	10.92	10.40	1.35	11.3	1		

specics


## $\mathrm{K}=\mathrm{Kept}$

R = Released
C = Total catch

* $=$ Survey not completed due to darkness

TABLE E-26

Creel data reported Ior each survey day in October 1909, at the fiest Dan.

Day River Stage	12	$\begin{gathered} 2 \text { Ionclay } \\ 1.12 \end{gathered}$		1 Is	$\begin{gathered} 4 \text { Saturday } \\ 0.29 \end{gathered}$		$1$	$\begin{gathered} 24 \text { Tuestazy } \\ 1.96 \end{gathered}$		$1$	$\begin{gathered} 29 \text { Sunclay } \\ 1.39 \\ \hline \end{gathered}$														
Time - Itorning (0900-1300), Midkay (1301-1700), Evening (1701-2100)																									
	\|Rorning	Miciday	Evening	Horning	Hidday	Evening	hornins	Hicciay	Evening	korning	Widday	Evening *												Tota	
Veatior	\|Lt rain	ICvercast	10 vercast	Overcast		\|clear	IClear																		
Rir Ter.q (C)	113.00	120.00	119.30	113.70	120.00	117.00	17.50	114.00	113.00	116.30	116.00														
Vater Temy ( $C$ )	116.70	117.30	117.00	115.70	127.30	116.70	10.00	111.10	110.30	12.30	13.00														
Noglers	10	10	10	10	10				10	15															
Fish Caught	10	10	10	10	10	10	10	10		110	10														
Fish leyt	10	10	10	10	10	10	10	10		10	10	,													
nlours Fished	1.	1.	1.	1.	1.	1.	I.	!	!	16.75	.														
Catch/EtFort (h)	1.	1.	1.	1.	1.	1.	1.	1.	1.	11.48	1.	11													
Species																									
	\|R	K	R	K	R	K	R	K	R	K	R							$1 \mathrm{R} \mid$	K1R1K	R \| K	$1!1 \mathrm{k}$	K\|R1F	$1 \mathrm{n}\|\mathrm{K}\|$	\| R	
Sradlmouth bess thalleye	1	1	1	1	1		1	1	1	$1 \begin{aligned} & 9 \\ & 1\end{aligned}$	1		19												
Totals ler Day																									
	,	0		,	0		,	0					150												
Fish Caught	1	0		I	0		1	0		I	10		110												
Fish Kept	!	0		1	0		1	0		,	6.75		16.75												
Catch/Effort ( h )	1	-			-		1	:		1	1.18		12.68												

## $k=$ kept

$\mathrm{F}=$ Released
C = Iotal catch

* = Survey not completed due to darkness.

TABLE E-27

Creel date: relorteci for cach survey cay in Octaixer 1989, at the East Dam,

$K=$ Fiept
R = released
$C=$ Total catch

* Survey not completed due to darkness

Creel ciata reported for each surver cay in October 1989, at the York Haven Cenerating Station.


[^23]TABLE E-29

Creel ciata rerorted for each survey cay in iovember 19\%9, at the General Ressmoit.


[^24]TABLE E-30

Creel date refortec : or each surver ciay in Iloverber 1989, at the Hest Dan.


[^25]* = Survey not completed due to darkness

TABLE E-31

Creel data reported for each survey day in Hovenker 1989, at the East Rarn.


## $K=k e p t$

= Meleascr
$\mathrm{K}=$ releasca
$\mathrm{C}=$ Total catech

* $=$ Survey not completed due to darkness

TABLE E-32

Creel cata renorter? for each turvey chy in Novenber 1989, at the York Faven Gererating Station.


[^26]
## APPENDIX F

WATER QUALITY DATA

TABLE F-1 WATER QUALITY DATA COLLECTED AT ZONE 1 NEAR TMINS, 1989.

DATE	TEmPERATURE (C)			$\begin{aligned} & \text { DISSOLVED } \\ & \text { OXYGEN } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { SECCHI } \\ & \text { DISC } \\ & \text { (CM) } \end{aligned}$	CURRENT VELOCITY			$\begin{gathered} \text { TOTAL } \\ \text { DISSOLVED } \\ \text { SOLIDS } \end{gathered}$	SAMPLE DEPTH (M)	TIME OF COLLECTION	
				SURFACE		BOTTOM	CONDUCTIVITY					
	AIR	WATER	PH			(CM/SEC)	( $\mathrm{CM} / \mathrm{SEC}$ )	(UHMOS/SEC)				
06APR	6.5	8.2	7.8		11.2	-	39.0	-	-	-		20:19
11 APR	6.0	8.0	6.9	12.5	.	25.0	-	-	.		2):15	
13 APR	13.0	9.2	7.4	11.8	152.4		.	.	-		12:37	
17 APR	15.0	11.5	7.9	11.8	-	15.0	-	.	-	-	21:55	
24APR	10.5	12.8	8.3	14.3	-	6.0	-	-	-	-	22:25	
03may	9.0	13.2	8.0	10.5	76.	8.0	-	-	-	*	20:53	
22MAY	19.0	17.0	6.9	8.5	76.2	25.	-	-	-	-	21:33	
22MAY	18.0	16.5	7.5	8.4	-	25.0	-	-	'	,	23:09	
29 MAY	16.5	18.9	7.7	8.9		18.0	-	-	-	-	83:45	
SOMAY	18.0	18.4	7.2	8.3	124.5	$15^{\circ}$	-	-	-	-	8:45	
OGJUN	16.0	20.5	8.4	10.6		15.0	-	-	-	-	23:19	
OBJUN	20.3	19.3	7.3	9.4	139.7		-	-	*	-	11:35	
12JUN	19.0	20.8	7.5	9.3	71.1	10.0	-	-	"	-	$11: 52$ $8: 40$	
21JUN	23.0	20.8	6.9	7.6	71.1		-	-	*	-	21:20	
$21 J U N$	20.5	20.1	6.4	7.4	-	58.0 40.0	-	-	-	"	21:41	
2BJUN	20.0	22.8	6.7	7.7	-	40.0 24.0	-	-	-	-	22:07	
06Jul	22.0	19.5	7.4	8.2	-	24.0 17.0	-	-		"	23:30	
IOJUL	26.5	24.0	7.6	8.0		17.0	-	-			12:47	
14 JUL	25.5	20.0	7.4	8.2	30.5		-	$\cdot$			21:31	
17 JUL	19.6	19.0	7.0	8.8	-	30.0	,	-	-		23:0B	
24JUL	23.5	22.0	7.8	7.5	-	21.0	,	-	-	-	21:09	
O1AUG	22.0	18.8	8.6	9.4	9.	1.0	,	-	-	-	12:35	
O3Aug	30.0	22.4	8.0	0.5	91.4	.	-	-	-	-	22:46	
07Aug	18.0	24.2	8.8	8.0		4.0	*	-		.	13:22	
igavg	30.0	25.1	8.9	13.6	167.6		-	-	-	-	22:45	
16avg	24.0	25.0	8.9	17.8	.	2.0	'	-	-	-	20:49	
2 IAUG	25.0	23.5	8.1	8.8	-	3.0	-	$\stackrel{ }{*}$	-	,	22:23	
29aug	23.5	24.2	8.4	11.2		3.0	-	-	-	.	14:20	
O7SEP	25.0	25.2	8.7	11.1	96.5	.	-	-	-		13:10	
18SEP	19.0	20.3	7.9	8.0	76.2	-	-	-	-	,	14:30	
180CT	9.7	16.5	9.2	9.4	$116 . \mathrm{B}$	,	-	-	-	$\bullet$	9:40	
02nOV	11.5	12.7	8.8	10.1	116.8	-	-	-	-	-	9:40	

TABLE F-2 WATER QUALITV DATA COLLECTED AT ZONE 2 NEAR TMINS, 1989.

	date	TEMPE	WATER	PH	DISSOLVED OXYGEN (MG/L)	$\begin{aligned} & \text { SECCHI } \\ & \text { DISC } \\ & \text { (CM) } \end{aligned}$	CURRENT   SURFACE (CM/SEC)	velocity   BOTTOM   (CM/SEC)	conductivity   (UHMOS/SEC)	$\begin{aligned} & \text { TOTAL } \\ & \text { DISSOLVED } \\ & \text { SOLIDS } \end{aligned}$	SAMPLE DEPTH (M)	time of COLLECTIOM
	13APR	10.3	9.5	7.3	11.8	149.9	-	-	-	-	-	11:55
	20APR	5.0	13.8	7.8	10.7	121.9	"	-	240	-	.	0:40
	22MAY	20.0	17.0	6.9	8.6	76.2	.	,	0			$9: 30$ 20.08
	24MAY	15.0	15.2	7.4	9.4	73.7	.	-	240	-	.	20:08
	30may	22.0	19.2	7.0	9.0	124.5	.	-				$11: 40$ $1: 20$
	31 may	20.0	19.5	7.4	8.7	101.6	.	-	240	*	-	$1: 20$ $10: 37$
	O8.JUN	19.0	19.3	7.0	9.8	124.5	-	-		*	-	$10: 37$ $1: 40$
	14JUN	19.0	21.0	7.5	10.1	127.0	.	.	260	-	.	$1: 40$ $9: 38$
	21 JUN	24.5	21.0	6.9	9.0	73.7	.			-	$\cdot$	$9: 38$ 0.43
	29JUN	18.7	22.8	7.2	7.8	45.7	.	,	200	-	*	$0: 43$ $11: 55$
	14JUL	23.0	22.0	6.6	8.3	35.6	.	.		-	-	11:55
	25JUL	22.0	23.0	7.7	8.3	40.6	-	'	240	-	-	21:08 8:53
	ozaug	27.5	21.7	8.3	10.5	101.6	-	-	250	-	-	8:53 $1: 20$
	loaug	13.0	21.5	9. 1	13.7	119.4	-	-	250	-	*	12:22
	igaug	29.0	27.4	9.1	11.5	127.0	.	.	250		'	$12: 22$ $19: 33$
	$22 A U G$	25.5	25.2	8.8	13.4	121.9	-	*	250		-	19:33
	075EP	25.0	26.2	8.9	12.0	96.5	.	-	375	,	-	$13: 15$ 0.15
	135EP	19.7	25.9	8.6	8.8	68.6	-	.	325	-	-	$0: 15$ $8: 25$
	18 SEP	18.0	20.0	7.1	7.1	53.3	-	-	325	-	-	$8: 25$ $18: 55$
	265EP	16.7	16.5	- 7	10.0	106.7	-	-	325	-	-	$18: 55$ 0.10
	050ct	9.0	14.5	8.7	10.8	101.6	-	-	350	-	-	$0: 10$ $13: 35$
	180CT	10.3	17.5	8.2	8.4	127.0	-	-	-	-	-	13:35 $14: 00$
$\stackrel{1}{N}$	$02 N O V$ $07 N O V$	11.5 12.0	13.0 10.3	8.2 8.6	10.1 12.4	124.5	,	-	300	:	*	14:00 $23: 00$

TABLE F-3 WATER QUALITY DATA COLLECTED AT ZONE 4 NEAR TMINS: 1989.

DATE	TEMPE	WATER	PH	DISSOLVED OXYGEN (MG/L)	$\begin{aligned} & \text { SECCHI } \\ & \text { DISC } \\ & \text { (CM) } \end{aligned}$	CURRENT   SURFACE   (CM/SEC)	velocity   BOTTOM   (CM/SEC)	CONDUCTIVITV   (UHMOS/SEC)	$\begin{aligned} & \text { TOTAL } \\ & \text { DISSOLVED } \\ & \text { SOLIDS } \end{aligned}$	SAMPLE DEPTH (M)	time OF COLLECTION
06APR	8.8	6.0	8.2	12.0	-	35.0	-	-	-	-	20:37
OGAPR	8.8	5.8	7.3	15.0	.	40.0	.	-	-		20:51
11 APR	7.0	6.5	7.7	12.6	.	30,0	-	.	-	-	20:39
11 APR	6.0	6.5	6.7	12.5		30.0	-	-	-		20:52
17APR	15.0	9.5	7.9	11.3	-	24.0	-	-	-	-	22:09
17APR	14.5	10.0	7.8	11.5		19.0	-	190	.	-	22:22
19APR	10.0	11.5	7.1	10.4	132.1	.	-	190	,	-	23:38
24APR	13.5	12.5	B.8	13.0	.	14.0	-	.	-		21:11
24APR	10.0	12.4	7.9	12.5	.	14.0	-	-	-	-	22:43
OSMAV	9.0	13.0	8.9	14.6	-	13.0	-	-	,	-	21:09
OSMAY	9.0	13.0	6.2	12.0	-	18.0	.	-	*	*	23:13
22 MAY	19.0	17.0	6.9	9.5	-	31.0	-	-	-	-	$21: 14$ $21: 51$
22MAY	17.5	17.0	7.7	9.3		29.0	-	O	:	-	$21: 51$ $21: 10$
24 MAY	14.5	16.7	7.1	9.4	99.1		-	160	-	-	21:10
29MAY	17.0	19.5	8.0	10.5	.	26.0	-	-	$:$	-	22:57
29may	17.0	19.5	8.0	10.5		21.0	-		$\stackrel{\square}{\square}$	-	$22: 51$ $0: 17$
31 MAY	22.0	20.0	8.0	10.2 9.5	101.6		-	180	-	-	22:57
O6JUN	17.0	22.0	8.2	9.5	.	21.0 23.0	$\stackrel{ }{*}$	-	-	-	$22: 57$ $23: 39$
O6JUN	17.0	22.0	8.3	9.6	-	23.0 20.0	-	-			21:18
12 JUN	20.5	21.1	7.7	10.5	-	20.0	-	-			21:32
12 JUN	19.0	21.2	7.7	10.8		14.0	-		-		$21: 32$ $0: 47$
14JUN	20.0	21.0	7.5	11.0	99.1		,	200	-		23:22
21JUN	20.5	18.7	6.4	8.8	-	27.0	-	-	-	-	23:38
21 JUN	21.0	18.7	7.0	9.2	-	34.0	-	-	-	-	23:38
28 JUN	20.0	22.0	6.7	8.3	-	41.0	-	-	-	.	1:02
28JUN	20.0	22.0	6.8	8.3		36.0	-	150	-	-	23:56
28JUN	20.0	22.4	7.2	8.3	17.8		-	150			21:33
O6JUL	22.5	23.8	7.6	10.1	-	27.0	-	-			21:49
06JUL	23.0	24.0	8.0	10.2	.	27.0	-	-	*		22:59
10JUL	27.0	26.5	7.8	9.9	-	23.0	-	*	-	-	23:12
10JUL	27.0	26.5	7.8	10.0	-	22.0	.	-	-	,	21:50
17 JUL	19.5	19.5	7.1	9.0	-	40.0	.	.	-	-	23:31
17JUL	19.0	19.0	7.3	9.0	-	42.0	-	-	-	.	23:46
24JUL	24.5	23.0	7.6	7.5	-	24.0	-	-			23:26
24JUL	23.0	23.0	8.0	7.5		34.0	-	180			22:04
25JUL	23.5	24.9	7.6	8.4	43.2		-	180	-	-	21:34
glaug	22.5	21.2	8.6	9.1	-	2.0	-	.	-	-	21:47
OIAUG	22.0	21.5	7.7	9.1	-	17.0	.	-	-	.	22:30
07AUG	18.5	26.0	8.8	8.8	-	14.0 15.0	-	*	-	.	23:07
O7AUG	18.0	26.0	8.8	8.7 10.4	139.7	15.0	-	275	-	.	23:00
10AUG	15.5	23.9		10.4	139.7	9.0	-	275	"	-	22:07
1 IGAUG	24.8	25.0	8.6	10.0	-	9.0	-	*	-	.	23:05
IGAUG	23.5	26.8	8.8	11.0	-	12.0	-	-	-	.	21:15
21 AUG	25.0	24.8	8.8	10.2	-	9.0	-	-	-	-	21:20
$214 U G$	24.5	25.0	8.8	9.6	*	9.0	,	-	-	-	21:28

table f-3 continued.

table f-4 water quality data collected at zone 7 Near tmins, 1989.

DATE	TEMPERATURE (C)			$\begin{aligned} & \text { DI SSOLVED } \\ & \text { OXYGEN } \\ & \text { (MG/L) } \end{aligned}$	SECCHI DISC (CM)	CURRENT VELOCITY			$\begin{aligned} & \text { TOTAL } \\ & \text { DISSOLVED } \\ & \text { SOLIDS } \end{aligned}$	SAMPLE DEPTH (M)	TIME OF COLLECTION
	AIR	WATER	PH			(CM/SEC)	( $\mathrm{CM} / \mathrm{SEC}$ )	(UHMOS/SEC)			
05APR	12.0	5.4	7.1	12.0	27.9	13.0	17.0	-	102	2.0	9:00
OGAPR	6.8	5.2	6.9	12.4	.	45.0	.	.	.	.	21:40
OGAPR	6.0	5.1	7.3	12.7	.	58.0	.	.	-	-	21:56
11 APR	4.5	6.2	7.2	12.5	-	30.0	-	-	-	,	21:56
$11 A P R$	3.5	6.1	7.2	12.8		45.0	-	.	-	-	22:26
13APR	9.5	6.9	6.8	11.7	86.4		-	-		-	10:00
17 APR	17.5	9.2	7.6	11.5	.	30.0	-	-		$\cdot$	20:36 $21: 14$
17 APR	15.5	9.5	7.4	11.3		34.0	-	210		-	21:14
19APR	11.5	11.9	7.1	10.9	114.3	2	-	210			20:46
24APR	13.0	12.5	7.9	12.2	.	20.0	.	-	,	-	21:37
24APR	12.5	12.8	8.8	12.5		24.0		-	186	1.3	$21: 48$ $9: 50$
O2MAY	15.0	14.9	7.1	8.5	71.1	13.0	16.0	-	186	1.3	$9: 50$ $21: 29$
OJMAY	9.5	13.2	7.7	10.6	.	22.0 27.0	,	-	-	,	21:29 22:20
DЗMAY	9.0 23.0	13.0	7.3 6.9	13.2 8.8	66.0	27.0	-	-	-	-	11:30
22 MAY	23.0	17.6	6.9	8.8 9.4	66.0	62.0	"	*	-	-	22:20
22 MAY 22 MAY	17.0 16.0	17.2	7.7	9.4 8.4	-	62.0 54.0	'	-	-	:	22:54
22 MAY	16.0	17.2	7.7	8.4 9.3	71.1	54.0	-	210	-	-	23:15
24MAY	14.0	16.4	6.7	9.3 11.0	71.1	27.0	-	210	-	-	21:40
29MAY	19.0	19.1	7.9	11.0		36.0	,	-	-		22:28
29MAY	18.0	18.9	7.6	11.9		36.0	,	-	-		10:05
30MAY	20.0	18.6	7.0	9.6	73.7	-	-	240			20:50
30MAY	23.5	19.7	8.0	11.4	76.2		0	240	171	1.5	20:50
05JUN	22.0	23.2	7:3	8.2	101.6	4.0	8.0	*	171	1.5	21:27
OGJUN	20.0	21.9	7.4	8.9	.	31.0	.	-	-	-	21:54
O6JUN	18.0	21.6	7.9	8.8	,	31.0	-	-	-	-	$21: 54$ $8: 45$
OBJUN	18.0	19.5	7.0	8.9	94.0	26.	,	*	-	-	8:45
12 JUN	17.5	20.5	7.6	10.1	.	26.0	,	-	-	-	23:05
12JUN	17.5	20.5	7.5	10.3	78.7	18.0	-	0	-	,	23:17
I3JUN	21.0	20.7	7.3	10.6	78.7	.	.	250	-	-	21:30
$21 . J U N$	26.0	19.8	6.4	8.6	33.0	$6{ }^{*}$	-	-	-	,	12:00
21 JUN	22.0	19.3	6.7	8.5	.	61.0	.	$\cdot$	-		22:18
$21 . J U N$	22.5	19.5	6.2	8.8	.	70.0	-	-	.		21:43
27JUN	23.7	23.0	6.7	8.2		43.0	-	-	-		22:53
27JUN	22.0	23.0	6.6	7.8	15.	49.0	-	175	-	-	22:53
28JUN	23.0	22.9	7.4	7.9	15.2	5.		175	139	1.5	$21: 18$ $10: 05$
06JUL	22.5	20.3	7.4	8.4	40.6	5.0	0.0	.	139	1.5	10:05
06JUL	22.0	21.2	8.2	10.0	.	44.0	-	.	-	-	23:48
06JUL	21.0	21.2	8.2	9.8		23.0	-	-	$\stackrel{\square}{-}$	-	$23: 48$ $22: 20$
10JUL	27.0	26.2	8.5	10.4	-	34.0	-	-	-	-	22:32
10JUL	27.0	26.2	8.0	11.0	53*	26.0	-	-	*	-	$22: 30$ $9: 50$
19JUL	22.5	20.7	7.0	7.7	53.3	$53^{\circ}$	-	-	-	-	22:10
17JUL	19.5	21.0	6.7	8.6	-	53.0	-	,	*	-	22:40
17 JUL	19.5	20.5	6.9	8.8	-	53.0	-	*	-	-	$22: 40$ $21: 50$
24JUL	25.0	27.0	7.4	8.2	-	33.0	-	-	-	-	21:50
24JUL	25.0	26.5	7.2	8.2	-	29.0	-	-	-	-	22:03

TABLE F-4 CONTINUED.


TABLE F-5 WATER QUALITY DATA COLLECTED AT ZONE E NEAR TMINS, 1989.


TABLE F-5 CONTINUED


TABLE F-6 WATER QUALITY DATA COLLECTED AT ZONE 9 NEAR TMINS, 1989.

DATE	TEMPERATURE (C)			$\begin{aligned} & \text { DISSOLVED } \\ & \text { OXYGEN } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { SECCHI } \\ & \text { DISC } \\ & \text { (CM) } \end{aligned}$	CURRENT VELOCITY			$\begin{gathered} \text { TOTAL } \\ \text { DISSOLVED } \\ \text { SOLIDS } \end{gathered}$	SAMPLE DEPTH (M)	$\begin{aligned} & \text { TIME OF } \\ & \text { COLLECTION } \end{aligned}$
	A 18	WATER	PH			SURFACE (CM/SEC)	BOTTOM   (CM/SEC)	CONDUCTIVITY   (UMMOS/SEC)			
05APR	11.5	5.5	7.5	12.2	27.9	25.0	20.0	-	103	2.2	9:25
DGAPR	7.8	5.2	7.4	12.5		45.0	.		.	.	21:11
11 APR	8.5	6.5	7.5	12.5		38.0	-	-	-	-	20:24
I3APR	10.0	7.1	7.2	11.7	78.7						11:17
17 APR	17.0	10.0	7.5	11.2	119.	30.0	-		-		20:52
19APR	10.3	11.8	7.0	10.3	119.4		-	220	-		22:43
24APR	13.0	12.5	8.0	12.2		12.0		.			21:23
O2MAY	14.0	14.8	7.3	8.7	76.2	11.0	18.0	.	181	1.B	8:30
03may	9.5	13.0	7.3	9.6		20.0	.	-	-	-	22:02
22 may	21.5	17.5	6.7	9.2	76.2	.	-	-	-	-	10:10
z2may	16.5	17.2	7.6	8.8		42.0	-	200	-	-	22:37
25 MAY	12.0	16.2	7.0	9.1	73.7		-	200	-	-	1:21
29may	18.0	19.2	8.0	11.5		30.0	.	-	-	-	$21: 58$ $11: 10$
somay	20.5	18.8	7.0	10.2	91.4	.	$\cdot$	240	-	-	11:10
3OMAY	22.5	19.6	8.0	10.6	86.9 109.2	23.0		240	173	1.5	23:50
O5JUN	22.0	23.0	7.5	8.1	109.2	23.0	19.0	-	173	1.5	22:09
06JUN	18.0	21.8	7.8	B. 8		24.0	-	-	*	-	2:55
OBJUN	18.5	19.7	5.6	8.4	91.4	21.	-	-			22:15
12 JUN	18.0	21.0	7.1	10.1		21.0	-	250	-		23:29
I3JUN	21.5	20.7	7.5	10.4	81.3		*	250	-		$23: 29$ $10: 23$
$21 J U N$	24.0	19.9	6.6	9.6	38.1	49	-	.	-	-	10:23
21 JUN	21.0	19.2	6.4	8.5	.	49.0	-	-	-	*	23:07
27JUN	21.5	23.0	6.8	7.7	15". 2	30.0	*		-	-	22:58
2BJUN	21.0	22,8	7.3	7.9	15.2		23.0	180	$14 \dot{5}^{\circ}$	2.2	$22: 58$ $9: 35$
O6JUL	22.3	20.7	7.1	9.3	33.0	25.0 34.0	23.0	-	145		23:05
D6JUL	21.0	21.0	7.5	10.0	-	34.0 26.0	-	$\stackrel{\square}{*}$	.	-	21:56
10 JUL	27.5	26.5	8.4	10.5	61.0	26.0	-	-	-	-	11:17
14 JUL	24.0	21.2	6.9	8.0	61.0	46.	-	-		-	22:25
17JUL	19.5	21.0	6.6	8.8	-	46.0	-	-			21:34
24JUL	26.0	27.0	7.7	8.2	101*	24.0	-	300	-	-	21:34
26JUL	22.0	27.8	7.3	8.1	101.6	$21^{\circ}$	-	300	*	-	22:58
olaug	20.0	21.0	8.0	8.6	132.	21.0	B	*	217	1.3	$22: 58$ $9: 50$
02aug	23.0	21.0	8.0	B. 3	132.1	10.0	8.0	-	217		9:35
o3aug	26.7	22.9	8.2	9.0	154.9	21.0	-	-			21:31
07AUG	19.5	25.2	8.3	8.5		21.0	-	350	-	-	23:15
osaug	15.5	22.5		11.0	165.1	.	-	350	-	:	11:37
16aug	27.5	25.0	8.2	9.4	167.6	120	-	-	-	.	22:22
1 16AUG	24.5	25.5	8.7	12.0	.	12.0 11.0	$\bullet$	-	:	-	22:54
21 aug	23.5	23.2	8.4	9.5	104.1	11.0	-	275	-	-	22:54
23aug	24.3	25.0	8.2	11.2	104.1		-	275	.	.	21:38
29AUG	23.5	24.1	8.8	10.5		11.0	40	-	324	1.3	9:00
O5SEP	18.0	20.1	8.1	8.7	81.3	6.0	4.0	-	324	1.3	12:07
07 SEP	25.0	25.0	8.4	10.3	99.1	-	-	450	-	-	22:09
12 SEP	20.5	26.1	8.7	10.4	73.7	,	-	450	-	-	12:10
18SEP	18.0	20.3	7.0	8.4	81.3	-	-	-	-	-	12:10

TABLE F-6 CONTINUED,

DATE	TEMPERATURE (C)			$\begin{aligned} & \text { OISSOLVED } \\ & \text { OXYGEN } \\ & \text { (MG/L) } \end{aligned}$	$\begin{aligned} & \text { SECCHI } \\ & \text { DISC } \\ & \text { (CM) } \end{aligned}$	CURRENT VELOCITY			$\begin{aligned} & \text { TOTAL } \\ & \text { DISSOLVED } \\ & \text { SOLIDS } \end{aligned}$	SAMPLE DEPTH   (M)	TIME OF COLLECTION	
							CONDUCTIVITY					
	AIR	WATER	PH			(CM/SEC)	(CM/SEC)	(UHMOS/SEC)				
27 SEP	13.0	15.5			1.0.3	71.1		-	390	$1{ }^{\circ}$		0:10
040CT	10.0	14.9	8.5	9.7	81.3	12.0	4.0	-	218	1.1	9:15	
040CT	10.3	15.0	8.4	10.1	76.2	.	.	375	.	.	22:00	
180CT	10.2	17.5	8.2	8.0	104.1	-	-	.	,	-	9:50	
02 NOV	13.0	12.3	8.0	9.9	137.2	\%	,		185	1.8	13:00	
OENOV	11.5	9.4	8.0	11.2	154.9	3.0	9.0	5	185	1.6	$9: 35$ $20: 52$	
O7NOV	12.0	10.7	7.7	11.6	152.4	.	.	275	-	.	20:52	

TAELE F-7 WATER QUALITY DATA COLLECTED AT ZONE 10 NEAR TMINS, 1989.



[^0]:    * Significant at $P \leq 0.01$.

[^1]:    $\mp$ Less than 0.05\%.

[^2]:    * GR, General Reservoir; YHGS, York Haven Generating Station.

[^3]:    $n$ Significant at $\overline{0} \leq 0.05$.
    ** Significant at $P \leq 0.01$.

[^4]:    » Refer to Figure 7-1 for location.

[^5]:    + Less than 0.05\%.

[^6]:    $K=$ Kept
    $\mathrm{R}=$ Released
    C $=$ Total catch

[^7]:    $K=K e p t$
    $\mathrm{B}=$ Fel eased
    $C=$ Total catch

[^8]:    K = Kept
    $\mathrm{R}=$ Released
    $C$ a Total catch

[^9]:    $K=$ Kept
    $\mathrm{R}=$ Released
    $C=$ Total catch

[^10]:    $\mathrm{K}=$ Kept
    $\mathrm{R}=$ Released
    C = Motal catch

[^11]:    $K=$ Kept
    $\mathrm{R}=$ Released
    $C=$ Total catch

[^12]:    $\mathrm{K}=$ Rept
    R = Released
    $C=$ Total catch

[^13]:    $\mathrm{K}=$ Kept
    R $=$ Released
    $\mathrm{C}=$ Total catch

[^14]:    $\mathrm{K}=$ Kept
    $\mathrm{R}=$ Releasicd
    $\mathrm{C}=$ Total catch

[^15]:    $k=$ Kept
    $\mathrm{R}=$ Released
    $\mathrm{C}=$ Total catch

[^16]:    $\mathrm{K}=\mathrm{Kept}$
    $\mathrm{R}=$ Released
    C = Mbtal catch

[^17]:    $K=$ Kept
    R = Released

[^18]:    $\mathrm{K}=\mathrm{kept}$
    R = Meleased
    C = Iotal catch

[^19]:    $\mathrm{K}=\mathrm{Kef}$
    $\mathrm{F}=\mathrm{inelease}$
    $\mathrm{c}=$ Fotal catch

[^20]:    $\mathrm{K}=\mathrm{Kept}$
    R = Released
    $\mathrm{C}=$ Total catch

[^21]:    $k=$ Kept
    $\mathrm{R}=$ Released
    $\mathrm{C}=$ Fotal catch

[^22]:    I = Kept
    F = Releascd
    $C=$ Total catch

[^23]:    $K=$ Ricpt

    - Releaced
    $C=$ Fotal citch

[^24]:    $\mathrm{I}=\mathrm{Kei} \mathrm{t}$
    $\mathrm{r}=$ neieased
    $\mathrm{C}=$ Total catch
    $*=$ Survey not completed due to darkness

[^25]:    $=$ l:ejit
    $r=$ Released
    $\mathrm{C}=$ = Touril catch

[^26]:    $\bar{l}=$ la;
    $\dot{r}=$ Repit
    $r$
    $\stackrel{r}{i}=$ Relmacd

