

July 7, 2008

ATTN: Document Control Desk U. S. Nuclear Regulatory Commission Washington, DC 20555-0001 Serial No. 08-0211 LIC/GR/R0 Docket No.: 50-305 License No.: DPR-43

DOMINION ENERGY KEWAUNEE, INC. KEWAUNEE POWER STATION LICENSE AMENDMENT REQUEST 239 – REQUEST FOR REVIEW AND APPROVAL OF SEISMIC ANALYSIS METHODOLOGY FOR AUXILIARY BUILDING CRANE

Pursuant to 10 CFR 50.90 Dominion Energy Kewaunee, Inc. (DEK) requests Nuclear Regulatory Commission (NRC) approval of a proposed license amendment request (LAR) for the Kewaunee Power Station (KPS). The proposed amendment would allow the use of a methodology to determine the seismic loads on the recently upgraded Auxiliary Building (AB) crane. The AB crane has recently been upgraded to a single-failure-proof design through replacement of the crane trolley and modification of the existing crane bridge. The proposed new methodology is not currently described in the KPS Updated Safety Analysis Report (USAR) or the codes of reference applicable to the upgraded AB crane.

Specifically, DEK requests NRC approval to use a nonlinear analysis method to determine the response of the AB crane structure during a design basis seismic event. This nonlinear analysis method includes consideration of the crane trolley and bridge drive wheels rolling under seismic loads. The consideration of wheel rolling, which makes the analysis nonlinear, occurs when the seismic load exceeds the trolley and bridge drive wheel brake resisting force. The proposed nonlinear analysis method constitutes a departure from a method of evaluation as described in the KPS USAR because the method is not described in the USAR or in applicable NRC-endorsed guidance. Use of the proposed nonlinear analysis method would be limited to the AB crane seismic analysis.

Additional information and documents to support this LAR are provided as attachments to this letter. Attachment 1 provides a detailed description of the proposed amendment, background and technical analysis, and a no significant hazards consideration determination, and an environmental review consideration. Attachment 2 provides marked-up USAR pages showing proposed changes. Attachment 3 provides a

depiction of the crane mathematical model used in the nonlinear analysis. Also enclosed are non-proprietary general arrangement drawings of the upgraded KPS AB crane bridge and trolley (enclosure 1) and the calculation documenting the development of the seismic time histories used in the nonlinear analysis (enclosure 2).

The AB crane modification and functional testing have been successfully completed and the crane has been turned-over to Operations for limited use, pending approval of this LAR. The AB crane is currently available for use under administrative controls that restrict the lifted load to no more than 50 tons on the main hoist. The modified AB crane has been seismically analyzed using the current linear analysis method to confirm its structural adequacy with a load of up to 50 tons suspended from the main hoist.

As previously discussed with the NRC staff, this LAR will consist of two letters. This letter constitutes the first letter, and describes the approach, inputs, assumptions, and modeling used in the nonlinear analysis to develop the seismic response of the crane structure. It is this methodology for which NRC approval is requested. The second letter, scheduled for August 8, 2008, will be confirmatory in nature, providing the results of the AB crane seismic analyses using the nonlinear method. This two-letter approach is necessary to allow sufficient time for the NRC staff review of this amendment request. The proposed amendment needs to be approved in order to begin using the crane to lift and handle spent fuel storage casks in the summer of 2009.

The KPS Facility Safety Review Committee has approved the proposed amendment and a copy of this request has been provided to the State of Wisconsin in accordance with 10 CFR 50.91(b).

DEK requests approval of the proposed amendment by April 30, 2009 in order to support the dry spent fuel storage loading schedule and to allow restoration of full core offload capability in the KPS spent fuel pool. Upon NRC staff approval of this amendment request, the KPS USAR will be revised, similar to that shown in attachment 2, pursuant to 10 CFR 50.71(e).

Serial No. 08-0211 License Amendment Request 239 Page 3 of 5

If you have any questions or require any additional information, please contact Mr. Gerald Riste at (920) 388-8424.

Very truly yours,

Gerald T. Bischof Vice President-Nuclear Engineering

COMMONWEALTH OF VIRGINIA

COUNTY OF HENRICO

The foregoing document was acknowledged before me, in and for the County and Commonwealth aforesaid today by Gerald T. Bischof, who is the Vice President-Nuclear Engineering of Dominion Energy Kewaunee, Inc. He has affirmed before me that he is duly authorized to execute and file the foregoing document in behalf of that Company, and the statements in the document are true to the best of his knowledge and belief.

Acknowledged before me this $\underline{7^{4}}$ day of $\underline{}$ 2008.

aret B. Bennett Notary Public

MARGARET B. BENNETT Notary Public 354302 Commonwealth of Virginia My Commission Expires Aug 31, 2008

Serial No. 08-0211 License Amendment Request 239 Page 4 of 5

Attachments:

- 1. Evaluation of License Amendment Request 239
- 2. USAR Mark-up Pages for License Amendment Request 239 (Information Only)
- 3. KPS AB Crane Seismic Analysis Mathematical Model

Enclosures:

- 1. General Arrangement Drawings of Upgraded Auxiliary Building Crane
- ABS Consulting Calculation No. 1886592-C-001, "Generation of Artificial Seismic Time Histories for the Fuel Cask Bridge Crane at Kewaunee Power Station," Revision 1

Commitments made by this letter:

- 1. DEK will submit the results of the analyses performed using the nonlinear seismic analysis methodology described in this LAR.
- 2. DEK will perform a "push" test to provide empirical data documenting the force required to induce crane trolley and bridge drive wheel rolling with the brakes applied. The results of the test will be provided to the NRC.
- 3. DEK will have an independent peer review performed of the nonlinear structural model and outputs of the nonlinear analysis to confirm the methodology is appropriate for the application and provide a summary of the review to the NRC.

Serial No. 08-0211 License Amendment Request 239 Page 5 of 5

Regional Administrator U.S. Nuclear Regulatory Commission Region III 2443 Warrenville Rd. Suite 210 Lisle, IL 60532-4532

Mr. J. S. Cushing Senior Project Manager U.S. Nuclear Regulatory Commission One White Flint North Mail Stop O8-H4A 11555 Rockville Pike Rockville, MD 20852-2738

Resident Inspector Kewaunee Power Station

Public Service Commission of Wisconsin Electric Division P.O. Box 7854 Madison, WI 53707

i cc:

ATTACHMENT 1

LICENSE AMENDMENT REQUEST 239 REQUEST FOR REVIEW AND APPROVAL OF SEISMIC ANALYSIS METHODOLOGY FOR AUXILIARY BUILDING CRANE

EVALUATION OF LICENSE AMENDMENT REQUEST 239

KEWAUNEE POWER STATION DOMINION ENERGY KEWAUNEEE, INC.

Serial No. 08-0211 Attachment 1 Page 1 of 15

EVALUATION OF LICENSE AMENDMENT REQUEST 239 Request for Review and Approval of Seismic Analysis Methodology Regarding Auxiliary Building Crane

1.0 DESCRIPTION

This submittal is a request to amend Operating License No. DPR-43 for the Kewaunee Power Station (KPS). KPS has implemented modifications to the Auxiliary Building (AB) crane that have made the crane a single-failure-proof design. In accordance with 10 CFR 50.90 and 10 CFR 50.59, Nuclear Regulatory Commission (NRC) staff review and approval is required for the proposed changes to the design and licensing basis as described in the KPS Updated Safety Analysis Report (USAR). Specifically, Dominion Energy Kewaunee, Inc. (DEK) proposes to revise the KPS USAR to allow the use of a nonlinear analysis methodology for determining the seismic response of the upgraded AB crane.

This nonlinear analysis methodology is not part of the KPS current licensing basis or in NRC-approved guidance for such analyses. KPS plans to use the AB crane for spent fuel cask loading operations in the spent fuel pool. A separate license amendment request (LAR) 227 (reference 12) was previously submitted to the NRC to modify and relocate a Technical Specification (TS) pertaining to handling of heavy loads in and around the spent fuel pools. LAR 227 is currently under review by the NRC staff. Approval of both LAR 227 and this LAR are needed to allow use of the upgraded AB crane for spent fuel cask loading operations. The following provides a description, purpose, and detailed justification for the proposed amendment; an evaluation of no significant hazards consideration; and an environmental impact evaluation.

As previously discussed with the NRC staff, this LAR will consist of two letters. This letter is the first of the two and describes the approach, inputs, assumptions, and modeling used in the nonlinear analysis to develop the seismic response of the crane structure. It is this methodology for which NRC approval is requested. The second letter will be confirmatory in nature, providing the results of the AB crane seismic analyses using the nonlinear method.

2.0 PROPOSED CHANGE

The purpose of this amendment request is to modify the KPS design and licensing basis to allow the use of a nonlinear analysis methodology to determine the response of the modified AB crane to a design basis seismic event. This methodology would consider the AB crane bridge and trolley free to roll if seismic forces overcome the brake resisting forces acting on their respective drive wheels. A modification has recently been completed to replace the existing non-single-failure-proof crane trolley with a single-failure-proof design. The load rating of the crane main hoist remains unchanged at 125 tons and the auxiliary hoist load rating has been increased from 10 tons to 15 tons.

Serial No. 08-0211 Attachment 1 Page 2 of 15

Although the AB crane bridge was not replaced, it is being re-analyzed because the new bridge-and-trolley combination is different than the original.

The upgraded AB crane meets applicable NRC and industry guidance for single-failureproof-cranes provided in NUREG-0612 (reference 1) and NUREG-0554 (reference 2). However, the seismic analysis of the upgraded AB crane requires the use of a nonlinear analysis methodology not previously approved for this application at KPS. The scope of this amendment request is limited to the nonlinear analysis method proposed for use in determining the seismic response of the crane support structure.

The proposed nonlinear analysis methodology considers rolling of the trolley and bridge drive wheels as described in detail later in this attachment. The nonlinear analysis methodology will be used to simulate drive wheel rolling when calculating the seismic response of the crane and support structure. A capacity check of the crane trolley using the loads created by these forces and displacements will be performed in accordance with current NRC-endorsed codes and standards. The capacity check for the AB crane bridge and crane support structure will be performed in accordance with the applicable codes and standards in the KPS current licensing basis. Therefore, NRC approval is not requested for the capacity check work. More specific discussion of the licensing basis and applicable codes and standards for the crane is provided in Sections 3.0 and Following NRC approval of this amendment request, the KPS USAR will be 4.1. modified in accordance with 10 CFR 50.71(e) to include appropriate changes to reflect the new methodology. Attachment 2 provides information only mark-ups of the proposed USAR changes.

3.0 BACKGROUND

DEK intends to operate an Independent Spent Fuel Storage Installation (ISFSI) at the KPS site starting in mid-2009 under the general license provisions of 10 CFR 72. Subpart K. DEK will be using the Transnuclear, Inc. Standard NUHOMS dry spent fuel storage system in accordance with 10 CFR 72 Certificate of Compliance 1004. The Standard NUHOMS System requires the use of a transfer cask weighing up to 125 tons during cask loading operations in the AB. The KPS AB crane will be used to lift and move transfer casks between the cask loading area of the spent fuel pool and the truck bay. The original AB crane was a 125-ton capacity, non-single-failure-proof, Whiting Corporation bridge and trolley design of late-1960s vintage. To facilitate its use in dry spent fuel storage system loading operations, the AB crane has been upgraded to a single-failure-proof design by replacing the trolley with a single-failure-proof design and modifying the existing bridge. The design rated load (DRL) and maximum critical load (MCL) for the AB crane remains unchanged at 125 tons for the main host. The auxiliary hoist DRL has been increased from 10 tons to 15 tons. The AB crane requires reanalysis of its ability to withstand a design basis seismic event due to a 20-ton increase in trolley weight and differences in the design and arrangement of the new trolley compared to the original trolley.

Serial No. 08-0211 Attachment 1 Page 3 of 15

The KPS AB crane is designated Service Class A in accordance with Crane Manufacturer's Association of America Standard 70 (CMAA 70) (reference 7), Section 2.2. The AB crane has a Class I* nuclear safety design classification in accordance with KPS USAR Appendix B, Section B.2.1. Components designated as Class I* are designed to Class I Design Basis Earthquake (DBE) loading and treated as Class III in all other respects¹. In short, the Class I* designation means that under all credible operating conditions and failure modes, the AB crane must not experience uncontrolled lowering of the load, and the trolley and bridge wheels must remain on their respective rails under a seismic event. It is not required that the crane remain operational.

In order to comply with the requirements for a single-failure-proof crane, the AB crane must be able to withstand the loads induced by the safe shutdown earthquake (SSE) with full rated load suspended from the crane hook. In NUREG-0800, Section 9.1.5 (reference 6), the NRC staff endorsed ASME NOG-1-2004, "Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, Multiple Girder)," (reference 5) as an acceptable methodology for performing seismic analyses of crane systems. ASME NOG-1-2004 allows the use of either linear response spectrum seismic analysis or linear time history seismic analysis.

For the linear analysis methods, the crane mathematical model for seismic analysis of cranes is set forth in ASME NOG-1-2004, Figure 4154.3-1. This model imposes restraints at the interface between the bridge and trolley drive wheels and their respective rails. However, in reality the drive wheels are driven and stopped by suitably designed motors, drive shaft gearing, and drive shaft brakes. If the braking systems have less capacity than the applied seismic loads, then the drive wheels will roll with a constant brake resisting force. The rolling of the trolley drive wheels and/or the bridge drive wheels constitutes a nonlinear behavior of the crane system during a seismic event. The methodology used to capture this nonlinear behavior during the seismic event is the subject of this LAR.

The methods used to calculate other required loads (dead and live loads), combine seismic loads with the other loads, and the acceptance criteria used in the structural capacity checks will be in accordance with applicable industry standards that have been endorsed by the NRC or are part of the KPS current licensing basis.

Two basic tasks are required to perform the nonlinear seismic analysis of the AB crane system. The first required task is development of the nonlinear element in the mathematical model that simulates the limited resistance of the braking system on the trolley and bridge drive wheel shafts. This nonlinear model element allows movement

¹ As stated in KPS USAR, Section B.2.1, Class I structures and components are those whose failure might cause or increase the severity of a loss-of-coolant accident or result in an uncontrolled release of substantial amounts of radioactivity, and those structures and components vital to safe shutdown and isolation of the reactor. Class III structures and components are not directly related to reactor operation or containment.

of the trolley and/or bridge along the rails after known level of force (the breakaway force) on the brakes is achieved. A push test will be conducted to validate the forces in the model associated with the wheel-rolling phenomenon.

The second required task is generation of artificial seismic time histories at the top of the AB crane rail for the SSE. The DBE for the upgraded AB crane design is the SSE. The artificial seismic time histories represent the accelerations at the AB crane rail over the duration of the design basis earthquake. There are special requirements for the development of seismic time histories used in nonlinear analyses. These special requirements are above and beyond those typically used for linear time history analyses. These special requirements primarily pertain to the uncertainty associated with nonlinear analyses. The seismic time histories used in the nonlinear analysis of the KPS AB crane were prepared in accordance with "Option II" described in NUREG-0800, Section 3.7.1 (reference 9).

In summary, DEK is requesting review and approval of the nonlinear seismic analysis methodology to be used for the seismic analysis of the AB crane. The specific nonlinear behavior considered in the proposed methodology is the rolling of the trolley and bridge drive wheels along their respective rails when the applied seismic load exceeds the brake resisting force. This submittal proposes to eliminate the overly conservative assumption that the AB crane trolley and bridge drive wheel brakes have an unlimited capability to resist seismic-induced forces by using a nonlinear seismic analysis methodology to represent the limited capacity of the drive wheel brakes.

4.0 TECHNICAL ANALYSIS

4.1 Applicable Codes and Standards

The AB crane is described in KPS USAR Section 9.5.2.12, "Auxiliary Building Crane." The original crane was non-safety-related and non-single-failure-proof. It was designed and procured as a commercial grade item during initial plant construction in accordance with EOCI Standard 61; ANSI B30.2.0, 1967 Edition; and Pioneer Service and Engineering Company Specification for Powerhouse Overhead Electric Traveling Cranes.

KPS Safety Design Classification I* for the AB crane ensures that the seismic design of the crane is such that a DBE will not result in an uncontrolled lowering of the lifted load and the bridge and trolley wheels will not leave their rails with a load suspended, up to and including the 125-ton rated load of the crane. The crane upgrade project has enhanced the design of the AB crane by replacing the existing trolley with a single-failure-proof trolley constructed in accordance with the guidance in NUREG-0554.

NUREG-0554 is the governing NRC guidance document for the design of single-failureproof cranes for nuclear power plant service, including upgrades of existing cranes. In

Serial No. 08-0211 Attachment 1 Page 5 of 15

general, NUREG-0554 either provides specific guidance or invokes the guidance in CMAA-70 for design work. CMAA-70 is a commercial crane code and does not provide guidance in all areas necessary for nuclear plant service. ASME NOG-1 provides guidance for cranes in nuclear plant service.

The choice of governing codes and standards for the KPS crane upgrade project was based on replacing the trolley and using the existing bridge. The design phase of the project was initiated and the applicable codes governing the upgraded crane's design were selected prior to the NRC's March 2007 endorsement of NOG-1-2004 in Standard Review Plan 9.1.5, Revision 1. Therefore, the primary design code used for the KPS AB crane upgrade was CMAA-70 rather than ASME NOG-1-2004. However, in areas where detailed guidance is not provided in NUREG-0554 or CMAA-70, such as for the seismic analysis, the guidance in ASME NOG-1-2004 was used. In summary, the NRC has endorsed the principal codes and standards used in the project.

4.2 Upgraded AB Crane Seismic Analysis

This section describes the response spectra, damping, time histories, computer models, crane/hoist load combinations, and analysis work that are being used to perform the seismic analyses of the crane. These analyses will produce the seismic-induced forces and displacements on the AB crane and its support structure. These seismic-induced forces and displacements, when combined with the appropriate dead and live load combinations, will be used to compute the loads used for the structural capacity checks of those components for the seismic load condition.

4.2.1 Background and General Overview of Approach

The KPS AB crane is designated Class I* as stated in the KPS USAR, Appendix B, Table B.2-1. In accordance with USAR, Section B.2.1, Class I* components are designed to Class I DBE dynamic loading and are treated as Class III in all other respects. This includes the trolley, bridge, and AB crane support system. In general, the response spectra for seismic analysis performed for the Kewaunee plant are documented in a report developed by John A. Blume and Associates for Pioneer Service and Engineering Company in 1971 (reference 8), hereafter referred to as the "Blume Report." The Blume Report, however, does not include horizontal response spectra for a mass point at the location of the AB crane rails. Therefore, new horizontal response spectra and horizontal and vertical time histories were developed for this analysis, as discussed in the sections that follow.

In performing the seismic analysis of the crane, a nonlinear time history analysis methodology is being used. This analysis uses a computer model of the crane in representative trolley and bridge positions and hook load configurations consistent with ASME NOG-1-2004. The nonlinear time history analysis of the upgraded AB crane is being performed using the SAP 2000 computer program, Version 11. A peer review of the seismic inputs for the nonlinear analysis has been performed by an independent

consultant, Dr. Robert Kennedy of RPK Structural Mechanics Consulting. Dr. Kennedy will also perform a peer review of the nonlinear structural model and the outputs of the nonlinear analysis.

An overview of the AB crane seismic analysis is provided below as a series of tasks:

- Task 1: Develop horizontal DBE amplified response spectra at the AB crane rail using the Blume Report as the design input. Vertical response spectra are taken directly from the Blume Report.
- Task 2: Develop artificial seismic time histories at the AB crane rail that are suitable for nonlinear seismic time history analysis.
- Task 3: Develop the crane structural computer model that simulates the nonlinear behavior of the bridge and trolley drive wheel brake system.
- Task 4: Conduct the nonlinear seismic analysis of the crane structure to obtain forces and displacements to be used in combination with other load cases for capacity checks.

4.2.2 Modeling the Behavior of the Braking System

The mathematical model used in the nonlinear seismic analysis of the AB crane is consistent with Figure 4154.3-1 of NOG-1-2004. See attachment 3 for a depiction of the KPS AB crane seismic analysis mathematical model. The restraint conditions at the nodes are consistent with Table 4154.3-1 of NOG-1-2004, with one exception. The one exception is that the nodes representing the trolley and bridge drive wheels are free to move in the direction parallel to their rails after the drive wheel brake force in that direction has been exceeded. Using NOG-1-2004, Figure 4154.3-1 as a reference, the modeling exception applies to bridge wheel Nodes A and C in the "Y" direction and trolley wheel nodes E and F in the "X" direction.

Nodes A, C, E, and F in the mathematical model of the AB crane are restrained in the directions parallel to the rail until the seismic forces in that direction overcome the drive wheel brake force. When the brake forces are exceeded, the wheels are allowed to translate in the dynamic model. This phenomenon represents the nonlinear nature of the analysis. A push test will be conducted to validate the brake resisting forces used in the nonlinear analysis. The push test will be performed for both the trolley and the bridge girder.

4.2.3 DBE Response Spectra and Damping (Task 1)

New horizontal response spectra at the AB crane rails were developed for use in the seismic analyses. Vertical response spectra were taken directly from the Blume Report. A separate response spectrum was developed for each horizontal direction of seismic

Serial No. 08-0211 Attachment 1 Page 7 of 15

input (i.e., north-south and east-west). Two percent damping was used in all three spectra in accordance with the criteria for steel structures in the KPS USAR. Horizontal response spectra were developed for the frequency range of 0.1 to 40 Hertz in accordance with NUREG-0800, Section 3.7.1 (reference 9) and Regulatory Guide 1.122 (reference 10).

4.2.4 DBE Acceleration Time Histories at the Crane Rails (Task 2)

The overall approach and acceptance criteria used to generate the needed acceleration time histories is consistent with the basic guidance described in NUREG-0800, Section 3.7.1, Revision 3. This section of the Standard Review Plan (SRP) is mainly focused on the development of the design ground motion time histories for the seismic analysis of structures. Thus, it is used herein with the understanding that some of the guidelines may not be directly applicable for seismic time history generation where the target motion has already been amplified and filtered by the dynamic characteristics of the supporting Auxiliary Building structure. However, the intent of SRP 3.7.1, Revision 3 is met.

Because the analysis of the crane structure is a nonlinear time history seismic analysis, five sets of artificial time histories, each containing three directional components, were developed. This is consistent with SRP 3.7.1, Section II.1.B, Option II, and meets the intent of paragraph 3.3.2 of ASCE/SEI 43-05, "Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities," (reference 13). Each of the fifteen artificial time histories generated uses an actual recorded earthquake motion as the starting seed. The seed records were selected from available recorded earthquake ground motions obtained from the U.S. Geological Survey database. The criteria used for selecting the earthquake seed records was based on the earthquake magnitude, duration and the required low and high frequency content characteristics.

SRP 3.7.1, Section II.1.B, Option II, "Multiple Sets of Time Histories," was used as guidance for the acceptance criteria for the generation of the artificial time history sets. In addition to the criteria stated in the SRP, each time history developed was baseline corrected (except for one, see enclosure 2, sheet D14) for peak acceleration at high and low frequency consistent with RG 1.122 (reference 10). The statistical independence of the three acceleration components from each of the five sets was validated by calculating the correlation coefficients. The absolute value of the correlation coefficients are all less than 0.16, consistent with the acceptance criteria in SRP 3.7.1, Section II.1.B. The strong motion duration meets or exceeds the guidance contained in Section 2.3 of ASCE 4-98, "Seismic Analysis of Safety-Related Nuclear Structures," (reference 14).

Enclosure 2 provides a detailed description of the methodology that was used to generate the artificial time histories that will be used for the nonlinear analysis of the AB crane. The report also contains plots of all fifteen generated time history accelerations, velocities and displacements. In addition, plots are provided for comparison of the

Serial No. 08-0211 Attachment 1 Page 8 of 15

calculated two percent damped response spectra to the target spectra for each direction.

4.2.5 Crane Configurations for Analysis

Table 4.2.5-1 below lists the crane configurations to be analyzed. These configurations were chosen in accordance with the guidance in NOG-1-2004. The trolley is assumed to be at the mid-span, quarter-span, and end-span trolley locations to encompass the entire travel path.

Case	Trolley	Mai	n Hoist	Auxiliary Ho	
No.	Position	Load (tons)	Block	Load (tons)	Block
01	mid-span	125	Raised	0	Raised
02	quarter-span	125 🦸	Raised	0	Raised
03	end-span	125	Raised	· 0	Raised
04	mid-span	0	Raised	0	Raised
05	quarter-span	0	Raised	. 0	Raised
06	end-span	0	Raised	0	Raised
07	mid-span	125	Lowered	0	Raised
08	quarter-span	125	Lowered	0	Raised
09	end-span	125	Lowered	· 0	Raised
10	mid-span	0	Raised	15	Raised
11	quarter-span	0	Raised	15	Raised
12	end-span	0	Raised	15	Raised
13	mid-span	0	Raised	15	Lowered
14	quarter-span	0	Raised	15	Lowered
15	end-span	0	Raised	15	Lowered

Table 4.2.5-1Seismic Analysis Crane Configurations

Each of the configurations above will be analyzed for the five different time history sets (i.e., a north-south, east-west, and vertical time history in each set).

4.2.6 Seismic Model (Task 3)

A three-dimensional (3-D) crane model was developed for use with the SAP 2000, Version 11 computer program, including the bridge girders, bridge end trucks, bridge end ties, trolley structure, wire ropes, and lifted loads. The stiffness and weight properties of the crane components are consistent with the as-built crane. The crane model attributes include:

¹1. Fundamental crane systems, structures, and components:

a. Crane bridge, consisting of girders, end trucks and end ties.

- b. A simplified trolley assembly, representing the frequency of the trolley in three directions.
- 2. Simplified pendulum lifted load. The wire rope is modeled as an elastic link element hinged at the top connection to the trolley with the weight of the lower block and lifted load modeled at the bottom. The lower block and wire rope models will be tuned to model the vertical elastic stiffness and the two horizontal direction pendulum frequencies.
- 3. Trolley travel limits and pre-set nodal points for establishing trolley end, quarterspan, and mid-span locations.
- 4. Restraint conditions in accordance with ASME NOG-1-2004, Section 4154, except that nonlinear resistance elements will be modeled at the interface between the bridge and trolley drive wheels and their respective rails to model the rolling phenomenon.

The finite element model of the crane that was used for the nonlinear seismic analysis is consistent with the guidance in Sections 4154.1 through 4154.4 of ASME NOG-1-2004. The exception taken from NOG-1-2004 involves modeling of the restraint conditions at the drive wheels for both the trolley and the bridge girder. NOG-1-2004, Table 4154.3-1 requires that these nodes be modeled as restrained in all three translational directions. For the bridge girder, the restrained boundary condition in the transverse direction (Y direction as shown in Figure 4154.3-1 of ASME NOG-1-2004) was replaced with a nonlinear element. This nonlinear element restrains movement in the transverse direction until the maximum brake force is reached. After the maximum brake force is exceeded, the nonlinear element allows the bridge drive wheels to roll with a constant brake resisting force. In a similar manner, the restrained boundary condition for the trolley drive wheels in the transverse direction (X direction as shown in Figure 4154.3-1 of ASME NOG-1-2004) was replaced with a nonlinear element. The nonlinear element restrains the trolley from movement in the transverse direction until the maximum trolley brake force is achieved. Thereafter, the trolley is allowed to roll with a constant brake resisting force.

Attachment 3 shows an SAP 2000 model depicting the eight-wheel crane having the trolley at mid-span with the main hoist hook lowered and the auxiliary hook in the raised position. The figure is provided for information purposes to show the level of detail used in the model of the AB crane for the nonlinear analysis. Other similar models have the trolley located at the quarter-span and at the end of the bridge and have different hook positions. Greater analysis detail, including geometry, weights, member properties, trolley and bridge wheel boundary/interface conditions, and descriptions of the non-linear elements associated with drive wheel rolling will be included in the detailed seismic analysis package.

4.2.7 Analysis Outputs (Task 4)

The seismic-induced forces and displacements on the AB crane will be the outputs of the nonlinear analyses. The results of each seismic analysis set will be added together (e.g., element forces, nodal point motions), and then the summed values averaged. The averaged seismic analysis results will then be combined with the corresponding dead load and live load non-time history analysis results in accordance with the NOG-1-2004 combinations and used in the structural capacity checks of the trolley, bridge, and AB crane support structure.

4.2.8 Summary

The nonlinear seismic analysis for the AB crane structure is being performed in accordance with applicable industry codes and standards. The seismic input time histories were developed consistent with SRP 3.7.1 for nonlinear analysis. The basic mathematical model of the crane is consistent with the guidance in ASME NOG-1-2004 with the exception of the nonlinear boundary conditions. A push test of the crane trolley and bridge will be performed to validate the nonlinear boundary condition in the structural model.

Based on the above, the nonlinear analysis methodology used to determine the seismic response of the upgraded Kewaunee AB crane is acceptable because:

- Seismic time history inputs used in the analysis were developed in accordance with the applicable requirements of SPR 3.7.1
- The nonlinearity is limited to the interface between the drive wheels and the rails. The behavior of the nonlinear element will be validated by testing
- The analysis methods used to solve the nonlinear problem are well established and have been benchmarked to demonstrate that they converge to the correct solution

5.0 REGULATORY SAFETY ANALYSIS

5.1 No Significant Hazards Consideration

Dominion Energy Kewaunee, Inc. (DEK) proposes to modify the Kewaunee Power Station (KPS) licensing basis by adding a new method for the seismic analysis of the KPS Auxiliary Building (AB) crane. This new method of analysis is a nonlinear seismic analysis of the crane that considers trolley and bridge drive wheel rolling after the brake resisting force is exceeded. The proposed new methodology is otherwise consistent with the recommended methods for seismic analysis of cranes in ASME NOG-1-2004, which is silent regarding consideration of rolling. The proposed methodology is consistent with NRC and industry guidance for such analyses. DEK has evaluated whether or not a significant hazards consideration is involved with the proposed amendment by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of Amendment," as discussed below:

1.

Does the proposed amendment involve a significant increase in the probability or consequences of an accident previously evaluated?

Response: No.

This amendment request pertains solely to a nonlinear seismic analysis method supporting the upgrade of the KPS AB crane from a non-single-failure-proof design to a single-failure proof design. Specifically, the existing AB crane trolley has been replaced with a state-of-the-art design that is single-failure-proof. The AB crane does not interface with operating plant equipment. The crane will continue to be able to withstand a design basis seismic event without an uncontrolled lowering of the load. The probability of a load drop is not increased by the proposed change in methodology.

The seismic analysis methodology proposed for use recognizes the inherent propensity for structures not fixed to one another (e.g., steel wheels on steel rails) to roll if sufficient lateral force is applied. This seismic analysis method is proposed for use solely on the AB crane upgrade and not for any other plant structures, systems, or components. The recognition of wheel rolling between the AB crane trolley and bridge and their respective rails reflects the true nature of the installed equipment and its response to horizontal forces generated by a seismic event.

Therefore, the proposed amendment does not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Does the proposed amendment create the possibility of a new or different kind of accident from any accident previously evaluated?

Response: No.

This amendment request pertains to an analysis method supporting the upgrade of an existing plant component. Specifically, the existing AB crane trolley has been replaced with a state-of-the-art design that is single-failure-proof. The AB crane does not interface with operating plant equipment. This seismic analysis methodology is proposed for use solely on the AB crane upgrade and not for any other plant structures, systems, or components.

The design rated load of the AB crane main hoist remains the same at 125 tons. This load bounds the design and supporting analysis. The auxiliary hook design rated load has been increased from 10 tons to 15 tons. The proposed

Serial No. 08-0211 Attachment 1 Page 12 of 15

amendment does not change the currently acceptable heavy load handling practices in use at KPS. The number and types of lifts made using this crane in support of KPS plant operations will not significantly change from those contemplated during original plant licensing. Furthermore, the basic operations of the crane (i.e., hoisting and horizontal travel) remain the same.

Therefore, the proposed amendment does not create a new or different kind of accident from any accident previously evaluated.

3. Does the proposed amendment involve a significant reduction in a margin of safety?

Response: No.

Although the proposed new methodology supports the upgrade of the KPS AB crane from a non-single-failure-proof to a single-failure-proof design, the margin of safety under consideration in this evaluation is based on that contained within the safety analysis (seismic analysis).

The purpose of this methodology is to determine the design loads (forces and moments), accelerations, and displacements on the AB crane and building support structure. These loads will subsequently be used to perform the structural analysis of these components to confirm that the design meets all applicable acceptance criteria using previously approved industry codes and standards for such analyses, including ASME NOG-1-2004 and CMAA-70 (2004). If the stresses computed in the structural components as a result of a seismic event are less than the limits contained in these codes, the structural integrity of the crane is maintained and a suspended load will remain suspended during a seismic event. Meeting these code limits maintains an acceptable margin of safety for the individual components and the crane as a whole.

Therefore, the proposed amendment does not involve a significant reduction in a margin of safety.

5.2 Applicable Regulatory Requirements/Criteria

The U.S. Atomic Energy Commission (AEC) issued their Safety Evaluation (SE) of Kewaunee on July 24, 1972 with supplements dated December 18, 1972 and May 10, 1973. Section 3.1, "Conformance with AEC General Design Criteria," of the AEC's SE described the conclusions the AEC reached associated with the General Design Criteria in effect at the time. The AEC SE stated:

"The Kewaunee plant was designed and constructed to meet the intent of AEC's General Design Criteria, as originally proposed in July 1967. Construction of the plant was about 50% complete and the Final Safety

Analysis Report (Amendment 7) had been filed with the Commission before publication of the revised General Design Criteria in February 1971 and the present version of the criteria in July 1971. As a result, we did not require the applicant to reanalyze the plant or resubmit the FSAR. However, our technical review did assess the plant against the General Design Criteria now in effect and we are satisfied that the plant design generally conforms to the intent of these criteria."

As such, the appropriate General Design Criteria KPS is licensed to, per the Final Safety Analysis Report (Amendment 7), which has now been updated and is entitled the Updated Safety Analysis Report (USAR), are listed below.

5.3 Kewaunee Design Criteria

1. <u>Criterion 2 – Performance Standards</u>

Those systems and components of reactor facilities which are essential to the prevention of accidents which could affect the public health and safety or to mitigation of their consequences shall be designed, fabricated, and erected to performance standards that will enable the facility to withstand without loss of the capability to protect the public. The additional forces that might be imposed by natural phenomena include those such as earthquakes, tornadoes, flooding conditions, winds, ice, and other local site effects. The design bases so established shall reflect:

- a) appropriate consideration of the most severe of these natural phenomena that have been recorded for the site and surrounding area, and
- b) an appropriate margin for withstanding forces greater than those recorded to reflect uncertainties about the historical data and their suitability as the basis for design.

5.4 Conclusion

In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.

Serial No. 08-0211 Attachment 1 Page 14 of 15

6.0 ENVIRONMENTAL CONSIDERATION

A review has determined that the proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20, or would change an inspection or surveillance requirement. However, the proposed amendment does not involve (i) a significant hazards consideration, (ii) a significant change in the types or a significant increase in the amount of any effluent that may be released offsite, or (iii) a significant increase in the individual or cumulative occupational radiation exposure. Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9). Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed amendment.

7.0 **REFERENCES**

- 1. NUREG-0612, "Control of Heavy Loads at Nuclear Power Plants," dated July 1980.
- 2. NUREG-0554, "Single Failure Proof Cranes for Nuclear Power Plants," dated May 1979.
- 3. NRC Bulletin 96-02, "Movement of Heavy Loads Over Spent Fuel, Over Fuel in the Reactor Core, or Over Safety-Related Equipment," dated April 11, 1996.
- 4. NRC Regulatory Issue Summary 2005-25, "Clarification of NRC Guidelines for Control of Heavy Loads," dated October 31, 2005; and Supplement 1 dated May 29, 2007.
- 5. ASME NOG-1, "Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, Multiple Girder)," 2004 Edition.
- 6. NUREG-0800, "Standard Review Plan," Section 9.1.5, "Overhead Heavy Load Handling Systems," Revision 1.
- 7. Crane Manufacturers Association of America (CMAA) Specification 70, "Specifications for Top Running Bridge and Gantry Type Multiple Girder Electric Overhead Traveling Cranes," 2004.
- 8. "Kewaunee Nuclear Power Plant Earthquake Analysis: Reactor-Auxiliary-Turbine Building Response Acceleration Spectra" John A. Blume and Associates Report to Pioneer Service & Engineering Company, April 1971.
- 9. NUREG-0800, "Standard Review Plan," Section 3.7.1, "Seismic Design Parameters," Revision 3.
- 10. USNRC Regulatory Guide 1.122, "Development of Floor Design Response Spectra for Seismic Design of Floor-Supported Equipment or Components," Revision 1.

- 11. ABS Consulting Calculation No. 1886592-C-001, "Generation of Artificial Seismic Time Histories for the Fuel Cask Bridge Crane at Kewaunee Power Station," Revision 0.
- Letter from G. T. Bischof (DEK) to NRC Document Control Desk, "License Amendment Request 227, Relocation of Spent Fuel Pool Crane Technical Specification to Technical Requirements Manual," dated November 9, 2007 (ADAMS Accession No. ML073170705).
- 13. ASCE/SEI 43-05, "Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities."
- 14. ASCE 4-98, "Seismic Analysis of Safety-Related Nuclear Structures."

ATTACHMENT 2

LICENSE AMENDMENT REQUEST 239 REQUEST FOR REVIEW AND APPROVAL OF SEISMIC ANALYSIS METHODOLOGY FOR AUXILIARY BUILDING CRANE

USAR MARK-UP PAGES FOR LICENSE AMENDMENT REQUEST 239

(For Information Only)

Section B.8

KEWAUNEE POWER STATION DOMINION ENERGY KEWAUNEEE, INC

B.8 PROTECTION AGAINST CRANE TOPPLING AND CONTROL OF HEAVY LOADS

The Auxiliary Building crane and the Turbine Building crane are located in areas where they are subject to possible damage from tornado and earthquake. These crane bridges and trolleys are protected against tipping, derailment, and uncontrolled movements that could possibly create damage.

To assure stability of the crane, the bridge and trolley are equipped with fixed, fitted rail yokes that allow free rolling movement but prevent the wheels from being lifted or derailed. The bridge and trolley wheels are equipped with electrically activated, spring set brakes. Upon loss of power or when the crane or trolley are not under operator control, the springs activate the brakes, locking the wheels firmly in place to prevent rolling out of position. The positive wheel stops and bumpers provided to prevent over-travel of the trolley and bridge will prevent the trolley and bridge from leaving the rails, even in the unlikely event of brake failure.

As a result of Generic Task A-36, "Control of Heavy Loads Near Spent Fuel," the NRC issued NUREG-0612, "Control of Heavy Loads at Nuclear Power Plants." NUREG-0612 was to be implemented in two phases. Phase I addressed Section 5.1 of NUREG-0612 and established seven basic guidelines for all nuclear power plants, which detailed provisions for the handling of heavy loads in the area of the reactor vessel near stored spent fuel, in other areas where an accidental load drop could damage equipment required for safe shutdown or decay heat removal. Phase II (Sections 5.1.2 through 5.1.6) was intended to cover the need for electrical interlocks/mechanical stops, or alternatively, single failure-proof cranes or load drop analyses.

In Reference 15 the NRC concluded that satisfaction of the Phase I guidelines would provide adequate assurance that, due to improvements in heavy load handling procedures and training, and crane and handling tool inspection and testing, the potential for a load drop is extremely small. Reference 15 also included a cost-benefit analysis for Phase II of NUREG-0612 which concluded that, because of the reduced potential of a load handling accident provided by Phase I, the high cost of implementing Phase II could not be justified by the comparatively small associated increase in plant safety.

Therefore, since Kewaunee has satisfied the requirements of Phase I and since Phase II compliance is no longer required, the NRC has determined that Kewaunee has adequately addressed NUREG-0612 and has significantly reduced the probability of a heavy load handling accident to an acceptably small value (see NRC SER in Reference 16).\

Serial No. 08-0211 Attachment 2 Page 2 of 3

The Auxiliary Building (AB) crane was upgraded in support of dry spent fuel storage cask loading operations. This upgrade involved the replacement of the original trolley with a single-failure-proof design, replacement of the trolley controls, and an upgrade to the existing AB crane bridge. The upgrade of the AB crane meets the guidance in Section 5.1.6 of NUREG-0612, "Control of Heavy Loads at Nuclear Power Plants," and NUREG-0554, "Single Failure Proof Cranes for Nuclear Power Plants," as applicable.

Design Criteria for Upgraded Auxiliary Building Crane

The AB crane is designated as Class I* per Table B.2-1 and therefore is designed to meet Class I seismic standards. The crane is designed to stay on its rails and not allow an uncontrolled lowering of the load as a result of a seismic event. It is not required to be operational during or after a seismic event. The AB crane is also designed to withstand the crane design basis accident events described in NUREG-0554: two-blocking, load hang-up, and wire rope failure.

Because the replacement AB crane trolley is a new component and the crane bridge is an existing component, the construction codes applicable to the two are not identical. The construction codes for the trolley and bridge are as follows:

AB Crane Trolley Codes and Standards

Construction is in accordance with NUREG-0554 and, where NUREG-0554 does not offer specific guidance (e.g., normal condition load combinations and stress acceptance criteria), construction is in accordance with Crane Manufacturers Association of America Specification 70 (CMAA-70), 2004 Edition is used. ASME NOG-1-2004 is used where CMAA-70 does not offer specific construction guidance, such as for seismic design and faulted conditions. Seismic load combinations and stress analysis acceptance criteria, as well as guidance used to address two blocking, load hang-up, and wire rope failure are, therefore, taken from ASME NOG-1-2004.

AB Crane Bridge Codes and Standards

Construction is in accordance with NUREG-0554 and Electrical Overhead Crane Institute Standard 61 (EOCI-61). CMAA-70 (2004) and ASME NOG-1-2004 are used, in that hierarchy, where NUREG-0554, and EOCI-61 do not offer specific construction guidance such as for seismic design and faulted conditions. Seismic load combinations and stress analysis acceptance criteria, therefore, taken from ASME NOG-1-2004.

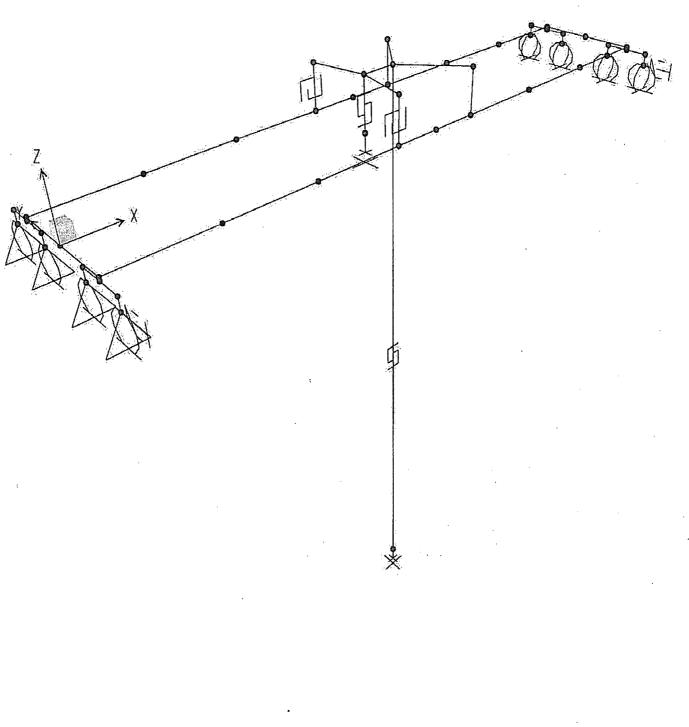
Upgraded AB Crane Seismic Response Spectra, Damping, and Accelerations

The seismic analysis of the AB crane considers trolley and bridge drive wheel rolling when the seismic forces exceed the drive wheel brake resisting force. This nonlinear boundary condition required seismic time history inputs to be developed consistent with SRP 3.7.1, Revision 3, Option II. With the exception of the nonlinear boundary condition at the trolley and bridge drive wheels, the seismic analysis of the upgraded AB crane is consistent with ASME NOG-1-2004.

The Blume Report, which forms the basis for seismic analyses at the Kewaunee Power Station, does not include horizontal response spectra data for a mass point at the location of the AB crane rail, appropriate for use in analyzing the upgraded crane. Therefore, a lumped-mass stick model of the Auxiliary Building steel structure was used to generate additional horizontal response spectra applicable for use at the AB crane rail. A 2 percent damping for the Safe Shutdown Earthquake condition was applied to both the vertical and horizontal response spectra at the crane rail elevation.

A set of 5 time histories consisting of two horizontal and one vertical time history were developed from the crane rail response spectra. The time histories were developed in accordance with the requirements of the NRC Standard Review Plan, Section 7.3.1. The time histories were used in conjunction with a 3-D model of the crane to perform the non-linear seismic analysis.

Serial No. 08-0211


ATTACHMENT 3

LICENSE AMENDMENT REQUEST 239 REQUEST FOR REVIEW AND APPROVAL OF SEISMIC ANALYSIS METHODOLOGY FOR AUXILIARY BUILDING CRANE

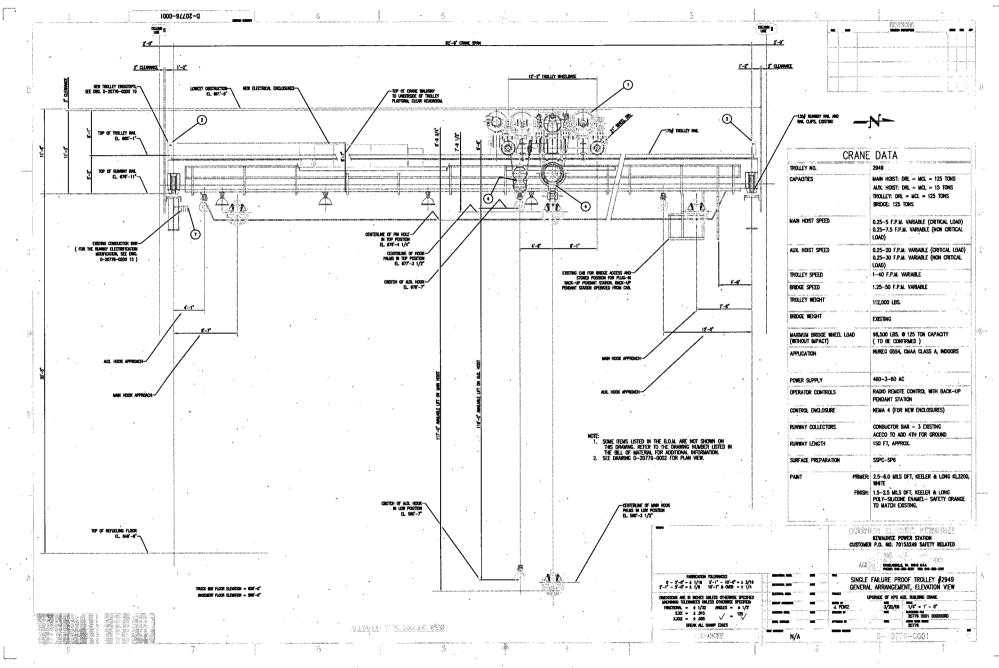
KPS AB CRANE SEISMIC ANALYSIS MATHEMATICAL MODEL

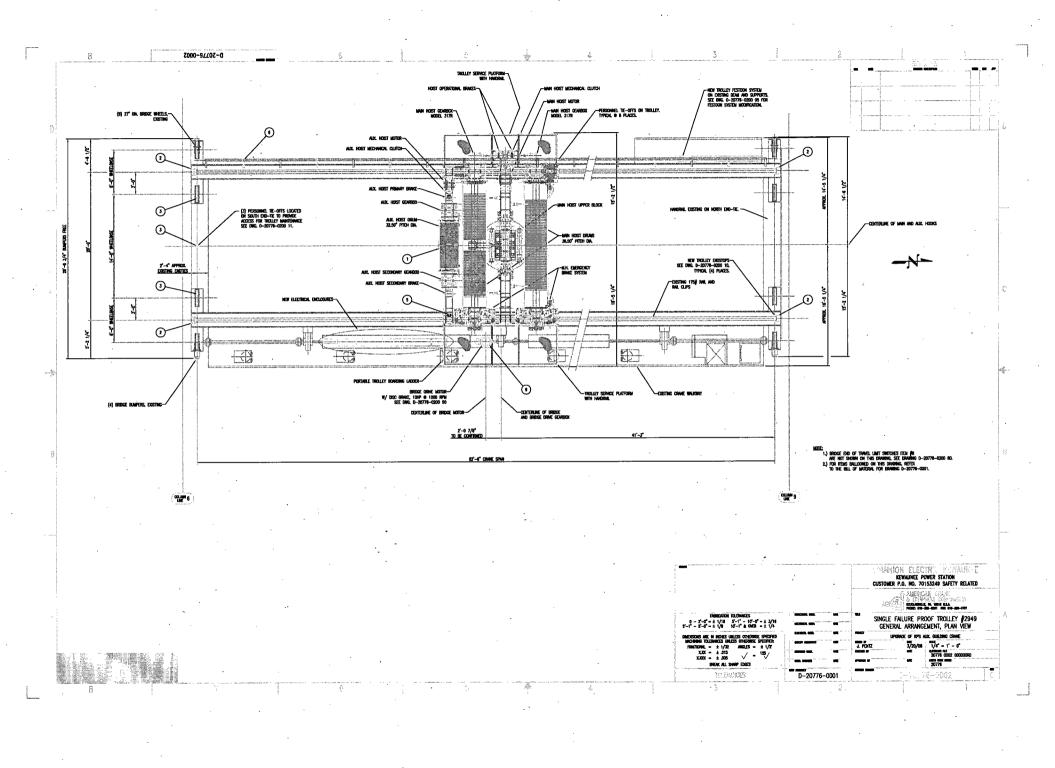
KEWAUNEE POWER STATION DOMINION ENERGY KEWAUNEEE, INC.

Serial No. 08-0211 Attachment 3 Page 1 of 1

KPS AB CRANE SEISMIC ANALYSIS MATHEMATICAL MODEL

.

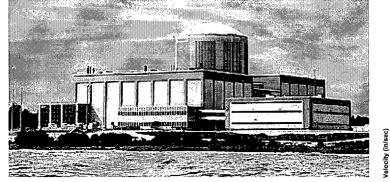

Serial No. 08-0211


ENCLOSURE 1

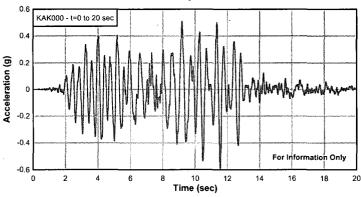
LICENSE AMENDMENT REQUEST 239 REQUEST FOR REVIEW AND APPROVAL OF SEISMIC ANALYSIS METHODOLOGY FOR AUXILIARY BUILDING CRANE

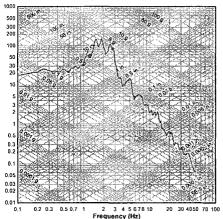
GENERAL ARRANGEMENT DRAWINGS OF UPGRADED AUXILIARY BUILDING CRANE

KEWAUNEE POWER STATION DOMINION ENERGY KEWAUNEEE, INC.


ENCLOSURE 2

LICENSE AMENDMENT REQUEST 239 REQUEST FOR REVIEW AND APPROVAL OF SEISMIC ANALYSIS METHODOLOGY FOR AUXILIARY BUILDING CRANE


ABS CONSULTING CALCULATION NO. 1886592-C-001, "GENERATION OF ARTIFICIAL SEISMIC TIME HISTORIES FOR THE FUEL CASK BRIDGE CRANE AT KEWAUNEE POWER STATION," REVISION 1


KEWAUNEE POWER STATION DOMINION ENERGY KEWAUNEEE, INC.

Generation of Artificial Seismic Time Histories for the Fuel Cask Bridge Crane at the Kewaunee Power Station

Kewaunee Power Station - Aux Bldg Crane Rail Elev Acceleration Time History - EW Direction - Data Set 1

Kewaunee - Aux Building Crane Rail Elevation

Prepared for: American Crane and Equipment Corporation Douglassville, PA

Prepared by: ABS Consulting

RISK CONSULTING DIVISION

CALCULATION COVER SHEET

Calculatio	on No.	1886592-C-00	1				
Project:		1886592					
Calculation Title:		Generation of Artificial Seismic Time Histories for the Fuel Cask Bridge Crane at the Kewaunee Power Station					
Client:		American Crane and Equipment Corporation					
Computer Software Used ¹ :		No YES²: Code/Version : See sheet 2 to 5					
Quality Assurance:		☐ ISO 9001 Program (QMS) ⊠ Nuclear QA Program (NQA)					
Client PO No:		010153					
References:		See Section 6 of this calculation					
Attachments:		As noted on Table of Contents					
Total Number of Pages (Including Cover Sheet): 119							
Revision Number	Approval Date	Description of Revision	Originator	Checker	Approver		
0	05-May-08	Original Issue	F.Elsabee/M.C.Ozbey	W.Sawruk	W.Sawruk		
			F. Elsabee	Walter Sauruk W. Sawruk	Walter Source		
1	27-May-08	Total Revision	Don	Cht -	Waller Jawae W. Sawruk		

M. C. Ozbey

Independent Verifier: P. Streeter

¹ Check NO box when Excel, MathCAD, and/or similar programs are used since algorithms are explicitly displayed. ² For each use of computer software, include a Computer Software Use form before the Table of Contents.

•	BS Consult	•		Rev 1	Sheet No. 2		
No. 1886592 Job ACE		CO – Kewaunee Aux Bl	dg Bridge Crane	By F.Elsabee Date 5/20/0			
		eration of Artificial Seisn	nic Time Histories	Checked W.Saw	ruk Date 5/23/08		
		-	<u> </u>		,		
	JTER SOFTWARE USE UDE SEPARATE SHEET		ARE USED <<				
1	Computer Software Used (Code/Version)		RSPEC Version 1.2P				
2	Software Supplier	ABS Consulting					
3	Software Update Review	Error notices, describe:					
		Other; describe: Not available					
4	Nuclear Safety Related Software		Hardware identification # used for execution: Compaq Desktops: SN: 6X23-JYFZ-X21E SN: 6X28-KN8Z-70M2				
			Verification is Ref. [2] - is provided in Ref. [4].		are on above two		
5	Input Listing(s)	Input listing(s) attached:					
		Not attached; identify File/Disc ID: Input files provided separately on disc (see identified input files in Attachment A)					
6	Output Data	Output results attac	ched:		,		
		Not attached; identify File/Disc ID: Output files provided separately on disc. (see identified output files in Attachment A)					
7	Output Identifier(s)*	See listings in Attachment A.					
	*e.g., run date/time; use for reference, as appropriate, within body of calculation						
8	Comments	Only Acceleration Response Spectra option of the software is QA certified (see page 11 of manual)			A certified (see		
9	Keywords**	Not Applicable.					
	<u> </u>						

Z A	BS Consult	ting	Rev 1 Sheet No. 3				
ob No.	1886592 Job ACE	CO – Kewaunee Aux Bldg Bridge Crane	By F.Elsabee Date 5/20/08				
alc. No.	1886592-C-001 Subj Gen	eration of Artificial Seismic Time Histories	Checked W Sawruk Date 5/23/08				
	······································						
	ITER SOFTWARE USE UDE SEPARATE SHEET	FOR EACH SOFTWARE USED <<					
1	Computer Software Used (Code/Version)	RSPLT Version 1.6P					
2	Software Supplier	ABS Consulting					
3	Software Update Review	Error notices; describe:					
	· · · · · · · · · · · · · · · · · · ·	🛛 Other; describe: Not available					
4	Nuclear Safety Related Software	□ NO Hardware identification # used f ⊠ YES Compaq Desktops: SN: 6X23- SN: 6X28- SN: 6X28-					
		Basis for Verification is Ref. [3] - machines is provided in [4].	- Validation of software on above two				
5	Input Listing(s)	Input listing(s) attached:					
		Not attached; identify File/Disc ID: Input f (see id	iles provided separately on disc lentified input files in Attachment A)				
6	Output Data	Output results attached:					
		Not attached; identify File/Disc ID: Output (see ide	It files provided separately on disc. Intified output files in Attachment A)				
7	Output Identifier(s)*	See listings in Attachment A.					
	*e.g., run date/time; use for reference, as appropriate, within body of calculation						
8	Comments						
9	Keywords**	Not Applicable.					
	**For use in describing soft manual.	vare features used <u>in this calculation;</u> use com	mon terms based on software user				

	BS Consul			Rev	1	Sheet No.	4
b No. 1886592 Job ACE		ECO – Kewau	CO – Kewaunee Aux Bldg Bridge Crane			ibee Date	5/20/0
:. No .	1886592-C-001 Subj Ge	eneration of Art	ificial Seismic Time Histories	Check	ed W.Sav	wruk Date	5/23/0
	ITER SOFTWARE US UDE SEPARATE SHEE		I SOFTWARE USED <<				
1	Computer Software Used (Code/Version)	RspMate					
2	Software Supplier	University	of California, Berkeley, CA				
3	Software Update Review	ew Error notices; describe:					
		Other; o	lescribe: Not available				
4	Nuclear Safety Related Software	NO 🛛		· · · · ·			
	Gonware	YES	YES Hardware identification # used for execution: Non-QA				
5	Input Listing(s)	Input lis	Input listing(s) attached:				
		🛛 Not atta	Not attached; identify File/Disc ID: N/A				
			(See discussion in Section 3.1)				
6	Output Data	Output	Output results attached:				
		Not attached; identify File/Disc ID: N/A.					
		(See discussion in Section 3.1)					
7	Output Identifier(s)*	N/A (S	N/A (See discussion in Section 3.1)				
	*e.g., run date/time; use for reference, as appropriate, within body of calculation						
8	Comments	accordance (NQAM) a	COMMERCIALLY AVAILABLE SOFTWARE - Not Verified/Validated in accordance with the ABS Consulting Nuclear Quality Assurance manual (NQAM) and Procedure RCD-NQP-00-P03 (Ref. 10 and 11 respectively). Refer to discussion in Section 3.1 for use of results generated by this software.				
9	 Keywords**	Not Applicable.					

	BS Con				Rev	1	Sheet No	. 5
No.	1886592 Jo	ob	ACECO – Kewaı	inee Aux Bldg Bridge Crane	Ву	F.Els	abee Date	e 5/20/08
c. No.	1886592-C-001 S	ubj	Generation of Ar	tificial Seismic Time Histories	Check	ed W.Sa	wruk Dat	e 5/23/0
	ITER SOFTWAI UDE SEPARATE			I SOFTWARE USED <<				
1	Computer Softwa Used (Code/Versi		Dplot ve	rsion 2.1.4.9				
2	Software Supplie	er	HydeSoft	Computing, LLC				
3	Software Update	Rev		otices; describe: describe: Not available				
4	Nuclear Safety R Software	elate	d 🛛 NO	Hardware identification # us Non-QA	ed for execut	ion:		
5	Input Listing(s)			sting(s) attached: ached; identify File/Disc ID: (S	N/A ee discussion	in Sectio	on 3.1)	
6	Output Data			results attached: ached; identify File/Disc ID: (S	N/A. ee discussior	in Section	on 3.1)	
7	Output Identifier	(s)*	N/A (S	See discussion in Section	3.1)			
	*e.g., run date/tim	e; us	e for reference, a	s appropriate, within body of o	calculation			
8	Comments		accordance (NQAM) a	RCIALLY AVAILABLE SOF e with the ABS Consulting N and Procedure RCD-NQP-00 on in Section 3.1 for use of r	uclear Qualit -P03 (Ref. 10	y Assura and 11 r	nce manual espectively). Refer
9	Keywords**		Not Applic	able.				
	**Eoruso in dosor	ihing	software features	s used in this calculation; use	common term	ne hasod	on software	

TOAL			ulting			•			
₩ AE	33 60	15	liting	Rev	1	Shee	et No.	6	
Job No. 18	886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsa	abee	Date	5/20/08	3
Calc. No. 18	386592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checke	ed W.Sav	wruk	Date	5/23/08	3
			· · · · · · · · · · · · · · · · · · ·						

RECORD OF REVISION

Revision	Description of Change	Reason For Change
r 0	Original Issue	N/A
1	Total revision of entire calculation.	To address Client's comments.
· · .		

ZA	BS Co	nsultin	g		Rev	1 She	et No.	7
Job No.	1886592	Job ACECO –	Kewaunee Aux Bldg B	ridge Crane	Ву	F.Elsabee	Date 5/20	/08
Calc. No.	1886592-C-00	1 Subj Generatio	n of Artificial Seismic T	ime Histories	Checked	W.Sawruk	Date 5/23	/08
			· · · · · · · · · · · · · · · · · · ·				· .	
	*		•					
			Table of Co	ntents				
							· · · ·	
	Cover Shee							
	Record of F						-	
	Table of Co							
	Calculation	Summary Pag	ge					:
. 1	.0 Introdu	uction	· .				9	
2	2.0 Inputs	and Assumpt	tions		. *		10	
3	3.0 Metho						11	
			istory Generatio Generation of A					
. 4		ation Details					16	
			Target Spectra.					
			Seed Earthquak Required Time H					
	4.4 C	heck of Accer	otance Criteria	••••••				
	-	sis of Results					29	
e	6.0 Refere	nces					31	
			ATTACHM	ENTS				
Attachn	nent Desc	ription		· ·		ſ	No of She	e
A	Log c	of Computer So	oftware Runs				.7	
В	-	n Input Data					14	
С			Time Histories & rated ARS Data	Response Spe	ectra an	ď	50	
Ď		of Seed Time					16	
E	NQP	-02 Review Gu	lidelines				1	
	•		ı					
The Inp	out and Outp	out computer fi	iles are on attach	ed CD.				
							•	

	BS Co	nsı	ulting	Rev	1	Shee	et No.	8	
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsa	abee	Date	5/20/08	
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	W.Sa	wruk	Date	5/23/08	

Calculation Summary Page

Calculation Objective

The purpose of this calculation is to develop artificial acceleration time histories representing the response of the Kewaunee auxiliary building at the base of the fuel cask bridge crane rails. Since these time histories are to be used as input for a non-linear time history analysis of the crane system, a set of five time histories are developed with each set consisting of two horizontal and one vertical time histories.

Conclusions

The required fifteen time histories are developed and evaluated in this calculation to show that they meet the requirements specified in the Standard Review Plan section 7.3.1 [5] which is used as a guide for the development effort.

Assumptions

Assumptions, where utilized, are justified within the text and body of this calculation. No assumptions require verification to validate the conclusions and results of this calculation. Refer to Section 2.0 for more detailed listing of input and assumptions considered in the calculation.

Design Input Documents

Refer to Sections 2 and 6 for a complete listing of design inputs and references used in this calculation. Refer to Attachment B for a copy of ACECO's Design Information Transmittal to ABS Consulting that provides the target spectra data.

	BS Co	ns	ulting		Rev	1	She	eet No.	9
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	,	Ву	F.EI	sabee	Date	5/20/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories		Checke	lW.S	awruk	Date	5/23/08

Introduction

1

American Crane and Equipment Corporation (ACECO) is to perform a non-linear time history analysis, as part of the seismic qualification, of the 125/15 Ton Single Failure Proof Fuel Cask Bridge crane located in the auxiliary building of the Kewaunee Power Station. The seismic input to be used for the analysis was defined by Dominion as the 2% damped acceleration response spectra (ARS) at the base of the crane rails [1]³. These curves, consisting of two horizontal (NS and EW) and one vertical, incorporate the amplification and filtering effect of the site Design Basis Earthquake (DBE) through the supporting structure(s). However, since the crane analysis is to consist of a non-linear time history analysis, the input to the analysis needs to be in the form of acceleration time histories. Thus, this calculation develops the required acceleration time histories such that their 2% damped ARS curves match the design target ARS curves provided by Dominion in [1].

The methodology and acceptance criteria used in the development of the time histories are described in Section 3 and are based on the requirements of the U.S. Nuclear Regulatory Commission (NRC) Standard Review Plan (SRP) Section 3.7.1 [5] which is used as a guide for this effort.

³ Numbers identified in brackets [] refer to the associated reference number listed in Section 6.

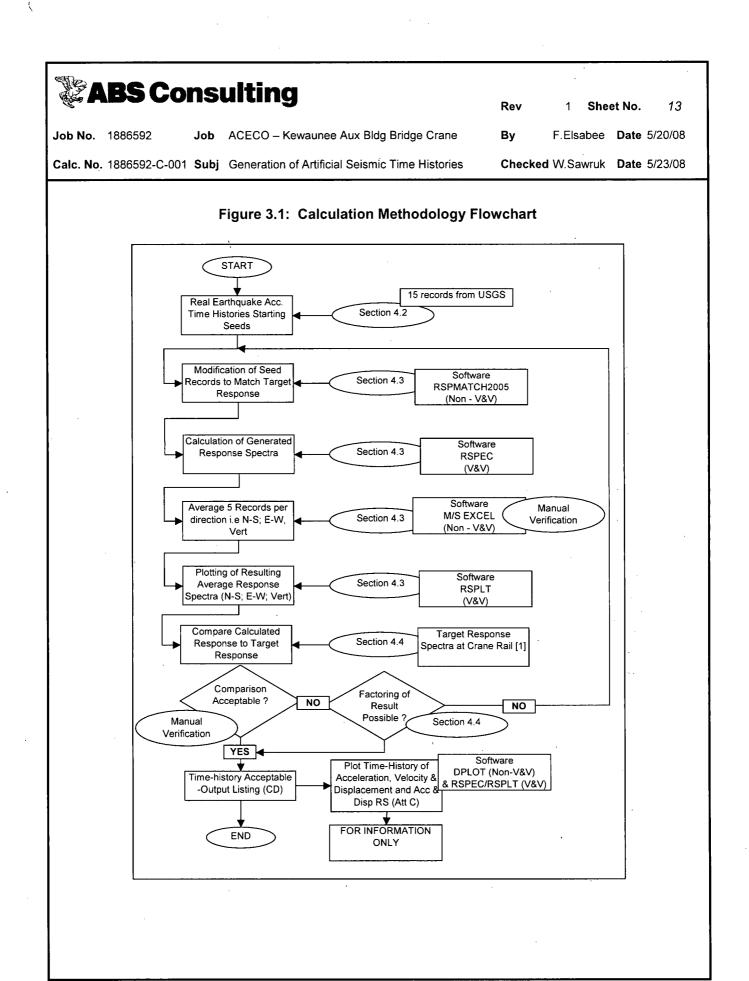
	\ -	IS Co	113		LII	y							Rev		1	She	et N	lo.	10
Job No.	18	86592	Job	AC	ECO ·	– Kewa	aunee	Aux E	Bidg B	ridge	Crane		Ву		F.Els	sabee	Da	ate 5/	20/08
Calc. No.	18	86592-C-001	Subj	Ge	nerati	on of A	Artificia	al Seis	mic T	ime H	istories	5	Cheo	ked	W.S	awruk	Da	ate 5/	/23/08
						•													
2		Inputs	s an	d	As	sun	npt	ior	ıs										
	1.	Some cal and Math results are independe	cad c e rou	om nde	pute ed of	er sof f valu	tware ues.	e. Tl Valu	he si Ies c	ignifi alcu	cant lated	numl by tl	bers nese	of d sofi	igits war	sho e are	wn		
2	2.	The targe and modif									d at tl	he cr	aneı	rails	are	obta	aine	ed fr	om [1]
:	3.	This calcu 20 second the subject have been is provide	ds for ct cra n dee	rea ne. eme	ich ti The ed ac	ime h e req	nistor Juireo	⁻y, to d nur	be ı nber	used ^r of s	for th ets a	ne no nd th	on-lin ne du	ear ratio	seis on o	smic f eac	ana :h ti	alysi ime	s of histor
	4.	The accel compared This dam provided	d to th ping v	ne p valu	orovi	ded/r	nodi	fied I	resp	onse	spec	ctra ι	using	a d	amp	oing v	valı	le o	f 2%.
:	5.	The fiftee from the l	JC B	erk	eley		lic) v	veb s	site a	at this				alcı	ulati	on w	ere	e obt	ained

¢, A	BS Co	nsi	uiting	Rev	1	Shee	et No.	11
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsa	abee	Date	5/20/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	W.Sa	wruk	Date	5/23/08

3 Methodology

3.1 **Overall Time History Generation Approach**

The overall approach and acceptance criteria used to generate the needed acceleration time histories follows the basic requirements described in the U.S. NRC SRP Section 3.7.1 [5]. Note that this Section of the SRP discusses mostly the development of design ground motion time histories for the seismic analysis of the structures. Thus, it is used herein as a guide with the understanding that some of the guidelines may not be directly applicable for the time history generation at hand where the target motion has already been amplified and filtered by the dynamic characteristics of the supporting auxiliary building.


Since the crane analysis will be a non-linear time history analysis, five sets of time histories, each containing three directional components, are developed here in.

Each of the fifteen generated acceleration time histories uses a real earthquake record as a starting seed. The seed earthquake records chosen for this task are identified below in Section 4.2. The development of the needed acceleration time histories and iterations used on the seed records are based on a state-of-the-art improved method of matching response spectra using wavelets described in [7]. This methodology is programmed into a computer software named RspMatch2005. This software has not been Verified and Validated (V&V) in accordance with the requirements of the ABS Consulting Nuclear Quality Assurance Manual (NQAM) [10] and QA Procedure RCD-NQP-00-P03 [11]. As such this software is considered a commercially available non V&V software. However, the final time history records developed with this software are verified to meet all the criteria requirements, described in Section 3.2, using in-house ABS Consulting QA software (using RSPEC⁴ and RSPLT) and publicly available standard packages such as Excel where the algorithms and equations are explicitly displayed and verified by the checker.

The commercially available plotting software DPLOT is also used for displaying some of the data in this calculation. This software package has not been Verified and Validated in accordance with the requirements of [10] and [11]. As such, the time history data

⁴ Note that only the acceleration response spectrum calculation option in RSPEC has been QA verified in [2]. Therefore, the displacement response spectra calculated using RSPEC is thus identified <u>For Information Only</u> in Attachment C.

X A	BS C	onsi	ulting	g				D -	4 ~1	-4 NI	
~	1886592		ACECO – I	-		da Bridae (Crane	Rev By		et No. 12 Date 5/20/0	
,									ed W.Sawruk	•	
aic. No.	. 1886592-C-0		Generation	I OF ARINC	iai Seisii		stones	Check	eu w.sawiuk		0
	Attachmen DPLOT so the develop software pa accordance software [1	t C, are ftware is ped time ackage e with th 1]. The	so marke s not requ historie RSPLT is ne ABS N e overall	ed (For uired. I s to the s utilize IQAM [analys	r Inform Howev e targe ed. Th 10] an is appi	nation O er, wher t spectra is softwa d ABS R roach is	nly), and n compar n, the in-h are packa CD-NQF depicted	thus s ing the louse A loge has P-00-P(in the	hese plots, pecific V&\ calculated ABS Consu been V&\ 3 procedu Figure 3.1 ut files from	/ of the spectra o lting / in re for flowchart.	f
	RspMatch2						•	•			
			<u>.</u>								
	t						, ,		·		
								×	·	•	
									· · · ·		
									,		
					ſ						

	BS Co	nsi	ulting	Rev	1	She	et No.	14
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsa	abee	Date	5/20/08
Calc. No	. 1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	W.Sa	wruk	Date	5/23/08
3.2	Criteria	for t	he Generation of Artificial TH's	5				

- 1. For each of the five sets, each of the three directional acceleration time histories must be shown to be statistically independent from the others. Statistical independence between two time histories is shown when the absolute value of their correlation coefficient does not exceed 0.16.
- 2. Each set of three directional time histories shall be selected from real recorded historical earthquake time histories (NS, EW & vertical). The amplitude of these records may be scaled but the phasing of Fourier components must be maintained. Each time history should be defined at intervals of 0.01 sec, with a minimum of 6 seconds of strong motion and a total duration of at least 20 seconds. A target objective of 6 to 10 seconds of strong motion duration with at least 11 seconds of vibratory duration followed by trailing zeros will be used for this criterion.
- 3. Spectral accelerations at 2% damping shall be computed at a minimum of 100 frequency points per decade, uniformly spaced over the log frequency scale from 0.1Hz to 40Hz (i.e. a total of 240 frequency points). Comparison of the calculated absolute acceleration response spectrum to the target spectrum shall be performed at each computed frequency point. Note that the range up to 40 Hz is used since the target spectra are provided up to 40 Hz and the response past this frequency is of little interest in seismic analysis.
- 4. The absolute acceleration response spectrum for each individual time history need not envelop the associated target response spectrum. However, the set of five time histories (for each direction) is acceptable if the average calculated response spectrum generated from these time histories meets the two enveloping criteria defined below.
- 5. The following two enveloping criteria shall be met:

of the five sets of time histories:

- The computed average 2% damped acceleration response spectrum shall not fall more than 10% below the corresponding target spectrum at any one frequency. To prevent spectral values in large frequency windows from falling below the target spectrum, the frequency window for the comparison is not larger than ±10% centered on the frequency point of interest. This corresponds to spectral values at no more than **9 adjacent frequency points** defined in 3 above from falling below the target response spectrum.
- The computed average 2% damped acceleration response spectrum shall not exceed the target response spectrum by more than 30% (a factor of

	BS Co	nsı	ulting			Rev	1 She	et No.
Job No. 1	886592	Job	ACECO – Kewaunee	Aux Bldg Bridge	e Crane	Ву	F.Elsabee	
Calc. No. 1	886592-C-001	Subj	Generation of Artificia	I Seismic Time I	Histories	Checke	d W.Sawruk	Date 5
	corres plotted 7. For ea	excee accel signif accele pondi d. ach ac	at any frequency eded at any frequency leration time hist ficant gaps in en- eration time histo ng integrated ve celeration time h	uency range ory needs to ergy at any f ry developed locity and dis nistory develo	, the powe be compu- frequency of d shall be l splacemen oped, the a	r spectr ited and over this baseline t time h associat	um densi I shown to s frequence correcter istories sl ed 2% da	ty of th o not h cy rang d and t hall be imped
			nt response spec		•			•
		•						
			. • •					
				,				
·								

	BS Co	nsi	ulting	Rev	1	She	et No.	16
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Els	abee	Date	5/20/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checke	d W.Sa	wruk	Date	5/23/08

4 Calculation Details

4.1 Modification of Target Spectra

The target spectra provided in [1] are quite conservative in the low frequency region below 1 Hz. Furthermore, these curves do not go down to the 0.1 Hz value needed for the anticipated extremely low frequency response of the loaded hook and rope of the crane. Thus, the following corrections are made to each of the three target spectra.

Reduce Conservatism below 1 Hz:

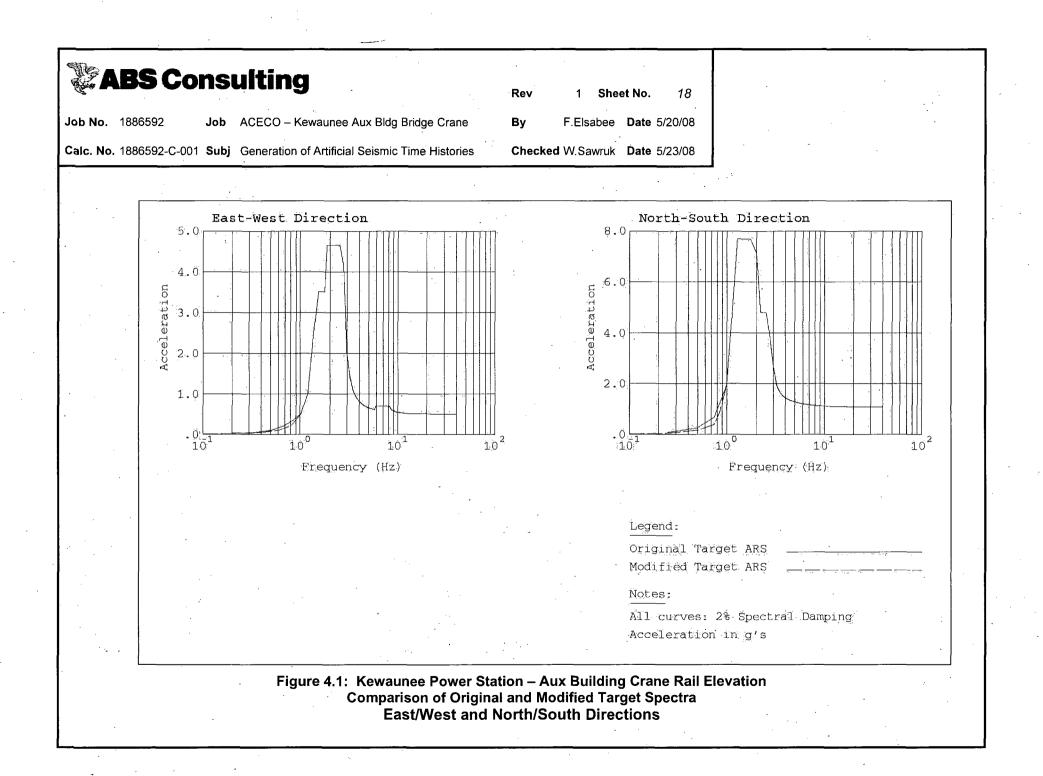
Per Reg. Guide 1.122 [6], peak broadening of floor response spectra is required around the structural frequencies. The broadening effect is generally eliminated in the region of the lower tail of the curve. This is indicated in Figure 1 of the Reg. Guide. The target curves provided in [1] carry the broadening way below 1 Hz.

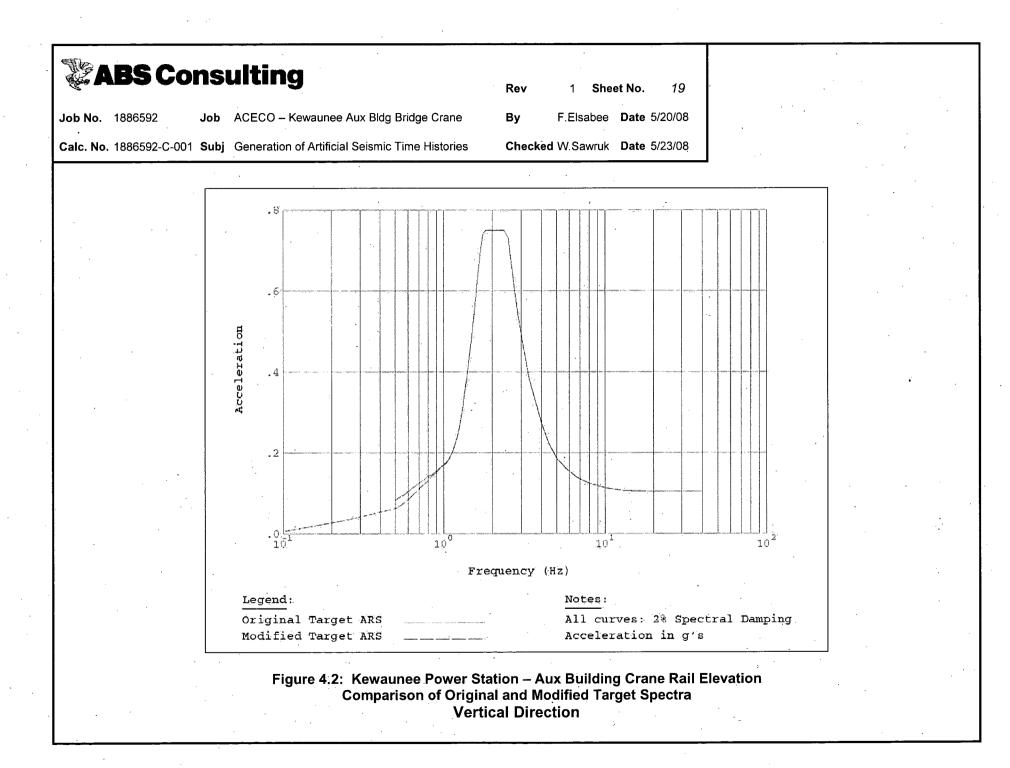
Thus, to aid in the non-linear analysis in the low frequency range, the target curves are modified such that the unbroadened curves provided in [1] are used below 1 Hz. A smooth transition region between the broadened and unbroadened portions of the curves is also provided such that no abrupt change in the ARS results.

Extrapolate Down to 0.1 Hz: Per Reg Guide 1.60 [8], the ground motion is normally defined with constant displacement from 0.25 Hz to 0.1 Hz for all three directions. Thus, considering the ARS at the crane rail in this low frequency region to have the same shape as that defined in the Reg Guide, we get the following values at 0.1 Hz:

EW:	a = 0.021g at 0.2 Hz as discussed above δ = a / ω^2 = 5.14" at 0.2 Hz Therefore, use δ = 5.14" also at 0.1 Hz and a = $\delta \omega^2$ = 0.0053g at 0.1 Hz
NS:	a = 0.047g at 0.25 Hz as discussed above δ = a / ω^2 = 7.36" at 0.25 Hz Therefore, use δ = 7.36" also at 0.1 Hz & 0.2 Hz a = $\delta \omega^2$ = 0.0075g at 0.1 Hz a = $\delta \omega^2$ = 0.0301g at 0.2 Hz
Vert:	a = 0.062g at 0.5 Hz as discussed above Per [8], the amplification of the 2% damped spectral acceleration between 0.25Hz and 0.5Hz is approximately: 0.7g / 0.38g = 1.84, therefore,

J.A	BS Col	nsi	ulting	Rev	1	She	et No.	17
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F Elsa	abee	Date	5/20/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checke	ed W.Sa	wruk	Date	5/23/08


a = 0.062g / 1.84 = 0.034g at 0.25Hz δ = a / ω^2 = 5.32" at 0.25 Hz Therefore, use δ = 5.32" also at 0.1 Hz and a = $\delta \omega^2$ = 0.0054g at 0.1 Hz


Combined Modifications: The total combined modifications, based on the above discussions, result in the 2% damped target spectral acceleration values provided in Table 4.1 for the low frequency range below 1 Hz. The modified target response spectrum curves are compared to the original target curves in Figure 4.1 and Figure 4.2.

2% Dam	ped EW	2% Dam	ped NS	2% Dam	ped Vert
Freq (Hz)	Accel (g)	Freq (Hz)	Accel (g)	Freq (Hz)	Accel (g)
0.10	0.0053	0.10	0.0075	0.10	0.0054
0.20	0.021	0.20	0.030	0.5	0.062
0.40	0.045	0.25	0.047	0.597	0.084
0.60	0.103	0.5	0.166	0.8	0.133
0.80	0.205	0.75	0.39	1.00	0.17
1.02	0.507	0.85	0.883		
		1.000	1.955		

Table 4.1: Modified Target Response Spectrum Curves in Low Frequency

Note that the target spectral acceleration values for frequencies higher than 1 Hz are as provided in Attachment B under the "Broadened" columns of ET-CEM-8-0004 [1].

¢Z A	BS Co	ns	uiting	Rev	1	Shee	et No.	20
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsa	abee	Date	5/20/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	l W.Sai	wruk	Date	5/23/08

4.2 Description of Seed Earthquake Records

The development of the needed acceleration time histories starts with the selection of appropriate seed earthquake records. The seed records have been selected from available recorded real earthquake ground motion acceleration time histories obtained from the US Geological Survey database located at the UC Berkeley PEER center website (http://peer.berkeley.edu/smcat). The criteria used for selecting the seed records are based on the earthquake characteristics (i.e. high magnitude Mw), the duration requirements described in Section 3.2, and the needed low and high frequency content characteristics of the earthquake. After several iteration trials, the five sets of earthquake signals identified in Table 4.2 were selected, with each set containing three directional components. Note that to accommodate the needed frequency contents and the statistical independence requirement of each of the three directions, the directional components within each set of the seed records need not be from the same measured earthquake recording station. The earthquakes from which the seed records were selected are also described in Table 4.2 while the composition of the five sets of time histories used for this project is provided in Table 4.3. The seed record time histories are plotted in Attachment D.

Eartho	uake	Descriptior	ı	Record	ling Station			Record ID	
Name	EQ Mag. (M _w)	Location	Date	Name	Site Condition (USGS)	Closest Distance (Km)	N-S	E-W	Vert
Kobe	6.9	Japan	1/16/95	Kakogawa	D	26.4	'	KAK000	·
Duzce	7.1	Turkey	11/12/99	Sakarya	В	49.9			SKR-UP
Kern County	7.4 .	US	7/21/52	Santa Barbara Courthouse	В	87.0	·	SBA042	
				Taft Lincoln School	В	41.0	TAF021	`	TAF-UP
Landers	8.3	US	6/29/92	Silent Valley	A	51.7 [′]			SIL-UP
Borrego	6.8	US	4/9/68	Borrego Mt	С	46.0			A-ELC-UP
Mountain	0.0	03	4/9/00	Borrego Mt	C ·	217.4	A-PEL090		A-PEL-UP
Cape Mendocino	7.1	ÜS	4/25/92	Shelter Cove Airp	B	33.8		SHL000 SHL090	
Livermore	5.8	US	1/24/80	Sewage Treatment Plant	C	37.3	A-STP093		<u>.</u>
Morgan Hill	6.2	US	4/24/84	Hollister City Hall	С	32.5	HCH001 HCH271	HCH271	

Table 4.2: Description of Selected Earthquake Seed Records

4.3 Generation of Required Time Histories

The actual earthquake acceleration seed records are first corrected to provide a time step interval of 0.01 second. Each seed record is then systematically modified to match the associated modified target response spectrum using the state-of-the-art improved wavelet method of matching response spectra described in [7]. This process is

TRA	BS Co	001	ulting					
(6 M	DS CU	1121	ulling	Rev	1	Sheet	No.	21
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Els	abee İ	Date 5	/20/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Check	ed W.Sa	awruk l	Date 5	/23/08

implemented using the software RspMatch2005. The resulting acceleration time history is then adjusted through a low pass filter and the end noise in the record is subsequently eliminated. Trailing zeros are finally added, when needed, to achieve a total duration of 20 seconds. This modified record is then base line corrected and the end result is finally plotted in Attachment C. The associated velocity and displacement time histories (calculated using DPLOT) are also provided in Attachment C along with the 2% damped acceleration and displacement response spectra (calculated using RSPEC) for each of the fifteen generated time histories.

4.4 Check of Acceptance Criteria

Statistical Independence: The correlation coefficients of the three acceleration components (EW, NS, & vert) from each of the five time history sets are calculated and shown to be statistically independent. The correlation coefficient between two time histories is defined as the ratio of the covariance of the two series over the product of the standard deviations. Thus, the coefficient for two time history data series (x_i and y_i) is calculated in Excel using the following equation:

Correl Coef = $\frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2 \sum_{i=1}^{N} (y_i - \overline{y})^2}}$ Where \overline{x} and \overline{y} are the sample means of the series.

For series with large number of data points, the above equation is identical to the covariance of the two series divided by the product of the standard deviation of each. The calculated correlation coefficient for the three directions associated with each of the five time history sets are provided in Table 4.3. As can be seen, the absolute value of all correlation coefficients is less than 0.16 and thus all three (3) signals in each of the five (5) data sets are considered statistically independent per the criteria of Section 3.2.

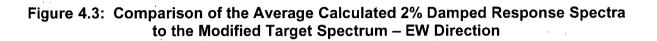
Time Durations: Each of the fifteen acceleration time histories had been initially reviewed for the total duration and the various time requirements of each signal. As can be seen from Table 4.3 and the figures in Attachment C, all time histories meet the total duration requirement of at least 20 seconds. The rise time, decay time and steady state are visually verified by reviewing the time histories of Attachment C.

The strong motion duration is defined in the SRP [5] as the duration where the Arias Intensity rises from 5% to 75%. The Arias Intensity is proportional to the cumulative sum of the square of the acceleration value at each time step. This duration, denoted as T_{5-75} , is provided in Table 4.3. The duration associated with an alternate calculation, based on the rise time from 5% to 95% is also provided in the table. This is further discussed in Section 5.

ABS C	VIIJ	исте	Rev	1 Sheet	No. 22
Job No. 1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsabee C	Date 5/20/08
Calc. No. 1886592-C-0	01 Subi	Generation of Artificial Seismic Time Histories	Check	ed W.Sawruk D	Date 5/23/08

Comparison of Response Spectra: The 2% damped acceleration response spectra (ARS) curves are calculated using RSPEC. The spectra are calculated at 240 frequencies using a uniform logarithmic increment between 0.1 Hz and 40 Hz. These curves are plotted using RSPLT and provided in Attachment C.

The average of the five ARS curves, in each of the three directions, is then calculated. The resulting three curves, in each of the three directions, are plotted using RSPLT and compared to each of the associated modified target acceleration spectrum described in Section 4.1. The resulting comparison curves are provided in Figure 4.3, Figure 4.4 and Figure 4.5. Data used in generating these averaged ARS are tabulated in Attachment C. The target spectra data are obtained from ACECO's DIT included in Attachment B.


A visual comparison of the curves shows that in each case, the generated acceleration response spectra (ARS) generally follow the target ARS. A more detailed comparison of the curves in the peak region is provided in Figure 4.6, Figure 4.7 and Figure 4.8 for the EW, NS and Vertical directions, respectively. Note that all of the generated ARS points are within +30%/-10% of the target ARS values and no more than 9 consecutive points of the generated ARS fall below the target ARS.

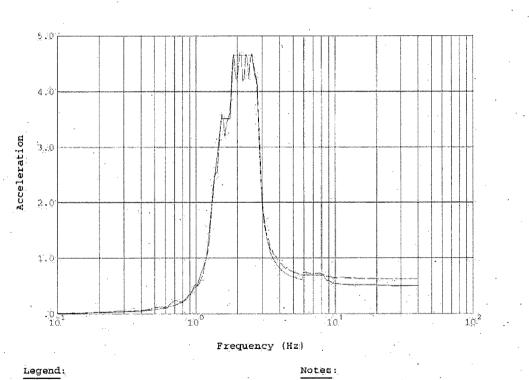
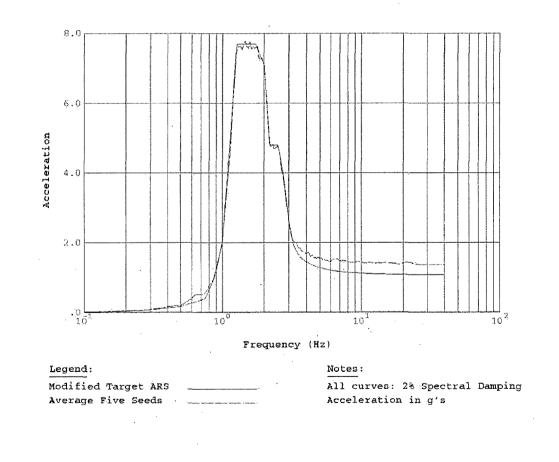

Artificial	Target	Seed	Strong Motion	Final Record Vibratory		Record on Duration	Calculated Co Coefficie	
TH Set #	Direction		Duration T ₅₋₇₅ (sec)	Duration (sec)	T ₅₋₇₅ (sec)	T ₅₋₉₅ (sec)	Direction	Value
	Ē/W	KAK000	8.2	· 15 ·	7.19	9.57	E/W & N/S	0.035
1.	N/S	HCH001	13.2	20	6.53	12.34	E/W & Vert	0.151
	Vert	A-ELC-UP	13.8	14	7.81	10.21	N/S & Vert	0.038
	E/W	SBA042	12.4	18	10.03	14.46	E/W & N/S	0.040
2	N/S	HCH271	11.1	18	7.04	9.62	E/W & Vert	0.041
	Vert	TAF-UP	14.1	16	7.47	11.33	N/S & Vert	0.078
	E/W	SHL000	13.6	16	10.34	11.03	E/W & N/S	0.065
3	N/S	TAF021	10.7	14	6.28	9.68	E/W & Vert	0.128
	Vert	SKR-UP	17.4	17	7.19	8.89	N/S & Vert	0.045
	E/W	HCH271	11.1	16	10.05	11.52	E/W & N/S	-0.007
4	N/S	A-STP093	14.6	18	7.15	11.23	E/W & Vert	-0.100
	Vert	SIL-UP	19.7	17	7.89	12.04	N/S & Vert	0.003
	E/W	SHL090	14.8	15	7.90	9.37	E/W & N/S	-0.034
5	N/S	A-PEL090	17.5	14	6.00	7.99	E/W & Vert	0.031
	Vert	A-PEL-UP	30.6 ¹	17	6.00	8.31	N/S & Vert	0.050

Table 4.3: Composition of the Five Artificial TH Data Sets and Associated Record Properties

Note: 1. The original seed record had a total duration of 50 secs.

	BS Co	ns	ulting	Rev	1	She	et No.	23
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Els	abee	Date	5/20/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checke	d W.Sa	wruk	Date	5/23/08



Modified Target ARS Average Five Seeds All curves: 2% Spectral Damping Acceleration in g's

	BS Co	nsi	ulting	Rev	1	She	et No.	24
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Els	abee	Date	5/20/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checke	d W.Sa	awruk	Date	5/23/08

Figure 4.4: Comparison of the Average Calculated 2% Damped Response Spectra to the Modified Target Spectrum - NS Direction

1:53:27 EXECUTED 05/22/08 13:18:46

r,

INTEL386

VERG 1.62 COMPILED

63/13/27

3

han lawn -

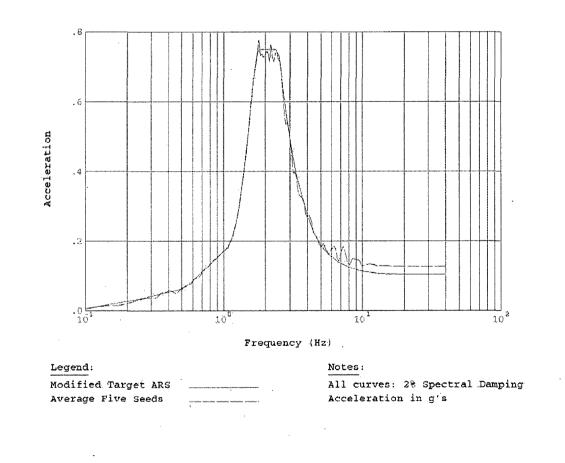
	BS Col	nsi	ulting	Rev	1	S	hee	t No.	25
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.E	sabe	зе	Date	5/20/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	W.S	awri	uk	Date	5/23/08

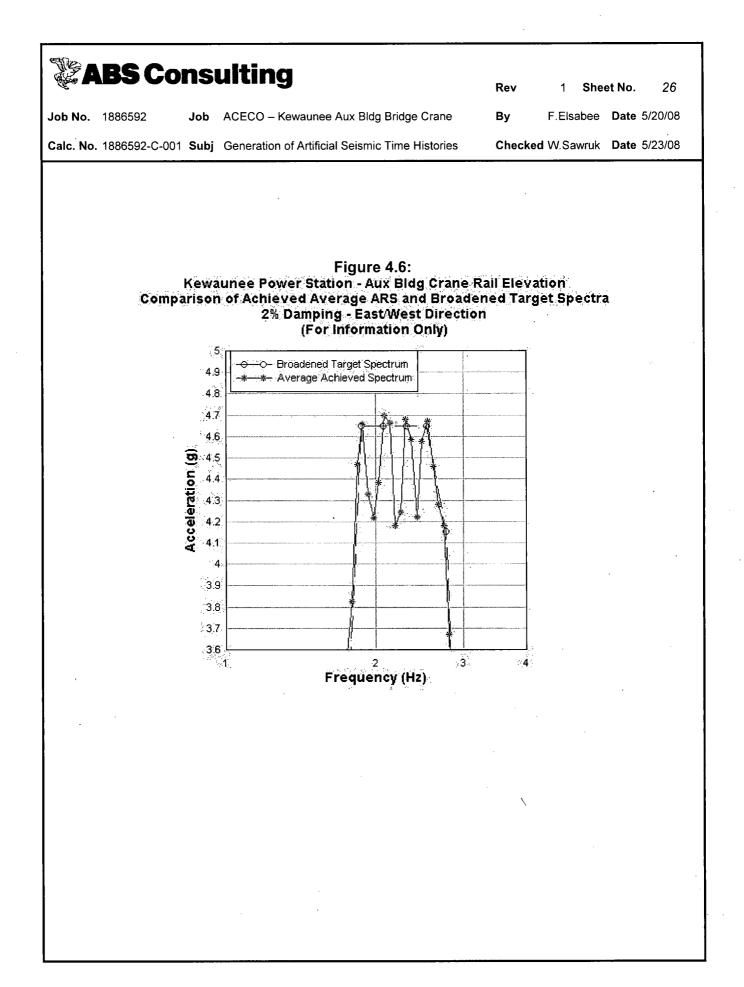
Figure 4.5: Comparison of the Average Calculated 2% Damped Response Spectra to the Modified Target Spectrum - Vertical Direction

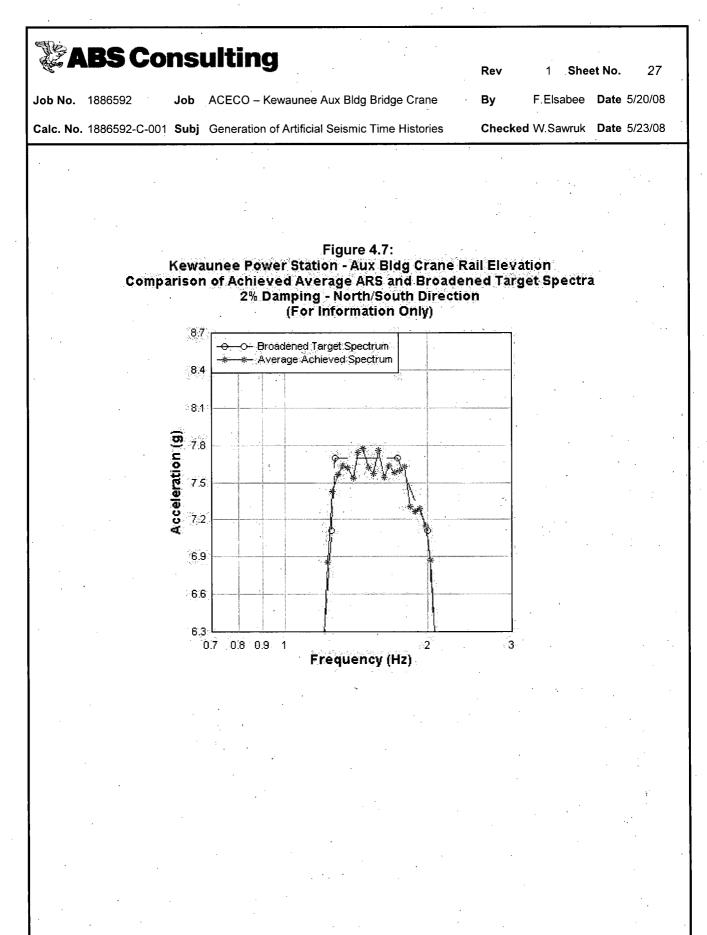
ESPLT

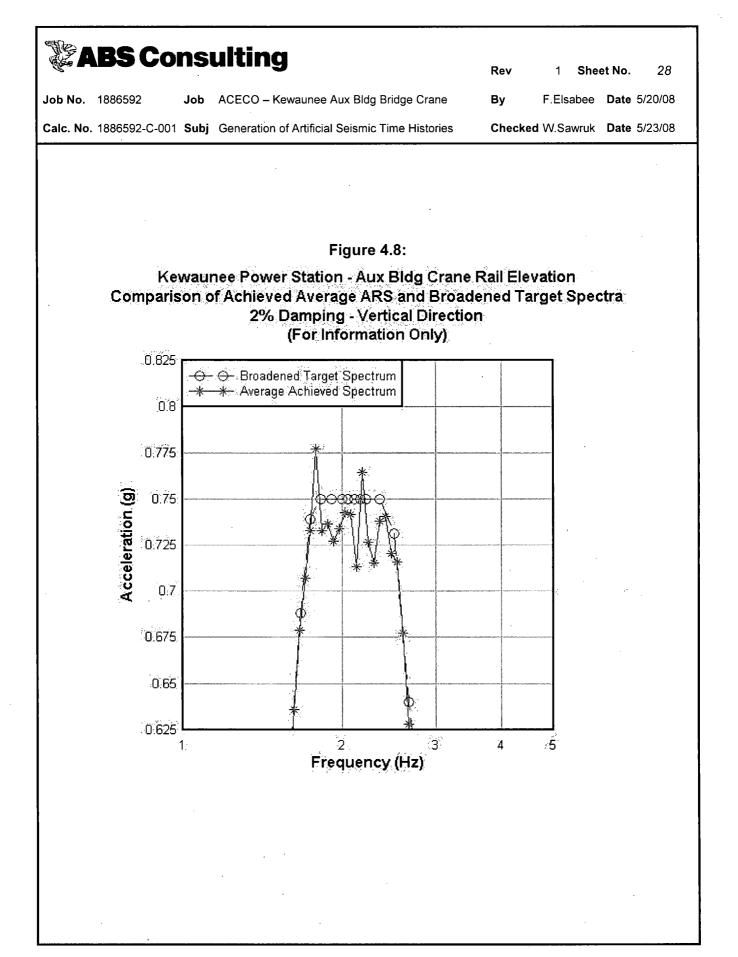
INTEL386

Æ


.6P CONTRILED


12:22:60 16/21/20


EXECUTED


05/23/28

13:18:46

.

.

.

Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsabee	Date 5/20/
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Check	ked W.Sawruk	Date 5/23/
5	- indiana y		of Results			
			·····			

of the Kewaunee Power Station, are provided in the attached CD and plotted in Attachment C. The three-direction acceleration time histories, in each of the five sets, have been shown in Table 4.3 to be statistically independent with the absolute value of all correlation coefficients below 0.16.

The various duration requirements associated with each signal were reviewed and evaluated. As can be seen from the time histories in Attachment C, all acceleration time histories meet the minimum duration requirement of 20 seconds with at least 11 seconds of vibratory motion. The requirement of at least 6 seconds of strong motion duration is shown to have been met as indicated by the T₅₋₇₅ parameter tabulated in Table 4.3. Furthermore, since numerous other alternatives have been suggested for the definition of the strong motion duration, one alternate definition is the time required for the Arias Intensity to rise from 5% to 95% [9], designated by T₅₋₉₅. Based on this alternate definition, the developed signals have at least 7.99 seconds of strong motion duration.

The average of the 2% damped ARS curves is compared to the target spectra in Figure 4.3 to Figure 4.8 for each of the three directions. The ARS curves are calculated using 240 frequencies uniformly spaced on a logarithmic scale between 0.1 Hz and 40 Hz. An analysis of these comparisons concludes the following:

- 1. None of the calculated average spectral values fall more than 10% below the target response spectra.
- 2. No more than 9 consecutive points are found in any one curve where the calculated average spectral value falls below the target value per the requirement of Section 3.2.
- 3. None of the calculated average spectral values, at the peak of the curves, exceed the target curve by more than 30%.
- 4. At a few locations, the calculated average spectral values exceed the target value by as much as 40% on the right side of the peak. Even though the maximum value of 30% specified in [5] is slightly exceeded at a few locations, it can be seen from the curves provided that the processed acceleration signals are adequate and contain enough energy in the frequency region of interest such that there is no need to calculate the Power Spectral Density curves for these signals.

		IBS	Con	sulti	ing	•			Rev	1 She	et No.	30
	Job No.	1886592	Jc	b ACEC	0 – Kewaur	iee Aux Blc	lg Bridge (Crane	Ву	F.Elsabee		
	Calc. No	. 1886592-	C-001 S I	ibj Genei	ation of Arti	ficial Seism	ic Time Hi	stories	Checke	d W.Sawruk	Date	5/23/08
									<u></u>			·
		histories	provide	ed in Att quate fo	achment or the non	C meet	the inter	nt of the	SRP [5]	cceleratio requirem Auxiliary	ents a	and are
		. г						,				
						. 1	•					
					*. -				•		-	
	•			·		, ,				· .	•	
		,										·
							,					
							•	•		•		
•									· ·	•		•
	•			••						•	•	•
•	3			¢						• •	· .	
	°											
		' .						·				
				•				,		•		
										· · ·		
					. *			·		•		
								•		· .	· ·	
										• • •		
								*			. •	
				•				·*	•	•		
				a.								
				,							,	
	1										:	

-	BS Co	ns	uiun	g			Rev	1	Shee	t No.	31
Job No.	1886592	Job	ACECO -	Kewaunee Aux	k Bldg Bridge (Crane	Ву	F.Els	abee	Date	5/20/08
Calc. No.	1886592-C-001	Subj	Generatior	n of Artificial Se	eismic Time Hi	stories	Checke	d W.Sa	wruk	Date	5/23/08
6	Refere	ence	25								
	Dominion En Analysis of A	•	-		•		-	-			
I	RSPEC, ABS DOC-001 & I December 8,	MAN-	001, Pro								
I	RSPLT, ABS DOC-002 & I 9, 1997.		-	•							
	ABS Consult on Specific C	-			-C-002, "Va	lidation o	f SASS	l and	Rela	ted S	Softwa
	U.S. Nuclear 3.7.1, "Seism	•	-					JREG	-080	0, Se	ection
	U.S. Nuclear Design Resp Components	onse	Spectra	for Seismic	Design of	-			•		f Floor
	Hancock, J., Recorded Ea Engineering,	arthqu	lake Gro	und Motion	Using Way						of
	U.S. Nuclear Spectra For					•				•	e
	Dorby, R., Id of Strong-Mo America, Oc	otion	Earthqua	ke Records	s," Bulletin	of the Sei					onents
	ABS Consult 8 th , 2004.	ting N	luclear Q	uality Assu	rance Man	ual (NQA	M), Rev	ision	7. D	ated	Dec.
		tina "I		cedure for a nuary 31 st ,	Software V	erificatior	and Co	ontrol	" RC	D-NC	P-00-

716 A					Attach	ment A
¢Z A	BS Co	ns	uling	Rev	1 Shee	t No. A1
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsabee	Date 5/22/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	W.Sawruk	Date 5/23/08
			·			
			ATTACHMENT A			
			Log of Computer Software	Runs		
This att	achment cor	ntains	a log of the QA computer runs execu	ited for thi	s calculat	ion.
			put files are located on the attached C in the following tables.	D, in the	directorie	s and
,						

ABS (Attachment A					
🌾 ADS (,0112	ulung	Rev	1	Shee	t No.	A2
Job No. 1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.EI	sabee	Date 8	5/22/08
Calc. No. 1886592-0	-001 Subj	Generation of Artificial Seismic Time Histories	Checke	d W.S	awruk	Date 5	5/23/08

Target ARS Directory

	Pgm/Module		Input File	Output File				
	Name	Name	Date/Time	Name	Date/Time			
	RSPLT	rsplth.in	4/14/08 10:07AM	RSPLTH.LOG	4/14/08 10:47AM			
		rspin.in	4/14/06 10.07 AN	TARGET_H.PS	4/14/08 10:47AM			
	ROFLI		4/14/08 10:55AM	RSPLTV.LOG	4/14/08 10:57AM			
		rspltv.in	4/14/06 TU.55AIVI	TARGET_V.PS	4/14/08 10:57AM			

Artificial Records Directory Data <u>Set 1 subdirectory</u>

a Set 1 subdirectory										
Subdirectory	Pgm/Module		Input File		Out	put File				
Name	Name	Name	Date/Time		Name	Date/Time				
		renoca in	5/20/08 2	2:49PM	ACC1EW.LOG	5/20/08 2:54PM				
	RSPEC	rspeca.in	5/20/06 2	2.437101	ACC1EW.ARS	5/20/08 2:54PM				
	NOFEC	rapod in	5/22/08 8	B:24AM	DIS1EW.LOG	5/22/08 8:24AM				
EW		rspecd.in	5/22/08 0	5.24AIVI	DIS1EW.ARS	5/22/08 8:24AM				
		rsplta.in	5/20/08	1:56PM	RSPLTA.LOG	5/20/08 3:56PM				
	RSPLT	ispita.iii	5/20/00		COMP_EW.PS	5/20/08 3:56PM				
	NOFLI	replied in	5/22/08 8	B:22AM	RSPLTD.LOG	5/22/08 8:24AM				
		rspltd.in	5/22/00 0		DISP_EW.PS	5/22/08 8:24AM				
		rspeca.in	5/23/08 1	2:14PM	ACC1NS.LOG	5/23/08 12:16PM				
	RSPEC	Topeca.iii	0/23/00 1	2.14611	ACC1NS.ARS	5/23/08 12:16PM				
	- ROPEC	ranged in	5/23/08 1	2:15PM	DIS1NS.LOG	5/23/08 12:25PM				
NS		rspecd.in	5/23/00 1	2.13510	DIS1NS.ARS	5/23/08 12:25PM				
	RSPLT	rsplta.in	5/20/08	1:56PM	RSPLTA.LOG	5/23/08 12:17PM				
			5/20/08	1.50 10	COMP_NS.PS	5/23/08 12:17PM				
		rspltd.in	5/22/08	9:43AM	RSPLTD.LOG	5/23/08 12:26PM				
		rspitu.in	5/22/06 \$	9.43AW	DISP_NS.PS	5/23/08 12:26PM				
		ranges in	5/20/08	2:50PM	ACC1UP.LOG	5/20/08 2:54PM				
	RSPEC	rspeca.in	5/20/06 4	2.500.00	ACC1UP.ARS	5/20/08 2:54PM				
	NOFEC	report in	5/22/08	9:59AM	DIS1UP.LOG	5/22/08 10:02AM				
Vortical		rspecd.in	5/22/08	9.59AW	DIS1UP ARS	5/22/08 10:02AM				
Vertical		replto in	5/20/08	1:55PM	RSPLTA.LOG	5/20/08 3:57PM				
	RSPLT	rsplta.in	5/20/08	1.55810	COMP_VER	5/20/08 3:57PM				
	ROPLI	replied in	5/22/08 1	0.02414	RSPLTD.LOG	5/22/08 10:03AM				
		rspltd.in	5/22/08 1	0:02AM	DISP_UP.PS	5/22/08 10:03AM				

19A	BS Col		ultina		Att	achr	nent	A
	B 3 CU		AILING	Rev	1	Sheet	No.	A3
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Els	sabee	Date 5	/22/08
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	W.S	awruk	Date 5	/23/08

Artificial Records Directory Data Set 2 subdirectory

a Set 2 subdirectory											
Subdirectory	Pgm/Module		Input File		Out	put File					
Name	Name	Name	Date/Time		Name	Date/Time					
		rangaa in	5/20/08 2:50P	р. л	ACC2EW.LOG	5/20/08 2:55PM					
	RSPEC	rspeca.in	5/20/06 2.50P		ACC2EW.ARS	5/20/08 2:55PM					
	ROFEC	rspecd.in	5/22/08 10:20/	<u></u>	DIS2EW.LOG	5/22/08 10:21AM					
EW		rspecu.m	5/22/00 10.20	-11/1	DIS2EW.ARS	5/22/08 10:21AM					
Evv		ranita in	5/20/08 1:57P	м	RSPLTA.LOG	5/20/08 3:58PM					
	RSPLT	rsplta.in	5/20/06 1.57 P		COMP_EW.PS	5/20/08 3:58PM					
	ROPLI	roultd in	5/22/08 10:20/	^ N A	RSPLTD.LOG	5/22/08 10:21AM					
		rspltd.in	_5/22/06 10.20/	-111	DISP_EW.PS	5/22/08 10:21AM					
		rspeca.in	5/20/08 2:50P		ACC2NS.LOG	5/20/08 2:55PM					
			5/20/08 2:50P		ACC2NS.ARS	5/20/08 2:55PM					
	RSPEC	report in	E 100/00 10:00		DIS2NS.LOG	5/22/08 10:29AM					
NS		rspecd.in	5/22/08 10:28/	-11/1	DIS2NS.ARS	5/22/08 10:29AM					
NO NO	RSPLT	rsplta.in			RSPLTA.LOG	5/20/08 3:58PM					
			5/20/08 1:57P	1:57PM	COMP_NS.PS	5/20/08 3:58PM					
			5/22/08 10:29/	^ N.A	RSPLTD.LOG	5/22/08 10:30AM					
		rspltd.in	5/22/06 10.29/		DISP_NS.PS	5/22/08 10:30AM					
		ranges in	5/20/08 2:44P	рил.	ACC2UP.LOG	5/20/08 3:52PM					
	RSPEC	rspeca.in	5/20/06 2.44P	IVI	ACC2UP.ARS	5/20/08 3:52PM					
	ROPEC	report in	E/00/09 10:07	A N A	DIS2UP.LOG	5/22/08 10:38AM					
Vertical		rspecd.in	5/22/08 10:37/	-NVI	DIS2UP.ARS	5/22/08 10:38AM					
venical		realite in	E/20/08 1.EPD	N A	RSPLTA.LOG	5/20/08 3:59PM					
		rsplta.in	5/20/08 1:58P	'IVI	COMP_VER	5/20/08 3:59PM					
	RSPLT	rapital in	E/22/09 10:29	A N A	RSPLTD.LOG	5/22/08 10:39AM					
		rspltd.in	5/22/08 10:38/	- IVI	DISP_UP.PS	5/22/08 10:39AM					

		Attachment A				
ABS Consulting	Rev	1 She	et No. A4			
Job No. 1886592 Job ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsabee	Date 5/22/08			
Calc. No. 1886592-C-001 Subj Generation of Artificial Seismic Time Histories	Check	ed W.Sawrul	Date 5/23/08			

Artificial Records Directory Data Set 3 subdirectory

ata Set 3 subdirect	ory					
Subdirectory	Pgm/Module		Input File		Out	put File
Name	Name	Name	Date/Time	; ;	Name	Date/Time
		reposa in	5/20/08	2:51PM	ACC3EW.LOG	5/20/08 3:09PM
	RSPEC	rspeca.in	5/20/08	2.51110	ACC3EW.ARS	5/20/08 3:09PM
	NOFEC	rspecd.in	5/22/08	10:52AM	DIS3EW.LOG	5/22/08 10:53AM
EW		rspecu.in	_3/22/08	10.52AW	DIS3EW.ARS	5/22/08 10:53AM
L V V		rsplta.in	5/20/08	1:59PM	RSPLTA.LOG	5/20/08 4:08PM
	RSPLT	rspita.m	5/20/08	1.59510	COMP_EW.PS	5/20/08 4:08PM
	NOFLI	rspltd.in	5/22/08	10:52AM	RSPLTD.LOG	5/22/08 10:53AM
	1.	rspitu.in	5/22/00	TU.52AIVI	DISP_EW.PS	5/22/08 10:53AM
	RSPEC	rspeca.in	5/20/08	2:51PM	ACC3NS.LOG	5/20/08 3:10PM
		Tspeca.iii	5/20/08	2.51910	ACC3NS ARS	5/20/08 3:10PM
	RSPEC	rspecd.in	E/00/09	11.00414	DIS3NS.LOG	5/22/08 11:03AM
NS		rspeca.in	5/22/08	11:02AM	DIS3NS.ARS	5/22/08 11:03AM
NO NO	RSPLT	rsplta.in	5/20/08	2:00PM	RSPLTA.LOG	5/20/08 4:09PM
				2.00910	COMP_NS.PS	5/20/08 4:09PM
		na milital im	5/00/00	11:08AM	RSPLTD.LOG	5/22/08 11:08AM
		rspltd.in	5/22/08	TT.UOAIVI	DISP_NS.PS	5/22/08 11:08AM
	1	ranges in	5/20/08	2:51PM	ACC3UP.LOG	5/20/08 3:10PM
	RSPEC	rspeca.in	5/20/08	2.5 [19]	ACC3UP ARS	5/20/08 3:10PM
	ROPEC	ranged in	5/22/08	11:12AM	DIS3UP.LOG	5/22/08 11:13AM
Vertical	1 a.	rspecd.in	5/22/06	11.12AW	DIS3UP.ARS	5/22/08 11:13AM
ventical		renite in	E/00/00	2-01DM	RSPLTA.LOG	5/20/08 4:10PM
		rsplta.in	5/20/08	2:01PM	COMP_VER	5/20/08 4:10PM
	RSPLT	replied in	15/00/00	44.40414	RSPLTD.LOG	5/22/08 11:14AM
		rspltd.in	/5/22/08	11: 13AM	DISP_UP.PS	5/22/08 11:14AM

		Attachment A			
ABS Consulting	Rev	1 Sheet No.	A5		
Job No. 1886592 Job ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.Elsabee Date	5/22/08		
Calc. No. 1886592-C-001 Subj Generation of Artificial Seismic Time Histories	Check	ed W.Sawruk Date	5/23/08		

Artificial Records Directory Data Set 4 subdirectory

J

a Set 4 subdirectory											
Subdirectory	Pgm/Module		Input File		Out	put File					
Name	Name	Name	Date/Time	9	Name	Date/Time					
	r	rances in	5/20/08	2:51PM	ACC4EW.LOG	5/20/08 3:10PM					
	RSPEC	rspeca.in	5/20/08	2.51710	ACC4EW.ARS	5/20/08 3:10PM					
	NOFLO	rspecd.in	5/22/08	11:19AM	DIS4EW.LOG	5/22/08 11:20AM					
EW		rspecu.in	5122100		DIS4EW.ARS	5/22/08 11:20AM					
		rsplta.in	5/20/08	2:02PM	RSPLTA.LOG	5/20/08 4:11PM					
	RSPLT	rspita.m	5/20/00	2.027 10	COMP_EW.PS	5/20/08 4:11PM					
	NOFLI	rspltd.in	5/22/08	11:19AM	RSPLTD.LOG	5/22/08 11:20AM					
		rspitu.in	5122100		DISP_EW.PS	5/22/08 11:20AM					
		rangag in	5/23/08	12:46PM	ACC4NS.LOG	5/23/08 12:47PM					
	RSPEC	rspeca.in	5/25/00	12.405 10	ACC4NS.ARS	5/23/08 12:47PM					
	I NOFEC	ranged in	5/23/08	12:46PM	DIS4NS.LOG	5/23/08 12:47PM					
NS		rspecd.in	5/23/00	12.40 11	DIS4NS.ARS	5/23/08 12:47PM					
	RSPLT	rsplta.in	5/20/08	2:05PM	RSPLTA.LOG	5/23/08 12:48PM					
		rspita.in	5/20/06	2.05-10	COMP_NS.PS	5/23/08 12:48PM					
		replied in	E 100/00	11:25AM	RSPLTD.LOG	5/23/08 12:48PM					
		rspltd.in	5/22/08	11.23AM	DISP_NS.PS	5/23/08 12:48PM					
		rspeca.in	5/20/08	2:52PM	ACC4UP.LOG	5/20/08 3:11PM					
	RSPEC	Tspeca.m	0/20/00	2.521-101	ACC4UP.ARS	5/20/08 3:11PM					
	NOFEC	rspecd.in	5/22/08	11:30AM	DIS4UP.LOG	5/22/08 11:37AM					
Vertical		rspecu.in	5/22/00	11.30Alvi	DIS4UP.ARS	5/22/08 11:37AM					
venical		rsplta.in	5/22/08	11:32AM	RSPLTA.LOG	5/22/08 11:32AM					
	RSPLT	ispita.iii	5/22/00	TT.JZAW	COMP_VER	5/22/08 11:32AM					
		rspltd.in	5/22/08	11:31AM	RSPLTD.LOG	5/22/08 11:37AM					
		ispitu.in	5122100	11.317410	DISP_UP.PS	5/22/08 11:37AM					

ABS Consulting					At	Attachment A			
Se ADS Consulting		unny	Rev	1	Sheet	No.	A6		
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.El	sabee	Date 5	/22/08	
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	I W.S	awruk	Date 5	/23/08	

Artificial Records Directory Data Set 5 subdirectory

ata	ata Set 5 subdirectory								
	Subdirectory	Pgm/Module	Input File			Output File			
	Name	Name	Name	Date/Time		Name	Date/Time		
			renoco in	5/20/08	2.52DM	ACC5EW.LOG	5/20/08 3:12PM		
		RSPEC	rspeca.in			ACC5EW.ARS	5/20/08 3:12PM		
		ROPEC	ranged in	5/22/08	11:43AM	DIS5EW.LOG	5/22/08 11:45AM		
	EW	٩	rspecd.in			DIS5EW.ARS	5/22/08 11:45AM		
			rsplta.in	5/20/09	2:06PM	RSPLTA.LOG	5/20/08 4:14PM		
		RSPLT	rspita.in	5/20/08	2.00011	COMP_EW.PS	5/20/08 4:14PM		
		NOFLI	rspltd.in	5/22/08	11:45AM	RSPLTD.LOG	5/22/08 11:45AM		
			rspitu.m	5/22/08	11.45AW	DISP_EW.PS	5/22/08 11:45AM		
		RSPEC	repose in	5/20/08	2:52PM	ACC5NS.LOG	5/20/08 3:12PM		
			rspeca.in		2.525 11	ACC5NS.ARS	5/20/08 3:12PM		
			rspecd in	5/22/08	11:49AM	DIS5NS.LOG	5/22/08 11:51AM		
	NS					DIS5NS.ARS	5/22/08 11:51AM		
	, 100		rsplta.in	E IDDIO9	2:07PM	RSPLTA.LOG	5/20/08 4:15PM		
		RSPLT	rspita.in	5/20/06	2.07 11	COMP_NS.PS	5/20/08 4:15PM		
	•	NOFLI	rspltd.in	5/22/08	11:51AM	RSPLTD.LOG	5/22/08 11:51AM		
					TT.5TAIVI	DISP_NS.PS	5/22/08 11:51AM		
			rspeca.in	5/20/08	2:52PM	ACC5UP.LOG	5/20/08 3:12PM		
		RSPEC	rspeca.m	5/20/08	2.52510	ACC5UP ARS	5/20/08 3:12PM		
		NOFLO	rspecd.in	5/22/08	11:56AM	DIS5UP.LOG	5/22/08 11:57AM		
	Vertical	-	rspecu.in	5/22/06	I I.SOAW	DIS5UP ARS	5/22/08 11:57AM		
	venticar		rsplta.in	5/20/09	2:08PM	RSPLTA.LOG	5/20/08 4:16PM		
		RSPLT		5/20/08	2.005 10	COMP_VER	5/20/08 4:16PM		
		NOFLI	rspltd.in	5/22/08	11:57AM	RSPLTD.LOG	5/22/08 11:58AM		
•				5/22/00	TT.J/AW	DISP_UP.PS	5/22/08 11:58AM		

TIS .	BS Co	Attachment A							
	D3 CU	1151	ulung	Rev	1	Shee	t No.	A7	,
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	F.El	sabee	Date 5/	/22/08	
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	d W.S	awruk	Date 5	/23/08	
	•								

Artificial Records Directory

Pgm/Module		Input File	Output File			
Name	Name	Date/Time	Name	Date/Time		
			RSPLT.LOG	5/23/08 1:18PM		
RSPLT	rsplt.in	4/29/08 4:08PM	COMPEAVE.PS	5/23/08 1:18PM		
NOFLI		4/29/00 4.00F W	COMPNAVE.PS	5/23/08 1:18PM		
			COMPVAVE.PS	5/23/08 1:18PM		

ABS Consulting						Attachment B				
			Rev		1	She	et No.	B1		
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane		Ву	F.Ek	sabee	Date	5/22/08	
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories		Checked	W.S	awruk	Date	5/23/08	

ATTACHMENT B

Design Input Data

ACECO Design Information Transmittal

DIT No. DCR-3629-11 25-Mar-08

(included on following pages)

QF-0545(t) (FP-E-MOD-11) Rev. 1

Kewar Modification		Desig	n Informa	ition Trans	mittal (I	DIT)		
From:	David Lohman	, Dominion						
To :	Jami Rubenda	II, ACECO						
Mod or Trac	king Number:	DCR 3629	Date	03/25/08	DIT No:	DCR-3629- 11		
Mod Title:	Upgrade Auxil	iary Building Crane to	Single Failure F	Proof				
Plant:	Kewaunee		1 🛛 Unit 2 🗍 mon 🗍	Quality Classificatio	on:QA-2			
SUBJECT:Des	sign Basis Eart	hquake Response S	spectra					
Check if appli	cable:							
		nformation previou	sly transmitted	orally on	_ by	·		
		preliminary. See ex	1122					
		(Source documents s EM-08-0004 Rev. 0	should be unique	ely identified)				
Lingineering II		-M-00-0004 Nev. 0						
	OF INFORMA	TION (Write the infor	mation being tra	nsmitted or list eac	ch document	being		
transmitted)	e spectra at the	crane rail for use in th	ne non-linear sei	smic evaluation of	the crane			
			· · · · · · · · · · · · · · · · · · ·					
			,					
	N (Recipients st	nould receive all attac	hments unless (therwise indicated	All attachm	iente are		
	nless otherwise							
Electronic Dist	ribution to Jami	Rubendall, ACECO						
PREPARED B	Y (The Prepare	r and Approver may b	be the same pers	son.)		1		
Lori Christe	nsen	Nuc Tech Spec III		i Christenser	<u> </u>	3/25/08		
Preparer Na	ame	Position	Si	gnature		Date		
APPROVED BY (The cognizant Engineering Supervisor has release authority. Consult the Design Interface Agreement or local procedures to determine who else has release authority.)								
n1	I. law	Piint M	(k	JU		ch hant		
Approver N	<u>Lohman</u> ame	Project Mar Position		gnature		P12/2000 Date		
A copy of the DI	T (along with ar	y attachments not or	ı file) should be s	sent to the modific	ation file.			

. 1

Engineering Transmittal

Dominion			STD-GN-0041			Page 1 of 3
1. Transmittal Number:	2. Revision:	3. Station(s)	······	4. Unit(s):		
ET-CEM-08-0004	0	Kew	aunee	1 · · · · · · · · · · · · · · · · · · ·	🗍 Unit 2	
5. Title:	0					ality Classification:
		antes for the Au	سابسات مؤافرين	/ Duilding Cases	0. Qu	SR
Seismic Amplified Ro	sponse op	ectra for the Ar		red Actions?		Approval Req.?
		Implementing] Yes 🖾 No	•	
		-Implementing				Yes 🖾 No
10 Preparation, Review, and Apr	iroval Signatu	res includes				
Prepared By / Affiliation: (Print)	. – .		Signatu	upe:/		Date:
Divakar Bhargava / Corpora	ate Engineer	ing Mechanics	199	shayan		3-24-08
Reviewed By / Affiliation: (Print)			Signatu	ire:		Date:
Daniel J. Vasquez / Corpora	ate Enginee	ing Mechanics				3/24/08
Programs / Other Reviewer / Affiliat	ion: (Print)		Signatu			Date:
				N/A		
Supervisor Approval / Affiliation: (P	•		Signatu	ire:		Date:
John D. MACCRIMMON / S	Supervisor –	Corporate Civil	42	Mula		7/25/122
Engineering Design Control Engineer (DCE) Ap						JUT OB
Design Control Engineer (DCE) Ap	proval / Site: (F	TRIC)	Šignatu	N/A		Date:
Project Engineer Approval / Affiliati	op: (Print)		Signatu			Date:
Froject Engineer Approvar / Amirado	Sh. (Find)		Signat	N/A		Dale.
Manager Operations Approval / Site	(Print)		Signatu			Date:
	s. () mit)		oignate	N/A		Date.
Manager Site Engineering Approva	/ Site: (Print)		Signatu			Date:
	,,		o,g, late	N/A		
SNSOC Approval / Site: (Print)		-u-u	Signatu			Date:
				N/A		
			·····			
Standard Attachments				Reviewed & No In	npact di u	NotiRequired
11. 🗌 Activity Checklist inclu	ded as attac	chment				\boxtimes
12. 🔲 Safety Review include	d as attachr	nent	·			
13. 🔲 50.59/72.48 Screen in	cluded as a	ttachment				\boxtimes
14. TPRC & PRCS included	d as Attachn	nent:			Poor Martine and Poor And Carlos Car	\boxtimes
15. CDS included as Attac	chment:	<u> </u>				$\overline{\boxtimes}$
16. Controlled Document Review		(CDRR) Reguireme	nts Filendaria			
CDRR is NOT require	d.					
requested to I	nitiate CDR	R upon receipt or	f this ET.			
CDRR will be required	l at a later d	ate. The affected	d DCE(s) will be	e notified following	1	to
initiate CDRR.			()			
				a internet in a state of the st	AND STREET, ST	
17 Additional Attachments						
No.			Description			
		equest (1 pages)				
2. Amplified Resp	onse Spectr	a and digitized d	ata for Kewaun	ee Aux. Bldg Crar	ne rail level	(8 pages)

ET CEM-08-0004, Revision 0

Page 2 of 3

Primary F	Recipient(s): David C. Lohman – Kewaune	e Power Stati	on		
Copy To?	Other Recipient / Department or Location	Copy To?	Other Recipient / Department or Location		
X	Daniel J. Vasquez / IN3NW		System Engineer		
X	Divakar Bhargava / IN3NW	X	Records Management (Copy)		
X	Eric W. May / IN3NW	····	Affected CDS Points-of-Contact		
	Site DCE		Nuclear Training (Simulator)		
	Affected organization				
	Program Owners	X	John D. MacCrimmon / IN3NW		

Source Document

Email Request from D. Lohman to D. Bhargava / J. MacCrimmon dated 3/12/08, "Crane Seismic Evaluation" (Attachment 1)

Record of Revision

Original Issue.

Purpose & Applicability

The purpose of this ET is to provide design basis earthquake (DBE) amplified response spectra for the seismic analysis of 125/15 Ton Single Failure Proof Aux Building Crane.

This ET is provided as information only. It is categorized as a non-implementing ET. Any configuration change must be implemented by an approved change process (such as DCP, IEER, implementing ET, procedure change, etc.) that may reference or use the information in this ET, as appropriate.

References

- Report JAB-PS-03 "Earthquake Analysis of the Reactor-Auxiliary-Turbine Building", Pioneer Services & Engineering Co./John A. Blume & Associates, Engineers, dated February 16, 1971.
- 2. Calculation KPS-70155344-S01, Rev. 1, July 30, 2007, "Development of Response spectra at Aux. Building Crane Rail Level", Prepared by AES.
- 3. Calculation KPS-70155344-S01, Rev. 1, Addendum A, March 20, 2008, "Development of Response spectra at Aux. Building Crane Rail Level".
- 4. Calculation KPS-70155344-S01, Rev. 1, Addendum B, "Development of Response spectra at Aux. Building Crane Rail Level".
- 5. Standard Review Plan 3.7.1, Rev. 2 (NUREG 0800)

Design Inputs

1. Amplified response spectra (ARS) for the Kewaunee Auxiliary Building were developed in References 1 and 2.

ET CEM-08-0004, Revision 0

Page 3 of 3

- 2. Reference 3, which provides updated shear areas for the stick model of the Aux Building for seismic analysis in the E-W direction.
- 3. Reference 4, which develops response spectrum at the Crane rail elevation for the E-W direction for the updated shear areas developed in Reference 3. Reference 4 also envelops/peak-broadens spectra in the N-S (from Reference 2) and vertical directions (from Reference 1).

Discussion

Design Basis Earthquake (DBE) amplified response spectra curves are provided in Attachment 2 of this ET for each of the three orthogonal directions to support the analysis of the Kewaunee Aux. Building Crane. Digitized data for these curves are also provided. These spectra are at the Crane rail location, elevation 679'-11" and are peak-broadened +-15%. They are at 2% spectral damping which is considered appropriate for the crane analysis and is consistent with Kewaunee Station's licensing basis. The development of these spectra meets the guidance provided in Reference 5.

The E-W spectrum is obtained from reference 4 which used dynamic time-history analysis (four cases) with an updated model of the Aux. Building obtained from Reference 3. Reference 4 also peak- broadened the vertical response spectrum, which was obtained from reference 1. Additionally, in the N-S direction, the un-broadened spectrum was obtained from Reference 2 for two cases: crane at mid-span and crane at any location. These two cases were peak-broadened +- 15% in Reference 4 again and were enveloped. The resulting N-S spectrum is provided in Attachment 2. It is noted that the peak broadening may be slightly conservative and may over-predict responses in the low frequency range for some of the orientations. If needed, the users may, at their discretion, refine the response spectrum broadening in the low frequency range provided the guidance of NRC RG 1.122 is met.

Conclusion

The peak-broadened ARS curves and digitized data for seismic analysis of the Kewaunee Aux. Building Crane are transmitted via this ET in Attachment 2.

Precautions and Limitations

None.

Recommendations

None.

Required Actions

None.

ET CEM-08-0004, Revision 0

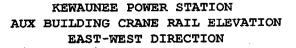
Attachment 1, Page 1 of 1

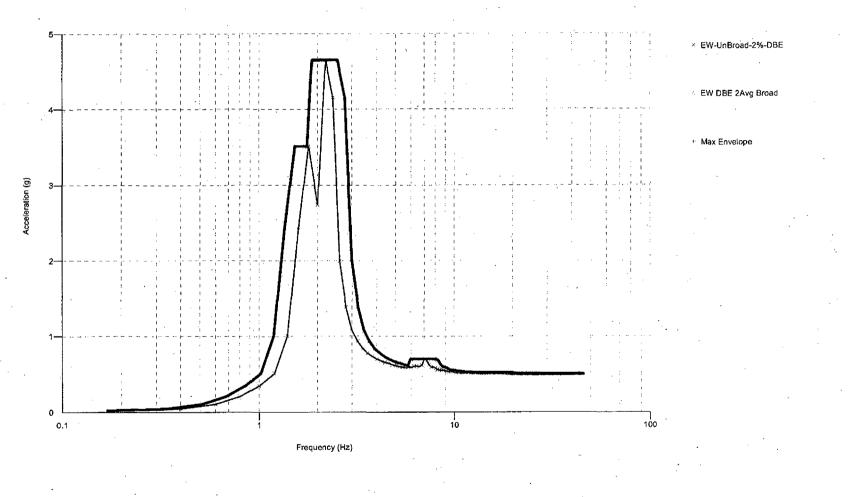
David C

Lohman/Generation/4/Dom 03/12/2008 08:21 AM To Divakar Bhargava/Generation/6/Dom@VANCPOWER, John Maccrimmon/Generation/6/Dom@VANCPOWER cc

bcc

Subject Crane Seismic Evaluation

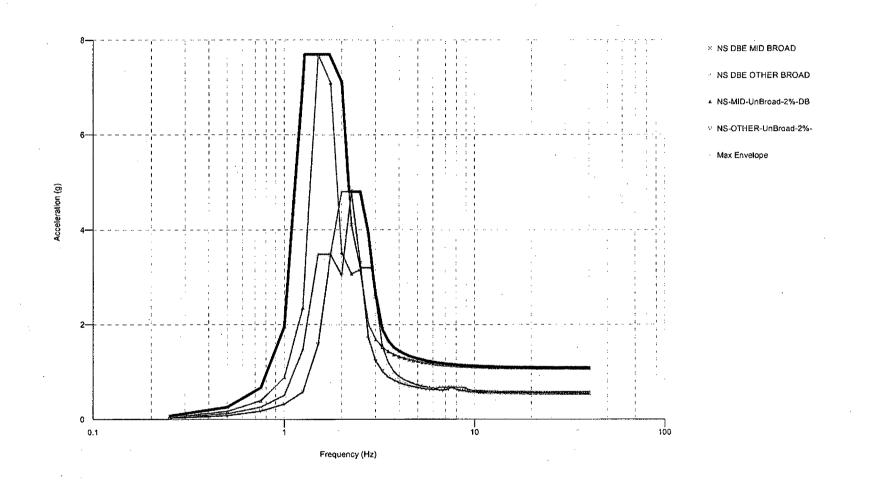

History: This message has been replied to.


John and Divakar, the requisition for ACECO to do the seismic analysis has been approved and they are starting work. Are we still on track to provide them the Response Spectra by 3/24? John, the PO will list you as the technical contact for this activity and me the station point of contact

ET-CEM-08-0004, Revision 0

Attachment 2

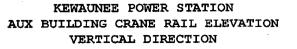
Page 1 of 8

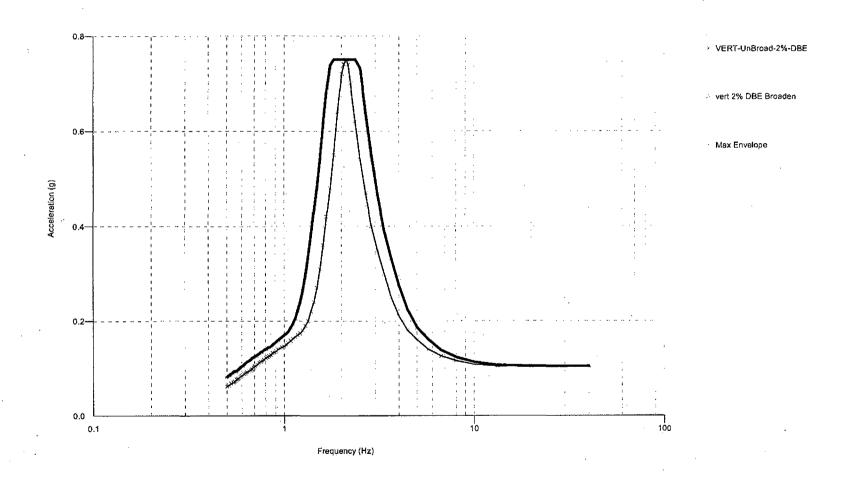


EW-UNBROAD-2%-DBE AUX BUILDING - CRANE ELEV 679-11" EW_DBE_2AVG_BROAD AUX BUILDING - CRANE ELEV 679-11" EAST-WEST UNBROADENED 2% EQUIPMENT DAMPING KEWAUNEE POWER STATION EAST-WEST BROADENED 2% EQUIPMENT DAMPING KEWAUNEE POWER STATION ABS Consulting Calc 1886592-C-001 R0 Attachment B - Page B-7 of 14

Attachment 2

KEWAUNEE POWER STATION AUX BUILDING CRANE RAIL ELEVATION NORTH-SOUTH DIRECTION




NS_DBE_MID_BROAD AUX BUILDING - CRANE ELEV 679'-11" (CRANE AT MID SPAN) NORTH-SOUTH BROADENED 2% EQUIPMENT DAMPING AUX BUILDING - CRANE ELEV 679'-11" (CRANE AT OTHER LOC) NORTH-SOUTH BROADENED 2% EQUIPMENT DAMPING NS-MID-UNBROAD-2%-DB AUX BUILDING - CRANE ELEV 679'-11" (CRANE AT MID SPAN) NORTH-SOUTH UNBROADENED 2% EQUIPMENT DAMPING NS-OTHER-UNBROAD-2% AUX BUILDING - CRANE ELEV 679'-11" (CRANE AT OTHER LOC) NORTH-SOUTH UNBROADENED 2% EQUIPMENT DAMPING DAMPING NS-OTHER-UNBROAD-2% AUX BUILDING - CRANE ELEV 679'-11" (CRANE AT OTHER LOC) NORTH-SOUTH UNBROADENED 2% EQUIPMENT DAMPING DAMPING NS-OTHER-UNBROAD-2% AUX BUILDING - CRANE ELEV 679'-11" (CRANE AT OTHER LOC) NORTH-SOUTH UNBROADENED 2% EQUIPMENT DAMPING

ET-CEM-08-0004, Revision 0

Attachment 2

Page 3 of 8

VERTICAL UNBROADENED 2% EQUIPMENT DAMPING KEWAUNEE POWER STATION VERTICAL BROADENED 2% EQUIPMENT DAMPING KEWAUNEE POWER STATION

VERT-UNBROAD-2%-DBE AUX BUILDING - CRANE ELEV 679-11" VERT_2%_DBE_BROADEN AUX BUILDING - CRANE ELEV 679-11"

Attachment 2

Structure:	KPS Aux	Building -	Сгале	Elevation	679'-11"
------------	----------------	------------	-------	-----------	----------

EQ Type:	Design	Basis	Eartho	uake
----------	--------	-------	--------	------

Damping: 2% Equipment Damping

Damping: Direction:				North-South	Vertical to the second second			
	BROADENED		BROADENED	UNBROADENED	BROADENED UNBROADENED			
	Freq (Hz) Accel (g)	Freq (Hz) Accel (g)	Freq (Hz) Accel (g)	Grane @ MidSpan Crane @ Other	Freq (Hz) Accel (g)	Freq (Hz): Accel (g)		
	0.170 0.021	0 200 - 0 021	0.250 0.076	Ereci(H2) Accel (g) Free (H2) Accel (g)	0.500 0.082	0.500.000		
	0.340 0.045	10400 0045 H	0.500 0.256	0.250 0.0250 0.0258	0.506 0.084	0.513 0.064		
	0.510 0.103	0.600 0.103	0.750 0.669	0.500 0166 0.500 00808	0.513 0.085	0.526 0.068		
	0.680 0.205	110 800 1 1 1 0 205 X	1.000 1.955	0.750 0.390 0.390	0.519 0.087	0 541 0 070		
	0.850 0.344	1.000	1.250 7.114	1.000 0.883 1.000 0.3224	0.526 0.089	0.548.0.072		
	1.020 0.507	1 200 2 0 507	1.275 7.694	1 250 2 354 1 250 0 5742	0.533 0.090	0.556 0.074		
	1.190 1.003	211400111231200351	1.725 7.694	1.500 7.693 1.1.500 1.1.582	0.541 0.093	0.563 0.076		
	1.360 2.439	1600 12 439	2.000 7.114	1750 34798	0.556 0.094	0.571		
	1.530 3.513	1.8005 3.513 8	2.190 4.800	112.000 11 13 516 2 000 3 30392	0.563 0.095	0.58011 0.080		
	1.700 3.513	2000 2 2739	2.500 4.800	152 250 4 3 068 2 2 250 4 8 006	0.571 0.097	0.588 0.0082		
	1.767 3.513	12200 A 4650	2.750 3.927	2500 3159 2500 32908	0.580 0.099	0.084		
	1.870 4.650	2.400 444155	2.927 2.963	1.999. 2750 1.7084	0.588 0.102	0.606		
	2.070 4.650	21600 3 4199511	3.000 2.641	12258 31000 11 112258	0.597 0.104	0.615 0.088		
	2.300 4.650	2800 51 51 365 15	3.250 1.902	3250 401 519 4 3250 401 18 3500 441 428 43500 08884	0.606 0.106 0.615 0.107	0.635 0.092		
	2.530 4.650	23000 BENELO73	3.500 1.658		0.625 0.110	0.656 0.094		
	2.760 4.155	53:200 77:0 934	3.750 1.516	1367 3750 08226 4000 1323 4000 0826	0.635 0.113	0.667 0.094		
	2.990 1.995	3400 1 10.833	4.000 1.436 4.250 1.381	4250 1287 4250 0733	0.656 0.116	0.678 0.098		
	3.220 1.385 3.450 1.073	3600 0.778	4.500 1.338	4500 07068	0.667 0.118	0.690 0.102		
	3.680 0.934	14000	4.750 1.304	4.750 11287 14 750 0.6904	0.678 0.121	0.702 0.104		
	3.910 0.833	24/200111101678	5.000 1.277	5000 1219 5000 06722	0.690 0.123	0.714 0.106		
	4.140 0.778	4400 0652	5.250 1.254	5 250 1 204 5 250 0 6578	0.702 0.125	0.727 0.108		
	4.370 0.732	4600 01639	5.500 1.236	5,500 0,6406	0.714 0.127	0.741.0.112		
	4.600 0.697	4 800 1 0 623	5.750 1.220	5 750 1 1181 5 750 0.6358	0.727 0.129	0755 0114		
	4.760 0.680	35000. 1.0.611	6.000 1.206	6.000 0.6254	0,741 0.132	0769 0116		
	4.830 0.673	5 200 10 599	6.250 1.195	6:250 1163 6:250 0:6286	0.755 0.134	0.784 0.118		
	4.930 0.664	5:400.11.1.0.5901	6.500 1.185	6.500 1.156 6.500 0.617	0.769 0.136	0.800		
	5.060 0.652	5.600 1 0.586	6.750 1.176	6 750 0 1 150 6 750 0 6162	0.784 0.139	0.124		
	5.100 0.649	1 5 800 1 0 589	7.000 1.168	7.000 1 145 7.000 0.622	0.800 0.141	0.833 0.126		
	5.270 0.640	6 000 1 0 585	7.250 1.161	7.250 0.6388	0.816 0.143	0.128		
	5.290 0.639	6 200 1 0.601	7.500 1.155	7:500 06782	0.833 0.144	0.870		
	5.440 0.628	6.400	7.750 1.150	7.750 0.659	0.851 0.146	0.889 0.134		
	5.520 0.623	6600 1 0.595	8.000 1.145	8.000 0.6338	0.870 0.150	0.136		
	5.610 0.618	6.800 1.0.617	8.250 1.141	8 250 1 1 1 25 8 250 0 6 1 88	0.889 0.153	0.930 0.140		
	5.739 0.612	H 7.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.500 1.137	8:500 1.121 8:500 1.0.603	0.909 0.156	0.952 0.142		
	5.750 0.613	7.200 0.877	8.750 1.133	8750 1119 8750 0.6058	0.930 0.160	0.976 0144		
	5.780 0.617	7400 0.621	9.000 1.131	9000 14116 9000 105922	0.952 0.163	1,000 0,146		
	5.885 0.667	7.600 0.593	9.250 1.127	9.250 9.250 0.5858	0.976 0.167	0.150		
	5.950 0.697	27,800 0 592	9.500 1.124	9500 0.581 9750 1112 9500 0.579	1.000 0.170 1.026 0.173	1053 0154		
	5.980 0.697	8 000 U 0 5787	9.750 1.122	the second s	1.026 0.173 1.053 • 0.178	1111 01162		
	6.210 0.697 6.275 0.697	8200 0 558	10.000 1.120 10.250 1.117		1.081 0.185	1143 0166		
	6.275 0.697 6.440 0.697	81400 PU 0.549		10:250 0.5772 10:500 11:05 10:500 0.5742	1.081 0.185	1176 0.170		
	0.440 0.09/	CODUCTION OF COMPANY	10.500 1.114		0.194	Sec. 1: 1: 1: 0: 21 0: 17.0		

ABS Consulting Calc 1886592-C-001 R0 Attachment B - Page B-10 of 14

Structure:	KPS Aux Building	- Crane	Elevation	679'-11"

EQ Type: Design Basis Earthquake Damping: 2% Equipment Damping

Damping.	<u>~/0 Lyu</u>
Direction:	

	Ea	st-West		North-South	e je drug de de de de V	ertical
BRC	ADENED	UNBROADENED	BROADENED *	UNBROADENED	BROADENED	UNBROADENED
Freq (H	z) Accel (g)	Freq(Hz) Accel(g)	Freq (Hz) Accel (g)	Crane @ MidSpan Crane @ Other	Freq (Hz) Accel (g)	Freq (Hz) Accel(g)
6.670	0.697	8800 00547	10.750 1.112	107501 1104 10750 105718	1.143 0.205	3 212 0 174
6.900	0.697	9.000 1 0.540 2	11.000 1.111	11000111111031111110001111056841	1.176 0.222	1,250 0.180
7.310	0.697	91200 101536	11.250 1.110	G17:250 F11102 111250 C5666	1.212 0.239	1,290 0,190
7.360	0.697	9:400 1 10:530	11.500 1.108	11.500	1.250 0.264	1333 0.200
7.480	0.697	19160012 1P0166011	11.750 1.106	110750 1100 111750 0.5688	1.290 0.296	1.379 0.220
7.590	0.697	9 800 1 1 0 530	12.000 1.106	12,000 11,1099 12,000 0.5686	1.333 0.335	1,429 0:240 1,481 0:270
7.990	0.697	10:000. 10:524-1	12.250 1.105	12/260 10:069	1.379 0.380 1.429 0.432	1.538 0.310
8.050	0.697	10-200 1-10/519-11	12.750 1.103 13.250 1.100	12:500 0:5692 12:750 1:096 12:750 0:5692	1.481 0.483	1.600 0.360
8.160	0.687	10:400 0.523	13.250 1.100 13.500 1.100	13000 10552	1.538 0.543	1.667 0.420
8.280	0.677	#10.600# #40.524#P	13.750 1.098	13:250 10:00 13:250 0:5642	1.600 0.617	1739 0.480
8.670	0.601	121000	14.000 1.098	13:500 11:094 13:500 0.5638	1.667 0.688	1 818 0.550
8.740	0.593	11112001115051960	14.250 1.097	13:750 1:093 13:750 0:5634	1.739 0.739	1,905 0.640
8.840	0.593	201400 0520	14.500 1.096	14.000 1.093 14.000 0.5636	1.818 0.750	2.000 0.720
8.970	0.592	11500 P 0.5191	14.750 1.096	14,250 0.5648	1.905 0.750	2049 0.740
9.010	0.590	1180031 0.518	15.000 1.096	14,500 0.5658	2.000 0.750	2105 0.750
9.200	0.578	12:000 10:0.517	15.250 1.094	14,750 2 1091 14,750 0.5654	2.049 0.750	2 160 0 740
9.350	0.565	12200 00516	15.750 1.094	15000 1109111 15000 0.5642	2.105 0.750	2 222 0 700
9.430	0.558	02514	16.000 1.093	15,2501 14,090 15,250 0,562	2.160 0.750	2.353 0.620
9.520	0.554	1252 ISOO 1 20 50 5 15	16.250 1.092	15:500 10:55741	2.222 0.750	2:500 0:540
9.660	0.549	121200 B 50,516	16.750 1.092	15750#01089#015760 05568	2.353 0.750	2.667 0.470
9.690	0.548	TG1000 1020 514	17.000 1.092	16.000 11.1089/ 16.000 0.5618	2.500 0.731	2 857 0 400
9.765	0.547	78.200 512	17.250 1.090	16:250 10:5642	2.667 0.640	3077 0 350
9.890	0.547	13:400 511.	18.000 1.090	16:500 11:1088 16:500 0:5664	2.857 0.548	3333 0.300
10.120		123 800 0 511	18.500 1.088	16.750 1 1088 16.750 05646	3.077 0.467	3.636 0.250 4000 0.210
10.350		13800 0.510	19.750 1.088	17,000 0.562 17,250 0.5586	3.333 0.390 3.636 0.333	4444
10.540		14:000-0.509	20.000 1.087 20.250 1.086	47.2501 1087 47.250 0.5586 777500 101 0.87 177500 0.5578	4.000 0.275	5 000 0 160
10.580		14 400 0.510	21.750 1.086	17750 10578	4.444 0.224	5.714 0.140
10.767		14/600	22.250 1.084	18.000 1086 18.000 0.5572	5.000 0.186	6.667.0.126
10.810		14:800 10:512	25.250 1.084	18 250 4 1086 18 250 0 5572	5.714 0.161	8:000 0.16
10.880		15000 0.512	25,500 1.083	18/500 11/086 18:500 0:5572	6.667 0.139	10,000 10,108
11.040		15/200 0511	25.750 1.082	18 750 11085 18 750 01557	8.000 0.124	0.104
11.270		16:400 0510	30.250 1.082	19,000 19,085 19,000 0,5574	10.000 0.113	20.000 0.104
11.493	0.524	15 600 0 509	30.500 1.082	19:25 10:5576	13.333 0.106	40.000 0 104
11.730	0.524	15,800 0.509	30.750 1.080	19.5 1.08476 19.5 0.5572	20.000 0.104	
11.900		16:000	40.000 1.080	19.75 11 1.08456 19.75 0.5568	40.000 · 0.104	
12.070		B 16i200		0.5564		· · ·
12.190		16 400 0 5 12	Envelop of 2 Conditions:	20.25 108416 20.25 0.5562		
12.240		16/600	Crane at Mid-Span & Crane at Any Other Location	20.5 4 0.556		
12.408		16:800 514	Any Uther Location	20.75 1.0838 20.75 0.5558		
12.420		17/000 0/516		21 1.08364 21 0.5558		
12.580	0.520	17200		21.25 10835 21.25 0.5558		
				2		

ABS Consulting Calc 1886592-C-001 R0 Attachment B - Page B-11 of 14

Attachment 2

Attachment 2

Structure: KPS Aux Building - Crane Elevation 679'-11"

EQ Type:	Design Basis Earthquake
Damping:	2% Equipment Damping

Damping.	2% equipmer
Direction:	

		Eas	t-West	C							lical	
	BROAD	DENED	101000000000000000000000000000000000000	GADENED	BROADENED *	UNBRI	DADENED		BROA	DENED	UNBROAD	ENED.
Fr	eq (Hz)	Accel (g)	Freq (H	z) Accel (g)	Freq (Hz) Accel (g)	Crane @ MidSpan	Crane @	0 Other	Freq (Hz)	Accel (g)	Freq (Hz) A	(ccel (g)
1	12.650	0.520	17.400	0 515		21.5 1 108334	21.5	0.5558				
1	13,110	0.520		0.510		21 25 1.08318	21.75	0.5558				
1	13.340	0.519		0.508		22 1.08304	22	0.5556				
1	13.430	0.519	38.000	0.508		22:25 1.0829	22.25	0.5554				
1	13,570	0.518		0.507		22.5 1008276		0.5552				
	13.600	0.518	19181400	0.506		22.75 108262	22.75	0.5552				
1	13,770	0.517	18.600	0.505		23 1:08248	23	0.555				
	13,800	0.517		0.505		28 25 1 08236	23.25	0.555			•	
1	13.940	0.516	9.19.000	0.504		23.5 1.08224	23.5	0:5548				
	14.001	0.516		0.504	·.	23,75 1.08212	23.75	0.5548				
1	14.030	0.516	19.400	0.504		24 1.082	24	0.5548				
1	14,110	0.516		0.504		24:25 1.0819	24.25	0.5546				
1	14.260	0.516	19 800	0.504		24:51 1.08178		0.5544		· .		
	14.280	0.516	320.000			24.75 1.08168	24,75	0.5542				
1	14.431	0.516	20 200	0.504		251 108158	25	0.5542				•
1	4,450	0.516	020 400			25,25 1.08148						
1	4.620	0.517	20:600	0.504		25.5 1.08138		0.554				
1	14.720	0.517	20.800	0.504	•	25 75 1 10813		0.554				
1	14,950	0.517	21:000			26 10812		0.554				
	15,130	0.517	21,200	0.504		26.25 108142	26.25	0.5538				
1	15,180	0.517	21:400		*	26.5 108104		0.5538				
1	15,300	0.517	1211600	504		2675 1 08094	26.75	0.5538				
1	15,410	0.517	21.800			27		0.5536				
1	5.640	0.517	22,000			27.25 1.0808		0.5536			•	
1	15.870	0.517	122.200	0.504		1.08072		0 5536				
1	6.100	0.517	22 400			27.75 4 61.08064		0.5536				
1	7.020	0.517	622,500			28 1.08056		0.5534				
1	7,250	0.517		0.503		28:25 10:0805		0 6534				
1	7.340	0.517	23,000	m1.m0.50310	· · ·	28.5 1 1 08042		015534				
1	7,480	0.517		0.503		28.75111108036	28.75	015532				
	17.510	0.517	123.400	0.503		29 29 10 10803	29	0.5532				
1	7.680	0.517	23:600	1 1 0 503 F		29 26 1.08024		0.5532				
1	17,710	0.517	23.800	0.503		129.5111.1.08018						
1	17.850	0.517	124,000	F10.503		29175 41.08012	29.75	0.5532				
	7,940	0.517	24 200	0.603		1.08006	30	0.553				
1	8.020	0.517	24,400	0.503		30.25 10 10 108		0 653				
1	8,170	0.517	24,600	0 503		30.5 1.07996	30.5	0.553				
[1	9.780	0.517	24,800	0.503	•	30.75 1.0799			,			
2	20.010	0.515	25:000			31316 1:07984		0.5528				
2	20.240	0.510	25,200	01503		31.25 1.0798		0,5528				· ·
2	20.449	0.508	25,400	0.503		31:6 107974		0.5528		•		
2	20.470	0.508		5 CLO 503	· .	31 75 10797						
2	20.700	0.508		0.503		32 13 1.07964						•

ABS Consulting Calc 1886592-C-001 R0 Attachment B - Page B-12 of 14

Attachment 2

Page 7 of 8

Structure: KPS Aux Building - Crane Elevation 679'-11"

EQ Type:	Design	Basis	Earthquake
=			

East	West		North-South		Ver	tical
BROADENED	UNBROADENED	BROADENED *	UNBROADEN	D	BROADENED	UNBROADENED
Freq (Hz) Accel (g)	Freo (Hz) Accel(g)	Freq (Hz) Accel (g)	-4 (3 ame' adal avata (34 aan papers far a)at ap? son funande at ar avada sar a	ane @ Other	Freq (Hz) Accel (g)	Freq (Hz) Accel (g)
20.930 0.507	26 000 0 502			251.0.5528		
21.160 0.506	26,200 0.502		32 5 4 07956 32			
21.390 0.505	26 400 0 502		32 75 4 07952 32			
21.620 0.505	26 600 0 502		33 33 31 31 07948			
21.850 0.504	26.800 0.502		33.25 107944 33.2	0 5526		
22.080 0.504	27.000 0.502		33.5 33.0 33.0794 33.	5 0.5526		
22.310 0.504	27/200 0 502		33.75 07936 33	6 0 5524		
22.540 0.504	27 400 0 502		34 1.07932 34	0.5524		
22.770 0.504	27.600 0.502		34/26 1.07926 34			
23.000 0.504	27 800 10 0.502		34.5 1.07922 34	5 0 5524		
23.230 0.504	28.000		3475 1.07918 34	15 0 5524	~	
23.460 0.504	28 200 0 502 5	×	351111107916		•	·
24.380 0.504	28 400 10 5025		35.25 1 07912 35			
24.610 0.504	28600 0502		35.5 1.07908 35.			
24.840 0.504	28 800 0 502		35.75 1.07904 35	15 0 5522		-
25.070 0.504	29 000 0 502	•	36 1 07902 36			
25.300 0.504	29/200 5:0/502		36:25 1.07898 36:2			
25.530 0.504	291400 0.502		36.5 1.07896 36			
25.760 0.503	29.6001 0.502		36.75 1.07892 36			
25.990 0.503	28,800 0.502.4		10789 37			
26.220 0.503	30,000 0.502	· · ·	37.25 1.07886 37/2			
26.450 0.503	30,200 0.5020		37.5 107884 37.			
26.680 0.503	30:400 0:502	· .	37.75 10788 375			
26.910 0.503	30 600 80 502		1.07878			
27.140 0.503	30,800		36 25 1.07874 38 2			-
27.370 0.503	31.000.0502	-	38.5 1 07872 38			
27.600 0.503	31 200 0 502		38,75 1.0787 38.			
27.830 0.503	31:400		39.001 1.07866		•	
28.060 0.503	31,600		39.25 1.07864 39.2			•
28.290 0.503	31/800 120-502-1		39:5 107862 39			
28.520 0.503	82.000		39.75 107858 39.	and the second sec		
28.750 0.503	32/200 0.501 32/400 0.501		40 1 1 07856 40	0.5518		·
28.980 0.503						
29.210 0.503 29.440 0.503	32,600 0.501					÷
29.670 0.503	532,800 0.501 0 33,000 0.501					
29.900 0.502	33/200 0.501					
30.130 0.502	33400 1 0.501					
30.360 0.502	33,600 0.501	•				
30.590 0.502	33.800 1.0.501			• • •		
30.820 0.502	34,000 1 0,501					
31.050 0.502	34,200 0.501		•		-	
31.280 0.502	34,400 0 501		· .	-	· .	
0.002	PROMOTING AND ADDRESS AND ADDRESS AD					
•	•					
*						• · · ·

ABS Consulting Calc 1886592-C-001 R0 Attachment B - Page B-13 of 14

ABS Consulting Calc 1886592-C-001 R0 Attachment B - Page B-14 of 14

Structure: KPS Aux Building - Crane Elevation 679'-11" EQ Type: Design Basis Earthquake

Dampi Directi

	East-V	lest	tata e Aritta e A	As a contract of the	North-South Vertical			ical	
BROA	DENED	UNBROADENED	BROADEN	ED *		UNBROADENED		BROADENED	UNBROADENED
Freq (Hz)	Accel (g)	Freq (Hz) Accel/(g)	Freq (Hz) Ac	cel (g)		Span Crane @ Ot	ier	Freq (Hz) Accel (g)	Freq (Hz) Accel (g)
31.510	0.502	34 600 4 0 501					NET MAKE DEL		
31.740	0.502	234,800 11 0,501		•					
31.970	0.502	35000 0 501			· .				
32.200	0.502	35200 0 501		÷					
32.430	0.502	2405-4900-1000501							
32.660	0.502	A35.800 0.501							
32.890	0.502	235'800 2501							
33.120	0.502	36.000 0.501						•	· · ·
33.350	0.502	H 86 200 H 10 0 501							
33.580	0.502	3624001310.050111							
33.810 34.040	0.502	136.600 C 501							
34.040	0.502	36-800 0 501 87.0001 0 501							
34.270	0.502	37.20001 10.501				1			•
34.300	0.502	87,400 0.501							
34.960	0.502	37.600 10.501	·					•	
35.190	0.502	37.800							
35.420	0.502	38.000					•		· · · ·
35.650	0.502	38.200 0 501.5	-						·
35.880	0.502	38:400 0.501 2							
36.110	0.502	1238:60010 (101501)							•
36.340	0.502	38:800 2:0150111			•				
36.570	0.502	3900099 19 0150 19 1	•					•	
36.800	0.502	539-200 s 0150 f							
37.030	0.501	39 400 0 0 0 501							
37.260	0.501	39,600 0.501							
37.490	0.501	39,800 020,501				· ·			
37.720	0.501	40.000 0.501				•			
37.950	0.501							· .	
38.180 38.410	0.501							•	- · · ·
38.640	0.501					·		1997 - A.	
38.870	0.501			•					
39.100	0.501								
39.330	0.501	÷ ,	м						
39.560	0.501							· · · · ·	
39.790	0.501	:							· ·
40.000	0.501								
n	<u>_</u>		•					· · · ·	
								· ·	۴
	· .					. '		·	
								•	-

ABS Consulting					Attachment C							
	6300	1131	unna	Rev	1	Shee	t No.	С	1			
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	M.C.C	Ozbey	Date	5/22/0)8			
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	W.Sa	wruk	Date	5/23/0)8			

ATTACHMENT C

Plots of Generated

Time Histories & Response Spectra

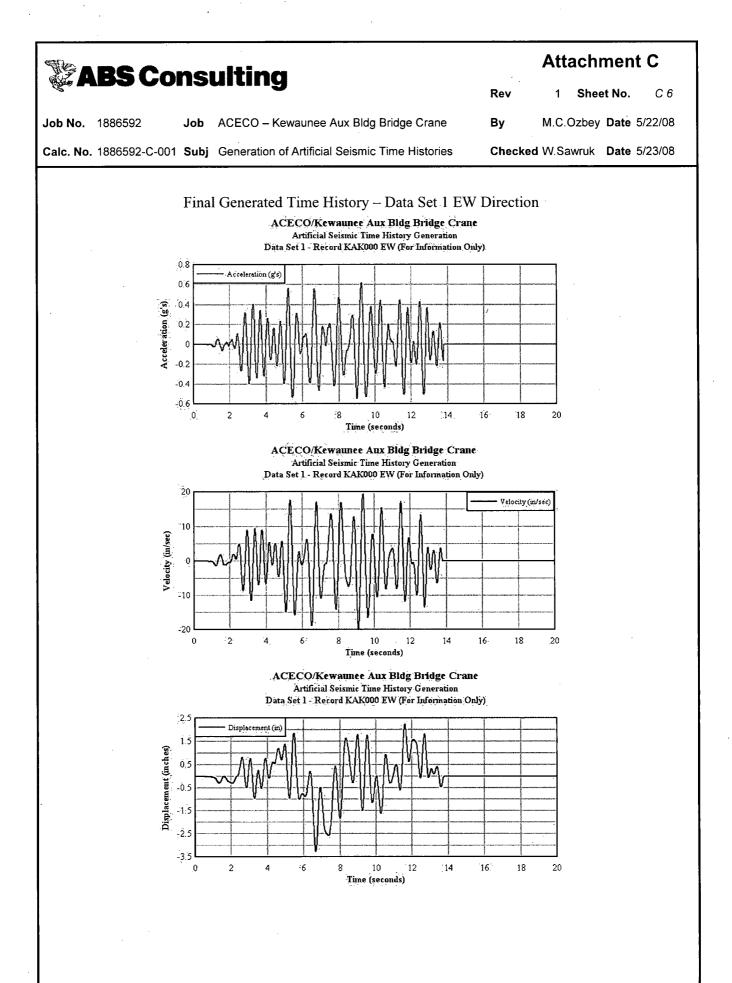
and

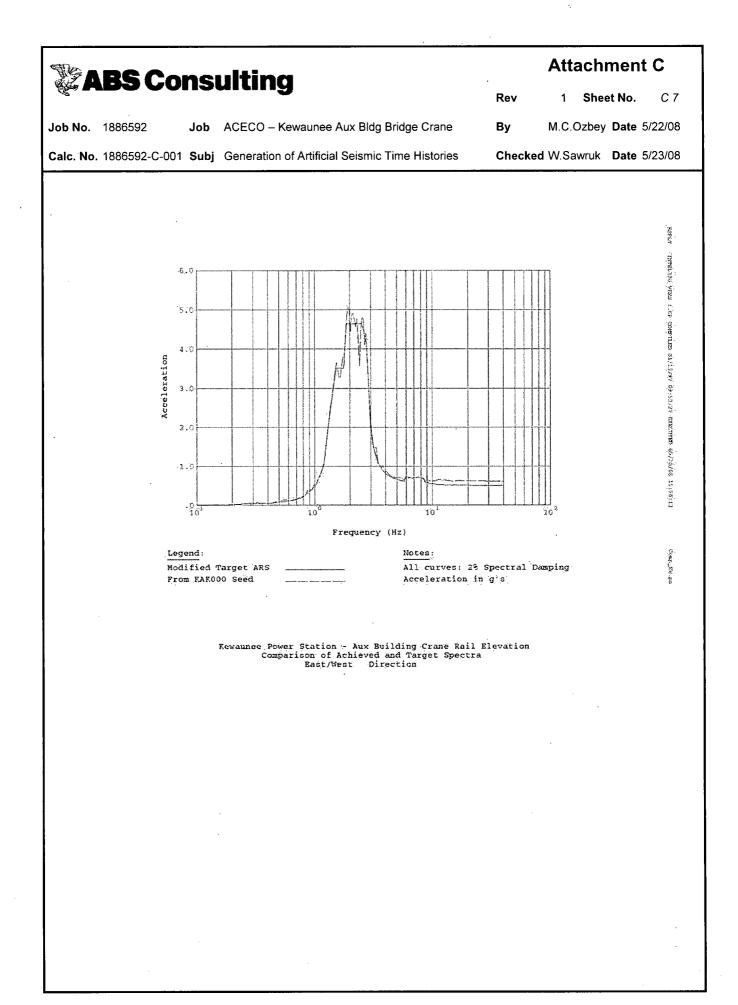
Tabulation of Generated ARS Data

This attachment contains plots of the fifteen generated acceleration time histories. Digitized data for these curves are provided in ASCII text format files included on the enclosed CD. All acceleration values are in units of 'g'. All curves are digitized at 0.01 seconds interval for 2000 time steps with the first value starting at t = 0 second.

Also, included in this attachment are plots of the associated velocity and displacement time histories as well as the associated 2% damped acceleration and displacement response spectra. Note that all the plots shown in this attachment are "For Information Only" since they were developed and plotted using non-QA software (See Section 3.1 for discussion).

Spectral values are calculated at 240 frequencies equally spaced logarithmically between 0.1Hz and 40 Hz. These frequency values are listed on sheet C2. Also listed immediately following the spectral frequencies are tabulations of the averaged acceleration response spectra (ARS) for each of the three directional components (EW, NS and vertical). These averaged spectral accelerations, together with the spectral frequencies comprise the data used to generate the ARS provided in Figure 4.3, Figure 4.4 and Figure 4.5 located in Section 4.4.

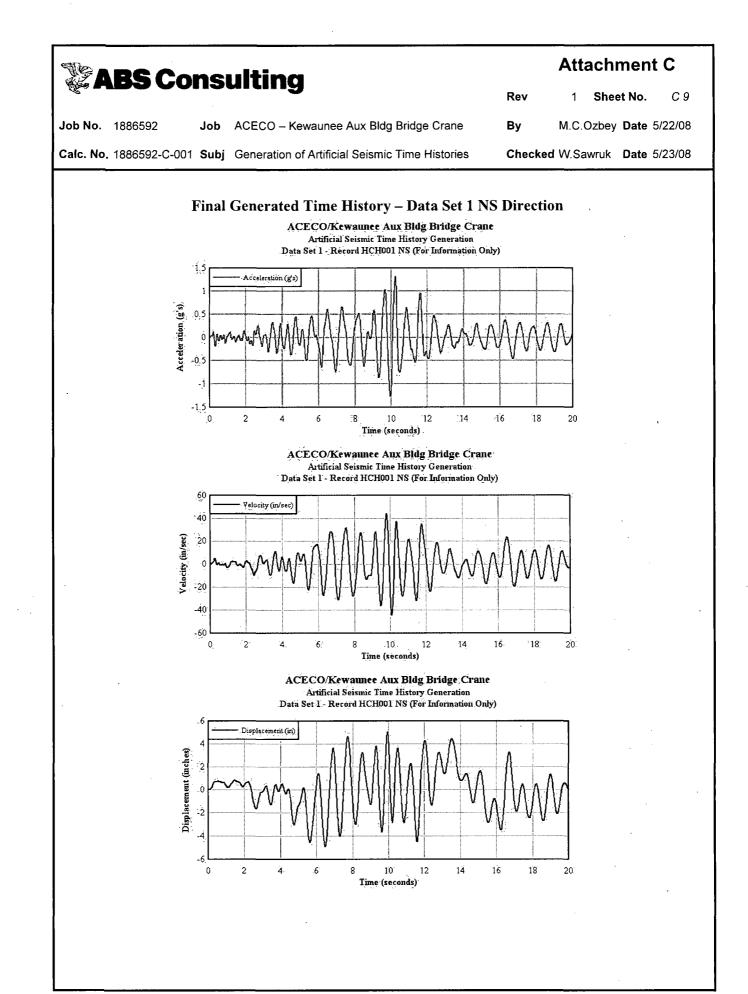

	BS Co	ne	ultina	А.	· · · ·	Attachment C			
			uning			Rev	1 Shee	et No.	C 2
Job No.	1886592	Job	ACECO – Kewa	unee Aux Bldg Brid	dge Crane	Ву	M.C.Ozbey	Date	5/22/08
Calc. No.	1886592-C-001	Subj	Generation of A	rtificial Seismic Tirr	e Histories	Checke	d W.Sawruk	Date	5/23/08
List of S	pectral Frequ	ency	values (in Hz)	used for calcula	ating all respo	onse			
spectra.			. ,						
1	0.1		0.1025	0.1051	0.1078	0.1	105		
	0.1134		0.1162	0.1192	0.1222	0.1			
	0.1285		0.1318	0.1351	0.1385		142		
	0.1456		0.1493	0.1531	0.157		161		
	0.1651		0.1693	0.1736	0.178		B25 +		
	0.1871		0.1919	0.1968	0.2018	0.2			
	0.2121		0.2175	0.223	0.2287	0.2			
	0.2121		0.2175	0.2528	0.2592				
						0.2			
	0.2726		0.2795	0.2866	0.2939	0.3			
	0.309		0.3168	0.3249	0.3331	0.3			
	0.3502		0.3591	0.3682	0.3776	0.3			
	0.397		0.4071	0.4174	0.428	0.4	,		
	0.45		0.4614	0.4732	0.4852	0.4		•	
	0.5101		0.5231	0.5363	0.55	0.5			
	0.5782	2	0.5929	0.608	0.6234	0.6			
	0.6555	5	0.6721	0.6892	0.7067	0.7	246		
	0.743	3	0.7619	0.7812	0.801	0.8	214		
	0.8422	2	0.8636	0.8855	0.908	ο.	931		
•	0.9547	7	0.9789	1.0038	1.0292	1.0	•		
	1.0822	2.	1.1096	1.1378	1.1667	1.1	963		
	1.2267		1.2578	1.2897	1.3225	1.3			
•	1.3905		1.4258	1.462	1.4991	1.5			
	1.5762		1.6162	1.6572	1.6993	1.7			
	1.7866		1.832	1.8785	1.9262	1.9			
			2.0766		2.1834	2.2			
	2.0252			2.1294	,				
	2.2957		2.354	2.4137	2.475	2.5			,
	2.6022		2.6683	2.736	2.8055	2.8			
	2.9497		3.0246	3.1014	3.1801	3.2			
	3.3436		3.4285	3.5156	3.6048	3.6			
	3.7901		3.8864	3.985	4.0862	4.1			
	4.2963		4.4053	4.5172	4.6318	<u> 4.</u> 7			
	4.87		4.9936	5.1204	5.2504	.5.3			
	5.5203		5.6605	5.8042	5.9515		026		
	6.2575	5 ·	6.4164	6.5792	6.7463	6.9	175		
	7.0931	L	7.2732	7.4578	7.6471	7.8	413		
	8.0403	3	8.2444	8.4537	8.6683	8.8		•	
	9.114		9.3454	9.5826	9.8259	10.			
	10.331		10.593	10.862	11.138	11.			
	11.711		12.008	12.313	12.625	12.			
	13.275		13.611	13.957	14.311	14.			
	15.047		15.429	15.821	16.223	16.			
	17.05		17.49	17.934	18.389	18.		•	
	19.334	-	19.825	20.328	20.845				
	21.916		22.473	23.043	23.628		228		• •
<u>,</u>	24.84	-	25.474	26.12	26.783	27.			
	28.16		28.875	29.608	30.36	31.	•		
	• _								
x	31.923		. 32.731	33.562	34.414	35.	288		
, ,	31.921 36.184		32.731 37.102	33.562 38.044	34.414 39.01	35. 40	288		
, ,							. 288		
							288		·

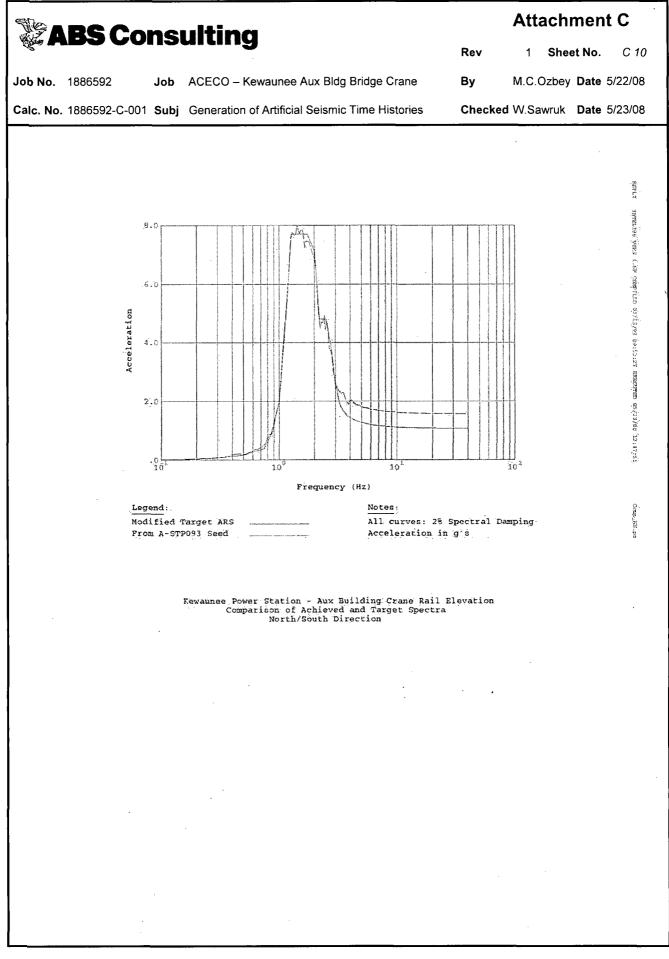

ISA	De 4	`	ulting		•		Atta	achr	nen	t C	
K. M	DJ (Jons	urung			Rev	1	Shee	t No.	C 3	3
lob No.	1886592	Job	ACECO – Kewaune	e Aux Bldg Bridge	Crane	Ву	M.C.C	Dzbey	Date	5/22/08	8
Calc. No.	1886592-	C-001 Subj	Generation of Artific	cial Seismic Time I	Histories	Checked	W,Sa	wruk	Date	5/23/08	8
				• •					•		
W Avera	aged ARS	:							,		
7.12324(3.7142(3.37142(1.30644ξ 1.78508(2.43350(3.02666(3.79722(4.97906(5.16918(5.16918(5.93752(7.52474(1.104814(1.15542(1.104814(1.5542(1.104814(1.5542(1.32576(2.53770(4.54184(5.503256(2.53770(4.54184(5.503256(2.59376(1.32820(1.3280(1.328	0E-03 7 0E-03 9 8E-02 1 0E-02 1 0E-02 1 0E-02 3 0E-02 3 0E-02 5 0E-02 5 0E-02 5 0E-02 5 0E-02 5 0E-02 8 4E-01 1 0E-01 2 0E-01 2 0E-01 2 0E-01 2 0E-01 2 0E-01 2 0E-01 3 0E-01 2 0E-01 3 0E-01 2 0E-01 4 0E+00 4 0E+00 4 0E+00 4 0E+00 4 0E+00 4 0E+00 4 0E+00 7 0E-01 7 0E-01 7 0E-01 7 0E-01 7 0E-01 7 0E-01 6 0E-01 7 0E-01 6 0E-01 7 0E-01 7	502460E-(999540E-(93040080E-(500340E-(500340E-(500340E-(072760E-(061580E-(395120E-(249460E-(145300E-(165580E-(165580E-(100180E-(158920E-(715620E-(158920E-(715620E-(459100E+(52860E+(52860E+(588040E+(588040E+(588040E+(382120E-(144860E+(382120E-(124440E-(526980E-(309160E-(309160E-(309160E-(309160E-(314380E-(323300E-(323300E-(3223300E-(322300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(3223300E-(322440E-($\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 6.461840E-01\\ 6.478700E-01\\ 6.425480E-01\\ 6.337340E-01\\ 6.309200E-01\\ 6.290600E-01\\ 6.280540E-01\\ 6.26020E-01\\ 6.258340E-01\\ 6.251360E-01\end{array}$	8.781460E-1.222848E-1.701080E-2.333980E-2.333980E-2.879460E-3.567960E-4.743340E-5.129480E-5.280280E-5.675180E-7.071260E-1.066800E-1.183460E-1.602300E-2.302860E-2.302860E-2.302860E-2.381180E-3.779140E-5.426400E-1.048440E-2.466000E-3.583380E-3.583380E-3.583380E-3.583380E-4.215080E-4.243380E-4.243380E-4.243380E-4.243380E-3.5833000E-1.031634E-7.276620E-7.243240E-7.279340E-7.279340E-7.279340E-6.489280E-6.392020E-6.342640E-6.397008E-6.324720E-6.342640E-6.307080E-6.257200E-6.257200E-7.243240E-7.279340E-6.324720E-6.342640E-6.397080E-6.324720E-6.342640E-6.307080E-6.257200E-7.200E-7.2	03 02 02 02 02 02 02 02 02 02 02					
						• . [•]					
		•						•			
				. !			•				
			, , ,					·	•		
					· ·				1		

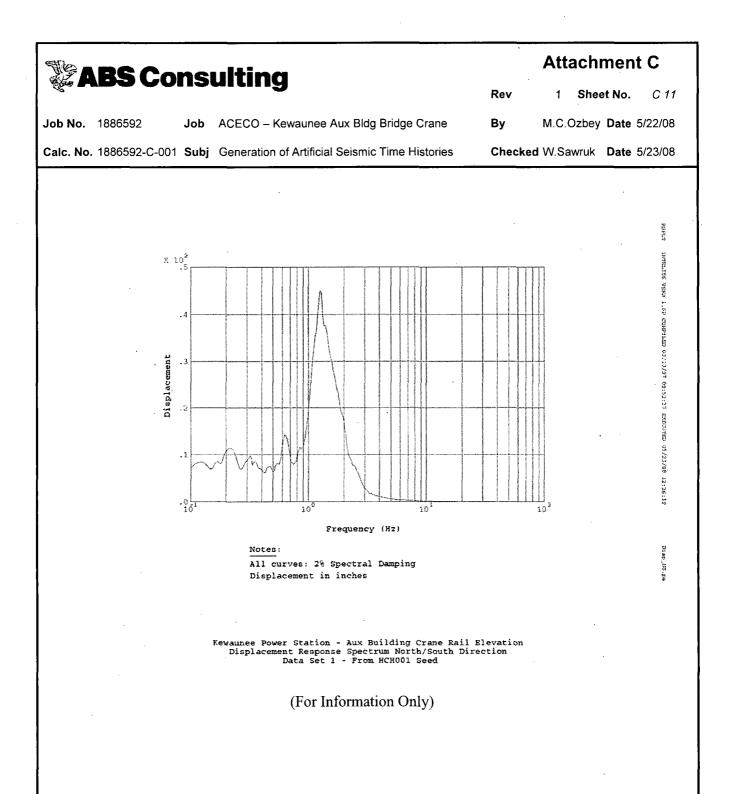

ABS Con	cultina			At	tachme	ent C
W ABS CUII	Surung			Rev 1	Sheet No	o. C 4
Job No. 1886592 Jo	b ACECO – Kewaune	ee Aux Bldg Bridge (Crane	By M.C	Ozbey Da	te 5/22/08
Calc. No. 1886592-C-001 St	ubj Generation of Artific	cial Seismic Time Hi	stories	Checked W.S	Sawruk Da t	te 5/23/08
NS Averaged ARS: 9.457340E-03 1.0085801 1.310100E-02 1.3983201 1.794460E-02 1.9056001 2.449140E-02 2.6252601 3.428660E-02 3.5924201 4.364040E-02 4.5837601 5.173620E-02 5.2315801 5.541180E-02 5.6160001 6.558600E-02 6.9151201 8.926220E-02 9.5998001 1.167760E-01 1.2078601 1.829920E-01 1.8994401 2.093600E-01 2.3831800 3.470160E-01 3.7651001 5.046080E-01 5.0164601 5.385860E-01 5.9318601 8.851740E-01 9.3925400 1.618500E+00 1.8072601 3.477040E+00 7.2891001 7.390600E+00 7.5931801 7.486380E+00 7.1635801 6.731240E+00 7.2891001 7.486380E+00 7.1635801 6.741140E+00 6.0132001 4.720980E+00 4.5925601 4.720980E+00 1.6766401 1.560540E+00 1.6766400 1.447140E+00 1.6766400 1.445320E+00 1.509080 1.447140E+00 1.4584800 1.445320E+00 1.391140 1.420560E+00 1.378300 1.392600E+00 1.378300 1.392600E+00 1.378300 1.392600E+00 1.378300 1.394260E+00 1.378400 1.394260E+00 1.369540 1.394260E+00 1.378740 1.364000E+00 1.378740 1.36420E+00 1.378740 1.331340E+00 1.331640	E-02 1.076194E-02 E-02 1.491100E-02 E-02 2.020320E-02 E-02 3.842000E-02 E-02 3.842000E-02 E-02 3.842000E-02 E-02 5.371140E-02 E-02 5.371140E-02 E-02 7.342100E-02 E-02 1.008554E-01 E-01 1.207070E-01 E-01 1.926680E-01 E-01 1.926680E-01 E-01 2.701860E-01 E-01 4.125060E-01 E-01 4.125060E-01 E-01 5.058480E-01 E-01 6.596720E-01 E-01 1.055264E+00 E+00 7.421100E+00 E+00 7.421100E+00 E+00 7.421100E+00 E+00 7.42160E+00 E+00 7.42160E+00 E+00 7.429600E+00 E+00 7.429600E+00 E+00 1.52860E+00 E+00 1.52860E+00 E+00 1.52860E+00 E+00 1.52860E+00 E+00 1.428600E+00 E+00 1.428600E+00 E+00 1.428600E+00 E+00 1.428600E+00 E+00 1.385160E+00 E+00 1.385160E+00 E+00 1.389180E+00 E+00 1.389180E+00 E+00 1.39180E+00 E+00 1.391480E+00 E+00 1.391480E+00	$\begin{array}{c} 1.148928E-02 \\ 1.587740E-02 \\ 2.137900E-02 \\ 2.3.001840E-02 \\ 4.998480E-02 \\ 5.491320E-02 \\ 4.998480E-02 \\ 5.491320E-02 \\ 5.945160E-02 \\ 6.907360E-02 \\ 6.907360E-01 \\ 1.317134E-01 \\ 1.683700E-01 \\ 1.967240E-01 \\ 2.956240E-01 \\ 2.956240E-01 \\ 4.996000E-01 \\ 5.26300E-01 \\ 4.996000E-01 \\ 5.26300E-01 \\ 4.996000E-01 \\ 5.26300E-01 \\ 4.996000E-01 \\ 5.26300E+00 \\ 5.220320E+00 \\ 5.220320E+00 \\ 7.477480E+00 \\ 7.496580E+00 \\ 7.496580E+00 \\ 7.496580E+00 \\ 7.477480E+00 \\ 7.45680E+00 \\ 7.473200E+00 \\ 4.671160E+00 \\ 4.671160E+00 \\ 4.671160E+00 \\ 1.803760E+00 \\ 1.677400E+00 \\ 1.454160E+00 \\ 1.454160E+00 \\ 1.494660E+00 \\ 1.494660E+00 \\ 1.39920E+00 \\ 1.392180E+00 \\ 1.396300E+00 \\ 1.396300E+00 \\ 1.329720E+00 \\ 1.3$	1.226920E- 1.687380E- 2.287960E- 3.226700E- 4.195940E- 5.116840E- 5.550140E- 6.226980E- 8.347740E- 1.112124E- 1.432440E- 1.759840E- 2.001920E- 3.137680E- 4.949940E- 1.416160E+ 2.998040E+ 6.010600E+ 7.479680E+ 7.479680E+ 7.479680E+ 7.479680E+ 7.479680E+ 1.461740E+ 4.541740E+ 4.541740E+ 4.541740E+ 1.994480E+ 1.994480E+ 1.994480E+ 1.994480E+ 1.994480E+ 1.994480E+ 1.994480E+ 1.994480E+ 1.994480E+ 1.99780E+ 1.427420E+ 1.439380E+ 1.427420E+ 1.397120E+ 1.381420E+ 1.397120E+ 1.342400E+ 1.342400E+ 1.342400E+ 1.342400E+ 1.342400E+ 1.342400E+ 1.342400E+ 1.342400E+ 1.342400E+ 1.342400E+ 1.342400E+	02 02 02 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 01 01 01 01 01		

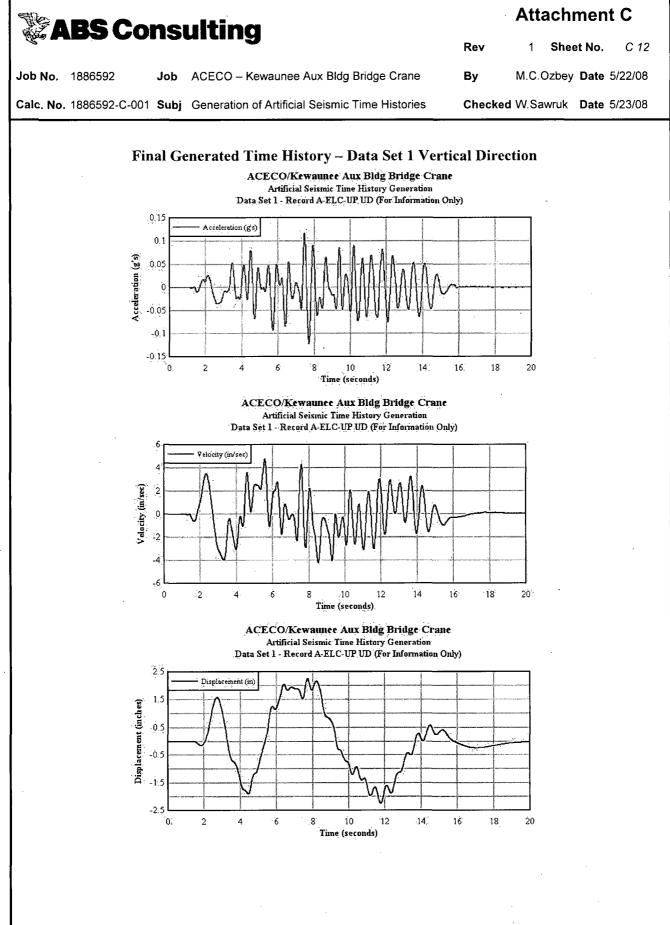
	_		men	t C
Job No. 1886592 Job ACECO – Kewaunee Aux Bldg Bridge Crane	Rev	1 Sh e	et No.	C 5
	Ву	M.C.Ozbe	/ Date	5/22/08
Calc. No. 1886592-C-001 Subj Generation of Artificial Seismic Time Histories	Checked	W.Sawruk	Date	5/23/08
Calc. No. 1886592-C-001 Subj Generation of Artificial Seismic Time Histories Vertical Averaged ARS: 5.904800E-03 6.424340E-03 9.718640E-03 1.035116E-02 1.095282E-03 8.500100E-03 9.076480E-03 9.718640E-03 1.035116E-02 1.392500E-03 1.46740E-02 1.208400E-02 1.327840E-02 1.51874E-02 1.528934E-02 1.51874E-02 1.518336E-02 1.51134E-02 1.538970E-02 2.49760E-02 2.995120E-02 1.751818E-02 1.53270E-02 2.66840E-02 3.95100E-02 3.57060E-02 3.6400E-02 3.63240E-02 3.95100E-02 3.57060E-02 3.57060E-02 3.6400E-02 3.63240E-02 3.95860E-02 4.430080E-02 3.55260E-02 5.555860E-02 5.57680E-02 5.955260E-02 5.55260E-02 5.55260E-02 5.505260E-02 5.555860E-02 5.55260E-01 5.55260E-01	By Checked	M.C.Ozbe	/ Date	5/22/08

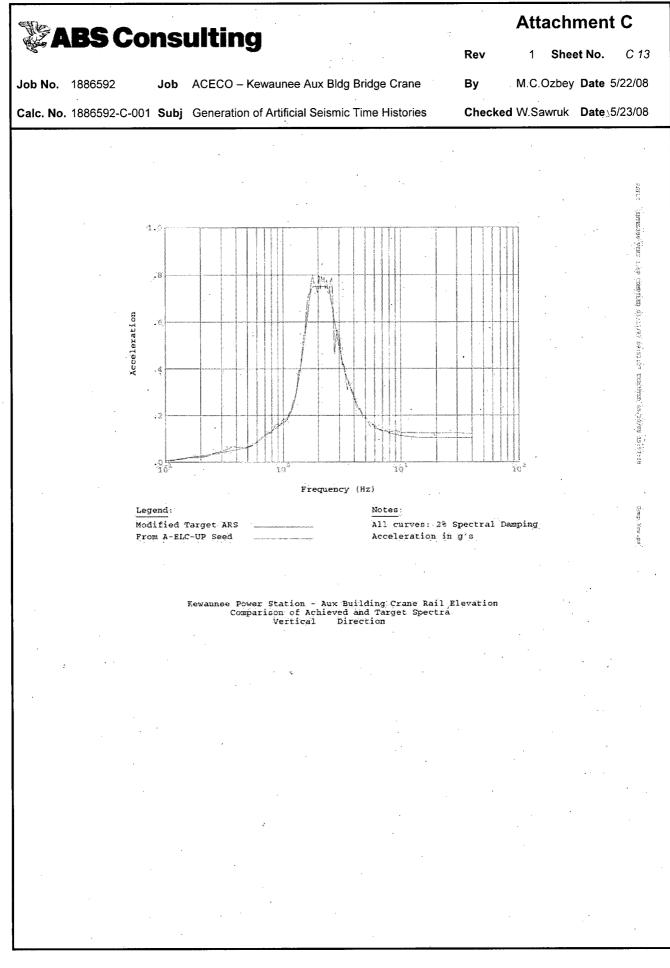
,

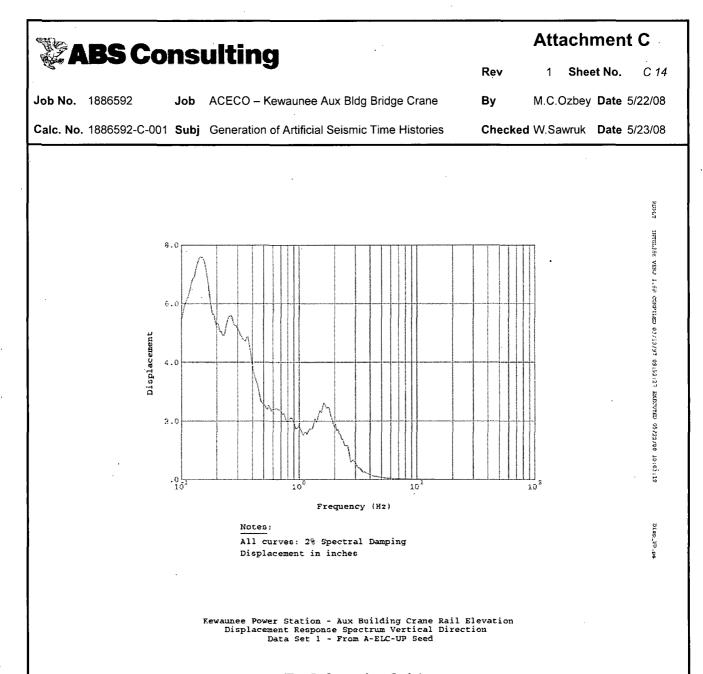


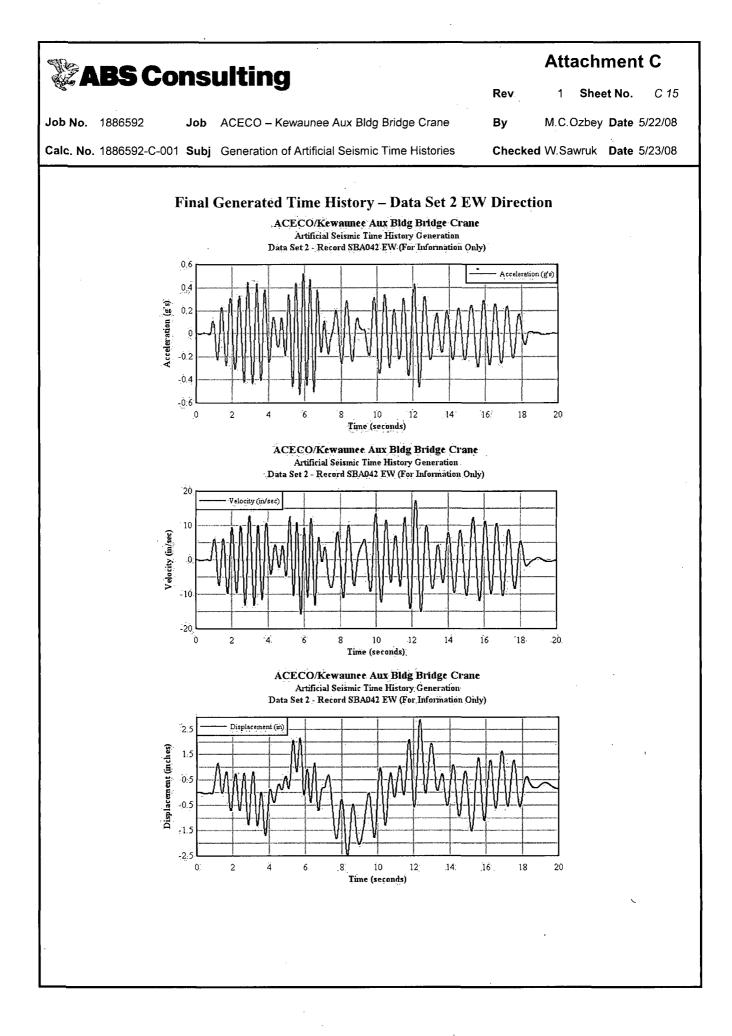


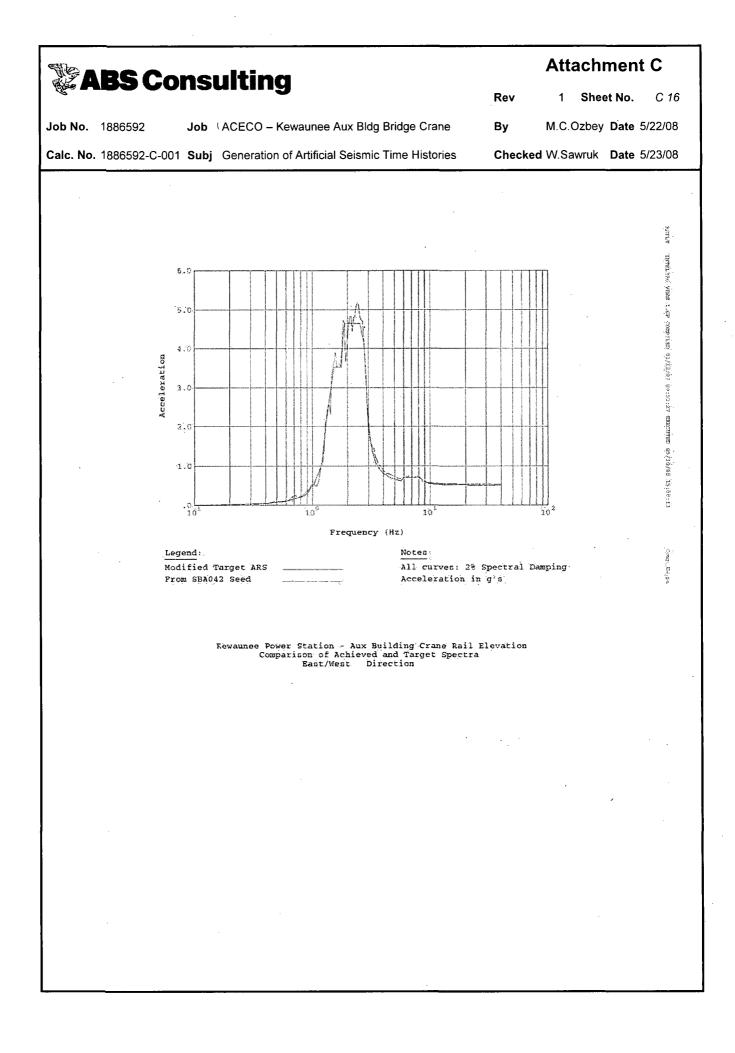

Rewaunce Power Station - Aux Building Crane Rail Elevation Displacement Response Spectrum East/West Direction Data Set 1 - From KAK000 Seed

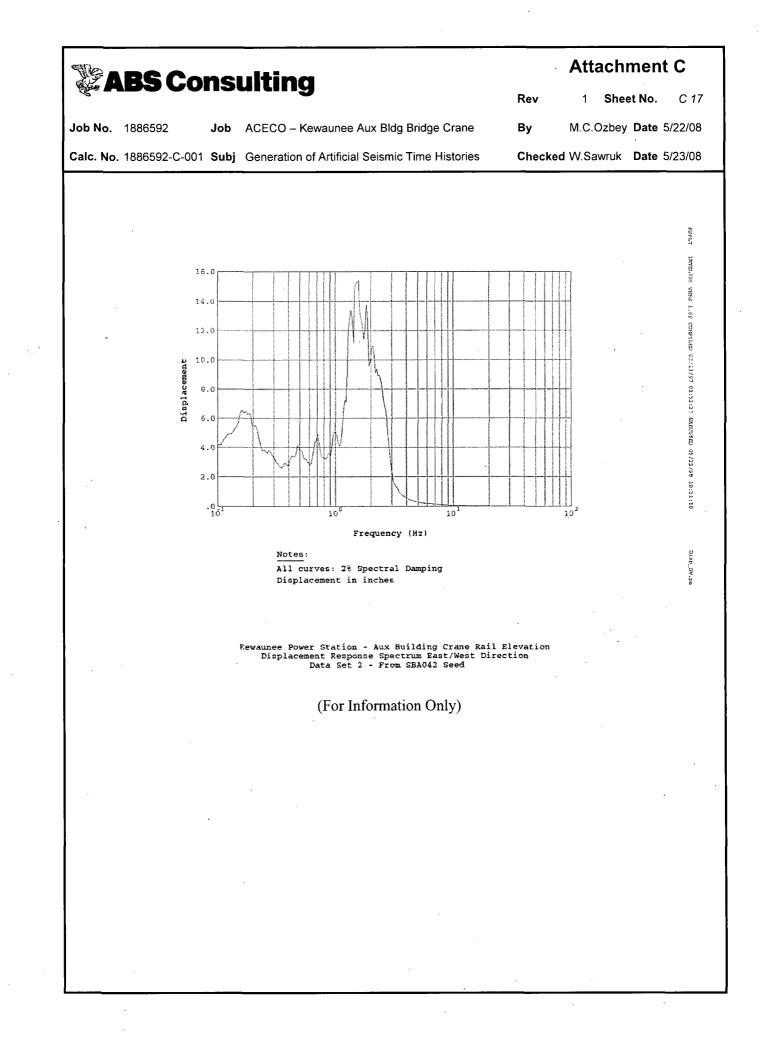

(For Information Only)

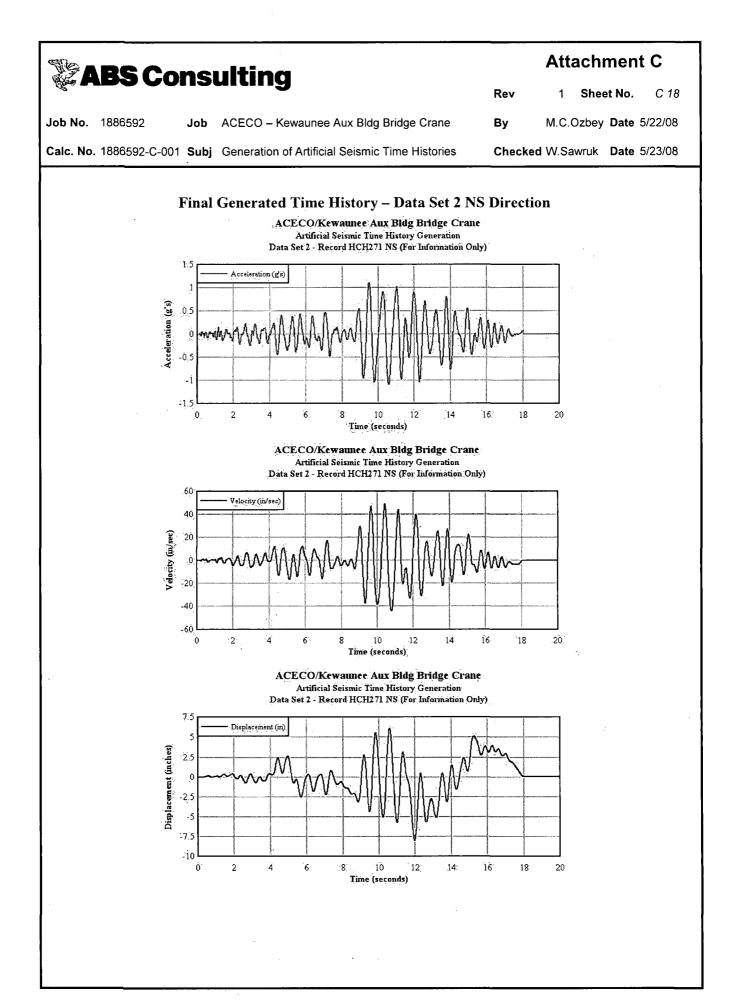


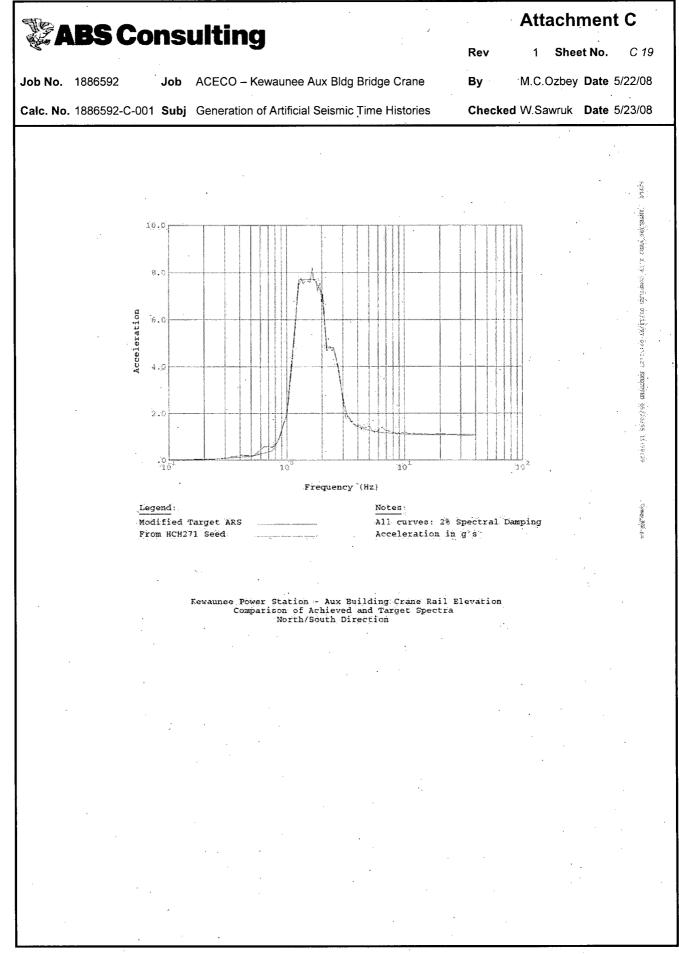

.

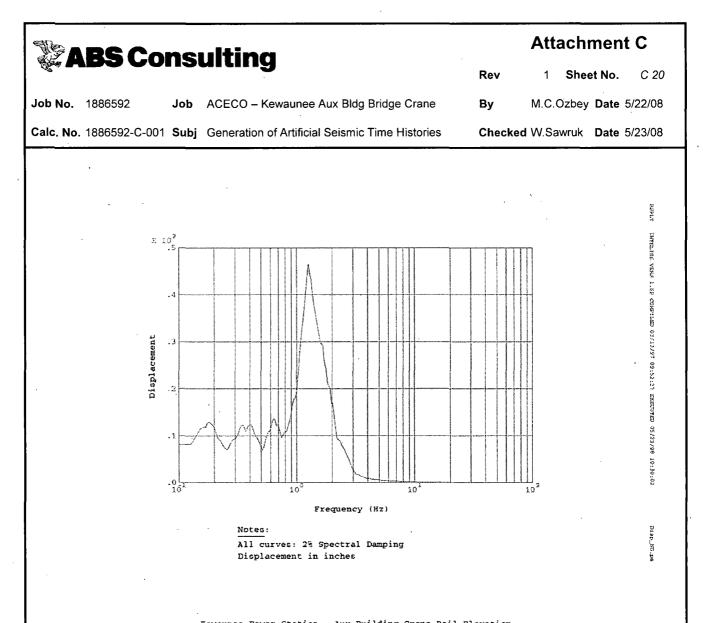


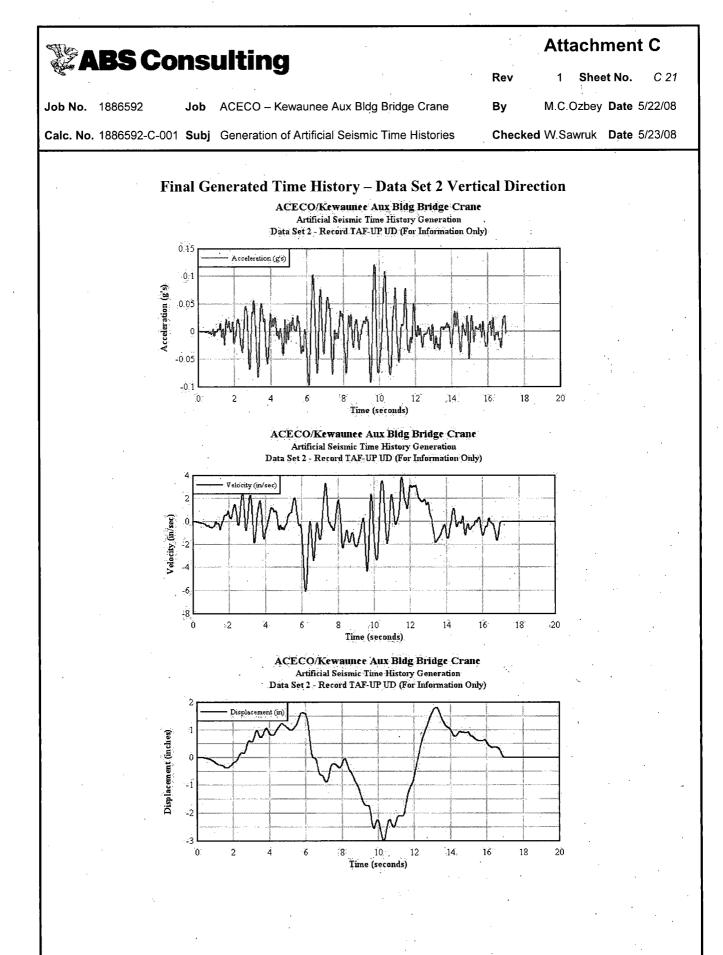


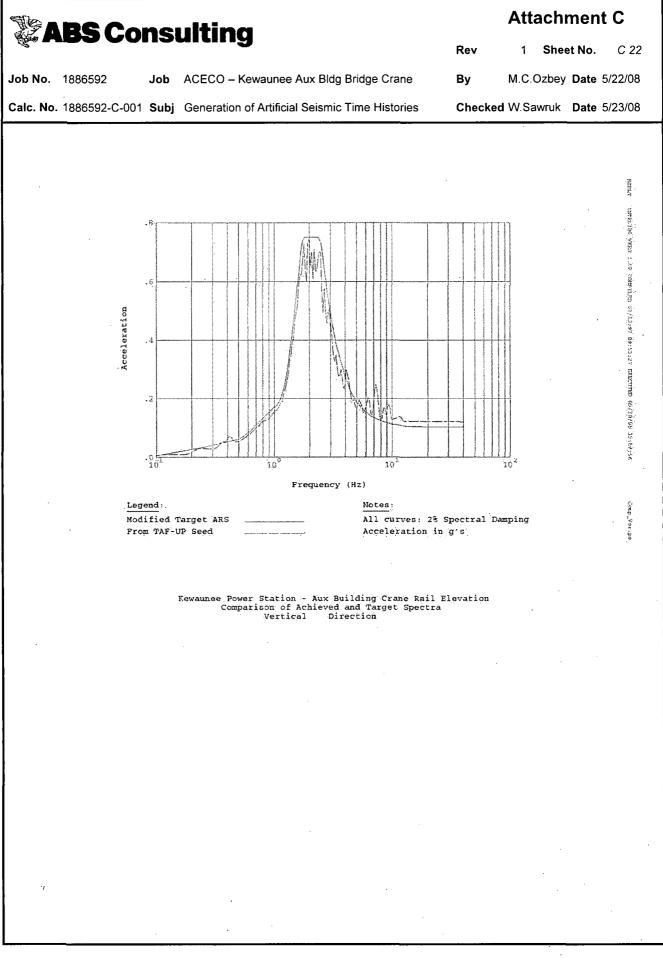

the second se

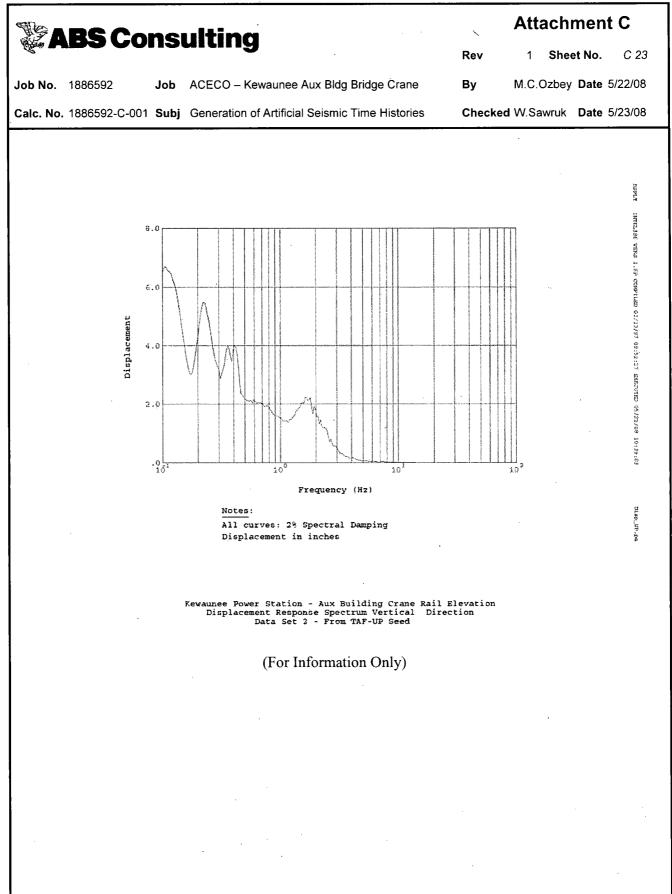


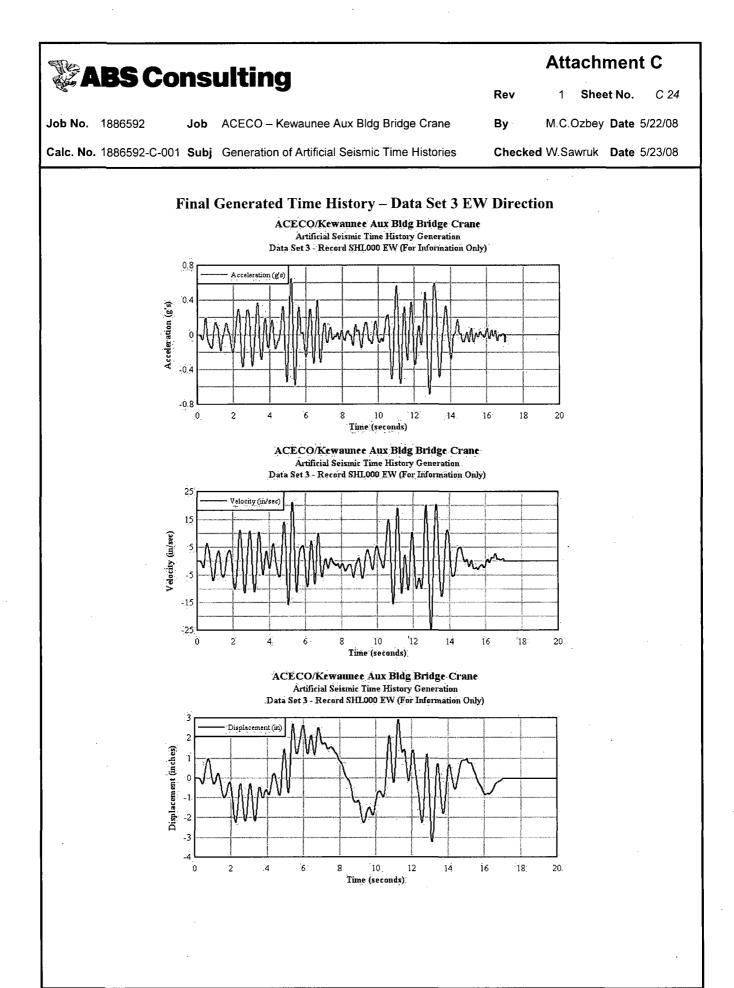

(For Information Only)

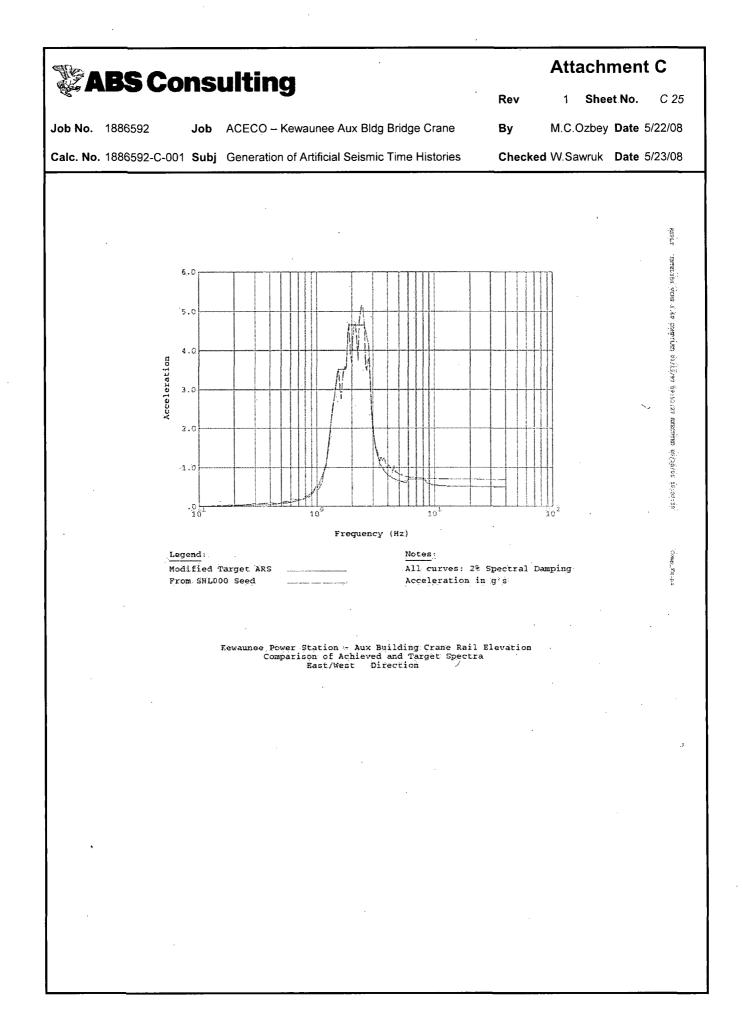


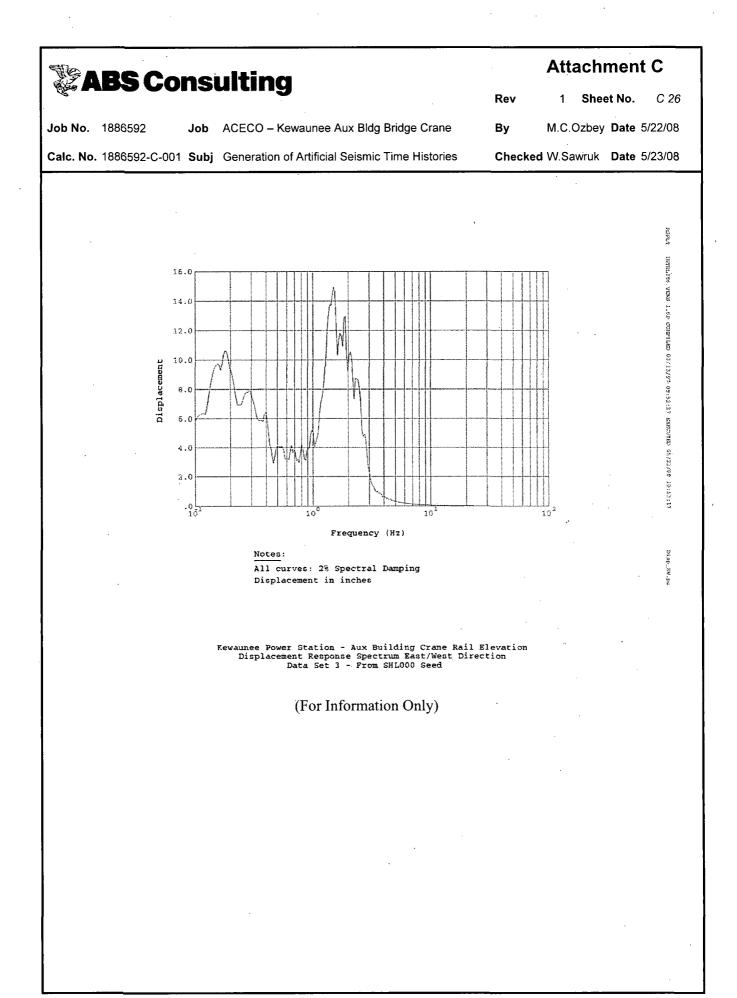


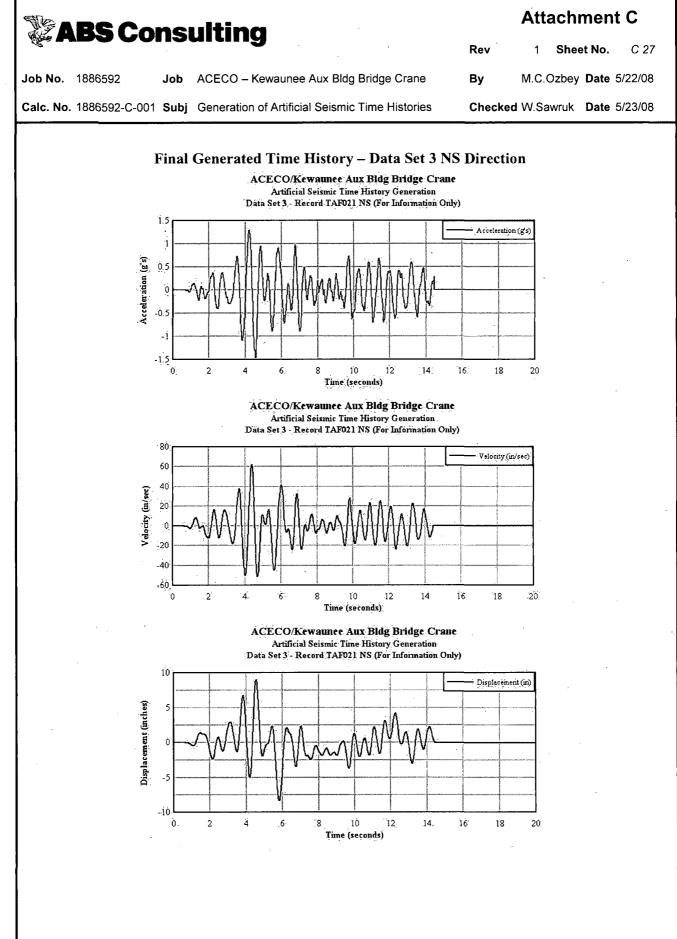

, K

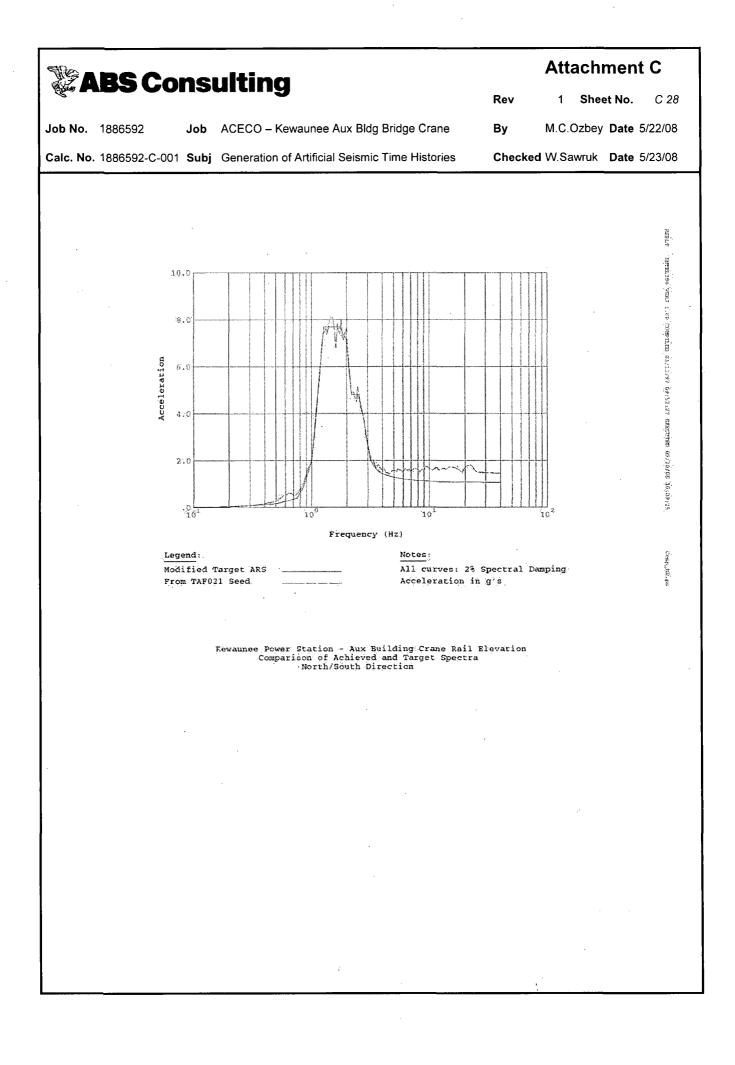

Kewaunee Power Station - Aux Building Crane Rail Elevation Displacement Response Spectrum North/South Direction Data Set 2 - From HCH271 Seed

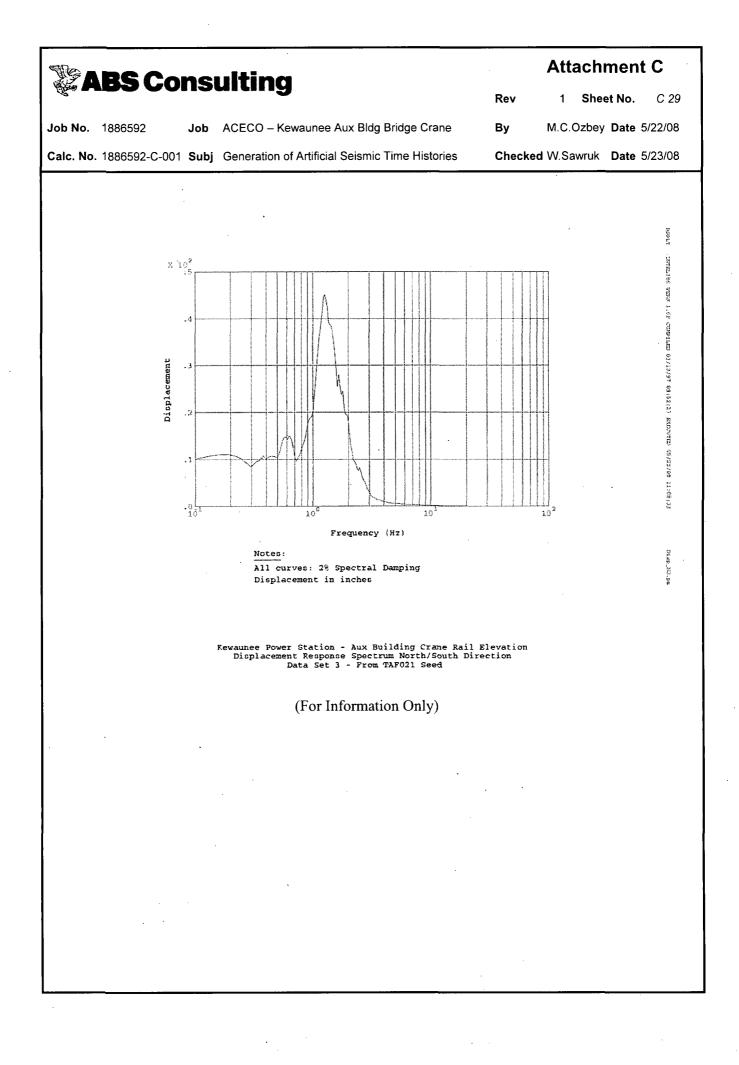

(For Information Only)

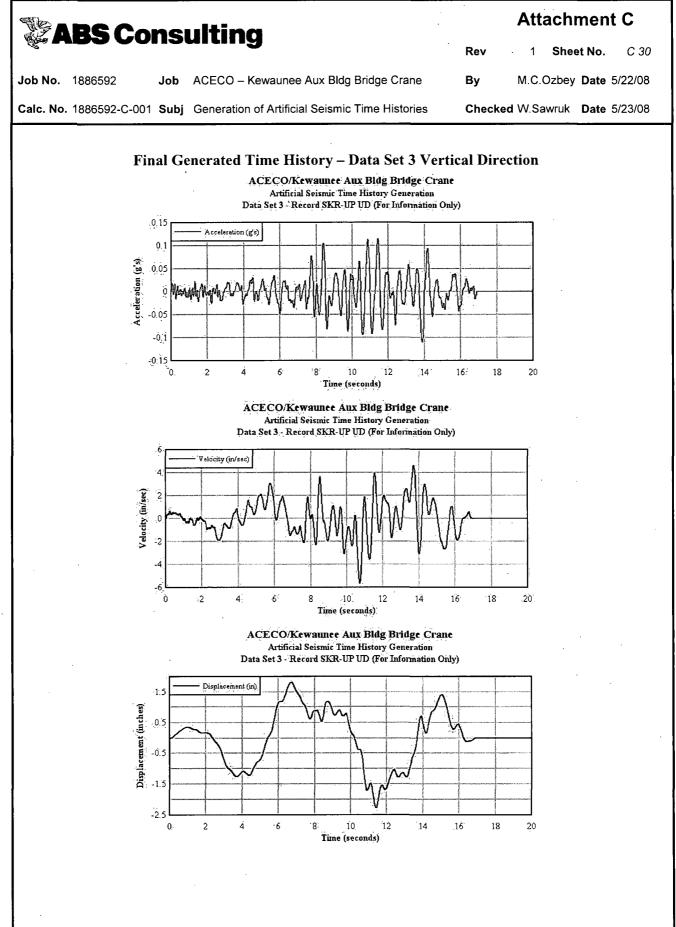


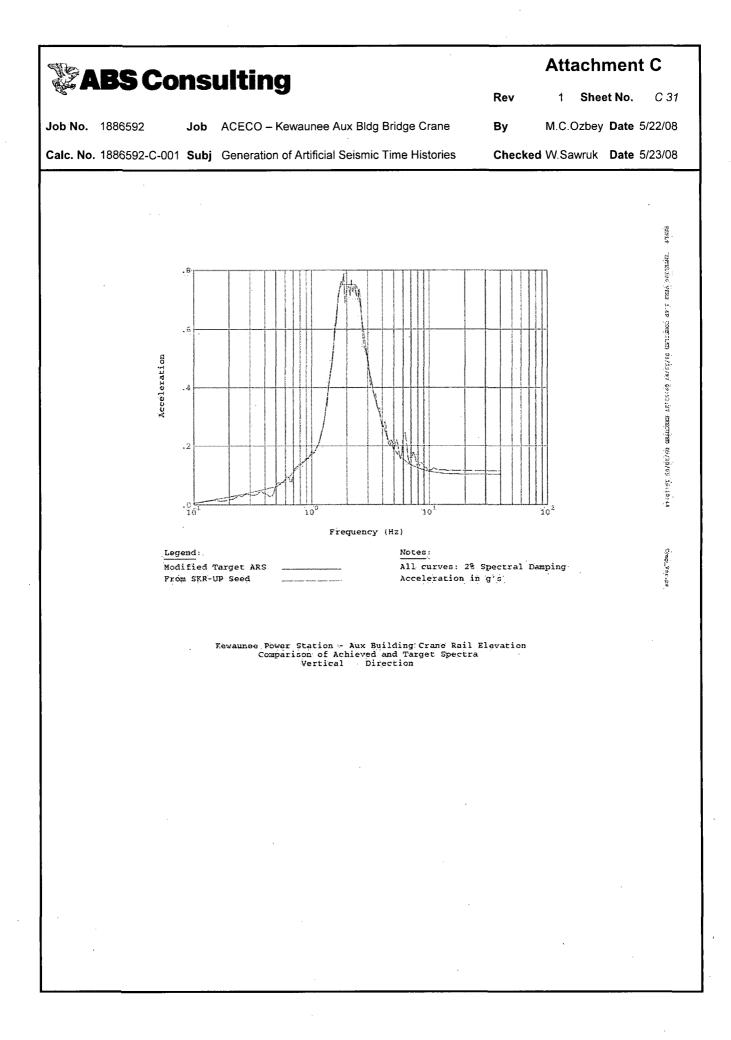


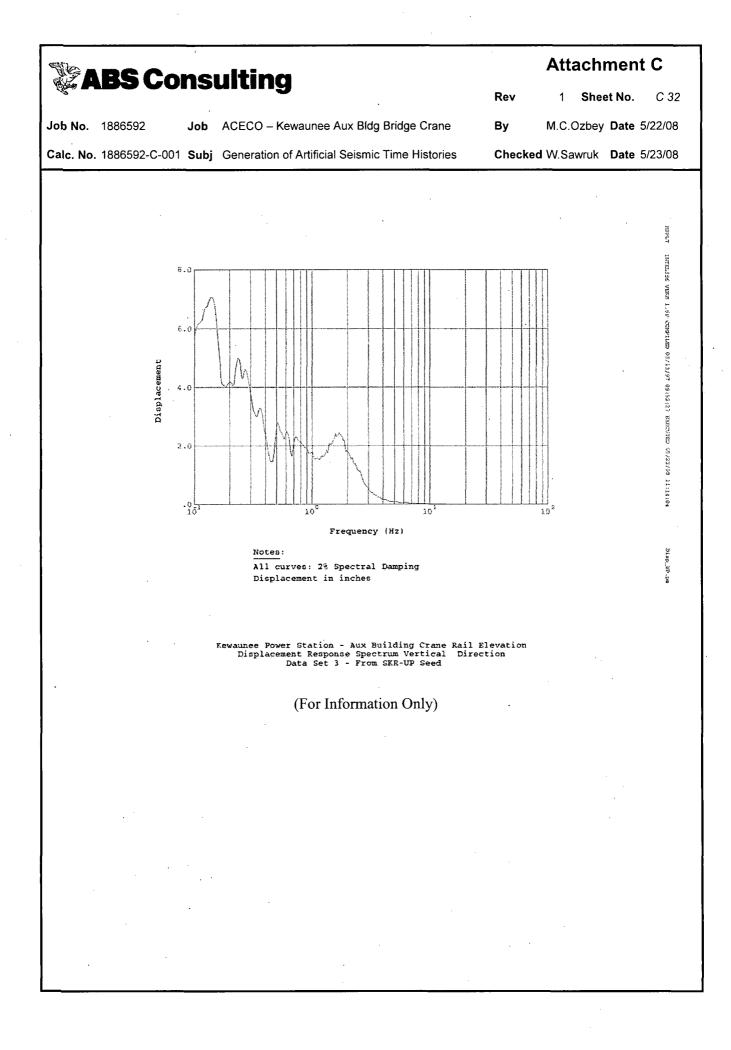

.

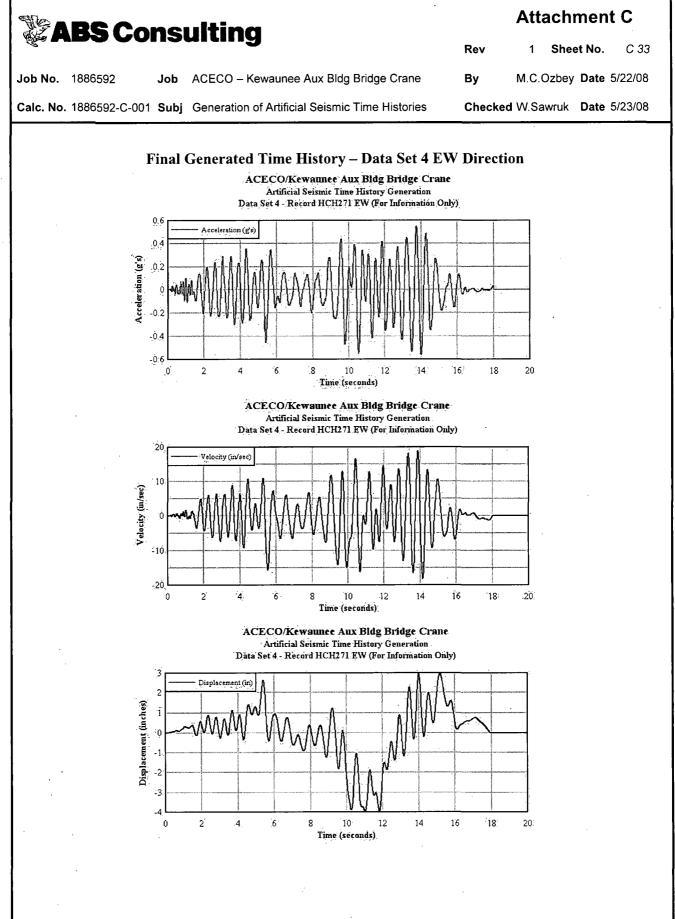


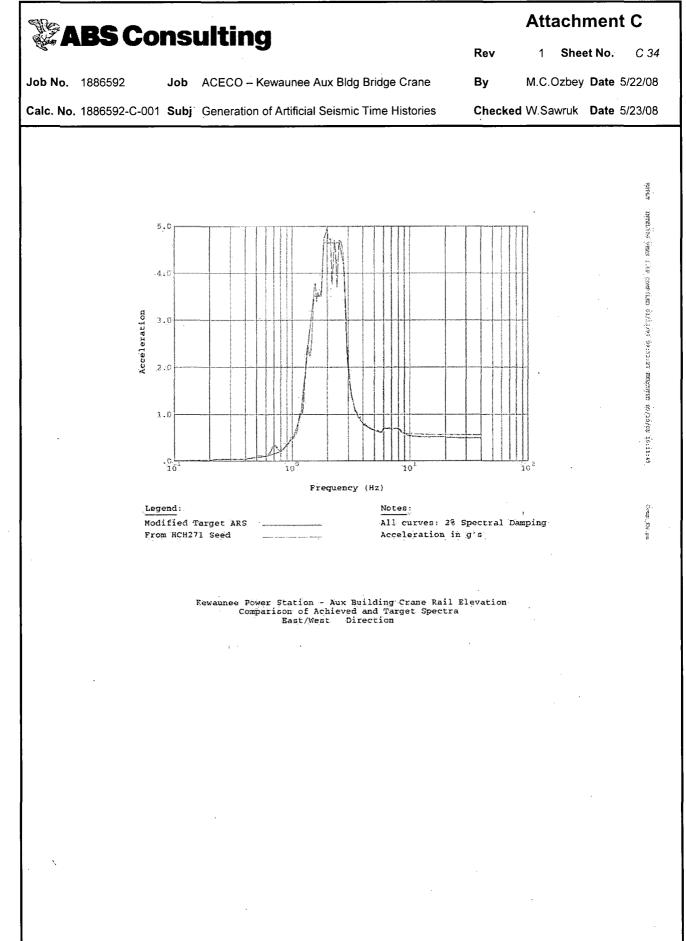


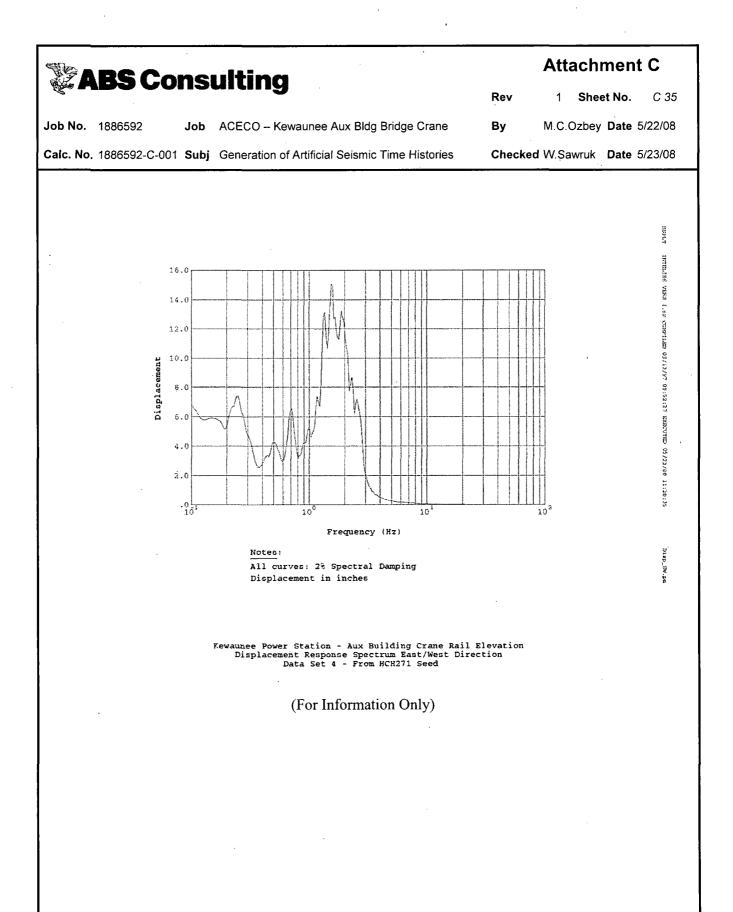


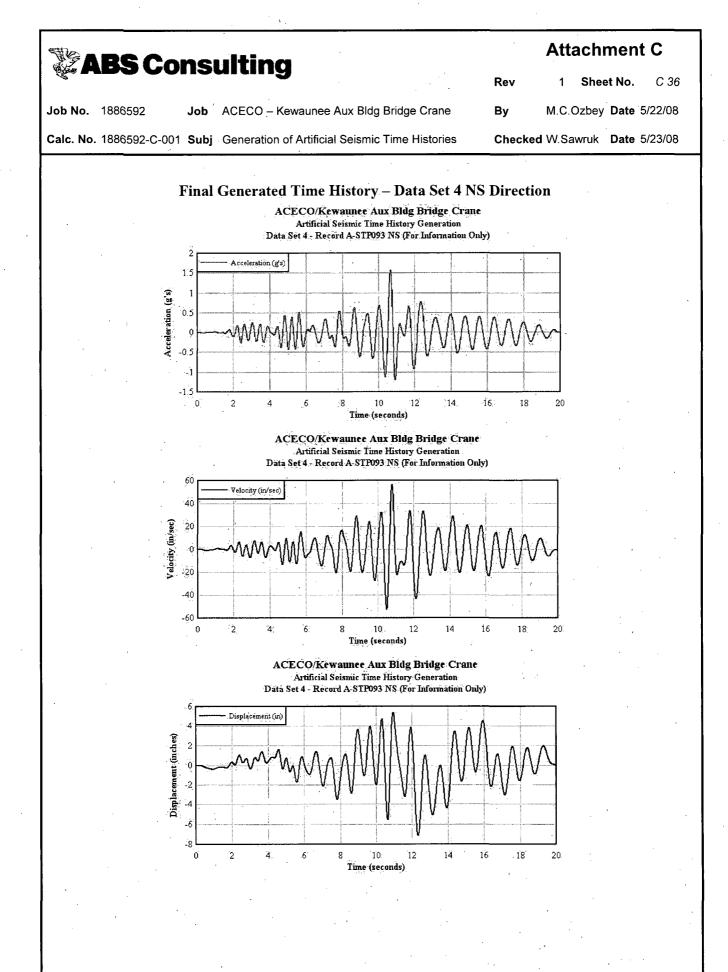


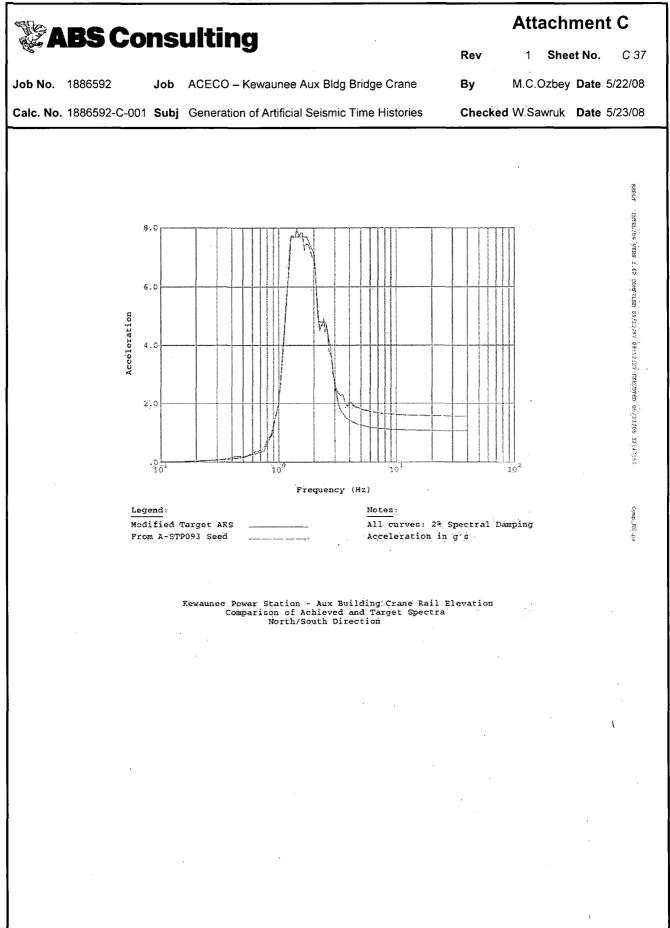


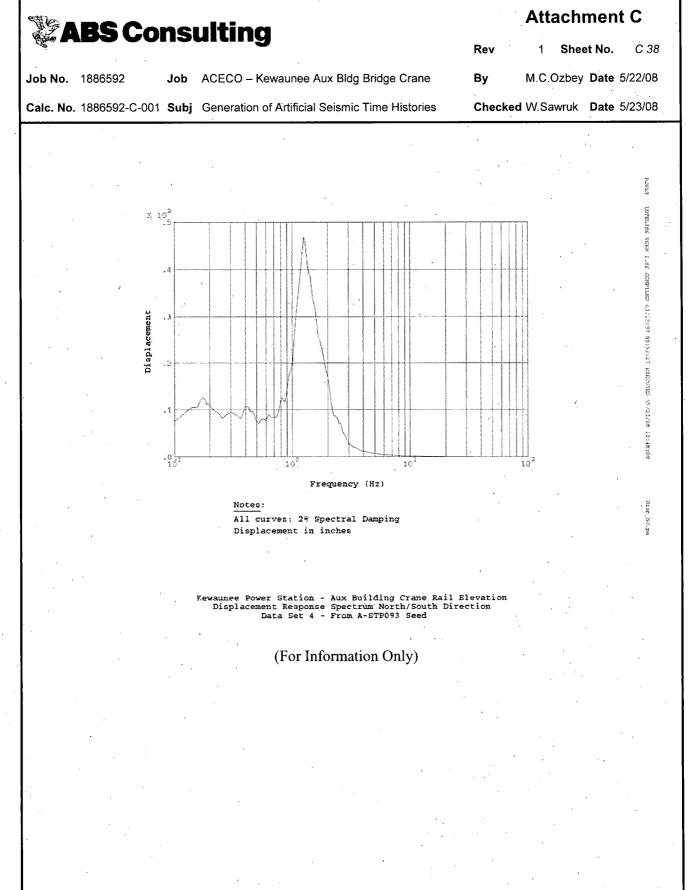


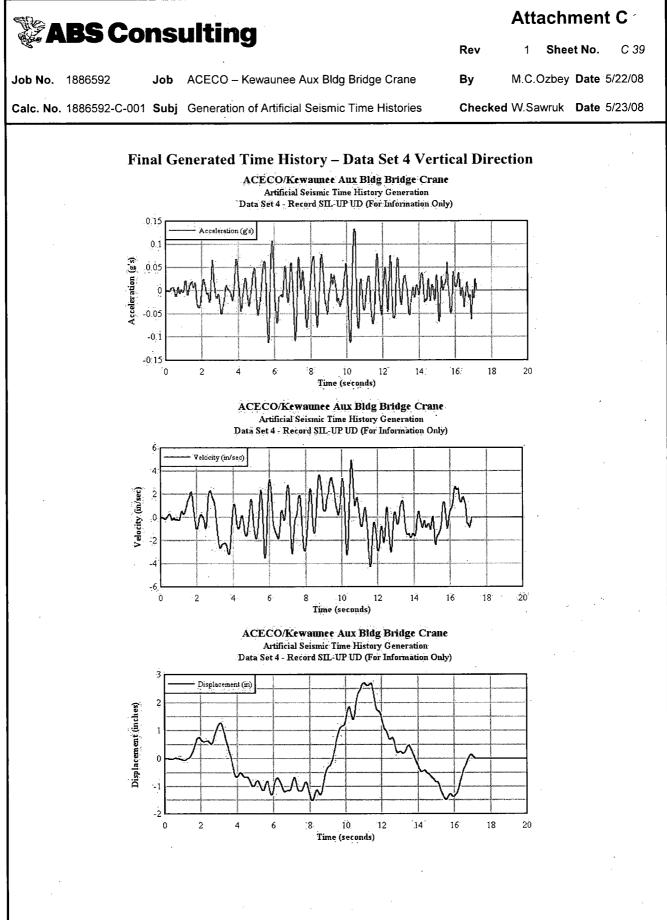


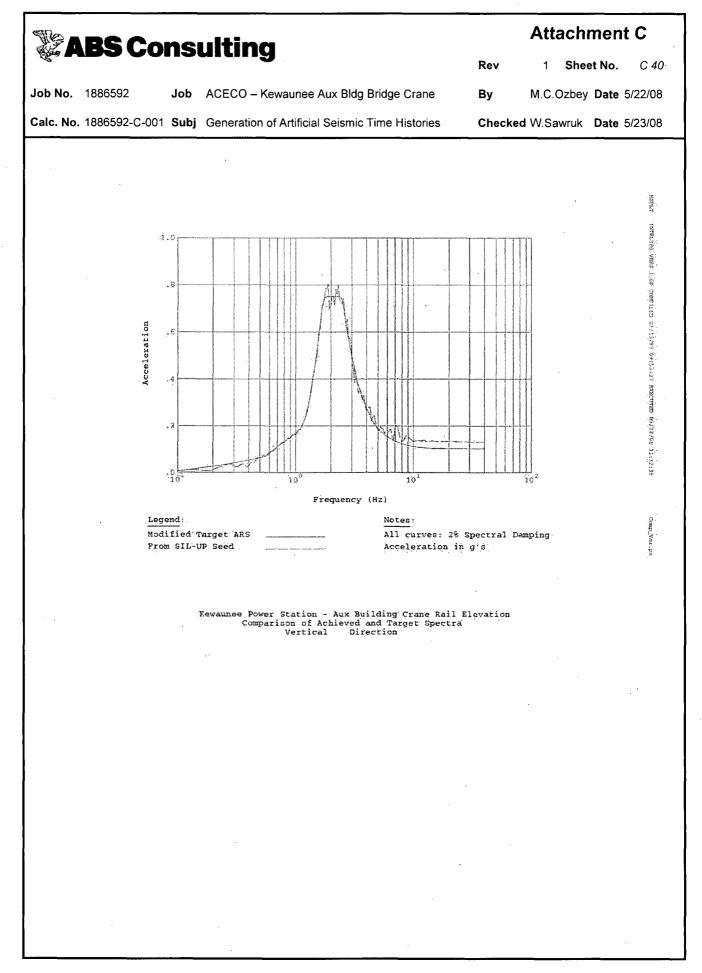


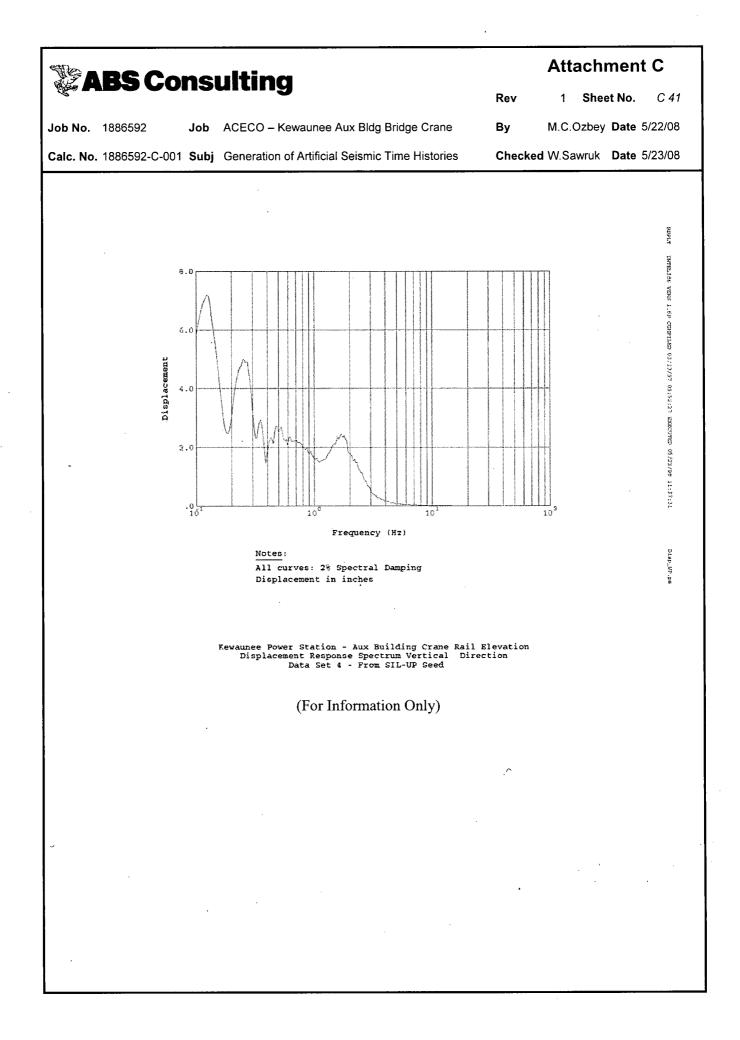


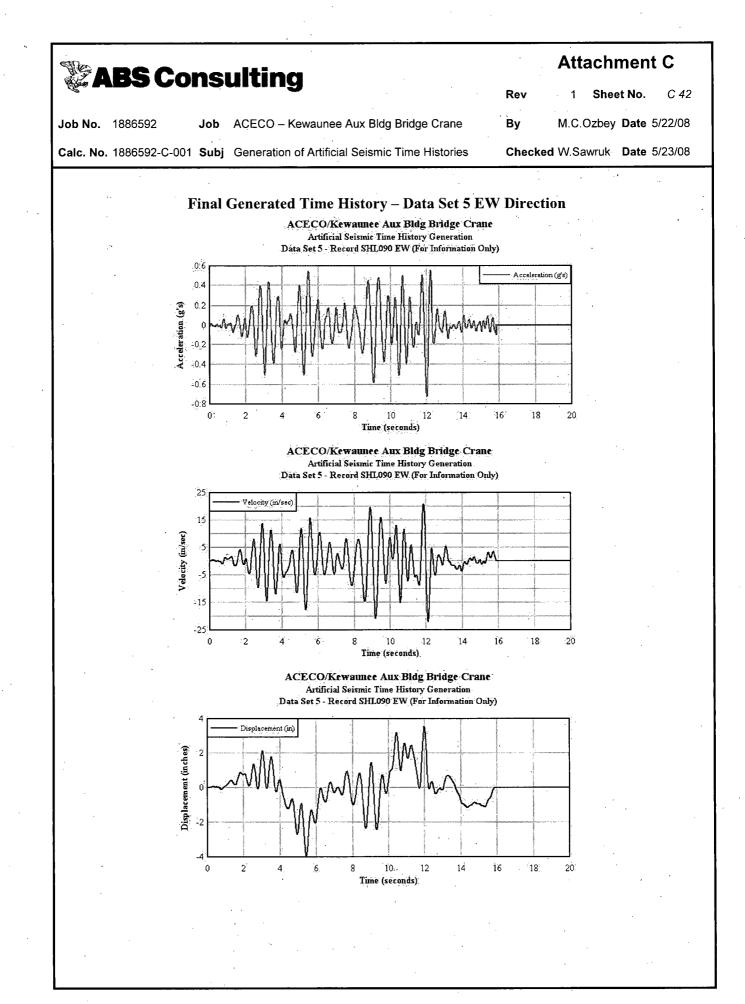


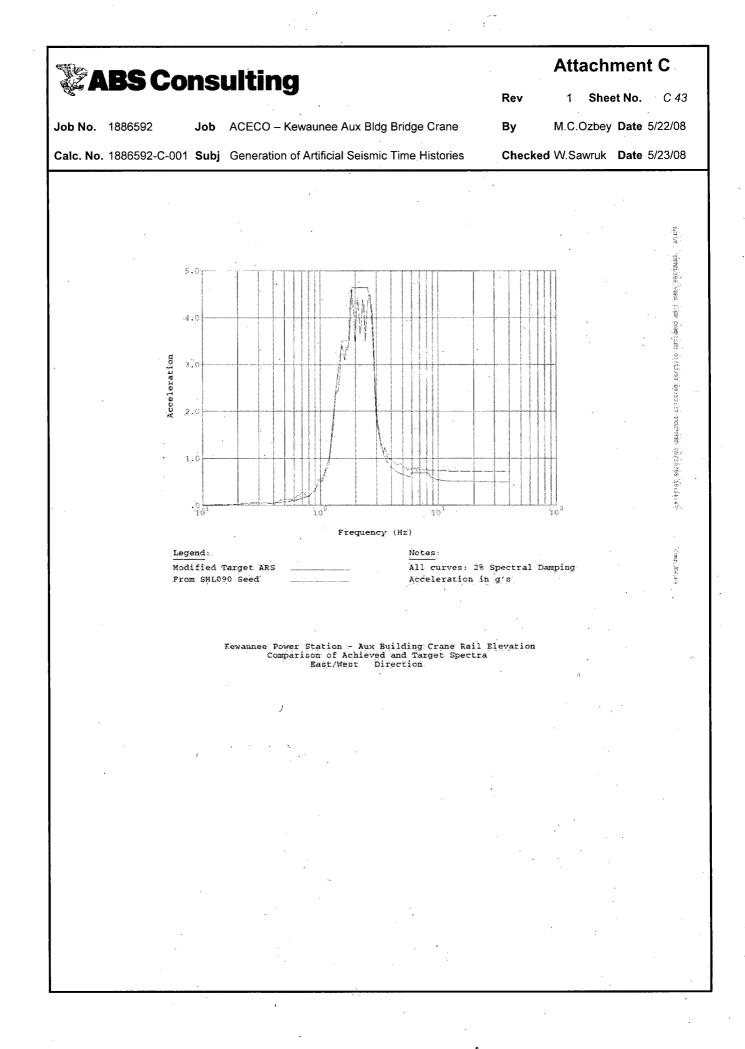


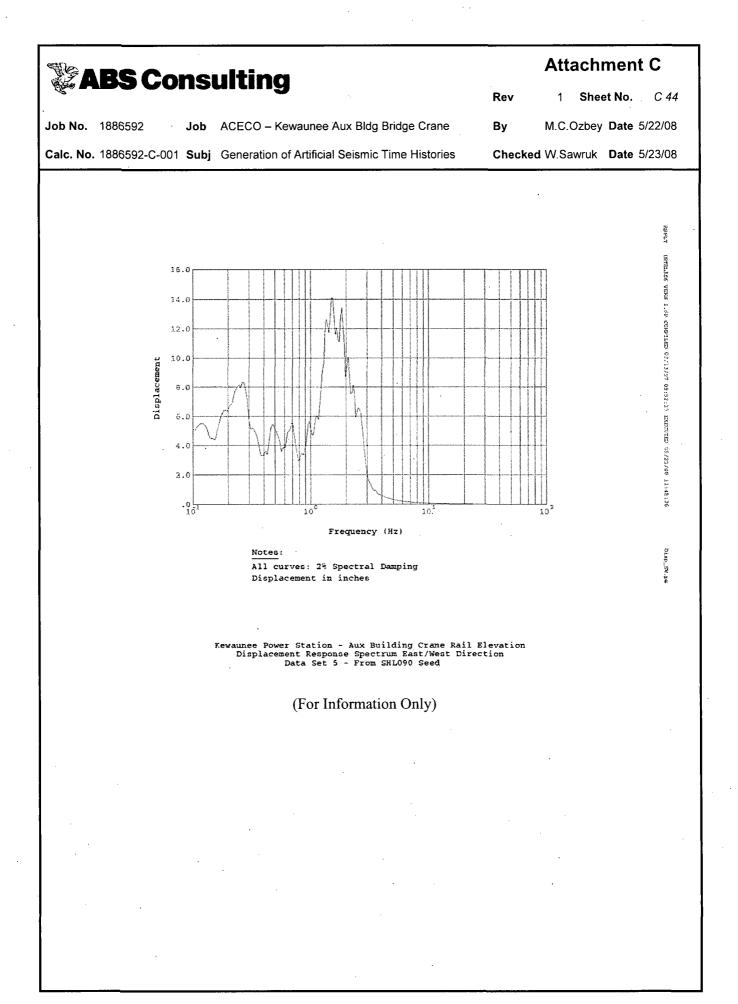


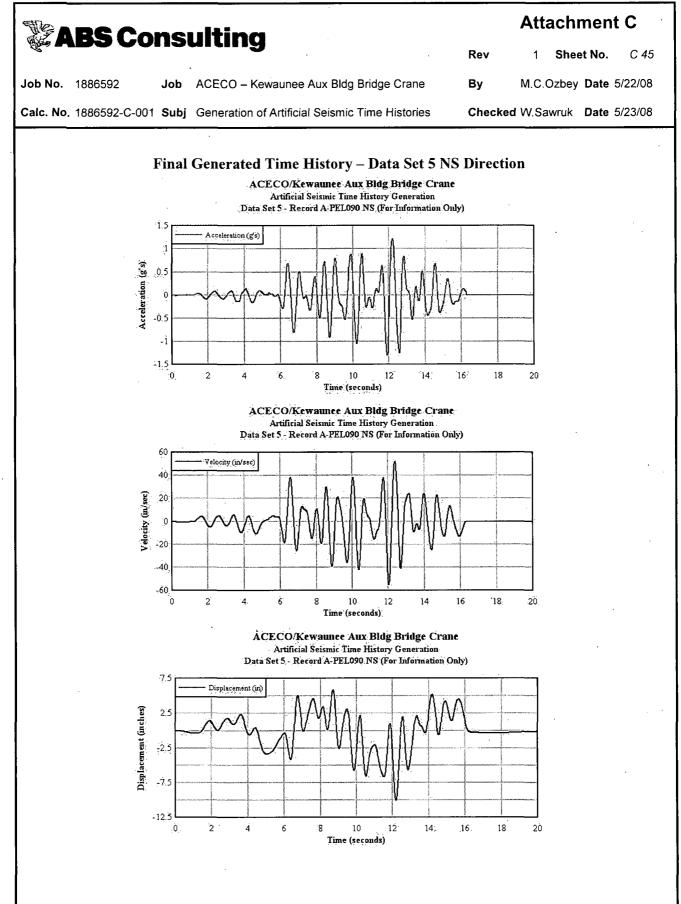


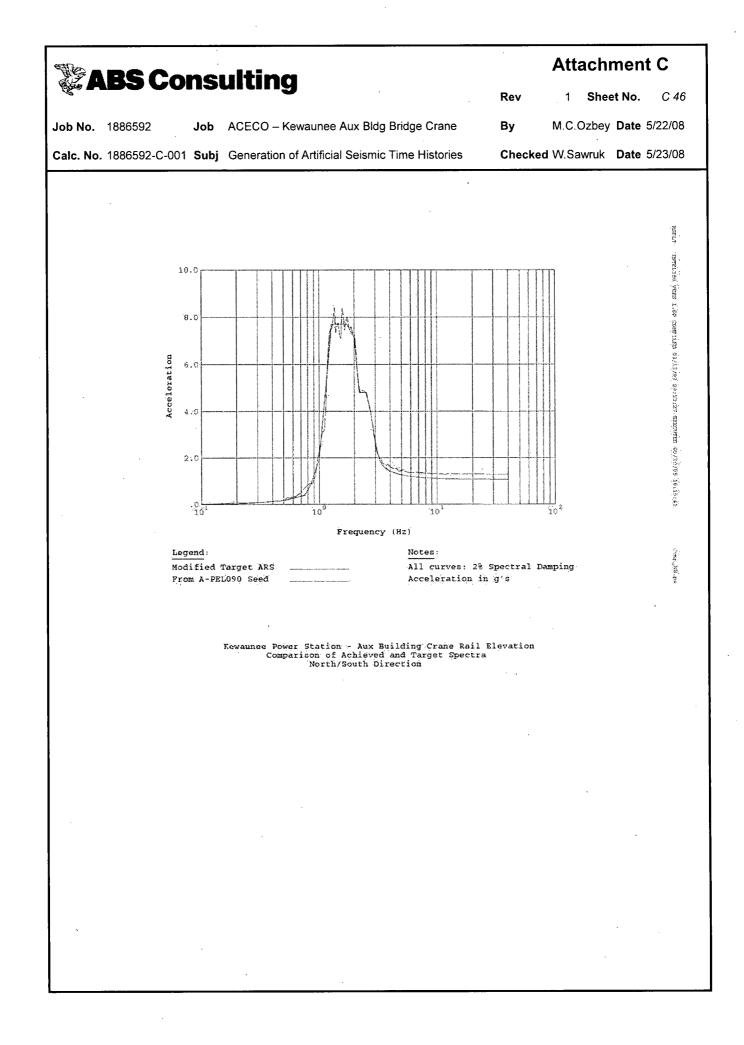

<u>.</u> •

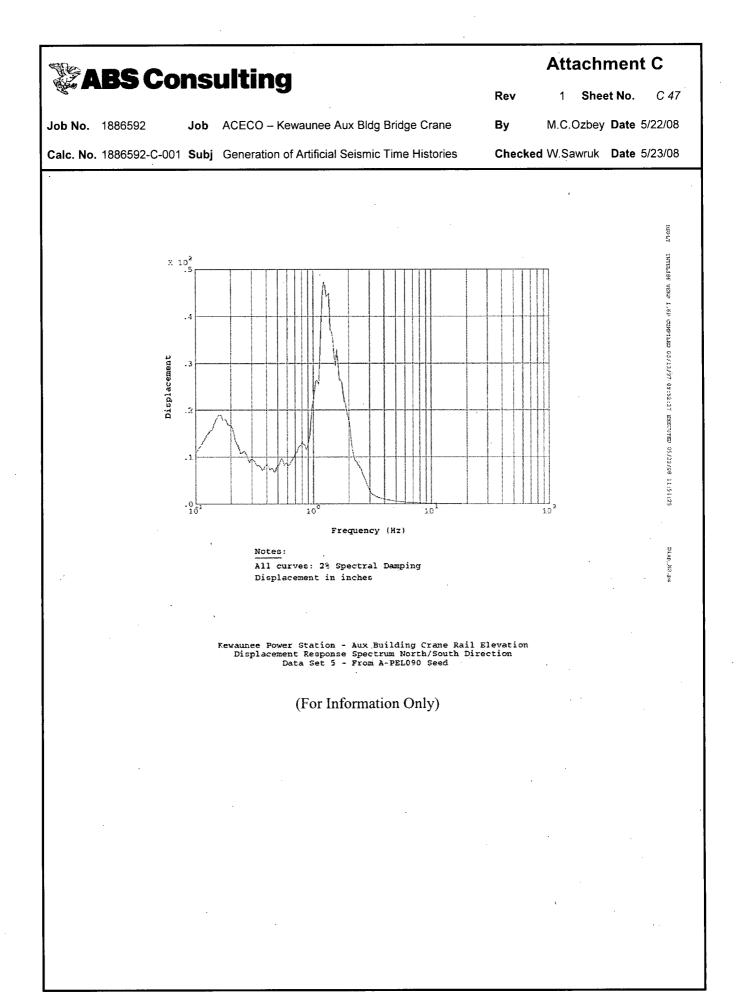

• • • • •

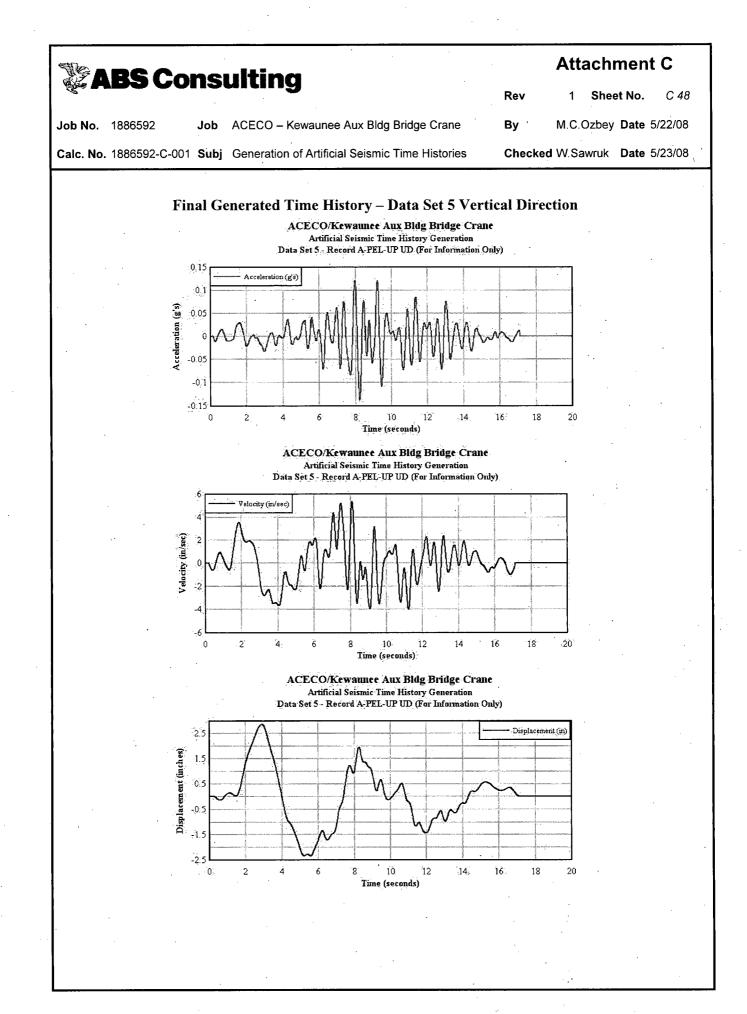


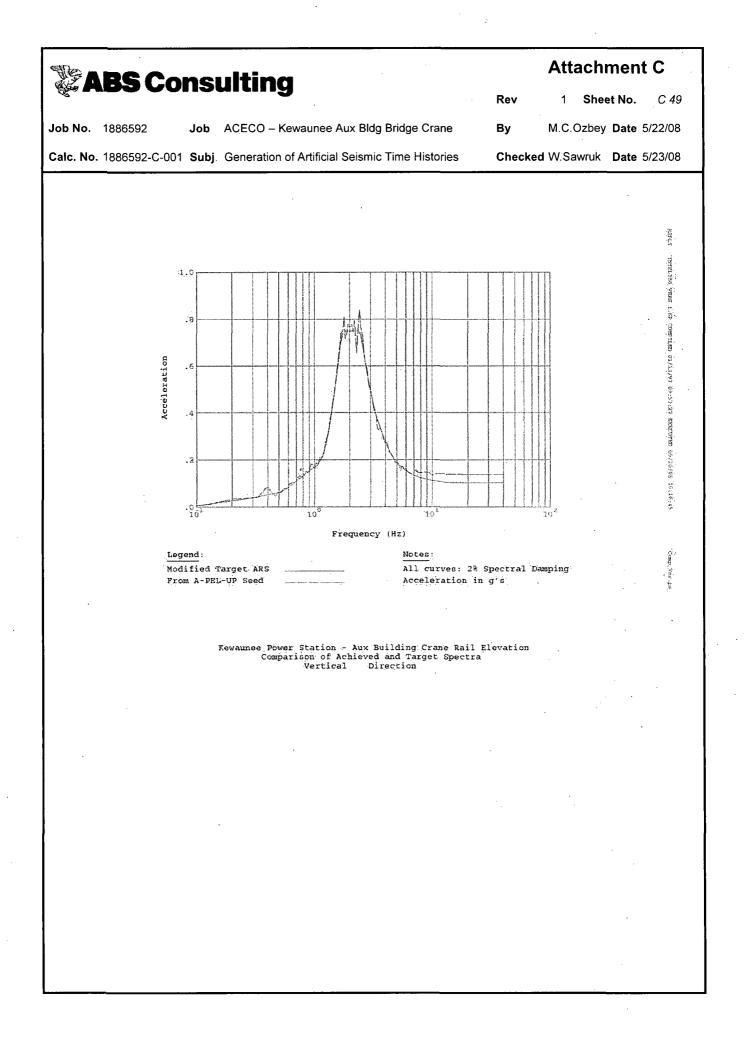


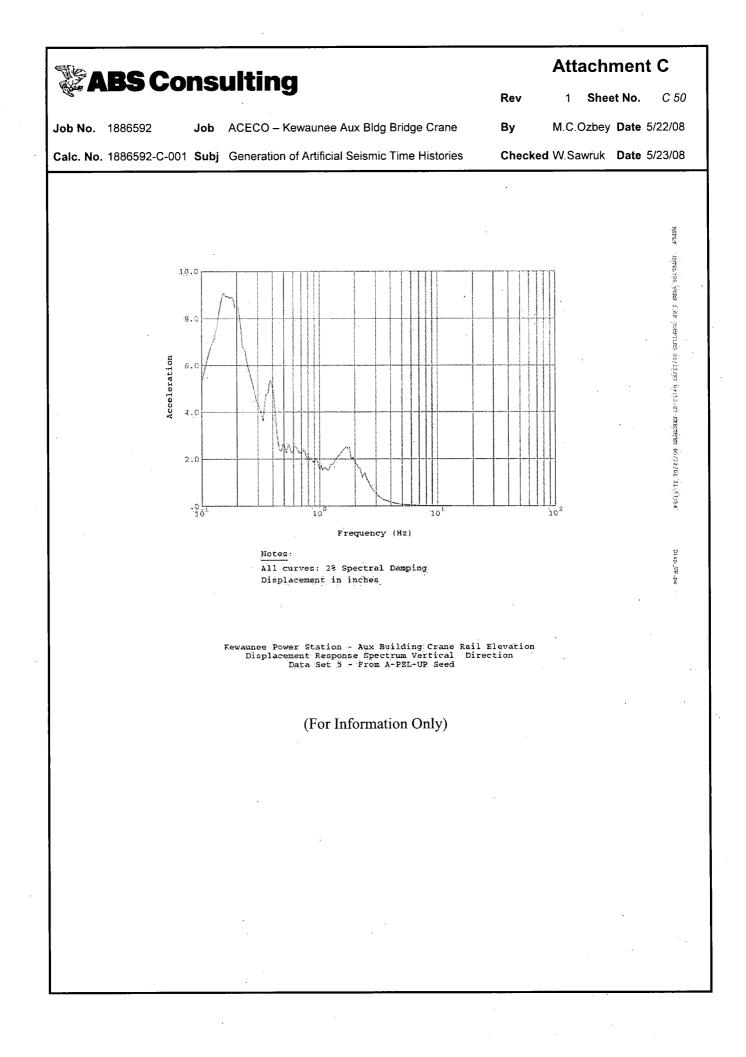


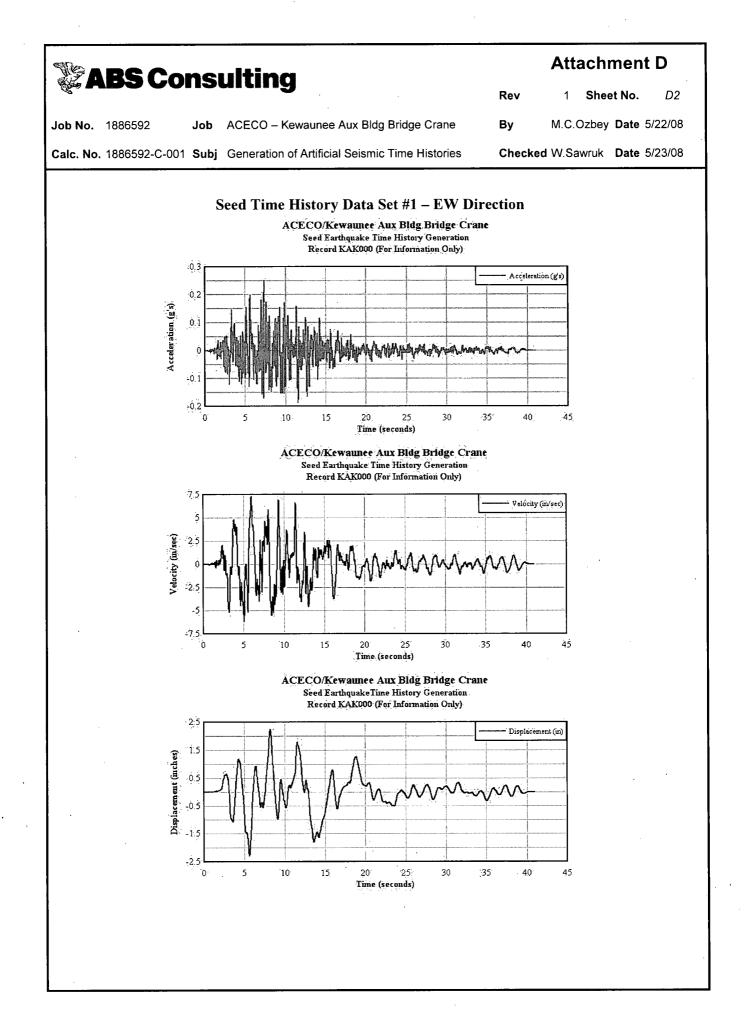


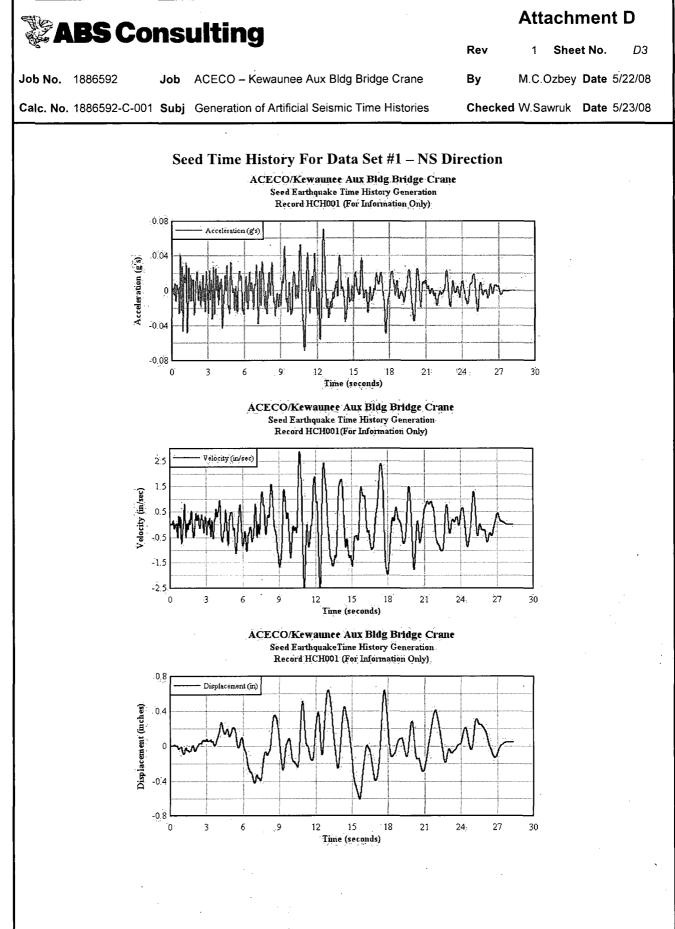




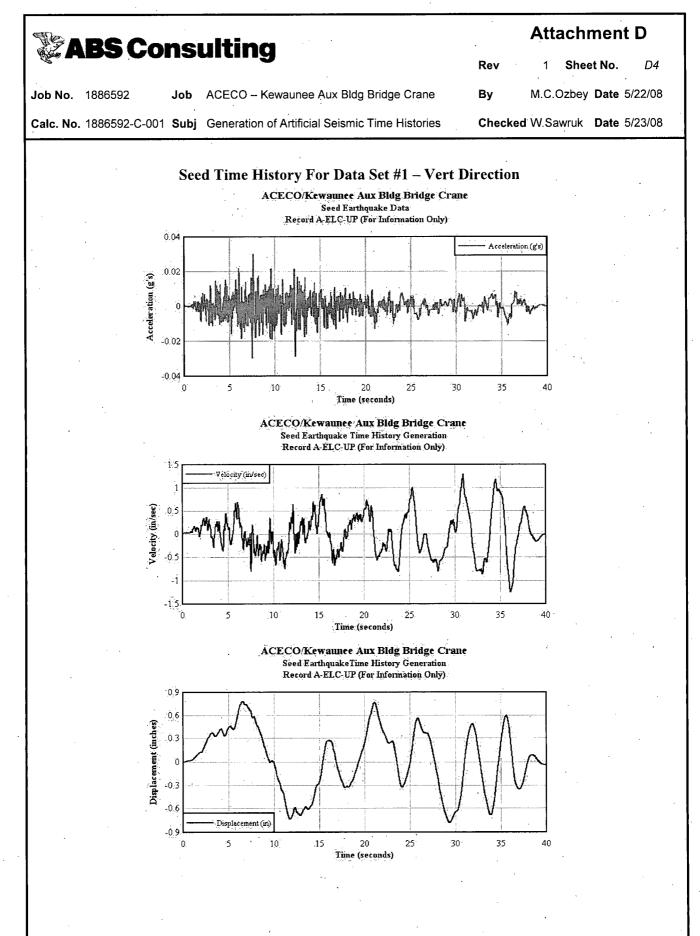




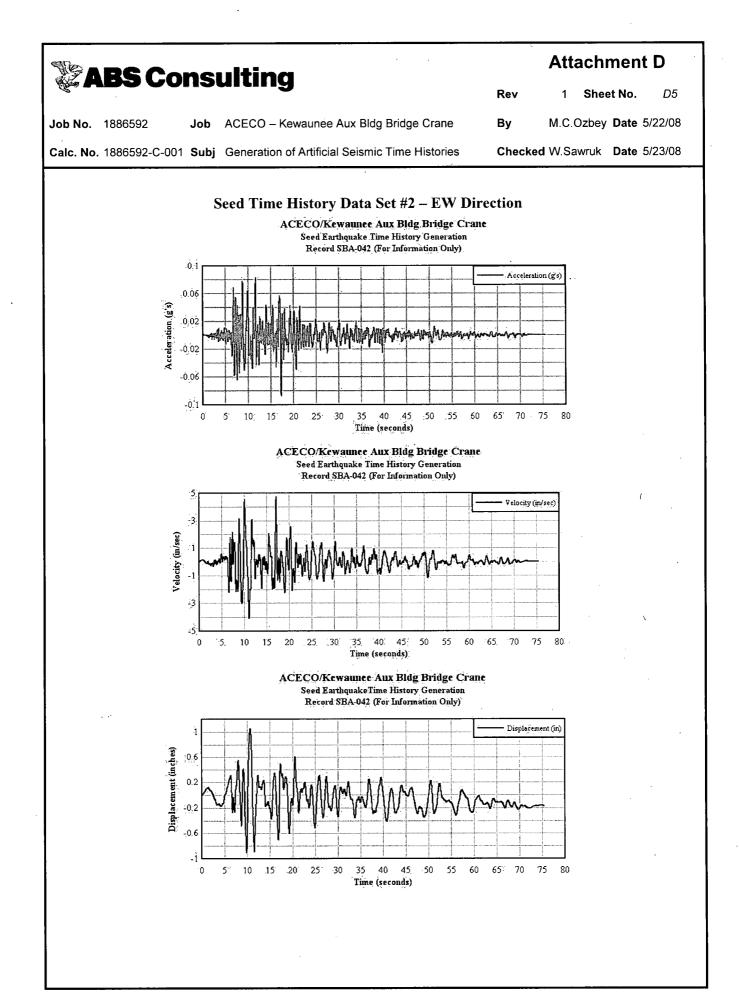


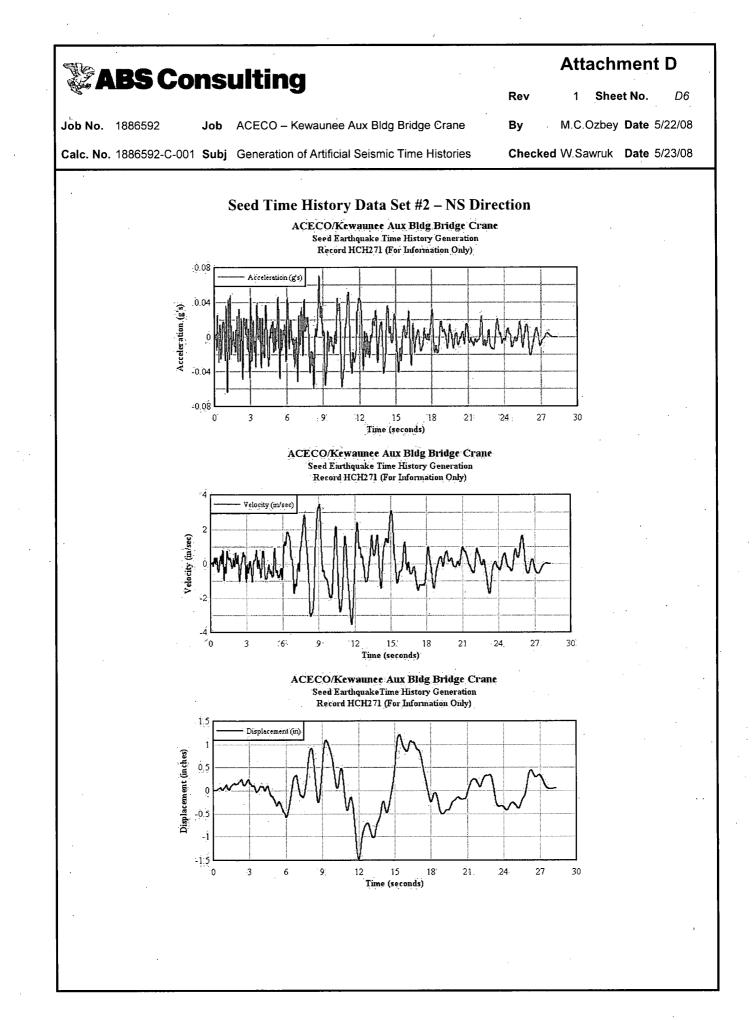

ABS Consulting					Attachment D				
% AI		1121	uning	Rev	1	Shee	et No.	D1	
Job No. 18	886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	M.C	Ozbey	Date	5/22/08	
Calc. No. 18	886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	W.S	awruk	Date	5/23/08	

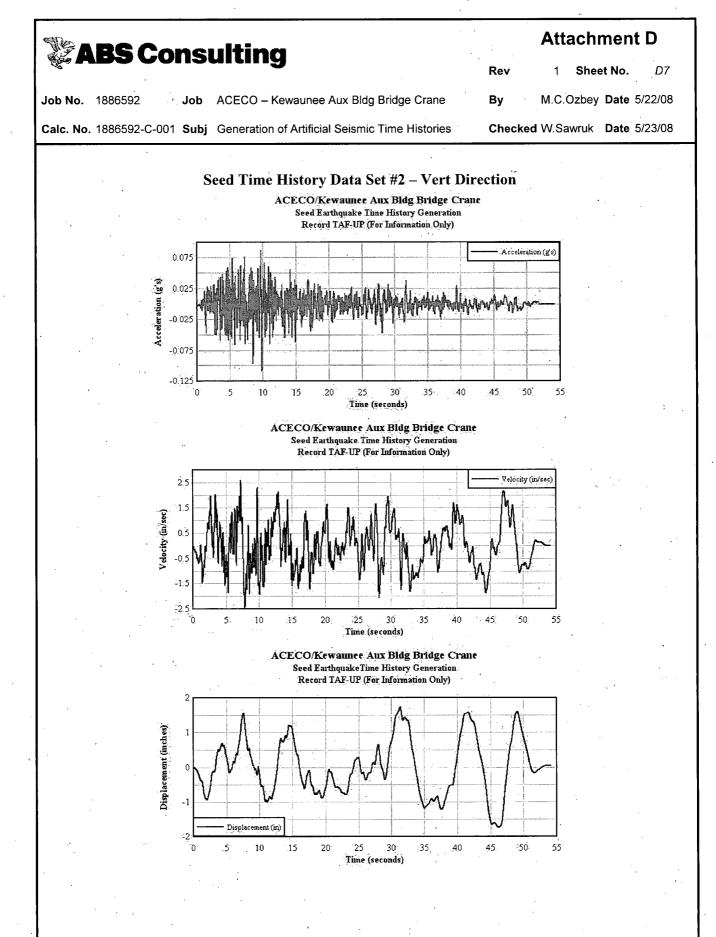
ATTACHMENT D

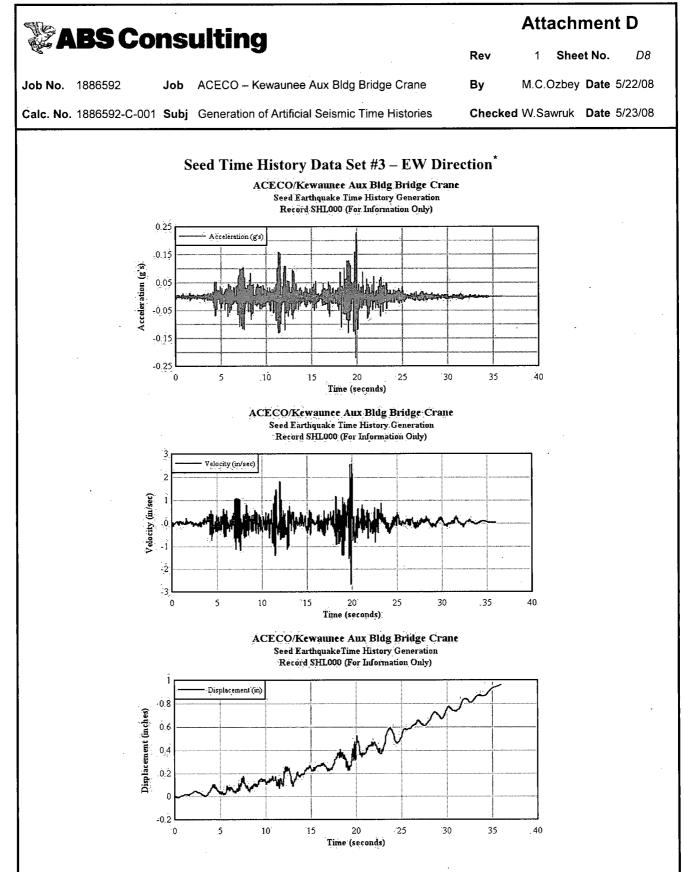

Plots of Seed Time Histories

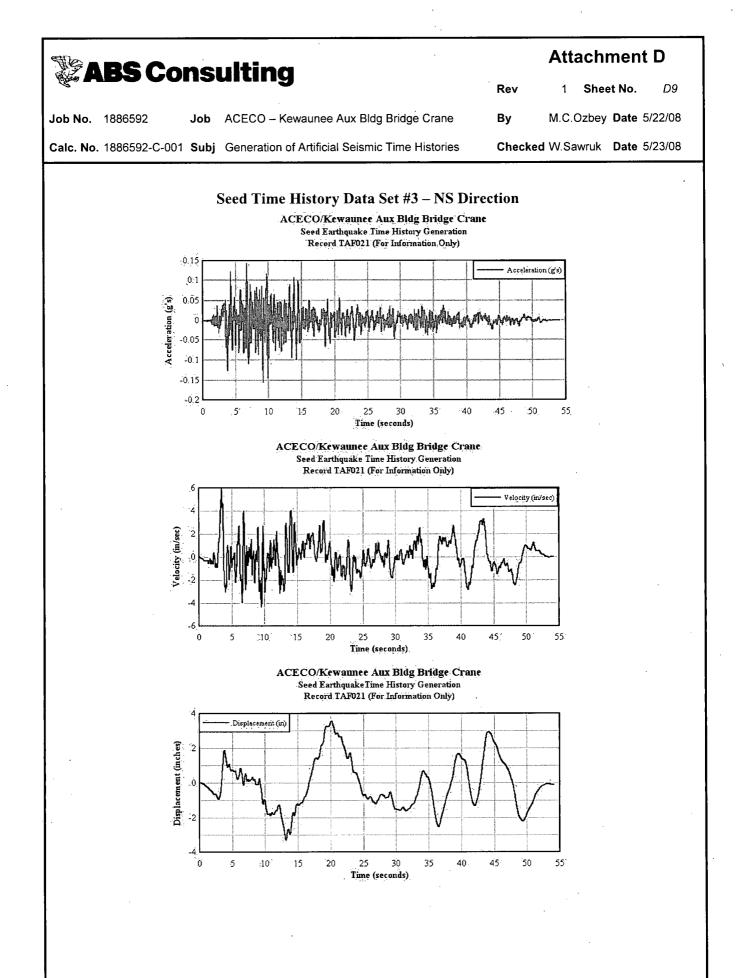
This attachment contains plots of the fifteen seed acceleration time histories obtained from (<u>http://peer.berkeley.edu/smcat</u>). The associated velocity and displacement time histories are calculated using DPLOT without any corrections being applied. Note that all the plots shown in this attachment are "For Information Only" since they were plotted using non-QA software (See Section 3.1 for discussion).

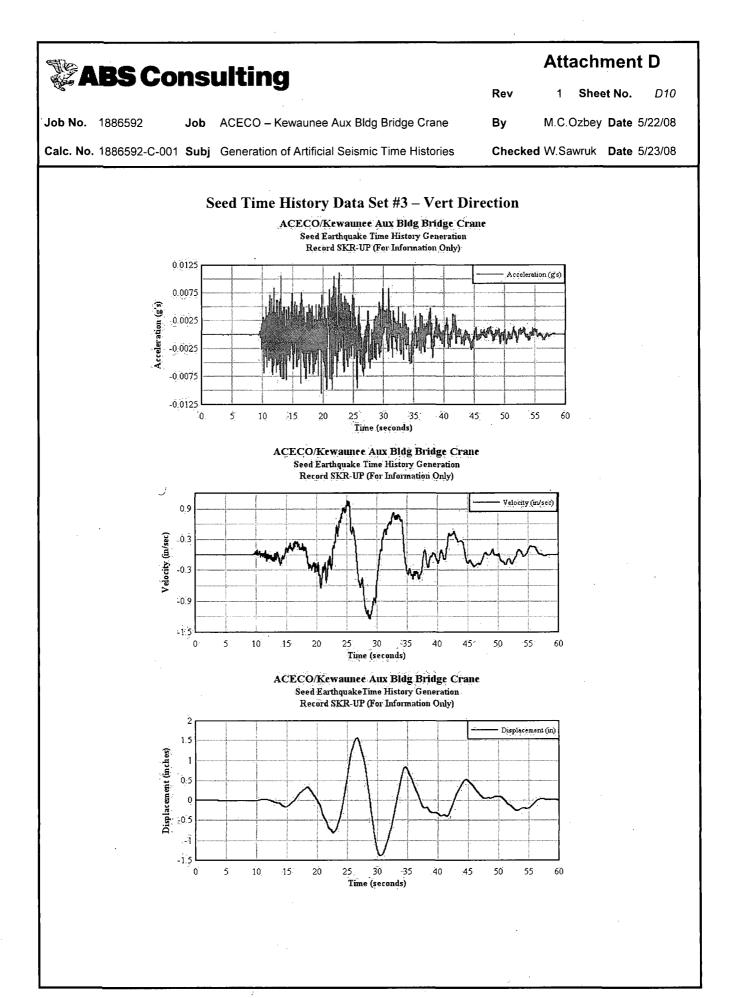


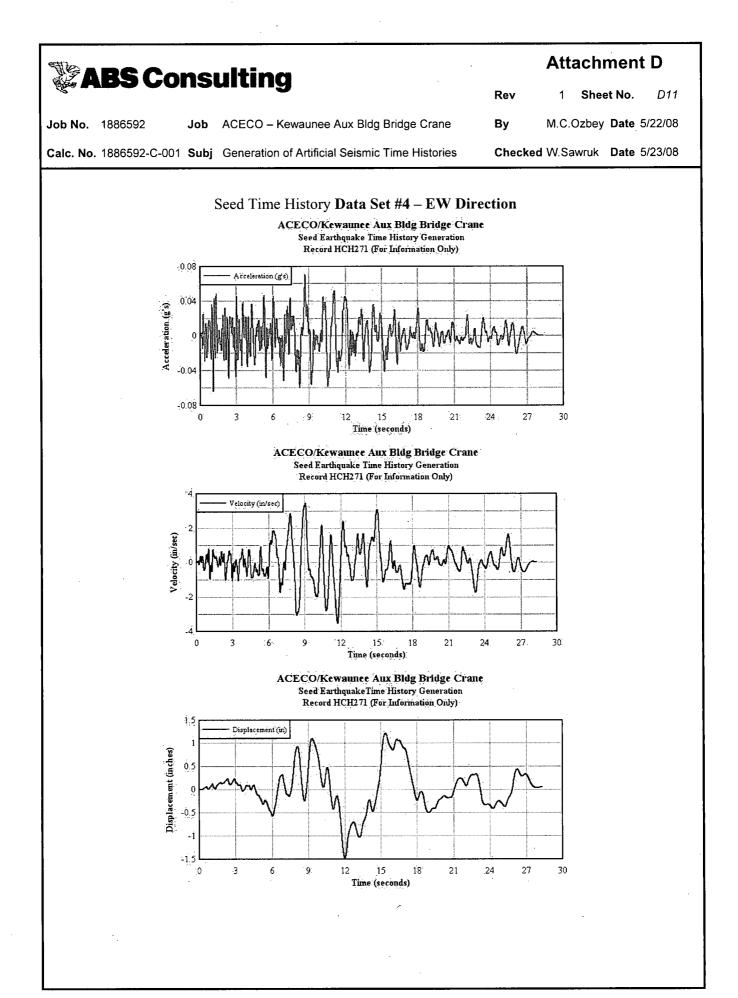


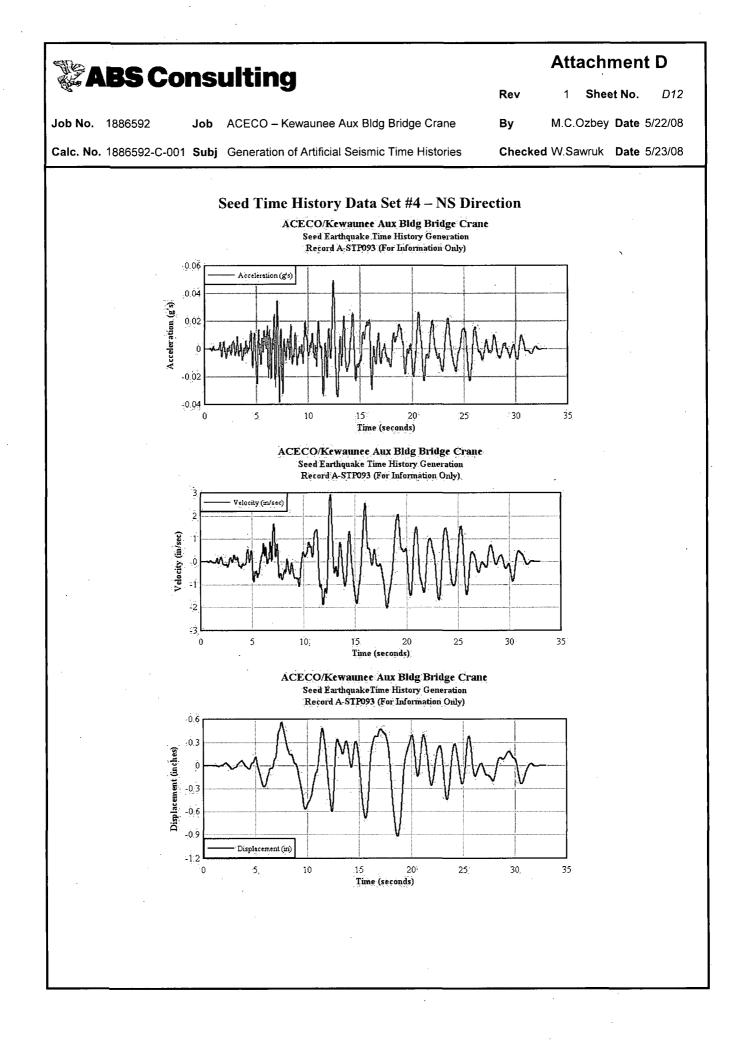


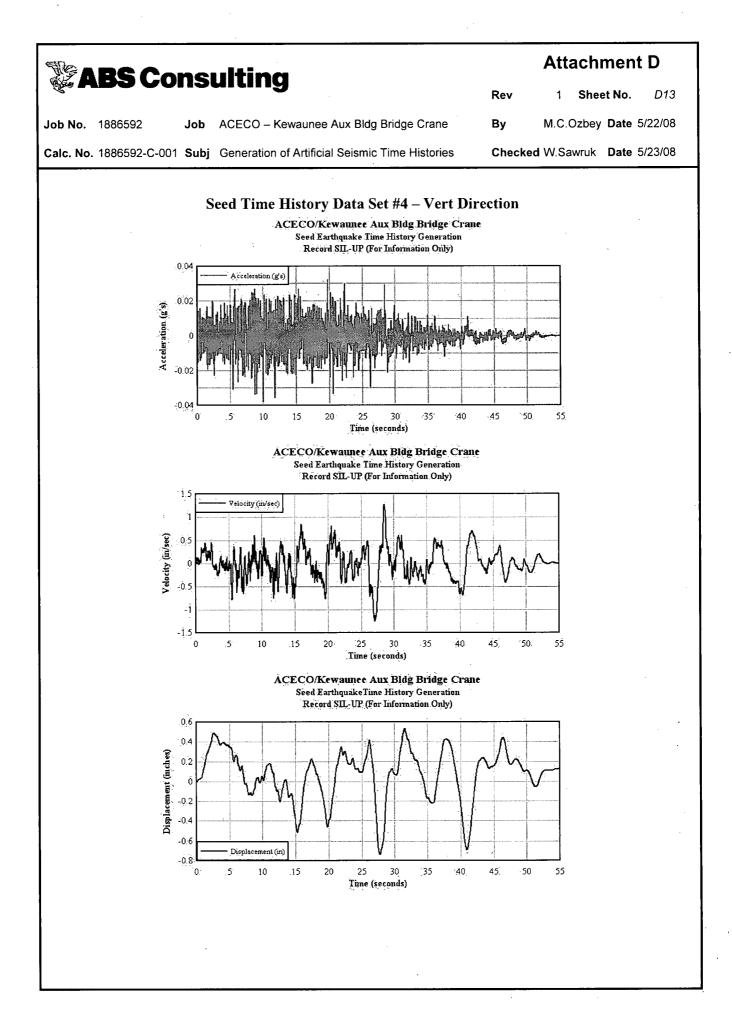


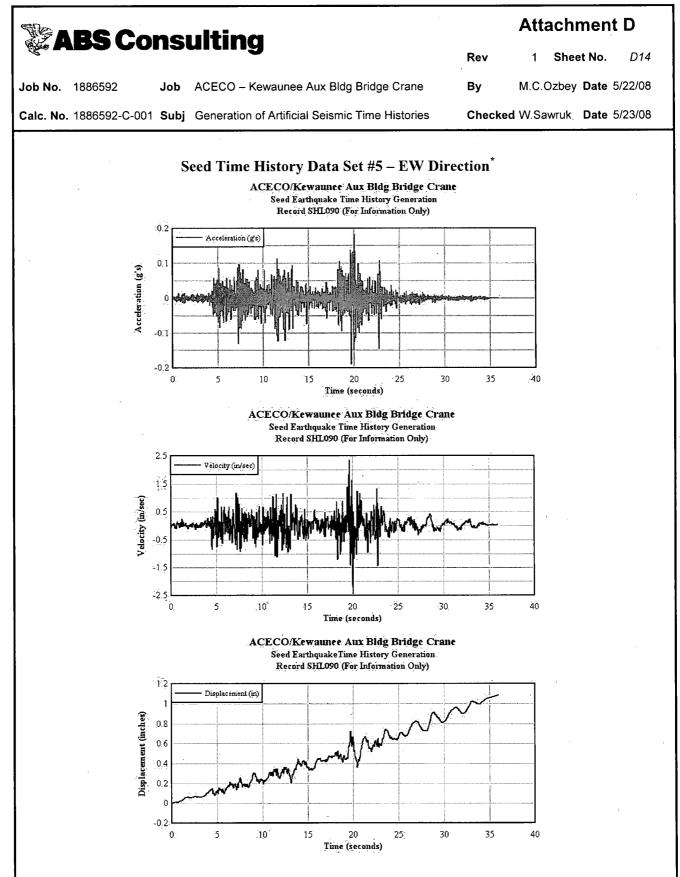


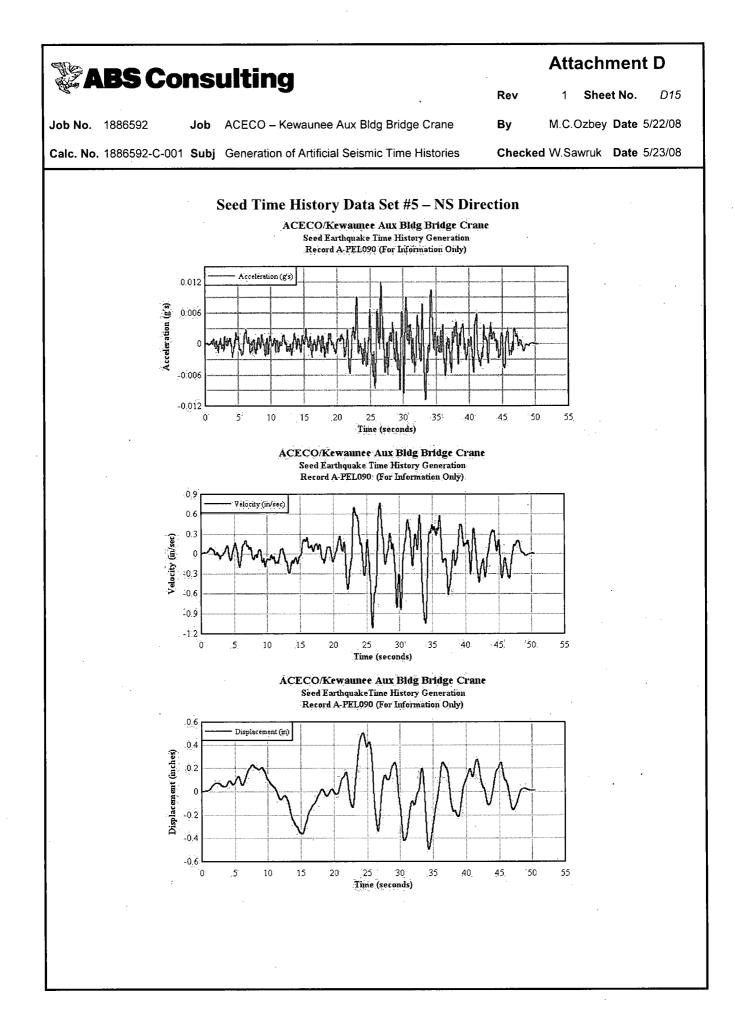

* Note: The seed acceleration data obtained from the referenced site did not include the required signal correction for this time history and thus the displacement time history is not base line corrected.

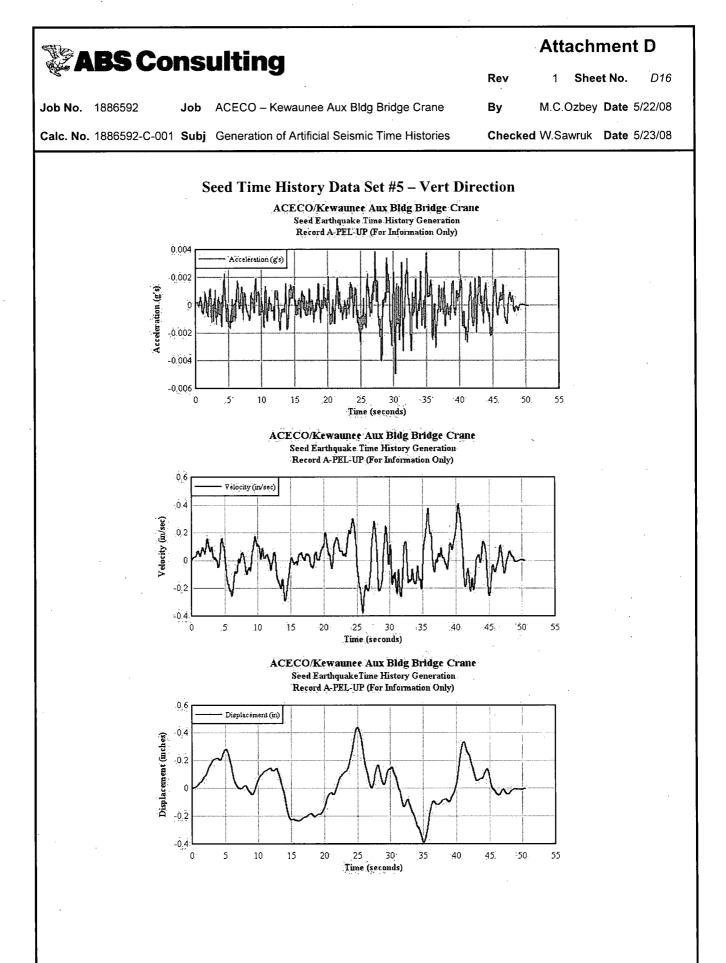





·







* Note: The seed acceleration data obtained from the referenced site did not include the required signal correction for this time history and thus the displacement time history is not base line corrected.

TO .	BS Col	nci	ultina		Att	ach	ment	tΕ	
	193 CU	1131	unny	Rev	v 1 Sheet No.		Eî	E1	
Job No.	1886592	Job	ACECO – Kewaunee Aux Bldg Bridge Crane	Ву	P. St	reeter	Date	5/27/0	8
Calc. No.	1886592-C-001	Subj	Generation of Artificial Seismic Time Histories	Checked	l		Date		

NQP-02 Review Guidelines Review Checklist

Document Number:	<u>1886592-C-001</u>
Review Scope:	Entire Calculation

Review Method: 🔽 X Design Reviev 🗖 Alternate Calculation 🗖 Test

Crit	eria	Checker
1	Were the inputs correctly selected and incorporated into design?	Yes
2.	Are assumptions necessary to perform the design activity adequately described and reasonable? Where necessary, are the assumptions identified for subsequent reverifications when the detailed design activities are completed?	Yes
3.	Are the appropriate quality and quality assurance requirements specified?	Yes
4.	Are the applicable codes, standards and regulatory requirements including issue and addenda properly identified and are their requirements for design met?	Yes
5.	Have applicable construction and operating experience been considered?	Yes
6.	Have the design interface requirements been satisfied?	Yes
7.	Was an appropriate design method used?	Yes
8.	Is the output reasonable compared to inputs?	Yes
9.	Are the specified parts, equipment, and processes suitable for the required application?	N/A
10.	Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?	N/A
11.	Have adequate maintenance features and requirements been specified?	N/A
12.	Are accessibility and other design provisions adequate for performance of needed maintenance and repair?	N/A
13.	Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life?	N/A
14.	Has the design properly considered radiation exposure to the public and plant personnel?	N/A
15.	Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished?	Yes
16.	Have adequate pre-operational and subsequent periodic test requirements been appropriately specified?	N/A
17.	Are adequate handling, storage, cleaning and shipping requirements specified?	N/A
18.	Are adequate identification requirements specified?	N/A
19.	Are requirements for record preparation review, approval, retention, etc., adequately specified?	Yes

Checker shall initial indicating review and mark N/A where not applicable

Date: <u>27-May-08</u>

Review Completed by:

Paul Streeter

Offices throughout the US and worldwide, <u>www.absconsulting.com</u>:

Houston, Texas Main Office 281/673-2800

For questions on this document contact:

Stratham, New Hampshire 603/778-1144

Shillington, Pennsylvania 610/796-9080