December 10, 2007

This text and figure 2 taken from Yang et al. (2006; Journal of Solution Chemistry, Vol. 35, **pp.** 589-590). Text and figure are copyright protected and therefore not included in this notebook. StreamAnalyzer calculations at 25 C (MSE model) were done to provide quantitative support to the above statements.

1. A stream comprising 10 moles NaCI, 30 moles NaN03, and 55.5087 moles H20 was used as input. A bubble point calculation was done, and the solid phases that resulted were extracted into a different (solids only) stream. The salt mixture is comprised of 2.79984 moles of NaN03 and 3.16059 moles of NaCI [NaN03/(NaN03+NaCI) ratio of 0.4697). The calculated water activity (equal to the MDRH of the salt mixture) is 66.19 %.

Then a new stream of H20 only was created and an isothermal calculation was done on the H20 stream.

2. A mixed stream was created comprising the H20 stream added to the 2.79984 moles NaN03 plus 3.16059 moles NaC!. A ratio survey (isothermal or bubble point give the same results) was conducted, ranging from an H20 ratio of 5e-5 to 1.0 (the ratio is relative to 55.5087 moles H2O). The results are tabulated in the following table:

 $H2$

The results show deliquescence occurs at a RH of 66.19% after addition of a small amount of H20 (2.78E-3 moles, the minimum value in the simulation). As more water is added, the RH remains constant because both salts are saturated, but the ratio of NaN03 to total salts decreases until NaN03 is completely dissolved, leaving only NaCI solid. At a value of added H20 equal to 21.65 moles, only NaCI solid is present and as more water is added, the aqueous solution becomes richer in CI relative to N03 as more NaCI is dissolved. After adding 37.7468 moles H20 (and an RH value of 70.09 %), NaCI is completely dissolved and the aqueous composition has changed from $X_{MDRH} = 3.84$ molal NaCl + 7.30 molal NaNO3 to X = 4.65 molal NaCl + 4.12 molal NaN03. Adding more water (or raising the RH further) dilutes the aqueous solution.

3. Another calculation was done using a composition corresponding to the eutonic composition, X_c , of an NaCl-NaNO3 mixture. The value of X_c was derived by separating the liquid stream from step (1) and evaporating it (by reducing the total pressure from 0.0313849 atm to 3.13849e-005 atm. The value of X_c is 3.83941 moles NaCI + 7.20016 moles NaN03 [ratio NaN03/(NaN03+NaCI) equal to 0.6522]. The solids that precipitated were separated into a separate stream, then H20 stream was added using a ratio survey (isothermal). The results are tabulated in the following table. The results of the ratio survey (see table) show that the relative humidity (or water activity) remains constant as both NaCI and NaN03 dissolve. The aqueous concentrations as well as the relative amounts of N03 and CI in both the solid and the aqueous phases remain constant, until NaN03 and NaCI both dissolve completely (after addition of

1.0008 moles H2O). With further addition of H2O, the relative humidity rises (to > 90 % RH, although the tabulated values were truncated).

4. What happens if a droplet of brine with composition XA drops from the drift wall onto the waste package surface that is at a lower relative humidity?

To answer this question, StreamAnalyzer was used to evaporate the NaCl+NaNO3 solution that resulted from calculation #2 discussed on page 309 (the solution composition is the last datapoint of the table on page 311. The input composition was derived by extracting into a separate stream the survey point #101 for that calculation. The evaporation was simulated by doing a composition survey (H2O was varied from 55.5087 moles to 5E-5 moles at constant temperature (25 C). The plot of solids present and water activity as a function of amount of H2O is shown below:

The following is a plot of solids present and of amount of H20 as a function of relative humidity:

H20 [Activity] or Relative Humidity

One can see in these two figures that as the relative humidity decreases (going from right to left on the X-axis, first NaCI precipitates, followed by NaN03 at a lower RH value.

The following is a plot of the aqueous composition as a function of relative humidity:

5. What if the composition of the solution corresponds to the eutonic composition of the salt mixture?

The survey point #101 from the previous eutonic composition run (#3 on page 311) was separated into a separate stream and then evaporated, as was done for calculation #4. The results are shown in the following plots. The aqueous composition remains constant while the RH is decreasing; precipitation of both NaCl and NaNO3 occurs at the MDRH of 66.19 %.

H2O [Activity] or Relative Humidity

The following figure is similar to that on the top of page 314 and shows the dominant solids versus relative humidity, but for this calculation the minimum moles of H20 was specified to be 1.0E-10, versus 5E-5 in the previous calculation. Note that Y-2 axis in this figure is in log scale.

H20 [Activity] or Relative Humidity

The previous calculations evaporated the NaCI-NaN03 solution by decreasing the amount of H20 in the system. The calculations also could have been done by specifying a pressure survey and varying the total pressure from 3.1384ge-2 to 3.1384ge-5 atm. The value of 3.1384ge-2 is the vapor pressure of pure water at 25 C. This latter type of calculation will cause a dryout to occur as liquid water goes into the vapor phase. A typical result is shown below:

The following is a plot of NO3⁻/C⁻ for the evaporation simulations documented on page 314.

The ratio is constant with decreasing H20 activity until NaCI starts to precipitate. In these calculations, no separation of precipitates from the aqueous phase was assumed.

The following is a similar plot from StreamAnalyzer runs in which the precipitated salt was assumed to separate out and not able to react with the aqueous phase. The calculation was done by separating the solids into a separate stream (at intervals of 0.01 water activity). The results look the same as in the figure above.

December 12, 2007

The following is slide #13 of Xihua He's noontime seminar presented today, titled: "Effect of Capillary Retention by Dusts on the Corrosivity of Deliquescence Brines" (coauthored with R. Pabalan and L. Yang):

Results-Test 3: NaCl/Quartz and NaCl/Dust Mixtures

- \cdot In 100% quartz test (no $(0.4\%$ NaCl and 99.6% Quartz NaCl), no deliquescence $\frac{80\%}{80\%}$ dust test, brine was formed
	- $\sum_{k \text{ NaCl}}$ $\sum_{k \text{ NaCl}}$ humidity (55% RH) in $\frac{3}{4}$ compared to NaCl/quartz mixture (RH 68%)
	- Dust reduced the corrosion 100% Quartz -40 current, but did not prevent 13

Someone asked why the 0.4%NaCI-99.6%Dust and the 100%Dust sample showed decreasing corrosion current with time, whereas the 0.4%NaCI-99.6%Quartz sample showed a continued increase in corrosion current. There was speculation that corrosion inhibitors were being leached from the dust particles and increasing in concentration with time.

December 14, 2007

Use CorrosionAnalyzer to calculate the corrosion rate of carbon steel (G10100) in salt solutions.

The following is the calculated general corrosion rate (and calculated pH) at 25 °C as a function of NaCl concentration (from 0.00001 to 1.0 molal):

The corrosion potential and repassivation potential are as follow:

The general corrosion rate and pH in a 0.1 m NaCl solution as a function of Na2SO4 concentration is as follows:

The corrosion potential and repassivation potential are shown below:

The general corrosion rate in 0.1 m NaCl as a function of NaHCO3 concentration is as follows:

The corrosion potential, repassivation potential, and pit current density are shown below:

The general corrosion rate in NaNO3 solutions is shown below:

The corrosion potential and repassivation potential are shown below:

The corrosion potential and repassivation potential are shown below:

January 30, **2008**

Similar to calculations presented on page 271 of this notebook, the MDRH of salts present in sample C-186101 (salt assemblage NaCl+KNO₃) was calculated using StreamAnalyzer Version 2.0 (bubble point calculations vs temperature). The water activity (=MDRH) and solids present at the deliquescence point as a function of temperature are shown in the following figure:

The MDRH values for C-186101 (salt assemblage NaCl+KNO₃) are tabulated below:

For sample C-203112 (salt assemblage $KCI+KNO₃$), the calculated water activity and solids present at the deliquescence point as a function of temperature are shown in the following figure.

The above figure indicates zero water activity at temperatures below about 38°C, indicating the system is dry. The StreamAnalyzer bubble point calculations specified a water amount of 0.0135362 moles, which apparently is not enough water for the system because some of the solids take up water as waters of hydration (at higher temperatures, these hydration waters are released). A separate isothermal (25°C), bubble point StreamAnalyzer run was done, which indicated that at least 0.04005 moles in needed to assure deliquescence is achieved at 25°C. Thus, at least this amount of water was specified in the bubble point vs temperature run. The results using a value of 0.201 moles are shown in the following figure:

The above figure has a minimum in the water activity between 37 and 87°C. This minimum is likely a result of insufficient water in the system. Another run was done using 5.15364 moles of H20 as input. The results are shown below:

The water activities shown in the diagram are very high because there is a lot of water that was added (>5 moles) and the solution is much more dilute than the first two runs at lower H20 amounts. To determine the deliquescence point of the initially dry salt, a different StreamAnalyzer run option needs to be used. The run should be done by generating a mixed stream of (1) the solids separated from the evaporation runs (at P=3.14E-5 atm) and (2) pure water; specifying a ratio survey (bubble point type of calculation) with H20 as the component to vary (ratio range from 1E-5 to 1.0E-4; the lower value may be raised if the run does not converge; need to find minimum in water activity), and inputting the temperature. Make sure Mixed-Solvent Electrolyte option is specified. To get values at different temperatures, separate runs need to be done at each temperature of interest. Then the output of each run will need to be looked at to find the lowest water activity (equivalent to the deliquescence point of the salt mixture).

The deliquescence run for C-203112 had the following initial solids: CaC03, K2C03·Na2C03, K2S04, KCI, KN03, Mg(OH)2, MgF2, and Si02.

The calculated deliquescence points are tabulated as follows:

Sample C-186098 was rerun to determine the MDRH for the following initial solids: $2Na_2SO_4 \cdot Na_2CO_3$, CaCO₃, KNO₃, Mg(OH)₂, Na₂SO₄, Na₂SO₄·NaF, NaCl, NaNO₃, and Si02. The MDRH values are listed below. These values are somewhat different from those on page 272 because of the different calculation types used (for comparison, the previous values are listed in column-3. The newer values are more representative of the MDRH for the solid assemblage listed in this paragraph.

Sample C-186101 was rerun to determine the MDRH for the following initial solids: $CaCO₃$, K₂SO₄·KNaSO₄, KNO₃, Mg(OH)₂, MgF₂, Na₂SO₄, Na₂SO₄.CaSO₄, NaCl, and Si02. The calculated MDRHs are tabulated in the second column; the third column lists the values derived previously (page 324). The differences arise from the higher water amount in the previous run.

Sample C-186088 was rerun to determine the MDRH for the following initial solids: CaCO₃, K₂SO₄·KNaSO₄, KCI, KNO₃, Mg(OH)₂, Na2CO3, Na₂SO₄·NaF₂, NaCl and Si02. The calculated MDRHs are compared with the previous values (p. 427) in the table below. The newer values better represent the MDRH of the mineral assemblage listed in this paragraph.

The following values for sample C-203120 were taken from page 284. The solid assemblage comprises Ca(NO $_3$) $_2$, Ca(NO $_3$) $_2$ ·4KNO $_3$, CaCO $_3$, CaSO $_4$, Mg(OH) $_2$, NaCl, NaNO $_3$, and SiO $_2\!$ Additional calculations indicate deliquescence can occur at lower values, depending on the amount of water in the system.

February 1, 2008

The potential of deliquescence brines to initiate localized corrosion of Alloy 22 depends on the relative concentrations of chloride ions to corrosion inhibitors like nitrate, sulfate, carbonate, and bicarbonate. pH is an important factor for generalized corrosion. StreamAnalyzer Version 2.0 was used to calculate the concentration ratios of chloride to nitrate at the deliquescence point of the representative leachate samples. The values are listed in the following table. pH values at selected temperatures are also listed.

	Sample Number					
Temp $(^{\circ}C)$	C-186098	C-186101	C-203112	C-186088	C-203120 (from page 284)	C-203117
			0.15			
	0.56	0.60	(0.48) [±]	2.1	2.59E-04	0.042
25	[10.98]	[9.70]	[11.6]	[11.5]	[9.35]	[7.98]
30	0.45	0.50	3.4(0.37)	1.9	3.24E-04	0.040
40	0.28	0.34	4.2(0.15)	1.3	4.82E-04	0.036
	0.17	0.24	4.8 (0.19)	0.85	6.77E-04	0.032
50	[10.43]	[9.13]	[11.6]	[10.9]	[9.29]	[7.49]
60	0.11	0.16	5.5(0.22)	0.59	9.13E-04	0.028
70	0.081	0.12	6.4(0.25)	0.44	1.19E-03	0.025
80	0.063	0.084	7.7(0.28)	0.33	1.53E-03	0.022
90	0.051	0.063	9.7(0.28)	0.26	1.94E-03	0.021
	0.042	0.049	13 (0.28)	0.20	2.44E-03	0.020
100	[9.65]	[8.33]	[11.1]	[10.3]	[8.21]	[6.96]
110	0.036	0.039	18 (0.27)	0.16	3.07E-03	0.020
			0.18			
120	0.031	0.032	(0.18)	0.13	3.87E-03	0.021
			0.16			
130	0.028	0.028	(0.15)	0.11	4.89E-03	0.022
140	0.027	0.027	0.14 (0.14)	0.097	6.17E-03	0.023
			0.13			
	0.032	0.033	(0.13)	0.088	7.75E-03	0.028
150	[9.30]	[8.00]	[10.8]	[9.86]	[7.55]	[6.72]
*Each sample number represents a key salt assemblage, as in: C-186098: NaCl+NaNO ₃ +KNO ₃ ; C-186101: NaCl+KNO ₃ ; C-203112: KCI+KNO ₃ ; C-186088: NaCI+KCI+KNO ₃						
C-203120: NaCl+NaNO ₃ +Ca(NO ₃) ₂ + Ca(NO ₃) ₂ .4KNO ₃						
C-203117: NaCl+NaNO ₃ +KNO ₃ + Ca(NO ₃) ₂ .4KNO ₃						
‡Values in parentheses are the concentration ratios of CI ⁷ (NO ₃ ⁺ SO ₄ ²⁺ HCO ₃ ⁺ CO ₃ ²⁻)						

Calculated Concentration Ratios of Chloride to Nitrate Ions as a Function of Temperature of Six Samples Representing Six Key Salt Assemblages. Listed in Brackets are Calculated pHs at 25, 50, 100, and 150 $°C.*$

The values tabulated in the above table indicates the chloride to nitrate ratios of the deliquescence brines mostly are low (less than 10). Where the ratios are greater than 10 (for sample C-203112), the ratio of chloride to the sum of the corrosion inhibitors (nitrate+sulfate+bicarbonate+carbonate) are very low. The pHs are neutral to alkaline, ranging from 6.7 to 11.6, which are unlikely to cause generalized corrosion of Alloy 22 at high temperature.

February 4, 2008

StreamAnalyzer Version 2.0 was used to calculate the evolution of the chemistry of the aqueous and solid phases of an initially dry solid mixture as water is added. (isothermal, mixed stream calculations).

For sample C-186098 at T=110 °C, the results are as follows:

H20 added [mol]

For sample C-186098 at T=110 °C, **the results are as follows:**

H20 added [mol]

For sample C-203112 at T=110 °C, **the results are as follows:**

H20 added [mol]

For sample C-186088 at T=110 °C, the results are as follows:

H2O added [mol]

H20 added [mol]

For sample C-203120 at T=110 °C, **the results are as follows:**

For sample C-203117 at T=110 °C, **the results are as follows:**

H20 added [mol]

The following figure shows the evolution of chloride-to-nitrate ratio of the six representative samples as H2O is added to the initial dry solids:

Although the chloride-to-nitrate ratio increases initially, then becomes constant, none except for C-203112, exceed the critical value of 10. As discussed previously, C-203112 has low chloride-to-inhibitor ratio if oxyanions other than nitrate are included.

The following figures represent the evolution of the solid phase composition for the six representative samples as the leachate solution is evaporated.

C-186098

C-186101

C-203112

C-203120

February 11, 2008

Additional StreamAnalyzer Version 2.0 calculations were conducted using CNWRA leachate chemistry data as input. The CNWRA data are lower in nitrate to chloride ratio compared to DOE results. The new calculations were done to see if the salt assemblage that forms will be different compared to the calculations that used DOE leachate chemistry data.

For CNWRA sample 574980 [equivalent to DOE samples C-203115+C-203116+ C-203117 (the DOE samples were sized fractions of 574980)), the CNWRA chemistry data is as follows:

Evaporation at 25 °C of a leachate solution with the above composition was simulated using StreamAnalyzer by decreasing the total pressure from 3.1384ge-002 to 3.1384ge-005 atm. A plot of the dominant aqueous species as a function of total pressure is shown below:

Pressure [atm]

Pressure [atm]

As shown in the above figure, the deliquescent salt assemblage that results by evaporation of the initially dilute leachate solution (CNWRA sample 574980) is NaCI+KNO₃. This result is the same as for DOE sample C-203115 but different from the results for DOE samples C-203116 and C-203117, which resulted in salt assemblages NaCl+ NaNO₃+KNO₃ and NaCl+ NaNO₃+KNO₃+Ca(NO₃)₂·KNO₃, respectively (see page 295).

For CNWRA sample 574982 ([equivalent to DOE samples C-203121+C-203122+ C-203123 (the DOE samples were sized fractions of 574982)], the CNWRA data is as follows:

The dominant aqueous, solids, and water activities of the evaporated CNWRA sample 574982 (equivalent to DOE samples C-203121+C-203122+ C-203123) are as follows:

As indicated in the above figure, the resulting salt assemblage is NaCI+KN03. This result is the same as that for DOE sample C-203121 but not for C-203122 and C-203123. The latter samples yielded the salt assemblage NaCI+NaN03+KN0³ (see page 295).

For CNWRA sample 574983 [equivalent to DOE samples C-203124+C-203125+ C-203126 (the DOE samples were sized fractions of 574983)], the CNWRA chemistry data is as follows:

The resulting dominant aqueous species as a function of total pressure is as follows:

Pressure [atm]

The dominant solids and water activity upon evaporation of CNWRA sample 574983 (equivalent to DOE samples C-203124+C-203125+ C-203126) is as follows:

Pressure [atm]

As indicated in the above figure, the resulting salt assemblage is $NaCl+KNO₃$. This result is different from that of DOE samples C-203124, C-203125, and C-203126, which all resulted in the salt assemblage NaCl+NaNO₃+KNO₃ (see page 295).

For CNWRA sample 574987 [equivalent to DOE samples C-203136+C-203137+ C-203138 (the DOE samples were sized fractions of 574987)], the CNWRA chemistry data is as follows:

The dominant aqueous, solids, and water activities of the evaporated CNWRA sample 574987 (equivalent to DOE samples C-203136+C-203137+ C-203138) are as follows:

As indicated in the above figure, the resulting salt assemblage is $NaCl+KNO₃$. This result is the same as that for DOE sample C-203136 but not for C-203137 and C-203138. The latter samples yielded the salt assemblage NaCl+NaNO₃+KNO₃ (see page 295).

Although the CNWRA analysis of dust leachates had lower nitrate to chloride ratio compared to DOE leachates of equivalent splits of dust samples, the calculated salt assemblages using the CNWRA chemistry data all yielded the salt assemblage NaCI+KNO₃. Deliquescence of this salt assemblage would have low chloride to nitrate ratio (see table on page 332).

The rest of this page is blank.

February 15, 2008

-----Original Message----

From: Lietai Yang [mailto:ltyang@cnwra.swri.edu] **sent:** Friday, February 15, 2008 4: 16 PM **To:** rpabalan@cnwra.swri.edu **Subject:** RE: Chapter 2 revisions

As discussed, enclosed is the file for the composition. We know the pH (T=room)=4.4 for the diluted sample. What would be the pH of the original solution at the system temperature. The solution was diluted by approximately 10 times by weight (from 35.6 gram to 300 mL).

Thanks - Lietai

February 18, 2008

The dilute aqueous concentrations and pH were input into StreamAnalyzer Version 2.0. Charge balance was reconciled, using prorate and pH-reconciled options.

Part of the StreamAnalyzer report is a follows:

The reconciled composition was added as a stream in StreamAnalyzer for further calculations.

The sample taken by L. Yang at 150 $^{\circ}$ C is approximately 17 mL, which was diluted to 300 mL prior to chemical analysis. Thus, there was a 300/17 (=17.647) dilution. To determine the composition of the original 17 mL sample, the reconciled (stream) composition derived in the previous page was subjected to a vapor-amount type of calculation using StreamAnalyzer Version 2.0. The water in the system was allowed to evaporate such that only 17/300 (=0.0567) of 1-L of water remained in the aqueous phase. Thus, the vapor amount of water was specified to be $55.5087 \times (1.0-0.0567)$ (=52.363 mol), leaving only 3.145 moles water in the aqueous phase. The temperature was specified equal to $150 \degree C$.

Part of the StreamAnalyzer report is as follows:

Calculation Summary

SinglePoint Evaporate so 17/300 mL vol is left Calculation for Work2

Unit Set: Default

Automatic Chemistry Model MSE (H30+ ion) Databanks: MSE (H30+ ion) Using Helgeson Direct

Vapor Amount Calculation

Stream Inflows

Stream Parameters

Row Filter Applied: Only Non Zero Values

<u>Scaling Tendencies</u>

Row Filter Applied: Only Non Zero Values

 \mathbf{r}

Species Output (True Species) Row Filter Applied: Only Non Zero Values

Species Activity/Fugacity Coefficients

The calculated molal concentrations of the major species at 150°C are as follows:

 \sim

 $\frac{1}{4}$

To determine the pH of the undiluted sample at 25°C, the preceding calculation was rerun at a temperature of 25 °C. The calculated pH is 3.95, lower than the value of 4.4, the measured pH of the diluted sample.

May 5,2008

The following email from Andre Anderko, OLi Systems, Inc. (Morris Plains, New Jersey) is copied into this notebook to show permission was granted by OLi Systems, Inc. to use the figures on pages 3 through 103 of this notebook.

-----Original Message-----From: Andre Anderko [mailto:aanderko@olisystems.com] **Sent: Monday, May 05, 2008 3:30 PM** To: rpabalan@cnwra.swri.edu Subject: RE: request permission to use OLI figures

Bobby:

Yes, feel free to include the figures in the public-domain version of your notebook.

In general, we treat the spreadsheets as a part of the deliverables (on a non-exclusive basis) that we send to our clients in conjunction with a project. Since you funded a large part of this work several years ago, there is absolutely no problem with placing the figures in your report.

Best regards, Andre

From: Bobby Pabalan [mailto:rpabalan@cnwra.swri.edu] sent: Monday, May 05, 2008 3:30 PM To: 'Andre Anderko' Subject: request permission to use OLI figures

Andre,

In 2004, I received several Excel files from OLi Systems comparing experimental solubility data with MSE results. I included many of the figures in the Excel files into my scientific notebook, as part of my effort to validate the OLi software. Because my scientific notebook will be in the public domain (www. Isnnet.gov), I need to either get permission to use the figures or else redact them from the notebook. Please let me know if I have your company's permission to include the figures in my notebook. A list of the figures is given below.

Thanks.

Bobby Pabalan **SwRI**

 $\bar{\beta}$

Entries into Scientific Notebook No. 679E for the period October 1, 2007, through February 29, 2008, have been made by

Roberto T. Pabalan I Date 4/14/2008

No original entry into this Scientific Notebook has been removed.

 $4/2058$ Roberto T. Pabalan I Date

ADDITIONAL INFORMATION FOR SCIENTIFIC NOTEBOOK NO. 679

 $\ddot{}$