

Duke Energy Carolinas, LLC Catawba Nuclear Station 4800 Concord Road / CNO1VP York, SC 29745

803-701-4251 803-701-3221 fax

June 16, 2008

U.S. Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, D.C. 20555-0001

Subject: Duke Energy Carolinas, LLC.

Catawba Nuclear Station Unit 1

Docket No.: 50-413

Core Operating Limits Report (COLR) Catawba Unit 1 Cycle 18, Revision 2

Attached, pursuant to Catawba Technical Specification 5.6.5, is an information copy and electronic copy of revision 2 of the Core Operating Limits Report for Catawba Unit 1 Cycle 18.

The electronic copy of the COLR is included with the letter to the NRC Document Control Desk. The electronic copy includes the power distribution monitoring factors.

This letter and attached COLR do not contain any new commitments.

Please direct any questions or concerns to Marc Sawicki at (803) 701-5191.

Sincerely,

James R. Morris

Attachments

41001 NPR U. S. Nuclear Regulatory Commission June 16, 2008 Page 2

xc: (w/paper attachment only)

Luis A. Reyes, Region II Administrator U.S. Nuclear Regulatory Commission Sam Nunn Atlanta Federal Center, 23 T85 61 Forsyth St., SW Atlanta, GA 30303-8931

J. F. Stang, Jr., Senior Project Manager U.S. Nuclear Regulatory Commission 11555 Rockville Pike Mail Stop 8 G9A Rockville, MD 20852-2738

A. T. Sabisch Senior Resident Inspector U.S. Nuclear Regulatory Commission Catawba Nuclear Station

U. S. Nuclear Regulatory Commission June 16, 2008 Page 3

bxc: (w/paper attachment only)

RD Hart CN01RC
MJ Sawicki CN01RC
AR James EC08G
BL Aldridge CNS01SA

NCMPA-1 SREC PMPA NCEMC

RGC Date File
Master File CN-801.01
ELL EC050

NRC CORRESPONDENCE REVIEW AND CONCURRENCE FORM

MIIO OOMINEON	MULITOL	- **- * **- **	/	J11001			1
Applicable Site(s) ONS	□ MNS	□ CNS	N.	LNS []		
Submittal Title/Subject:	Core Operating	Limits Report Cata	awba Unit 1 Cy	cle 18			
Background Information:	Revision	She					
Scheduled Submittal Date:	6/16/08	Mandatory Subr	nittal Date?(Y/I	N) N	Commitm	nents Made? (Y/	/N) N
PORC Approval Date:	N/A	NSRB Approval	Date:	N/A	-		
UFSAR Revision? (Y/N)	N	(Required to sat	isfy RG 1.70, 1	0 CFR 50.3	4 (b) or 10	CFR 50.71(e)?)	
Licensing Lead Name	Marc Sawicki	•	Phone	803 7	01 5191		
TECHNICAL TEAM (Attach a	dditional informa	ation as needed)(See attached	notes for a	uidance)		
	Name		nature	I serve and a management	Nature of R	eview	, Date
Technical Lead (Originator)	N/A	Av. na. tal. Annual and an an an an an a	3. 3. 3. 4. 30 14. 14. 1.		序等 2000年 上海轨道路线站	The second secon	E LA SPANNE SE
Additional Contributors			•				
Checker				,	•		
Technical Manager							
Technical Sponsor (Optional)							
REGULATORY TEAM (Attach	additional info	rmation as neede	d\/See attach	ed notes fo	r quidance		<u></u>
nEGULATOTT TEAM (Attack	Name	M . P . T. P REET ANDREAS A TOP -	naturé		Nature of R		Date
Licensing Lead	Mag Sey	will Men	1 5.25	0	voo Le	Maria	6/nkg
Licensing Reviewer	Adzienos	Driv Add		Cou	in ly	ether	6/16/08
RGC Function Manager	Al Lackson	(Dy'g) al	Jacken	Co	u- Le	Har	6/16/05
SA Manager	Ju Pitese	· Au f	تعمد		11		6/16/08
Site Vice President (as necessary for multi-site submittals)							
OPTIONAL REVIEWS (Attach	additional inforn	nation as needed)				
: Group/Location	Name (Sig	nature		Nature of R	eview	Date

This completed form must be presented with the original submittal for signature. The form may be filled in with reference to emailed information in place of actual signatures and required information so long as the emailed information is maintained with the copy of this form as required by Section 227.9.10.

Catawba Unit 1 Cycle 18

Core Operating Limits Report Revision 2

June 2008

Duke Energy Company

Prepared By: Michael Khagy 6/2/08

Checked By: ML Elder 6/2/08

Checked By: Stephen D. Dirry 6/5/08

Approved By: RC Harrey 6/6/08

QA Condition 1

The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.

INSPECTION OF ENGINEERING INSTRUCTIONS

Inspection Waived By:	KC Hawey	-	Date: 6/6/08
(Spon	sor) U	• •	
		CATAWBA	
		CHINABIL	
· · · · · · · · · · · · · · · · · · ·	Inspection Waived		
MCE (Mechanical & Civil)		Inspected By/Date:	
RES (Electrical Only)		T 170 (70)	
RES (Reactor)			
MOD		Inspected By/Date:	
Other ()	Ċ	Inspected By/Date:	
,			,
~ ,		OCOME	
		<u>OCONEE</u>	
	Inspection	1	···
	Waived		
MCE (Mechanical & Civil)	12	Inspected By/Date:	
RES (Electrical Only)	1.2		
RES (Reactor)		Inspected By/Date:	
MOD		Inspected By/Date:	• • • • • • • • • • • • • • • • • • • •
Other ()		Inspected By/Date:	
Odier ()		mspecied Dyrbate.	
·			
	•	MCGUIRE	•
	and the second	11100011111	
•	Inspection	1,7	
•	Waived		
MCE (Mechanical & Civil)		Inspected By/Date:	
RES (Electrical Only)		Inspected By/Date:	
RES (Reactor)		Inspected By/Date:	<u> </u>
MOD	Ē	Inspected By/Date:	
Other ([]	Inspected By/Date:	
,	•	:	

Implementation Instructions for Revision 2

Revision Description and PIP Tracking

A re-design of the Catawba Unit 1 Cycle 18 core design was required to remove the Mixed Oxide (MOX) fuel assemblies from the core due to excessive assembly growth as documented in PIP #C-08-02980. Revision 2 of the Catawba Unit 1 Cycle 18 COLR contains limits specific to the redesign reload core for all MODES of operation.

Implementation Schedule

Revision 2 may become effective any time during No MODE between Cycles 17 and 18 but must become effective prior to entering MODE 4 of Cycle 18. The Catawba Unit 1 Cycle 18 COLR will cease to be effective during No MODE between Cycle 18 and 19.

Data files to be Implemented

No data files are transmitted as part of this document.

REVISION LOG

Revision	Effective Date	Pages Affected	COLR
0	April 2008	1-35, Appendix A*	C1C18 COLR, Rev. 0
1.	May 2008	1-32, Appendix A*	C1C18 COLR, Rev. 1
. 2	June 2008	1-32, Appendix A*	C1C18 COLR, Rev. 2

^{*} Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Appendix A is included only in the electronic COLR copy sent to the NRC.

1.0 Core Operating Limits Report

This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference this report are listed below:

TS Section	Technical Specifications	COLR Parameter	COLR Section	COLR Page
2.1.1.	Reactor Core Safety Limits	RCS Temperature and Pressure	2.1	9
		Safety Limits		
3.1.1	Shutdown Margin	Shutdown Margin	2.2	9
3.1.3	Moderator Temperature Coefficient	MTC	2.3	11
3.1.4	Rod Group Alignment Limits	Shutdown Margin	2.2	9
3.1.5	Shutdown Bank Insertion Limit	Shutdown Margin	2.2	9
	ν,	Rod Insertion Limits	2.4	11
3.1.6	Control Bank Insertion Limit	Shutdown Margin	2.2	9
	•	Rod Insertion Limits	2.5	11
3.1.8	Physics Tests Exceptions	Shutdown Margin	2.2	9
3.2.1	Heat Flux Hot Channel Factor	F_{Q}	2.6	15
		AFD	2.8.	21
		ΟΤΔΤ	2.9	24
		Penalty Factors	2.6	17
3.2.2	Nuclear Enthalpy Rise Hot Channel	FΔH	2.7	20
	Factor	Penalty Factors	2.7	. ' 21
3.2.3	Axial Flux Difference	AFD	2.8	21
3.3.1	Reactor Trip System Instrumentation	ΟΤΔΤ	2.9	24
		ΟΡΔΤ	2.9	25
3.3.9	Boron Dilution Mitigation System	Reactor Makeup Water Flow Rate	* 2.10	26
3.4.1	RCS Pressure, Temperature and Flow	RCS Pressure, Temperature and	i = 2.11	26
	limits for DNB	Flow		
3.5.1	Accumulators	Max and Min Boron Conc.	2.12	26
3.5.4	Refueling Water Storage Tank	Max and Min Boron Conc.	2.13	26 -
3.7.15	Spent Fuel Pool Boron Concentration	Min Boron Concentration	2.14	28
3.9.1	Refueling Operations - Boron	Min Boron Concentration	2.15	28
5.6.5	Concentration Core Operating Limits Report (COLR)	Analytical Methods	1.1	6

The Selected License Commitments that reference this report are listed below:

SLC Section	Selected Licensing Commitment	COLR Parameter	COLR Section	COLR Page
16.7-9.3	Standby Shutdown System	Standby Makeup Pump Water Supply	2.16	29
16.9-11	Boration Systems – Borated Water Source – Shutdown	Borated Water Volume and Conc. for BAT/RWST	2.17	29
16.9-12	Boration Systems – Borated Water Source – Operating	Borated Water Volume and Conc. for BAT/RWST	2.18	. 30

1.1 Analytical Methods

The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC are as follows.

1. WCAP-9272-P-A, "WESTINGHOUSE RELOAD SAFETY EVALUATION METHODOLOGY," (W Proprietary).

Revision 0

Report Date: July 1985 Not Used for C1C18

2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, " (W Proprietary).

Revision 0

Report Date: August 1985

3. WCAP-10266-P-A, "THE 1981 VERSION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", (W Proprietary).

Revision 2

Report Date: March 1987 Not Used for C1C18

4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis," (W Proprietary).

Revision: Volume 1 (Revision 2) and Volumes 2-5 (Revision 1)

Report Date: March 1998

5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).

Revision 1

SER Date: January 22, 1991

Revision 2

SER Dates: August 22, 1996 and November 26, 1996.

Revision 3

SER Date: June 15, 1994. Not Used for C1C18

1.1 Analytical Methods (continued)

6. DPC-NE-3000-PA, "Thermal-Hydraulic Transient Analysis Methodology," (DPC Proprietary).

Revision 3

SER Date: September 24, 2003

7. DPC-NE-3001-PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).

Revision 0

Report Date: November 15, 1991, republished December 2000

8. DPC-NE-3002-A, "UFSAR Chapter 15 System Transient Analysis Methodology".

Revision 4

SER Date: April 6, 2001

9. DPC-NE-2004P-A, "Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).

Revision 1

SER Date: February 20, 1997

10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).

Revision 3

SER Date: September 16, 2002

11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3," (DPC Proprietary).

Revision 0

SER Date: April 3, 1995 Not Used for C1C18

12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).

Revision 2

SER Date: December 18, 2002

13. DPC-NE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P."

Revision 1

SER Date: April 26, 1996 Not Used for CIC18

1.1 Analytical Methods (continued)

14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."

Revision 2

SER Date: June 24, 2003

15. DPC-NE-2011PA, "Duke Power Company Nuclear Design Methodology for Core Operating Limits of Westinghouse Reactors," (DPC Proprietary).

Revision 1

SER Date: October 1, 2002

16. DPC-NE-1005-P-A, "Nuclear Design Methodology Using CASMO-4 / SIMULATE-3 MOX", (DPC Proprietary).

Revision 0

SER Date: August 20, 2004

17. BAW-10231P-A, "COPERNIC Fuel Rod Design Computer Code" (Framatome ANP Proprietary)

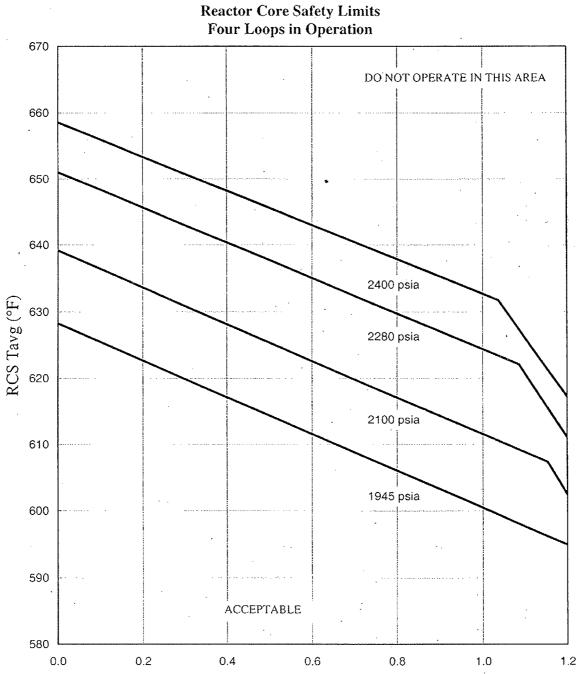
Revision 1

SER Date: January 14, 2004

Not Used for C1C18

2.0 Operating Limits

The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC approved methodologies specified in Section 1.1.


2.1 Reactor Core Safety Limits (TS 2.1.1)

The Reactor Core Safety Limits are shown in Figure 1.

2.2 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8)

- **2.2.1** For TS 3.1.1, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 2 with Keff < 1.0 and in modes 3 and 4.
- **2.2.2** For TS 3.1.1, shutdown margin shall be greater than or equal to 1.0% Δ K/K in mode 5.
- 2.2.3 For TS 3.1.4, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 1 and mode 2.
- **2.2.4** For TS 3.1.5, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 1 and mode 2 with any control bank not fully inserted.
- 2.2.5 For TS 3.1.6, shutdown margin shall be greater than or equal to 1.3% Δ K/K in mode 1 and mode 2 with Keff \geq 1.0.
- 2.2.6 For TS 3.1.8, shutdown margin shall be greater than or equal to 1.3% ΔK/K in mode 2 during Physics Testing.

Figure 1

Fraction of Rated Thermal Power

2.3 Moderator Temperature Coefficient - MTC (TS 3.1.3)

2.3.1 The Moderator Temperature Coefficient (MTC) Limits are:

The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than $0.7E-04 \Delta K/K/^{\circ}F$.

The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 Δ K/K/°F lower MTC limit.

2.3.2 The 300 ppm MTC Surveillance Limit is:

The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to $-3.65E-04 \Delta K/K/^{\circ}F$.

2.3.3 The 60 PPM MTC Surveillance Limit is:

The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to $-4.125E-04 \Delta K/K/^{\circ}F$.

Where:

BOC = Beginning of Cycle (burnup corresponding to most positive

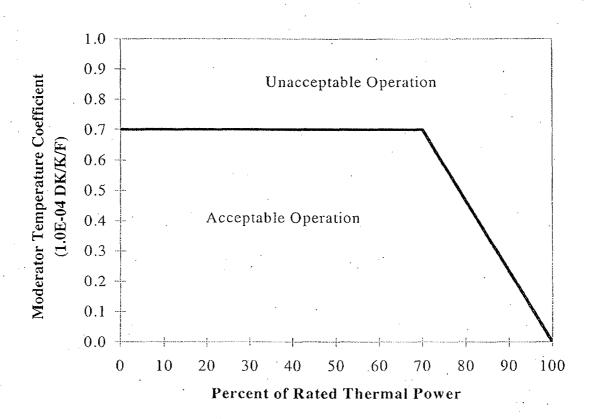
MTC)

EOC = End of Cycle

ARO = All Rods Out

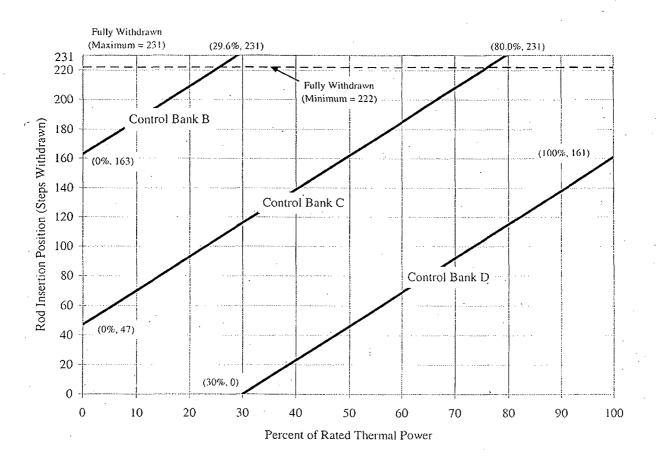
HZP = Hot Zero Thermal Power RTP = Rated Thermal Power PPM = Parts per million (Boron)

2.4 Shutdown Bank Insertion Limit (TS 3.1.5)


2.4.1 Each shutdown bank shall be withdrawn to at least 222 steps. Shutdown banks are withdrawn in sequence and with no overlap.

2.5 Control Bank Insertion Limits (TS 3.1.6)

2.5.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.


Figure 2

Moderator Temperature Coefficient Upper Limit Versus Power Level

NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits. Refer to the Unit 1 ROD manual for details.

Figure 3
Control Bank Insertion Limits Versus Percent Rated Thermal Power

The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can be calculated by:

Bank CD RIL =
$$2.3(P) - 69 \{30 \le P \le 100\}$$

Bank CC RIL = $2.3(P) + 47 \{0 \le P \le 80\}$
Bank CB RIL = $2.3(P) + 163 \{0 \le P \le 29.6\}$

where P = %Rated Thermal Power

NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits. Refer to the Unit 1 ROD manual for details.

Table 1 Control Bank Withdrawal Steps and Sequence

V 11s	Withdoo	vn at 222 S	lane.	T21		01 222 6	*****
Control Bank A	Control Bank B	Control Bank C	Control Bank D	Control Bank A	ly Withdra Control Bank B	Control Bank C	Contro Bank
0 Start	0	0	0	0 Start	0 .	0	0
116	0 Start	0	0 .	116	0 Start	0	0
222 Stop	106	0	0	. 223 Stop	107	0	0
222	116	0 Start	0	223	116	0 Start	0
222	222 Stop	106	0	223	223 Stop	107	0
222	222	116	0 Start	223	223	116	0 Star
222	222	222 Stop	106	223	223	223 Stop	107
Fully	Withdray	yn at 224 S	Steps	Ful	ly Withdra	wn at 225 S	teps
Control	Control	Control	Control	Control	Control	Control	Contr
Bank A	Bank B	Bank C	Bank D	Bank A	Bank B	Bank C	Bank

Fully Withdrawn at 224 Steps					
Control	Control	Control	Control		
Bank A	Bank B	Bank C	Bank D		
0 Start	. 0	0	Ó		
116	O Start .	. 0	0		
224 Stop	108	0	0		
224	116	0 Start	0		
224	224 Stop	108	0		
224	224	116	0 Start		
224	224	224 Stop	108		

Control	Control	Control	Control
Bank A	Bank B	Bank C	Bank D
0 Start	0	0	0
116	0 Start	0	0
225 Stop	109	0	0
225	116	0 Start	0
225	225 Stop	109	. 0
225	225	116	0 Start
225	225	225 Stop	109

Fully Withdrawn at 226 Steps				
Control	Control	Control	Control	
Bank A	Bank B	Bank C	Bank D	
0 Start	0 .	0	0	
116	0 Start	0	0	
226 Stop	110	0	0	
226	116	0 Start	0	
226	226 Stop	110	0	
226	226	- 116	0 Start	
226	226	226 Stop	110	

Fully Withdrawn at 227 Steps					
Control	Control	Control	Control		
Bank A	Bank B	Bank C	Bank D		
0 Start	0	0	0		
116	0 Start	0	0		
227 Stop	111)	. 0	0		
227	116	0 Start	0		
227	227 Stop	111	0		
227	227	116	0 Start		
227	227	227 Stop	111		

Fully Withdrawn at 228 Steps				
Control Bank A	Control Bank B	Control Bank C	Control Bank D	
0 Start	0	0	0	
116	0 Start	0	0	
228 Stop	112	0	0	
228	116	0 Start	0	
228	228 Stop	112	. 0	
228	228	116	0 Start	
228	228	228 Stop	112	

Fully Withdrawn at 229 Steps					
Control	Control	Control	Control		
Bank A	Bank B	Bank C	Bank D		
0 Start	0	0	0		
116	0 Start	0	0		
229 Stop	113	0	0		
229	116	0 Start	0		
229	229 Stop	113	0		
229	229	116	0 Start		
229	229	229 Stop	113		

Fully Withdrawn at 230 Steps						
Control	Control	Control	Control			
Bank A	Bank A Bank B		Bank D			
0 Start	. 0	0	0			
. 116	0 Start	0	0			
230 Stop	114	0	0			
- 230	116	0 Start	0 -			
230	230 Stop	114	0			
230	230	116	0 Start			
230	230	230 Stop	114			

Fully Withdrawn at 231 Steps					
Control	Control	Control	Contro		
Bank A Bank B Bank		Bank C	Bank D		
0 Start	0	0	0		
116	0 Start	0	0		
231 Stop	115	0	0		
231	116	0 Start	0		
231	231 Stop	115	` 0		
231	231	116	0 Start		
231	231	231 Stop	115		

2.6 Heat Flux Hot Channel Factor - $F_Q(X,Y,Z)$ (TS 3.2.1)

2.6.1 $F_0(X,Y,Z)$ steady-state limits are defined by the following relationships:

$$F_{Q}^{RTP} *K(Z)/P$$
 for $P > 0.5$
 $F_{Q}^{RTP} *K(Z)/0.5$ for $P \le 0.5$

where,

P = (Thermal Power)/(Rated Power)

Note: The measured $F_Q(X,Y,Z)$ shall be increased by 3.0% to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limit. The manufacturing tolerance and measurement uncertainty are implicitly included in the F_Q surveillance limits as defined below for COLR Sections 2.6.5 and 2.6.6.

2.6.2
$$F_Q^{RTP} = 2.60 \text{ x K(BU)}$$
 for RFA and NGF fuel

- **2.6.3** K(Z) is the normalized $F_Q(X,Y,Z)$ as a function of core height. K(Z) for Westinghouse RFA and NGF fuel is provided in Figure 4.
- **2.6.4** K(BU) is the normalized $F_Q(X,Y,Z)$ as a function of burnup. K(BU) for Westinghouse RFA and NGF fuel is 1.0 at all burnups.

The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:

2.6.5
$$[F_Q^L(X,Y,Z)]^{OP} = \frac{F_Q^D(X,Y,Z) * M_Q(X,Y,Z)}{UMT * MT * TILT}$$

where:

 $[F_Q^L(X,Y,Z)]^{OP}$ = Cycle dependent maximum allowable design peaking factor that ensures that the $F_Q(X,Y,Z)$ LOCA limit is not exceeded for operation within the AFD, RIL, and QPTR limits. $F_Q^L(X,Y,Z)^{OP}$ includes allowances for calculational and measurement uncertainties.

 $F_Q^D(X,Y,Z)$ = Design power distribution for F_Q . $F_Q^D(X,Y,Z)$ is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operation.

 $M_Q(X,Y,Z)$ = Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. $M_Q(X,Y,Z)$ is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operation.

UMT = Total Peak Measurement Uncertainty. (UMT = 1.05)

MT = Engineering Hot Channel Factor. (MT = 1.03). The manufacturing tolerances for RFA/NGF fuel is implicitly included in the FQ LOCA surveillance limits (Mq).

TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)

2.6.6
$$[F_Q^L(X,Y,Z)]^{RPS} = \frac{F_Q^D(X,Y,Z) * M_C(X,Y,Z)}{UMT * MT * TILT}$$

where:

 $[F_Q^L(X,Y,Z)]^{RPS} = C$ ycle dependent maximum allowable design peaking factor that ensures that the $F_Q(X,Y,Z)$ Centerline Fuel Melt (CFM) limit is not exceeded for operation within the AFD, RIL, and QPTR limits. $[F_Q^L(X,Y,Z)]^{RPS}$ includes allowances for calculational and measurement uncertainties.

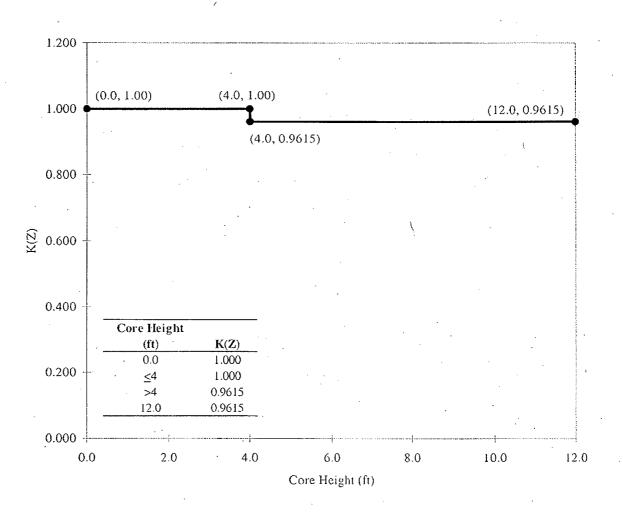
 $F_Q^D(X,Y,Z)$ = Design power distributions for F_Q . $F_Q^D(X,Y,Z)$ is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operations.

 $M_C(X,Y,Z)$ = Margin remaining to the CFM limit in core location X,Y,Z from the transient power distribution. $M_C(X,Y,Z)$ is provided in Appendix Table A-2 for normal operating conditions and in

Appendix Table A-5 for power escalation testing during initial startup operations.

MT = Engineering Hot Channel Factor. (MT = 1.03). The manufacturing tolerances for RFA/NGF fuel is implicitly included in the FQ RPS surveillance limits (M_C).

TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)


2.6.7 KSLOPE = 0.0725

where:

KSLOPE = the adjustment to the K_1 value from OT Δ T trip setpoint required to compensate for each 1% that $F_Q^M(X,Y,Z)$ exceeds $F_Q^L(X,Y,Z)^{RPS}$.

2.6.8 $F_Q(X,Y,Z)$ Penalty Factors for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.

 $\label{eq:Figure 4} Figure \, 4$ $K(Z), \, Normalized \, F_Q(X,Y,Z) \, \, as \, \, a \, \, Function \, \, of \, \, Core \, \, Height \, \, \, \, for \, \, RFA \, \, and \, \, NGF \, \, Fuel$

 $F_Q(X,Y,Z) \ and \ F_{\Delta H}(X,Y) \ Penalty \ Factors$ For Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2

		•
Burnup	$\mathbf{F}_{\mathbf{Q}}(\mathbf{X},\mathbf{Y},\mathbf{Z})$	$\mathbf{F}_{\Delta\mathbf{H}}(\mathbf{X},\mathbf{Y})$
(EFPD)	Penalty Factor(%)	Penalty Factor (%)
4.	2.00	2.00
12	2.00	2.00
25	2.00	2.00
50	2.00	2.00
75	2.00	2.00
100	2.00	2.00
125	2.00	2.00
150	2.00	2.00
175	2.00	2.00
200	2.00	2.00
225	2.00	2.00
250	2.00	2.00
275	2.00	2.00
300	2.00	2.00
325	2.00	2.00
350	2.00	2.00
375	2.00	2.00
400	2.00	. 2.00
425	2.00	2.00
450	2.00	2.00
465	2.00	2.00
481	2.00	2.00
506	2.00	2.00
521	2.00	2.00
	•	•

Note: Linear interpolation is adequate for intermediate cycle burnups. All cycle burnups outside the range of the table shall use a 2% penalty factor for both $F_Q(X,Y,Z)$ and $F_{\Delta H}(X,Y)$ for compliance with the Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.

2.7 Nuclear Enthalpy Rise Hot Channel Factor - $F_{\Delta H}(X,Y)$ (TS 3.2.2)

The $F_{\Delta H}$ steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.

2.7.1
$$[F_{\Delta H}^{L}(X,Y)]^{LCO} = MARP(X,Y) * \left[1.0 + \frac{1}{RRH} * (1.0 - P)\right]$$

where:

 $[F_{\Delta H}^{L}(X,Y)]^{LCO}$ is defined as the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.

MARP(X,Y) = Cycle-specific operating limit Maximum Allowable Radial Peaks. MARP(X,Y) radial peaking limits are provided in Table 3.

$$P = \frac{Thermal\ Power}{Rated\ Thermal\ Power}$$

RRH = Thermal Power reduction required to compensate for each 1% that the measured radial peak, $F_{\Delta H}^{M}(X,Y)$, exceeds the limit. (RRH = 3.34, 0.0 < P < 1.0)

The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.

2.7.2
$$[F_{\Delta H}^{L}(X,Y)]^{SURV} = \frac{F_{\Delta H}^{D}(X,Y) * M_{\Delta H}(X,Y)}{UMR * TILT}$$

where:

 $[F_{\Delta H}^{L}(X,Y)]^{SURV} = C$ ycle dependent maximum allowable design peaking factor that ensures that the $F_{\Delta H}(X,Y)$ limit is not exceeded for operation within the AFD, RIL, and QPTR limits. $F_{\Delta H}^{L}(X,Y)^{SURV}$ includes allowances for calculational and measurement uncertainty.

 $F_{\Delta H}^{D}(X,Y)$ = Design power distribution for $F_{\Delta H}$. $F_{\Delta H}^{D}(X,Y)$ is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.

 $M_{\Delta H}(X,Y)$ = The margin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution. $M_{\Delta H}(X,Y)$ is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.

UMR = Uncertainty value for measured radial peaks. UMR is set to 1.0 since a factor of 1.04 is implicitly included in the variable $M_{AH}(X,Y)$.

TILT = Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)

$2.7.3 \cdot RRH = 3.34$

where:

RRH = Thermal Power reduction required to compensate for each 1% that the measured radial peak, $F_{AH}^{M}(X,Y)$ exceeds its limit. $(0 < P \le 1.0)$

2.7.4 TRH = 0.04

where:

TRH = Reduction in OT Δ T K₁ setpoint required to compensate for each 1% that the measured radial peak, F $_{\Delta H}$ (X,Y) exceeds its limit.

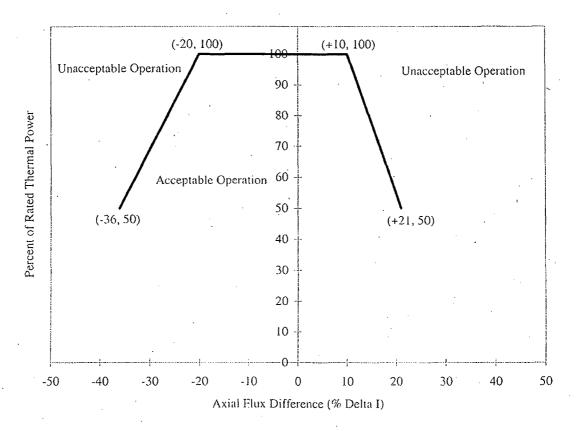
2.7.5 $F_{\Delta H}(X,Y)$ Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.

2.8 Axial Flux Difference – AFD (TS 3.2.3)

2.8.1 The Axial Flux Difference (AFD) Limits are provided in Figure 5.

Table 3 Maximum Allowable Radial Peaks (MARPS)

RFA Fuel MARPs 100% Full Power


Cor	e								•	•			
Heigh	t					Λ	xial Pea	k					
(f)) 1.05	. 1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.1	3.0	3.25
0.1	2 1.8092	1.8553	1.9489	1.9953	1.9741	2.1073	2.0498	2.009	1.9333	1.8625	1.778	1.3151	1.2461
1.2	0 1.8102	1.854	1.9401	1.9953	1.9741	2.1073	2.0191	1.9775	1.9009	1.8306	1.7852	1.3007	1.2235
2.4	0 1.8093	1.8525	1.9312	1.9779	1.9741	2.0735	1.9953	1.9519	1.876	1.8054	1.732	1.4633	1.4616
3.6	0 1.8098	1.8514	1.9204	1.9641	1.9741	2.0495	1.9656	1.9258	1.8524	1.7855	1.6996	1.4675	1.3874
4.8	0 1.8097	1.8514	1.9058	1.9449	1.9741	2.0059	1.9441	1.9233	1.8538	1.7836	1.6714	1.2987	1.2579
6.0	0 1.8097	1.8514	1.8921	1.9212	1.9455	1.9336	1.8798	1.8625	1.8024	1.7472	1.6705	1.3293	1.2602
7.2	0 1.807	1.8438	1.8716	1.893	1.8872	1.8723	1.8094	1.7866	1.7332	1.6812	1.5982	1.2871	1.2195
8.4	0 1.8073	1.8319	1.8452	1.8571	1.8156	1.795	1.7359	1.7089	1.6544	1.601	1.5127	1.2182	1.1578
9.6	0 1.8072	1.8102	1.8093	1.7913	1.7375	1.7182	1.6572	1.6347	1.5808	1.5301	1.4444	1.1431	1.0914
10.8	0 1.798	1.7868	1.7611	1.7163	1.6538	1.6315	1.5743	1.5573	1.5088	1.4624	1.3832	1.1009	1.047
11.4	0 1.7892	1.7652	1.725	1.6645	1.6057	1.5826	1.5289	1.5098	1.4637.	1.4218	1.3458	1.067	1.0142

NGF Fuel MARPs 100% Full Power

Core Height			A	xial Peal	ς		
(ft)	1.05	1.2	1.4	1.6	1.8	2.1	3.25
0.12	1.7339	1.8713	1.8045	2.0493	1.9307	1.7855	1.2661
2.40	1.7237	1.8528	1.8045	1.9933	1.8696	1.7244	1.4424
4.80	1.728	1.8237	1.8045	1.8844	1.8013	1.6471	1.2322
7.20	1:7247	1.7842	1.8045	1.7354	1.6587	1.5342	1.1715
9.60	1.724	1.7232	1.6517	1.566	1.4887	1.3575	1.0167
11.40	1.7066	1.6415	1.5241	1.4382	1.3737	1.2608	0.96

Figure 5

Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits

NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 1 ROD manual for operational AFD limits.

2.9 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1

2.9.1 Overtemperature ΔT Setpoint Parameter Values

<u>Parameter</u>	Nominal Value
Nominal Tavg at RTP	T' ≤ 585.1 °F
Nominal RCS Operating Pressure	P' = 2235 psig
Overtemperature ΔT reactor trip setpoint	$K_1 = 1.1978$
Overtemperature ΔT reactor trip heatup setpoint penalty coefficient	$K_2 = 0.03340/^{\circ}F$
Overtemperature ΔT reactor trip depressurization setpoint penalty coefficient	K ₃ = 0.001601/psi
Time constants utilized in the lead-lag compensator for ΔT	$\tau_1 = 8 \text{ sec.}$ $\tau_2 = 3 \text{ sec.}$
Time constant utilized in the lag compensator for ΔT	$\tau_3 = 0$ sec.
Time constants utilized in the lead-lag compensator for $T_{\rm avg}$	$\tau_4 = 22 \text{ sec.}$ $\tau_5 = 4 \text{ sec.}$
Time constant utilized in the measured $T_{\rm avg}$ lag compensator	$\tau_6 = 0$ sec.
$f_{1}(\Delta I)$ "positive" breakpoint	= 19.0 %ΔI
$f_{I}(\Delta I)$ "negative" breakpoint	= N/A*
$f_{I}(\Delta l)$ "positive" slope	$= 1.769 \% \Delta T_0 / \% \Delta I$
$f_1(\Delta I)$ "negative" slope	= N/A*

^{*} The $f_1(\Delta I)$ negative breakpoints and slopes for OT ΔT are less restrictive than the OP ΔT $f_2(\Delta I)$ negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits the OP ΔT $f_2(\Delta I)$ limits will result in a reactor trip before the OT ΔT $f_1(\Delta I)$ limits are reached. This makes implementation of an OT ΔT $f_1(\Delta I)$ negative breakpoint and slope unnecessary.

2.9.2 Overpower ΔT Setpoint Parameter Values

<u>Parameter</u>	Nominal Value
Nominal Tavg at RTP	T" ≤ 585.1 °F
Overpower ΔT reactor trip setpoint	$K_4 = 1.0864$
Overpower ΔT reactor trip penalty	$K_5 = 0.02$ / °F for increasing Tavg $K_5 = 0.00$ / °F for decreasing Tavg
Overpower ΔT reactor trip heatup setpoint penalty coefficient (for T>T")	$K_6 = 0.001179/{}^{\circ}F$ for $T > T''$ $K_6 = 0.0 / {}^{\circ}F$ for $T \le T''$
Time constants utilized in the lead-lag compensator for ΔT	$\tau_1 = 8 \text{ sec.}$ $\tau_2 = 3 \text{ sec.}$
Time constant utilized in the lag compensator for ΔT	$\tau_3 = 0$ sec.
Time constant utilized in the measured T_{avg} lag compensator	$\tau_6 = 0$ sec.
Time constant utilized in the rate-lag controller for $T_{\rm avg}$	$\tau_7 = 10 \text{ sec.}$
$f_2(\Delta I)$ "positive" breakpoint	$= 35.0 \% \Delta I$
$f_2(\Delta I)$ "negative" breakpoint	$= -35.0 \%\Delta I$
$f_2(\Delta I)$ "positive" slope	$=7.0 \%\Delta T_0 / \%\Delta I$
$f_2(\Delta I)$ "negative" slope	$= 7.0 \% \Delta T_0 / \% \Delta I$

2.10 Boron Dilution Mitigation System (TS 3.3.9)

2.10.1 Reactor Makeup Water Pump flow rate limits:

Applicable Mode	<u>Limit</u>
Mode 3	≤ 150 gpm
Mode 4 or 5	< 70 gpm

2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)

The RCS pressure, temperature and flow limits for DNB are shown in Table 4.

2.12 Accumulators (TS 3.5.1)

2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure >1000 psi:

<u>Parameter</u>	Limit
Cold Leg Accumulator minimum boron concentration.	2,500 ppm
Cold Leg Accumulator maximum boron concentration.	3,075 ppm

2.13 Refueling Water Storage Tank - RWST (TS 3.5.4)

2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:

	<u>Parameter</u>	Limit
Refucing Water Stor concentration.	age Tank minimum boron	2,700 ppm
Refueling Water Stor	age Tank maximum boron	3,075 ppm

Table 4

Reactor Coolant System DNB Parameters

		No. Operable	
PARAMETER	INDICATION	CHANNELS	LIMITS
1. Indicated RCS Average Temperature	meter	4	≤ 587.2 °F
1. Indicated New Yverage Temperature	meter	3	≤ 586.9 °F
			•
	computer	4	≤ 587.7 °F
	computer	3	≤ 587.5 °F
2. Indicated Pressurizer Pressure	meter	4	≥ 2219.8 psig
	meter	3	\geq 2222.1 psig
	computer	4 ·	\geq 2215.8 psig
	computer	3	\geq 2217.5 psig
.3. RCS Total Flow Rate	<i>.</i>		≥ 388,000 gpm

2.14 Spent Fuel Pool Boron Concentration (TS 3.7.15)

2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.

Parameter Limit

Spent fuel pool minimum boron concentration. 2,700 ppm.

2.15 Refueling Operations - Boron Concentration (TS 3.9.1)

2.15.1 Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling canal, and refueling cavity for mode 6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff \leq 0.95.

Parameter Limit

Minimum Boron concentration of the Reactor Coolant 2,700 ppm

System, the refueling canal, and the refueling cavity.

2.16 Standby Shutdown System - Standby Makeup Pump Water Supply - (SLC-16.7-9.3)

2.16.1 Minimum boron concentration limit for the spent fuel pool. Applicable for modes 1, 2, and 3.

<u>Parameter</u>	Limit
Spent fuel pool minimum boron concentration for surveillance SLC-16.7-9.3	2,700 ppm

2.17 Borated Water Source – Shutdown (SLC 16.9-11)

2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Mode 4 with any RCS cold leg temperature ≤ 210°F, and Modes 5 and 6.

<u>Parameter</u>	<u>Limit</u>
Boric Acid Tank minimum boron concentration	7.000 ppm
Volume of 7,000 ppm boric acid solution required to maintain SDM at 68°F	2000 gallons
Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)	13,086 gallons (14.9%)

NOTE: When cycle burnup is > 480 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.

concentration	2,700 ppm
Volume of 2,700 ppm boric acid solution required to maintain SDM at 68 °F	7,000 gallons
Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)	48,500 gallons (8.7%)

2.18 Borated Water Source - Operating (SLC 16.9-12)

2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Modes 1, 2, and 3 and Mode 4 with all RCS cold leg temperatures > 210°F.

<u>Parameter</u>	Limit
Boric Acid Tank minimum boron concentration	7,000 ppm
Volume of 7,000 ppm boric acid solution required to maintain SDM at 210°F	13,500 gallons
Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)	25,200 gallons (45.8%)

NOTE: When cycle burnup is > 480 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.

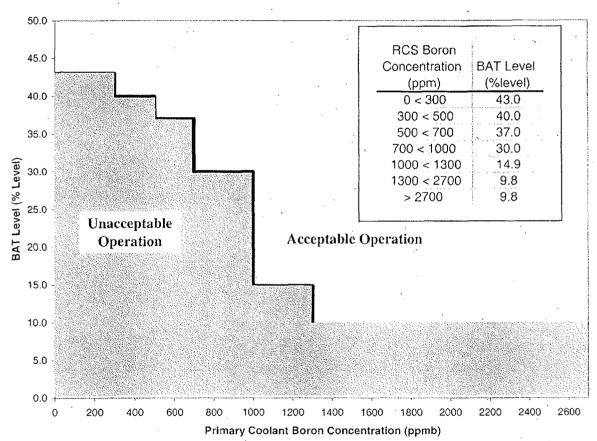

Refueling Water Storage Tank minimum boron concentration	2,700 ppm
Volume of 2,700 ppm boric acid solution required to maintain SDM at 210 °F	57,107 gallons
Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)	98,607 gallons (22.0%)

Figure 6

Boric Acid Storage Tank Indicated Level Versus
Primary Coolant Boron Concentration

(Valid When Cycle Burnup is > 480 EFPD)

. This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12 $\,$

Appendix A

Power Distribution Monitoring Factors

Appendix A contains power distribution monitoring factors used in Technical Specification Surveillance. Due to the size of the monitoring factor data, Appendix A is controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Reactor and Electrical Systems Engineering Section controls this information via computer files and should be contacted if there is a need to access this information.

Appendix A is included in the COLR copy transmitted to the NRC.