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Application of Generalized Pareto Distribution to Constrain  
Uncertainty in Low-Probability Peak Ground Accelerations  

Luc Huyse,1 Rui Chen,2 John A. Stamatakos3 
Abstract 
Probabilistic seismic hazard analysis (PSHA) has now become standard practice to characterize 
earthquake ground motion hazard and to develop ground motion inputs for seismic design and 
seismic performance analyses.  One emerging issue is the application of PSHA at low annual 
exceedance probabilities, particularly the characterization of scatter (aleatory variability) in the 
recorded ground motion parameters, including peak ground acceleration (PGA). Lognormal 
distributions are commonly used to model ground motion variability. However, a lognormal 
distribution, when unbounded, can yield a nonzero probability for unrealistically high ground 
motion values. Bounded lognormal distributions, on the other hand, may distort the data, render 
the shape of the hazard curve artificial, and produce erroneous hazard results at low annual 
exceedance probabilities. In this paper, we evaluate the appropriateness of the lognormal 
assumption for low-probability ground motions by examining the tail behavior of the PGA 
recordings from the Pacific Earthquake Engineering Research (PEER) Next Generation 
Attenuation (NGA) database. We also illustrate the tail behavior of PGA residuals using 
Abrahamson and Silva NGA ground motion relations and the NGA database. Our analyses show 
that the tail portion of the PGA data does not follow a lognormal distribution. Instead, it is better 
characterized by the Generalized Pareto Distribution (GPD). We propose using a composite 
distribution model that consists of a lognormal distribution (up to a threshold value of ground 
motion residual) combined with GPD for the tail region. We further demonstrate implications of 
this composite distribution model in PSHA using a simple example and GPD parameters derived 
from the residual fit of the PEER NGA Database. Our results show that at low exceedance 
probabilities, the composite distribution model yields considerably lower PGA values than the 
unbounded lognormal distribution. The composite distribution also produces hazard curves that 
are more reasonable in shape than truncated lognormal distributions, because the PGA increases 
asymptotically with a decreasing probability level rather than remain fixed at a predefined 
maximum value. The presented approach is readily adapted to spectral accelerations and other 
ground motion parameters. 
 
Keywords: extreme events, tail modeling, peak-over-threshold analysis, Generalized Pareto 
Distribution, low probability seismic ground motions, and probability seismic hazard analysis  
 
Introduction 
The high-level waste repository proposed for Yucca Mountain would be subject to vibratory 
ground motions from earthquakes because of its location in the tectonically active Basin and 
Range province of western North America. Potential seismic hazards at Yucca Mountain should 
be considered in safety assessments for the preclosure period as well as performance assessment 
calculations after closure of the proposed repository. During the preclosure period, structures, 
systems, and components of the geologic repository operations area must meet radiological 
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safety objectives. The U.S. Nuclear Regulatory Commission (NRC) regulations require that 
the preclosure safety analysis identifies and systematically analyzes naturally occurring hazard 
[code of federal regulations (CFR), chapter 10, part 63.112(b)]. Seismicity is also identified as an 
event class that may be relevant to evaluations of repository postclosure performance  
[10 CFR 63.102(j)]. 
 
To assess the seismic hazard at Yucca Mountain, the DOE conducted a probabilistic seismic 
hazard assessment (PSHA) via expert elicitation (CRWMS M&O, 1998) that resulted in 
probabilistic hazard curves relating vibratory ground motion to annual exceedance probability. 
Application of the PSHA to the small annual exceedance probabilities (e.g., below 10-6 per year) 
necessary to conduct a performance assessment for the potential repository at Yucca Mountain 
results in ground motions that have been questioned as unrealistically large (e.g., Corradini, 
2003; Kokajko, 2005; NRC, 2005; Schlueter, 2000).  
 
The 2003 Nuclear Waste Technical Review Board (NWTRB) joint meeting on natural and 
engineered systems on seismic issues focused on the very large vibratory ground motions 
estimated by the DOE probabilistic seismic hazard assessment at annual exceedance probabilities 
below 10-6. The NWTRB sent a letter to DOE expressing concern that the extrapolation of the 
probabilistic seismic hazard curves to very low probabilities resulted in ground motion estimates 
that were physically unrealistic (Corradini, 2003). The NWTRB noted that use of unrealistically 
large ground motion, even if acknowledged as a conservative approach, could lead to a number 
of problems including (i) a skewed understanding of repository behavior and the significance of 
different events; (ii) a consideration of events for which there is little or no understanding or 
engineering practice; and (iii) an undermined confidence in the scientific basis of the process 
under consideration (Corradini, 2003). The regulations at §63.102(j) explain that the seismic 
event class includes the range of credible earthquakes. DOE transmitted Technical Basis 
Document No. 14 to the NRC (DOE, 2004).  In that document (Bechtel SAIC Company, LLC, 
2004), it was acknowledged that the large ground motions estimated by the probabilistic seismic 
hazard assessment at small annual exceedance probabilities (below 10!6) overestimated the 
severity of low-probability ground motion at Yucca Mountain. 
 
The DOE PSHA followed the common practice for PSHA studies in that lognormal distributions 
were used to model the ground motion scatter. Because the lognormal distribution belongs to the 
Gumbel domain of attraction (Castillo, 1988; Singpurwalla, 1972), decreasing the exceedance 
probability results in progressively larger ground motions that are in part due to extrapolation 
into the extreme tails of the lognormal distribution. In this paper, we evaluate the appropriateness 
of the lognormal assumption for low-probability ground motions. As a first example the PGA 
records from two well-recorded aftershocks of the 1999 Chi-Chi earthquake are analyzed. This 
data set was chosen because it provided a sufficiently large sample associated with a single 
moment magnitude (Mw) to which peak-over-threshold analysis techniques could be directly 
applied. In a second step, a peak-over-threshold analysis is performed on the PGA residuals, 
using the Abrahamson-Silva NGA ground motion relations (Abrahamson and Silva, 2007) as an 
example. This two-step approach allows us to demonstrate the universal applicability of peak-
over-threshold models to either the raw PGA records of  specific events or to the residuals in a 
regression model with broader applicability (the regression model covers a wider range of 
earthquakes, distances and fault mechanisms).  
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We will demonstrate that a threshold value marks the tail portion of the PGA or residual data that 
is better characterized by the Generalized Pareto Distribution (GPD). Therefore, ground motions 
are modeled by a composite distribution model (CDM) that consists of a lognormal distribution 
below the threshold value and GPD for the tail region. The application of the CDM in PSHA will 
be illustrated using a simple example and GPD parameters derived from the residual fit of the 
PEER NGA Database. The hazard results using CDM will be compared with those obtained 
using unbounded and truncated lognormal distributions.  
 
Tail Behavior and Peak-Over-Threshold Analysis 
For large return periods or very low frequencies, an accurate estimation of the tails of the 
distribution is of primary interest. Classical distribution parameter estimation methods such as 
moment or maximum likelihood estimation are of limited use in such an application because they 
are heavily weighted toward the bulk of the data.  
 
Generally speaking, two types of statistical models of extremes can be distinguished on the basis 
of independently and identically distributed data: 
 

• Classical extreme values analysis: only the maxima within a given reference period are 
included in the analysis 

 
• Peak-over-threshold analyses: all data that exceed a given threshold value are included 

 
Arguably the biggest drawback of the classical extreme value analysis is that only a single data 
point per reference period can be used. For instance, in an application where the maximum PGA 
due to an earthquake is to be estimated, only the largest PGA value for a specific year or decade 
could be used. Such an approach severely limits the amount of data available to estimate the 
distribution parameters and therefore introduces significant statistical uncertainty on the 
distribution parameters. In addition, the method discards some large PGA values if they were to 
occur within a decade with several large earthquakes and may include some smaller PGA values, 
which are maxima of relatively calm decades. 
 
Peak-over-threshold analyses, on the other hand, use only data (xi) that exceed a given threshold 
value (λ) in the distribution parameter estimation. Pickands (1975) identified the GPD as the 
limiting distribution for the excesses (X – λ) for a sufficiently large threshold value λ. 
Throughout this paper, upper case notation X will be used to denote the random variable X, 
whereas a lower case x refers to specific sample data or realizations of the random variable X. 
 
Generalized Extreme Value Distribution 
 
Distribution Parameters 
It can be shown that – under some mild conditions (e.g., Castillo, 1988; Coles, 2001) – the 
distribution of maxima converges to one of three limiting distributions, which are more widely 
known as the Gumbel (Type I), Frechet (Type II), and Weibull (Type III) distribution. All three 
distribution types have a location (λ) and scale (δ) parameter; the Frechet and Weibull 
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distribution also have a shape parameter (c), where c > 0 for the Frechet and c < 0 for 
the Weibull. 
 
These three distribution types can be further grouped into a Generalized Extreme Value 
Distribution or GEVD (also referred to as the von Mises form of the extreme value 
distribution—see Castillo, 1988): 
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where the + denotes that the GEVD is defined only when the term inside the square brackets is 
positive. When the parameter c is zero, the Gumbel distribution is retrieved as a limiting case of 
the GEVD: 
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Statistical uncertainty is associated with each of the distribution parameters λ, δ, and c. An 
advantage of using the generalized extreme value distribution over the individual Gumbel, 
Frechet, or Weibull distributions is that the statistical confidence bounds (i.e., uncertainty) on the 
shape parameter (c) reflect the relative likelihood of the data following either a Gumbel, Frechet 
or Weibull distribution. Note that even small amounts of curvature (“c” small but non-zero) can 
have a significant effect on the PGA estimates when extrapolation far beyond the available data 
records is necessary. 
 
Parameter Estimation Methods 
Several methods are available for parameter estimation in the statistical literature: moment 
estimation, maximum likelihood estimation, and minimum-variance best linear unbiased 
estimator, among others. A practical, risk-based method of estimating the parameters is 
described in Maes and Breitung (1993): a weighted least-square fit is performed on the empirical 
distribution of the data in the Gumbel plot. A Gumbel plot is achieved by plotting –ln  
(-ln[Femp(xi)]), where Femp is the empirical distribution, achieved by assigning an equal weight 
1/n to all n data xi. In the Gumbel plot, the Gumbel distribution (c = 0) becomes a straight line, 
whereas a Frechet and Weibull distribution are concave and convex curves, respectively: 
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Because least-squares estimation can be interpreted as a maximum likelihood estimator, the 
estimator is unbiased. If the data set is not too small, the covariance matrix Σ of the parameters 
can most readily be obtained using the asymptotic normality assumption of maximum likelihood 
estimators and is given by the minus inverse of the expected value of the Fisher information 
matrix (Castillo, 1988): 
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where l represents the log-likelihood and θi and θj represent any combination of the three GEVD 
parameters λ, δ, and c. 
 
 
Generalized Pareto Distribution 
 
Distribution Parameters 
Pickands (1975) showed that the GPD arises as the limiting distribution of the excesses, X – λ, 
for a sufficiently large threshold λ. The GPD has the following form: 
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and is characterized by a location (λ), scale (δ), and shape (c) parameter.  
 
The tail heaviness index H (Boos, 1984) is a measure of the curvature of the log-exceedance 
function L(x) and is defined as: 
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where F(x) is the cumulative distribution function (CDF) of the random variable X.  
 
For a GPD, the tail heaviness index is readily shown to be constant and equal to the shape 
parameter: H = c. In general, the tail heaviness index H benchmarks the tail behavior against an 
exponential tail. Depending on the value of H (or c), three types of tails can be discerned: light, 
neutral, and heavy (Figure 1). Special cases for the GPD are the exponential distribution (c = 0), 
the uniform distribution (c = -1), and the triangular distribution (c = -1/2). The latter two are 
light-tailed distributions; examples of heavy-tailed distributions are the Cauchy and 
Pareto distribution.  
 
Among many other applications, the GPD distribution has been used successfully in the 
estimation of extreme order statistics of maximum wave crest heights in offshore applications 
(Castillo et al., 1995) and the characterization of the frequency of extreme earthquake events 
(Pisarenko and Sornette, 2003).  
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When the tail heaviness index is negative, the distribution is bounded and the maximum 
attainable value for the random variable X is reached when: 
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Statistical uncertainty is associated with each of the distribution parameters λ, δ, and c, which 
implies that this upper bound is itself uncertain. When -1 < c < 0, the probability density function 
(PDF) vanishes when the finite end point is reached; for c = -1, the PDF is non-zero but finite; 
for c < -1, the PDF becomes infinite at the asymptotic upper bound (Caers and Maes, 1998). 
 
Parameter Estimation Methods 
Various estimators for the tail heaviness index and GPD parameters exist in the statistical 
literature (e.g., Hill, 1975; Hosking and Wallis, 1987; Hsieh, 1999; Drees et al., 2000). For 
general use, the method of moment and probability weighted moment estimators (Hosking and 
Wallis, 1987) are problematic because the variance of X is infinite when c > 1. In the elemental 
percentile method (Castillo et al., 1995), the initial estimate of the tail heaviness index is 
estimated directly from the CDF at three observed order statistics. The final estimate of the tail 
heaviness index is given by the median of all possible distinct triplets of order statistics within 
the n observations. The other GPD parameters are subsequently estimated through 
linear regression. 
 
Maes (1995) proposed a practical, risk-based method of estimating the parameters similar to the 
one developed for the GEVD in Maes and Breitung (1993). In a first step the threshold is 
selected. An important property of the GPD in this regard is that the shape parameter is invariant 
for a shift to a higher threshold λ. The threshold is selected as the beginning of the last stable, 
linear part of the mean excess E(X – λ | x > λ) plot. Above threshold levels for which the GPD is 
appropriate, the expected value E(X – λ | x > λ) of the conditional excesses X – λ will vary 
linearly with λ (Coles, 2001). In some cases, only very little data may be present in the last stable 
linear part of the mean excess curve; in this case it is recommended to perform the GPD 
estimation for multiple threshold levels. This approach will be illustrated in the application to 
both the PGA and residual data. 
 
In the second step, a weighted least-square fit with respect to the scale and shape parameters 
(δ and c) is performed on the empirical distribution of the data in the minus log-exceedance plot: 
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Because the estimate is obtained using a similar least-squares estimation procedure for GPD as 
for the GEVD, the estimator is unbiased. If the data set is not too small, the covariance matrix Σ 
of the parameters can most readily be obtained using the asymptotic normality assumption of 
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maximum likelihood estimators and is given by the minus inverse of the Fisher information 
matrix (Castillo, 1988) given by Equation (4), in which θi and θj represent any combination of 
the scale and shape parameters δ and c in the GPD. These parameter uncertainties can in turn be 
used to estimate the confidence bounds on any percentile of interest. Confidence bounds can be 
obtained using analytical approximations or using bootstrap resampling methods (Efron and 
Tibshirani, 1993). For instance, using a normal distribution assumption, the first-order second 
moment estimate of the  90% confidence bounds for the maximum attainable value of a 
light-tailed (c < 0) random variable X is given by:  
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and Var(δ) and Var(c) denote the variance of the scale and shape parameter, respectively, and 
Covar(δ, c) is the covariance of the scale and shape parameter. 
 
Sensitivity to the threshold level can be assessed in two different ways. The first method uses the 
invariance of c for increasing threshold level λ. When λ is selected sufficiently high such that 
only points in the tail are included in the GPD estimation, the estimates for c will be invariant 
with respect to the threshold λ. It should be pointed out, however, that statistical instability will 
adversely affect the accuracy of the tail heaviness and scaling parameter estimates when the 
threshold λ is chosen so high that only very few points remain in the tail and can be used for 
parameter estimation. An excellent illustration of this property is given in Castillo et al. (1995) 
where peak values of the wave heights are analyzed. Alternatively, Caers and Maes (1998) 
proposed an approach where the optimal choice for the threshold λ is selected such that the total 
mean square error (consisting of the sum of the squared bias and variance) of the estimator 
is minimized. 
 
Tail Equivalence 
Tail equivalence is an important concept in the characterization of tail behavior. It provides a 
criterion for the quality of an approximation of a CDF F1(x) by another distribution F2(x). For 
instance, F1(x) could be the empirical distribution of the raw data, whereas F2(x) is a parametric 
distribution such as a Gumbel, lognormal, or GPD. Two distributions, F1(x) and F2(x), are 
considered to be right-tail equivalent if for large values of the variable x:  
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In other words, two distributions are right-tail equivalent if they ultimately have the same tail 
behavior, irrespective of what the distribution of the bulk of the data looks like. An example of 
such tail equivalence is given in Figure 2, which compares the pore size distribution associated 
with two different aluminum casting processes. Although the CDF FX(x) at x or the exceedance 
probability (or complementary CDF) 1 – FX(x) is quite different for the two processes (left in 



 8

Figure 2), the tail plot on the right of Figure 2 indicates that the two distributions are essentially 
tail equivalent. This is conceptually illustrated in Figure 3, which shows that the ratio of the 
exceedance probabilities for the probability distributions F1(x) and F2(x) of the two processes 
converges to unity for large pore sizes. Note that the largest data points are excluded from Figure 
3 because the empirical CDF value of the upper order statistics is necessarily highly uncertain. In 
practical applications, tail equivalence is not so much identified on the basis of the raw data but 
rather by comparing the shape parameters of the two distributions. If considerable overlap exists 
between the confidence bounds of the two shape parameters, it can be concluded that the 
distributions are tail equivalent. 
 
The tail equivalence between the GPD and the GEVD distribution families follows immediately 
from evaluating the definitions for x → ∞.  
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Consequently, although the GPD distribution is used to model all large values whereas the 
GEVD models all extremes (regardless whether they exceed a particular threshold or not), each 
of the GPD types is tail equivalent with an extreme value distribution (Table 1). 
 
Application to the Chi-Chi Aftershock PGA Data 
As a first example, the PGA records from two well-recorded aftershocks of the 1999 Chi-Chi 
earthquake are analyzed. These data are part of the PEER NGA database (non-public version 7.3, 
02-08-06), which is discussed in detail in Chiou and Youngs (2006) and shown in Figure 4. Both 
aftershocks have moment magnitude of 6.2 and reverse faulting mechanism. Together, there are 
564 records.  
 
This data set was chosen because it provided a sufficiently large sample associated with 
aftershocks of the same magnitude and similar source characteristics and the recording sites have 
similar crustal characteristics. Peak-over-threshold analysis techniques could be directly applied 
to data grouped by distance bins without the use of any type of regression modeling, which 
might influence the tail behavior. However, it should be noted that other factors, such as site 
conditions and path characteristics, can introduce sample bias. Therefore, the peak-over-
threshold analysis on PGA raw data is exploratory in nature. 
 
Some exploratory modeling is performed first on the data set to become acquainted with its tail 
characteristics. The empirical distribution of the PGA was analyzed and the appropriateness of 
the traditional lognormal distribution model was assessed. To this extent, the Chi-Chi data set 
was partitioned into bins according to their closest-distance to ruptured area (r) and the empirical 
distribution of the peak ground acceleration was plotted on lognormal probability paper. Figure 5 
shows that the data generally follow a lognormal distribution, i.e. a straight line. Because the 
slope in the lognormal plot is essentially identical for all closest distance bins, it can be 
concluded that the coefficient of variation is independent of the distance r. 
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The log-exceedance or tail plot in Figure 6 shows the behavior of the extreme upper tails. With 
the exception of the 35-45 km (22-28 mi) distance bin, the PGA distribution seems to have a 
finite upper bound. Although insufficient data exist to draw firm conclusions, it does not seem 
unreasonable to assume that the lack of upper bound in the 35-45 km (22-28 ) series is perhaps 
caused by statistical fluctuations. Figure 6 also reveals that the maximum PGA decreases with 
increasing distance. 
 
Because all data were included in Figure 6 (equivalent to a threshold value λ = 0 g), the 
exploratory modeling gives only a general indication of the tail behavior which will now be 
quantified. Since it is generally accepted that log(PGA) may be proportional to log(distance), 
equal log(r) bins were created and the number of data within each bin is recorded in Figure 7. 
Given that the tail region typically contains only a few percent of all data, many of the distance 
range bins contain insufficient data for a tail analysis to be performed. The tail fitting procedure 
will be illustrated using the 130 data points in the 50 to 70 km (31-44 mi) range.  
 
In a first step, the threshold λ must be determined. Several procedures can be used for this 
(Coles, 2001). Here we demonstrate a straightforward graphical procedure, based on the 
conditional mean excess E(PGA – λ | PGA > λ), where E(.) denotes the expectation operator. If 
the random variable follows a generalized Pareto distribution, then the conditional mean excess 
is a linear function of the threshold level λ. This leads to a selection procedure for λ, as the start 
point of the last linear segment of the conditional mean excess curve. Figure 8 shows the 
conditional mean excess as function of the threshold level λ. The resulting threshold level is 
indicated in Figure 8; λ = 0.1275g. Unfortunately, only 9 data points exceed this level; a sample 
size that is perhaps too small to draw a meaningful inference. It therefore makes sense to also 
consider λ = 0.085g and even λ = 0.065g as a possible threshold level.  
 
The GPD parameters and other tail statistics that are associated with each of the threshold levels 
are summarized in Table 2. The shape parameter is essentially constant for all three threshold 
levels. This illustrates the invariance of the tail heaviness index with respect to a shift of the 
threshold deeper into the tail region. Since the tail heaviness is negative, the GPD is bounded in 
this case and an upper bound limit for the PGA can be estimated. Figure 9 shows the raw Chi-
Chi PGA data as well as the GPD fit and  95th percentile of the upper limit; the figure also shows 
where the general lognormal model (with parameters calculated from the statistical moments of 
all the PGA data) would fall. It can be concluded that – in the tail region – the lognormal model 
significantly overestimates the PGA for a given reliability level 1 – FX(x) or log-exceedance 
value. The different shapes of the GPD and the lognormal illustrate that the two distributions are 
not tail equivalent; the lognormal distribution belongs to the unbounded Gumbel domain of 
attraction (Castillo, 1988) whereas the data clearly suggest convergence to a bounded Weibull 
extreme value distribution. 
 
It must therefore concluded that, while the unbounded lognormal PGA gives increasingly large 
values for PGA as a function of the return period, the GPD model for the 50-70 km (31-44 mi) 
distance bin has a finite upper bound on the PGA. For exceedance probabilities less than 7%, i.e. 
the extent of the tail region, the lognormal model assumption overestimates the maximum PGA. 
The tail of the lognormal distribution is much longer than for the GPD model. 
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Because δ and c are subject to statistical uncertainty, the maximum PGA value will be uncertain 
as well. First-order approximations to the  95th percentile of the upper limit are listed in Table 2. 
It can be seen that the confidence intervals grow progressively larger with increasing threshold 
level λ. 
 
 
Application to PGA Residuals 
As a second example, a peak-over-threshold analysis is performed on the total residuals of the 
PGA. The total residual includes both the inter-event and intra-event residuals and is defined as: 
 

( ) ( )predictedobserved PGAPGA lnln −=ε        (12) 
 
where PGA predicted is the peak ground acceleration calculated using a ground motion model for 
the chosen earthquake and recording site.  
 
In the literature, numerous empirical ground motion  models, often known as ground motion 
attenuation models, have been proposed to describe the dependence of ground motion parameters 
on earthquake magnitude, source-to-site distance, and other source, travel path, and local site soil 
and rock characteristics. The most comprehensive and integrated effort to develop ground 
models is the recent “Next Generation of Ground Motion Attenuation Models” (NGA) project 
organized by Pacific Earthquake Engineering Research Center (Chiou et al., 2006). Five NGA 
ground motion models have been developed, including ground motion relations of Abrahamson 
and Silva (2007). The Abrahamson and Silva NGA relations are used in this paper to calculate 
the  predicted PGA and the PGA residuals.  
  
Conducting a peak-over-threshold analysis on PGA residuals of an attenuation model instead of 
the PGA records themselves allows combining data from multiple events with different 
parameters that affect ground motion characteristics, including among others, the earthquake 
magnitude, site-to-source distance, site condition, style of faulting. Although the tail analysis of 
the residuals implicitly assumes that the statistics of the residuals are unaffected by the specific 
values of the attenuation model parameters (i.e. the statistics associated with one type of faulting 
are no different than for another type of faulting), a much larger size sample is obtained in a 
residual analysis than in a direct assessment of the PGA, and this, in turn, results in narrower 
confidence bounds on the tail behavior.  
 
The PEER NGA database (http://peer.berkeley.edu/products/rep_nga_models.html) was used to 
calculate the PGA residuals using the NGA ground motion relations developed by Abrahamson 
and Silva (2007). The peak ground acceleration values are equal to the geometric average of the 
two orthogonal horizontal components orientated randomly, as defined in NGA flatfile 
documentation (http://peer.berkeley.edu/products/nga_flatfiles_dev.html). 
 
In residual calculations using the Abrahamson and Silva (2007) ground motion relations, we 
excluded the earthquake recordings that were considered not applicable and were excluded by 
Abrahamson and Silva (2007) based on their data selection criteria. These excluded earthquake 
recordings and bases for exclusion are given in Table D-1 of Abrahamson and Silva (2007). In 
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addition, we excluded the four Chi-Chi aftershocks that require a separate distance attenuation 
model. These earthquakes are identified by earthquake identification numbers (EQID) 172, 173, 
174, and 175 in the NGA flatfile. These earthquakes were excluded mainly because the 
calculated residuals show considerable bias by distance, and we were not able to  determine the 
cause. Also, the use of different regression models within the same data set may introduce 
additional uncertainty in terms of residual distribution. Instead,  selected Chi-Chi aftershock 
recordings were used for peak-over-threshold analysis on the raw PGA data as documented in a 
previous section of this paper.   
 
A considerable fraction (110 earthquakes) of the NGA flatfile does not have finite-fault models 
and, therefore,  is missing important source parameters such as rupture distance, Joyner-Boore 
distance, depth to top of fault rupture, fault rupture width, source-to-site azimuth, hanging wall 
and  footwall indicators, etc.  The majority of the earthquakes without finite-fault models  have 
magnitudes less than 6.0. Youngs (2005) developed finite-fault models for these earthquakes 
based on simulation of 101 possible rupture planes for each earthquake and supplemented the 
NGA database with simulated source parameters. These simulated parameters were used by the 
NGA developers in their ground motion model development. Therefore, two sets of residuals 
were considered in peak-over-threshold analysis, one with the simulated finite-fault data 
provided by Youngs (2005) and one without.  
 
A third set of residuals was extracted from the PGA residual data calculated by Boore and 
Atkinson (2007) using their NGA equations and selective NGA earthquake recordings. This data 
is posted on NGA website (http://peer.berkeley.edu/products/Boore-Atkinson-NGA.html, file 
named ba_gm_resids.s1_resids_02apr07.pga). Boore and Atkinson (2007) defined their residual 
as the ratio of observed ground motion to predicted ground motion. We converted their residual 
values to the residual values defined by equation (12). 
 
The summary statistics of the regression residuals of both the Abrahamson-Silva and 
Boore-Atkinson models are listed in Table 3. Their residuals generally follow a lognormal 
distribution, as shown in Figure 10. A complete GPD analysis was performed on the two 
separate sets of Abrahamson-Silva residuals: a set with simulated finite fault data and a set 
without simulated finite fault data. Complete summary statistics for the tail region of the 
Abrahamson-Silva model residuals are given in Table 4.  
 
The threshold selection plot for the Abrahamson-Silva model with finite fault is given in Figure 
11; the tail plot is given in Figure 12 for λ = 0.9. The lognormal distribution fitted to all residuals 
is also indicated on Figure 12. Although there is no overwhelming difference between the GPD 
and lognormal distribution assumption within the range of data, considerable differences appear 
when predictions need to be made beyond the data range. The GPD model is able to better 
capture the curvature in the data. In addition, theoretical considerations support the use of the 
GPD model beyond the data range. 
 
The threshold selection plot for the Abrahamson-Silva model without finite fault is given in 
Figure 13; the tail plot along with the lognormal distribution fitted to all residuals is given in 
Figure 14 for λ = 0.7. Figure 14 shows that the GPD model captures the true tail behavior much 
better than the lognormal distribution (which was fitted to all residual data) does. Although the 
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best estimate of the GPD shape parameter is close to zero (see Table 4), it is significantly 
different from zero (its coefficient of variation is 12%) and the residual distribution is 
therefore bounded.  
 
The threshold selection plots (Figure 11 and Figure 13) indicate that the identification of the 
threshold level λ where the tail begins is not always straightforward. If the data follow a GPD 
distribution, the shape parameter of the GPD will be invariant with respect to a shift of the 
threshold λ to higher values. Figure 15 illustrates this property for the Abrahamson-Silva model 
with finite fault data. If the threshold is selected too low, e.g. λ < -1.0, a large number of data 
points which clearly do not belong to the tail (i.e. they are not part of the last linear part of the 
mean excess curve in Figure 11) will be included in the estimation of the shape parameter and 
this will result in a biased estimate for the parameter c (see Figure 15). Figure 15 shows that the 
shape parameter c converges as the threshold is increased. On the other hand, if the threshold is 
moved too far into the tail, very few data will remain to estimate the c-value, which results in 
numerically unstable estimates with considerable statistical uncertainty (wide confidence bounds 
in Figure 15). In practice, the optimal threshold value achieves a compromise between bias and 
variance of the estimate (Caers and Maes, 1998). 
 
 
Implication for Seismic Hazard Analyses  
Thousands of strong motion recordings have shown a considerable degree of  scatter or 
uncertainty (aleatory variability) in ground motion parameters, including peak ground 
acceleration. As mentioned previously, numerous predictive models (attenuation equations) have 
been developed to characterize the ground motion distribution and to quantify the uncertainty, 
for example the NGA models (http://peer.berkeley.edu/products/rep_nga_models.html) and those 
published in the 1997 special issue of Seismological Research Letters (volume 68, number 1).  
 
Aleatory variability in ground motion prediction and the way it is integrated in seismic hazard 
analyses have significant effects on the calculated hazard. For decades, the existence of ground 
motion variability has been recognized (Bender, 1984) and the formulation of hazard calculation 
has included integration across the scatter in ground motion (Cornell, 1971; Marz and Cornell, 
1973; McGuire, 1976). However, in practice, as indicated by Bommer and Abrahamson (2006), 
ground motion variability was often neglected or its effect was artificially reduced by various 
means in studies carried out in the 1970s and 1980s. Truncating the lognormal distribution at a 
predefined level of ground motion, often specified as the median ground motion plus a number 
of standard deviations, is an example of various attempts to reduce the effect of ground motion 
variability. Bommer and Abrahamson (2006) conducted extensive review and analysis and 
emphasized the importance of including ground motion variability in PSHA. They concluded 
that neglecting ground motion variability in earlier studies is the main reason that these studies 
yielded much lower ground motion hazard than the probability hazard studies performed in 
recent years. 
 
Probability seismic hazard calculations should be carried out in the way that integrates across the 
full range of variability in ground motion. However, such integration should be performed over a 
probability density function that better characterizes the ground motion distribution than the 
widely used lognormal distribution. A lognormal distribution, when unbounded, gives a nonzero 
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probability to ground motion values so high that they are not physically possible. Bounded 
lognormal distributions, on the other hand, may distort the data, render the shape of the hazard 
curve artificial, and produce erroneous hazard results, particularly at low annual exceedance 
probabilities. In addition, the selection of the truncation level is somewhat arbitrary. This section 
demonstrates that probabilistic hazard integration should be performed over a density that is 
composite: a lognormal distribution supplemented by a GPD in the tail region. In the GPD, as 
detailed in the previous sections, PGA would gradually approach an upper bound.  
 
The Assumption of Lognormal Distribution and Probability Calculation 
To discuss the effects of ground motion variability and the way it is integrated in PSHA on the 
calculated hazard, we need to briefly review the basics of PSHA calculations, starting with the 
PDF of the lognormal distribution for PGA. This PDF can be written as: 

⎪
⎩

⎪
⎨

⎧

=

>=

−−

00

0
)(2

1
),;(

2
2 )(

2
1

PGA

PGAe
PGAyf

Y
Y

y

YYY

μ
σ

σπσμ      (13) 

 
where Y = ln (PGA) is a random variable with normal distribution that has a mean, μY, and 
standard deviation, σY. Please note that an uppercase symbol is used for a random variable, 
whereas the lowercase denotes a specific sample value of this random variable. This notation is 
consistent with standard practice in stochastic mechanics. The median and standard deviation are 
obtained from ground motion models such as Abrahamson and Silva (2007). For a given 
earthquake with magnitude m, the probability that the ground motion at distance r exceeds a 
particular value a0 is the complementary of the CDF and can be written as: 
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The integration is performed numerically. Because the CDF of a lognormal distribution can be 
easily obtained from the CDF of a standard normal distribution, often denoted as Φ(Z), by means 
of transformation, Equation (14) can be written as: 
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where 
Y

YaZ
σ

μ−= 0ln  is a standard normal random variable. Φ(Z) has been extensively tabulated  

and is readily available in many statistics handbooks.  
 
Suppose the site of interest is affected by a total of N earthquake sources, each of which has an 
associated magnitude Mi, distance Ri, and annual rate of occurrence vi. An earthquake source can 
produce multiple earthquakes that can occur at various locations of the source. Therefore, Mi and 
Ri are random variables, each having its own distribution. If fMi(m) and fRi(r) are used to denote 
the PDFs of magnitude and distance variables, respectively, for the ith source, then the total 
annual probability that the ground motion exceeds a0 is (total probability theorem): 
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The effect of ground motion variability and its integration is manifested in the calculation of 

),|ln( 0 rmaYF ≥ .  
 
For demonstration purposes, we use a simple case that is similar to the hazard calculation 
example used by Field (2006). This example assumes a rock site condition. It further assumes 
that there are two potential sources, both are vertical strike-slip faults, and both are located at a 
rupture distance of 15 km from the site (r1 = r2 = 15 km). The first produces an M 5.0 earthquake 
once every 20 years (m1 = 5.0, v1 = 1/20), and the second produces an M 7.0 earthquake once 
every 300 years (m2 = 7.0, v2 = 1/300). For the chosen magnitudes, distances, and rates of 
occurrence, Equation (16) is simplified to give the total annual probability that the ground 
motion exceeds a0 as: 
 

),|ln(),|ln(]ln[ 2202221101110 rmaYFvrmaYFvaYP ≥+≥=≥     (17) 
 
The NGA ground motion relations developed by Abrahamson and Silva (2007) are used to 
obtain the median PGAs of 0.0794 g (

1Yμ = -2.533) and 0.1636 g (
2Yμ = -1.810), respectively, for 

the M 5.0 and M 7.0 earthquakes. The total standard deviation for ln(PGA) is calculated to be 
0.7449 and 0.5336, respectively for the M 5.0 and M 7.0 earthquakes. ),|ln( 11011 rmaYF ≥  and 

),|ln( 22022 rmaYF ≥  are calculated for various values of a0 by numerically integrating over the 
entire lognormal distribution without truncation. The total annual probabilities of exceeding 
various PGA levels are then calculated using Equation (17) and plotted as hazard curves shown 
in Figure 16. The results show that at an annual exceedance probability of 10-7, the PGA exceeds 
2.0 g, and at an annual exceedance probability of 10-8, the PGA reaches 3.5 g.  
 
Truncated Lognormal Distribution 
If the lognormal distribution is truncated at a PGA value of atrun, the PDF needs to be 

renormalized [divided by Φ(ztrun), where 
Y

Ytrun
trun

az
σ

μ−
=

ln ] so that it integrates to one when the 

maximum PGA (i.e., atrun) is reached: 
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The probability that a given earthquake with magnitude m produces PGA at distance r exceeding 
a particular value a0 is then: 
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Again, denoting the integration of lognormal distribution as Φ(Z) by means of transformation, 
Equation (19) can be simplified as: 
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Using the same simple two-source example used in the case of unbounded lognormal 
distribution, the total annual probabilities of exceeding various PGA levels are calculated with 
the lognormal distribution truncated at various levels. Figure 17 compares hazard curves with no 
truncation and with truncations at a PGA of median plus 1, 2, 3, and 4 times standard deviation, 
respectively.  
 
The maximum PGA for the various truncation levels is calculated using: 

YY n
trunc ea σμ +=           (21) 

 
where n is the number of standard deviations and μY and σY are the mean and standard deviation 
of ln(PGA), as defined in Equation (13). Because the maximum PGA is limited to the value 
determined by Equation (21) for each earthquake scenario, the total PGA is also limited. Hazard 
curves are bent toward the maximum PGA. More severe bending of the calculated hazard curve 
corresponds to the more severe truncation (i.e., smaller n value).  
 
Note that the hazard curves show an abrupt change in curvature that is more pronounced in some 
cases (e.g., truncation at one standard deviation) than others. This is the result of combining 
hazard curves from two earthquakes that are significantly different in magnitude; each has its 
limited maximum PGA. Figure 18 shows the individual and total hazard curves for truncation at 
three standard deviations. The shape of the total hazard curve is dominated by the smaller 
earthquake at the higher probability level and by the larger earthquake at a very low probability 
level. This effect would not be as significant if a range of earthquake magnitudes is considered, 
in which case the total hazard curve would smooth out due to the more continuous contributions 
from earthquakes of varying magnitude. However, it is still an artificial effect due to truncation 
of ground motion. 
 
Although truncating the lognormal distribution of ground motion at a specified value of 
uncertainty is a common practice in PSHA, truncation below 3 standard deviations is not 
supported by the analyses of empirical strong-motion data in this study or other studies 
(Abrahamson, 2000; Bommer et al., 2004; Bommer and Abrahamson, 2006). As Bommer and 
Abrahamson (2006) indicated, truncating at a level that is above 3 standard deviations has little 
effect on the hazard curves for the return periods generally used in engineering design or even at 
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the 10,000-year level employed in the nuclear industry in some cases. This observation is further 
confirmed by Figure 17.  
 
Truncation will, however, affect the calculated hazard if longer return periods are of interest, 
(e.g., above 106 years in the case of postclosure performance assessment for geological disposal 
of nuclear wastes). Because the selection of truncation levels is often arbitrary, the calculated 
ground motions at these longer return periods are also arbitrary. Furthermore, truncating ground 
motion uncertainty potentially means ignoring (i.e., simply throwing away) a portion of the 
recorded strong motion data that has low probability of occurring, whereas it is precisely these 
low probability occurrences that control the hazard at very long return periods. 
  
Figure 19 shows deaggregation results with respect to ground motion uncertainty (ε) for a 
hypothetical site. At lower ground motion (higher probability level or shorter return period), the 
PDF of ε is skewed to the left, whereas at higher ground motion (lower probability level or 
longer return period), the PDF of ε is skewed to the right. Figure 19a (upper figure) suggests that 
modeling the left tail of the residual is important for low return periods, whereas it is the right 
tail that is of interest in the prediction of low probability events (Figure 19b, lower figure). In 
this example, the ground motion at low annual exceedance probability levels is controlled by 
uncertainty up to 3 or 4 standard deviations. Therefore, correctly modeling the uncertainty in the 
high-density region of the deaggregation diagram in Figure 19b is critical if ground motions 
associated with very low annual exceedance probabilities are of interest. In the current state of 
practice, all of the existing PSHA codes assume lognormal distribution of ground motion and 
therefore the integration for hazard is all based on lognormal distribution. Figures 9, 12, and 14 
indicate that significant differences between the recorded data and the assumed lognormal 
distribution model may exist in the tail region and when  extrapolated beyond the data range. 
Using a composite distribution model (lognormal supplemented by the GPD in the tail region) 
may result in significantly more accurate estimates of the hazard. 
 
Combined Lognormal and Generalized Pareto Distribution  
In this section, we demonstrate hazard calculation using a composite distribution model that 
combines lognormal distribution and GPD for peak ground acceleration. Hazard integration is 
over the lognormal distribution until a threshold PGA value, aλ, is reached. For the portion with 
PGA greater than aλ (i.e., tail region), the integration is performed over the GPD. This is 
achieved by combining Equation (20) and the CDF for GPD [Equation (5)] and renormalizing 
the distribution, which yields the probability that a given earthquake with magnitude m 
producing PGA at distance r exceeding a particular value a0 as: 
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λ, δ, and c are Generalized Pareto Density parameters defined in Equation (5) and given in 
Table 4 for PGA residuals; ptail is the fraction of recorded data in the tail region (see Table 4).  
 
Again, using the same two-source example as before, the total annual probabilities of exceeding 
various PGA levels are calculated using the combined lognormal distribution and GPD. Hazard 
examples are calculated using two separate sets of GPD parameters: the one with simulated finite 
fault data and the one without simulated finite fault data. Figures 20 and 21 show total hazard 
curves with lognormal distribution without truncation, lognormal distribution with truncations at 
the threshold and upper bound PGAs (threshold and upper bound values mark the beginning and 
end of the GPD tail model, respectively), and the composite distribution model for each case, 
respectively. The threshold PGA is defined in Equation (22). The upper bound PGA is calculated 
similarly, but using the best estimate of upper bound value in Table 4 in the place of tail 
threshold value λ. The threshold and upper bound PGAs are found to be equal to the median 
PGA plus 1.12 and 2.83 times standard deviation, respectively, for the case with finite fault data. 
The threshold and upper bound PGAs are calculated to be the median PGA plus 0.94 and 4.55 
times standard deviation, respectively, for the case without simulated finite fault data. 
 
These figures show that, in general, hazard estimated using the composite distribution model is 
lower than hazard estimated using the lognormal distribution without truncation for all annual 
probabilities below about 10-2. The difference becomes increasingly more significant as the 
probability level decreases, particularly for the set of residuals calculated with simulated finite 
fault data (Figure 20). The composite distribution model predicts higher hazard than the 
lognormal distribution truncated at the threshold PGA and, for most annual exceedance 
probability, it predicts lower hazard than the lognormal distribution truncated at the upper bound 
PGA. For the set of residuals calculated with the simulated finite fault data, the difference 
between predicted hazard level using the composite distribution model and lognormal 
distribution truncated at upper bound PGA is insignificant. However, the former predicts a 
smoother hazard curve because the characteristics of the hazard curve  are controlled by the 
smooth transition from the lognormal distribution to GPD and by GPD parameters in the tail 
region rather than  being bent artificially toward an arbitrary cutoff value, as is the case of 
truncated lognormal distribution. 
 
It is to be note that the GPD parameter values used in our PSHA example are the best-estimate 
results from the peak-over-threshold analysis. These estimates are associated with uncertainties 
as indicated by the coefficient of variation and confidence intervals for scale and shape 
parameters (see Figure 15 for an illustration of the confidence bounds on the shape parameter). 
Variations in these parameters will affect both the predicted hazard value for a specific 
probability and the shape of the hazard curve. This is demonstrated by the differences between 
Figures 20 and 21. Although not quantitatively defined, there is also uncertainty associated with 
threshold λ.  This parameter is important because it defines the probability level at which the 
composite distribution model will begin to differ from the traditional lognormal distribution.  
Because the confidence interval associated with λ is not estimated, the value obtained for this 
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parameter can be subject to debate and, therefore, is considered preliminary. It is likely that the 
threshold value can be increased with increasing sample size. These uncertainties, however, will 
not affect our general observations, the applicability of peak-over-threshold analysis to PGA 
residuals, and the calculation of probability hazard using combined distribution  models. To gain 
confidence in this regard, we performed tail analysis for a set of residuals obtained from an 
alternative ground motion model, the Boore and Atkinson NGA equations and their selective 
NGA earthquake recordings (Boore and Atkinson, 2007). The tail analysis shows very similar 
distribution characteristics  to the residuals obtained from the Abrahamson and Silva NGA 
model without finite fault data, as demonstrated by the GPD parameters in Table 4. There is very 
good agreement between the upper bound on the maximum residual predicted by the Boore-
Atkinson and Abrahamson-Silva model without  the finite-fault data. 
 
Conclusion 
Probabilistic seismic hazard analysis (PSHA) has been used to characterize earthquake ground 
motion hazard and to establish design input for nuclear facilities and for other engineering 
structures. However, the characterization of scatter (aleatory variability) in the recorded ground 
motion parameters, including peak ground acceleration (PGA), is subject to considerable debate. 
The state of practice is to use a lognormal distribution to model ground motion variability. 
Although the lognormal distribution assumption works quite well for moderate levels of 
the exceedance probability, it leads to unrealistically high values of PGA when predictions are 
made for extremely small exceedance probabilities (i.e. long return periods). In this paper, the 
validity of this lognormal distribution assumption for the PGA is assessed using statistical 
peak-over-threshold analysis techniques. 
 
Both raw ground motion recordings from the PEER NGA database and the attenuation model 
residuals were used to demonstrate the approach. The statistical analysis indicated that although 
the PGA data or the attenuation residuals generally follow a lognormal distribution, significant 
deviations from the lognormal model may exist near the upper end of the distribution, where they 
are better characterized by the Generalized Pareto Distribution (GPD). The GPD distribution is 
also justified on the basis of theoretical considerations since it arises as the limiting distribution 
in peak-over-threshold analyses. Although the GPD pertains to only a small part of the 
distribution, the difference between the lognormal and the GPD is important because it is 
precisely this upper end that controls the estimate of ground motions at low probabilities. The 
implications of peak-over-threshold analysis in PSHA are demonstrated using a composite 
distribution model that consists of a lognormal distribution supplemented by the GPD in the 
upper tail. Results show that – for the large return periods in the examples considered – the 
composite distribution model yields considerably lower PGA values or residuals than the 
unbounded and physically unrealistic lognormal distribution. The peak-over-threshold modeling 
approach provides a rational basis for determining the PGA or residual upper bound, wherever it 
exists. In addition, due to the absence of an arbitrary truncation, the resulting hazard curves 
transition gradually toward that upper bound. 
 
Realistic modeling of low probability ground motions will gain increasing significance with 
renewed interests in nuclear energy production. The GPD parameters derived in this study are 
only for PGA and are considered preliminary and specific to the PEER NGA data and the ground 
motion models employed. Our approach, however, can be applied to more extensive ground 
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motion data and other ground motion models so that the GPD parameters can be derived for 
more general applications. The approach can also be readily adapted to spectral accelerations and 
other ground motion parameters. Furthermore, the composite distribution model can  be 
implemented in existing or future PSHA software for practical applications.   
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Figure Captions 
 
Figure 1:  Three types of tail distributions 
 
Figure 2:  Empirical distributions of the surface pores obtained with two aluminum casting 

processes 
 
Figure 3:  Tail equivalence of pore distributions in two cast aluminum microstructures 

(source: private data) 
 
Figure 4:  Plot of  Peak Ground Acceleration data in PEER NGA database 
 
Figure 5:  Lognormal probability plot for Chi-Chi Peak Ground Acceleration data 
 
Figure 6:  Log-exceedance plot for Chi-Chi Peak Ground Acceleration data (for exploratory 

purposes only because assumed threshold λ = 0) 
 
Figure 7:  Number of  Peak Ground Acceleration records in each distance bin 
 
Figure 8:  Mean conditional excess plot for 50 < r < 70 km (31 < r < 44 mi). A threshold λ = 

0.1275 can be clearly identified as the beginning of the last stable, linear part of 
this plot. 

 
Figure 9:  Comparison of  Generalized Pareto Distribution fit with 95% confidence upper 

bound and lognormal distribution for 50 < r < 70 km (31 < r < 44 mi). 
 
Figure 10:  Assessing the normality of the attenuation residuals ε = ln(PGAoberserved) – 

ln(PGAregression) 
 
Figure 11:  Conditional mean excess plot of the residual in the Abrahamson-Silva attenuation 

model with the finite fault data. 
 
Figure 12:  Comparison of  Generalized Pareto Distribution fit with  95th percentile upper 

bound and lognormal distribution for the residual in the Abrahamson-Silva 
attenuation model with the finite fault data. 

 
Figure 13:  Conditional mean excess plot of the residual in the Abrahamson-Silva attenuation 

model without the finite fault data. 
 
Figure 14:  Comparison of  Generalized Pareto Distribution fit with  95th percentile upper 

bound and lognormal distribution for the residual in the Abrahamson-Silva 
attenuation model without the finite fault data. 

 
Figure 15:  Best estimate and  95th percentile intervals of the  Generalized Pareto Distribution 

shape parameters as function of the threshold λ for the residual in the 
Abrahamson-Silva attenuation model with the finite fault data. 
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Figure 16:  The total Peak Ground Acceleration exceedance rate (hazard curves) for the two 

earthquake sources described in the text using the full range lognormal 
distribution 

 
Figure 17:  The total Peak Ground Acceleration exceedance rate for the two earthquake 

sources described in the text using truncated lognormal distribution 
 
Figure 18:   Peak Ground Acceleration exceedance rate (hazard curves) for the two 

earthquake sources described in the text and the total using lognormal distribution 
truncated at median plus three standard deviations 

 
Figure 19:  Deaggregation of  Peak Ground Acceleration hazard with respect to ground 

motion uncertainty (ε) for a hypothetical site 
 
Figure 20: Comparison of the total Peak Ground Acceleration exceedance rate for the two 

earthquake sources described in the text using full range lognormal distribution, 
truncated lognormal distribution, and combined lognormal distribution and  
Generalized Pareto Distribution (Abrahamson-Silva with finite fault data) 

 
Figure 21: Comparison of the total Peak Ground Acceleration exceedance rate for the two 

earthquake sources described in the text using full range lognormal distribution, 
truncated lognormal distribution, and combined lognormal distribution and  
Generalized Pareto Distribution (Abrahamson-Silva without finite fault data)
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Figure 19a 
PGA amplitude: 0.20 g 
Hazard: 6.880×10-4 
Mean ε: -0.83

Figure 19b 
PGA amplitude: 2.0 g 
Hazard: 1.567×10-7 
Mean ε: 3.38 
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Abrahamson-Silva NGA model with finite-fault data
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Abrahamson-Silva NGA model without finite-fault data
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Table 1: Tail equivalence between Generalized Pareto and Extreme Value distribution types 

Tail H(x) PDF of X - λ EV domain 
Light - Beta Weibull (c < 0) 

Neutral 0 Exponential Gumbel (c = 0) 
Heavy + Pareto Frechet (c > 0) 

 
 
 
 
Table 2: Tail statistics, Generalized Pareto Distribution parameters, and predicted upper bound 
limit of the  Peak Ground Acceleration and its 95% upper confidence limit for the distance range 
50-70km of the 2 Chi-Chi Mw = 6.2 aftershocks. 

Threshold Scale Shape Ntail 

 Peak Ground 
Acceleration upper 

bound 95% C.L. upper bound 
0.065 0.064 -0.376 36 0.235 0.254 
0.085 0.056 -0.351 25 0.243 0.279 
0.127 0.044 -0.351 9 0.252 0.278 

 
 
Table 3: Bulk statistics of the regression residuals of the Abrahamson-Silva (A-S) and 
Boore-Atkinson models. 
 

Model description Ndata Mean StDev Median 
 Coefficient 
of Variation 

A-S with finite fault 1919 -0.057 0.553 1.101 0.598 
A-S without finite fault 1190 -0.061 0.543 1.090 0.586 
Boore-Atkinson 1574 -0.110 0.596 1.070 0.654 

 
 
Table 4: Tail statistics of the regression residuals of the Abrahamson-Silva (A-S) and 
Boore-Atkinson models. 
 

Model description % Tail Threshold Scale Shape 
Residual 

Upper Bound 
A-S with finite fault 4.3% 0.9 0.35 -0.29 2.19 
A-S without finite fault 8.1% 0.7 0.31 -0.12 3.84 
Boore-Atkinson 8.8% 0.7 0.29 -0.11 3.55 
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