

P.O. Box 15830, Sacramento, CA 95852-1830; 1-888-742-SMUD (7683)

 \backslash

MPC&D 08-032

May 14, 2008

U.S. Nuclear Regulatory Commission Attn.: Document Control Desk Washington, DC 20555

Docket No. 50-312 Rancho Seco Nuclear Generating Station License No. DPR-54 **RANCHO SECO FINAL STATUS ŠURVEY REPORT – THIRD SUBMITTAL**

Attention: John Hickman

Attached is the Final Status Survey (FSS) Report for several of the Rancho Seco survey units. Specifically, this submittal addresses dismantlement and FSS information for the survey units associated with the 100000, 200000, 501000, 800004, 800007, 800012, 800014, 813000, 823000, 826000, 832000, 839000, 843000, 848000, 851000, 857000, and 899000 areas. Table 1 of the FSS Report provides a description of the survey units addressed in this submittal. The report provides a summary of the survey results and concludes that survey units covered in this report meet the radiological criteria for unrestricted use.

Members of your staff with questions requiring additional information or clarification may contact Bob Jones at (916) 732-4843.

Sincerely,

2.7/56

Steve Redeker Manager, Plant Closure & Decommissioning

Cc w/ attachment:

NRC Region IV

NMSS-01

RANCHO SECO FSS FINAL REPORT

Final Status Survey Report 3

May 15, 2008

FSS FINAL REPORT

Final Status Survey Report 3

1.0 Overview

As discussed in Section 1.4 of the Rancho Seco License Termination Plan (LTP), SMUD intends to release the Rancho Seco site for unrestricted use in two phases, with the license being terminated after completion of the second phase. The first phase includes the release of the majority of the site, including impacted and non-impacted areas, except for the Interim Onsite Storage Building (IOSB) and the area immediately surrounding it. Once an area has been verified as ready for release, no additional surveys or decontamination of the area will be required unless the controls (e.g., administrative or engineered) established to prevent re-contamination have been compromised.

SMUD will continue to store Class B & C radioactive waste in the IOSB until an acceptable disposal facility becomes available. After disposing of the Class B & C radioactive waste, SMUD will complete the final status survey for the remainder of the site (i.e., the area immediately surrounding the IOSB) and will submit a license amendment request to terminate the 10 CFR Part 50 license and release the remainder of the site for unrestricted use. The spent nuclear fuel and the Greater than Class C (GTCC) waste are stored at the Rancho Seco Independent Spent Fuel Storage Installation (ISFSI), which is licensed under 10 CFR Part 72, independent of the 10 CFR Part 50 licensed site.

Section 1.4 of the LTP discusses the information to be provided to support release of land from the Rancho Seco 10 CFR Part 50 license. The information provided in this report includes a discussion of dismantlement activities performed, final status survey results, and an evaluation of the potential for re-contamination and controls applied to prevent this for each survey unit completed.

The information contained in this submittal, together with the information to be provided in subsequent FSS reports, will be sufficient for the NRC to conclude that, for the land and structures associated with the release, dismantlement has been performed in accordance with the approved license termination plan, and the terminal radiation survey and associated documentation demonstrates that the facility and site are suitable for release in accordance with the criteria for decommissioning in 10 CFR Part 20, Subpart E by meeting a site release criterion of 25 millirem TEDE per year over background.

Once these lands and structures are released, no additional surveys or decontamination of these areas will be required unless the NRC determines that the criteria of 10 CFR Part 20, Subpart E were not met.

2.0 Site Information and Physical Description

2.1 Physical Description of Land or Structures to be Released

The land and structures to be released will be described in the application for license amendment and is unchanged by this submittal.

2.1.1 Survey Unit Information Included in this Submittal As discussed in section 1.0 above, this submittal provides detailed discussion on demolition activities completed and final status survey results for 57 survey units located on the site to be released. Details are provided for each survey unit on survey methods, results, data analysis, and conclusions. Additional information on all other applicable survey units for the site will be provided in subsequent submittals. In all cases, Rancho Seco is providing a complete package of information relating to each survey unit so that the NRC staff can verify that the License Termination Plan has been fully implemented for each survey unit and that the final status survey results support unrestricted release of the land from License DPR-54 in accordance with the proposed license amendment.

This submittal addresses dismantlement and FSS information for survey units associated with the 100000, 200000, 501000, 800004, 800007, 800012, 800014, 813000, 823000, 826000, 832000, 839000, 843000, 848000, 851000, 857000, and 899000 areas. Table 1 provides a description of the survey units addressed in this submittal.

Survey Unit	Class	General Description of Survey Unit							
F1000001-3	2	100000 Effluent Corridor- The effluent corridor consisted							
		of the open land area bordering "No Name Creek" which							
•	·	was the liquid effluent pathway during plant operation.							
	•	The survey units had surface areas of 8339, 7744, and							
		5202 m ² respectively.							
F1000004	1.	1000004 Effluent Corridor- This survey unit was a							
		separate class 1 area which resulted from the investigation							
		of elevated measurements within F1000001. The survey unit had a surface area of 198 m^2 .							
F200001	3	2000001 South Outfall- The South Outfall bordered the							
F2000001	5	southern boundary of the Industrial Area and the eastern							
		boundary of the Effluent Corridor. It incorporated the							
		Storm Drain Buffer Zone (800006). Storm water was							
		released within this area. The survey unit had a surface							
		area of 226,567 m ² .							
F5010031	3	5010031 Upper/Outer Yard Pavement- The Upper/Outer							
		Yard is a paved area surrounding the site of the							
		demolished Hazardous Waste Building. The paved area is							
Production for the second s		2665 m ² .							
F5010032	3	5010032 Hazardous Waste Bld Pad- The Hazardous							
		Waste Building Pad was the concrete foundation of the							
		building used to temporarily store hazardous waste on							
		site. The building itself was demolished leaving only the							

Table 1

ſ			foundation. The survey unit had a surface area of 268
Ì	F5010041	3	5010041 Extended Parking Area- The Extended Parki
			Area is located outside the IA on the north-east side o
			site. It was used for contractor parking as well as
			temporary parking for radwaste shipments. The soil a
-	F5010042	. 3	is 42735 m ² . 5010042 Extended Parking Area- The Extended Parki
	15010042	. 5	Area is located outside the IA on the north-east side o
			site. It was used for contractor parking as well as
			temporary parking for radwaste shipments. The paved
			area is 38692 m ² .
	F8000041	3	8000041 Central Transit Area- The Central Transit Ar
			was the primary north to south corridor through the
ŀ	F0000071		industrial area of the site. The area is 6634 m ² .
	F8000071	3	8000071 West Industrial Area- The West Industrial A consisted of both soil and paved areas. It was located
			north of the retention basins and ran along the west fer
			to the spray ponds on the north side of the site. The
			survey unit soil area is 65776 m^2 and the pavement are
		·	5759 m ² .
ſ	F8000121	3	8000121 Industrial Area Waste Storage Buffer Zone-
			IA Waste Storage Buffer Zone consisted of both soil a
			pavement located around the IOSB and barrel farm. T
ł	F8000141	3	combined area was 6114 m ² . 8000141 North IA Soil- The North IA Area is the oper
	18000141	5	land to the north of the spray ponds. The soil area is 6
			m^2 :
ľ	F813000	Typically	813000 Auxiliary Building- The Auxiliary Building
		class 1	contained the systems used to transport, process and
		floor, lower	contain radioactive solids, gases and liquids. The surv
		walls and	presented in this submittal are for the following rooms
		class 2 upper	located on the -20', +20', and grade elevation: 3,13,14,16,17,24,26,27,104-135,111,112,113,114,1
		walls,	206,207, and the mezzanine roof.
		ceiling	
Ì	F8230001	3	8230001 Intake Pump Structure- The Intake Pump
			Structure was the concrete support structure for the
		-	circulating water pumps located just south of the cooli
	F8261002	. 3	towers. The survey area is 402 m ² . 8261002 LP Turbine Pedestal-The LP Turbine Pedesta
	F8201002	5	was the concrete support structure for the low pressure
			turbine. It extended from grade level to the 40' elevat
	,		of the Turbine Building. The area is 996 m^2 .
	F8320001	3	8320001 Diesel Fuel Oil Pad Area- The Diesel Fuel O
			Pad Area is the former location of a concrete foundati
			pad that supported the fuel oil tank located north of the
	F8390001	3	warehouse. The area is 1560 m ² . 8390001 Transformer Yard- The Transformer Yard
	L0220001	5	contained the main station transformers. The yard
			consists of the concrete pads upon which the transform
			sat and the surrounding gravel and rock-covered area.
			The area is 3385 m^2 .
	F8430011,21	3	8430011,21 Barrel Farm- The Barrel Farm was a pave
			area surrounded by an earthen berm used to store
]	radwaste containers. It was located south of the IOSB

`.

	······	The barrel farm area is 1313 m^2 and the berm is 5000 m ² .
F8480021	3	848000 Retention Basin Buffer Zone- The Retention
		Basin Buffer Zone was the buffer area surrounding the
		Retention Basins. The area was 10845 m ² .
F8480011		8480011 North Retention Basin- The North Retention
		Basin was one of two concrete-lined holding ponds for the
· (
		liquid effluent prior to its release offsite. The area is 1432
		<u>m².</u>
F8480012		8480012 South Retention Basin- The South Retention
		Basin was one of two concrete-lined holding ponds for the
		liquid effluent prior to its release offsite. The area is 1388
		m^2
F8480017	3	8480017 Retention Basin Surface Soil- The Retention
10400017	5	Basin Surface Soil was the "as left" surface soil following
		demolition and backfilling of the retention basins. The
		area is 3590 m ² .
F8480018	2	8480018 Retention Basin Concrete Storage Area-The
	•	Retention Basin Concrete Storage Area was a small land
· · · ·		area used for the temporary storage of concrete removed
		from the basins until it could be loaded into containers for
		transport offsite. The area is 1059 m ² .
F8510001,2	3.	8510001,2 Switch Yard- The Switch Yard contains the
		electrical switch yard for the facility. It consists of both
		paved and soil areas. The soil is 16700 m ² and pavement
		is 14505 m ² .
F8570001	3	8570001 Subsurface Vaults- The Subsurface Vaults were
10570001	5	the several concrete manholes and hand holes used for
		access to buried electrical cables located within the
		Industrial Area yard. The area is 2153 m ² .
F8990071,2,3	1	8990071,2,3 CDS-Turbine Building Drains- The Turbine
		Building Drains were the buried and embedded drain
	·	pipes which conducted water from the Turbine Building
		into the clean oily water discharge piping. The areas are
		11.1, 22.8, and 180 m^2 respectively.
F8990291	3	8990291 Main Circ Water Pipe- The Circ Water Pipe
10770271	5	
,		consisted of 90" to 108" piping which transported water
		between the circ basin and the condenser bay. The area is
		4515 m ² .
F8990321	2	8990321 Nitrogen System Pipe- The Nitrogen System
		Pipe was 1" and 2" pipe which transported nitrogen under
		pressure across the site for use as a cover gas. The area is
		24.7 m^2 .
F8990351	3	8990351 Nuclear Service Water Pipe- The Nuclear
10770331	2	
		Service Water Pipe provided cooling water to emergency
		and shutdown systems such as decay heat coolers and
		ventilation systems in two trains. The internal surface area
		is 35.4 m ² .
F8990471	3	8990471 Service Water Pipe- The Service Water Pipe
		provided non-domestic water to the site from Folsom
		South Canal. The area is 250.3 m^2 .
E8000511	2	
F8990511	Z	8990511 Carbon Dioxide System Pipe- The Carbon
		Dioxide Pipe transported CO ₂ under pressure to rooms
		protected by the Cardox fire protection system. The
		internal surface area is 2.5 m^2 .
		8990521 Acid Waste System Pipe- The Acid Waste Pipe

		is that portion of the radwaste system that was designed to contain acidic waste from boric acid systems and the battery rooms. The area is 29.6 m ² .
F8990054	3	8990054 CDS-Storm Drain Non-Discharge Pipe- The Storm Drain Pipe consists of piping that routed storm water from gutters and ditches to locations outside the Industrial Area without going through the normal effluent structure. The area is 4644 m ² .
F8991073	3 .	8991073 CDS-Oily Water Separator- The Oily Water Separator pipe routed non-contaminated oily water from building drains through the effluent structure. The area is 55 m^2 .
F8991091		8991091 RHUT Pipe Trench- The RHUT Pipe transported potentially contaminated water from the RHUT Tanks through the storm drains into the effluent structure. The area surveyed upon removal of the pipe was 1544 m ² .

The locations of the survey areas listed in Table 1 above are shown in Fig. 1.

2.1.2 Survey Unit Information Being Provided in Subsequent Submittals

As discussed previously, Rancho Seco anticipates at least two additional submittals of detailed information on dismantlement activities and final status survey results as these activities are completed. Below is a list of the remaining survey areas to be surveyed and submitted

The schedule and content of each submittal were developed based on a review of the remediation and FSS schedule, as well as in consideration of NRC review requirements. The remediation schedule is dynamic and subject to continued refinement in logic, durations, and completion dates. It is Rancho Seco's intent to maintain the basic submittal schedule provided below. However, as a result of remediation schedule changes, it is possible additional submittals may be made with the goal of providing release records as soon as possible to the NRC to facilitate the agency's timely review.

Fourth & Fifth Submittal Scheduled for 7/7/08 & 10/16/08 (~65 Survey Units each) F800001 Folsom Canal F800002 Helo Pad F800003 South Scrap Yard F800009 SE Industrial Area F8000142 North IA Pavement F800103 Turbine Building/NSEB Alley F8000101,2 Industrial Area Yard F800011 Central Corridor F808003 Cooling Tower Buffer Area F810001 Tank Farm Surface Soil

6.

F810002 Tank Farm Subsurface Soil F811000 Reactor Building (~24 Survey Units) F812000 Fuel Building (~17 Survey Units) F813000 Auxiliary Building (~52 Survey Units) F826000 Turbine Building (~16 Survey Units) F826025 North Laydown Area F826026 South Laydown Area F834000 Rail Land F837000 RHUT, Aux Boiler Pad F848019 Miscellaneous Small Buildings F854000 POL Building F501005 Access Road F899011 Decay Heat System Pipe F899040 Reactor Drain System Pipe F899042 Radwaste System Pipe F899044 Fuel Pool System Pipe

2.2 Dismantlement Activities

The Rancho Seco License Termination Plan describes the dismantlement activities to be performed for each area and applicable structure of the Rancho Seco site consistent with the use of the Building Occupant scenario. In general, the LTP indicates that temporary structures will be demolished and that permanent structures will be left standing following final survey. In addition, the ISFSI and IOSB structures will remain. During the period of time represented by this submittal, concrete remediation has taken place in the Auxiliary Building, Turbine Building, and Spent Fuel Building. Interior concrete removal continued in the Reactor Building.

3.0 Technical Evaluation

3.1 Potential for Cross-Contamination from Subsequent Activities

Since decommissioning activities are being conducted onsite in parallel with final status survey and release decisions, measures must be taken to protect survey areas from contamination during and subsequent to the final status survey. Rancho Seco LTP sections 3.3.5 and 5.2.4 describe contamination and access control measures and periodic routine monitoring practices to prevent and/or detect re-contamination of survey areas during or following FSS. These requirements are implemented, as appropriate, through established procedures as described in the LTP.

The potential for re-contamination and the contamination controls/monitoring for the specific survey areas included in this release phase are discussed and evaluated below:

3.1.1 100000 Effluent Corridor

The majority of the Effluent Corridor was determined to be Class 3 and did not require remediation. A small area was determined to exceed the DCGL and was remediated and resurveyed as a Class 1 area. There is little likelihood that the area will become recontaminated, however the area has been placed under periodic surveillance to ensure it remains in it's "as left" condition.

3.1.2 200000 South Outfall

This area originally received storm water from the industrial area and was successfully surveyed as a Class 3 area. No remediation was required. Because the area drains historically uncontaminated or only slightly contaminated Industrial Area soils and radioactive material is no longer present, there is little likelihood that the soil will become contaminated in the future.

3.1.3 501000 Extended Parking Area

The Extended Parking Area was successfully surveyed as a Class 3 area. No remediation was required. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future. The parking area has been placed under periodic surveillance to detect any potential recontamination.

3.1.4 5010031, 2 Upper/Outer Yard & Hazardous Waste Building Pad The Hazardous Waste Storage Building foundation pad and the surrounding Upper/Outer Yard were successfully surveyed as a Class 3 structure and land area. No remediation was required. The foundation pad is all that remains of the structure and it sits in the middle of the paved area north of outside the industrial area. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future. The paved area around the pad has been placed under periodic surveillance to detect any potential re-contamination.

3.1.5 800004 Central Transit Yard

The Central Transit Yard was successfully surveyed as a Class 3 area. No remediation was required. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future. The area has been placed under periodic surveillance to detect any potential re-contamination.

3.1.6 800007 West Industrial Area

The West Industrial Area was successfully surveyed as a Class 3 area. No remediation was required. No radioactive material is allowed in the area and there is little likelihood that it will become

contaminated in the future. The area has been placed under periodic surveillance to detect any potential re-contamination.

3.1.7 800012 Industrial Area Buffer Zone

The Industrial Area Buffer Zone was successfully surveyed as a Class 3 area. No remediation was required. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future. The area has been placed under periodic surveillance to detect any potential recontamination.

3.1.8 800014 North Industrial Area Soil

The North Industrial Area Soil was successfully surveyed as a Class 3 area. No remediation was required. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future. The area has been placed under periodic surveillance to detect any potential recontamination.

3.1.9 813000 Auxiliary Building (zones 1-12)

The rooms in zones 1-6 of the Auxiliary Building surveys are some of the most contaminated site areas. The survey units are all classified at least Class 2 for upper walls/ceilings with floors being at least Class 2 but usually Class 1. Most of the lower walls and floors required some concrete remediation. Because remediation is ongoing in adjacent areas, through-wall penetrations are covered, drain pipe openings are plugged, strict access controls are maintained and the areas are subject to periodic surveillance to check for potential re-contamination. Portions of zones 7-12 are Class 2 or 3 with little potential for re-contamination and the controls were somewhat less rigorous.

3.1.10 823000 Intake Structure

The Intake Structure was successfully surveyed as a Class 3 structure. No remediation was necessary and there is little likelihood that the structure will become contaminated in the future. The structure has been placed under periodic surveillance to detect any potential re-contamination.

3.1.11 826000 LP Turbine Pedestal

The LP Turbine Pedestal was successfully surveyed as a Class 3 area. No remediation was required. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future. The area has been placed under periodic surveillance to detect any potential re-contamination.

3.1.12 832000 Diesel Fuel Oil Tank Pad Area

The Diesel Fuel Oil Tank Pad was successfully surveyed as a Class 3 area. No remediation was required. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future. The area has been placed under periodic surveillance to detect any potential re-contamination.

3.1.13 839000 Transformer Yard

The Transformer Yard was successfully surveyed as a Class 3 area. No remediation was required. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future. The area has been placed under periodic surveillance to detect any potential re-contamination.

3.1.14 843000 Barrel Farm

The Barrel Farm was an asphalt covered pad surrounded by an earthen berm used to store radwaste containers during plant operation. No remediation was required but the asphalt pad and soil berm were removed. There is little likelihood that the area will become contaminated in the future. The area has been placed under periodic surveillance to detect any potential recontamination.

3.1.15 8480021 Retention Basin Buffer Zone

The Retention Basin Buffer Zone was the buffer between the remediated basins and the surrounding land. The area was successfully surveyed as a Class 3 area. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future.

3.1.16 8480011,12 North and South Retention Basins

The concrete retention basins held the liquid effluent from plant operation prior to its release overboard. The basins were remediated, all of the concrete was removed along with any contaminated soil. There is no likelihood that the structures will become contaminated in the future because all radioactive liquid releases have been terminated.

3.1.17 8480017 Retention Basin Surface Soil

The Retention Basin Surface Soil is the clean material that was used to backfill the retention basins after demolition. There is little likelihood that the soil will become contaminated in the future because all radioactive releases have been terminated.

3.1.18 8480018 Retention Basin Concrete Storage Area

The Retention Basin Concrete Storage Area was the location used to temporarily store the concrete removed from the retention basins during demolition until it could be packaged and shipped. The area was successfully surveyed as a Class 2 area. No radioactive material is allowed in the area and there is little likelihood that the soil will become contaminated in the future.

3.1.19 851001,2 Switch Yard

The electrical Switch Yard is still in operation. The soil and pavement was successfully surveyed as a Class 3 area. No remediation was required. Access to the area is controlled by operations personnel and there is little likelihood that the structure will become contaminated in the future. The area has been placed under periodic surveillance to detect any potential recontamination.

3.1.20 857000 Subsurface Vaults

The Subsurface Vaults were the concrete manholes and hand holes used for access to buried electrical cables. The only potential for contamination was from contaminated water in-leakage. The vaults were successfully surveyed as Class 3. Contaminated soil in the surrounding yard has been previously remediated. No radioactive material is allowed in the area and there is little likelihood that it will become contaminated in the future. The area around the vaults has been placed under periodic surveillance to detect any potential re-contamination.

3.1.21 899000 Buried or Embedded Piping Systems

The pipe remaining on site is surveyed and grit blasted, if necessary, to remove surface contamination. Once final surveys are complete, the pipes are plugged to prevent recontamination or, if necessary, grouted in place. There is little likelihood that piping will become re-contaminated following final survey. In addition, the rooms containing access to the pipes are placed under periodic surveillance to detect any potential re-contamination once FSS is complete.

4 Final Status Survey Report

Rancho Seco LTP section 5.7.3 identifies the contents of the written reports of final status survey results that are to be submitted to the NRC. The contents include the items described in NUREG-1757, Vol. 2, Section 4.5. The survey unit design details and results are provided below in summary fashion. Specific survey unit design details and results are provided in a copy of each survey unit summary report in Attachment I of this submittal.

4.1 Overview of Results

The following survey units are included in this report:

F100001-4 Effluent Corridor F200001 South Outfall F5010031 Upper/Outer Yard Pavement F5010032 Hazardous Waste Building Foundation Pad F5010041,2 Extended Parking Area F800004 Central Transit Area F800007 West Industrial Area F800012 IA Waste Buffer F8000141 North Industrial Area F823000 Intake Structure F8261002 LP Turbine Pedestal F832000 Diesel Oil Tank Pad Area F839000 Transformer Yard F843001,2 Barrel Farm F8480017 Retention Basin Surface Soil F8480018 Retention Basin Concrete Storage Area F8480011,12 North and South Retention Basins F8480021 Retention Basin Buffer Zone F851001,2 Switch Yard Land F857000 Sub Surface Vaults F813000 Auxiliary Building (Rooms 3, 13, 14, 16, 17, 24, 26, 27, 104-135, 111, 112, 113, 114, 115, mezzanine roof, 206 and 207.) F8990054 CDS-Storm Drains Offsite F899007 CDS-Turbine Building Drains F899029 Main Circ Water Pipe F899032 Nitrogen Pipe F899035 Nuclear Service Water Pipe F899047 Service Water Pipe F899051 Carbon Dioxide Pipe F899052 Acid Waste Pipe

F8991073 CDS-Oily Water Separator

F899109 RHUT Pipe Trench

The summary report for each survey unit contains a description of the survey unit; design information, including classification, size, number of measurements, map, scan coverage, and DCGL; survey results; survey unit investigations (anomalous data); data assessment results, including statistical evaluations, if applicable; changes in initial survey unit assumptions on extent of residual activity, an evaluation of LTP changes subsequent to the FSS of the survey unit and survey unit conclusions.

Overall, the attached survey unit summary reports demonstrate that the survey units meet the criteria for release for unrestricted use in accordance with the NRC approved Rancho Seco License Termination Plan.

4.2 Discussion of Changes to FSS Program

The purpose of this section is to discuss changes to the FSS program. At the time of this submittal there have been no changes made to the FSS Program. Procedures were revised to tighten contamination controls in FSS areas but there was no effect on the final surveys.

4.3 Final Status Survey Methodology

This section summarizes the implementation of the LTP Final Status Survey methodology for the survey units that are included in this first report supporting the release of remaining non-ISFSI and non-IOSB land. A table is provided below that lists the key FSS design features for each survey unit. These design features include the survey unit classification and size, the standard deviation and Lower Boundary of the Gray Region (LBGR) used for determining the number of direct measurements taken, the percent scan coverage, the design DCGL_{EMC} and the number of measurements required. This report covers only structures for which the DCGL is 43,000 dpm/100 cm² (16,000 dpm/100 cm² for special areas) as well as pipe which has a DCGL of 100,000 dpm/100 cm² and soil or paved areas which have a DCGL of 52.6 pCi/g Cs-137_{sur} and 12.6 pCi/g Co-60. The standard deviations listed were obtained from site characterization data or survey unit specific measurements. The Type 1 and 2 Errors are the default values of 0.05 and the LBGR is initially based on 50% of the DCGL.

Survey	Class	Survey	Standard	LBGR	Design	Units	Number of	% Scan
Unit ID		Unit Size	Deviation		DCGL _{EMC}		Measurements	
		(m ²)						
F1000001	Effluent Co	orridor						
1	2	8339	14.7	27.8	N/A	pCi/g	19	55
F1000002	Effluent Co	orridor		•				
2	2	7744	14.7	25.6	N/A	pCi/g	17	23
F1000003	Effluent Co	orridor						
3	2	5202	14.7	27.8	. N/A	pCi/g	21	23
F1000004	Effluent Co	orridor						
4	1	198	9.03	25.8	108	pCi/ģ	15	100
F2000001	South Outf	all						
1	3	226567	0.15	25.6	N/A	pCi/g	14	1
F5010031	Upper/Out	er Yard Pav	ement					
1	3	2665	0.034	25.6	N/A	pCi/g	14	14.7
F5010032	Hazardous	Waste Buil	ding Pad					
· 2	3	268	397	21500	N/A	dpm/100	14	18
						cm ²		
F5010041	Extended F	Parking Area	a Soil					
1	3	42735	0.058	51	N/A	pCi/g	14	7.2
F5010042	Extended I	Parking Area	a Pavement					
2	3	38692	0.058	25.6	N/A	pCi/g	14	3.3
F8000041	Central Tra	ansit Area		•				

Table 2 Survey Unit Design Parameters

Survey	Class	Survey	Standard	LBGR	Design	Units	Number of	% Scan
Unit ID		Unit Size	Deviation		DCGLEMC		Measurements	·
		(m ²)						
l	3	6634	0.01	25.6	N/A	pCi/g	14	10
F8000071	West Indus		0.024	25 (- 0:1-	14	()
1	J Industrial	88190	0.034	25.6	N/A	pĆi/g	14	6.4
F8000121	Industrial A	Area Buffer 6114	2.0ne	25.6	NI/A	- nCila	15	10
F8000141	North Indu		0.01	23.0	N/A	pCi/g	15	10
1	3	55761	0.03	25:6	N/A	pCi/g	14	9.8
F8130051	Aux Buildi	ing Rm 3 Lo			10/1	peng	17	7.0
1	1	141	9976	21500	156520	dpm/100	26	100
	L					cm ²		
F8130061	Aux Buildi	ing Rm 3 Uj					· · · · · · · · · · · · · · · · · · ·	
1	-1	302	9976	21500	154800	dpm/100	44	100
F0120121	A D .: 1.15					cm ²		
	Aux Buildi	68.2	12035	21500	207561.	dpm/100	18	100
1	I	08.2	12035	21500	207561.	cm ²	18	100
F8130141	Aux Buildi	ing Rm 14			· · · · · · · · · · · · · · · · · · ·		I	
1	1	61.6	12035	21500	222282	dpm/100	16	100
•				21000		cm ²		
F8130181	Aux Buildi	ing Rm 16						
1	1	114	12035	21500	146200	dpm/100	21	100
						cm ²		
	Aux Buildi							
1	1	167	12035	21500	141900	dpm/100	25	100
<u>F0120221</u>	A D1.1	D 24				cm ²	L	
<u>F8130321</u> 1	Aux Buildi	153	12035	21500	150500	dmm/100	29	100
1	I	155	12055	21500	130300	dpm/100 cm ²	. 29	100
F8130351	Aux Buildi	ing Rm 26			l		I	
1	1	182	12035	8050	99015	dpm/100	65	100
						cm ²		
F8130361	Aux Buildi	ing Rm 27	·		·		· · · · · · · · · · · · · · · · · · ·	
1	1	283.9	12035	21500	142760	dpm/100	43	100
					`	cm ²		
F8130881		ing Rms 104			1		,	
1	3	4926	6935	21500	N/A	dpm/100	14	6
F010001	A D 111					cm ²		
	Aux Buildi	ing Rm 112 243	(025	21500	150500	1	42	100
1	I	243	6935	21500	150500	dpm/100 cm ²	. 42	100
F8131001	Aux Buildi	ing Rm 111		L	I	em	I	
·1	2	83	6935	21500	N/A	dpm/100	17	30
•	-		0,50	2.000		cm ²		00
F8131011	Aux Buildi	ing Rm 113					• • • • • • • • • • • • • • •	
1	2	155	6935	21500	. N/A	dpm/100	22	39
		<u> </u>		•		cm ²		
F8131021	Aux Build	ing Rms 114	4, 136, 137					•
1	1	242.5	6935	21500	141900	dpm/100	46	100
						cm ²	l	
·····		ing Rms 11:		01500				0.0
1	2	199	6935	21500	N/A	dpm/100 cm ²	15	80
F8131211		ing Mezzan	ine Roof		L	cin	I	<u> </u>
1.0121211	Aux Duila					dpm/100	1	10
1	3	482	5461	21500	N/A	dnm/100	14	10

Survey	Class	Survey	Standard	LBGR	Design	Units	Number of	% Scan
Unit ID	Class	Unit Size	Deviation	LDOK	DCGL _{EMC}	Onits	Measurements	70 Deun
0		(m ²)			D C C DEMC			
F8131351	Aux Buildi		·	•			·······	
1	3	294	5461	21500	N/A	dpm/100	14	10
						cm ²		
F8131361	Aux Buildi	ing Rm 207	· .					
1	3	842	5461	21500	N/A	dpm/100	14	10
				· · ·		cm ²		
F8230001	Intake Stru	cture		•				
1	3	402	667	21500	N/A	dpm/100	14	5
						cm ²		
	LP Turbine				[·····
2	3	996	3130	33610	N/A	dpm/100	14	11
F0220001			[]			cm ²	l	
F8320001	Diesel Fue							0
L	3	1560	0.01	25.6	N/A	pCi/g	14	9
F8390001	Transform		0.422	25.6	NI/A	0:/-		11.(
<u> </u>	<u> </u>	3385	0.432	25.6	N/A	pCi/g	14	11.6
F8430011	Barrel Farr		1.46	25.((4			100
I E9420021	l Damal Fam	<u>1313</u>	1.46	25.6	64	pCi/g	16	100
F8430021	Barrel Farr	·····	0.024	25.(15	33
E9490001	Retention I	5000	0.034	25.6	N/A	pCi/g	15	33
	Retention I			25.6	N/A	nCila	14	13.7
1		10845	0.047	25.6	-N/A	pCi/g	14	13.7
<u>F8480011</u>	North Rete	1432	0.49	25.0	64.6	-Cila	20	. 100
	South Rete		0.49	25.6	64.6	pCi/g	29	100
			0.40		64.9	nCila	21	100
2	Retention I	1388	0.49	25.6	64.8	pCi/g	21	100
	3	3590		25.6	N/A	pCi/g	14	11.7
7	Retention I		0.49		IN/A	peng	14	11.7
8	$\frac{1}{2}$		0.49	25.6	N/A	pCi/g	16	26.7
-	Switch Ya	1059	0.49	25.0	IN/A	pci/g	10	20.7
1		16700	0.008	25.6	N/A	pCi/g	14	5
E8510003	Switch Ya			2.3.0	<u>.</u>	peng		J
2		14505	0.097 ·	25.6	N/A	pCi/g	14	3
	Subsurface		0.097	23.0		pci/g	14	J
1	Subsurface	2153	87	21500	N/A	dpm/100	19	9
1		2155	07	21,00	IN/A	cm ²	19	,
F8990071	CDS-Turb	ine Ruilding	Draine	L	L	CIII	L	
1	1	11.1	23464	50000	100000	dpm/100	409	100
I			23101	50000	100000	cm ²		100
F8990072	CDS-Turb	ine Building	Drains	L	· · · ·		· · · ·	
2		22.8	23464	50000	. 100000	dpm/100	819	100
						cm ²		
F8990073	CDS-Turb	ine Building	g Drains	· · · · · · · · · · · · · · · · · · ·	·····			
3	1	180	23464	50000	100000	dpm/100	3997	100
						cm ²		
F8990291	Main Circ	Water Pipe			•			
1	3	4515	99	50000	N/A	dpm/100	4	4
						cm ²		
F8990321	Nitrogen P	ipe				_		
1	2	24.7	9677	50000	N/A	dpm/100	109	11
		<u> </u>				cm ²		
F8990351	Nuclear Se	rvice Water	·Pipe					
1	3	35.4	125	50000	N/A	dpm/100	14	7

Survey Unit ID	Class	Survey Unit Size (m ²)	Standard Deviation	LBGR	Design DCGL _{EMC}	Units	Number of Measurements	% Scan
						cm ²		
F8990471	Service Wa	ater Pipe		,				
1	3	250.3	1992	50000	N/A	dpm/100 cm ²	71	2
F8990511	Carbon Di	oxide Pipe	•		•			
1	2	2.5	8930	50000	N/A	dpm/100 cm ²	40	72
F8990521	Acid Wast	e Pipe	· · · · · · · · · · · · · · · · · · ·				•	
1	1	29.6	13000	50000	100000	dpm/100 cm ²	918	100
F8990054	CDS-Clear	n Drain Pipe	e .	,				
4	3	4644	392	50000	N/A	dpm/100 cm ²	402	2
F8991073	CDS-Oily	Water Sepa	rator				·	
3	3	55	0.09	50.93	N/A	pCi/g	15	100
F8991091	RHUT Pip	e Trench						
1	2	1544	9.83	25.6	N/A	pCi/g	53	100

4.4 Final Status Survey Results

The methods used to determine the number of direct measurements to be taken are described in the LTP and the specific survey unit summary reports provided in Attachment I. Key survey results are given in Table 3 below.

		<u> </u>			No. Scan
				Units	Elevated
					Areas
	Result	Result	Deviation		Alleds
	0.047	0.200	0.103	unity	. 1 .
	0.047	0.399	0.105	unity	
· · · · · · · · · · · · · · · · · · ·	0.001	4.22	1.42		0
	0.691	4.32	1.43	pC1/g	0
	0.032	0.439	0.094	unity	0
					·····
	0.153	0.549	0.152	unity	0
Dutfall					
14	0.272	0.531	0.159	pCi/g	0
Outer Yard Pa	avement				
14	0.764	0.847	0.049	pCi/g	0
ous Waste Bu	ilding Pad				,
14	2503	2666	102	dpm/100 cm ²	0
ed Parking Ar	ea Soil		· ·		
14	0.093	0.251	0.054	pCi/g	0
ed Parking Ar	ea Paveme	nt			• • • • • • • • • • • • •
14	0.677	0.736	0.038	pCi/g	0
Transit Area	· ·		1	• • • • • • • • • • • • • • • • • • •	·
14	0.665	0.896	0.338	pCi/g	0
dustrial Area		•	•	······································	· · · · · · · · · · · · · · · · · · ·
14	0.064	0.090	0.015	pCi/g	0
ial Area Buffe	er Zone	J	•		• • • • • • • • • • • • • • • • • • • •
15	0.365	0.852	0.390	pCi/g	0
	No. Direct Meas. Taken t Corridor 19 t Corridor 21 t Corridor 21 t Corridor 15 Dutfall 14 Outer Yard Pa 14 ous Waste Bu 14 ed Parking An 14 ed Parking An 14 Transit Area 14 ial Area Buffe	No. DirectMean DirectTakenResultt Corridor19190.047t Corridor17170.691t Corridor17210.032t Corridor0.153210.032t Corridor15150.153Outfall14140.764ous Waste Building Pad140.093ed Parking Area Soil140.677Transit Area140.665ndustrial Area140.064ial Area Buffer Zone	No. Direct Meas.Mean Direct Direct ResultMaximum Direct ResultTakenResultResultt Corridor 19 0.047 0.399 t Corridor 17 0.691 4.32 t Corridor 21 0.032 0.439 t Corridor 0.153 0.549 21 0.032 0.531 Outfall 14 0.272 0.531 Outer Yard Pavement 14 0.764 0.847 ous Waste Building Pad 14 2503 2666 ed Parking Area Soil 14 0.677 0.736 Transit Area 14 0.665 0.896 ndustrial Area 14 0.064 0.090 ial Area Buffer Zone 0.090 0.090	No. Direct Mean Maximum Direct Standard Taken Result Result Direct Standard Taken Result Result Deviation 19 0.047 0.399 0.103 t Corridor 17 0.691 4.32 1.43 t Corridor 17 0.691 4.32 1.43 t Corridor 12 0.032 0.439 0.094 t Corridor 15 0.153 0.549 0.152 Dutfall 14 0.272 0.531 0.159 Outer Yard Pavement 14 0.764 0.847 0.049 ous Waste Building Pad 14 2503 2666 102 ed Parking Area Soil 14 0.077 0.736 0.038 Transit Area 14 0.665 0.896 0.338 ndustrial Area 14 0.064 0.090 0.015	Meas. Direct Result Direct Result Standard Deviation 14 0.047 0.399 0.103 unity 17 0.691 4.32 1.43 pCi/g 1607

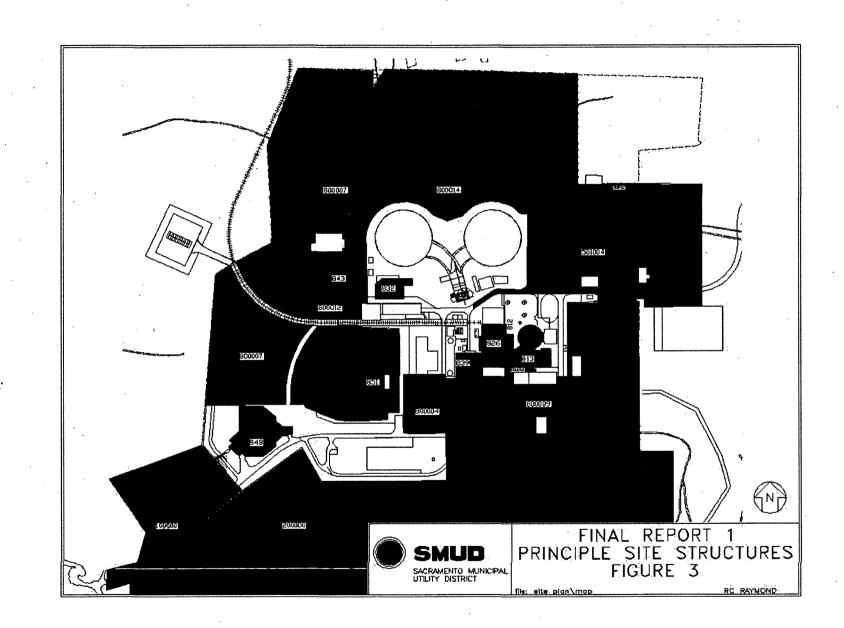
Table 3 Survey Unit FSS Results

	N. Dimet		Marine	Disast	T In ite	No Som
Scan Measurement	No. Direct Meas.	Mean Direct	Maximum Direct	Direct Standard	Units	No. Scan Elevated
Range	Taken	Result	Result	Deviation	5	Areas
F8000141 North			I	· · · · ·	-he	· · · · · · · · · · · · · · · · · · ·
< 0.384	14	0.078	0.201	0.039	pCi/g	0
F8130051 Aux B	uilding Rm 3	Lower				
1922-189618	26	3560	27664	5084	dpm/100 cm ²	6
F8130061 Aux B						
767-51835	44	2076	4373	869	$dpm/100 cm^2$	2
F8130131 Aux B			4506	<u></u>	1 1 1 1 0 0 2	
3297-91179	18 18	2236	4596	729	dpm/100 cm ²	<u> </u>
F8130141 Aux B 1356-114477	$\frac{110}{16}$ 16	2719	11365	2486	dpm/100 cm ²	5
F8130181 Aux B			11305	2480		5
1532-81309		3867	23234	4907	dpm/100 cm ²	0
F8130191 Aux B			25251	1,0,1		
1496-132853	25	2294	4762	723	dpm/100 cm ²	0
F8130321 Aux B	uilding Rm 24		·	·	• •	· · · · · · · · · · · · · · · · · · ·
3551-124491	29	2379	7812	1628	dpm/100 cm ²	0
F8130351 Aux B	uilding Rm 26	5				
4705-68478	65	2422	6284	844	. dpm/100 cm ²	5
F8130361 Aux B	uilding Rm 27	1		· · ·	I.	.
1996-57103	43	2045	6790	800	dpm/100 cm ²	0
F8130881 Aux B	uilding Rms 1			I		1
2029-6419		1629	1940	233	dpm/100 cm ²	0
		1	1940	255	dpin/100 cm	<u>v</u>
F8130991 Aux B			0077	1000	1 (100 2	1
1228-4531	42	3008	8077	1006	dpm/100 cm ²	2
F8131001 Aux B					· · · · · · · · · · · · · · · · · · ·	·····
2171-3213	17	1338	1494	91	dpm/100 cm ²	0
F8131011 Aux B	uilding Rm 11	3				
4284-14576	22 \	1766	2578	253	dpm/100 cm ²	0
F8131021 Aux B	uilding Rms 1	14, 136, 13	7		I	
<1033-81018	46	1777	8149	1216	dpm/100 cm ²	0
F8131031 Aux B	_					<u> </u>
1810-5759	15	1267	1504	116	dpm/100 cm ²	0
	1		1304	110	dpin/100 cm	0
F8131311 Aux B					<u> </u>	
3595-5583	14	1556	1805	149	dpm/100 cm ²	0
F8131351 Aux B)6			·	
2758-6221	14	1620	1961	231	dpm/100 cm ²	0
F8131361 Aux B	uilding Rm 20)7				
2810-6668	14	1454	1795	140	dpm/100 cm ²	0
F8230001 Intake	Structure	L	L	I	-l	I
4013-6896	14	2284	2630	262	dpm/100 cm ²	0
		2204				
F8261002 LP Tu		1	1040	1/0	1 1 1100 7	
1584-3545	14	1708	· 1940	. 160	dpm/100 cm ²	0
F8320001 Diesel	Fuel Oil Tank					
<0.283	14	0.050	0.063	0.006	pCi/g	0
F8390001 Transf	ormer Yard		• • • • • • •			
< 0.339	14	0.285	0.875	0.362	pCi/g	0
F8430011 Barrel	Farm Soil	· · · · ·	1	L	· · ·	

Scan Measurement	No. Direct Meas.	Mean Direct	Maximum Direct	Direct Standard	Units	No. Scan Elevated
Range	Taken	Result	Result	Deviation		Areas
<0.344	16	0.063	0.139	0.021	pCi/g	0
F8430021 Barrel	Farm Berm		I			
MDA-0.584	15	0.057	0.077	0.088	pCi/g	0
F8480021 Retent	ion Basin Buf	fer Zone				
< 0.328	14	0.062	0.146	0.025	pCi/g	0
F8480011 North 1	Retention Bas	in				
0.009-0.084	29	. 0.043	0.192	0.048	unity	0
F8480012 South 1	Retention Bas	in		1		. 1
0.009-0.069	21	0.058	0.421	0,099	unity	0
F8480017 Retent	on Basin Sur	face Soil		J		
< 0.296	14	0.059	0.097	0.012	pCi/g	0
F8480018 Retent	ion Basin Cor	crete Stora	ge Area	I		
<0.024	16	0.013	0.040	0.012	unity	0 ·
F8510001 Switch	Yard Soil		1	L		1
<5.2	14	0.061	0.090	0.016	pCi/g	1
F8510002 Switch	Vard Pavem				F0	,
<0.382	14	0.820	0.877	0.028	pCi/g	0
F8570001 Subsur		0.020	0.077	0.020	polig	0
262-625	19	400	625	87	dpm/100 cm ²	0
		1	025	07	dpin/100 cm	
F8990071 CDS-T	409		20022	1120	1	
838-20923		2901	20923	1139	dpm/100 cm ²	0
F8990072 CDS-T		-			1 (100 2	
919-3891	819	1663	3891	385	dpm/100 cm ²	0
F8990073 CDS-T			· · · · · ·		, , , ,	1 . "
818-50087	3997	2236	50087	2445	dpm/100 cm ²	0
F8990291 Main (Circ Water Pij	be				
<216	4	171	216	31	dpm/100 cm ²	0
F8990321 Nitrog	en Pipe					
2384-4376	109	3444	4376	430	dpm/100 cm ²	0
F8990351 Nuclea	r Service Wa	ter Pipe		•	· ·	
6101-10249	14	8258	10249	1345	dpm/100 cm ²	0
F8990471 Service	e Water Pipe				I	,
1036-1580	71	1433	1580	93	dpm/100 cm ²	0
F8990511 Carbor	1 Dioxide Pip		.1	1	L	
1655-2275	40	1929	2275	164	$dpm/100 cm^2$	0
F8990521 Acid V		"I		ł		1
1267-75621	918	3327	75621	5275	dpm/100 cm ²	0 .
F8990054 CDS-C						
6516-9997	402	8211	9997	873	dpm/100 cm ²	0
F8991073 CDS-C				1		
2625-2926	15		0.064	0.006	nCi/a	0
$dpm/100 cm^2$	15	0.049	0.004	0.000	pCi/g	U
Pipe Survey						
F8991091 RHUT	Pipe Trench					
< 0.006-0.111	53	0.008	0.062	0.008	unity	0

4.5 Survey Unit Conclusions

Rancho Seco concludes that this information is sufficient for the NRC to make a determination equivalent to 10CFR50.82 (a)(11) regarding the survey units contained in this submittal. The surveys for these survey units and associated documentation demonstrate that these areas of the facility and site are suitable for release in accordance with the criteria for decommissioning in 10CFR20, subpart E by meeting a site release criteria of 25 millirem TEDE per year over background for all dose pathways in accordance with the approved License Termination Plan.


As stated in section 4 of the Rancho Seco LTP, as long as the residual activity within a survey unit is less than the DCGL (i.e., the survey unit average activity is less than the DCGL and the EMC criterion has been met), the ALARA criterion has been achieved.

4.6 Revision 1 of Summary Report F8130541, Aux Building Room 40 As part of the corrective action for DQ#07-020, gamma surveys were made in room 40 once remediation was complete in the adjacent pump alley. The gamma survey indicated the presence 5 small elevated areas (less than 0.5 m^2 in total). In the interest of completeness, those areas were evaluated and added to Table 3-1 of the Summary Report for the survey unit. That revised report is included in Attachment 1 of this Report.

6.0 References

Rancho Seco License Termination Plan, rev. 0, submitted 4/07.

DQ#07-020, "Elevated Activity in Areas Having Already Completed FSS".

Attachment 1

Survey Unit Summary Reports