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CHAPTER 2 ACRONYMS

BDCF biosphere dose conversion factor
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2.   REPOSITORY SAFETY AFTER PERMANENT CLOSURE

Introduction—This chapter provides information relating to repository system compliance with 
postclosure performance objectives, including information relating to performance of the 
Engineered Barrier System (EBS) and natural barriers consistent with the individual and 
groundwater protection requirements of proposed 10 CFR 63, Subpart L. As such, Chapter 2
addresses the regulatory requirements of 10 CFR 63.21(c), 10 CFR 63.113, proposed 
10 CFR 63.114, 10 CFR 63.115, and proposed 10 CFR 63, Subpart L. The overall organization of 
Chapter 2, including the correlation between the Safety Analysis Report and the Yucca Mountain 
Review Plan (NUREG-1804), is described, as is the relationship between the postclosure safety 
analysis presented in Chapter 2 with Chapters 3, 4, and 5 of the Safety Analysis Report.

The strategy for developing a repository at Yucca Mountain that can safely isolate spent nuclear 
fuel (SNF) and high-level radioactive waste (HLW) after permanent closure is based on four 
foundations or principles:

1. A site selected for its ability to safely isolate waste

2. A design intended to complement the characteristics of the site and to enhance its waste 
isolation capability

3. A comprehensive safety analysis underlain by a sound technical basis

4. Institutional and administrative controls to ensure that the integrity of the repository 
will not be compromised after closure.

The safety analysis for postclosure (i.e., the collection of evidence that demonstrates that the 
repository will safely isolate SNF and HLW after closure) is summarized here and is presented in 
detail in Chapters 2, 3, 4, and 5. Section 2.1 identifies and demonstrates the capability of the 
multiple natural and engineered barriers that constitute the repository system. The EBS is designed 
to complement and take advantage of the natural characteristics of the site. Section 2.2 describes the 
comprehensive set of features, events, and processes (FEPs) that are evaluated in the total system 
performance assessment (TSPA), which is used to determine compliance with the postclosure 
repository performance objectives. Sections 2.3 and 2.4 describe the expected behavior of the 
repository system and present the technical basis for the conceptual and numerical models used to 
simulate future performance. The technical basis includes data and information collected during the 
characterization of the Yucca Mountain site as well as other information, such as the use of natural 
or manmade analogues to the repository that provide insight into how the system will perform. 
Chapters 3, 4, and 5 include information on institutional and administrative measures and controls 
that the U.S. Department of Energy (DOE) will implement to assure confidence that the repository 
will meet its performance objectives and that analyses of the repository system performance are 
reasonable and defensible. For example, any activities determined to be necessary to resolve safety 
issues are described in Chapter 3. Chapter 4 describes the Performance Confirmation Program that 
will determine whether conditions in the repository are consistent with what is anticipated and 
whether the repository is performing as projected. Chapter 5 describes the management and 
institutional controls that will be implemented to ensure that the repository is designed, analyzed, 
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and constructed in accordance with quality assurance requirements, and that appropriate 
administrative controls are in place to monitor and protect the integrity of the repository after 
closure.

The postclosure safety analysis demonstrates that a repository at Yucca Mountain can safely isolate 
SNF and HLW. As more information is acquired through design, construction, and continued testing 
and performance confirmation, the DOE will update or modify the design and operational concept 
for the repository system, as necessary, to take advantage of this increased knowledge and improve 
system safety.

The Multiple Barrier Repository System Concept—The performance of a repository at Yucca 
Mountain is controlled by the natural and engineered features of the site that act in concert to 
prevent or reduce the movement of water and/or the transport of radioactive materials to the 
accessible environment. Multiple natural features of the Yucca Mountain site and engineered 
features of the repository design combine to form the following three barriers important to waste 
isolation: the Upper Natural Barrier, the EBS, and the Lower Natural Barrier. The Upper Natural 
Barrier includes the geologic units from the surface to the repository horizon, including alluvial 
soils and gravel, the Tiva Canyon welded tuff, the Paintbrush nonwelded tuff, and the Topopah 
Spring welded tuff. The EBS is composed of the manmade features within the emplacement drifts, 
including the drip shield, waste package, waste form, and other engineered components. The 
Lower Natural Barrier includes the unsaturated and saturated volcanic tuff units below the 
repository and older bedrock units and alluvial deposits below the water table between Yucca 
Mountain and the accessible environment in Amargosa Valley.

The geologic and hydrologic characteristics of the Yucca Mountain site form effective natural 
barriers to the flow of water and to the potential movement of radionuclides. The underground 
environment within the natural setting is conducive to the design and construction of components 
that prevent or reduce the movement of water or the potential release and transport of radionuclides. 
The waste isolation capability of the natural setting at the site is a direct function of the favorable 
intrinsic characteristics of the geologic units and their durability. The capability of the EBS is 
achieved by designing components specifically to function in the natural setting of the Yucca 
Mountain repository, particularly its unsaturated rock units. The materials in the EBS have been 
chosen so that the components perform their intended functions for many thousands of years. The 
barriers in the repository system work individually and together to prevent or substantially reduce 
the rate of movement of water, the release rate of radionuclides from the waste, and the rate of 
movement of radionuclides from the repository to the accessible environment. Analyses of both the 
natural barriers and the EBS address their effectiveness both during the first 10,000 years after 
closure and for the period beyond 10,000 years, within the period of geologic stability as prescribed 
by proposed 10 CFR Part 63.

The data that support the evaluations of the performance of the natural and engineered barriers come 
from more than 30 years of scientific investigation, including characterization as part of testing 
programs in Area 25 of the Nevada Test Site, regional screening activities in the 1970s, and a formal 
program of site characterization conducted under the Nuclear Waste Policy Act. Formal site 
characterization activities began with the issuance of the Site Characterization Plan in 1988 and 
concluded with the recommendation of the site for development of a repository in 2002. These site 
characterization activities have included extensive surface-based and underground geologic 
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exploration using boreholes and geophysical exploration techniques. This testing has resulted in a 
wide range of geologic, hydrogeologic, geochemical, and geomechanical data sets that have been 
used in the development and validation of predictive models used to evaluate the possible range of 
environments in the emplacement drifts and the performance of the natural and engineered barriers 
after closure of the repository. This testing has included specific underground testing to evaluate the 
expected behavior of the repository following construction and emplacement of the waste. This 
testing has been supplemented by a range of natural and manmade analogue investigations that 
provide additional lines of evidence related to understanding the processes affecting repository 
performance. The availability of multiple lines of evidence allows the evaluation of performance 
from numerous, varying, and complementary perspectives that permit a more complete assessment 
of the overall safety and risk.

In addition to the site-specific geologic testing and analyses, laboratory testing evaluated the 
possible degradation, deterioration, and alteration of engineered materials and waste forms under a 
range of environmental conditions. This testing of features, such as the drip shield, waste package, 
waste form, and waste package internal materials, all of which contribute to barrier capability, has 
resulted in data sets that have been used in the development and validation of predictive models used 
to evaluate the design of the engineered features and the performance of these features after closure 
of the repository. This testing has included specific laboratory testing of the materials to be used in 
the construction of the repository, as well as the waste forms to be disposed of in the repository. In 
addition to laboratory testing of engineered materials, laboratory tests have been conducted to 
evaluate the characteristics of the rocks and mobility of radionuclides in the groundwater in the 
vicinity of Yucca Mountain.

Advancing the scientific understanding of the Yucca Mountain site and the associated repository 
features has involved the following: (1) developing models that can be compared to direct field or 
laboratory testing; (2) evaluating the uncertainty in these models; (3) conducting additional testing 
on those aspects of the models that are most significant; (4) subjecting the models and resulting 
analyses to technical review; and (5) revising the models as additional data are collected or reviews 
are conducted and comments are received. This iterative process is the basis for developing 
appropriate technical knowledge and understanding of the different processes and events 
representing a wide range of scientific disciplines that may potentially affect the features of the 
natural or engineered barriers. The in situ and laboratory testing programs, natural and man-made 
analogues, and data and analyses from the technical literature form the technical bases not only for 
the development but also for the validation of the models used to describe the processes acting on 
the natural and engineered features. Understanding these processes is the key to simulating the 
behaviors these processes engendered in the repository system features, which, in turn, is the basis 
for the TSPA and the analysis of barrier capability.

Notwithstanding the extensive and detailed site characterization program, including the 
development and validation of models describing the processes relevant to performance 
assessment, some uncertainty remains in the models and parameters used to evaluate the 
postclosure performance of the repository system of multiple barriers. This uncertainty includes 
uncertainty in the spatial and temporal variability in the processes affecting performance and 
uncertainty in the conceptual model most applicable to the long-term behavior of the repository.
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To assess the effects of uncertainty, various approaches have been applied. In many cases, 
uncertainty in parameters and data have been directly included in the model abstractions, and this 
uncertainty is propagated to the assessment of repository performance for both the 10,000 year 
period after closure and for the period beyond 10,000 years within the period of geologic stability 
as prescribed by proposed 10 CFR Part 63. Except for certain assumptions specified by regulation 
(such as the average percolation flux rates in the unsaturated zone for the post-10,000 year period), 
the same FEPs are considered in both the 10,000 year and post-10,000 year calculations. In some 
cases, conservative modeling approaches have been used which ultimately lead to a higher 
estimation of the dose to the reasonably maximally exposed individual and radionuclide releases to 
the accessible environment than would be expected.

Repository performance is evaluated with the TSPA model. The first step in building the model was 
to identify the relevant FEPs that would or could be important after closure of the repository
(Section 2.2). These FEPs include low probability events such as igneous activity. The FEPs are 
quantified through the use of models and parameters, which are based on testing and other 
observations and analogue studies. Uncertainty in these parameters and models is either directly 
quantified and included in the assessment of postclosure performance or has been conservatively 
approximated to ensure that predicted dose has not been underestimated. The incorporation of 
uncertainty into the scenarios analyzed in the TSPA model is described in detail in Section 2.4. 
Information relevant to the credibility of and confidence in the TSPA results is also presented, 
including verification and validation of the TSPA model and parameter uncertainty and sensitivity 
analysis. The validation studies include a performance margin analysis undertaken to assess the 
extent to which conservative assumptions embedded in the TSPA model affect the results.

DOE selection of the Yucca Mountain site and the design of the EBS and its features to complement 
the natural characteristics and conditions found at the repository are summarized below and 
described in detail in Section 2.1. The capability of the barriers to prevent or substantially reduce the 
rate of movement of water, the release rate of radionuclides from the waste, and the rate of 
movement of radionuclides from the repository to the accessible environment is also summarized, 
based on detailed discussions in Sections 2.1 and 2.3.

Upper Natural Barrier: Features, Capability, and Technical Basis—The principal barrier 
function of the Upper Natural Barrier is to prevent or substantially reduce the rate of movement of 
water from the surface to the repository, thereby reducing the amount of water that can enter the 
emplacement drifts. Yucca Mountain is in a semiarid region where precipitation and humidity are 
low, thus promoting high evaporation rates. The topography and surficial soils of Yucca Mountain 
provide the initial barrier feature that limits the movement of water into the mountain. Runoff, 
evaporation, and plant transpiration processes combine to divert water and permit only a small 
fraction of the already low expected precipitation at the site to infiltrate into the mountain. Most of 
the small amount of infiltration that does occur is associated with low-intensity winter storms that 
occur at a time when lower evaporation and transpiration rates and slow melting of the snow 
create conditions in which some limited infiltration can occur. The climate and infiltration 
analyses for Yucca Mountain demonstrate that only a small percentage of the precipitation 
actually results in infiltration of water into Yucca Mountain for present and future climates. 
Precipitation falling on Yucca Mountain is expected to remain low, even for the glacial-transition 
climates that are forecast for most of the next 10,000 years. The southern Great Basin contains 
areas, such as Yucca Mountain, that are characterized by great depth to the water table. In the 
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vicinity of the repository, the water table is currently located approximately 600 m below the 
ground surface, allowing the repository itself to be located approximately 300 m above the current 
water table.

Yucca Mountain consists of a series of alternating layers of welded and nonwelded volcanic tuffs 
with differing hydrologic properties that significantly impact the manner in which water moves 
through the mountain. The volcanic tuffs in the unsaturated zone above the repository horizon 
function as a barrier feature to prevent or reduce the movement of water through the unsaturated 
zone and into the emplacement drifts of the repository. The primary large-scale processes 
contributing to this capability are evaporation, lateral diversion of percolating water, damping of 
episodic pulses of precipitation and infiltration, and capillary forces limiting seepage into the 
emplacement drift. Because of relatively high matrix porosity and permeability and low fracture 
density, water flow within the nonwelded tuff unit is predominantly in the matrix. Interconnected 
fracture networks in the nonwelded tuff are rare and are typically associated with faults, so only a 
small percentage of the water is expected to pass through fractures. Because the flow is 
matrix-dominated and the rock matrix has a large storage capacity, the nonwelded tuff unit 
attenuates pulses in flux from the overlying welded unit, and the result is an approximately 
steady-state flux of water from the nonwelded tuff to the underlying welded tuff unit.

The welded tuff units that comprise the repository host rock have lower matrix porosity and higher 
fracture frequency than the overlying nonwelded tuff. Unsaturated flow in the welded units is 
expected to occur primarily through the fractures. The down-to-the-east dip of the units, combined 
with the effects of the contrast in the hydraulic conductivity and the heterogeneity in the fracture and 
bulk permeability across the nonwelded–welded interface, results in some lateral diversion of the 
unsaturated flow.

The rate and distribution of seepage into waste emplacement drifts control the amount of liquid 
water available to contact the EBS. In the unsaturated zone, seepage into the emplacement drifts is 
only a few percent of the percolation flux because capillary forces limit the movement of water into 
the drift openings. Water is retained in the small pores and tight fractures of the low-porosity welded 
tuff, and a substantial fraction of the flow moves around the drift opening and drains through the 
rock pillars between the drifts. The effectiveness of capillary forces in limiting water movement into 
drifts and moving flow around them depends on the characteristics of the fractures, on the 
connectivity and permeability of the fracture network, and on the characteristics of the drift 
openings. For a period of time that is dependent on location within the repository, the decay heat of 
the emplaced waste is great enough to heat the rock near the emplacement drifts. As long as the 
temperature is above the boiling point of water at the drift wall, liquid water will be vaporized. This 
thermal effect further limits seepage into the emplacement drifts.

Site data characterizing the features and processes of the unsaturated system at Yucca Mountain 
have been collected since the late 1970s. The test data are used to develop the numerical models of 
the processes to which the natural system features are subjected. These process models, in turn, form 
the basis for the overall model of the repository system, the TSPA. The data are of numerous types, 
including lithology, rock hydrologic properties, mineralogy, temperature, geochemistry, climate, 
and infiltration data. The data have been collected from surface based activities, such as geologic 
mapping and installation of vertical boreholes, as well as from subsurface mapping, sampling, and 
in situ testing in excavated tunnels. More than 450 boreholes have been drilled as part of the 
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characterization of the Yucca Mountain site. More than 10 km of tunnel have been constructed to 
allow scientists the access needed to perform large-scale tests of processes important to 
understanding the performance of the repository.

Climate studies and infiltration studies are particularly important to understanding how much water 
could be available and how it would infiltrate. The climate studies include not only local 
meteorological monitoring stations but also intensive investigations of regional indicators, 
including paleo-indicators of past climates covering more than several hundred thousands of years 
of history. The infiltration study used nearly 100 shallow boreholes located on ridge tops, on side 
slopes, on stream terraces, and in stream channels to measure the changes in water-content profiles 
in response to precipitation and snowmelt events. Studies of the permeability of the mountain 
encompass laboratory- to mountain-scale tests. The unique character of the fractured, unsaturated 
rocks has allowed scientists to test at scales ranging from centimeters to kilometers and to 
understand the role and effects of the fractures in unsaturated zone flow and transport through Yucca 
Mountain.

Capillary flow around emplacement drifts has been investigated through a series of tests conducted 
from the Exploratory Studies Facility (ESF) and the Enhanced Characterization of the Repository 
Block Cross-Drift. The seepage tests were motivated by the observed absence of seepage in the ESF 
drifts following their excavation. Seepage into the openings was monitored while pulses of water 
were applied into the rock above the opening. Staining dyes were used to monitor the presence of 
seepage and the extent of seepage water movement within fractures and openings. A very 
large-scale test was also conducted where the upper exploratory tunnel (the Enhanced 
Characterization of the Repository Block Cross-Drift) crosses over the main tunnel (ESF). These 
tests indicate that a substantial fraction of the water moving in fractures in the unsaturated zone will 
be diverted around emplacement drifts.

The ESF was also used to field an ongoing long-term thermal test that involved heating a 50-m-long 
drift to directly simulate the effects of waste heat in the emplacement drifts in the tuffs at Yucca 
Mountain. About 6,000 channels of instrumentation yielded data that were used to validate process 
models, such as the thermal-hydrologic, thermal-mechanical, flow and seepage, and 
thermal-hydrologic-chemical models. The rock mass heated in this test experienced a thermal 
environment somewhat hotter than the repository design; temperatures above the boiling point of 
water were reached in about 20,000 m3 of rock. The test mobilized water held by capillary forces 
within the rock mass as the boiling front moved into the rock mass. Instrumentation and several 
types of hydrologic and geophysical probes allowed scientists to track the movement of water and 
relate this phenomenon to how the repository would perform at Yucca Mountain.

EBS: Features, Capability, and Technical Basis—The EBS is comprised of the emplacement 
drift, drip shield, waste package, naval SNF structure, waste form and waste package internals 
(including transportation, aging, and disposal canisters; naval canisters; HLW canisters; and DOE
SNF canisters), waste package pallet, and invert features. The principal barrier function of the 
EBS is to prevent or substantially reduce the release rate of radionuclides from the waste. The 
capability of the EBS to prevent or limit the movement of water and prevent contact between 
water and waste depends on the integrity of several features. Although the emplacement drifts are 
expected to degrade over time, absent disruptive events, engineered features including the drip 
shield and waste packages are expected to remain largely intact for more than 10,000 years, and 
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none of the waste forms is expected to be exposed to water during this period. As a result, no 
release of radionuclides is expected to occur during the first 10,000 years after closure of the 
repository in the absence of disruptive events. The small possibility of early failure of some waste 
packages due to fabrication errors or unexpected localized corrosion has been considered in 
assessing the overall barrier capability. The engineered features that comprise the EBS and a 
description of their contribution to EBS function are summarized below. The possibility that 
disruptive seismic and volcanic events may occur has also been considered, as described below.

The emplacement drift feature provides a stable environment for the other engineered features. The 
mechanical effects of the degradation of the emplacement drifts, such as rockfall and drift collapse, 
do not significantly affect the performance of the drip shield and waste package except during low 
probability disruptive seismic and volcanic events. However, during the period beyond 
10,000 years, within the period of geologic stability as prescribed by proposed 10 CFR Part 63, all 
types of engineered features are expected to be degraded by corrosion. The TSPA considers the 
effects of the degradation of the engineered features over time, including uncertainty with respect 
to the rate of degradation.

The drip shield is designed to divert seepage away from the waste package. It prevents water from 
contacting the waste package as long as it remains intact. Similarly, as long as the waste packages 
are intact, water cannot contact the waste forms. The cladding on SNF also prevents the contact of 
seepage water with that portion of the SNF that is inside of the cladding as long as it remains intact. 
However, for the purposes of the TSPA analyses, commercial and DOE SNF cladding are assumed 
to be instantaneously degraded when the waste packages are breached. The effect of naval SNF 
structure on radionuclide release is accounted for in the TSPA analyses. The capability of the drip 
shields, waste packages, and SNF cladding depends on their integrity over time. The degradation 
rates for general corrosion for titanium are determined to be sufficiently low that none of the drip 
shields are expected to breach by this mode of corrosion before 10,000 years after closure of the 
repository. Stress corrosion cracking may occur as a result of rockfall onto the drip shields caused 
by low probability seismic events. Even with corrosion of the drip shields, the small width of any 
stress cracks impedes water movement onto the waste packages. For the calculations for the period 
beyond 10,000 years, within the period of geologic stability as prescribed by proposed 10 CFR 
Part 63, degradation and failure of the drip shields is expected to occur: the rate and extent of 
degradation and associated uncertainty are included in the TSPA analyses.

The degradation rates for general corrosion for Alloy 22 (UNS N06022), the material the outer shell 
of the waste packages is constructed of, are sufficiently low that none of the waste packages are 
expected to breach as a result of general corrosion mechanisms before 10,000 years after closure of 
the repository. Stress corrosion cracking may occur in the weld regions of some of the waste 
packages. Mitigation techniques (e.g., low plasticity burnishing) are employed to reduce residual 
stresses below the stress corrosion cracking threshold, but there remains the potential for breaches 
of some waste packages before 10,000 years after closure of the repository. Early failure of a very 
small fraction (less than 0.01% on average) of waste packages may occur due to flaws that are 
undetected during fabrication or as a result of damage during handling. The probability for early 
failure due to manufacturing- or handling-induced defects is small because of the quality control 
and inspection measures employed, such as nondestructive examination techniques. For the 
calculation involving the period beyond 10,000 years, within the period of geologic stability as 
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prescribed by proposed 10 CFR Part 63, degradation of the waste packages is expected to occur. 
The rate and extent of degradation, and associated uncertainty, are considered in the TSPA analyses.

Even after waste packages are breached, the release rate of radionuclides is limited by the 
characteristics and behavior of the other features of the EBS. The release of radionuclides is first 
impeded by the rate of degradation of the waste form. Waste form degradation cannot begin until the 
waste package is breached, allowing the ingress of air and moisture. Because of the unsaturated 
environment, the presence of drip shields and waste packages, and the elevated temperatures within 
waste packages, the amount of water in contact with the waste form is expected to be limited to that 
which could possibly adsorb on the waste form surface. Release of radionuclides out of the waste 
package depends on the chemical environment and moisture conditions within the waste package. 
Release can occur only if radionuclides are dissolved in water or attached to colloids and if there are 
continuous liquid pathways in the waste package, including thin films of adsorbed water.

Advective transport of radionuclides out of the EBS can occur only if there is a liquid flux of water 
along these pathways and if breaches are sufficiently open to permit flow. The movement of many 
dissolved radionuclides, including those that are the greatest contributors to the total inventory, is 
retarded by sorption on iron corrosion products within the waste package. The retardation depends 
on the volume of these corrosion products and on the distribution coefficients associated with them. 
Sorption onto the corrosion products also reduces movement of those radionuclides reversibly 
attached to colloids in the water. The radionuclide inventory released from the EBS after the waste 
package is breached is limited so long as the drip shield remains intact or is damaged only by stress 
corrosion cracking, precluding advective flow out of the waste package and through the invert; in 
this case, the release is purely diffusive. Both diffusive and advective releases have been considered 
in the evaluation of radionuclide releases from the EBS.

The EBS prevents, or substantially reduces, the release rate of radionuclides from the waste and 
prevents, or substantially reduces, the rate of movement of radionuclides from the repository to the 
accessible environment. It performs these functions by virtue of the materials and design of the 
individual features of the EBS, which work together to minimize chemical and mechanical 
degradation and deterioration processes, and to limit or prevent the movement of water and 
radionuclides out of the repository. In addition, the EBS provides for chemical and 
thermal-hydrologic environments that lead to low solubilities for most of the radionuclides that 
comprise the greatest fraction of the inventory activity. Finally, the EBS environments are such that 
radionuclide transport from the waste to the unsaturated zone is limited to a small fraction of the 
available inventory (less than 3 × 10−3% in 10,000 years and 5% in 1 million years), even in the case 
of seismic-induced mechanical degradation.

Data characterizing the features and processes of the EBS were also collected during site 
characterization. The test data are used to develop the numerical models of the processes to which 
the EBS features are subjected. These process models, in turn, form the basis for the overall model 
of the system: the TSPA. Corrosion tests were conducted on specimens of waste package and drip 
shield materials, including titanium and Alloy 22. The tests examined many forms of corrosion: 
pitting, stress corrosion cracking, galvanic corrosion, corrosion in crevices, and general corrosion. 
The results of the tests were used to develop corrosion models to predict the long-term behavior of 
the materials in the repository. Test environments for long-term corrosion testing were structured to 
encompass a range of concentrated geochemical solutions. The samples were exposed in the 
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aqueous phase, in the vapor phase above the solutions, and at the waterline. Thousands of 
specimens, including welded samples, have been subjected to multiyear tests under a range of 
environments. These tests have been supplemented with short-term tests, including tests in more 
aggressive brines than are anticipated in the repository environment, to evaluate a range of possible 
degradation processes for the engineered materials.

Models of the behavior of engineered material subjected to heat in an underground environment 
over the long-term must consider numerous environmental factors. Composition of evaporatively 
concentrated waters, evolution of the chemical environments, minerals and salts formed by 
evaporation, the composition of waters in the emplacement drifts, and microbial activity in the 
emplacement drifts are among the factors that were considered and addressed by the testing 
programs.

The range of potential types of aqueous solutions that could contact the drip shield and waste 
package surfaces have been deduced from the range of potential starting water compositions, from 
knowledge of near-field and in-drift processes that can alter these compositions, and from 
laboratory experiments and natural analogue observations. From these results, a range of water 
compositions was developed and used for corrosion testing.

Testing relevant to in-package chemistry has considered the role of heat and the interaction of water 
chemistry and waste form degradation. Testing has also included the interaction of water with drift 
gases, waste package materials, and EBS materials. Many tests have been performed to evaluate the 
mechanism and rate of degradation of commercial SNF under various conditions. These include 
oxidation tests, batch tests, unsaturated drip tests, vapor phase tests, electrochemical tests, and 
flow-through tests. These have been supplemented by tests of expected radionuclide mobility once 
the waste form is altered.

Lower Natural Barrier: Features, Capability, and Technical Basis—The Lower Natural Barrier 
prevents or substantially reduces the rate of movement of radionuclides from the repository to the 
accessible environment. The Lower Natural Barrier includes the unsaturated zone below the 
repository horizon and the saturated zone below the repository and downgradient from the 
repository to the accessible environment. The sequence of tuffs comprising the unsaturated zone 
below the repository provides a feature that is currently 300-m thick, on average. The transport of 
radionuclides through the Lower Natural Barrier is limited by the rate of movement of water down 
from the repository horizon to the water table. The welded tuff at the repository horizon is 
characterized by low matrix permeability and well-connected, steeply dipping fracture networks. 
Below the southern part of the repository, the underlying nonwelded tuff unit is vitric and 
characterized by relatively high matrix permeability. Fractures are rare to nonexistent in the vitric 
part of the unit, and flow and transport are predominantly through the rock matrix. Beneath the 
northern part of the repository, the underlying nonwelded tuff unit is strongly altered to a mixture 
of minerals, including zeolites and clays. The minerals have precipitated in the pores of the rocks 
so that the matrix permeability of the zeolitic part of the unit is low. Most of the downward flow that 
does occur within the zeolitic part of the unit is conservatively assumed to occur in fractures. The 
fracture network within this unit is poorly developed and not well connected. Below this unit are the 
devitrified and zeolitized tuffs of the underlying welded tuff unit. These tuffs have lower matrix 
permeability than the vitric portion of the unit, and flow and transport through them are primarily 
in fractures. The fracture networks in these nonwelded tuffs are generally not well connected.
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Radionuclides that migrate down through the unsaturated zone to the water table must be 
transported through the saturated zone before they can reach the accessible environment. 
Groundwater below Yucca Mountain is part of the Alkali Flat–Furnace Creek groundwater subbasin 
within the Death Valley groundwater system. Present-day flow is to the south and east near Yucca 
Mountain. The southeasterly flow from the site is incorporated into the stronger southward flow in 
western Jackass Flats. The saturated zone of the Lower Natural Barrier includes the fractured 
volcanic rocks from below the repository to approximately 12 to 14 km south of Yucca Mountain 
and the saturated alluvium to the accessible environment. The movement of radionuclides in the 
saturated zone is limited first by the velocity of water that transport them. In addition, several 
processes, such as matrix diffusion and radionuclide sorption, cause the movement of radionuclides 
to be slower compared to the rate of movement of the water.

Flow in the volcanic aquifers is predominantly in the fractures. Radionuclides can exchange 
between the fractures and matrix via matrix diffusion. This diffusive exchange results in a slower 
effective travel velocity for the bulk of the released radionuclides relative to water-flow velocities 
in the fractures for two reasons. First, the velocity of water in the pores of the matrix is slower than 
velocities in the fractures. Second, sorption onto mineral surfaces in the matrix pores will result in 
even slower movement for those sorbing radionuclides that diffuse into the matrix materials.

Because the alluvial materials are a porous medium, water flow and radionuclide transport occur in 
intergranular pores. The effective porosity of the alluvium is significantly greater than the fracture 
porosity of the tuffs. Consequently, flow velocities in the alluvium are smaller than those in the 
fractures of the volcanic aquifers. Although matrix diffusion is not considered to be important in the 
alluvium, radionuclide movement is slow because of the low water velocity. In addition, sorption 
onto minerals in the alluvium results in retardation of the radionuclide movement relative to water 
movement in these sediments.

The Lower Natural Barrier prevents or substantially reduces the rate of movement of radionuclides 
from the repository to the accessible environment. The key processes associated with the 
performance of the Lower Natural Barrier include sorption and matrix diffusion. The radionuclides 
representing the dominant inventory during the first 10,000 years after closure are 137Cs, 90Sr, 
241Am, 240Pu, and 239Pu. In the absence of disruptive events, the Lower Natural Barrier reduces 
activity releases from the EBS by greater than 99.5% (240Pu, 239Pu, 241Am) to 100% (137Cs and 90Sr). 
Activity releases of the solubility-limited, strongly sorbed, long half-life Pu isotopes (239Pu and 
242Pu) are reduced by more than 99%. For radionuclides of low-to-moderate solubility, low 
sorption, and long half-life (e.g., 237Np and 234U), the Lower Natural Barrier reduces activity 
releases from the EBS by 78% (237Np) to 89% (234U). Activities associated with radionuclides 
important to colloid transport and decay chain in-growth (e.g., 243Am, 230Th, and 226Ra) were 
reduced by the Lower Natural Barrier by more than 99%. The activity of 99Tc, a highly soluble, 
nonsorbing, long half-life radionuclide, is reduced by the Lower Natural Barrier by about 62% 
during the first 10,000 years. 99Tc does not represent a significant fraction of initial inventory, but 
is important to dose projections both before and after 10,000 years.

For the period after 10,000 years, the inventories of 137Cs and 90Sr are depleted by radioactive decay, 
and the Lower Natural Barrier reduces activity releases of 241Am by 100% and 240Pu by 98%. 
Activities of the long half-life Pu isotopes are reduced by 90% (239Pu) and 66% (242Pu) respectively. 
243Am, 230Th, and 226Ra are reduced by 85% (230Th) to greater than 97% (243Am, 226Ra). The 
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activities of low-to-moderate solubility, low sorption, long half-life radionuclides are reduced by 
approximately 23% (237Np) to 32% (234U). Release of the mobile radionuclide, 99Tc, is reduced by 
about 5% by the Lower Natural Barrier. The nonsorbing nature of this radionuclide causes it to be 
transported through the EBS and the Lower Natural Barrier at approximately the rate at which the 
groundwater travels.

In addition to the test programs that address water flow in the unsaturated rock units above the 
repository, tests were conducted to collect the data necessary to understand the radionuclide 
transport and retardation phenomena in the unsaturated rock units below the repository horizon. 
Transport processes in the vitric Calico Hills nonwelded unit were undertaken in the Busted Butte 
underground facility located approximately 8 km southeast of the repository area. Tracer-injection 
tests, partial mine-out, and geophysical measurements (e.g., ground-penetrating radar, electrical 
resistivity tomography, and neutron logging) were performed to map solute migration patterns.

Hydraulic tests in the saturated rocks and alluvium in the vicinity of Yucca Mountain were 
performed in single-borehole and multiple-borehole tests. Results from large-scale (tens of meters) 
hydraulic and tracer testing were used to increase confidence in the conceptualization of flow and 
transport in the fractured tuff. The test results also support the hypothesis that fractures are more 
important than matrix in controlling hydraulic conductivity of the volcanic rocks in the saturated 
zone.

Postclosure Performance Assessment: Compliance with Individual and Groundwater 
Protection Standards—TSPA analyses have been performed to evaluate the performance of the 
repository for 10,000 years after closure of the repository, as well as for the period beyond 
10,000 years, within the period of geologic stability as prescribed by proposed 10 CFR Part 63.
The standards for Yucca Mountain embodied in proposed 10 CFR 63, Subpart L, address all 
potential pathways of radiation exposure. The standards limit an individual’s annual radiation 
exposure from all pathways to no greater than 15 mrem, for 10,000 years after repository closure, 
and requires that the DOE calculate the dose to which individuals could be exposed for the period 
beyond 10,000 years, within the period of geologic stability as prescribed by proposed 10 CFR 
Part 63. To preserve groundwater quality for this and future generations, the U.S. Nuclear 
Regulatory Commission set a standard to protect the groundwater at and around Yucca Mountain. 
This standard sets specific limits for the concentration of different types of radioactive particles in 
the groundwater. The DOE must also assess the likelihood of an inadvertent human intrusion into 
the repository and, depending on that result, its consequence for a period of 10,000 years after 
closure, as well as an assessment for human intrusion during the period of geologic stability.

The TSPA is also used to assess the effects of uncertainty in the data and models on the overall 
results of repository performance assessment. Four scenario classes are considered in the TSPA: 
(1) the nominal scenario class, which includes all FEPs that are screened in according to the FEPs 
screening process, except those FEPs related to early waste package and drip shield failure, and 
igneous or seismic activity; (2) the early failure scenario class, which includes FEPs related to early 
waste package and drip shield failure due to manufacturing or material defects or to 
preemplacement operations including improper heat treatment; (3) the igneous scenario class, 
which is comprised of the igneous intrusion and volcanic eruption modeling cases, both of which 
are based on unlikely low-probability events; and (4) the seismic scenario class, which is comprised 
of the seismic ground motion modeling case and the seismic fault displacement modeling case. The 
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sum of the mean annual dose estimates for the nominal, early failure, igneous, and seismic scenario 
classes provides an estimate of the mean annual dose for the total system. For the period ending 
10,000 years after disposal, the result obtained by adding together the mean annual dose curves for 
the four scenario classes indicates that the mean annual dose for the total repository system is 
approximately 0.24 mrem/yr and occurs 10,000 years after repository closure. Even considering the 
conservative nature of the TSPA model and analyses, this mean annual dose is significantly less than 
the individual protection standard. This total is most significantly affected by the seismic ground 
motion modeling case and the igneous intrusion modeling case.

For the period after 10,000 years within the period of geologic stability as prescribed by proposed 
10 CFR Part 63, the TSPA projects a peak median annual dose of approximately 0.96 mrem/yr. This 
total is also most significantly affected by the seismic ground motion modeling case and the igneous 
intrusion modeling case. The modeled dose is well below the proposed standard of 350 mrem/yr and 
is a fraction of naturally occurring background radiation.

In addition to the four scenario classes above, there is a separate human intrusion scenario which is 
a stylized analysis specified in proposed 10 CFR Part 63 that describes performance of the 
repository system in the event that there is a single human intrusion as a result of exploratory drilling 
for groundwater.

The earliest time after disposal that the drip shields and waste packages would have degraded 
sufficiently that a human intrusion could occur without recognition by the drillers is approximately 
200,000 years, based on analyses of drip shield and waste package integrity. The estimated annual 
dose resulting from the stylized human intrusion is approximately 0.01 mrem/yr, well below the 
regulatory limit of 350 mrem/yr.

Demonstration of the performance of the repository also includes compliance with the separate 
groundwater protection standards for specific radionuclide concentrations. Radionuclide 
concentrations are calculated by summing the mass of radionuclides reaching the accessible 
environment in each year for all likely FEPs and dividing that sum by the representative volume of 
water to calculate the annual radionuclide concentrations. The groundwater protection standards 
require calculations of the predicted concentrations of combined 226Ra and 228Ra and gross alpha 
activity in a representative volume of 3,000 acre-ft of groundwater. The standards also require 
calculation of the annual dose to the whole body and organs from beta- and photon-emitting 
radionuclides resulting from drinking 2 L of water per day. The background level of the combined 
226Ra and 228Ra concentration in groundwater is about 0.5 pCi/L. This measured background 
concentration must be added to the calculated concentration of combined 226Ra and 228Ra released 
from the repository for comparison with the postclosure groundwater protection standard for 
combined 226Ra and 228Ra. Because the calculated concentration of combined 226Ra and 228Ra 
released from the repository is less than 10−6 pCi/L, the total combined 226Ra and 228Ra 
concentration is reasonably approximated by the measured background level of about 0.5 pCi/L. 
This concentration is well below the limit of 5 pCi/L. Thus, the DOE has demonstrated that there is 
a reasonable expectation that, for 10,000 years of undisturbed performance after closure, releases of 
226Ra and 228Ra from waste in the Yucca Mountain repository to the accessible environment will not 
cause the level of radioactivity in the representative volume of groundwater to exceed the regulatory 
limits.
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The TSPA analyses of gross alpha activity concentrations (excluding radon and uranium) in the 
representative volume of groundwater due to repository releases are less than 10−4 pCi/L. This value 
is significantly lower than the background concentration of about 0.5 pCi/L, which, in turn, is 
significantly less than the gross alpha groundwater protection standard of 15 pCi/L.

The TSPA analyses of the mean annual doses associated with beta- and photon-emitting 
radionuclides in the drinking water indicate a maximum dose of approximately 0.26 mrem for the 
thyroid. This value is lower than the 4 mrem limit specified in 10 CFR 63.331, Table 1.

Organization of This Chapter—This chapter is organized in a manner generally consistent with 
Section 2.2.1 of NUREG-1804; each section contains an introduction summarizing information 
presented in the section and identifying applicable sections of proposed 10 CFR Part 63 and the 
acceptance criteria of NUREG-1804 addressed by the information in the section. Section 2.1
describes the repository system and the capabilities of its three barriers: the Upper Natural Barrier, 
the EBS, and the Lower Natural Barrier. The information in Section 2.1 addresses the 
performance objectives of 10 CFR 63.113(a) and 10 CFR 63.115 regarding the identification of 
multiple barriers and the demonstration of the ability of such barriers to isolate waste.

Section 2.2 describes the FEPs that are evaluated for incorporation into the models assessing 
repository performance. The section tabulates the FEPs and indicates whether the FEPs are included 
or excluded from representation in the TSPA. It also explains how FEPs included for representation 
in the TSPA are organized into four scenario classes (i.e., nominal, early failure, igneous, and 
seismic) for assessing compliance with the postclosure performance objectives. 

Section 2.3 presents the technical bases for models and model abstractions that are used as a basis 
for the development of parameter inputs to the TSPA. Sections 2.3.1 to 2.3.11 describe the 
physical setting, coupled processes (i.e., thermal, chemical, mechanical, and hydrologic) in the 
repository system, processes in the biosphere that determine exposure to radionuclides and 
resultant doses, and disruptive events. Sections 2.3.1 to 2.3.11 cover characterization of the 
processes, analytical models of the processes, and uncertainty of the characterization of the data 
and parameters used in the models. In Section 2.3, the order of the presentation of the models 
generally follows the path of water from the surface of Yucca Mountain down to the repository 
horizon, through its interaction with the EBS, and then to the accessible environment through the 
unsaturated and saturated zones. In addition, discussions in Section 2.3 generally mirror the 
acceptance criteria set forth in NUREG-1804 and appear in the following order:

• Conceptual description of the model (NUREG-1804, Acceptance Criterion 1)
• Data and data uncertainty (NUREG-1804, Acceptance Criteria 2 and 3)
• Model and model uncertainty (NUREG-1804, Acceptance Criterion 4)
• Model abstraction and validation (NUREG-1804, Acceptance Criterion 5).

Section 2.4 presents a discussion of the TSPA model and the analytical results that demonstrate 
compliance with the performance objectives of 10 CFR 63.113(b), (c), and (d) for individual 
protection, groundwater protection, and human intrusion, respectively. Section 2.4.1 summarizes 
the method and approach of the DOEs performance assessment, including the scenario classes, the 
major components and associated submodels of the TSPA model, and an introduction to the 
modeling cases used to compute the annual dose. The TSPA computational structure, and the 
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treatment of aleatory and epistemic uncertainties, is briefly described. Section 2.4.2 shows that the 
EBS and the natural barriers, working in combination, maintain the mean annual dose to the 
reasonably maximally exposed individual due to releases from the undisturbed repository system 
below 0.15 mSv (15 mrem) for the period up to 10,000 years after repository closure. For the period 
beyond 10,000 years, within the period of geologic stability as prescribed by proposed 10 CFR 
Part 63, the TSPA projects that the dose will not exceed 3.5 mSv (350 mrem), as set forth in 
proposed 10 CFR 63.311. Section 2.4.3 provides an evaluation of a potential human intrusion event 
and demonstrates that intrusion without recognition by drillers will not occur within 10,000 years. 
Section 2.4.4 describes the location and extent of the representative volume of groundwater used to 
address repository performance and the results of the assessment. The TSPA shows that there is a 
reasonable expectation that for 10,000 years of undisturbed performance, any radioactive releases 
from the repository system into the accessible environment will not cause the level of radioactivity 
in the representative volume of groundwater to exceed the limits set forth in 10 CFR 63.331, 
Table 1.
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2.1 SYSTEM DESCRIPTION AND DEMONSTRATION OF MULTIPLE BARRIERS
[NUREG-1804, Section 2.2.1.1.3: AC 1, AC 2, AC 3]

A critical element for repository safety is a site and system that provide multiple barriers to the 
movement of water and radionuclides. A barrier is defined in 10 CFR 63.2 as any material, structure, 
or feature that prevents or substantially reduces the rate of movement of water or radionuclides from 
the Yucca Mountain repository to the accessible environment, or prevents the release or 
substantially reduces the release rate of radionuclides from the waste. The barrier capability 
analyses were conducted for two time periods: the 10,000-year period after closure, and the 
post-10,000-year period after closure through the period of geologic stability (defined to end at 
1,000,000 years) (proposed 10 CFR 63.302 (70 FR 53313)).

The repository system is composed of natural and engineered features that function together as 
two natural barriers, and an engineered barrier, designated as the Upper Natural Barrier, the Lower 
Natural Barrier, and the Engineered Barrier System (EBS). These three barriers provide the 
following principal barrier functions:

• The Upper Natural Barrier, by preventing or substantially reducing the rate of movement 
of water into the repository, prevents or substantially reduces the rate of movement of 
radionuclides from the repository to the accessible environment.

• The EBS prevents or substantially reduces the rate of movement of water to the waste, 
prevents or substantially reduces the release rate of radionuclides from the waste, and 
prevents or substantially reduces the rate of movement of radionuclides from the 
repository to the accessible environment.

• The Lower Natural Barrier prevents or substantially reduces the rate of movement of 
radionuclides from the repository to the accessible environment.

As defined by 10 CFR 63.302, the accessible environment means any point outside of the controlled 
area, including: (1) the atmosphere (including the atmosphere above the surface area of the 
controlled area); (2) land surfaces; (3) surface waters; (4) oceans; and (5) the lithosphere. For the 
purposes of the total system performance assessment (TSPA), the reasonably maximally exposed 
individual (RMEI) is to be located in the accessible environment, designated as 18 km south of the 
repository in the Amargosa Valley (GI Section 5.2.6.1 and GI Figure 1-4).

The three repository system barriers are important to waste isolation (ITWI), and function in a 
manner to provide a reasonable expectation that spent nuclear fuel (SNF) and high-level radioactive 
waste (HLW) can be disposed of without exceeding the release limit and exposure limit 
requirements of 10 CFR 63.113(b) and (c). The specification of these barriers as ITWI is a result of 
an analysis conducted and documented in Postclosure Nuclear Safety Design Bases (SNL 2008a). 
The understanding of the barriers gained through characterization of the site and repository system 
permits a demonstration that the barriers work together to perform their postclosure functions. This 
demonstration is presented in this section, and is outlined as follows.
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Section 2.1.1 identifies the features of the natural barriers and the EBS that contribute to barrier 
performance. This section also identifies the relationships between the three barriers and the models 
utilized in the TSPA.

Events and processes act upon the natural and engineered features (SNL 2008a). The primary 
analytical bases for inclusion and exclusion of events and processes in the postclosure performance 
assessment are summarized in Section 2.2 and are documented in Features, Events, and Processes 
for the Total System Performance Assessment: Analyses (SNL 2008b, Section 6.2). Section 2.3
describes the models that implement the included events and processes. For completeness, some 
models related to excluded processes are also discussed in Section 2.3.

Section 2.1.2 describes the capability of the barriers to perform one or more barrier functions and 
considers the impacts of likely and unlikely events. This section also demonstrates that the EBS and 
the two natural barriers, working in combination, result in a repository system with multiple 
barriers. Section 2.1.2 includes an evaluation of (1) the time period over which the barriers 
function; and (2) the uncertainty associated with analyses of barrier capability. The demonstration 
of barrier capability considers both qualitative and quantitative information. Qualitative 
information includes a summary of the events and processes acting on each barrier feature that 
contribute to barrier capability. Quantitative information supporting barrier capability is developed 
using the TSPA model, and is presented both for the time period up to 10,000 years after repository 
closure and for the post-10,000-year period (i.e., after 10,000 years but through the period of 
geologic stability ending at 1,000,000 years).

Barrier capabilities determined to be important are included in the TSPA model. Potential barrier 
capabilities related to excluded features, events, and processes (FEPs) are not included in the TSPA 
model (SNL 2008a, Section 6.2). Reasonably conservative model assumptions are sometimes made 
in the TSPA that result in the tendency of the TSPA model to overestimate release and subsequent 
dose. Such assumptions are made to reduce model complexity or data needs, or to account for 
uncertainty in processes. An example discussed in Section 2.1.1.2 is cladding. Although it is 
recognized that cladding on commercial SNF may contribute to barrier capability, no credit is taken 
for its potential performance in the TSPA model. The rationale for this assumption is described in 
Section 2.3.7.6. The technical basis for the barrier capabilities discussed in Section 2.1.2 is 
consistent with the technical basis for the TSPA, and is commensurate with the importance of each 
barrier’s capability.

Section 2.1.3 summarizes and cross-references the technical basis for the models that are used to 
evaluate barrier performance and capability, and which are abstracted for use in the TSPA to 
demonstrate compliance with the performance objectives of 10 CFR 63.113(b) and (c).
Section 2.1.4 integrates the content of Section 2.1.1 through 2.1.3 into a brief overview.

The demonstration of barrier capability presented in Section 2.1 is based on data and analyses 
described in Section 2.3. These data and analyses are the same as those used to support the TSPA 
model and analyses presented in Section 2.4. More detailed discussion of the implementation of 
these data, models, and analyses in the TSPA is presented in Section 2.4.
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The information presented in the table below summarizes the content of this section, the 
corresponding regulatory requirements, and the applicable acceptance criteria from 
NUREG-1804:

.

2.1.1 Identification of Barriers
[NUREG-1804, Section 2.2.1.1.3: AC 1]

The repository system is composed of three barriers: the Upper Natural Barrier, the EBS, and the 
Lower Natural Barrier (SNL 2008a). These three barriers are ITWI. The specification of these 
barriers as ITWI is a result of an analysis conducted and documented in Postclosure Nuclear Safety 
Design Bases (SNL 2008a, Section 6). Table 2.1-1 identifies the features that comprise each barrier, 
their contribution to barrier function, and their safety classification (SNL 2008a).

As defined by 10 CFR 63.2, ITWI—with reference to design of the EBS and characterization of 
natural barriers—means those engineered and natural barriers whose function is to provide a 
reasonable expectation that SNF and HLW can be disposed of without exceeding the requirements 
of 10 CFR 63.113(b) and (c). For the purposes of this section, the term barrier is used in the context 
of the three defined barriers described above. A barrier’s features may contribute to the barrier’s 
capability. Therefore, ITWI is a classification assigned to a barrier or a barrier's feature, based on its 
capability of preventing or substantially reducing the rate of movement of water or radionuclides 
from the Yucca Mountain repository to the accessible environment, or preventing the release or 
substantially reducing the release rate of radionuclides from the waste (SNL 2008a, Section 6.1.1). 
A barrier’s feature is classified as ITWI if it meets two conditions: (1) the feature is associated with 

SAR 
Section Information Category

Proposed
10 CFR Part 63 

Reference NUREG-1804 Reference

2.1 System Description and 
Demonstration of Multiple Barriers

63.21(c)(9)a 

63.21(c)(14)a 

63.113(a)a 

63.115(a)a 

63.115(b)a 

63.115(c)a

Section 2.2.1.1.3: 
Acceptance Criterion 1 
Acceptance Criterion 2 
Acceptance Criterion 3

2.1.1 Identification of Barriers 63.21(c)(9)a 

63.21(c)(14)a 

63.113(a)a 

63.115(a)a

Section 2.2.1.1.3:  
Acceptance Criterion 1

2.1.2 Barrier Capability Description 63.21(c)(9)a 

63.21(c)(14)a 

63.113(a)a 

63.115(b)a

Section 2.2.1.1.3: 
Acceptance Criterion 2

2.1.3 Technical Bases for Barrier Capability 63.115(c)a Section 2.2.1.1.3: 
Acceptance Criterion 3

2.1.4 Summary Not applicable Not applicable

NOTE: aNot changed by the proposed rule.
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one or more processes or characteristics (SNL 2008a) classified as important to barrier capability; 
and (2) the feature is a significant contributor to the barrier capability relative to the other features 
of the barrier. In addition, a feature is classified as ITWI if it is one of the engineered features of the 
geologic repository whose function is to prevent or mitigate the consequences of potential 
disruptive events (e.g., criticality) per 10 CFR 63.142(a).

The association of FEPs with features of barriers and the identification of FEPs that are important 
contributors to barrier capability (SNL 2008a) are presented for the Upper Natural Barrier, EBS, and 
Lower Natural Barrier in Tables 2.1-2, 2.1-3, and 2.1-4, respectively. To ensure that the TSPA is 
representative of repository postclosure performance, it is necessary that the features, together with 
the geologic conditions relied upon in the TSPA, are within analyzed conditions at the time the 
repository is closed. Table 1.9-9 contains a summary of the parameters that require controls to 
ensure that the postclosure performance assessment analytical bases are established during design, 
preclosure construction, procurement, operations, and closure.

Figure 2.1-1 is a schematic representation of the repository system that shows the three barriers and 
the features making up each barrier. The geologic and hydrologic features and characteristics of the 
Yucca Mountain site form effective natural barriers to the flow of water and to the potential 
movement of radionuclides. The underground environment within the natural setting is conducive 
to the design and construction of EBS features that prevent or substantially reduce the potential 
release of radionuclides from the waste. Table 2.1-5 shows the relationships among the three 
barriers and the models utilized in the TSPA. These models are the same as those used for the 
analysis of barrier capability that is presented in Section 2.1.2.

The barrier capability discussion that follows is organized by barrier and by the features of each 
barrier. The features of the Upper Natural Barrier are evaluated with respect to how they prevent or 
substantially reduce the rate and amount of water that may seep into the repository drifts and, in turn, 
reduce the quantity of water potentially contacting the waste form. The features of the EBS are 
evaluated with respect to how they prevent or substantially reduce the release rate of radionuclides 
from the waste, and how they prevent or substantially reduce the rate of movement of radionuclides 
from the repository to the accessible environment. The features of the Lower Natural Barrier are 
evaluated with respect to how they prevent or substantially reduce the rate of movement of 
radionuclides from the repository to the accessible environment.

Features have various processes acting on them that contribute to the ability of the feature to 
perform one or more functions related to barrier capability. To evaluate the capability of the barriers, 
the contribution of different processes acting on the features that make up each barrier is assessed. 
For example, matrix diffusion and radionuclide sorption are processes acting within both features 
of the Lower Natural Barrier (i.e., the unsaturated zone below the repository and the saturated zone) 
that contribute to preventing or substantially reducing the rate of movement of radionuclides away 
from the repository. It is, therefore, appropriate to evaluate the capability of barriers in the context 
of the processes that act within the features.

Features also have various events acting on them that may affect their barrier function and 
capability. The evaluation of barrier capability provides information on the time period over which 
each barrier and feature performs its function, including the potential effects associated with events 
that are expected to occur. For example, the potential effect of seismic events on the capability of 
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the EBS is considered in the evaluation of the EBS barrier capability. The impacts of seismic events 
on the EBS and its barrier function during the period of geologic stability (1,000,000 years) are 
potentially more significant than impacts during the 10,000 years following repository closure. This 
result is based primarily on the fact that corrosion processes acting over long periods of time will 
degrade the EBS features and reduce their structural integrity, thereby making them more 
susceptible to damage induced by vibratory ground motion. Igneous intrusion events are addressed 
only qualitatively in the barrier capability analysis, because they are unlikely to occur. Volcanic 
eruption events are not considered in the barrier capability analysis, because they are very unlikely 
to occur.

In the following discussion, all physical attributes of the repository system, whether natural or 
engineered, are called features. This allows a direct comparison and mapping to the features 
identified in Section 2.2 as relevant to postclosure performance. The processes that act on the 
natural features, which allow the natural barriers to perform the functions of preventing or 
substantially reducing the rate of movement of water or radionuclides, are generally hydrologic and 
thermal-hydrologic processes or transport processes. The processes that act on the engineered 
features, which allow the EBS to perform the function of preventing or substantially reducing the 
release rate of radionuclides from the waste and the repository, are generally hydrologic and 
thermal-hydrologic, chemical and thermal-chemical, mechanical and thermal-mechanical, and 
transport processes. These include the degradation, deterioration, or alteration processes (evaluated 
in accordance with proposed 10 CFR 63.114(a)(6)) that can affect the integrity of the EBS.

2.1.1.1 Upper Natural Barrier

The Upper Natural Barrier consists of (1) surface topography and surficial soils, and (2) the 
unsaturated zone above the repository. Both of these features are ITWI (see Table 2.1-1). Surface 
topography and surficial soils act to limit infiltration into the unsaturated zone through a 
combination of evaporation, transpiration, and runoff (Section 2.3.1.1). The unsaturated zone above 
the repository horizon prevents or limits seepage into emplacement drifts by attenuating episodic 
flow, and by diverting flow around the drift opening through a combination of capillarity and 
thermal processes (Section 2.3.2.2).

The location and elevation of the repository take advantage of the characteristics of the geologic 
and hydrogeologic setting of Yucca Mountain. These characteristics include the following:

• An arid climate with limited precipitation and significant evapotranspiration

• A thickness of rock and soil above the repository everywhere greater than 200 m, and up 
to more than 400 m

• Geologic, geochemical, and geomechanical characteristics compatible with the design 
and construction of an effective EBS

• Geomechanical and thermal characteristics that provide a stable facility with adequate 
capacity for waste disposal.
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At Yucca Mountain, the majority of precipitation does not infiltrate into the unsaturated zone 
because of surface runoff, evaporation, and transpiration. On the basis of the values in 
Tables 2.3.1-17, 2.3.1-18, and 2.3.1-19, the infiltration on average ranges up to about only 10% of 
the precipitation expected over the repository area, even for future wetter climates. This small 
fraction of total precipitation that infiltrates through the surficial soils moves into the bedrock and 
flows downward by gravity and capillary forces. This water then flows through the series of welded 
and nonwelded tuff units and percolates downward as percolation flux, driven by gravity and 
capillary forces, through layers of welded and nonwelded tuff units. The major hydrogeologic units 
within the Upper Natural Barrier include the Tiva Canyon welded (TCw) and the Paintbrush 
nonwelded (PTn) units located above the repository, and the Topopah Spring welded (TSw) unit that 
hosts the repository (Figure 2.1-2).

As water percolates downward through the unsaturated zone, it is redistributed between fractures 
and matrix, and by lateral flow along layer interfaces to faults (Section 2.3.2.2). For the entire 
unsaturated zone flow model domain, a substantial portion of flow is laterally diverted into faults, 
where fault flow increases from 1% to 2% at the top of the PTn to 12% to 32% at the repository level. 
However, at the repository horizon, fault flow only accounts for about 1% of the total percolation 
flux within the repository footprint (Section 2.3.2.4.1.2.4.6; Table 2.3.2-7). The PTn unit has high 
matrix permeability and high matrix porosity with low fracture density, and its matrix system has 
a large capacity for storing groundwater. The relatively high matrix permeability and porosity, and 
the low fracture density of the PTn unit, convert the predominant fracture flow in the TCw unit 
above the PTn to dominant matrix flow within the PTn unit, thus damping flow through the 
unsaturated zone (Section 2.3.2.2.1.2). In contrast, water flow in the fractured welded tuffs that host 
the repository (i.e., the TSw hydrogeologic unit) occurs primarily in widely distributed fractures
(Section 2.3.2.2.1.3).

The location of repository excavations in the unsaturated zone also limits the seepage of water as a 
result of capillary processes. Water moving through the rock matrix or in fractures in the unsaturated 
zone tends not to flow into large openings, such as drifts, but tends to continue to flow in the matrix 
and fractures in the rock around openings. This process diverts percolating water around the 
emplacement drifts and into the rock pillars between the drifts (Section 2.3.3.2). Seismic events 
(Section 2.3.4) and igneous intrusion events (Section 2.3.11) would tend to decrease the water flow 
diversion effect of drifts (Section 2.3.3.2). Emplacement drifts degrade with time as a result of 
seismic activity, potentially leading to changes in drift shape and size and the filling of drift 
openings with rubble rock material. Igneous intrusion events potentially lead to magma-filled drifts. 
The impact of changes in shape or size or filling the drifts in both of these events would be to 
decrease the water flow diversion effect of drifts.

The design of the repository system also takes advantage of the heat generated by emplaced waste 
to increase the diversion of percolating water away from and around the emplacement drifts
(Section 2.3.3.3). As long as the drift-wall temperature in the emplacement drifts exceeds the 
boiling point of water, no liquid water will be available to flow into emplacement drifts. 
Above-boiling temperatures will generally persist for several hundred to more than 1,000 years 
following closure (Section 2.3.5.6), particularly in the drifts near the center of the repository 
footprint (Section 2.3.3.3.3.1).
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The models that represent the physical processes of the Upper Natural Barrier are described in 
Sections 2.3.1 to 2.3.3.

2.1.1.2 Engineered Barrier System

The basic objective of the EBS is to provide long-term containment of the radionuclides contained 
in the waste forms to be disposed at Yucca Mountain. The EBS achieves this objective by ensuring 
three important barrier functions: (1) preventing or substantially reducing the amount of seepage 
water and drift wall condensation that contacts the waste; (2) preventing or substantially reducing 
the rate of release of radionuclides from the waste; and (3) preventing or substantially reducing the 
rate of release of radionuclides from the EBS to the Lower Natural Barrier. The features of the EBS, 
their contributions to barrier function, and their safety classification are provided in Table 2.1-1 and 
illustrated in Figure 2.1-1. Table 1.9-8 also provides further details with respect to the structures, 
systems, or components that comprise each engineered feature.

The characteristics of the EBS include the following:

• A thermal, mechanical, hydrologic (including isolation of waste from moisture), and 
chemical environment favorable to waste isolation and affected principally by the thermal 
effects of radioactive decay and possible seismic events

• Corrosion-resistant metals that are designed to perform and function in the thermal, 
mechanical, hydrologic, and chemical environments expected in the emplacement drifts

• Drip shield, waste package, and cladding materials with designs and fabrication methods 
that reduce the potential effects of stress corrosion cracking, creep, and other 
physical-chemical degradation processes

• Generally low solubility and high sorption capacity of radionuclides, thus delaying or 
preventing their release in the event that waste packages are breached

• Delayed transport of radionuclides through the EBS due to insignificant advection 
through the EBS features for several hundreds of thousands of years and the slow 
diffusion of radionuclides through any continuous water film.

Emplacement drifts provide the thermal, mechanical, hydrologic, and chemical environment in 
which the rest of the EBS features function (Sections 2.3.4 and 2.3.5). These environments are 
affected by the heat caused by the decay of radioactive materials in the waste—in particular, in the 
commercial SNF waste form that makes up the bulk of the repository waste and therefore generates 
the most heat. Although these environments are expected to change with time, in the absence of 
low-probability events (such as seismic or igneous events), the rate of change is very slow.

The drip shield (Section 2.3.6.1) is ITWI (SNL 2008a, Section 6.2.1.2). The drip shield, which will 
be placed over the waste packages, is fabricated from Titanium Grade 7 (UNS R52400), which is 
a commercially available, nearly pure titanium alloy containing a small addition of palladium to 
provide a higher degree of corrosion resistance. The structural components of the drip shield will be 
constructed using the higher-strength titanium alloy Titanium Grade 29 (UNS R56404), which has 
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alloying elements aluminum and vanadium to provide the required strength, and ruthenium to 
provide corrosion resistance. This titanium alloy is also highly corrosion resistant in a wide variety 
of chemical environments. The design and fabrication of the drip shield are described in 
Section 1.3.4.

The waste package (Section 2.3.6), including the waste package outer barrier and the inner vessel, 
is ITWI (SNL 2008a, Section 6.2.1.2). Commercial SNF waste packages, which constitute 
approximately 70% of the waste packages that will be emplaced in the repository, contain a 
transportation, aging, and disposal (TAD) canister. The naval SNF waste packages that will be 
emplaced are treated in the TSPA as commercial SNF waste packages (Section 2.3.7.3). The waste 
package consists of two concentric cylinders: (1) an inner vessel of Stainless Steel Type 316 
(UNS S31600, with further compositional restrictions as described in Section 1.5.2.7) designed for 
structural support; and (2) a corrosion-resistant outer shell made of Alloy 22 (UNS N06022, a 
nickel-chromium-molybdenum alloy with further compositional restrictions as described in 
Section 2.3.6.7). The design and fabrication of the waste package is described in Section 1.5.2.

Components of waste package internals that are ITWI (Table 2.1-1) include the TAD canister, naval 
canister, naval SNF canister system components, and the TAD canister and DOE SNF canister
internals. Information regarding the design and performance of naval SNF and the naval SNF 
canister system components is provided in Section 1.5.1.4. The TAD canister internals, DOE SNF 
canister internals, and naval SNF canister system are ITWI because they include features that reduce 
the probability of criticality (Table 1.9-8). The TAD canister is constructed of Type 300-series 
stainless steel (such as Stainless Steel Type 316) that fits within the inner vessel of the waste package 
(SNL 2007a).

The types of waste to be placed in the repository (Section 1.5.1) include commercial SNF, DOE 
SNF (including naval SNF), and HLW. The waste forms that are ITWI include commercial SNF, 
naval SNF, and HLW. DOE SNF, except for naval SNF, is not classified as ITWI (SNL 2008a, 
Table 7-1). A description of key characteristics associated with performance of naval SNF 
assemblies in the repository are provided in Section 1.5.1.4 of the Naval Nuclear Propulsion 
Program Technical Support Document. Commercial SNF is primarily composed of uranium 
dioxide pellets that oxidize and hydrate. DOE SNF is composed of uranium metal (N Reactor) fuel 
and other DOE SNF waste forms. These fuel types decompose by several processes, including 
dissolution, phase separation, selective leaching, and oxidation. HLW is composed of a borosilicate 
glass waste form that reacts with water and forms clays, zeolites, and oxides. The waste packages 
that contain canisters of naval SNF will contain only that waste form. Codisposal waste packages, 
which constitute approximately 30% of the waste packages in the repository, contain both HLW 
canisters and DOE SNF canisters (except for HLW packages that are loaded in the Initial Handling 
Facility, which contain only HLW canisters). These two canister types are not ITWI (SNL 2008a, 
Table 7-1).

As discussed above, the naval SNF waste-package content (that is, the naval waste form and canister 
system) have features that contribute to EBS barrier capability. Section 2.4.2.3.2.2.4 discusses 
TSPA analyses that utilize these features to compare naval and commercial waste-package 
contributions to dose. These analyses demonstrate that naval SNF waste packages can be 
represented by commercial SNF waste packages in the TSPA (SNL 2008a, Section 6.2.1.2, and 
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table 7-1). Therefore, naval SNF waste packages that will be emplaced are treated in the TSPA as 
commercial SNF waste packages.

Commercial cladding provides protection for commercial SNF from the surrounding environment 
as long as it is intact. Commercial SNF cladding will fail by mechanical action from seismic or 
igneous activity, and/or by long-term chemical degradation (Section 2.3.7.6). Commercial SNF 
cladding is modeled in the TSPA as being failed upon emplacement of the waste packages in the 
repository. Thus, no credit is taken for any barrier capability of the commercial SNF and DOE SNF
(except for naval SNF) cladding. Note that naval SNF structure (including cladding) is credited as 
contributing to barrier capability.

The waste package pallet (Section 2.3.4.5) and the emplacement drift invert (Section 2.3.7.12) are 
two features of the EBS that are not ITWI (SNL 2008a, Table 7-1). The emplacement pallet rests on 
the invert and is a platform that supports the waste package. The pallet is constructed of Alloy 22 
end support piers and Stainless Steel Type 316 connector tubes (Section 1.3.4.6). The emplacement 
drift invert is composed of two parts: a mild steel framework and ballast (or fill). The ballast material 
is crushed, graded, and compacted tuff derived from tunneling operations (BSC 2004a, 
Section 8.2).

The characterization of physical-chemical processes occurring in the EBS, and models that 
represent those processes, are described in Sections 2.3.4 to 2.3.7.

2.1.1.3 Lower Natural Barrier

The Lower Natural Barrier consists of two natural features: (1) the unsaturated zone below the 
repository horizon; and (2) the saturated zone beneath the repository and extending to the 
accessible environment. Both of these features are ITWI (Table 2.1-1). The characteristics of the 
Lower Natural Barrier include the following:

• Depth to groundwater below repository emplacement drifts ranges from about 200 m to 
nearly 400 m for the present-day climate (estimated to decrease on average by up to 
120 m during future climate states)

• Long transport distance from the repository to the accessible environment

• Hydrogeologic and geochemical characteristics that limit radionuclide movement.

The Lower Natural Barrier below the repository horizon prevents or substantially reduces the rate 
of radionuclide movement to the accessible environment through a variety of natural processes and 
characteristics. In the unsaturated zone, these processes and characteristics include low percolation 
water flow rates, matrix diffusion, and sorption of radionuclides onto mineral surfaces. Perched 
water bodies are found primarily below the northern part of the repository block, where 
low-permeability, sparsely fractured zeolitic rock units predominate. Perched water zones may 
laterally divert a considerable amount of flow to major faults, which are conservatively treated as 
localized fast flow paths that may focus flow downward to the water table. Vitric zones are located 
in the southern half of the area below the repository. These vitric layers have relatively high matrix 
porosity and permeability, and matrix flow dominates. Transport in the vitric layers is slower than 
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through fractures in the zeolitic rock because matrix flow dominates. The relatively fast flow down 
faults below the northern half of the repository block result in faster mean transport times than in the 
southern half of the repository area.

The Lower Natural Barrier includes the volcanic rock (devitrified and zeolitic tuff) and alluvium in 
the saturated zone below the water table (Section 2.3.9.2.2). Saturated zone processes and 
characteristics that limit the movement of radionuclides include low groundwater flow rates, matrix 
diffusion, sorption, and filtration of colloids that could potentially transport radionuclides.

Certain aspects of the performance of the Lower Natural Barrier are radionuclide specific. Matrix 
diffusion and sorption within the Lower Natural Barrier cause a delay between release of the 
radionuclides from the EBS and arrival at the accessible environment. In addition, radioactive decay 
reduces the radioactivity of short-lived radionuclides to negligible levels.

The models that represent the physical-chemical processes occurring in the Lower Natural Barrier 
are described in Sections 2.3.8 and 2.3.9.

2.1.2 Barrier Capability Description
[NUREG-1804, Section 2.2.1.1.3: AC 2]

This section describes the capability of the barriers identified in Section 2.1.1, and presents an 
analysis supporting this description. The description includes information on the time period over 
which each barrier performs. Uncertainties associated with each barrier's capability are also 
described and appropriately addressed in the analysis.

The analysis supporting barrier capability is developed using the TSPA model, and is presented in 
Sections 2.1.2.1.6, 2.1.2.2.6, and 2.1.2.3.6, for the Upper Natural Barrier, EBS, and Lower Natural 
Barrier, respectively. Information is presented for the time period up to 10,000 years after repository 
closure, and for the post-10,000-year period (i.e., after 10,000 years but through the period of 
geologic stability ending at 1,000,000 years). This information was developed from, and is 
consistent with, the TSPA calculations used for the compliance demonstrations described in 
Section 2.4.

In Section 2.4, TSPA calculations are developed for four scenario classes that describe the possible 
ways in which the repository system can evolve in the future. Section 2.2 describes the 
identification, classification, screening, and construction of these scenario classes from the FEPs
considered at the Yucca Mountain site. These scenario classes are as follows: (1) the early failure 
scenario class, which accounts for all possible futures in which one or more early failures of drip 
shields or waste packages occur; (2) the igneous scenario class, which accounts for all possible 
futures in which one or more igneous events occur; (3) the seismic scenario class, which accounts 
for all possible futures in which seismic events occur; (4) and the nominal scenario class, which 
accounts for all possible futures in which no early failures, igneous, or seismic events occur.

Each scenario class is implemented in the TSPA model by one or more modeling cases 
(Section 2.4.2.1.5). The early failure scenario class is implemented in two modeling cases: (1) the 
waste package early failure modeling case; and (2) the drip shield early failure modeling case. 
Similarly, the seismic scenario class is implemented in two modeling cases: one accounting for 
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damage due to ground motion; and a second accounting for damage due to fault displacement. The 
igneous scenario class is also comprised of two modeling cases: one for igneous intrusion, and one 
for volcanic eruption. The nominal scenario class is implemented in one modeling case that 
represents those waste packages that fail because of nominal corrosion processes (e.g., general 
corrosion, stress corrosion cracking, or localized corrosion). This modeling case is referred to as the 
nominal modeling case.

For the purposes of quantifying barrier capability, two demonstration modeling cases are evaluated 
in Sections 2.1.2.1.6, 2.1.2.2.6, and 2.1.2.3.6, for the Upper Natural Barrier, EBS, and Lower 
Natural Barrier, respectively. These demonstration modeling cases are (1) the combined 
nominal/early failure modeling case (the drip shield and waste package early failure modeling cases 
and the nominal modeling case are combined into one modeling case); and (2) the seismic ground 
motion modeling case (representative of the presence of disruptive events). The first demonstration 
modeling case is a representation of repository futures in which disruptive events do not occur, and 
drip shield and waste package early failures are included. This case was selected for the EBS barrier 
capability demonstration because it provides a projection of a reference capability. In addition, the 
case is useful in that it facilitates the examination of individual waste package breach modes. The 
seismic ground motion modeling case addresses postclosure performance of the EBS as a function 
of disruptive conditions caused by vibratory ground motion, as well as degradation by nominal 
corrosion processes. This modeling case was selected because it has been shown to be important to 
demonstration of compliance with the regulatory standards (Section 2.4.2.2). In particular, the 
seismic ground motion modeling case dominates the mean annual dose for the first 10,000 years 
after permanent closure, whereas for the post-10,000-year period, the igneous intrusion modeling 
case and seismic ground motion modeling case provide approximately equal contributions to the 
total mean annual dose to the RMEI for the last 300,000 years of the time period 
(Section 2.4.2.2.1.1.2).

In the following sections, barriers are discussed and evaluated in the sequence that water flowing 
through the repository system encounters them: the Upper Natural Barrier, the EBS, and the Lower 
Natural Barrier.

2.1.2.1 Upper Natural Barrier

The Upper Natural Barrier is composed of two natural features: (1) the topography and surficial 
soils; and (2) the unsaturated zone above the repository. Both of these features are ITWI 
(Table 2.1-1). The topography and surficial soils substantially reduce the amount of precipitation 
that can infiltrate into and percolate through the underlying unsaturated zone. In addition, free 
drainage characteristics and capillary retention behavior of the unsaturated zone prevent water from 
entering the emplacement drifts over about 30% to 70% of the repository during the 10,000-year and 
post-10,000-year periods after closure (Section 2.1.2.1.6). These features and characteristics 
contribute to the barrier's capability to prevent or substantially reduce the amount and rate of water 
seeping into the drifts, and therefore prevent or substantially reduce the rate of movement of water 
from the repository to the accessible environment.

The unsaturated zone above the repository is composed of three types of hydrogeologic units with 
distinct properties that play important roles in limiting the flow of water: the TCw, the PTn, and the 
TSw units (Section 2.3.2.2 and Table 2.3.2-2). These hydrostratigraphic units are illustrated in 
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Figure 2.1-2. As discussed below, these hydrostratigraphic units have various processes and 
characteristics that influence the ability of the Upper Natural Barrier to prevent or substantially 
reduce the rate of movement of water into the repository. The hydrologic processes that affect the 
rate of water movement to the repository for both the topography and surficial soils feature and the 
unsaturated zone above the repository feature are tabulated in Table 2.1-2. The basis for 
determining which of the processes listed in Table 2.1-2 significantly affect the capability of the 
Upper Natural Barrier to provide its barrier function is presented in Postclosure Nuclear Safety 
Design Bases (SNL 2008a).

Several climatic and hydrologic processes are important contributors to the overall capability of the 
Upper Natural Barrier to prevent or substantially reduce the rate of water movement into the 
repository. In the evaluation of the important processes related to the capability of the Upper Natural 
Barrier, consideration is given to both the beneficial as well as the potentially deleterious processes 
that act on each of the features of the barrier. Beneficial processes generally result in (1) reducing 
the amount of water from precipitation that is available for infiltration (e.g., runoff and 
evapotranspiration); (2) preventing the movement of water; or (3) substantially reducing the rate of 
movement of water from the surface to the repository, therefore preventing the movement of water 
or substantially reducing the rate of movement of water that could transport radionuclides from the 
repository to the accessible environment. The presence of a potentially deleterious process, on the 
other hand, could result in an increase in the rate of movement of water. The evaluation of both 
beneficial and potentially deleterious processes that could affect the movement of water enhances 
understanding of the barrier capability.

A few examples illustrate both beneficial and potentially deleterious processes and their effect on 
the Upper Natural Barrier. Flow diversion around repository drifts is a beneficial attribute of the 
unsaturated zone flow system that decreases the amount of water that can seep into emplacement 
drifts. Climate change is a potentially deleterious process that could increase precipitation and, thus,
could reduce the effectiveness of the Upper Natural Barrier by increasing the rate of water 
movement.

Topography and Surficial Soils—The following processes and characteristics of topography and 
surficial soils are important to the capability of the Upper Natural Barrier:

• Climate Change—Long–term climate change processes can significantly affect the 
amount of precipitation that falls in any year, as well as (1) the timing of when that 
precipitation is expected to occur; (2) the air temperature and other conditions that affect 
evapotranspiration; and (3) the amount and type of vegetation expected to be present in 
the surficial soils. As a result, the climate state affects the amount of water available and 
several of the key processes that are expected to affect the amount of water that can 
infiltrate into the surficial soils and percolate through the unsaturated zone (SNL 2008a, 
Section 6.2.2.1). The effects of climate change have been included in the assessment of 
net infiltration and the variation of the net infiltration for 10,000 years after closure 
(Section 2.3.1). After 10,000 years, the rate of percolation at the repository horizon is 
specified by proposed 10 CFR 63.342(c)(2) (70 FR 53313). The proposed rule requires 
that DOE represent the effects of climate change after 10,000 years by assigning 
percolation rates at the repository horizon that vary between 13 to 64 mm/yr.
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• Climate Modification Increases Recharge—Future climate change may significantly 
affect temperature and the amount and timing of precipitation, which in turn affect net 
infiltration into surficial soils. The net effect of climate change in the 10,000 years after 
closure is to increase the amount of water that precipitates and can infiltrate and 
eventually percolate through the unsaturated zone. This increased recharge is calculated 
by the infiltration model that is presented in Section 2.3.1. The climate effect on net 
infiltration has been directly included in the TSPA by developing infiltration scenarios for 
each of three climates for the first 10,000 years after closure: present-day, monsoon, and 
glacial-transition. After the first 10,000 years, and through the period of geologic stability, 
the effect of climate modification on percolation is incorporated into the performance 
assessment using the distribution of deep percolation rates specified in proposed 
10 CFR 63.342(c)(2) (70 FR 53313). Percolation through the unsaturated zone is 
described in the site-scale unsaturated zone flow model in Section 2.3.2.

• Precipitation—Precipitation processes are important in the evaluation of net infiltration 
into the bedrock below the surficial soils. The temporal and spatial distribution of 
precipitation affects the amount of water available to potentially run off, evaporate, 
transpire, or infiltrate. Given the arid climate at Yucca Mountain, precipitation events are 
intermittent and result in long periods of time when there is a net evapotranspiration from 
the surficial soils, interrupted by short-duration precipitation events that can result in 
some infiltration. Net infiltration during current and future climate states is calculated in 
the infiltration model that is presented in Section 2.3.1. For the period after 10,000 years 
of disposal and through the period of geologic stability, the precipitation effect is 
implicitly incorporated into the TSPA by using the distribution of deep percolation rates
specified in proposed 10 CFR 63.342(c)(2) (70 FR 53313).

• Topography and Morphology—The topography and morphology of the ground surface 
above the repository are such that a portion of the precipitation that falls at Yucca 
Mountain is unavailable for infiltration due to surface runoff. Generally, the steeper 
slopes have more runoff and less infiltration than the more gentle slopes. The effects of 
variability in topography on surface runoff have been included in the assessment of net 
infiltration presented in Section 2.3.1.

• Rock Properties of Host Rock and Other Units—The hydrologic characteristics of the 
surficial soils and shallow bedrock above the repository significantly affect the amount of 
net infiltration following a precipitation event. The characteristics of the surficial soils 
and shallow bedrock also affect the soil retention and the time infiltrating water takes to 
pass below the root zone to become net infiltration (i.e., where it is not subject to further 
evapotranspiration processes). The hydrologic characteristics of the surficial soils at 
Yucca Mountain, including associated uncertainty (most notably, the permeability) are 
included in the assessment of net infiltration presented in Section 2.3.1.

• Infiltration and Recharge—Infiltration is the net result of all surficial processes related 
to the availability of water. These processes include the effects of seasonal and climate 
variations, climate change, surface water runoff, evapotranspiration, and site topography 
(such as hillslopes and washes). The processes result in a significant reduction in the 
amount of water available to infiltrate into the unsaturated zone beneath the surficial soils. 
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Uncertainty in infiltration is a result of uncertainty in soil and rock characteristics, 
precipitation, and surface topography. The rate of net infiltration and its associated 
uncertainty are assessed for the first 10,000 years following repository closure using the 
net infiltration model presented in Section 2.3.1. For the post-10,000-year period, the 
effects of infiltration are implicitly included in the TSPA by using the distribution of deep 
percolation rates specified in proposed 10 CFR 63.342(c)(2) (70 FR 53313). Recharge is 
the percolation flux through the unsaturated zone that reaches the water table 
(Section 2.3.2).

• Surface Runoff and Evapotranspiration—Surface runoff affects the redistribution of 
precipitation to areas away from the repository footprint, where it may infiltrate. Runoff is 
significant in moving precipitation water from where it intersects the surface to alluvial 
materials in washes, where flooding may allow storage and transpiration or infiltration 
below the root zone. Evapotranspiration potentially removes a significant fraction of 
water from soil by evaporation and transpiration via plant root water uptake, and results in 
a reduction in the amount of water available to infiltrate into the unsaturated zone beneath 
the surficial soils. Both of these processes are included in the infiltration model for the 
first 10,000 years following repository closure (Section 2.3.1).

• Fractures—Open fractures in the bedrock will tend to increase the bedrock effective 
hydraulic conductivity and result in an increased rate of net infiltration into the 
subsurface. However, a lower effective conductivity of the bedrock will tend to increase 
water storage in the surficial soil and increase the effectiveness of runoff and 
evapotranspiration, thereby reducing the rate of net infiltration into the subsurface. For 
example, fractures at or near the surface may be partially or completely filled, which 
could substantially reduce infiltration. The bedrock effective hydraulic conductivity is an 
important parameter, and an appropriate range of uncertainty has been included in the 
infiltration model (Section 2.3.1).

• Fracture Flow in the Unsaturated Zone—Fracture flow in the bedrock beneath the 
surficial soil affects the rate of water movement below the soil–bedrock contact, 
especially in areas of thin soils (Section 2.3.1). The rate of water flow in fractures at the 
soil–bedrock interface is influenced by such fracture properties as fracture frequency and 
permeability. As the magnitudes of these properties increase, the effective conductivity of 
the bedrock will also increase and result in an increased rate of net infiltration into the 
subsurface. Uncertainty in the effective hydraulic conductivity has been included in the 
infiltration model (Section 2.3.1).

Unsaturated Zone above the Repository—The following processes and characteristics of the 
unsaturated zone above the repository are important to the capability of the Upper Natural Barrier:

• Climate Change—Future climate change causes several responses in the unsaturated 
zone, including changes in percolation flux through the unsaturated zone, seepage into the 
repository emplacement drifts, water table rise, and recharge to the saturated zone. 
Precipitation and net infiltration into the unsaturated zone tend to increase with future 
climate change, causing an increase in these responses. The effects of future climate 
change on groundwater flow in the unsaturated zone above the repository are 
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incorporated into the TSPA using time-dependent infiltration rates as boundary conditions 
for the site-scale unsaturated zone flow model (Section 2.3.2) for the first 10,000 years, 
and for the post 10,000-year period using the distribution of deep percolation rates
specified in proposed 10 CFR 63.342(c)(2) (70 FR 53313). The response of seepage to 
climate change is discussed in Section 2.3.3.

• Climate Modification Increases Recharge—The percolation flux in the host rock above 
the emplacement drifts is significantly affected by the change in recharge and infiltration 
associated with the projected future climate changes in the 10,000 years, after closure. 
The increased infiltration and percolation significantly increase both the amount of water 
potentially available to seep into the drifts and the amount of water that is projected to 
seep. The effects of current and future climate states on the amount of water percolating 
through the unsaturated zone are included in the site-scale unsaturated zone flow model 
that is presented in Section 2.3.2. After 10,000 years and through the period of geologic
stability, the effect of climate modification on percolation and recharge is incorporated 
into the site-scale unsaturated zone flow model using the distribution of deep percolation 
rates specified in proposed 10 CFR 63.342(c)(2) (70 FR 53313).

• Stratigraphy—The stratigraphic sequence of unsaturated strata defines the hydrologic 
characteristics through which percolating water flows between the surface and the 
repository horizon. This sequence of both welded and nonwelded tuffs affects the 
transient propagation of infiltration pulses and tends to spatially redistribute the 
percolation rates. Stratigraphy has been directly included in the site-scale unsaturated 
zone flow model (Section 2.3.2).

• Rock Properties of Host Rock and Other Units—Rock properties, such as fracture 
capillarity and permeability, significantly affect the distribution of percolation flux in the 
unsaturated zone and the amount of flow diversion for a given percolation flux around 
emplacement drifts. Layer-specific rock properties and fault properties represent 
large-scale heterogeneity and have a significant effect on site-scale flow processes. 
Small-scale heterogeneity within hydrogeologic units has much less of an effect on 
site-scale flow processes. In addition, the degree of flow focusing is related to the local 
heterogeneity of the permeability distribution of the host rock. Properties of rock units 
and associated uncertainties are included in the unsaturated zone flow models presented 
in Sections 2.3.2 and 2.3.3.

• Fractures—Fractures are the main conduits for flow in most of the hydrogeologic units 
in the unsaturated zone above the repository. Fractures account for 87% to 98% of the 
total water flux at the repository horizon within the repository footprint 
(Section 2.3.2.4.1.2.4.6 and Table 2.3.2-7). Fractures and their properties are included in 
the unsaturated zone flow models presented in Section 2.3.2.

• Fracture Flow in the Unsaturated Zone—Above the repository, the net infiltration into 
the unsaturated zone flows principally by gravity through a network of fractures in the 
TCw, PTn, and TSw units. Fracture flow is the dominant flow mechanism in the welded 
units, which have a high density of interconnected fractures. In the nonwelded PTn unit,
with relatively high matrix permeability and porosity and relatively low fracture density, 
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the predominantly fracture flow in the overlying TCw is converted to predominantly 
matrix flow. In the TSw unit below the PTn unit, fracture flow again dominates over 
matrix flow. As noted above, fractures account for 87% or more of total water flux at the 
repository horizon within the repository footprint (Section 2.3.2.4.1.2.4.6 and 
Table 2.3.2-7).

• Unsaturated Groundwater Flow in the Geosphere—Unsaturated groundwater flow 
defines the distribution of percolation flux in the unsaturated zone as a function of time, 
and is the primary mechanism for radionuclide transport below the repository. Although 
the flow rate in the unsaturated zone defines the amount of fracture flow, the fracture 
characteristics are also significant in determining the rate of radionuclide movement in 
the unsaturated zone (Section 2.3.8).

• Flow Diversion around Repository Drifts—Above the emplacement drifts, a portion of 
the percolating unsaturated flow is diverted around the repository drifts. This diversion 
prevents or substantially reduces the rate of movement of liquid water to the emplacement 
drifts. The amount of water flow diversion is a function of (1) the percolation in the 
unsaturated zone above the emplacement drifts; (2) hydrologic properties around the 
emplacement drifts, notably the permeability and capillarity of the fractured rock mass; 
and (3) the geometry of the emplacement drift and drift-wall properties. The assessment 
of the distribution of seepage into the emplacement drifts, including the associated 
uncertainties, is presented in Section 2.3.3.

• Water Influx at the Repository—Water influx into repository drifts is related to the flow 
diversion processes described above. Water that is not diverted around the emplacement 
drifts will flow into the emplacement drifts as seepage. Assessment of the distribution of 
seepage into the emplacement drifts, and the associated uncertainties, is presented in 
Section 2.3.3.

The process models relevant to the Upper Natural Barrier and their abstraction for use in the TSPA 
are described in more detail in Sections 2.3.1 to 2.3.3. The process models and their abstractions are 
founded on physical principles and extensive tests and observations from Yucca Mountain and 
appropriate analogue sites. The capability of the Upper Natural Barrier is analyzed using models 
that simulate the flow of water (i.e., infiltration, percolation, and seepage) through the topography 
and surficial soils and the unsaturated zone above the repository. These models consider 12 
infiltration scenarios, resulting in sets of four maps representing the 10th, 30th, 50th, and 90th 
percentile infiltration rates for each of the three climate states (i.e., present-day, monsoon, and 
glacial-transition) estimated for the Yucca Mountain site, and also for the post-10,000-year 
representation of climate change specified in proposed 10 CFR 63.342(c)(2) (70 FR 153313) as a 
log-uniform distribution for deep percolation rates. These infiltration maps, used as upper boundary 
conditions for the unsaturated zone flow model, represent uncertainty in infiltration. For the 
post-10,000-year period, the site-scale unsaturated zone flow model uses a surface water flux 
boundary condition developed to provide the average percolation flux distribution at the repository 
footprint that is specified in proposed 10 CFR 63.342(c)(2) (70 FR 53313) to produce an additional 
four steady-state percolation flow fields. These flow fields incorporate a range of variability and 
uncertainty based on the calibrated unsaturated zone flow models for the site. For a given climate 
state, the relative importance of a selected infiltration map and corresponding flow field is 
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represented by a weighting factor. The weighting factors are determined through comparison with 
measured data from the unsaturated zone (e.g., distributions of temperature and chloride) using a 
generalized likelihood uncertainty estimation method. Weighting factors of 61.9%, 15.7%, 16.5%, 
and 6.0% were determined for the 10th, 30th, 50th, and 90th percentile infiltration maps, 
respectively (Section 2.3.2.4.1.2.4.5.5). These same weighting factors are used for the monsoon, 
glacial-transition climates, and the post-10,000-year period. As noted earlier, the post-10,000-year 
deep percolation representation of climate change is also implemented as a distribution of deep 
percolation rates in accordance with proposed 10 CFR 63.342(c)(2) (70 FR 53313). The 
post-10,000-year climate change representation extends the simulations from 10,000 years to 
1,000,000 years. This post-10,000-year representation of climate change contains four uncertainty 
cases (31st, 70th, 86th, and 97th percentile cases (Section 2.3.2.4)), based on the prescribed 
percolation flux distribution through the repository footprint in accordance with proposed 10 CFR 
63.342(c)(2) (70 FR 53313). The percentiles are the midpoints of the probability ranges as a 
cumulative value; e.g., the 31st percentile is the midpoint of 0.619, and the 70th percentile is 0.619 
plus one-half of 0.157, and so on (Section 2.3.2.4.1.2.4.5.5).

2.1.2.1.1 Capability of the Topography and Surficial Soils to Prevent or Substantially 
Reduce Infiltration

Yucca Mountain is in an arid region where precipitation and humidity are low, thus promoting high 
potential evaporation rates. The topography and surficial soils feature significantly reduces the 
movement of water into the unsaturated zone. Runoff, evaporation, and plant transpiration combine 
to divert water and permit only a small fraction of the expected low precipitation at the site to 
infiltrate into the unsaturated zone. Abstraction models that include these processes are presented 
in Section 2.3.1.

The capability of the Upper Natural Barrier to prevent or substantially reduce infiltration into Yucca 
Mountain is due to the geographic and geologic setting of the site. Yucca Mountain is located in the 
Great Basin of the arid desert southwest. The Sierra Nevada Mountains serve as a physiographic 
barrier to the eastward migration of moisture from weather systems originating in the Pacific Ocean. 
As a result, average precipitation in the Yucca Mountain area is low throughout the year. The 
characteristics of topography and surficial soils and the processes acting on them—including the 
effects of evapotranspiration and runoff—combine to result in infiltration into Yucca Mountain that 
is significantly less than the already low incident precipitation. During the warmer months, 
precipitation occurs intermittently, usually as isolated storms in the spring or late summer. 
Infiltration during these events is limited because of the high runoff associated with the topography 
and because of the high evaporation and transpiration rates associated with warm temperatures. 
Most of the small amount of infiltration that does occur is associated with low-intensity winter 
storms when lower evaporation and transpiration rates and the slow melting of snow create 
conditions favoring limited infiltration. The arid climate and the topography and surficial soils 
portion of the Upper Natural Barrier also contribute to favorable site characteristics, such as the low 
rates of water flow in the unsaturated zone and the great depth of the water table (Sections 2.3.1, 
2.3.2, and 2.3.9).

Determination of net infiltration rates take into account processes important to infiltration,
including run-on and runoff, evaporation and transpiration, soil and bedrock hydraulic properties 
and their spatial distribution, as well as topographic and climatic influences. The effect of climate 
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variability (i.e., variations in precipitation, temperature, and humidity) on infiltration rates is also 
incorporated into the model for both present-day and potential future climates. The infiltration 
model is described in Section 2.3.1. 

The precipitation and infiltration that influence potential seepage rates into the emplacement drifts 
are assessed for three climate states representing the climate conditions forecast to exist in the 
10,000 years after closure (Section 2.3.1.2.3.1):

• Present-day climate state, representing conditions forecast to prevail for approximately 
the next 600 years

• Monsoon climate state, representing conditions forecast to prevail for approximately 
1,400 years after the present-day climate conditions (i.e., 600 to 2,000 years)

• Glacial-transition climate state, representing conditions that are forecast to prevail over 
8,000 years following the monsoon climate conditions (i.e., 2,000 to 10,000 years).

In proposed 10 CFR 63.342(c)(2) (70 FR 53313), the NRC has specified that long-term climate,
after 10,000 years following disposal, be represented by a probabilistic distribution for a 
constant-in-time, but uncertain long-term average climate for Yucca Mountain.

For each climate state, four infiltration scenarios are evaluated: the 10th, 30th, 50th and 90th
percentile scenarios. On average, the 10th percentile infiltration scenario for each climate state 
during the post-10,000-year period represents relatively dry conditions, whereas the 30th, 50th, and 
90th percentile scenarios generally represent increasingly wetter conditions (Tables 2.3.1-2, 
2.3.1-3, and 2.3.1-4). The climate analysis and infiltration model for Yucca Mountain demonstrate 
that limited infiltration of water into Yucca Mountain is expected for present-day and future 
climates. Precipitation falling on Yucca Mountain is low, even for the glacial-transition climates 
forecast for most of the first 10,000 years after closure. For example, annual precipitation rates for 
the glacial-transition climate at the 50th percentile are expected to be 223 mm/yr to 287 mm/yr for 
the 90th percentile (Table 2.3.1-4). About 87% or more of the water falling on Yucca Mountain as 
precipitation during the glacial-transition climate state is expected to be diverted by runoff or 
returned to the atmosphere by evapotranspiration, whereas about 90% is diverted or returned to the 
atmosphere during present day and monsoon climate states (Section 2.3.1.3.3.1.2).

Estimated average present-day net infiltration ranges from less than 3% of precipitation for the drier 
10th percentile climate scenario to about 13% of precipitation for the 90th percentile climate 
scenario, with a median 50th percentile infiltration of about 7% of the average present-day 
precipitation (Table 2.3.1-2). The average net infiltration rates for the 10th to 90th percentile 
present-day climate scenarios vary from about 4 to 27 mm/yr, with a 50th percentile of about 
13 mm/yr (Table 2.3.1-2). For the monsoon climate scenarios, average net infiltration rate estimates 
for the 10th to 90th percentile climate scenarios range from about 3% to 17% of precipitation, with 
a range from about 6 to 53 mm/yr (Table 2.3.1-3). For the glacial-transition climate scenarios, the 
average net infiltration rate estimates for the 10th to 90th percentile climate scenarios range from 
about 5% to 16% of precipitation, with a range from about 13 to 47 mm/yr (Table 2.3.1-4, 
Section 2.3.1).
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2.1.2.1.2 Capability of the Unsaturated Zone above the Repository to Prevent or 
Substantially Reduce Seepage

The unsaturated zone above the repository horizon prevents or substantially reduces the 
movement of water through the unsaturated zone and into the emplacement drifts of the 
repository. There are two primary large-scale processes contributing to this capability:

• Damping of episodic pulses of precipitation and infiltration
• Capillary forces limiting seepage into the emplacement drift.

Analyses of the effectiveness of the unsaturated zone above the repository horizon to prevent or 
substantially reduce water movement are described in Sections 2.3.2 and 2.3.3. The site-scale 
unsaturated zone flow model is based on field and laboratory testing, and is calibrated to match data 
and observations from pneumatic testing, water content (saturation) data, hydraulic-potential data, 
and geochemical and isotopic data.

A cross section of the unsaturated zone down to the repository horizon is shown in Figure 2.1-3. 
This figure shows the major hydrostratigraphic units, including subunits broken down by distinct 
mineralogic characteristics (e.g., crystal-rich and crystal-poor members). The location of this cross 
section is shown in Figure 2.1-4. From the surface to the repository horizon, the unsaturated zone 
includes the TCw unit, the PTn unit (indicated as nonwelded bedded tuffs in the figure), and the 
upper part of the TSw unit. The TCw and TSw units are composed of moderately to densely welded, 
highly fractured tuff deposits. The high density of interconnected fractures and the low matrix 
permeability of the welded tuffs result in a majority of the water flow occurring in the fractures. 
Episodic infiltration pulses resulting from precipitation at the surface, less the effects of runoff, 
evaporation, and transpiration, are expected to move through the fractured TCw unit into the 
underlying PTn unit with little additional attenuation (Section 2.3.2).

The high density of interconnected fractures and low permeability of the matrix in the TCw unit 
(Section 2.3.2.2.1.1) are conceptualized as giving rise to significant water flow in fractures and 
limited matrix imbibition (water flow from fractures to the matrix) within the TCw. Thus, episodic 
infiltration pulses are expected to move rapidly through fracture networks in this unit, with little 
attenuation by the matrix within the TCw. The relatively high matrix permeability and porosities 
and low fracture densities in the underlying PTn unit (Section 2.3.2.2.1.2) convert the predominant 
fracture flow in the TCw to dominant matrix flow within the PTn. The dominance of matrix flow in 
the PTn, and the relatively large storage capacity of the matrix, resulting from its high porosity and 
typically low saturation, give the PTn significant capacity to attenuate infiltration pulses. Faults (or 
geologic structures) may cut through the entire PTn unit at some locations, leading to fast flow paths 
if the local PTn tuff matrix is not able to convert all of the fault flow into matrix flow. In addition, 
some lateral diversion of water occurs in the PTn unit owing to the capillary barrier effects and the 
slope of the stratigraphic units (Section 2.3.2.2.1.2). The PTn unit as a whole exhibits very different 
hydrogeologic properties from the TCw and TSw units that bound it above and below.

The TSw unit has lower matrix porosity and higher fracture frequency than the overlying 
nonwelded tuff (PTn). The low matrix porosity in the TSw causes increased saturation above the 
interface and results in fracture flow into the TSw unit. The matrix hydraulic conductivity of the 
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welded tuff is less than the estimated average water flux. Therefore, unsaturated flow is primarily 
through the fractures within the TSw unit (Section 2.3.2).

A primary effect of the unsaturated zone above the repository horizon is the damping of the pulses 
of flow down through the unsaturated zone within the PTn. Net infiltration at the surface of Yucca 
Mountain is variable in space and time. Significant pulses of infiltration occur only once every few 
years, and infiltration varies spatially depending on the degree of focusing by surficial processes. 
Pulses of moisture may also percolate rapidly through the fractured tuffs of the TCw unit, as 
indicated by the potential bomb-pulse 36Cl signatures in the TSw unit. However, geologic and 
geochemical evidence indicates that percolation rates are comparatively homogeneous
(Section 2.3.2.2.2.3). The change from fracture-dominated to matrix-dominated flow at the contact 
of the TCw and the PTn units significantly attenuates the episodic infiltration flux, effectively 
smoothing the temporal variability in percolation flux rates. Evenly distributed chloride 
mass-balance data and estimates of mineral accumulation rates in fractures and lithophysae indicate 
that percolation rates are relatively homogeneous, except for some focused flow in fault zones 
outside of the repository footprint (Section 2.3.2.4.2.1.2).

As noted at the end of Section 2.1.2.1, 16 unsaturated zone flow fields were generated for four 
infiltration scenarios (10th, 30th, 50th, and 90th-percentile scenarios) for each of three climate 
states (present-day, monsoon, glacial-transition) and for the post-10,000-year period. Analysis of 
these flow fields indicates that percolation fluxes at the repository horizon are very different from 
surface infiltration patterns, mainly in the north of the model domain (Section 2.3.2.5.2). However, 
the percolation flux values within the repository footprint are similar to surface infiltration values 
and only differ by a few percent. Under a steady-state flow condition, percolation flux and its 
distribution along any horizon of the model domain would be the same or very similar if there were 
no lateral flow. The major differences in percolation flux at the repository level (Figure 2.3.2-52) 
from the surface infiltration maps (Figure 2.3.2-38) are (1) flow diverted through faults in the very 
northern part of the model domain; and (2) flow diverted into or near faults located in the rest of the 
model domain. However, it should be emphasized that within the repository footprint, fault flow is 
about 1% of the total at the top of the PTn and at the repository horizon, indicating less significant 
lateral flow in the PTn for this smaller area (Section 2.3.2.4.1.2.4.6).

The flow field analysis also indicates that fracture flow is dominant in the TCw along the top of the 
PTn unit and the repository horizon (Section 2.3.2.2.1.2). At the repository level, fracture flow 
consists of about 60% to 80% of the total percolation flux over the entire model layer, and is 
generally greater than 90% within the repository footprint (Table 2.3.2-7). On the other hand, the 
flow of water in larger fault zones increases with depth. Over the entire model layer, fault flow at 
the TCw–PTn interface is about 1% to 2% of the total flux over the entire model domain, and 
increases to 12% to 32% of the total flux over the entire model domain at the repository horizon
(Section 2.3.2.4.2.1.1; Table 2.3.2-7).

The rate and distribution of seepage control the amount of water available to contact the EBS
(Section 2.3.3.2.1.2). In the unsaturated zone, seepage into the emplacement drifts is less than the 
percolation flux because capillary forces limit the movement of water into the drift openings. Water 
is retained in the small pores and tight fractures of the low-porosity welded tuff, and a substantial 
fraction of the flow moves around the drift opening and drains through the rock pillars between the 
drifts. The effectiveness of capillary forces in limiting water movement into drifts and moving flow 
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around them depends on the characteristics of the rock matrix and fractures, and on the connectivity 
and permeability of the fracture network. In addition, seepage rates are affected by the 
characteristics of the drift openings (e.g., asperities on the drift walls and flow in fractures that may 
have modified hydrologic properties in the disturbed zone created by drift excavation or heat from 
emplacement waste). For a period of time, the decay heat of the emplaced waste is great enough to 
heat the rock near the emplacement drifts above boiling. As long as the temperature is above the 
boiling point of water at the drift wall, the water vapor will be driven away from the emplacement 
drift wall surfaces. This thermal effect, combined with the capillary effects, further prevents or 
substantially reduces seepage into the emplacement drifts.

The model that simulates seepage into the emplacement drifts under both the ambient and thermally 
perturbed conditions is described in Section 2.3.3. The drift seepage model considers the matrix and 
fracture hydrologic properties of the TSw unit and the design of the emplacement drifts. The drift 
seepage model and analysis supporting the development of the abstraction of drift seepage model 
described in Section 2.3.3 uses a continuum fracture model, and samples the uncertain stochastic 
distributions for the fracture permeability and capillary strength parameters to estimate the 
probability and amount of seepage. For the modeled future glacial-transition climate, on average, 
only about 30% of the drip shield locations are expected to experience any seepage in the 10,000 
years after closure.

The following summary illustrates the barrier capability in the fractured rock at and above the 
repository horizon. The results of the probabilistic seepage analysis for intact drifts are described in 
terms of the mean seepage rate, the mean seepage percentage (i.e., ratio of mean seepage rate to 
mean percolation flux), and the seepage fraction (i.e., fraction of waste packages in a percolation 
region experiencing seepage), during the present-day, the monsoon, and the glacial transition 
climate states (Section 2.3.3.4.2). The four unsaturated zone flow fields corresponding to the 10th, 
30th, 50th and 90th percentile infiltration scenarios arrive at four different sets of seepage results. 
For the flow field based on the 10th percentile infiltration scenario—the most likely flow field with 
a relative probability of approximately 62%—seepage is expected to occur at about 8% of all waste 
packages during the present-day climate, rising to about 13% of waste packages during the monsoon 
climate, and to about 17% during the glacial-transition climate (Section 2.3.3.4.2; Figure 2.3.3-49). 
On average over all waste packages, the amount of seeping water is 1.2, 4.6, and 14.4 kg/yr per 
waste package for the present-day, monsoon, and glacial-transition climate states, respectively
(Section 2.3.3.4.2; Figure 2.3.3-47). This translates to mean seepage percentages of 1.1%, 2.2%, 
and 4.7% (Section 2.3.3.4.2; Figure 2.3.3-48). In other words, during the present-day climate, on 
average about 99% of the percolation flux would be diverted around intact drifts in the Tptpll unit
(Section 2.3.3.4.2). For the wetter climate stages of the monsoon and the glacial-transition period, 
the mean percentage of diverted flux would be smaller, but still at about 98% and 95%, respectively
(Section 2.3.3.4.2).

The higher infiltration scenarios would result in more seepage, as described in Section 2.3.3.4.2 and 
shown in Figures 2.3.3-47 through 2.3.3-49. For the 30th percentile infiltration scenario, the 
seepage fraction varies from 16.7% for the present-day climate, to 22.8% during the monsoon 
period, to 29.5% during the glacial-transition climate. The respective mean seepage percentages are 
3.0%, 4.9%, and 8.0%. Most seepage is seen for the 90th percentile infiltration scenario, with the 
seepage fraction as high as 52.6% during the monsoon climate. The mean seepage percentage 
during this climate state is 19.5%. Thus, even for the least likely of the four unsaturated zone flow 
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fields, with a relative probability of 6% and comparably strong downward percolation, the diversion 
capacity of the unsaturated rock is about 81% overall. However, more than half of all waste 
packages are expected to experience some amount of seepage in this case (Section 2.3.3.4.2). 
Overall, the observed seepage percentages demonstrate the important barrier capability of the 
unsaturated flow processes in the fractured rock at and above the repository horizon.

2.1.2.1.3 Time Period over Which the Upper Natural Barrier Functions

The topography and surficial soils and the unsaturated zone above the repository horizon are 
durable features of the geologic environment at Yucca Mountain. The characteristics and properties 
of these features are not expected to change in the 10,000 years after closure. Geomorphologic 
studies of the landforms at Yucca Mountain indicate that the basic configuration of topography, soil 
depth and characteristics, and stream channel locations has been consistent for at least hundreds of 
thousands of years (YMP 1993, Section 3.4). Minor changes in the precise location of stream 
channels may occur, and erosion and sediment accumulation will continue at low rates, but the 
changes to the parameters describing these features (e.g., soil depth and slope aspect) are expected 
to be less than the variability explicitly accounted for in the infiltration model.

With the exception of the very minor effects caused by the construction of the repository, the basic 
geologic features of the site are not expected to change in any significant way in the 10,000 years 
after closure. However, climate is expected to vary in the future. This variability has been 
incorporated into performance models by forecasting climate states—the present-day, monsoon, 
and glacial-transition climates—and by using the regulatory specification for deep percolation 
changes after 10,000 years.

Wetter, cooler conditions are expected to result in changes to vegetation that could affect 
transpiration rates, thereby affecting net infiltration rates. The infiltration model includes parameter 
adjustments to address increases in plant height, root zone depth, and vegetation cover and changes 
in vegetation type (Section 2.3.1.3.2).

The effectiveness of the Upper Natural Barrier is expected to change in the 10,000 years after 
closure and during the post-10,000-year period because of changes in the infiltration flux. Climate 
changes that result in increased net infiltration are propagated through the unsaturated zone, which 
result in increased percolation at the repository horizon. This type of change in barrier effectiveness 
is taken into account in the unsaturated zone flow and seepage models (Sections 2.3.2 and 2.3.3).

The long-term effects of heat generated by the emplaced waste on the properties of the Upper 
Natural Barrier, including changes to rock hydrologic properties due to mineral dissolution or 
precipitation and mechanical changes in the rock, have been investigated. The analyses indicate that 
the magnitudes of changes attributable to coupled thermal-hydrologic-chemical-mechanical 
processes do not affect the barrier capability (Section 2.3.3.3.3.4). On the basis of these analyses, 
changes in drift-scale hydrologic properties induced by thermal effects are concluded to have no 
significant impact on seepage (SNL 2008b, Section 6.2, excluded FEPs 2.1.09.12.0A, Rind 
(chemically altered zone) forms in the near-field; 2.2.01.02.0A, Thermally-induced stress changes 
in the near-field; and 2.2.10.04.0A, Thermo-mechanical stresses alter characteristics of fractures 
near repository) (Section 2.3.3.3.3.4). Although excluded from the TSPA, the permeability of rock 
in the mechanically disturbed zone around the emplacement drifts is expected to be higher than that 
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of the undisturbed rock, and this is effectively accounted for in the test analyses used to support the 
development and validation of the seepage calibration model presented in Section 2.3.3.

Drift collapse can lead to seepage behavior that is much different from that in intact drifts 
(Section 2.3.3.4). The larger size and possibly different shape of a collapsed drift tends to reduce the 
potential for flow diversion. In addition, the capillary barrier behavior at the drift wall can be 
affected by the rubble rock blocks filling the opening, as the capillary strength inside the opening 
is different from the zero-capillary-strength condition in the initially open drift
(Section 2.3.3.2.1.4). In the case of full drift collapse in the lithophysal unit, when the original 
openings have filled with rubble rock material, capillary effects are still expected to cause some 
flow diversion at the interface between the solid rock and the rubble-filled drift. In the 
nonlithophysal units, partial drift collapse can result in the loss of capillary diversion. These effects
are included in the drift seepage model (Section 2.3.3.2.3.4.2).

2.1.2.1.4 Uncertainties Associated with Upper Natural Barrier Capability

Uncertainties associated with the capability of the Upper Natural Barrier are derived both from the 
models used to simulate important processes and from uncertainty and variability in the data and 
parameters used to represent the characteristics of the natural system. The uncertainties associated 
with data and models that are important to barrier capability are described in Sections 2.3.1.2,
2.3.1.3, 2.3.2.3, 2.3.2.4, 2.3.3.2, and 2.3.3.3.

Uncertainty in the climate analysis is considered in the development of the range of possible future 
climate states used in the barrier capability analysis (Section 2.3.1.2.3). These uncertainties are 
principally related to (1) uncertainty in the Owens Lake paleoclimate record and its extrapolation to 
mean annual precipitation and mean annual temperature; (2) uncertainty in the average sediment 
accumulation rate used to project the duration of the present-day and monsoon climate states; 
(3) decade- to century-scale variability in the climate proxy records; and (4) the selection of 
analogue meteorological stations to represent future climate conditions.

Uncertainty is also accounted for in the numerical model for net infiltration (Sections 2.3.1.3.2 and 
2.3.1.3.3). The boundary conditions for the model include uncertainty in the annual precipitation 
estimates. In addition, the model includes uncertainty in infiltration, evaporation, and transpiration 
processes evaluated in the model. The model includes uncertainty distributions for parameters 
describing precipitation, evapotranspiration, soil depth, potential evapotranspiration, bedrock 
saturated hydraulic conductivity, soil water holding capacity, and bare-soil evaporation 
(Tables 2.3.1-22, 2.3.1-23, and 2.3.1-24).

The performance of the Upper Natural Barrier is also subject to uncertainty that is a function of 
(1) the applicability of the conceptual and numerical models used to describe unsaturated zone 
flow; and (2) the degree of knowledge of the characteristics of the Yucca Mountain site. To 
accommodate both variability and uncertainty in the description of the site conditions, the 
unsaturated zone flow model captures the range of variation and resulting uncertainty in surface 
infiltration and calibrated properties through the use of four infiltration scenarios for the 
present-day, monsoon, glacial-transition climates, and the post-10,000-year period and four sets of 
calibrated parameters for the 10th, 30th, 50th, and 90th percentile infiltration maps for each of the 
climate infiltration scenarios, and 31st, 70th, 86th, and 97th percentile infiltration maps 
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(Section 2.3.2.4) for the post-10,000-year period. These uncertainties are propagated through the 
TSPA by use of the 16 unsaturated zone flow fields (Section 2.3.2.1). The model projections for 
flow have been calibrated and compared to hydrogeologic data to ensure that results are consistent 
with the characteristics of the unsaturated zone flow system in the vicinity of Yucca Mountain. 
Uncertainties in the percolation flux due to flow focusing are addressed in site-scale unsaturated 
zone flow through the parameters of the active fracture model, and in drift seepage through both the 
parameters for the active fracture model and a flow focusing factor (Section 2.3.3.3.3.1). These 
parameters are adjusted to provide consistency with measurements that implicitly take flow 
focusing into account (Sections 2.3.3.2.3.5 and 2.3.3.2.3.6.3).

The effectiveness of the capillary diversion around the emplacement drifts is dependent on the 
percolation flux, the spatial variability of the hydrologic properties of the lithophysal and 
nonlithophysal repository host rock units, the initial geometry of the emplacement drift opening and 
subsequent geometry resulting from drift collapse, the properties of the emplacement drift wall, and 
the in-drift conditions determining the evaporation potential. In addition, a vaporization effect 
develops when the emplacement drifts are ventilated or are heated to above the boiling temperature 
of water. The key hydrologic properties are the capillary strength parameter and the fracture 
permeability (Section 2.3.3.2.3). Distributions representing these input uncertainties are developed 
as part of the seepage abstraction, and are implemented by a probabilistic treatment of seepage in 
the TSPA. The capillary strength parameter is uncertain due to uncertainty in the seepage-rate data 
and uncertainty in the seepage calibration model. The capillary strength parameter is also variable 
in space because different locations in the repository have different rock property characteristics and 
different capillary barrier behavior. Uncertainties in permeability values stem from uncertainties in 
the measured airflow rate and pressure data from the air injection testing and the analytical method 
used to derive the permeability values from these data. There are several sources of uncertainty 
related to the percolation flux estimates provided by the site-scale unsaturated zone flow model,
including uncertainty related to the future climates and infiltration.

2.1.2.1.5 Impact of Disruptive Events on the Upper Natural Barrier

The Upper Natural Barrier may be affected by disruptive events. For seismic activity, it is expected 
that the general configuration of the geologic units will be unchanged. However, at the interface 
between the Upper Natural Barrier and the EBS, there may be changes in the shape of the drift 
opening caused by drift collapse. Drift collapse can lead to seepage behavior that is much different 
from that in intact drifts (Section 2.3.3.2.1.4). The larger size and possibly different shape of a 
collapsed drift may impact flow diversion. In addition, the capillary barrier behavior at the drift wall 
can be affected by the rubble rock blocks filling the opening, as the capillary strength inside the 
opening is different from the zero-capillary-strength condition in the initially open drift
(Section 2.3.3.2.1.4).

In the case of full drift collapse in the lithophysal rock units, when the original openings have filled 
with rubble rock material, capillary effects are still expected to cause some flow diversion at the 
interface between the solid rock and the rubble-filled drift. Analyses indicate that in the lithophysal 
rock units (comprising more than 85% of the repository horizon (Section 2.3.3.2.3.2)), peak ground 
velocities (PGV) of about 2 m/s or greater are required for full drift collapse, but that multiple lower 
velocity events are assumed to result in accumulation of rockfall rubble and have the same net effect 
2.1-24



DOE/RW-0573, Rev. 0Yucca Mountain Repository SAR
(Section 2.3.3.2.4.2.2). Velocities on the order of 2 m/s are only expected for events with annual 
exceedance probabilities of about one chance in 1,000,000 (Section 2.3.4.3.2.4).

Model results for rubble accumulation in the lithophysal zone indicate that individual seismic 
events with PGV greater than about 2 m/s would completely fill the drifts with rockfall, while 
individual seismic events with PGV between 1 m/s and 2 m/s would fill a substantial fraction of the 
free space in a drift, covering the sides of the drip shield to approximately the height of the drip 
shield, and possibly covering the top of the drip shield (Section 2.3.4.4.8.3.1 and SNL 2008a, 
Section 6.2.2.1.5). The rockfall volume in the nonlithophysal zones is significantly less than in the 
lithophysal zones at the same PGV level (Section 2.3.4.4.8.3.2). Drift collapse and its effect on 
seepage is included in the quantification of the capability of the Upper Natural Barrier presented in 
Section 2.1.2.1.6. Such changes in barrier performance are considered in the model abstractions 
used in the TSPA (Section 2.3.4) and in the assessment of barrier capability (Section 2.1.2.1.6). 
Other potential effects of seismic events on the hydrology and hydrogeologic characteristics 
(e.g., porosity and permeability) of the features within the unsaturated zone above the repository 
have insignificant effects on the performance of the repository, and are excluded from assessments 
of the Upper Natural Barrier capability (SNL 2008b, Section 6.2); see Table 2.1-2 for pertinent 
excluded seismic FEPs, for example, FEP 1.2.10.01.0A, Hydrologic response to seismic activity, 
and FEP 2.2.06.01.0A, Seismic activity changes porosity and permeability of rock.

If an igneous intrusion into the repository occurs, the affected drifts are assumed to fill with magma; 
however, the general configuration of the Upper Natural Barrier will not change. As presented in 
Section 2.3.11.3, seepage into the emplacement drifts is expected to change as a result of igneous 
intrusion and is treated in the TSPA as equivalent to the percolation flux in the vicinity of the igneous 
intrusion. Other potential effects of igneous intrusion on the hydrology and rock properties do not 
significantly affect the performance of the repository, and are excluded from assessments of the 
Upper Natural Barrier capability (SNL 2008b, Section 6.2); see Table 2.1-2 for pertinent excluded 
igneous FEPs, such as FEP 1.2.04.02.0A, Igneous activity changes rock properties.

2.1.2.1.6 Quantification of the Upper Natural Barrier Capability

The topography and surficial soils and the unsaturated zone above the repository horizon combine 
to substantially reduce the movement of water from the surface of Yucca Mountain into the 
emplacement drifts. The combination of reduced infiltration into Yucca Mountain, in addition to 
limited and attenuated percolation down to the repository, and capillary effects in the host rock, 
results in a seepage flux into the repository that is substantially reduced from the precipitation flux 
at the surface. The integrated effects of precipitation, infiltration, percolation, and seepage are 
included in the models used to evaluate the rate of water movement through the Upper Natural 
Barrier.
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The effectiveness of the upper natural barrier is described using the following relative metrics:

1. Net infiltration into the bedrock as a percentage of precipitation rate for the 10,000-year 
period

2. Spatially averaged drift seepage rate as a percentage of percolation flux for the 
10,000-year and post 10,000-year periods

3. Seepage fraction for each percolation subregion (defined in Section 2.4.1.2.1 and 
Figure 2.4-3) for the 10,000-year and post-10,000-year periods.

The first barrier capability metric provides a quantitative demonstration of the effectiveness of the 
topography and surficial soils. The second and third metrics focus on the effectiveness of the 
unsaturated zone tuff units above (and inclusive of) the repository horizon. The quantification of 
these relative metrics is presented for each of the three climate states of the 10,000-year period, 
namely (1) present-day (from 0 to 600 years); (2) monsoon (from 600 to 2,000 years); and (3) 
glacial-transition (from 2,000 to 10,000 years). For the post-10,000-year period, net infiltration and 
precipitation are not used because the percolation rates are prescribed in proposed 10 CFR 
63.342(c)(2) (70 FR 53313).

As discussed in Section 2.1.2, two demonstration modeling cases—nominal/early failure and 
seismic ground motion—are evaluated to demonstrate barrier capability. In the case of the first 
metric, net infiltration is the same for the nominal/early failure and seismic ground motion modeling 
cases, because the barrier function of surficial soils is independent of the repository conditions. In 
contrast, drift seepage (i.e., volume of liquid water flowing into a drift per unit time per waste 
package) and seepage fractions (i.e., ratio of waste packages experiencing seepage to all waste 
packages in a percolation subregion) are direct functions of hydrologic, thermal, and drift 
degradation conditions. Thus, these two metrics will have different values for nominal/early failure 
and seismic ground motion modeling cases. The quantification of these relative metrics is presented 
for each of the three climate states of the first 10,000-year period, namely: (1) present-day 
(prevailing to 600 years); (2) monsoon (from 600 to 2,000 years); and (3) glacial-transition (from 
2,000 to 10,000 years). For the post 10,000-year period, net infiltration and precipitation are not 
used because deep percolation fluxes are prescribed in proposed 10 CFR 63.342(c)(2) (70 FR 
53313).

2.1.2.1.6.1 Topography and Surficial Soils

Net infiltration as a percentage of climate-induced annual precipitation is a useful metric to 
provide insights into the effectiveness of the surficial soils and topography to prevent or reduce the 
rate of water flow into the unsaturated zone. In addition, examining the partitioning of 
precipitation rate into the various water balance components (e.g., change in water storage in soil, 
runoff, evapotranspiration, and sublimation) is also useful in explaining the factors controlling the 
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reduction in net infiltration. Estimates of the mean net infiltration rate as a percentage of the mean 
precipitation rate are as follows (Section 2.3.1.1; SNL 2008c, Tables 6.5.7.4-1 through 6.5.7.4-3):

• Present-day climate: 8.02%
• Monsoon climate: 8.69%
• Glacial-transition climate: 10.38%.

Ranges of net infiltration for the four infiltration scenarios (defined by the 10th, 30th, 50th, and 90th 
percentiles) can be summarized as follows. Estimated average present-day net infiltration ranges 
from less than 3% of precipitation for the drier 10th percentile infiltration scenario to about 13% of 
precipitation for the 90th percentile infiltration scenario (SNL 2008c, Table 6.5.7.1-3). For the 
monsoon climate, average net infiltration rate estimates for the 10th to 90th percentile infiltration 
scenarios range from about 3% to 17% of precipitation (SNL 2008c, Table 6.5.7.2-3). For the 
glacial-transition climate, the average net infiltration rate estimates for the 10th to 90th percentile 
infiltration scenarios range from about 5% to 16% of precipitation (SNL 2008c, Table 6.5.7.3-3).

Climate analysis and infiltration modeling (Section 2.3.1.1; SNL 2008c, Tables 6.5.7.4-1 through 
6.5.7.4-3) show that the process of evapotranspiration (i.e., transfer of moisture from soil to the 
atmosphere by evaporation and transpiration from plants) alone accounts for most of the reduction 
in net infiltration. This is predicted to account for 87.7%, 84.9%, and 86.2% of mean precipitation 
rate during the present-day, monsoon, and glacial-transition climates, respectively. The remainder 
of the reduction is accounted for by the change in moisture storage in the soil and surface runoff. The 
infiltration study contains comparisons with published estimates for other Nevada hydrographic 
areas/subareas (Section 2.3.1.3.4.2.2; Figure 2.3.1-48).

It is important to clarify that the TSPA model does not directly use the spatially averaged net 
infiltration rates cited above. The infiltration study provided maps of mean annual net infiltration 
that were used as boundary conditions for the site-scale unsaturated zone flow model 
(Section 2.3.2). In turn, that flow model was used to develop percolation flux fields for direct input 
to the TSPA model.

2.1.2.1.6.2 Unsaturated Tuff Units and Repository Horizon

To describe the combined barrier effectiveness of the tuff units and repository horizon, two metrics 
were used: (1) seepage rate as a percentage of percolation; and (2) seepage fraction for each of the 
five percolation subregions (Section 2.3.5.4.1.4). Seepage rate is defined as the water flow rate 
through a unit cross-sectional area. The seepage fraction is the ratio of waste packages experiencing 
seepage to the total waste packages in a percolation subregion; seepage fractions apply to codisposal 
and commercial SNF waste packages. To calculate these metrics, the TSPA model integrates the 
coupled effects of climate changes, net infiltration, and deep percolation through the unsaturated 
zone, and computes percolation flow to and around the repository drifts. Projections for the 
combined nominal/early failure and seismic ground motion demonstration modeling cases are 
presented here.

Seepage Rate as Percentage of Local Percolation Rate—Water entering the unsaturated zone 
as net infiltration from precipitation at the land surface affects the overall hydrologic and 
thermal-hydrologic conditions within the Yucca Mountain unsaturated zone. Net infiltration is the 
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ultimate source of percolation through the unsaturated zone. Water percolating downward through 
the unsaturated zone is the source for seepage into the drifts. Multidimensional modeling of water 
flow in the unsaturated zone rock layers indicates that average percolation flux flowing to the 
repository is within a few percent of the net infiltration rate (Section 2.3.2.4.1.2.4.6). In addition, 
of the water flow (percolation) arriving at the repository horizon, only a small portion results in 
drift seepage. The reduction from percolation to seepage is the result of two natural processes that 
divert flow around and away from the emplacement drift. These processes are referred to as (1) the 
vaporization barrier effect during the thermal period (Section 2.3.3.3); and (2) the capillary barrier 
effect after the thermal period (Section 2.3.3.2). While the vaporization barrier effect persists for a 
short time relative to the compliance periods, the capillary barrier effect in the lithophysal unit 
persists through the period of geologic stability.

The combination of reduced infiltration into Yucca Mountain, and the vaporization and capillary 
barrier effects in the TSw unit, result in a seepage flux that will be substantially reduced from the 
precipitation flux at the surface. The magnitude of this reduction is shown in Figure 2.1-5. The top 
figure (a) illustrates the effectiveness of surficial soils and topography in preventing or reducing the 
rate of water flow into the unsaturated zone. The bottom figure (b) illustrates the effectiveness of 
vaporization and capillary diversion in limiting water movement into the drifts. In Figure 2.1-5(a), 
the mean spatially-averaged annual precipitation and net infiltration rates are plotted for each of the 
three climates in the 10,000-year period. Net infiltration rates are shown to range from 
approximately 5% of precipitation during the present-day climate to over 7% of precipitation during 
the glacial-transition climate (SNL 2008d, Section 8.3.3.1.1[a]). For the post-10,000-year period, 
the effects of infiltration are implicitly included in the TSPA model by using the distribution for 
deep percolation rate as specified in proposed 10 CFR 63.342(c)(2) (70 FR 53313); namely, a 
log-uniform distribution with a range of 13 to 64 mm/yr. The mean value of deep percolation from 
this distribution, 32 mm/yr, is shown in Figure 2.1-5(a).

The values for annual precipitation and net infiltration used in Figure 2.1-5(a) were derived as 
follows. The net infiltration and mean annual precipitation rates for the 10th-, 30th-, 50th-, and 
90th-percentile infiltration maps were taken from Simulation of Net Infiltration for Present-Day and 
Potential Future Climates (SNL 2008c, Tables 6.5.7.1-3, 6.5.7.2-3 and 6.5.7.3-3) for the 
present-day, monsoon, and glacial transition climates, respectively. These values are based on 
spatial averaging over the infiltration model. For each climate state, the averaged precipitation and 
net infiltration rates were then generated by taking the sum of the products of the rates and the 
unsaturated zone flow field weighting factors (0.6191, 0.1568. 0.1645, and 0.0596) for the 10th-, 
30th-, 50th, and 90th-percentile values (Section 2.3.2.2.1). This approach of using mean infiltration 
values for the infiltration modeling domain, rather than over the repository footprint, tends to 
underestimate the percolation flux that occurs within the repository footprint as compared to the 
unsaturated zone flow fields implemented in the TSPA. For example, compare the mean infiltration 
modeling domain (30mm/yr) and the repository footprint (38.7 mm/yr) for glacial transition climate 
(SNL 2008c, Table 6.5.7.3-2). Therefore, since the TSPA calculated seepage rates presented in 
Figure 2.1-5(b) are based on higher percolation fluxes, the results summarized here for seepage 
diversion are slightly underestimated.

Three mean spatially-averaged drift seepage rate curves are shown in Figure 2.1-5(b). The top curve 
denoted by the dashed line represents an ambient seepage rate that would result if capillary and 
thermal effects at the drift wall were neglected. This volumetric seepage rate is obtained by applying 
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the average net infiltration flux to the projected area of an intact emplacement drift segment that is 
5.1 m long by 5.5 m wide. This ambient seepage rate is compared to the TSPA-calculated seepage 
rates for the two demonstration modeling cases (i.e., the combined nominal/early failure modeling 
case and the seismic ground motion modeling case) to illustrate the effectiveness of the unsaturated 
zone barrier in limiting the movement of water into the drifts. Note that the average net infiltration 
flux and, thus, the ambient seepage rate used here, is based on a spatial averaging over the entire 
infiltration model domain. Therefore, the ambient seepage rate is only a representative 
approximation of the average flux that would occur within the repository footprint. In contrast, the 
TSPA-calculated seepage fluxes are based on the percolation flux within the repository footprint.

The nominal seepage rate curve in Figure 2.1-5(b) shows that seepage varies in the early part of the 
thermal period, when temperatures above 100°C are achieved. As temperatures gradually decrease 
to lower values, seepage rates into the drift increase. The estimate shows that, for the 10,000-year 
period, on average, 2% to 11% of the ambient seepage rate occurs as seepage into the drifts. The 
mean seepage rate for the post-10,000-year period is about 0.095 m3/yr, or about 11% of the ambient 
seepage rate.

The seepage curve for the seismic ground motion modeling case shown in Figure 2.1-5(b) is 
discussed next. For the 10,000-year period following repository closure, the mean seepage flux 
curve is almost identical to the mean curve for the nominal and early failure modeling cases. This 
similarity occurs because (1) for the most part, low-magnitude seismic events are projected to 
predominate in this time period; and, as a result, (2) relatively little drift degradation (i.e., damage 
to the drift openings) is projected to occur. The observation of low-magnitude seismic events is 
based on the mean seismic hazard curve, which shows that exceedance frequencies on the order of 
10−4/yr correspond to relatively small-amplitude vibratory ground motions (SNL 2008d, 
Figure 6.6-6). Drift degradation, quantified in terms of mean rubble volume per meter of drift length 
(i.e., by seismic-induced rockfall), is less than 5 m3/m and 0.5 m3/m for the lithophysal and 
nonlithophysal rock zones, respectively, for the first 10,000 years after repository closure 
(Figure 2.1-6). It is important to note that the curves for the 5th percentile and median are absent 
from Figure 2.1-6; this result is because of the large number of realizations with very little or no drift 
degradation. The lithophysal rock zones encompass approximately 85% of the emplacement drifts 
in the repository (Section 2.3.3.2.3.2). A mean rubble volume of less than or equal to the 5 m3/m of 
drift length for lithophysal rock zone, or 0.5 m3/m for nonlithophysal rock zone, indicates that the 
emplacement drifts are essentially intact and, thus, the seepage fluxes correspond to the ambient 
percolation fluxes and nominal flow processes in the repository horizon (Section 2.3.3). Therefore, 
the values of the seepage/precipitation metric would be about the same as those given previously for 
the nominal and early failure modeling cases.

For the post-10,000-year time period, the seismic ground motion modeling case seepage rates in 
Figure 2.1-5(b) are significantly different from the seepage rates for the combined nominal/early 
failure modeling case. This difference is due to a greater degree of drift degradation and, at late 
times, to drift collapse in lithophysal rock. In nonlithophysal rock, once rockfall has accumulated 
to an amount of 0.5 m3/m, capillary diversion is no longer considered, and the seepage rate is set to 
the percolation rate in the TSPA model. The spatially averaged mean seepage rates for the seismic 
ground motion modeling case increase with time and are larger than those for the combined 
nominal/early failure modeling case. The mean drift seepage rates for the seismic ground motion 
modeling case range from 0.109 m3/yr, just after 10,000 years, to 0.434 m3/yr at 1,000,000 years. 
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For these same two times, the seepage rates, as a percentage of the mean zero diversion seepage rate 
calculated using the NRC prescribed local percolation rate, are about 12% and 48%, respectively
(SNL 2008d, Section 8.3.3.1.1[a]). Although the effectiveness of capillary diversion is reduced 
from that of the combined nominal/early failure modeling case, it is still substantial in the seismic 
ground motion modeling case.

Seepage Fractions for Percolation Regions—Drift seepage rates are expected to vary spatially 
over the length of emplacement drifts. Thus, emplacement drifts can exhibit both seeping (with 
seepage) and non-seeping (no seepage) environments. In the TSPA model, this spatial variability 
is quantified by the seepage fraction. The seepage fraction is the ratio of the number of waste 
packages experiencing seepage to the total number of waste packages in a percolation subregion. 
Separate values are computed for codisposal and commercial SNF waste packages. Distributions 
of seepage fraction have been computed for each climate and for the five percolation subregions 
that represent the repository footprint. The calculations were performed using the drift seepage 
abstraction model (Section 2.3.3.2.4). Implementation of the abstraction in the TSPA model is 
summarized in Section 2.4.2.3.2.1.3. Unlike seepage rates, which vary with time, seepage 
fractions are constant values that are based on the percolation flux at the end of the simulation 
period (either 10,000 years or 1,000,000 years).

For the combined nominal/early failure modeling case, statistics for distribution of seepage fraction 
are tabulated in Table 2.1-6 for glacial-transition climate (2,000 to 10,000 years), and in Table 2.1-7
for post-10,000-year deep percolation rates. The post-10,000-years statistics are summarized here. 
The statistics consist of mean, 5th, and 95th percentiles for each waste package type (i.e., codisposal 
and commercial SNF). In Percolation Subregion 3, the mean seepage fraction is about 0.44 
(SNL 2008d, Table 8.3-3[a]) for the codisposal and commercial SNF waste package locations 
(SNL 2008d, Section 8.3.3.1.1[a]). Percolation Subregion 5, which represents about 5% of the 
repository footprint (SNL 2008d, Section 6.3.2.2.1), has the highest mean seepage fraction of about 
0.49 for both codisposal and commercial SNF waste packages (SNL 2008d, Section 8.3.3.1.1[a]). 
Averaging over the entire repository footprint, the mean seepage fractions for both codisposal and 
commercial SNF waste packages are about 0.4. This indicates that, on average, about 60% of the 
emplacement locations in the repository have nonseep environments for the nominal and early 
failure modeling cases.

For the seismic ground motion modeling case, the seepage fraction statistics are tabulated in 
Table 2.1-8 for glacial-transition climate (Section 2.3.8.4.1) and Table 2.1-9 for post-10,000-year 
deep percolation rates. As can be noted from Table 2.1-9 for the post-10,000-year period, the mean 
seepage fraction in Percolation Subregion 3 is about 0.72 for both codisposal and commercial SNF 
waste packages. Percolation Subregion 5, which represents about 5% of the repository footprint, has 
the highest mean seepage fractions of about 0.75 for both the codisposal and commercial SNF waste 
package locations. The mean seepage fraction for the overall repository footprint is about 0.7 for 
both codisposal and commercial SNF waste package locations. These results indicate that about 
30% of the emplacement locations in the repository are in nonseeping environments for the seismic 
ground motion modeling case. It is important to note that the calculations of mean seepage fractions 
for the seismic ground motion modeling case account for effects of drift degradation and collapse, 
which reduce the flow diversion by the capillary barrier (Section 2.3.3.2.4). This is the reason that 
the seepage fractions are higher than those for the combined nominal/early failure modeling case.
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Summary of Upper Natural Barrier Capability—The barrier capability analyses presented 
above demonstrate that topography and surficial soils substantially reduce the net infiltration into 
the underlying unsaturated zone rock layers above the repository. For climate states projected for 
the first 10,000 years after closure, the topography and surficial soils prevent (on average) about 
90% or more of the precipitation from entering the underlying unsaturated zone rock layers. More 
specifically, the mean net infiltration rate as a percentage of mean precipitation rate for each 
climate state is estimated to be approximately (1) 8% for present-day climate; (2) 9% for monsoon 
climate; and (3) 10% for glacial transition climate.

Of the water ultimately reaching the repository horizon (i.e., Topopah Spring welded [TSw]), only 
a fraction of the local percolation would enter the emplacement drifts as a result of the capillary 
barrier effect. This capillary barrier effect diverts ambient water flow around the emplacement 
drifts. Taking this effect into account, the mean drift seepage is less than 11% of mean annual 
percolation rate for intact drifts, and is less than 12% to 48% for degraded drifts, varying with the 
extent of drift degradation.

These seepage rate reductions indicate that very small fractions of the precipitation and ensuant net 
infiltration would enter the emplacement drifts.

2.1.2.2 Engineered Barrier System

As described in Section 2.1.1.2 and illustrated in Figure 2.1-7, EBS features that are ITWI 
(Table 2.1-1) and that contribute to barrier capability are (1) emplacement drift (Section 1.3.4); 
(2) drip shield (Section 1.3.4); (3) waste package including waste package outer barrier and inner 
vessel (Section 1.5.2); and (4) waste form and waste package internals including commercial SNF 
(Section 1.5.1.1) and HLW (Section 1.5.1.2), the TAD canister (Section 1.5.1.1), naval canister 
(Section 1.5.1.4), naval SNF canister system components (Section 1.5.1.4), naval SNF 
(Section 1.5.1.4), TAD canister internals (Section 1.5.1.1), and DOE SNF canister internals 
(Section 1.5.1.3). EBS features/components that are non-ITWI are (1) commercial SNF cladding 
(Section 1.5.1.1); (2) DOE SNF (Section 1.5.1.3); (3) the waste package emplacement pallet 
(Section 1.3.4); and (4) invert (Section 1.3.4). Table 1.9-8 provides further detail with respect to the 
structures, systems, or components that comprise each engineered feature.

Commercial SNF waste packages are used to represent the naval SNF waste packages in the TSPA 
as discussed in Section 2.3.7.3. Note that TAD canister internals, DOE SNF canister internals, and 
the naval SNF canister system components are classified as ITWI because these components 
provide criticality control in the waste packages (see Table 1.9-8).

As discussed in Section 2.1.1.2, the features of the EBS have processes and characteristics that 
influence the capability of these features to prevent or substantially reduce the release of 
radionuclides from the waste. These processes include chemical and thermal-chemical processes, 
mechanical and thermal-mechanical processes, hydrologic and thermal-hydrologic processes, and 
transport processes, as identified in Table 2.1-3 (SNL 2008a). This table also indicates those 
processes and characteristics relevant to each feature that are important contributors to barrier 
capability.
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In the evaluation of the important processes and events related to the capability of the EBS, 
consideration is given to both the beneficial as well as the potentially deleterious processes and 
events that act on each of the features of the barrier. The presence of a beneficial process generally 
results in either (1) preventing the release or substantially reducing the release rate of radionuclides 
from the waste; or (2) preventing the movement of radionuclides or substantially reducing the rate 
of movement of radionuclides from the repository to the accessible environment. Similarly, the 
absence or slow rate of a potentially deleterious process generally results in preventing or 
substantially reducing the release of radionuclides from the waste. The presence of a potentially 
deleterious process could result in an increase in the release rate or rate of movement of 
radionuclides. Both beneficial and potentially deleterious processes have been identified as 
important contributors to the EBS capability.

A few examples illustrate beneficial and potentially deleterious processes and their effects on the 
EBS. General corrosion of the waste package (Section 2.3.6.3) is a potentially deleterious process. 
However, a beneficial attribute of the waste package is that general corrosion rates for Alloy 22 are 
so slow and spatially variable under repository-relevant conditions that degradation and breaching 
of waste packages will be distributed over hundreds of thousands of years. Sorption of dissolved 
radionuclides on corrosion products in the waste package and on the invert ballast material (crushed 
tuff) in the EBS (Section 2.3.7.12) is a beneficial process of the EBS when the waste packages are 
breached. Seismic ground motion is a potentially deleterious process that can diminish the 
performance of the EBS (Section 2.3.4.5) by inducing both dynamic and static loads on the waste 
packages. In turn, these loads could cause stress corrosion cracking of the outer corrosion barrier 
and allow moisture to enter the waste package and degrade the waste form.

The features of the EBS that are ITWI and the processes and characteristics that contribute 
significantly to their barrier capability are summarized below.

Emplacement Drift—The following processes and characteristics are important contributors to 
the barrier capability of the emplacement drifts and EBS:

• Unsaturated Flow in the EBS—The repository and emplacement drifts are located 
above the water table and saturated zone. Therefore, water saturations in the EBS tend to 
be low, thus reducing the effective diffusivity and mobility of radionuclides in a breached 
waste package and in the invert (Section 2.3.2).

• Chemical Characteristics of Water in Drifts—The chemical characteristics of water in 
the drift are affected by the incoming water chemistry (due to seepage, condensation, or 
capillary flow), evaporation, and other thermal-chemical processes in the drift that are a 
function of the thermal-hydrologic environment (Sections 2.3.5.1 and 2.3.5.5). These 
chemical characteristics affect the likelihood of potential localized corrosion of the waste 
package outer barrier (Section 2.3.6.4), as well as the transport characteristics of any 
radionuclides released from the waste package to the invert. Sections 2.3.7.10, 2.3.7.11, 
and 2.3.7.12 discuss the transport characteristics affected by the range of in-drift water 
chemical characteristics, notably radionuclide solubility and colloid stability.

• Seismic Induced Drift Collapse Damages EBS Components—Vibratory ground 
motions associated with seismic activity could cause failure of the host rock around the 
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emplacement drifts. The resulting drift degradation could cause damage to the drip 
shields as a result of the static load from the rock rubble amplified by the dynamic load 
associated with vibratory ground motion. Such mechanisms may result in damaged areas 
on the drip shield plates and stress corrosion cracking. However, stress corrosion cracking 
would not compromise the barrier capability of the drip shield because crack openings 
would be very small and tight, so effective water flow rates would be too low to affect the 
performance of the drip shield in preventing or substantially reducing the amount of water 
that could directly contact the waste package, and is excluded from the TSPA
(SNL 2008b, FEP 2.1.03.02.0B, Stress corrosion cracking of drip shields, and FEP 
2.1.03.10.0B, Advection of liquids and solids through cracks in the drip shield). 
Accumulated rubble on the drip shield can also cause failure (rather than just damaged 
areas) of the drip shield during a seismic event. Two failure modes of the drip shield could 
occur: (1) rupture or tearing of the drip shield plates; and (2) buckling or collapse of the 
sidewalls of the drip shield (Section 2.3.4.5). In addition, this drift collapse may have a 
very significant effect on waste package degradation. This effect manifests itself by 
significantly reduced waste package damage (i.e., improved performance and enhanced 
barrier capability) if the rubble surrounds the waste package in the absence of a drip 
shield. The effects of drift collapse tend to degrade the performance of the drip shield 
while improving the performance of the waste package if the waste package is surrounded 
by rubble at late times (about 200,000 years) (SNL 2008a, Section 6.2.2.2).

• Heat Generation in the EBS—The heat generated by radioactive decay has multiple 
effects on repository-relevant processes, including degradation, deterioration, and 
alteration of the EBS. Heat generation in the emplacement drifts affects the timing of the 
onset of seepage processes, as discussed in Sections 2.3.5.3 and 2.3.5.4, as well as the 
distribution of in-drift convection and condensation (as discussed in Section 2.3.5.4). The 
heat generation and resultant temperature also affect the chemical evolution of water in 
the rock and emplacement drifts, as presented in Sections 2.3.5.3 and 2.3.5.5, 
respectively.

• Thermal Effects on Chemistry and Microbial Activity in the EBS—As noted above, 
thermal effects strongly influence the evolution of the water chemistry in the rock and 
emplacement drifts. The chemistry of the water in the emplacement drift determines the 
potential for localized corrosion of the waste package outer barrier and, in the event of 
waste package failure, can affect the stability of radionuclide-bearing colloids and 
radionuclide solubility in the invert (Section 2.3.5.5). Microbial effects will not 
significantly affect the in-drift chemical environment, including water chemistry
(Section 2.3.6.3.3.2).

• Chemistry of Water Flowing into the Drift—As seepage waters percolate into the drift, 
their chemical compositions change by dilution or by evaporation and mineral 
precipitation. Evaporation causes dissolved aqueous species concentrations to increase, 
minerals to precipitate, and the most soluble components to become concentrated in the 
resulting solution, ultimately leading to the formation of potentially deleterious brine. 
Dilution generally has the opposite effect. The chemical composition of the seepage water 
on the waste package surface determines the potential for localized corrosion of the waste 
package outer barrier. The chemical composition of seepage in the invert affects 
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radionuclide solubility and colloid stability in the invert, which in turn affect the mobile 
radionuclide source term for transport. The range of expected water chemistries, as well 
as their variation in time due to the heat generated in the EBS, is presented in 
Section 2.3.5.3.

• Seismic Ground Motion Damages EBS Components—Vibratory ground motion has 
the potential to cause seismically-induced rockfall that changes the cross-sectional shape 
and volume of the emplacement drifts (Section 2.3.4.4) and changes the configuration of 
the EBS components within the emplacement drifts (Section 2.3.4.5). A change in the 
cross section of the emplacement drifts and the presence of rockfall and/or rubble about 
the drip shield can alter the seepage into the drifts, flow pathways within the drift, 
condensation within the EBS, and the mechanical response and temperature-time history 
of the EBS components (Sections 2.3.4.1 and 2.3.4.5.6).

• Seismic-Induced Rockfall Damages EBS Components—Seismic activity could 
produce jointed-rock motion and/or changes in rock stress, leading to rockfall that could 
impact drip shields, waste packages, or other EBS components. Rockfall refers to rock 
blocks that fall from the roof or sides of a drift in the nonlithophysal zones of the 
repository during a seismic event, rather than complete or partial collapse of the 
emplacement drift, which may cover the drip shield with rubble and cause a sustained, 
static loading to the structure. Damage to the drip shields and waste packages as a result 
of seismic-induced rockfall from jointed-rock motion in nonlithophysal units is excluded 
from the TSPA model, as documented by the analysis in Features, Events, and Processes 
for the Total System Performance Assessment: Analyses (SNL 2008b, FEP 1.2.03.02.0B, 
Seismic-induced rockfall damages EBS components). Note that the effects of 
seismic-induced drift collapse in the lithophysal units of the repository are included in 
TSPA, as discussed above (in Seismic Induced Drift Collapse Damages EBS 
Components).

• Seismic Induced Drift Collapse Alters In-Drift Thermal Hydrology—Seismic activity 
could produce jointed-rock motion and/or changes in rock stress, leading to enhanced 
drift collapse and/or rubble infill throughout part or all of the emplacement drifts 
(Sections 2.3.4.1 and 2.3.4.8.1). Drift collapse could impact flow pathways and 
condensation within the EBS, mechanisms for water contact with EBS components, and 
temperature-time history within the EBS (Section 2.3.4.1).

Drip Shield—The following processes and characteristics are important contributors to the 
barrier capability of the drip shield and the EBS:

• Physical Form of Drip Shield—The physical characteristics of the drip shield, 
consistent with the design of this feature, have been included in the analyses and models 
of drip shield degradation (Section 2.3.6.8), EBS flow and transport (Section 2.3.7.12), 
and EBS environments (Sections 2.3.5.4 and 2.3.5.5). These characteristics are 
significant contributors to the capability of the drip shield to limit the flow of water and 
release of radionuclides. The assessment of barrier capability and performance accounts 
for design features, material characteristics, and the ways in which the design influences 
the evolution of the in-drift environment. Administrative controls for repository 
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construction and operations will be developed to assure that drip shields are manufactured 
in accordance with design specifications and are emplaced properly (Table 1.9-9).

• General Corrosion of Drip Shield—General corrosion rates of titanium alloys in a range 
of expected environmental conditions in the emplacement drifts are sufficiently low that 
this process does not cause a through-wall penetration of the drip shield until about two to 
three hundred thousand years after repository closure (Section 2.1.2.2.6). General 
corrosion is also an important process affecting drip shield structural integrity, because 
general corrosion weakens the drip shields over long time periods by gradually thinning 
the drip shield plates and framework. Thinning makes these components more susceptible 
to damage by vibratory ground motion. The slow degradation rate of the titanium drip 
shield is an important beneficial characteristic of the drip shield feature.

• Localized Corrosion of Drip Shields—Titanium alloys are extremely resistant to 
localized corrosion, due to their very passive film. Localized corrosion of these alloys will 
not occur in repository environments and is excluded from the TSPA (SNL 2008b, 
Section 6.2; FEP 2.1.03.03.0B, Localized corrosion of drip shields). The model for drip 
shield localized corrosion is presented in Section 2.3.6.8.

• Stress Corrosion Cracking of Drip Shields—In the presence of residual stresses or 
sustained loading, titanium is potentially susceptible to stress corrosion cracking. 
Residual stresses and sustained loading are possible as a result of rockfall or seismically 
induced damage. Uncertainty exists in the stress state and threshold stress required for a 
stress corrosion crack to be initiated, and other uncertainties exist regarding the degree of 
propagation of any stress-induced crack of titanium. Due to the long time frames, stress 
corrosion cracking is modeled to be independent of the environment, although the 
environments needed to support stress corrosion may not occur within the repository as 
explained in Section 2.3.6.8. Although stress corrosion cracking is modeled to occur in 
the drip shield, the presence of cracks is an insufficient condition to affect the 
performance of the drip shield in preventing or substantially reducing the amount of water 
that could directly contact the waste package, as discussed in Sections 2.3.6.8 and 2.2,
and water flow through stress corrosion cracks is therefore excluded from the TSPA 
(SNL 2008b, Section 6.2, FEP 2.1.03.02.0B, Stress corrosion cracking of drip shields).

• Effects of Drip Shield on Flow—The drip shield prevents seepage water from contacting 
the waste package. Thus, the drip shield reduces the rate of movement of water that may 
contact the waste, as well as preventing potentially deleterious brines from contacting the 
waste package surface during the period when the waste package may be susceptible to 
localized corrosion (Section 2.3.6.8).

• Advection of Liquids and Solids through Cracks in the Drip Shield—Any cracks that 
extend through the drip shield are expected to be of insufficient size and morphology to 
allow the advective flow of water through them. The process of formation and the 
physical characteristics of stress corrosion cracks resulting from denting of the drip shield 
by seismic-induced rockfall or drift collapse is summarized in Section 2.3.4.5.2.2. The 
advection of liquids through seismic-induced stress corrosion cracks in the drip shield is 
excluded from the TSPA based on low consequence as a result of a number of factors, 
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including (1) the small aperture width (narrow opening and tight cracks) and the presence 
of capillary forces within the stress corrosion cracks; and (2) the potential for plugging of 
the cracks due to mineral deposits. In response to stresses induced by rockfall 
deformations, stress relief via creep mechanisms or stress corrosion cracking of the drip 
shield may occur. Such cracks in passive alloys, such as Titanium Grade 7, are tight 
(e.g., small crack-opening displacement) and are expected to be plugged by corrosion 
products and precipitates (SNL 2008b, FEP 2.1.03.10.0B, Advection of liquids and solids 
through cracks in the drip shield). The lack of significant advection through cracks in the 
drip shield is an important beneficial characteristic of the drip shield.

• Localized Corrosion on Drip Shield Surface Due to Deliquescence—The potential for 
salts to deliquesce on the drip shield surface has been evaluated. Although the potential 
for salts to deliquesce exists, the effects of such deliquescence have been determined to be 
insignificant to performance because localized corrosion processes are not expected to be 
initiated. Even if localized corrosion were initiated, due to the limited volumes of brine 
caused by deliquescence, it is expected that the process would not propagate through the 
drip shield surface. As a result, this process is excluded from the performance assessment 
(SNL 2008b, FEP 2.1.09.28.0B, Localized corrosion on drip shield surfaces due to 
deliquescence). The lack of significant drip shield degradation by this process is a 
beneficial characteristic of the drip shield.

• Early Failure of Drip Shields—During fabrication and emplacement, a range of 
undetected and unmitigated errors could result in a drip shield being emplaced that has the 
potential for a drip shield failure (Section 2.3.6.8). This possibility has been included in 
abstraction models used in the early failure scenario class of the TSPA, as presented in 
Section 2.4.2.1.

• Creep of Metallic Materials in the Drip Shield—Titanium Grade 7, used for the drip 
shield plates, may undergo creep deformation at temperatures as low as room temperature 
when subjected to tensile stresses exceeding approximately 50% of the yield strength 
(Section 2.3.6.1.1). Titanium Grade 29, used for the drip shield structural supports, has 
significantly higher creep resistance than Titanium Grade 7 (SNL 2007b, Section 6.8.3). 
When the drip shield deforms through long-term creep, a confinement caused by the 
rubble is developed which tends to inhibit further creep deformation. Creep of titanium 
resulting in instability (collapse) of the drip shield has been excluded from the 
performance assessment (SNL 2008b, Section 6.2; FEP 2.1.07.05.0B, Creep of metallic 
materials in the drip shield). Although not credited in the treatment of stress corrosion 
cracking of the drip shield titanium alloys, creep following any stress corrosion cracking 
has the beneficial effect of decreasing crack propagation.

• Seismic Induced Drift Collapse Damages EBS Components—Vibratory ground 
motions associated with seismic activity could cause failure of the host rock around 
emplacement drifts. The resulting drift degradation could cause damage to the drip 
shields as a result of the static load from the rock rubble amplified by the dynamic load 
associated with vibratory ground motion. Such mechanisms may result in damaged areas 
on the drip shield plates and stress corrosion cracking. However, stress corrosion cracking 
would not compromise the barrier capability of the drip shield because crack openings 
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would be very small and tight, so effective water flow rates would be too low to affect the 
performance of the drip shield in preventing or substantially reducing the amount of water 
that could directly contact the waste package, and is excluded from the TSPA, as 
discussed in Features, Events, and Processes for the Total System Performance 
Assessment: Analyses (SNL 2008b, FEPs 2.1.03.02.0B, Stress corrosion cracking of drip 
shields, and 2.1.03.10.0B, Advection of liquids and solids through cracks in the drip 
shield). Accumulated rubble on the drip shield can also cause failure (rather than just 
damaged areas) of the drip shield during a seismic event. Two failure modes of the drip 
shield could occur: (1) rupture or tearing of the drip shield plates; and (2) buckling or 
collapse of the sidewalls of the drip shield (Section 2.3.4).

Waste Package (Including Waste Package Outer Barrier and Inner Vessel)—The following 
processes and characteristics are important contributors to the barrier capability of the waste 
package and the EBS:

• Physical Form of the Waste Package—The physical characteristics of the waste 
package, consistent with the design of this feature, have been included in the analyses and 
models of waste package degradation. These characteristics are significant contributors to 
the capability of the waste package to reduce the release rate of radionuclides from the 
waste. The assessment of barrier capability accounts for design features, material 
characteristics, and the ways in which the design influences the evolution of the in-drift 
environment. Administrative controls for repository construction and operations will be 
developed to assure that waste packages are manufactured in accordance with design 
specifications and are emplaced properly (Table 1.9-9).

• General Corrosion of Waste Packages—General corrosion rates of Alloy 22 in a range 
of expected environmental conditions are sufficiently low that this process is projected to 
cause a through-wall penetration in only 9% (based on the mean curve) of the waste 
packages by 1,000,000 years (Section 2.1.2.2.6) (SNL 2008d, Figure 8.3-6[a]). General 
corrosion is an important process affecting waste package structural integrity, because 
general corrosion thins and weakens the waste packages over long time periods by 
gradually thinning the outer corrosion-resistant Alloy 22 barrier, which makes the waste 
package more susceptible to being damaged by vibratory ground motion. Although the 
stainless steel inner vessel of the waste package and the TAD canister shell for the 
commercial SNF waste package will reduce the rate of movement of water that may 
contact the waste for tens of thousands of years after the Alloy 22 outer corrosion barrier 
is breached, this beneficial characteristic is not included in the performance assessment. 
The stainless steel inner vessel and TAD canister will provide additional structural 
resistance to vibratory ground-motion-induced damage to the waste packages. This 
beneficial characteristic is also incorporated into the performance assessment 
(Section 2.3.4), but is not included in the performance assessment after the waste package 
Alloy 22 outer corrosion barrier has been breached.

• Stress Corrosion Cracking of Waste Packages—Stress corrosion cracking is the 
process by which cracks initiate in a material under stress in the presence of a corrosive 
environment (Section 2.3.6.5). Stress corrosion cracking may affect the time to waste 
package breach. Stress corrosion cracks would allow diffusive transport of radionuclides 
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from the waste package, and therefore could compromise the barrier capability of the 
waste package. Alloy 22, the material used for the waste package outer corrosion barrier, 
is highly resistant to stress corrosion cracking, but may be susceptible to cracking in the 
Yucca Mountain environment and the stress conditions described in Section 2.3.6.5.1. 
Stress corrosion cracking breaches can occur via three possible modes: (1) through-wall 
propagation of fabrication flaws (other than in the outer corrosion barrier weld region) in 
the waste packages (Section 2.3.6.6) that result in early waste package failure; 
(2) through-wall propagation of incipient cracks that can occur on the waste package 
outer corrosion barrier closure weld regions; (3) damage to the waste package induced by 
seismic events, as discussed in Section 2.3.4.5.

• Localized Corrosion of Waste Packages—Localized corrosion is a phenomenon in 
which corrosion progresses at discrete sites or in a nonuniform manner (Section 2.3.6.4).
At least upon initiation, the propagation rate of localized corrosion is faster than that of 
general corrosion. Localized corrosion mechanisms on the waste package surface are 
dependent on the thermal-hydrologic and thermal-chemical environment on the waste 
package surface. The initiation of localized corrosion is possible in those cases where the 
drip shield has degraded sufficiently that incoming seepage is allowed to contact the 
waste package during the early part of the thermal period. In most cases, the drip shield 
will be intact during this period, protecting the waste package from seepage water contact. 
Should the drip shield fail to perform its function, such as in the unlikely event of drip 
shield failure due to fault displacement in the first 12,000 years, seepage waters may form 
concentrated aggressive solutions on the waste package (SNL 2008d, Volume 1, 
Section 6.3.5.2). In this case, waste packages that are susceptible to localized corrosion 
are expected to have already experienced substantial mechanical damage failure, and any 
additional damage caused by localized corrosion would not significantly impact 
radionuclide release from already damaged waste packages (Section 2.4.2.3.2.1.5). The 
possibility of localized corrosion also requires aggressive environmental exposure 
conditions (Section 2.3.6.4.1) that are generally not present (SNL 2008d, Volume 3, 
Appendix O). The model of localized corrosion of the waste package used in the 
performance assessment is presented in Section 2.3.6.4. The expected absence of the 
conditions necessary to initiate localized corrosion is an important beneficial 
characteristic of the waste package feature.

• Early Failure of Waste Packages—During fabrication, waste loading, and 
emplacement, a range of undetected and unmitigated errors could result in a waste 
package being emplaced that has the potential for an early waste package failure 
(Section 2.3.6.6). This possibility has been included in abstraction models used in the 
early failure scenario class of the TSPA, as presented in Section 2.4.2.1.

• Advection of Liquids and Solids through Cracks in the Waste Package—Similar to 
cracks in the drip shield, cracks in the waste package are expected to be of insufficient 
size and morphology to allow for the advection of water into the waste package. As a 
result, as discussed in Features, Events, and Processes for the Total System Performance 
Assessment: Analyses (SNL 2008b), advective release from the waste package 
(Section 2.3.7.12) is only possible when the degradation mode causing breach is general 
(Section 2.3.6.3) or localized corrosion (Section 2.3.6.4), when manufacturing defects 
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result in early failure of waste packages (Section 2.3.6.6), or when waste packages
rupture due to stresses in the outer barrier exceeding the residual stress threshold as result 
of seismic vibratory ground motion or fault displacement.

• Localized Corrosion on Waste Package Outer Surface Due to Deliquescence—Dust 
will be deposited on the surfaces of waste packages in emplacement drifts primarily 
during the operational and the preclosure ventilation periods. After emplacement, there is 
a period up to approximately 1,000 years in which no seepage is possible because the drift 
wall temperature is above boiling (Section 2.3.5). During this interval, and for as long as 
the drip shields perform their function, the only aqueous phase that could potentially 
contact the waste package is brine that originates by deliquescence of soluble salts in dust 
residing on the waste package. The potential for brines formed by dust deliquescence to 
initiate and sustain localized corrosion resulting in breach of the waste package outer
corrosion barrier has been evaluated and excluded from the TSPA (SNL 2008b, 
Section 6.2, FEP 2.1.09.28.0A, Localized corrosion on waste package outer surface due 
to deliquescence).

• Seismic Ground Motion Damages EBS Components—Ground motion associated with 
seismic activity has the potential to disrupt the integrity of the waste package and other 
EBS components, which could lead to impaired waste package performance and/or 
breaching, with subsequent radionuclide release. Seismic-induced deformation of the 
waste package could result in plastic yielding or even breach of the waste package. If the 
residual stress on a plastically deformed waste package exceeds a threshold value
(Section 2.3.4.1), then stress corrosion cracking may result in the formation of diffusive 
transport pathways for radionuclides. Additional structural failures corresponding to the 
tearing or rupture of the waste package could also occur. A rupture or tear may occur if 
the local strain exceeds the ultimate tensile strain (Section 2.3.4.1), and may partly or 
completely negate the effectiveness of the waste package in preventing the inflow of 
seepage water or the outward transport of radionuclides.

• Seismic Induced Drift Collapse Damages EBS Components—Vibratory ground 
motions associated with seismic activity could cause failure of the host rock around 
emplacement drifts. Drift collapse enhances the barrier capability of the EBS, specifically 
the waste package, by surrounding the waste package with rubble that shields the waste 
package from potentially damaging rockfall after the drip shield plate has failed, 
especially at late times when the walls of the waste package are thinned and weakened by 
general corrosion. Rubble surrounding the waste package also helps to reduce 
seismic-induced kinematic damage to the waste package by confining the waste package 
and dampening the effect of ground motion.

Waste Form and Waste Package Internals (Including the TAD Canister, Naval Canister, 
TAD and DOE SNF Canister Internals, and Naval SNF Canister System Components)—The 
following processes and characteristics of the waste form and waste package internals are 
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important contributors to the barrier capability of the waste form and waste package internals and 
EBS:

• Seismic Ground Motion Damages EBS Components—Vibratory ground motion has 
the potential to damage the waste package outer corrosion barrier as a result of waste 
package-to-waste package impacts and waste package-to-pallet impacts that may occur 
during a seismic event. This damage may result in residual stresses that exceed a tensile 
threshold for initiation and growth of stress corrosion cracks. The TAD and naval 
canisters enhance the structural stability of the waste packages prior to waste package 
breach. Once the outer corrosion barrier is breached by a crack network, corrosion of the 
waste package internals (specifically TAD and naval canisters) will compromise their 
capacity to support structural loads and to isolate the waste form during vibratory ground 
motion.

• Commercial SNF Degradation (Alteration, Dissolution, and Radionuclide 
Release)—The availability of individual radionuclides for dissolution, once a commercial 
SNF waste package and fuel cladding are breached, is limited by the structure, 
microstructure, and physiochemical properties of the irradiated fuel, as well as by the 
distribution of radionuclides in the fuel rods. The part of the radionuclide inventory 
present, either as a solid solution in the fuel matrix or embedded as discrete phases in the 
fuel grains, is not available for dissolution until the fuel matrix is dissolved or degraded. 
The rate of dissolution or degradation will influence the rate at which soluble 
radionuclides can enter solution (Section 2.3.7). The commercial SNF degradation rate is 
the product of the fuel surface area and the surface area-normalized dissolution rate. The 
latter depends on pH, carbonate levels, and the oxygen partial pressure 
(Section 2.3.7.7.3.2).

• Naval SNF (Naval SNF Structure (Including Cladding))—Refer to naval SNF 
cladding FEP. In the modeled repository, there are 8,213 waste packages modeled as 
commercial SNF, of which 417 represent naval SNF (SNL 2008d, Table 6.3.7-1). Waste 
packages containing naval SNF are conservatively modeled in the TSPA as commercial 
SNF waste packages (SNL 2008b, FEP 2.1.02.25.0B, Naval SNF cladding).

• HLW Glass Degradation (Alteration, Dissolution, and Radionuclide Release)—The 
availability of individual radionuclides for transport and release once a codisposal waste 
package is breached is determined by the rate at which radionuclides leave the HLW glass 
and enter solution. The rate at which radionuclides enter a solution is controlled either by 
the dissolution rate of the waste form or by the solubility limit of the constituent elements. 
A few soluble radionuclides, such as 99Tc, will enter solution at the same rate glass 
dissolves, so the waste form dissolution rate determines their rate of release. 99Tc from 
HLW is a key contributor to the annual dose to the RMEI in the first 10,000 year period 
(Section 2.1.2.2.6). HLW glass degradation depends upon the glass surface area and the 
surface area-normalized glass dissolution rate. The dissolution rate varies as a function of 
pH, being lowest at about pH 9 (Section 2.3.7.5.2). Many radionuclides, however, quickly 
saturate the solution, so the solubility limits of these radionuclides determine their rate of 
release.
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• Chemical Characteristics of Water in Waste Package—The chemical characteristics 
of the water in contact with the waste package internals, including void spaces, and the 
waste form affect the degradation characteristics of the waste form, the solubility of 
radionuclides in the dissolved phase, and the stability of colloidal particles. These 
chemical effects are significant in affecting the release of low-solubility radionuclides 
(e.g., 90Sr, 237Np, 239Pu, 240Pu, 241Am, and 243Am) and radionuclides that may be released 
attached to colloidal particles (e.g., 239Pu, 240Pu, 241Am, and 243Am). Uncertainty in the 
in-package chemistry, in particular the ionic strength and pH that have the most 
significant effect on these coupled processes, has been considered in the in-package 
chemistry abstraction model used in the TSPA (Section 2.3.7.5).

• Chemical Interaction with Corrosion Products—The corrosion products of the steel 
and aluminum alloys in the waste package, and their control on the concentration of 
aqueous species, are of primary importance in determining the pH and ionic strength of 
the solution, which impact the alteration rates of the different waste forms, the solubility 
of radionuclides (Section 2.3.7.12), and the colloid concentration and stability in the 
waste package (Section 2.3.7.11). In addition, sorption of radionuclides onto waste 
package corrosion products will occur and can significantly slow the release of 
radionuclides from the waste package (Section 2.3.7.12). As discussed in EBS 
Radionuclide Transport Abstraction (SNL 2007c, Section 6.3.4.2), retardation of 
radionuclides will occur in the waste package corrosion products.

• Radionuclide Solubility, Solubility Limits, and Speciation in the Waste Form and 
EBS—Solubility limits of low-solubility dissolved radionuclides (e.g., 90Sr, 237Np, 239Pu, 
240Pu, 241Am, and 243Am) significantly affect the amount of these radionuclides that may 
be released from the waste form through the other EBS features. Solubility models are 
presented in Section 2.3.7.10. The more soluble the radionuclide, generally the greater 
mass flux of that radionuclide that will be released by diffusive or advective release 
mechanisms from the waste form. As presented in Section 2.4.2.2.1.1.3, the radionuclides 
most significant to dose that are released by diffusion are highly soluble 99Tc and 129I.

• Sorption of Dissolved Radionuclides in the EBS—The degradation of the waste 
package inner vessel and internals (such as the TAD canister) results in a significant 
quantity of iron/chromium/nickel oxide materials. These materials have a significant 
amount of retardation potential, due to sorption, for a number of radionuclides that are 
potentially significant for the release from the waste form, including 90Sr, 137Cs, 237Np, 
239Pu, 240Pu, 241Am, and 243Am. This sorption significantly reduces the release of these 
radionuclides from the waste in the event that a breach in the waste package has occurred. 
The models used to evaluate radionuclide sorption are presented in Section 2.3.7.12.

• Reaction Kinetics in Waste Package—Chemical reactions, such as radionuclide 
dissolution/precipitation reactions and reactions controlling the reduction–oxidation state, 
may not be at equilibrium within the waste package and may influence the in-package 
solution chemistry (Section 2.3.7.5), the solubility of radionuclides (Section 2.3.7.10), the 
degradation rate of HLW glass (Section 2.3.7.9), and radionuclide sorption onto corrosion 
products (Section 2.3.7.12). The effects of reaction kinetics on these processes and 
radionuclide releases from the waste package are included in the TSPA.
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• Diffusion of Dissolved Radionuclides in the EBS—Diffusion is an important 
mechanism that transports dissolved radionuclides from the waste form surface to the 
waste package internals and then through the degraded waste package to the invert. 
Diffusion is controlled by the degree of degradation of the waste package and the 
hydrologic characteristics within the waste package, which, in turn, are a function of the 
type of waste (Section 2.3.7.12). The model presented in Section 2.3.7.12 assumes there 
is a continuous water film if the relative humidity is greater than 95% and the temperature 
is less than 100°C through which radionuclides can diffuse.

• Advection of Dissolved Radionuclides in EBS—Once the drip shields fail and patch 
breaches in the waste package form, water may enter the waste package, dissolve 
radionuclides, and flow out, thereby generating advective releases of radionuclides. Patch 
breaches may form due to manufacturing defects (early failure), general corrosion, or 
seismic-induced rupture or puncture. When advective transport occurs, advective release 
rates of radionuclides from the waste package are typically greater than diffusive release 
rates, particularly for solubility-limited radionuclides (e.g., 90Sr, 237Np, 239Pu, 240Pu, 
241Am, and 243Am) and radionuclides that may be released attached to colloidal particles 
(e.g., 239Pu, 240Pu, 241Am, and 243Am). Models used for the advective transport processes 
are presented in Section 2.3.7.12.

• Chemical Effects of Void Space in Waste Package—Upon waste package breach, the 
inert gas initially present escapes and is replaced by humid air. The reaction of this air 
with waste package internals and the resulting changes in water chemistry influence the 
solubility characteristics of radionuclides, the degradation of waste package internals and 
the waste form, and the transport behavior of radionuclides released from the waste form. 
Chemical effects induced by the presence of voids in the waste package internals are 
included in models of in-package water chemistry (Section 2.3.7.5).

• In-Package Criticality (Intact Configurations, Degraded Configurations Resulting 
from a Seismic Event (Intact and Degraded Configurations), and Resulting from 
Rockfall (Intact and Degraded Configurations))—For a criticality event to occur, the 
appropriate combination of materials (e.g., neutron moderators, neutron absorbers, fissile 
materials, or isotopes) and geometric configurations favorable to criticality must exist. As 
documented in Section 2.2.1.4.1 (SNL 2008b, FEPs 2.1.14.15.0A, In-package criticality 
(intact configuration); 2.1.14.16.0A, In-package criticality (degraded configurations); 
2.1.14.18.0A, In-package criticality resulting from a seismic event (intact configuration); 
2.1.14.19.0A, In-package criticality resulting from a seismic event (degraded 
configurations); 2.1.14.21.0A, In-package criticality resulting from rockfall (intact 
configuration); and 2.1.14.22.0A, In-package criticality resulting from rockfall (degraded 
configurations)) the probability of criticality for the in-package location is less than 
1 chance in 10,000 of occurrence within 10,000 years after disposal. Therefore, 
in-package criticality is excluded from the performance assessment. Finally, although the 
criticality FEPs listed here are not identified as significant contributors to barrier 
capability in Table 2.1-3, they are noted here because they do contribute to the reduction 
in probability of criticality.
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• DOE SNF Degradation (Alteration, Dissolution, and Radionuclide Release)—
Varying quality-level data exist on the DOE SNF fuel, so a bounding approach is used to 
account for uncertainty in the characteristics of the DOE SNF fuel, and the degradation 
rate of all DOE SNF (except naval waste packages) is bounded in the TSPA as 
instantaneous (SNL 2008a, Section 6.2.2.2). The degradation of DOE SNF waste strongly 
influences the pH of the water chemistry within the codisposal waste packages by 
buffering pH in the near-neutral range and therefore impacts radionuclide solubilities, 
colloid stability, and radionuclide mobility (Section 2.3.7.5).

Waste Package Pallet—The following process involving the waste package pallet is an important 
contributor to the capability of the EBS:

• Seismic Ground Motion Damages EBS Components—The waste package 
emplacement pallet provides mechanical stability for the waste package during a potential 
seismic event. A seismic damage abstraction model was not developed explicitly for the 
waste package pallet because it will not form new pathways for transport and release of 
radionuclides after strong vibratory ground motion events (Section 2.3.4.5). However, the 
effect of this EBS component on damage to, or failure of, the waste package is included in 
the waste package damage abstractions in that the mechanical effects of the pallet have 
been included in the structural calculations described in Sections 2.3.4.5.2, 2.3.4.5.3,
and 2.3.4.5.4.

As noted in Table 2.1-1, the waste package pallet and emplacement drift invert are two features of 
the EBS that are not ITWI. However, they do contribute to the barrier capability of the EBS. The 
presence of the pallet can delay diffusive releases of radionuclides from the waste package to the 
invert, as long as the cradles remain intact and can support the waste package above the invert (SNL 
2008a, Section 6.2.2.2). To simplify the modeling required, the EBS flow and transport model 
(Section 2.3.7.12) does not include this beneficial characteristic of the pallet and assumes that the 
waste package is in direct contact with the invert. The emplacement drift invert is composed of two 
parts: a steel invert structure and ballast (or crushed tuff). The invert provides a stable mechanical 
foundation for the waste package pallet and drip shield (SNL 2008a, Section 6.2.2.2). In the 
unsaturated repository environment, the crushed tuff in the invert sorbs radionuclides and slows the 
diffusive movement of radionuclides into the Lower Natural Barrier (Section 2.3.7.12).

The significant processes described above determine the manner in which the features of the EBS 
work together to prevent or substantially reduce the release of radionuclides from the waste and 
prevent or substantially reduce the rate of movement of radionuclides from the repository to the 
accessible environment. These processes and their effects on the EBS can be summarized as
(1) chemical, thermal, and mechanical processes that affect the degradation of the drip shield and 
waste package; (2) thermal-hydrologic processes that affect the potential for liquid flow through 
cracks in degraded drip shields and waste packages; and (3) thermal and chemical processes that 
affect alteration of the waste form and waste package internals and transport from the waste form 
to the edge of the EBS. The most significant drip shield and waste package degradation processes 
are related to mechanical degradation processes associated with likely and unlikely seismic events 
that cause through-wall stress corrosion cracks (Section 2.3.4.5 and 2.4.2.2). The most significant 
thermal-hydrologic processes are related to water entering the waste package. However, tight flow 
paths through potential cracks prevent liquid flow into the waste package and limit the radionuclide 
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release process to follow a diffusive path through the waste package (Section 2.3.7.12). The most 
significant thermal and chemical processes are related to waste form degradation, corrosion of 
internal materials, and diffusive transport processes limited by the low solubility of the 
radionuclides that are a significant fraction of the total inventory (notably 90Sr, 239Pu, 240Pu, 241Am, 
and 243Am), as well as the sorption of these radionuclides onto iron oxide and other degradation 
products in the waste package (Section 2.3.7.12).

The models developed to represent the physical and chemical environment in the emplacement drift 
are described in Section 2.3.5. The drip shield and waste package degradation models are described 
in Section 2.3.6. Models for mechanical degradation of the drip shield and waste package due to 
seismic effects are described in Section 2.3.4. The TSPA model integrates the models of 
degradation processes with models used to describe the environment within the emplacement drift. 
The discussion of drip shield and waste package performance in Section 2.1.2.2.1 is based on 
projections produced using the TSPA model.

The waste form degradation models, as well as the in-package chemistry and radionuclide solubility 
models described in Section 2.3.7, are implemented in the TSPA model. Similarly, the model for 
EBS transport that is described in Section 2.3.7.12, which simulates the mobilization and 
movement of radionuclides from inside the waste package to and through the invert, is implemented 
in the TSPA model. The TSPA model integrates the degradation, mobilization, and transport models 
with other components, such as those used to describe the chemical and physical environment
within the emplacement drift (Section 2.3.5). The radionuclide release curves presented in 
Section 2.1.2.2.6 to describe the capability of the EBS to prevent or substantially reduce 
radionuclide movement are produced using the TSPA model.

2.1.2.2.1 Capability of the Engineered Barrier System to Prevent or Substantially 
Reduce the Contact of Seepage with the Waste Form

The capability of the EBS to prevent or limit the movement of water and prevent contact between 
water and waste depends on the integrity of the drip shields and waste packages. Should the majority 
of waste packages remain intact for hundreds of thousands of years, as expected, only a limited 
number of the waste forms will be exposed to water during this period. The data and analyses used 
to assess waste form degradation are discussed in detail in Sections 2.3.7.6 to 2.3.7.9. The 
possibility of early failure of some waste packages due to fabrication errors, as well as the effects 
of seismic-induced mechanical damage, have been considered in evaluating the overall barrier 
capability.

The drip shield (Section 1.3.4) is designed to divert seepage away from the waste package. It 
prevents water from contacting the waste package as long as it remains intact. The waste packages 
prevent water from contacting the waste forms. As long as the waste packages are intact, moisture 
cannot contact the waste forms. The Zircaloy cladding that encases much of the commercial SNF 
would also prevent the contact of seepage with the waste form as long as it remains intact. This 
capability is not considered in the TSPA, or in the quantitative analysis of barrier capability 
presented in Section 2.1.2.2.6. A detailed description of the testing data, geochemical constraints, 
and models of drip shield, waste package, and cladding integrity is presented in Sections 2.3.6
and 2.3.7.
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The degradation rates for general corrosion of Titanium Grade 7 are sufficiently low so that even the 
highest measured rates would not lead to failure of the drip shield for over 150,000 years 
(Section 2.3.6.2.3). Seismic-induced stress corrosion cracking is not expected to have significant 
consequences to drip shield performance, and is excluded from the TSPA (SNL 2008b, FEP 
2.1.03.02.0B, Stress corrosion cracking of drip shields). Localized corrosion that is induced by 
seepage or by deliquescence will not occur in repository environments and is excluded from TSPA 
(SNL 2008b, FEPs 2.1.03.03.0B, Localized corrosion of drip shields, and 2.1.09.28.0B, Localized 
corrosion on drip shield surfaces due to deliquescence). Early failure of a very small number of drip 
shields potentially may occur due to flaws that are undetected during fabrication and handling
(SNL 2008d, Section 6.4.1). These types of flaws would diminish the drip shield’s ability to 
withstand dynamic and static loads caused by seismic activity. However, they are treated in the 
TSPA model as an immediate and complete failure, which means loss of protection of the waste 
package from seepage or drift degradation at the time of repository closure (Section 2.4.2.2.1).

The degradation rates for general corrosion of Alloy 22 are sufficiently low that mean breach time 
of the waste packages due to general corrosion will be distributed over many hundreds of thousands 
of years, beginning at about 600,000 years from the 95th percentile curve value (Section 2.1.2.2.6). 
Although stress corrosion cracking may occur in the closure-lid weld regions of some of the waste 
packages, mitigation techniques are employed to reduce residual stresses below the stress corrosion 
cracking initiation threshold (Section 2.3.6.5). However, stress corrosion cracking can eventually 
initiate—beginning after about 100,000 years (Section 2.1.2.2.6)—as general corrosion removes 
the stress-mitigated layer. Stress corrosion cracking of Alloy 22 may also occur as a result of 
residual stresses caused by mechanical impacts during seismic events. Such stress cracks are small 
and tight and limit the movement of water that could potentially contact the waste form and reduce 
the release rate of radionuclides from the waste packages (Section 2.3.6.1). Localized corrosion is 
only possible in those cases where the drip shield fails to perform its function and certain aggressive 
incoming seepage potentially contacts the waste package (Section 2.3.6.1.1). This condition may 
occur in the unlikely case where seismic ground motion is accompanied by fault displacement, as 
described in Section 2.3.4, or in the case of early drip shield failure. Early failure of a small number 
of waste packages potentially may occur due to flaws that are undetected during fabrication and 
handling, as discussed in Section 2.3.6.6.

No performance credit is taken for the ability of the stainless-steel inner vessel or TAD canister to 
preclude or limit water influx into the waste package once the Alloy 22 outer corrosion barrier is 
breached (Section 2.3.6.2.2). However, performance credit is applied in the TSPA for the increase 
in waste package structural strength and accompanying resistance to seismic damage due to the 
inclusion of the inner vessel and the TAD and naval canisters.

Credit is taken for naval SNF structure, including cladding. Although no credit is taken for the 
contribution of commercial SNF cladding to barrier performance, it is expected that cladding will 
be largely intact in the repository environment (Section 2.3.7.6), except after being subjected to 
seismic-initiated events, and therefore will provide some capability to prevent or delay radionuclide 
releases from the waste form.
2.1-45



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
2.1.2.2.2 Capability of the Engineered Barrier System to Prevent the Release or 
Substantially Reduce the Release Rate of Radionuclides from the Waste and 
Transport to the Lower Natural Barrier

In the event that waste packages are breached, the release rate of radionuclides is limited by the 
characteristics and behavior of the EBS. The release of radionuclides is first impeded by the rate of 
degradation of the waste form. Waste form degradation cannot begin until the waste package is 
breached, allowing the ingress of air and water. Because of the unsaturated environment, the 
elevated temperatures within waste packages, and the presence of drip shields and waste packages, 
the amount of water in contact with the waste form is expected to be limited as long as decay heat 
exists. The data and analyses used to assess waste form degradation are discussed in detail in 
Sections 2.3.7.6 to 2.3.7.9.

Release of radionuclides out of the waste package depends on the chemical environment within the 
waste package and on moisture conditions within the waste package. Release can only occur if 
radionuclides are dissolved in water and/or attached to colloids, and if there are continuous liquid 
pathways in the waste package, including thin films of adsorbed water. Slow diffusive transport of 
radionuclides can occur in these thin films. Advective transport of radionuclides out of the waste 
package and EBS can occur only if breaches are sufficiently open to permit flow and there is a liquid 
flux of water through the waste package and invert. Waste heat and evaporation from hot surfaces 
within the waste package will prevent moisture from entering the waste package and subsequently 
forming continuous liquid pathways for diffusive transport. Continuous liquid pathways will form 
only when the waste cools and relative humidity in the waste package increases sufficiently
(Section 2.3.7). Continuous pathways may not form in the hotter commercial SNF waste packages 
for several thousand years (Section 2.4.2.2.1.2.4.2).

The transport of many dissolved radionuclides, including those that are the greatest contributors to 
the total inventory activity, such as 90Sr, 137Cs, 239Pu, 240Pu,241Am, and 243Am, is retarded by 
sorption on iron corrosion products within the waste package (SNL 2008a, Section 6.2.2.2). The 
retardation depends on the volume of these corrosion products and on the distribution coefficients 
associated with them. Sorption onto the corrosion products also reduces movement of those 
radionuclides reversibly attached to colloids in the water. The mobilization and transport of 
radionuclides out of breached waste packages and through the invert in the EBS are described in 
Sections 2.3.7.10, 2.3.7.11, and 2.3.7.12. The radionuclide inventory released from the EBS would 
be limited by diffusive transport if (1) the drip shield remains intact; or (2) the waste package breach 
is a stress-induced crack. Although advective transport is not expected from the waste package for 
hundreds of thousands of years after closure, both diffusive and advective transport are considered 
in the calculation of radionuclide releases from the invert feature of the EBS, starting at the time of 
repository closure, as presented in Section 2.3.7.12.

2.1.2.2.3 Time Period over Which the Engineered Barrier System Functions

The EBS consists of features that are designed, fabricated, and constructed to perform their 
functions for well beyond 10,000 years. Through the appropriate use of thick, diverse, 
corrosion-resistant materials, the drip shields and the waste packages are expected to remain intact 
for tens to hundreds of thousands of years. The EBS features will gradually degrade during the 
1,000,000-year period of geologic stability. This process will result in the slow release of 
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radionuclides over extended periods of time. Some components, such as the waste packages, are 
expected to contribute substantially to barrier performance up to and beyond 1,000,000 years.

The capability of the drip shield and the waste package to prevent or reduce the movement of water 
and radionuclides is not impacted until sufficient corrosion has occurred to cause through-wall 
breaches in the waste packages. General corrosion and stress corrosion cracking, along with 
seismic-initiated mechanical damage, will cause through-wall breaches in the waste package. 
Detailed discussion of the models for degradation of the drip shields and waste packages can be 
found in Section 2.3.6, and the changes in repository conditions over time under nominal conditions 
can be found in Section 2.3.5. Detailed discussion of models for seismic-induced mechanical 
damage to the waste package and drip shield can be found in Section 2.3.4. A summary discussion 
of the thermal environment within the emplacement drift, and how it evolves in time with respect 
to corrosion and condensation, is presented below followed by a summary of TSPA drip shield and 
waste package performance projections. These projections are presented first for nominal 
degradation processes, and then for seismic-induced mechanical damage. A more complete 
description of drip shield and waste package performance is presented in Section 2.1.2.2.6.

The environment within the emplacement drift evolves through three main stages. The initial stage 
includes the heat-up after closure, with the drift wall and waste package surface temperatures 
increasing above the boiling point of water, then reaching their peak temperatures. This is followed 
by a subsequent cool down period in which the drift wall and waste package surface temperatures 
continue to be above the boiling point of water. No seepage is expected during this period due to 
vaporization (Section 2.3.3.3) and capillary diversion effects (Section 2.3.3.2). Any water vapor 
that flows from the host rock into the drift will be transported axially toward unheated regions at 
either end (Section 2.3.5.4.2.1). The unheated regions are cooler so that condensation is possible 
(SNL 2007d, Section 6.3.3.1). Deliquescent brine films may form from salts or moisture in the air 
if the temperature is below the deliquescence point. Given the low volumes and high nitrate 
concentrations of such brines, even if they were to form and be stable, localized corrosion is not 
expected to occur under these films (SNL 2008b, Excluded FEPs 2.1.09.28.0A, Localized corrosion 
on waste package outer surface due to deliquescence; and 2.1.09.28.0B, Localized corrosion on drip 
shield surfaces due to deliquescence). This dryout period is expected to last for several hundred to 
more than 1,000 years, depending on the location in the repository. Elevated temperatures would 
persist longer near the center of the repository and would dissipate more quickly at the edges of the 
repository (SNL 2008e, Section 6.1.4 and Figure 7.8-10[b] through 7.8-17[b]).

The second stage is the transition period, during which drift wall temperatures drop below the 
boiling point of water and the waste package surface temperature is near the boiling point of water 
and localized corrosion on the waste package surface is possible under certain geochemical 
conditions. The emplacement drifts will enter this stage at the edges of the repository first, where 
heat dissipates more quickly. It is during this transition period when drift wall temperatures are 
above and below the boiling point of water in different parts of the repository that water evaporated 
from the emplacement drift walls and invert is transported primarily by natural convection from 
warmer to cooler areas, where it condenses on cooler surfaces. In those regions where drift wall 
temperatures are below the boiling point of water and waste package surface temperatures are near 
100°C, waters from the rock (seepage) and condensation can fall onto hot metal surfaces. 
Evaporative concentration of seepage may produce aggressive chemistry that is more conducive to 
localized corrosion for Alloy 22 (Section 2.3.6.4; SNL 2008d, Section 6.3.3, and Appendix O). 
2.1-47



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
Condensation that forms on the drip shield or waste package surface, or that occurs in the absence 
of seepage, is assumed to have a benign composition with respect to the corrosion environment 
because it is dilute (SNL 2008b, FEP 2.1.08.14.0A, Condensation on underside of drip shield). 
Should the drip shield fail to perform its function, these seepage and condensation waters may fall 
on the waste package. However, given the absence of drip shield failure during this transition 
period, except in the rare case of early drip shield failure and the unlikely occurrence of a damaging 
fault displacement event, localized corrosion is not expected to be initiated in environmental 
conditions relevant to the repository (SNL 2008d, Section 6.3.5.2.3). In the rare case of early drip 
shield failure, it was assumed in the TSPA that a waste package under an early failed drip shield 
would fail completely due to localized corrosion if the drip shield is being seeped on (SNL 2008d, 
Section 6.4.1.3). This assumption is conservative with respect to barrier capability because a 
smaller failure would reduce the release rate of radionuclides from the waste and waste package. In 
addition, for the case where drip shields and waste packages are damaged by a fault displacement 
event, analyses show that any additional damage caused by localized corrosion would not 
significantly impact radionuclide release from already damaged waste packages (SNL 2008d, 
Section 6.3.5.2.3).

The third stage is the period in which drift wall and waste package surface temperatures have further 
decreased, and the likelihood of localized corrosion on the waste package surface progressively 
decreases until it reaches the point, after about 12,000 years, when it will no longer occur 
(SNL 2008d, Volume 3, Appendix O). During this stage the relative humidity within the drift 
increases. At the locations of cooler waste packages, especially in the outer portions of the drift, 
relative humidity may achieve 100% so that condensation occurs. At the hotter locations (the central 
portion of the drift and hotter waste packages in the outer portions of the drift), the relative humidity 
remains below 100%, evaporation in the host rock continues, and condensation does not occur. 
TSPA projections indicate that condensation will cease throughout the repository by approximately 
2,000 years (Section 2.1.2.2.6). This period lasts for the remainder of the regulatory period of 
geologic stability. General corrosion and stress corrosion cracking, along with seismic-initiated 
mechanical damage, may still occur. Detailed discussion of the degradation of the drip shields and 
waste packages and the changes in repository conditions over time can be found in Sections 2.3.6
and 2.3.5, respectively. The TSPA models presented in Section 2.3.6 for nominal waste package 
degradation processes show that drip shield failures by general corrosion are not expected to occur 
until after about 270,000 years, and most of the drip shields would fail by 340,000 years 
(Section 2.1.2.2.6). Waste packages, on average, are not expected to begin to fail until after 100,000 
years, with breaches caused by through-wall stress corrosion cracks in the weld of the outer 
closure-lid. About 54% of the waste packages are estimated to fail by stress corrosion cracking by 
1,000,000 years (Section 2.1.2.2.6). General corrosion failures would start, on average, at 
approximately 600,000 years (from the 95th percentile value) and about 9% of the waste packages 
would experience a general corrosion breach in 1,000,000 years (also the time of general corrosion 
failure is the same for both commercial SNF and codisposal waste packages). Diffusion is the only 
transport mechanism acting to release radionuclides from a waste package when cracks are the only 
penetration through the waste package.

As the emplacement drift environment evolves (as described above) the mechanical state of the EBS 
components evolves as well. Manufacturing and handling defects may result in the early failure of 
drip shields (Section 2.3.6.8) and waste packages (Section 2.3.6.6). The types of manufacturing and 
handling defects are discussed in detail in Section 2.3.6.6. Within the TSPA model, early failure of 
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a defective drip shield and waste package is conservatively modeled to occur at the time of 
repository closure. As noted above, under nominal conditions, drip shields are expected to remain 
intact for several hundred thousand years. Also, under nominal conditions, the waste packages are 
expected to fail by general corrosion at much later times than the drip shields. For example, a
propagation rate of 7.5 nm/yr, which is the mean corrosion rate for creviced Alloy 22 samples at 
60°C, is equivalent to more than 130,000 years per millimeter of passive metal loss 
(Section 2.3.6.3). Over time earthquakes are expected to occur with a shaking intensity at the 
repository horizon described by the bounded hazard curve (Section 2.3.4.3). The mechanical 
consequence of this seismic shaking on the EBS components depends not only on the intensity of 
the seismic event, but also on the condition of the EBS components. The EBS components will thin 
over long time periods as a result of nominal corrosion processes. The drift, itself, will undergo 
degradation over time as it is subjected to repetitive seismic events. The analyses presented in 
Section 2.3.4.4.3 show that the drifts are expected to be stable with minimal rockfall during the 
thermal loading phase of the repository. Time-dependent (non-seismic) failure of the rock mass 
around the emplacement drifts has been excluded from the TSPA because it will have a minor 
impact on drift degradation (FEP 2.1.07.02A, Drift collapse (SNL 2008b, Section 6.2)). However, 
seismic events have the potential to result in rockfall from the drift roof and walls, with partial to 
complete filling of the emplacement drift with rock rubble over longer times. While the drip shields 
remain intact, the waste packages and pallets beneath them are free to translate in response to 
seismic shaking. In this configuration, the primary mechanism for mechanical damage to the waste 
package and drip shield is from plastic deformation (and potential stress corrosion cracking) 
resulting from impacts from seismic shaking (Section 2.3.4.5). As time evolves in the range of 
hundreds of thousands of years, general corrosion of the drip shield—coupled with static and 
dynamically-amplified rubble loads from repetitive seismic events—are expected to buckle the drip 
shield framework and, eventually, lead to the rupture of the drip shield plates. Failure of the drip 
shield leads to two distinct waste package configurations (Section 2.3.4.5). These configurations 
are referred to as damage for a waste package beneath (loaded by) a buckled drip shield, and damage 
for a waste package surrounded by rubble, respectively.

The different waste form types (commercial SNF, DOE SNF, and HLW glass) degrade at different 
rates once they are exposed to the humid air and oxidizing conditions following a breach of the 
waste package. These rates, and their dependency on the environment, are presented in 
Sections 2.3.7.7, 2.3.7.8, and 2.3.7.9, respectively.

Degradation of the materials used in the pallet supporting the waste package may occur by 
mechanical or chemical degradation processes. Mechanical processes have been determined not to 
result in a significant adverse change in the magnitude or timing of radionuclide releases to the 
accessible environment and are excluded (SNL 2008b, FEPs 2.1.06.05.0A, Mechanical degradation 
of emplacement pallet, and 2.1.06.05.0C). However, thinning of the waste package emplacement 
pallet due to chemical degradation is included in seismic analyses, and may affect the long-term 
performance of the EBS (SNL 2008b, FEP 2.1.06.05.0C, Chemical degradation of emplacement 
pallet).

The invert is anticipated to provide a stable mechanical foundation for the waste package pallet and 
drip shield for at least 10,000 years after closure. Although chemical and mechanical changes may 
occur in the invert, these changes do not significantly affect the transport characteristics of the invert 
(SNL 2008b, Section 6.2, FEPs 2.1.06.05.0D, Chemical degradation of invert, and 2.1.06.05.0B, 
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Mechanical degradation of invert). The transport characteristics of the invert that affect 
radionuclide release from the EBS are presented in Sections 2.3.7.12 and 2.4.2.3.2.1.7.

2.1.2.2.4 Uncertainties Associated with Engineered Barrier System Capability

Uncertainty in the representation of the capability of the EBS arises primarily from uncertainties in 
environmental conditions (e.g., thermal and chemical conditions) and from uncertainties in the 
various degradation processes. These uncertainties are described in detail in Sections 2.3.5 and 
2.3.6. These include uncertainties in the data from tests measuring the various degradation 
processes, and uncertainties in the models used to analyze both environmental conditions and 
degradation processes. These uncertainties are incorporated probabilistically in the models for 
thermal-hydrologic conditions, waste form degradation, radionuclide transport, radionuclide 
solubility, and radionuclide sorption by sampling across uncertainty ranges in the inputs to these 
models. Similarly, uncertainty in corrosion or degradation processes is also represented by sampling 
degradation parameters across their uncertainty ranges. These uncertainties are analyzed directly in 
the TSPA model with multiple realizations. For each realization, input and parameter values are 
sampled and a complete simulation of the EBS thermal and chemical environment is performed that 
includes the resulting drip shield and waste package degradation, waste form degradation, and 
radionuclide mobilization. Accordingly, multiple realizations represent the range of uncertainty in 
the EBS capability, as modeled. Uncertainties in the environmental conditions affecting the 
degradation of the waste package (Alloy 22) and the drip shield (Titanium Grade 7), including 
general corrosion, microbially influenced corrosion, stress corrosion cracking, and localized 
corrosion, are summarized below. Note that model uncertainty has been assessed by comparison 
with alternative conceptual models of EBS processes. Sections 2.3.6 and 2.3.7 describe the 
alternative conceptual models considered for the various EBS processes, and provide the rationale 
for selection of the preferred models for implementation in the TSPA. In general, alternative 
conceptual models were not incorporated directly into the probabilistic analysis of uncertainty; 
rather, the conceptual models implemented in the TSPA were selected because they provide a 
conservative yet reasonable assessment of performance, and preclude the need for detailed 
treatment of uncertainty as a consequence of the approach taken and assumptions made in modeling 
of the system.

A source of uncertainty in the Alloy 22 general corrosion model is a potential temperature 
dependence of the general corrosion rate. The use of a temperature dependence term is appropriate 
because the general corrosion (passive dissolution) of highly corrosion-resistant alloys (such as 
Alloy 22) is governed by the transport properties of reacting species in the passive film and the rate 
of activation-controlled ion transfer at the film–solution interface, both of which are thermally 
activated processes (Section 2.3.6.3.2.2). Data from short-term polarization-resistance data for 
Alloy 22 samples tested for a range of sample configurations, metallurgical conditions, and 
exposure conditions (temperature and water chemistry) indicate a temperature dependence. 
Accordingly, the general corrosion model addresses temperature dependence and uncertainty in the 
temperature dependence data consistent with the short-term polarization-resistance tests
(Section 2.3.6.3.2.2). Uncertainty associated with projection of Alloy 22 general corrosion rates, 
based on the five-year test data to the 10,0000 years after closure, is bound in the TSPA by applying 
time-independent, constant general corrosion rates. As discussed in Section 2.3.6.3.2, the general 
corrosion rates of metals and alloys decrease with time.
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Nickel-based alloys, such as Alloy 22, are resistant to microbially influenced corrosion. Microbially 
influenced corrosion is represented within the TSPA as a rate multiplier on the general corrosion rate 
of Alloy 22, with a uniform distribution between 1 and 2. Titanium Grade 7 is shown not to be 
susceptible to microbially influenced corrosion, and, therefore, no multiplier is applied to this 
material. A detailed discussion of the effects of microbially influenced corrosion on these materials 
is provided in Section 2.3.6.

Stress corrosion cracking may occur and contribute to the degradation of Alloy 22 and Titanium 
Grades 7 and 29. The sources of uncertainty in the stress corrosion cracking model have been 
considered in analyses of waste package degradation. These analyses consider an expanded range 
of parameter values for the residual stress profile in closure-lid weld regions of waste packages, the 
threshold stress for stress corrosion crack initiation, and the orientation of the weld flaws. The 
modeling of stress corrosion cracking for Alloy 22 and Titanium Grades 7 and 29 is discussed in 
Section 2.3.6.5 and 2.3.6.8, respectively. The effects of seismic-induced motion and rockfall on 
stress corrosion cracking are discussed in Section 2.3.4.5.

Uncertainty in the possible initiation and propagation of localized crevice corrosion is a function of 
the chemical environment on the waste package surface, as well as the uncertainty in the functional 
dependency of the corrosion potential and critical potential to the thermal-chemical environment. 
Uncertainty in the chemical environment for both aqueous and salt-deliquescence conditions has 
been included in the models presented in Section 2.3.5. Uncertainty in the data used to develop the 
functional dependence, in particular the effect of variable chloride, nitrate, and chloride-to-nitrate 
ratios, has been included in the localized corrosion model described in Section 2.3.6.

Uncertainty in the characterization of the degradation of the waste form and in the mobilization and 
transport of radionuclides through the EBS arises primarily from uncertainties in the inputs for the 
models of the various degradation and transport processes. These uncertainties are described in 
Section 2.3.7. These uncertainties include, for example, the initial mass of each radionuclide per 
waste package, in-package pH and ionic strength, porosity of the commercial SNF, gap and grain 
boundary inventories, fuel specific surface area, HLW glass degradation rate and surface area 
exposure coefficients, equilibrium constants used to predict radionuclide solubilities, sorption 
coefficients and sorption rate constants for radionuclide sorption in the waste package and invert, 
and corrosion rates for waste package internals (such as the inner vessel and the TAD canister). 
These uncertainties are incorporated probabilistically in TSPA by using ranges of parameter values 
in the models for the chemical and physical environments and for the rates of the various 
degradation and transport processes, as well as dissolved concentration limits. The ranges of 
parameters and process rates used in the performance model are based on the results of testing and 
analysis, as well as on the fundamental physical principles that apply.

2.1.2.2.5 Impact of Disruptive Events on the Engineered Barrier System

Disruptive events may significantly impact the features of the EBS (Sections 2.3.4.5 and 2.4.1); 
however, as discussed in Sections 2.1.2.1.5 and 2.1.2.3.5, the natural barrier features remain 
generally intact and continue to prevent or substantially reduce the rate of movement of water or 
radionuclides from the repository to the accessible environment following the occurrence of a 
disruptive event.
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Seismic activity may cause sufficiently high levels of ground motion to result in mechanical 
interactions between waste packages, or between a waste package and the waste package pallet, 
which may, in turn, cause waste packages to develop small stress corrosion cracks. In addition, the 
accumulation of rubble as well as drift collapse caused waste package damage and failure. 
Lithophysal rubble is selected for the calculation of load on waste packages 
(Section 2.4.2.3.2.1.12.3). However, seismic events are not expected to significantly affect the 
performance of the drip shield with respect to its function of protecting the waste package from the 
potential effects of seeping water or rockfall for about the first 240,000 years after repository 
closure. Should the degraded EBS lose its ability to prevent or substantially reduce the release rate 
of radionuclides from the waste, the Lower Natural Barrier remains intact to prevent or substantially 
reduce the rate of movement of radionuclides to the accessible environment. A complete discussion 
of the effects of seismic activity on the EBS is provided in Section 2.3.4. The effect of seismic 
events on the capability of the EBS was summarized in Section 2.1.2.2.3 and is evaluated in 
Section 2.1.2.2.6.

Should an unlikely igneous event occur, it is estimated that the EBS would be subjected to 
significant damage. There are two components of an unlikely igneous event: an eruptive component 
and an intrusive component (Sections 2.3.11 and 2.4.1). In the eruptive component of an igneous 
event, the rising magma conduit interacts with an uncertain small number of waste packages (i.e., a 
maximum of seven waste packages), destroying the waste packages and releasing the contained 
radionuclides in the erupting material.

In the intrusive component of an unlikely igneous event, the rising magma is assumed to interact
with the entire inventory in the repository. Although complete destruction of the affected waste 
packages is not expected, the ability of the EBS to prevent water from contacting the waste is 
assumed to be completely compromised. The general performance of the natural barriers continues 
once the drifts return to temperatures less than the boiling point of water (Section 2.3.11.3.1). A
discussion of the effects of igneous activity on the EBS is provided in Section 2.3.11.3.

2.1.2.2.6 Quantification of the Engineered Barrier System Capability

This section evaluates the capability of the EBS to provide the principal barrier functions of 
(1) preventing or substantially reducing the rate of movement of water to the waste; (2) preventing 
or substantially reducing the rate of release of radionuclides from the waste; and (3) preventing or 
substantially reducing the rate of movement of radionuclides from the repository to the accessible 
environment. The first barrier function is provided by the emplacement drift, drip shield, and waste 
package outer barrier (Figure 2.1-7), whereas the second and third functions are provided by the 
waste forms and waste package internals and the waste package. As described in Section 2.1.2, EBS 
capability is evaluated first for future repository conditions in the absence of disruptive events by 
discussing TSPA model results for a combined nominal/early failure demonstration modeling.
TSPA model results for the seismic ground motion modeling case are also included in the evaluation 
of EBS barrier capability to assess the significance of degradation and alteration of EBS features 
following seismic events.

To develop a basis for assessing the capability of the EBS to achieve the first barrier function, 
projections for three barrier capability metrics were developed for the drip shield and waste 
package. The first metric is the failure time profile; this metric is quantified in terms of a cumulative 
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probability distribution function for failure time of the drip shield plates (Titanium Grade 7). Drip 
shield failure is defined as a hole or opening through the 15-mm-thick drip shield plate. Breach of 
the plate by stress corrosion cracking is not considered as a drip shield failure because a 
crack-damaged drip shield will still perform the drip diversion function and, thus, prevent seepage 
water from contacting the underlying waste package (SNL 2008d, Section 8.3.3.2[a]). The second 
capability metric is the waste package breach time profile; in this metric, a breach is defined as a 
penetration of the outer barrier, by either cracks or patch openings. In the combined nominal and 
early failure modeling case, waste package breaches include crack breaches due to stress corrosion 
cracking of the closure-lid welds, and patch breaches of the waste package outer barrier due to 
general corrosion penetrations. In the seismic ground motion modeling case, crack breaches include 
seismically-induced stress corrosion cracking of the waste package outer barrier as well as stress 
corrosion cracking of the closure-lid welds. Patch breaches include seismically-induced rupture and 
puncture, in addition to general corrosion penetrations. In addition, a third metric, the capability of 
the EBS to retain radionuclides, is developed to evaluate the second barrier function and is discussed 
later in this section.

Insights into potential waste package breach modes were developed by examining the breach 
characteristics of the individual modeling cases. For the combined nominal and early failure 
modeling case, two waste package breach characteristics were calculated and are presented here:

1. Fraction of waste packages breached by general corrosion (i.e., patch penetration) as a 
function of time

2. Fraction of waste packages breached by cracks (i.e., nominal process stress corrosion 
cracking in closure welds) as a function of time.

The following three waste package breach characteristics (SNL 2008d, Section 8.3.3.2[a]) for the 
seismic ground motion modeling case are presented and discussed:

1. Fraction of waste packages breached by nominal and seismic ground-motion induced 
processes as a function of time

2. Fraction of waste package surface area breached by nominal and seismic 
ground-motion induced stress corrosion cracks per breached waste package as a 
function of time

3. Fraction of waste package surface area breached by patches resulting from general 
corrosion, and seismic induced puncture and rupture failure mechanisms per breached 
waste package as a function of time.

The degradation of the waste package by general corrosion is modeled by subdividing the outer 
barrier surface into subareas referred to as patches, which are used to simulate the variability of 
general corrosion across the waste package surface. The general corrosion model is applied at the 
patch level, such that each patch might have a different general corrosion rate (Section 2.3.6.3.4.1). 
When one or more patches are penetrated, the waste package is considered to be breached. In the 
case of the codisposal waste packages, the outer surface area is divided into 1,430 patches; the 
commercial SNF waste package is divided into 1,408 patches (SNL 2008d, Section 6.3.5.1.2). In 
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the case of seismic-induced stress corrosion cracking of the waste package outer barrier, the 
damaged area is conceptualized as a tightly spaced network of cracks (SNL 2008d, 
Section 6.6.1.1.2).

In the following discussion, waste package performance is generally presented in terms of mean 
barrier capability metrics and breach characteristics. To illustrate uncertainty in these metrics and 
characteristics, quantiles (median, 5th, and 95th percentiles) are also shown. It is important to note 
that the TSPA model computes waste package degradation metrics and breach characteristics for 
each of five percolation subregions that represent the repository footprint. The graphical results 
presented in the following sections for the waste packages were computed as a weighted average 
combining all of the five percolation regions to arrive at a representation for the entire repository.

An assessment of the EBS capability was developed based on probabilistic projections of mean 
radionuclide activity (in curies) released from the EBS as a function of time. This barrier 
capability metric is calculated using the inventory balance equation:

(Eq. 2.1-1)REBS k, τ e( ) AT k, τ e( )= AWP k, τ e( ) AI k, τ e( )+( )–

where REBS k, τ e( )  is the expected (average over aleatory uncertainty) activity (Ci) of radionuclide 
k released from the EBS; AT k, τ e( )  is the expected activity (Ci) of radionuclide k in the inventory 
disposed in the geologic repository (initial inventory decayed through time);  is the 
expected activity (Ci) of radionuclide k retained in the waste packages (including the activity still 
in undegraded waste forms); and  is the expected activity (Ci) of radionuclide k retained 
in the invert. The term τ is time, and  is the set of epistemically uncertain parameters, which are 
sampled in the Monte Carlo simulation (Section 2.4.2.3.3) (SNL 2008d, Section 8.3.3.2[a]). The 
activity quantities, , , and , are obtained from the Monte Carlo 
simulation performed with the TSPA model.

As noted above, radionuclide releases from the EBS are presented in units of activity (i.e., curies). 
A curie is the original unit used to describe the intensity of radioactivity in a sample of material. One 
curie equals 37 billion disintegrations per second, or approximately the radioactivity of 1 g of 
radium. This unit is not part of the International System (SI) of Units. The SI unit is the becquerel 
(Bq), which equals one disintegration per second (1 Bq = 27 pCi). Activity was used as the metric 
of significance from a barrier capability perspective because activity is most closely related to the 
radiological hazard (i.e., the greater the activity, the greater the affect of the radioactivity on the 
human tissues and organs). Mass is used in Section 2.4.1 because radioelement solubility 
constraints and retardation characteristics are provided in mass units. The relationship between 
radionuclide mass and radionuclide activity is dependent on the radionuclide and is presented in 
Table 2.3.7-5.

Basis for EBS Barrier Capability Projections—The conceptual models and mathematical basis 
for drip shield and waste package degradation can be found in Section 2.3.6. An important aspect 
to note is that the drip shield degradation abstraction does not implement spatial variability for 
general corrosion rates. This means that in a given epistemic realization of the Monte Carlo 
simulation process, the sampled drip shield failure time applies to all drip shields in the repository 

AWP k, τ e( )

AI k, τ e( )
e

AT k, τ e( ) AWP k, τ e( ) AI k, τ e( )
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(i.e., the drip shields fail in unison at the sampled failure time by general corrosion). The 
stochastic model parameters for drip shield general corrosion are derived from laboratory data for 
general corrosion of the Titanium Grade 7 samples (Section 2.3.6.8). Similarly, the experimental 
basis for the waste package degradation models and parameters can be found in Section 2.3.6.3.

Probabilistic projections for drip shield and waste package breach time profiles were developed to 
provide insight into barrier capability. These projections (SNL 2008d, Sections 8.3.3.2[a] and 
8.3.3.2.1[a]) used an optimized version of the TSPA model to efficiently calculate drip shield and 
waste package performance under nominal and seismic conditions. The optimized version of the 
TSPA model uses the same Monte Carlo simulation approach as the full TSPA model, which 
incorporates aleatory and epistemic uncertainties into the projections in two separate 
computational loops:

1. An outer calculational loop that samples probability distributions for model parameters 
with epistemic uncertainty using the Latin hypercube sampling technique (Helton and 
Davis 2002)

2. An inner loop that samples, for each epistemic set, values from probability distributions 
of parameters describing aleatory uncertainty (i.e., randomness) in the occurrence of 
events.

The optimized version of the TSPA model uses the same samples for aleatory and epistemic 
uncertainty that are used to produce the TSPA model results shown in Section 2.4.

For the combined nominal/early failure demonstration modeling case, the probabilistic analysis of 
drip shield capability included general corrosion of the drip shield plates. Other drip shield 
corrosion mechanisms such as stress corrosion cracking and localized corrosion have been screened 
out (Table 2.2-5). As described in Section 2.3.6.2, the degradation of the topside of the drip shield 
plate is based on a corrosion rate model for an aggressive water chemistry environment, whereas the 
underside surface degradation is based on a corrosion rate model for water chemistry that is 
representative of a benign environment. For the waste packages, the probabilistic analysis included 
general corrosion, microbially influenced corrosion, and stress corrosion cracking in the closure-lid 
weld region (Section 2.3.6.2).

As described in Section 2.4.2.2.1, drip shield and waste package early failure mechanisms are 
represented by conservative assumptions. The early failure modeling cases assume (1) a 
through-wall penetration of a waste package or drip shield caused by manufacturing or 
handling-induced defects; and (2) penetration occurring at the time of repository closure. In the case 
of the early drip shield failure, the penetration of the Titanium Grade 7 plate is assumed to represent 
complete failure of the drip shield. In addition, if an early failed drip shield is located in a seeping 
environment, it is assumed that the surface of the underlying waste package is completely degraded 
by localized corrosion processes. In the case of early waste package failure, it is assumed that the 
entire surface of the waste package is completely degraded. The numbers of drip shield and waste 
package early failures are simulated in the TSPA model as random Poisson processes 
(Section 2.4.2.2.1).
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For the seismic ground motion modeling case (Section 2.4.2.2.1), analysis of the seismic impacts to 
the drip shield and waste package degradation was performed by first applying WAPDEG 
(Section 2.4.2.3.2.1.5) to simulate the nominal corrosion processes, then transferring the 
calculational results to GoldSim to evaluate damage and breaches caused by vibratory ground 
motion. Details of the associated model implementation are discussed in Sections 6.6.1.3 and 
6.6.2.3 of the TSPA (SNL 2008d). Localized corrosion of the waste packages was analyzed with a 
standalone model, and was shown not to impact the seismic ground motion modeling case (SNL 
2008d, Section 6.3.5.2.3).

EBS Capability to Prevent or Reduce Movement of Water to the Waste—The drip shields 
serve as the first engineered feature that prevents seepage water and drift-wall condensation water 
from contacting the waste package and thereby the waste forms. The drip shields would maintain 
this barrier function until the 15-mm-thick Titanium Grade 7 drip shield plates are fully penetrated 
by general corrosion or ruptured as a result of seismic events. The drip shield capability to achieve 
the first barrier function is demonstrated considering both nominal general corrosion of the plate 
(topside and underside surfaces) and seismic induced loading (dynamic and static) causing plate 
failure (rupture).

The waste packages serve as the second feature that prevents seepage water from contacting the 
waste forms. The codisposal and commercial SNF waste packages maintain this function until the 
Alloy 22 outer barrier is breached by general corrosion, ruptured, or punctured. These three breach 
modes are modeled as patch breach. The waste package barrier capability is demonstrated 
considering breaches attributed to the following:

• Nominal corrosion degradation conditions: Stress corrosion cracking of the closure-lid 
weld region (Section 2.3.6.5.4) and general corrosion of the waste package outer barrier 
(Section 2.3.6.3).

• Seismic ground motion conditions: Seismic-induced stress corrosion cracking of the outer 
barrier, rupture, and puncture of the waste package outer barrier. The seismic-induced 
stress corrosion cracking of the waste package outer barrier is attributed to a local residual 
stress field exceeding a tensile stress threshold for stress corrosion cracking initiation, and 
is conceptualized as a tightly spaced network of stress corrosion cracks (SNL 2008d, 
Section 6.6.1.1.2). Note that the drip shield and waste package capability analysis results 
for these conditions also include degradation by the nominal corrosion mechanisms.

The following sections present results for each performance metric for the EBS capability to 
prevent or reduce movement of water to the waste, as well as characteristics for breaches of waste 
packages, including the following:

• Drip shield failure time for nominal conditions
• Waste package breach time for nominal conditions
• Waste package breach characteristics for nominal conditions
• Drip shield failure time for seismic ground motion conditions
• Waste package breach time for seismic ground motion conditions
• Waste package breach characteristics for seismic ground motion conditions.
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It is important to note that the process of liquid water flow through the stress corrosion cracks in the 
waste package outer barrier has been screened out (Table 2.2-5; SNL 2008b, FEP 2.1.03.10.0A, 
Advection of liquids and solids through cracks in the waste package). Consequently, liquid seepage 
water would not contact the waste form until a breach opening, modeled as a patch penetration, 
develops in the Alloy 22 outer barrier.

Drip Shield Failure Time Profile for Nominal Conditions—A failure time profile for the drip 
shield was developed through a probabilistic projection of the general corrosion degradation of the 
Titanium Grade 7 plates as a function of time. For this performance metric, drip shield plate 
failure for nominal conditions is defined as complete penetration of the Titanium Grade 7 plate by 
general corrosion (Section 2.3.6.8). Degradation of the drip shield Titanium Grade 29 framework 
is also considered and used in the seismic damage calculations (Section 2.3.4). However, drip 
shield framework failure does not alter the capability of the drip shield plate to deflect seepage 
away from the waste packages (Section 2.3.4).

One noteworthy aspect about the basis for the probabilistic projections for drip shield plate failure 
times under nominal conditions is that spatial variability in drip shield general corrosion rates is not 
accounted for in the TSPA model (Section 2.3.6.8). This aspect is important because it means that 
the failure profile simplifies to a single cumulative probability distribution curve, which is 
computed directly from the epistemic realizations. This means that the cumulative probability 
distribution curve is a representation of failure times for all the drip shields in the geologic 
repository for a given realization. To calculate the cumulative probability distribution curve for drip 
shield plate failure times, the WAPDEG software was run with a total of 300 epistemic realizations. 
Each realization is based on one general corrosion rate for each of the topside and underside plate 
surfaces sampled from their respective probabilistic general corrosion models (Section 2.3.6.8).

The epistemic uncertainty in the general corrosion rates for the topside and underside surfaces are 
represented by cumulative distribution functions developed from laboratory data 
(Section 2.3.6.8.1). The corrosion rate cumulative distribution function for the topside is for 
aggressive corrosion conditions, while the cumulative distribution function for the underside is for 
benign corrosion conditions. The distribution of drip shield plate failure times is shown in 
Figure 2.1-8. Uncertainty in failure time is dominated by the uncertainty in the general corrosion 
rate for the topside because the corrosion rate on the topside of the drip shield is much greater than 
that on the underside. The cumulative distribution function for drip shield plate failure times has a 
median value of approximately 290,000 years, with drip shield plate failure times ranging from 
about 270,000 to 340,000 years, respectively (SNL 2008d, Section 8.3.3.2.1[a]).

Waste Package Breach Time Profiles for Nominal Conditions—Breach time profiles for the 
waste packages for the nominal modeling case were developed using a probabilistic projection of 
the breaches consisting of cracks in the closure lid-weld region of the Alloy 22 outer barrier 
(SNL 2008d, Section 6.3.5.1.1) and corrosion patch penetrations of the Alloy 22 outer barrier 
(SNL 2008d, Section 6.3.5.1.1). Projections were made for both the codisposal and commercial 
SNF waste packages in the entire repository. To calculate the breach time profile as a function of 
time, a total of 300 epistemic realizations were run. Spatial variability in the degradation processes 
is accounted for in the projections by the aleatory uncertain parameters of the corrosion models. 
Temporal variability in the degradation processes is represented by the temperature-dependent 
general corrosion rate of the outer barrier (SNL 2008d, Section 6.3.5.1.2). Plots of the breach time 
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profiles for both types of waste packages are shown on Figure 2.1-9. These plots show breach time 
curves corresponding to the mean, median, and 5th and 95th percentiles.

Comparing the plots on Figure 2.1-9(a) and 2.1-9(b), it is evident that the codisposal and 
commercial SNF waste package breach time profiles for nominal conditions are very similar. This 
similarity is explained by the fact that the two waste package types have common design 
characteristics (e.g., outer barrier material (Alloy 22), outer barrier thickness (25 mm), and 
closure-lid weld stress mitigation method (i.e., low plasticity burnishing) for the closure-lid weld 
surface) (Section 2.3.6.5). A small difference in breach time profiles is expected because the two 
waste package types have different temperature histories (i.e., commercial SNF waste packages 
have higher thermal output and, therefore, a hotter outer surface than the codisposal waste 
packages), which affect general corrosion rates during the thermal period (Section 2.3.6.3). In 
addition, because the commercial SNF waste package and codisposal waste packages have different 
nominal diameters and therefore different closure-lid-weld volumes, different values for the 
associated stress corrosion crack-model parameters for the closure-lid weld region are expected to 
introduce small differences in the stress corrosion crack breach time profiles for the waste packages. 
Based on the 95th percentile curves, breaches in codisposal and commercial SNF waste packages 
are likely to begin occurring after approximately 170,000 years. The mean breach time curves for 
both waste packages also show that 54% of the waste packages could be breached at 1,000,000 
years, as a result of stress corrosion crack penetration and general corrosion patch penetration
(SNL 2008d, Section 8.3.3.2.1[a]).

Waste Package Breach Characteristics for Nominal Conditions—To better understand the 
degradation behavior of the waste packages under nominal corrosion conditions in the repository, 
the breach time profiles for the codisposal and commercial SNF waste packages were further 
analyzed to quantify the fraction of waste packages (1) breached by stress corrosion cracking as a 
function of time; and (2) breached by general corrosion patches as a function of time. Under 
nominal conditions, stress corrosion cracking occurs in the closure-lid weld region of the waste 
package outer barrier, and general corrosion occurs in the entire waste package outer barrier 
surface, including the closure-lid weld region. Because the breach profiles for codisposal and 
commercial SNF waste packages are very similar, only the breach characteristics for the 
commercial SNF waste package are discussed here. The summary statistic plots on Figure 2.1-10
show the projected fraction of commercial SNF waste packages breached as a function of time, 
which clearly show the dominance and timing of the two breach modes.

From the 95th percentile curve on Figure 2.1-10(a), breach of a commercial SNF waste package by 
stress corrosion cracking becomes more likely to occur after 170,000 years. At the end of the 
1,000,000-year period, the mean fraction of the waste packages with at least one stress corrosion 
crack breach would be 0.54, or 54% of the commercial SNF waste packages in the repository. This 
result also means that almost half of the commercial SNF waste packages in the repository would 
not be breached by stress corrosion cracks by 1,000,000 years. Comparing these results with those 
for the first breach time profile of commercial SNF waste packages (Figure 2.1-9) confirms that the 
initial breach of the waste packages would be by stress corrosion cracking. It is important to reiterate 
that the cracks induced by stress corrosion cracking are highly tortuous, tight hairline cracks.
Because of these typical tight hairline crack properties, plus sealing of the cracks by corrosion 
products and mineral precipitates, no seepage water in liquid phase would flow into the waste 
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package and contact the waste form. However, diffusion of water vapor through cracks and into the 
waste packages is accounted for in the TSPA model.

Based on the 95th percentile curve in Figure 2.1-10(b), commercial SNF waste package is not likely 
to be breached by general corrosion patch penetration until after 560,000 years. By 1,000,000 years, 
the mean fraction of the commercial SNF waste packages with at least one patch breach would be 
0.09 or 9%. This suggests that about 90% of the commercial SNF waste packages would not exhibit 
general corrosion patch penetrations by 1,000,000 years. Note that the sampling of general 
corrosion rates uses the corrosion rate distribution presented in Figure 2.3.6-9. Considering that 
sampling occurs over the entire waste package surface of about 1400 patches (SNL 2008d, 
Section 6.3.5.1.2), the extremes of the sampled distribution of corrosion rates (equivalent to the 
99.9th percentile value) will be sampled for at least one patch on each waste package. It is these 
maximum or near maximum values of corrosion rates, when combined with the thermal 
dependency of the corrosion rate, the microbially influenced corrosion enhancement factor, and the 
thermal history that waste packages experience, that determine the time of first general corrosion 
patch penetration through the outer corrosion barrier, as presented in Figure 2.1-10(b). It is also 
important to note that the curves for the 5th percentile and median are absent from Figure 2.1-10(b); 
this result is because of the large number of realizations with no patch penetration by general 
corrosion (i.e., zero occurrences) within 1,000,000 years (SNL 2008d, Section 8.3.3.2.1[a]).

Drip Shield Failure Time Profile for Seismic Ground Motion Conditions—The mechanical 
strength properties of the drip shield plate (i.e., Titanium Grade 7) and framework (i.e., Titanium 
Grade 29) were specifically selected to perform their barrier function in the seismic environment 
of the Yucca Mountain site. However, over a very long time period of 1,000,000 years, the 
combination of dynamic loads induced by vibratory ground motion, static loads associated with 
drift degradation and rubble accumulation, and plate thinning due to general corrosion would 
ultimately cause failures of the drip shields. As outlined in Section 2.3.4.5, vibratory ground 
motion can cause drip shield plates to (1) rupture when the local strain exceeds the ultimate tensile 
strain; and (2) degrade by induced high residual tensile stress, resulting in stress corrosion crack 
breach.

Drip shield plate failure by large rock block impact in the nonlithophysal zones has been screened 
out based on low consequence (SNL 2008b, FEP 1.2.03.02.0B, Seismic-induced rockfall damages 
EBS components, and Table 2.2-5). In the lithophysal units, the accumulation of rubble from 
multiple seismic events and ground motion during a seismic event can create damaged areas on drip 
shields. Because advective flow through stress corrosion cracks in the drip shield has been screened 
out (SNL 2008b, FEP 2.1.03.10.0B, Advection of liquids and solids through cracks in the drip 
shield, and Table 2.2-5), the drip shield damage due to stress corrosion cracks is not included in the 
TSPA. In addition to being affected by dynamic and static loads, the drip shield plate is subjected 
to degradation by general corrosion. Failure of the drip shield framework occurs as result of 
buckling that would be caused by the combined processes of general corrosion of the framework 
and seismic-induced loads. Buckling of the framework does not alter the capability of the drip shield 
plate to divert seepage away from the waste packages (Section 2.3.4.5). However, framework 
failure may affect the susceptibility of the underlying waste package to seismic damage from 
subsequent ground motion events because the combination of rubble accumulation and a collapsed 
drip shield plate can inhibit the free motion of the underlying waste package and its emplacement 
pallet.
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The drip shield plate failure time profile for seismic ground motion conditions was computed using 
a total of 300 epistemic realizations, with 30 aleatory realizations to represent future random 
sequences of future seismic events for each epistemic realization. Plate rupture failure is a function 
of rubble accumulation and thinning of the plate by general corrosion. The epistemic and aleatory 
sampled elements are the same as those used to generate results for the seismic ground motion 
modeling case for post-10,000 years (Section 2.4.2.1). The failure (rupture) time profile for the drip 
shield plate is described by the cumulative probability distribution function presented on 
Figure 2.1-11. The plot in Figure 2.1-11(a) shows three types of curves: (1) the “best estimate” 
cumulative distribution function for drip shield failure time; (2) the set of cumulative probability 
distribution functions constructed from the 30 aleatory realizations for each of the 300 epistemic 
realizations; and (3) the expected (averaged over epistemic uncertainty) cumulative probability 
distribution function of drip shield plate failure times. The second plot in Figure 2.1-11(b) shows the 
cumulative probability distribution function of expected (averaged over aleatory uncertainty) time 
of drip shield failure, along with the 95th percentile confidence interval.

As used here, the best estimate CDF is defined as an unbiased estimate of the CDF based on all the 
simulation outcomes for the drip shield plate failure times. Based on this definition, the cumulative 
distribution function is constructed directly from the 9,000 realizations (300 epistemic and 
30 aleatory) simulated by the TSPA model; this cumulative distribution function includes both 
aleatory uncertainty and epistemic uncertainty. The best estimate cumulative distribution function 
has the following statistics: (1) median of about 255,000 years; (2) 5th percentile of 191,000 years; 
and (3) 95th percentile of about 280,000 years (SNL 2008d, Section 8.3.3.2.1[a]). The long leading 
tail of the cumulative probability distribution function indicates that very few drip shield failures 
occur before 100,000 years. In fact, only about 50 out of the 9,000 realizations exhibit drip shield 
failures before 100,000 years. This means that there is approximately a 0.55% chance of drip shield 
failure occurring on or before 100,000 years by seismic events (SNL 2008d, Section 8.3.3.2.1[a]). 
Drip shield failures before 100,000 years are the result of low-cumulative-probability, 
high-magnitude events. The probability of drip shield failures after 100,000 years increases 
gradually, as thinning of the drip shield plate progresses by general corrosion (SNL 2008d, 
Section 8.3.3.2.1[a]). At about 200,000 years, the titanium drip shield plate is projected to have 
thinned to about one-third of its original thickness, or about 5 mm, making it much more susceptible 
to failure. From the best estimate cumulative probability distribution function, the average 
probability of drip shield failure on or before 200,000 years is approximately 6%; after about 
300,000 years, the probability of drip shield failures is effectively one (SNL 2008d, 
Section 8.3.3.2.1[a]).

The set of 300 probability distribution functions in Figure 2.1-11(a) is presented to illustrate the 
range of uncertainty about the best estimate cumulative distribution function. Each cumulative 
distribution function represents the uncertainty introduced by parameters with aleatory uncertainty 
(e.g., timing of seismic event), and is conditional on the set of drip shield parameter values 
(e.g., residual stress threshold, general corrosion rate) sampled for the given epistemic realization. 
The spread among the cumulative probability distribution functions gives an estimate of uncertainty 
in drip shield failures associated with epistemically uncertain parameters. The expected cumulative 
distribution function highlights the influence of aleatory uncertainties. The expected cumulative 
distribution function, which is computed by averaging over the epistemic uncertainty, represents 
what should be, on average, the randomness in the time of drip shield failure. As demonstrated by 
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the plot, the expected cumulative probability distribution function is very close to the best-estimate 
cumulative distribution function except in the tail of the distribution.

The influence of epistemic uncertainty on drip shield failure times is highlighted by the cumulative 
distribution function of expected drip shield failure time, which is shown in Figure 2.1-11(b). In this 
case, the cumulative probability distribution function was constructed by averaging over the 
aleatory uncertainty to obtain an expected drip shield plate failure time for each epistemic 
realization, then ranking the 300 expected drip shield plate failure times as a cumulative distribution 
function. Recognizing that the accuracy of the cumulative probability distribution function is 
limited by using only 30 aleatory realizations, the 0.95 confidence interval was computed and 
plotted in Figure 2.1-11(b). This confidence interval provides an estimate of the reliability of the 
cumulative probability distribution function of expected drip shield failure times.

Waste Package Breach Time Profile for Seismic Ground Motion Conditions—The 
mechanical design of the codisposal and commercial SNF waste packages, as well as the corrosion 
properties of the outer barrier material (i.e., Alloy 22), were specifically selected so the waste 
package would perform its barrier function for a wide range of seismic events and corrosion 
conditions at the Yucca Mountain site. However, over very long time periods, the combination of 
dynamic and static loads induced by vibratory ground motion would ultimately cause breaches in 
the waste package outer barrier. As outlined in Section 2.3.4.3, vibratory ground motion can 
potentially cause waste package damage and breaches of the following types:

1. Breaches of the outer barrier caused by stress corrosion cracking (crack penetration)

2. Rupture of the outer barrier occurs when the local strain exceeds the ultimate tensile 
strain (note that rupture can only occur after the waste package internals have degraded 
following an earlier breach in the outer barrier)

3. Puncture of the outer barrier by a combination of static load due to rubble accumulation, 
and sharp corners or edges from degraded waste package internals.

With regard to the latter two breach modes, rupture can occur while the drip shields are intact; 
puncture can occur after drip shield failure. In the seismic ground motion damage submodel 
(SNL 2008d, Section 6.6.1), it is assumed that the waste package internals degrade as structural 
elements when the outer corrosion barrier is breached (typically by stress corrosion cracks). This 
degradation of internals has the effect of making the waste packages more susceptible to seismic 
damage by subsequent events. The cumulative effects from multiple seismic events are analyzed for 
time frames up to 1,000,000 years.

The statistics on the expected fraction of breached commercial SNF waste packages as a function 
of time are shown in Figure 2.1-12(a) for the nominal processes and seismic events combined, and 
in Figure 2.1-12(b) for the seismic events only. The same statistics for breached codisposal waste 
packages are shown in Figure 2.1-12(c) and Figure 2.1-12(d) for the nominal and seismic events 
combined and the seismic events only. The mean of the expected fraction of waste packages 
breached under seismic conditions at 200,000 years is projected to be approximately 0.7% for the 
commercial SNF waste packages (Figure 2.1-12(a)) and 37% for the codisposal waste packages 
(Figure 2.1-12(c) (SNL 2008d, Section 8.3.3.2.1[a])).
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Prior to about 200,000 years after repository closure, the breach behavior of the waste packages is 
primarily due to seismic events only. Therefore, the expected fraction can be interpreted as a 
probability that a damaging seismic event has occurred. As shown in Figure 2.1-12(b), the 95th 
percentile transitions from an expected fraction of 0 to 3.3% (which is 1/30) at approximately 
61,000 years for commercial SNF waste packages. That is, for 5% of the (300 epistemic) 
realizations, the probability of failure due to seismic events only before 61,000 years is at least 1/30.
For 95% of the realizations, this probability is lower than 1/30 (note that the probability of 1/30 is 
linked to the fact that there are 30 futures for representing aleatory uncertainty). This same level of 
confidence is reached for codisposal waste package as early as 500 years, indicating that codisposal 
waste packages are much less resistant to seismic damage and that damage is likely to occur much 
earlier.

As can be noted by comparing Figure 2.1-12(b) and Figure 2.1-12(d), the commercial SNF waste 
packages are far less likely to be breached by seismic events than the codisposal waste packages. 
The higher resistance to seismic damage of the commercial SNF waste package than the codisposal 
waste package is explained by the enhanced structural response capability (i.e., damping) 
contributed by the massive TAD canister (SNL 2007a) in the commercial SNF waste packages
(SNL 2008d, Section 8.3.3.2.1[a]). For both the codisposal and commercial SNF waste packages, 
however, the initial breaches consist of stress corrosion cracking or rupture induced by seismic 
damage while breaches at very late times are dominated by nominal general corrosion processes. 
For purposes of comparison, note that for nominal conditions, the initial breaches of the commercial 
SNF and codisposal waste packages from the 95th percentile curves occurred at about 170,000 years
(Figure 2.1-9(a) and Figure 2.1-9(b)). These breaches, however, were due to nominal process stress 
corrosion cracks in the closure-lid weld region.

Waste Package Breach Characteristics for Seismic Ground Motion Conditions—To develop 
a quantitative description of the extent of seismic damage to the codisposal and commercial SNF 
waste packages, probabilistic projections for two breach characteristics were developed: (1) the 
fraction of the outer barrier surface area breached by stress corrosion cracks, and (2) the fraction 
of outer barrier surface area breached by patches. To provide a comparative basis, these two 
breach area fractions were also computed for the nominal conditions (i.e., in the absence of 
disruptive events).

The fraction of surface area breached by stress corrosion cracks (i.e., crack area fraction) per 
breached (crack or patch) commercial SNF package is shown in Figure 2.1-13. The statistics for the 
seismic ground motion modeling case are shown in Figure 2.1-13(a), and for the nominal modeling 
case in Figure 2.1-13(b). Focusing on the seismic modeling case plot (Figure 2.1-13(a)), the initial 
slope of the mean curve indicates that the seismic-induced stress corrosion cracks would 
predominately occur within the first 250,000 years (SNL 2008d, Section 8.3.3.2.1[a]). After 
250,000 years, the slope of the mean curve is much smaller, due to a significant reduction in the 
probability of further seismic damage. This decrease in the probability of further seismic damage is 
attributed to the failure of drip shield plates by general corrosion and accompanying seismic 
induced drift degradation, which progressively fills the emplacement drift with rubble (as shown in 
Figure 2.1-14). This figure shows that over 60% of the drift is filled with rubble by 250,000 years. 
The accumulation of rubble around the waste packages after drip shield failure, in turn, reduces the 
probability of damage by dynamic impacts (e.g., waste package to pallet impacts).
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In terms of the mean crack-breach characteristic for seismic conditions, the peak mean crack area 
fraction for the commercial SNF waste package occurs at 1,000,000 years and is approximately 
4.4 × 10−5. In contrast, the peak mean crack-area fraction for nominal conditions at 1,000,000 years, 
from Figure 2.1-13(b), is 6.5 × 10−6. The slope of the mean curve in Figure 2.1-13(b) indicates a 
steady but gradual progression of additional crack breaches in the closure-lid weld region of the 
outer barrier. In the closure-lid weld region, additional stress corrosion cracking cracks can initiate 
over time as general corrosion removes the stress-mitigated layer of the outer barrier 
(Section 2.3.6.5).

The average crack-breach area fraction per breached waste package for the codisposal waste 
package is presented in Figure 2.1-15. The statistics on the expected fraction for the seismic ground 
motion modeling case are shown in Figure 2.1-15(a), and for the nominal modeling case in 
Figure 2.1-15(b). The mean curve for the seismic ground motion modeling case shows a very rapid 
rise in the crack-breach area fraction in the first 50,000 years, then gradually transitions to a 
near-horizontal line after about 250,000 years (SNL 2008d, Section 8.3.3.2.1[a]). The near 
horizontal line is again reflecting a sharp decrease in the rate of crack breaches. The timing of this 
decrease corresponds to the time frame when drip shields fail (Figure 2.1-11(a)) and emplacement 
drifts are being filled by rubble (Figure 2.1-14). The peak mean crack breach area fraction estimated 
from Figure 2.1-15(a) occurs at 1,000,000 years, and is approximately 2.1 × 10−4. This estimate of 
a codisposal waste package crack-breach open area is almost five times greater than for the 
commercial SNF waste package. The greater crack-breach open area for codisposal waste packages 
reflects a greater accumulation of seismic damage, due to the lower resistance to seismic damage for 
the codisposal waste packages. Focusing on the peak mean crack breach area fraction for nominal 
conditions (Figure 2.1-15(b)), the largest mean value is 7.1 × 10−6 (SNL 2008d, 
Section 8.3.3.2.1[a]).

The average fraction of surface area breached by patches (i.e., patch area fraction) per breached 
(crack or patch) commercial SNF waste package is shown in Figure 2.1-16 for the seismic ground 
motion modeling case and the nominal modeling case. It is important to clarify that patch breaches 
include general corrosion penetrations, ruptures, and punctures (modeled as patch breaches) of the 
waste package outer barrier, whereas the patch breaches in the nominal modeling case 
(Figure 2.1-16(b)) include only general corrosion penetrations. The statistics on the expected 
fraction for the seismic ground motion modeling case are shown in Figure 2.1-16(a), and for the 
nominal modeling case in Figure 2.1-16(b). Comparison of the mean curves for breaches by cracks 
(Figure 2.1-13) and by patches (Figure 2.1-16) shows that breaches by cracks are much more likely 
to occur than patch breaches. The 5th percentile and median are absent from Figure 2.1-16 because 
of the large number of realizations with no patch breaches.

As can be noted from Figure 2.1-16(a), the mean curve for the outer barrier average patch-breach 
area fraction begins abruptly at approximately 240,000 years. The 5th percentile and median are 
absent from the plots because of the large number of realizations with no patch breaches (i.e., zero 
occurrences). This abrupt increase results from the first occurrence of rupture or puncture in the 
waste package outer barrier. Due to the low probability of seismic events that cause crack damage 
to commercial SNF waste packages, which is a prerequisite for rupture of a commercial SNF waste 
package, as well as the low probability of seismic events that induce ruptures or punctures in the 
waste package outer barrier, ruptures and punctures occur in only a few realizations. Accordingly, 
until about 480,000 years, the mean curve remains relatively flat, because it is determined by the few 
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realizations in which ruptures or punctures occur. After 480,000 years, the mean curve then ascends
gradually, corresponding to an increasing likelihood that general corrosion penetrations have 
occurred. The timing of the initiation of the general corrosion patch penetrations is consistent with 
the mean curve for the nominal conditions shown on Figure 2.1-16(b). At the end of 1,000,000 
years, the patch-breach area fraction attributed to seismic conditions is about 0.26%, whereas for 
nominal conditions, shown in Figure 2.1-16(b), it is about 0.24%. This small difference between 
seismic and nominal patch-breach area fractions means that the fraction of surface area breached by 
patch penetrations on the commercial SNF waste package outer barrier is dominated by the general 
corrosion degradation.

Summary statistics for the average fraction of codisposal waste package surface area breached by 
patches (i.e., patch area fraction) per breached (crack or patch) codisposal waste package is shown 
in Figure 2.1-17. The projection for the seismic ground motion modeling case is shown in 
Figure 2.1-17(a), and for the nominal modeling case in Figure 2.1-17(b). The mean curve for the 
average patch-breach area fraction for the seismic ground motion case shows a sharp increase 
beginning at about 14,000 years, which then gradually increases until about 480,000 years. Similar 
to the results for commercial SNF waste packages, this part of the mean curve is determined by a 
few realizations in which ruptures and/or punctures occur. Because codisposal waste packages are 
more likely to be damaged by seismic events (Figure 2.1-12(c)), it is also more likely that codisposal 
waste packages could be ruptured, as is evident in the earlier occurrence of patch breaches for 
codisposal waste packages (Figure 2.1-17(a)) as compared to commercial SNF waste packages 
(Figure 2.1-16(a)). At about 480,000 years, general corrosion begins to penetrate the codisposal 
waste package outer barrier (Figure 2.1-17(b)). At the end of 1,000,000 years, the patch-breach area 
fraction attributed to seismic conditions is about 0.45%, whereas for nominal conditions, shown in 
Figure 2.1-17(b), it is about 0.24% (SNL 2008d, Section 8.3.3.2.1[a]). The larger patch-breach area 
fraction for codisposal waste packages for seismic conditions (as compared to nominal conditions) 
results because codisposal waste packages are relatively likely to be damaged by seismic events 
(Figure 2.1-12(d)). When stress corrosion cracking occurs, the waste package outer barrier begins 
to corrode from the inside out (Section 2.3.6.3), effectively doubling the rate of thinning of the 
waste package outer barrier, and thus increasing the likelihood of general corrosion patch 
penetrations before 1,000,000 years. In addition, the waste package internals degrade after seismic 
damage, and thus the early occurrence of stress corrosion cracking increases the probability that 
ruptures may occur.

Summary of the Capability of the EBS to Prevent or Substantially Reduce Water Contacting 
the Waste—The capability of the EBS to prevent or limit the movement of water and prevent 
contact between water and waste depends on the integrity of the drip shields and waste packages. 
The performance demonstration for the EBS indicates that the drip shields will remain intact for 
hundreds of thousands of years and protect the waste packages from seepage. Moreover, the 
majority of waste packages will remain intact for tens of thousands to hundreds of thousands of 
years. Thus, only a fraction of the emplaced waste will be exposed to water during this period.

For the combined nominal/early failure demonstration modeling case, with early-failed drip shields 
notwithstanding, the performance demonstration projects a distribution of drip shields plate failure 
times (Figure 2.1-8) with a median of approximately 290,000 years, with drip shield plate failure 
times generally ranging from 270,000 to 340,000 years (Figure 2.1-8). For the seismic ground 
motion modeling case, the best estimate distribution of drip shield failure times (Figure 2.1-11(a)) 
2.1-64



DOE/RW-0573, Rev. 0Yucca Mountain Repository SAR
has a median of about 255,000 years, with the average probability of drip shield failure at or before 
200,000 years being approximately 0.06.

With regard to waste package performance capability, the projected distributions for the mean 
fraction of waste packages (codisposal or commercial SNF) breached (Figure 2.1-9) for the nominal 
modeling case show that at 500,000 years, about 15% of waste packages would have breaches and 
at 1,000,000 years about 54% of waste packages would be breached. For the seismic ground motion 
modeling case, the mean of the expected fraction of waste packages breached at 200,000 years is 
projected to be approximately 0.7% for the commercial SNF waste packages (Figure 2.1-12(a)) and 
37% for the codisposal waste packages (Figure 2.1-12(c)). After 200,000 years, nominal corrosion 
processes start to dominate the expected fraction of breached waste packages for the seismic ground 
motion modeling case. These performance metrics show that the drip shields and waste packages 
together substantially reduce the contact of water with the emplaced waste for hundreds of 
thousands of years.

EBS Capability to Prevent or Reduce the Rate of Radionuclide Releases—The EBS prevents 
or substantially reduces the release rate of radionuclides from the waste and prevents or 
substantially reduces the rate of movement of radionuclides from the repository to the accessible 
environment. The EBS performs these functions by (1) preventing or substantially reducing the 
contact of water with the waste; (2) reducing the rate of release due to the slow alteration of the 
waste and low solubility of many radionuclides; and (3) reducing the rate of radionuclide transport 
from the waste form to the Lower Natural Barrier. This section summarizes how the different 
processes contribute to the EBS functions, then presents results demonstrating the EBS capability 
to prevent or reduce radionuclide releases for the combined nominal/early failure modeling case 
and seismic ground motion modeling case.

To provide a metric for a demonstration of EBS barrier capability, the activity (in curies) of each 
radionuclide released from EBS as a function of time was computed using the TSPA model. This 
metric provides a direct measure of EBS performance by permitting a comparison between activity 
released from the EBS to the initial inventory activity emplaced as it decays in time. In addition, 
information concerning the behavior of radionuclide release rates and barrier function can be 
inferred from this metric by examining the shape of the activity release curve. The variation in shape 
with time provides insights into the capability of the EBS to prevent or reduce the rate of movement 
of radionuclides from the repository to the unsaturated zone. The activity release curve for a given 
radionuclide typically starts with a positive slope that gradually decreases to zero prior to becoming 
negative. This shape is attributed to the interplay of the release rate of a radionuclide from the EBS 
(or mass retention rate in the EBS) compared to its effective radioactive decay rate. As shown in 
Equation 2.1-1, the activity release of a given radionuclide from the EBS is computed by taking the 
difference between the activity of the emplaced inventory and that retained in the EBS. The positive 
slope in the activity release curve typically indicates that the rate of mass release from the EBS is 
greater than the effective rate of decay of the emplaced mass, where the effective rate of decay 
accounts for any ingrowth from decay of a parent radionuclide. A positive slope typically occurs 
when the release rate out of the EBS is non-zero (a small positive slope can occur due to ingrowth). 
When the slope is zero, the release rate from the EBS is the same as the effective decay rate. A 
negative slope occurs when mass is released from the EBS slower than the effective rate of decay. 
This latter condition is typically the case when the EBS release rate becomes negligible and the 
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slope of the activity release curve approaches the rate of change corresponding to the effective decay 
rate.

Waste packages can be breached through general corrosion, through stress corrosion cracking, 
through seismic damage, or by early failure. In the latter case, the waste package is assumed to 
provide no protection from the drift environment starting at the time of repository closure. After 
waste packages are breached, SNF assemblies and HLW canisters will be exposed to the drift 
environment including air, water vapor, and possibly dripping seepage water. The waste package 
exterior will be subjected to advective seepage flow only if seepage is dripping at the waste package 
location and the drip shield fails—possibly due to early failure, seismic ground motion, or general 
corrosion. Seismic-induced rupture of the package, as well as general corrosion, can provide 
pathways for advective fluxes of water into a breached waste package. Stress corrosion cracks will 
not permit advective flux of water through them; they will, however, permit the transfer of oxygen 
and water vapor by diffusion into the waste packages.

Radionuclide transport out of the EBS and into the unsaturated zone is dependent on several 
processes. The processes discussed below are described in detail in Section 2.3.7. After a waste 
package is breached, radionuclides are not available for release and transport until the following 
processes have occurred:

• Oxygen, liquid water, or water vapor enters the waste package, enabling degradation of 
the waste form and formation of a liquid pathway for radionuclide transport. At and above 
the boiling point of water in the repository, a liquid pathway is assumed not to exist, and 
no transport of radionuclides takes place. When only water vapor enters a waste package, 
no transport takes place until a continuous water film is formed on the internal 
components. This condition occurs when the waste package temperature falls below 
100°C and the relative humidity interior to these packages reaches 95% (the relative 
humidity in the waste package interior is assumed to be equal to the relative humidity at 
the exterior of the waste package).

• The fuel cladding or canisters (HLW, TAD, DOE SNF, and naval) degrade and fail and 
allow water to contact the waste. (Note: with the exception of naval SNF structure 
(including cladding), the barrier capability to prevent water from contacting the waste 
provided by the SNF cladding and by all canisters is not accounted for in the TSPA.)

• The solid waste form degrades. This process provides the rate at which the radionuclides 
are made available for mobilization and release.

• Radionuclides are mobilized into aqueous solution, aqueous colloidal suspension, or 
gaseous phase. (Note: gaseous transport is not included in the TSPA because it is not a 
significant release mode (SNL 2008d, Section 8.3.3.2.2[a]).)

Once water and oxygen are available within a breached waste package, corrosion products from 
degradation of steel internal components would form. In commercial SNF waste packages, these 
steel components include the fuel basket guides, the TAD canister, and the inner vessel. In 
codisposal waste packages, these steel components include the central support tube, divider 
assembly, the inner vessel, and HLW and DOE SNF canister steel. The TAD canister shield plug 
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(15 in. thick) in commercial SNF waste packages and the inner lid (9 in. thick) in codisposal waste 
packages are not included as contributing to corrosion products available for sorption, because the 
large mass of these components is localized at one end of the waste package, and will not 
appreciably affect transport throughout the rest of the waste package (SNL 2007c, Section 6.3.1.1).

Mobile radionuclides are transported out of the degraded waste package and through the EBS to the 
unsaturated zone. Transport out of the waste package can occur by advection when there is a liquid 
flux through the waste package, and by diffusion through continuous liquid pathways in the waste 
package, including thin films of adsorbed water. As noted above, a continuous thin film cannot form 
until the waste package temperature falls below 100°C and the relative humidity exterior to these 
packages reaches 95% (the interior relative humidity is assumed to be same as the exterior relative 
humidity). Diffusive transport through waste package corrosion products depends on the water 
saturation, porosity, temperature, and relative humidity in the waste package. In the TSPA model, 
it is assumed that temperature and relative humidity in the waste package are equal to the 
temperature and relative humidity on the waste package outer surface (SNL 2008d, 
Section 8.3.3.2.2[a]). The two transport processes (diffusion and advection) are each a function of 
the type of penetrations through the drip shield and waste package and the local seepage conditions. 
Diffusion can occur through stress corrosion cracks or through general corrosion patches in the 
waste package, both with and without liquid flux through the waste package. Advection is not 
considered through stress corrosion cracks or through corrosion patches in the absence of seepage 
flux.

The corrosion products from the waste package internal components have the potential to be strong 
sorbers for the actinides (SNL 2008d, Section 8.3.3.2.2[a]). The process of radionuclide sorption 
onto the waste package corrosion products and invert ballast material (crushed tuff) is beneficial to 
performance because this process can retain radionuclides in the EBS and delay release to the 
unsaturated zone. Because the waste package corrosion products are in intimate contact or are 
directly in the flow or diffusion path of the radionuclide source inside the waste package, retardation 
by corrosion products inside the waste package will occur. However, note that because corrosion 
products in the invert formed by its structural steel members are more localized and not necessarily 
in any flow path from the waste package, sorption onto corrosion products in the invert is excluded 
in the TSPA model (SNL 2008d, Section 8.3.3.2.2[a]).

Within the emplacement drifts, water evaporated from the emplacement drift walls and invert is 
transported primarily by natural convection from warmer to cooler areas, where it condenses on 
cooler surfaces (such as the drift wall). The rates of evaporation and condensation, as well as the rate 
of water vapor transport in the emplacement drift, determine the extent of condensation. In-drift 
condensation is evaluated with the in-drift condensation model (Section 2.3.5.4.2). This model 
provides the TSPA model with both the probability and magnitude of condensation on the drift wall 
during cooldown. The TSPA treats the flow of drift wall condensation as a source of liquid water to 
be added to the liquid water entering the drift as seepage. The TSPA uses this combined liquid-water 
source term in the EBS flow and chemical environment calculations (SNL 2008d, 
Section 8.3.3.2.2[a]).

The in-drift condensation model defines three stages for the occurrence of condensation. Stage 1 is 
when the drift wall temperature is above the boiling temperature of water at all locations in the drift. 
No condensation occurs during Stage 1. Stage 2 is for times between when the first location in a drift 
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drops below the boiling temperature and the last location drops below the boiling temperature. 
Stage 3 occurs after all waste packages (and thus the drift wall) drop below the boiling temperature. 
Drift wall condensation results are presented in Tables 2.1-10 and 2.1-11. Results in Table 2.1-10
show that drift wall condensation does not occur in the presence of the commercial SNF waste 
packages during Stage 2, and that there is a small probability that a negligible condensation rate will 
occur during Stage 3 on a very small fraction of commercial SNF waste packages. Results in 
Table 2.1-11 show that a significant drift wall condensation rate (approximately 0.5 m3/yr) will 
occur in the presence of the codisposal waste packages (probability of one and mean waste package 
fraction of one) during Stage 2 for approximately 1,000 years (SNL 2008d, Section 8.3.3.2.2[a]). 
For comparison, mean seepage rates at 1,500 years are presented in Table 2.1-12. During Stage 3, 
which lasts about 2,000 years after closure, the probability of condensation decreases dramatically, 
and the condensation rates are negligible (SNL 2008d, Section 6.3.3.2.2 and 8.3.3.2.2[a]).

The impact of condensation water on the barrier capability of codisposal waste packages is not 
significant, because drip shields do not fail to perform their water diversion function during the time 
condensation will occur. Thus, in the TSPA model, condensation water is diverted around the 
codisposal waste packages except possibly in the case of a very small number of early failure drip 
shields or in the unlikely event of drip shield failure by fault displacement.

Radionuclides Selected to Demonstrate Multiple Barrier Capability—One of the basic
functions of the multiple barriers is to prevent or substantially reduce the rate of radionuclide 
movement from the repository to the accessible environment. To demonstrate the capability of the 
EBS (and the Lower Natural Barrier) for a range of releases and yet limit the number of 
calculations, a small subset of 12 radionuclides was selected for the barrier performance 
demonstrations. That subset was selected from two lists: (1) radionuclides identified as 
dominating the mean annual doses to the RMEI for the 10,000-year and post-10,000-year time 
periods; and (2) radionuclides identified as dominating the curie inventory for the 10,000-year and 
post 10,000-year time periods. The first list of important radionuclides was developed directly 
from the probabilistic projections of mean annual dose (Section 2.4.2). The second list was 
compiled by examining the inventory decay histories, which are discussed here.

Calculations of inventory decay histories for the 12 radionuclides are shown in Figure 2.1-18 for the 
two periods of 10,000 years and post-10,000 years (i.e., after 10,000 years but within 1,000,000 
years). The time-dependent behavior of individual radionuclides is the result of simple radioactive 
decay and, in some cases, decay chain in-growth. From the curves on these plots, one can note that,
in the first 100 years, two fission products—90Sr (half life of 28.8 years) and 137Cs (half-life of 
30 years)—dominate the inventory. Thereafter, the actinide radionuclide 241Am (half-life of 432.7 
years) dominates to about 1,000 years, 240Pu (half life of 6,560 years) dominates to about 7,000 
years, and 239Pu (half life of 2.41 × 104 years) dominates to about 115,000 years. Dominance then 
shifts to the fission product 99Tc (half-life of 2.13 × 105 years) for the majority of time in the 
1,000,000-year time period.

More refined insights into inventory dominance can be gained by examining plots of the fraction 
of total activity, at time τ, for each radionuclide. Two plots are shown on Figure 2.1-19 for 10,000
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years and 1,000,000 years. From these plots, it is evident that the dominant radionuclides in the 
curie inventory from the subset of 12 radionuclides, grouped by compliance period, are as follows:

1. For 10,000 years: 137Cs and 90Sr, 241Am, 240Pu and 239Pu
2. For post-10,000 years: 239Pu, 99Tc, 237Np, 233U, and 229Th.

At closure, the three radionuclides—137Cs, 90Sr, and 241Am—collectively represent about 85% of 
the total curie inventory, with 137Cs representing about 46%, 90Sr about 29%, and 241Am about 10%. 
From Figure 2.1-19(a), it can be clearly seen that 241Am dominates the curie inventory in the 
interval from 100 to 1,000 years. Dominance shifts to 240Pu and 239Pu from 1,000 years to 10,000
years, with these two actinides alone representing more than 90% of the inventory at the end of 
10,000 years. As shown in Figure 2.1-19(b), 239Pu dominance peaks at about 50,000 years. From 
roughly 100,000 years to 1,000,000 years, the inventory dominance shifts to 99Tc (half-life of 
2.13 × 105 years) until roughly 850,000 years, then transitions to dominance by three actinides: 
237Np (half-life of 2.14 × 106 years); 233U (half life of 1.59 × 105 years), and 229Th (half-life of 
7.3 × 103 years). The curves for 233U and 229Th overlay due to secular equilibrium. The latter three 
actinides are members of a decay chain in the neptunium series. A summary of the decay history of 
the total curie inventory and the major contributors is presented in Table 2.1-13; the percentages 
shown in the table were calculated directly from the data files used to create Figure 2.1-18.

Comparing the above radionuclides that dominate the inventory with the radionuclides identified as 
important to mean annual doses to the RMEI (namely, for the 10,000-year compliance period: 99Tc, 
14C, 129I, 239Pu, 36Cl, 79Se, and 240Pu; and for the post-10,000-year compliance period: 226Ra, 242Pu, 
237Np, 129I, 233U, 135Cs, 230Th, 99Tc, 229Th, and 231Pa), it can be noted that the radionuclides that 
dominate the inventory also appear in the list of radionuclides important to dose, with the exception 
of the short-lived 137Cs, 90Sr, and 241Am.

Based on the above considerations, the following subset of radionuclides was selected for use in 
describing barrier capabilities with regard to preventing or substantially reducing the rate of 
radionuclide movement.

These radionuclides represent a broad range of nuclear properties, geochemical behavior, and 
transport characteristics including the following:

• Large initial inventory and short half-life: 137Cs, 90Sr, 241Am, 240Pu

• Highly soluble, nonsorbing, long half-life and major contributor to dose: 99Tc

• Solubility limited, strongly sorbed, long half-life, transported in dissolved and colloidal 
phases, and important contributor to dose: 239Pu and 242Pu

• Moderately soluble, low sorbing, very long half-life, and transported in dissolved phase: 
237Np and 234U

• Strongly sorbed, and contributes to or is produced by decay chain in-growth: 243Am, 
230Th, and 226Ra.
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These 12 radionuclides represent a broad range of radioactive decay properties, geochemical 
behaviors, biosphere dose conversion factors, and transport characteristics in geologic media. 
Because of these diverse properties, these 12 radionuclides provide a means of examining the 
performance characteristics of the natural and engineered barriers.

Activity Releases from the EBS for Combined Early Drip Shield Failure, Early Waste 
Package Failure, and Nominal Processes—The aspects of EBS performance that determine the 
release of radionuclides, as modeled in the TSPA for the combined nominal/early failure modeling 
case, can be summarized as follows:

• Nominal processes cause only a single waste package failure within the 0 to 10,000-year 
time interval over all the epistemic samples (SNL 2008d, Section 8.3.3.2.2[a]).

• Prior to 170,000 years, radionuclide release rates and releases from the EBS are 
determined by events related to early drip shield failure and early waste package failure.

• After 170,000 years, radionuclide release rates and releases from the EBS are determined 
primarily by processes related to the failure of waste packages from nominal processes.

• Drip shield failure for nominal conditions is defined as complete penetration of the 
Titanium Grade 7 plate by general corrosion. Drip shield failure times are distributed 
between 270,000 and 340,000 years (Figure 2.1-8)

• The expected number of early failed waste packages is 1.09 (SNL 2008d, 
Section 8.3.3.2.2[a]). The probability of one or more early failed (i.e., breaches of 
closure-lid welds) waste packages is 0.442 (Section 2.4.2.3.2.1.12.1). The expected 
number of waste package early failures, given that an early failure occurs, is 
approximately 2.5 (Section 2.4.2.3.2.1.12.1).

• The expected number of early failed drip shields is 0.018 (Section 2.4.2.3.2.1.12.1). The 
probability of one or more early failed drip shields is 0.017 (Section 2.4.2.3.2.1.12.1). The 
expected number of drip shield early failures, given an early failure occurs, is 
approximately 1.1 (Section 2.4.2.3.2.1.12.1).

• Early drip shield breach is assumed to result in waste package failure only if the breached 
drip shield is in a seeping environment; otherwise, there is no waste package failure and, 
hence, no radionuclide release. Water flows into the failed waste package as soon as the 
waste package temperature falls below 100°C, and advective transport occurs 
immediately (SNL 2008d, Section 6.4.1.3).

• The present-day climate persists from the time of repository closure to 600 years from the 
present. At 2,000 years, the climate changes from monsoon to glacial-transition and 
percolation rates generally increase (Section 2.3.2.4.1.2.4.2), which in turn increases 
seepage and the release rate of radionuclides from waste packages underneath early failed 
drip shields.
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• At 10,000 years, the percolation rates at the repository change, generally increasing in 
accordance with proposed 10 CFR 63.342(c)(2) (70 FR 53313). In addition, seepage 
fractions range from about 12% to 40% for both commercial SNF and codisposal waste 
packages.

• Prior to drip shield failure, early waste package failure results in diffusive releases of 
radionuclides. After drip shield failure, advective transport and an increase in release rates 
can occur if the waste package is experiencing dripping conditions and has been breached 
by general corrosion.

• By about 340,000 years, all drip shields have failed (SNL 2008d, Section 8.2.1) and the 
number of failed waste packages steadily increases (Figure 2.1-9). As a result, 
radionuclide release rates and releases also tend to increase with time.

• The TSPA model represents 11,629 waste packages (8,213 commercial SNF and naval 
SNF waste packages, and 3,416 codisposal waste packages) (Section 2.3.7.4.1.2). HLW 
contains almost all of the 99Tc in codisposal waste packages, with a nominal initial 
inventory of 1.01 × 103 g (17.2 Ci) per codisposal waste package. In contrast, the DOE 
SNF component of waste in codisposal waste packages contains 1.58 × 102 g (2.69 Ci) of 
99Tc. The amount of 99Tc contained in the commercial SNF waste is substantially greater, 
at 7.55 × 103 g (128 Ci) per commercial SNF waste package (Table 2.3.7-3).

• At 10,000 years, there is a sharp increase in radionuclide release rates and releases, 
resulting from early failed commercial SNF waste packages. Commercial SNF waste 
packages are hotter than codisposal waste packages, with the result that releases from 
commercial SNF waste packages are delayed until both the waste package temperature 
falls below 100°C and the relative humidity interior to these packages reaches 95%, at 
which time a continuous thin film of adsorbed water required for diffusive radionuclide 
transport begins (SNL 2008d, Section 8.3.3.2.2.[a]).

• Most commercial SNF waste packages begin diffusive transport between 9,000 years and 
14,000 years, whereas codisposal waste packages begin diffusive transport between 500
years and 3,000 years (SNL 2008d, Section 8.3.3.2.2[a]).

• Because infiltration rates and temperatures vary across the repository footprint 
(Section 2.3.5), the time at which a continuous thin film of adsorbed water required for 
diffusive transport begins also varies.

• Because 99Tc is assumed to have no solubility limit and is non-sorbing in the invert (or 
anywhere else in the disposal system), released technetium moves rapidly from the EBS 
to the unsaturated zone (SNL 2008d, Section 6.3.7.5). The EBS release characteristics of 
99Tc are representative of other highly soluble and non-sorbing radionuclides, such as 129I.

• 239Pu is not an important contributor to expected dose in the first few thousand years for 
the combined nominal/early failure modeling case (SNL 2008d, Figure 8.2.6[a]). Much of 
the mobilized plutonium sorbs onto stationary corrosion products, and its subsequent 
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release rate depends on the rates of desorption (SNL 2008d, Section 8.3.3.2.2.[a]), which 
results in the slow but steady release of 239Pu from the waste package.

• The initial release of 239Pu is primarily from DOE SNF waste forms, which are 
conservatively assumed to immediately degrade when a codisposal waste package is 
breached (Section 2.3.7.8). The release rate and releases of 239Pu later in the first 10,000 
years are primarily from HLW, which degrades relatively slowly over time. Releases of 
239Pu from commercial SNF waste packages are delayed until diffusive transport begins 
after about 9,000 years.

Figure 2.1-20 compares the mean total activity of all radionuclides remaining after decay of the 
initial inventory to the mean total activity of all radionuclides released from the EBS for the 
combined nominal/early failure demonstration modeling case for both compliance periods. This 
figure indicates that, under the combined nominal and early failure scenario classes, only a small 
fraction of the total initial radionuclide inventory would be released from the EBS in the first 10,000 
years (less than 3.9 × 10−7). The mean total release in 10,000 years is equivalent to less than 1/300th 
of the inventory of one of the 11,629 waste packages in the repository. After 1,000,000 years, the 
mean total release would be about 7% of the inventory at that time (SNL 2008d, 
Section 8.3.3.2.2[a]).

Figure 2.1-20 indicates that, for both compliance periods, the most significant radionuclide with 
respect to activity release from the EBS is 99Tc. The contribution for the other radionuclides selected 
is much less. In the case of plutonium species, the plots in Figure 2.1-20 show the activity of 
radionuclides transported irreversibly sorbed to colloids (designated by the superscript I) and the 
total activity of the mass in dissolved phase, and reversibly and irreversibly associated with colloids 
(designated by the superscript T). For americium, only the total activity is plotted because the 
colloidal phase is small compared to the dissolved phase.

The release of 99Tc during the first 10,000 years (Figure 2.1-20(a)) is primarily due to diffusive 
releases from early failure of waste packages and, to a lesser extent, advective releases from early 
drip shield failure and concomitant waste package failure (SNL 2008d, Section 8.3.3.2.2[a]). 
Nominal waste package degradation processes do not cause waste package failures, on average, 
prior to about 170,000 years after closure (Figure 2.1-9). As a result, average release rates and 
releases from the EBS during this period are determined by processes related to the combined early 
drip shield failure and early waste package failure. This result is primarily due to the fact that the 
expected number of early failure waste packages is about 60 times greater than the number of 
expected early failure drip shields. In addition, early drip shield failure is assumed to result in waste 
package failure only if the early failed drip shield is experiencing seeping conditions. Otherwise, 
there is no waste package failure and, hence, no radionuclide release. Under nominal conditions 
approximately 70% of the waste package locations in the repository have non-seeping conditions 
(Table 2.1-6). Thus, on average, the number of early failure waste packages is about 100 times 
greater than the number of failed waste packages associated with early failure drip shields. Hence, 
releases from early waste package failure tend to be substantially greater than releases from early 
drip shield failure.

Furthermore, of those waste packages that become breached, radionuclide releases during the first 
10,000 years are primarily from the cooler codisposal waste packages. As noted above, commercial 
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SNF waste packages are hotter than the codisposal waste packages (SNL 2008d, 
Section 8.3.3.2.1[a]), with the result that releases from commercial SNF waste packages are 
delayed, on average, until after 9,000 years, whereas releases from codisposal waste packages are 
delayed until after 500 years, until such time as a continuous thin film of adsorbed water required 
for diffusive radionuclide transport begins (SNL 2008d, Section 6.3.8.1). In addition, the infiltration 
and percolation fluxes at the repository increase at 10,000 years, thus increasing the seepage fluxes 
and seepage fraction. The impact of the change in infiltration and transport from commercial SNF 
waste packages on release rates and releases from the EBS is illustrated in Figure 2.1-20(b) by the 
sharp increase in radionuclide release rates and releases just before and after 10,000 years.

Figure 2.1-18 indicates that radionuclides such as 90Sr, 137Cs, and 241Am dominate the total 
inventory activity at the earliest times (SNL 2008d, Section 8.3.3.2.2[a]). Figure 2.1-20(a) shows 
that these radionuclides are released from the EBS in small amounts of activity immediately from 
early failure of codisposal waste packages and/or drip shields, and experience only moderate 
sorption and negligible delay during transport out of the EBS (SNL 2008d, Sections 6.3.7 and
6.3.8). Note that these early releases of 90Sr and 137Cs are from cooler codisposal waste packages. 
Releases from hotter commercial SNF waste packages would be delayed for several thousand years,
until the RH in the waste package exceeds 95%. These radionuclides have short half-lives and decay 
to negligible levels in a few hundred years. Because of the longer half-life of 241Am, this 
radionuclide is a secondary contributor to the mean total activity releases until about 2,000 years. 
A second peak in activity releases of 241Am occurs just after 10,000 years, and is caused by releases 
from early failed commercial SNF waste packages. At 10,000 years, the activity releases of 239Pu 
and 240Pu are small, but still the 2nd and 3rd most important contributors to total activity released
(SNL 2008d, Section 8.3.3.2.2[a]). These two radionuclides dominate the total inventory activity at 
10,000 years, with 239Pu and 240Pu contributing 52% and 40% of the fraction of total activity, 
respectively. 237Np represents the less-mobile solutes whose mobilization is generally limited by 
their solubility. Other radionuclides in this category include 226Ra and 234U. 239Pu and 242Pu 
represent less-mobile solutes that can be irreversibly strongly sorbed to corrosion product solid 
phases in the waste packages. The activity releases of 239Pu and 242Pu are shown as total 
concentrations denoted by 239PuT and 242PuT, and as irreversibly sorbed on colloids denoted by 
239PuI and 242PuI. Total concentrations include both dissolved and colloidally associated activity. 
Other radionuclides in this latter category include 240Pu, 241Am, and 243Am.

The relatively small value of mean total activity released from the EBS after 10,000 years, and prior 
to 170,000 years (Figure 2.1-20(b)) in the combined nominal and early failure scenario classes, is 
a result of the absence of drip shield failures and the limited number of waste package failures prior 
to 170,000 years. As noted above, drip shield failure times range from 270,000 to 340,000 years. In 
addition, stress corrosion crack penetrations of the waste package closure-lid welds begin at around 
170,000 years (as shown by the 95th percentile curves on Figure 2.1-13(b) and Figure 2.1-15(b)). 
As stress corrosion cracking penetrations occur, the release rates from the waste packages and EBS 
increase, as illustrated by the increase in releases of 99Tc at around 170,000 years (Figure 2.1-20(b)). 
The amount of activity released from the EBS by moderately soluble and weakly to moderately 
sorbing radionuclides in the lower natural barrier system, such as 237Np, 242Pu, and 234U, increases 
after 200,000 years as well, but substantial increases are not observed until general corrosion 
failures of waste packages begin to dominate at about 600,000 years (as shown by the 95th 
percentile curves; Figure 2.1-16(b) and Figure 2.1-17(b)) and subsequent advective releases 
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become significant. However, these releases remain small compared to 99Tc throughout the 
1,000,000-year period.

The nuclear properties of 226Ra explain its persistence in the nuclear waste for potentially millions 
of years, while its chemical properties explain its rate of migration in the EBS, unsaturated zone, 
and saturated zone. One of the important chemical properties of 226Ra is that it exhibits moderate 
sorption onto waste package internal corrosion products and high sorption in the invert ballast 
(crushed tuff). This sorption property has the effect of slowing the rate of 226Ra activity released 
from the EBS for several hundred years. However, a key nuclear property of 226Ra is that it 
exhibits ingrowth from other actinide radionuclides in the uranium series decay chain. The 
relevant part of that decay chain consists of the following:

234U (half-life 240,000 years) → 230Th (half-life 77,000 years) → 226Ra (half-life 1,600 years).

This decay chain is significant because it means that, even after 226Ra depletes its initial inventory, 
it will be continuously replenished so long as there is a source of 230Th and 234U. While both 226Ra 
and 230Th have relatively small initial inventories in the nuclear waste, the precursor 234U has a 
significant initial inventory. Also, the large contrast in half-lives between 226Ra and 230Th means 
that 226Ra will ultimately reach a state of secular equilibrium with 230Th. Similarly, after 230Th 
depletes its initial inventory, its activity will be in secular equilibrium with its precursor 234U. The 
net effect is that 226Ra will persist in the waste form and continue to be released for potentially 
millions of years (SNL 2008d, Section 8.1.2.1[a]).

As discussed above, the performance of the EBS in preventing or substantially reducing the rate of 
radionuclide release to the Lower Natural Barrier is a function of several features and uncertain 
processes in the EBS. The degree of degradation of the waste package is uncertain and spatially 
variable, and controls the amount and rate of water that may enter the waste package and potentially 
allow degradation of the waste form. The thermal and chemical environment is also uncertain and 
spatially variable, and affects the degradation rate and characteristics of the waste forms and, more 
importantly, affects the thermally dependent general corrosion rate of Alloy 22 (Sections 2.3.6.2.2
and 2.4.2.3.3.6). The thermal and chemical environment also affects the solubility of the 
radionuclides in the aqueous phase, as well as the stability of colloids to which radionuclides may 
be attached. The rate of release is affected by the advective and diffusive transport pathways out of 
the waste package and through the invert. The transport pathways through the EBS are generally 
diffusive and their properties are treated as uncertain. Solubility limits significantly control the rate 
of radionuclide diffusion as they define the concentration gradient through which radionuclides 
may diffuse. Solubility limits are treated as uncertain except for those radionuclides that are not 
solubility limited, such as 99Tc (Section 2.3.7.10). Finally, the sorption characteristics of the 
degraded waste package and internal structural supports are treated as uncertain, and affect the 
release of those radionuclides that are highly sorbed on iron substrates.

To illustrate the resulting uncertainty associated with the release of radionuclide activity from the 
EBS, radionuclide-specific release plots for 99Tc and 239Pu are presented in Figures 2.1-21 and 
2.1-22 for combined nominal and early failure degradation processes and both compliance periods. 
Shown on each plot is the mean total inventory for that radionuclide, along with the mean release 
curve and 5th and 95th percentile release curves. These plots illustrate that the mean release is 
affected by the range of the uncertain parameters used in the analysis as summarized above. As 
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illustrated, the mean release is typically close to the 95th percentile of the uncertain results
(SNL 2008d, Section 8.3.3.2.2[a]). The uncertainty in 99Tc and 239Pu releases prior to 200,000 years 
is dominated by uncertain parameters that determine the number of early failure waste packages and 
drip shields, the degradation rates of HLW glass and commercial SNF, and the diffusive transport 
of 99Tc and 239Pu from the waste form to the waste package outer barrier. In addition, uncertainty in 
the release of 239Pu is also influenced by uncertain parameters that determine the solubility of 
plutonium and sorption of 239Pu onto stationary corrosion products within the waste package
(SNL 2008d, Section 8.3.3.2.2[a]).

Activity Releases from the EBS Due to Seismic Ground Motion Damage of Engineered 
Barrier System Components—Many of the aspects of EBS performance under nominal and 
early failure conditions summarized in the preceding discussion are relevant to the seismic ground 
motion modeling case. The following aspects of EBS performance that lead to additional 
reduction in EBS performance as modeled in the TSPA model for the seismic ground motion 
modeling case can be summarized as follows:

• Prior to 170,000 years, radionuclide rates and releases from the EBS are determined by 
processes related to vibratory ground motion-induced waste package failures
(SNL 2008d, Section 8.3.3.2.2[a]). The mean release from these processes is significantly 
greater than the mean release from the combined nominal/early failure modeling case 
(Figures 2.1-23 and 2.1-20, respectively).

• Between 170,000 and 600,000 years, radionuclide releases from the EBS are determined 
by contributions from both nominal and vibratory ground motion induced drip shield and 
waste package failures (Figure 2.1-12).

• After about 600,000 years, radionuclide releases from the EBS are determined primarily 
by processes related to the failure of waste packages from nominal processes 
(Figures 2.1-16 and 2.1-17) (SNL 2008d, Section 8.3.3.2.2[a]).

• The initial breach (crack) of a commercial SNF waste packages is not likely to occur 
before approximately 61,000 years (Figure 2.1-13(a)), whereas the codisposal waste 
package is projected to experience a first breach (stress corrosion crack) much earlier
(Figures 2.1-12(c) and 2.1-15(a)). For purposes of comparison, based on the 95th 
percentile, the initial breaches of the commercial SNF and codisposal waste packages 
occurred at about 170,000 years under nominal conditions. These breaches, however, 
were due to nominal process stress corrosion cracking in the closure-lid weld region
(Figure 2.1-10) (SNL 2008d, Section 8.3.3.2.2[a]).

• Drip shield failures by combined rupture and general corrosion are largely distributed 
between about 40,000 and 300,000 years (Figure 2.1-11), as compared to drip shield 
failures by general corrosion alone (under nominal conditions), which are distributed 
from about 270,000 to 340,000 years (Figure 2.1-8).

• Vibratory ground motion-induced drift collapse during the post-10,000-year period 
causes the mean seepage fraction to increase to 70% (Table 2.1-9), as compared to the 
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mean value of 40% in the nominal modeling case (Table 2.1-7) (SNL 2008d, 
Section 8.3.3.2.2[a]).

• 242Pu is a key contributor to expected dose late in the post-10,000-year period 
(SNL 2008d, Section 8.1.1.5[a]). Much of the mobilized plutonium sorbs onto ferrous 
corrosion products, and its subsequent release depends on the rates of desorption 
(SNL 2008d, Section 8.3.3.2.2[a]).

The potential effect of seismic events on EBS capability is shown in Figure 2.1-23 for both 
compliance periods. Comparison of this figure with Figure 2.1-20 does not show a significant 
reduction in EBS capability with respect to the sorbed radionuclides or the colloid associated 
radionuclides.

In the seismic ground motion modeling case, the codisposal waste packages are more likely to 
experience significant damage during the first 10,000 years after closure (Figure 2.1-12) because 
the commercial SNF waste packages are much stronger and more failure resistant. The commercial 
SNF waste packages will be more robust than the codisposal waste packages because the 
commercial SNF waste packages contain the large and tightly fitting TAD canister. The codisposal 
waste packages contain several smaller waste-containing canisters that do not fit as tightly, and 
could move more freely under the influence of ground motion (Section 2.3.4) (SNL 2008d, 
Section 6.1.2). In the first 10,000 years after closure, the predominant mechanism that causes 
damage to codisposal waste packages is stress corrosion cracks by vibratory ground 
motion-induced residual stresses in the waste package outer barrier (Figure 2.1-15). The drip 
shields remain intact for seismic events occurring in the first 10,000 years (Figure 2.1-11). As a 
result, dripping seepage cannot contact the waste packages. Therefore, water can enter the waste 
package only by vapor diffusion through the cracks in the outer barrier. As codisposal waste 
packages cool and the DOE SNF and HLW degrade, water films form on waste package internals, 
permitting the diffusive transport of radionuclides through the small cracks and into the invert. 
Comparing estimates of EBS release shown on Figure 2.1-20(a) with Figure 2.1-23(a) indicates a 
reduction in EBS capability as compared to the combined nominal and early failure scenario classes 
by a factor of as much as 70 for 99Tc during the first 10,000 years after closure (SNL 2008d, 
Section 8.3.3.2.2[a]). However, the comparison still indicates substantial and similar EBS 
capability during 10,000 years after closure for the less mobile radionuclides.

Estimates of the EBS release shown in Figure 2.1-23(b) indicate a reduction in the EBS capability 
to retain 99Tc by a factor of as much as 140 at 100,000 years as compared to the combined 
nominal/early failure modeling case (Figure 2.1-20(b)). There is also a reduction in the EBS 
capability by a factor between 4 and 10 for less-mobile radionuclides at 100,000 years and 
1,000,000 years, including 226Ra, 242Pu, and 237Np, which are key contributors to dose during the 
post-10,000-year period (SNL 2008d, Section 8.3.3.2.2[a]). Note that the activity of these 
radionuclides increases substantially after about 600,000 years, when failure of the waste packages 
by general corrosion processes dominate. The importance of general corrosion patches can be seen 
in Figures 2.1-16 and 2.1-17 by comparing the seismic ground motion modeling case mean results 
(which include general corrosion) with the nominal mean results. By 1,000,000 years, the total 
activity released in both the seismic ground motion modeling case and the combined nominal/early 
failure modeling case is approximately the same, indicating that the overall reduction in barrier 
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capability in each case, in terms of total activity released, is about a factor of only 10 in 1,000,000 
years (SNL 2008d, Section 8.3.3.2.2[a]).

The performance of the EBS in preventing or substantially reducing the rate of radionuclide release 
to the Lower Natural Barrier as a result of combined seismic ground motion-induced degradation 
and nominal degradation processes is a function of several features and uncertain processes in the 
EBS. Similar to the combined nominal and early failure modeling case, the degree of degradation 
of the waste package controls the amount and rate of water that may enter the waste package and 
potentially allow degradation of the waste form. The degree of waste package degradation is highly 
uncertain and spatially variable, and is significantly influenced by the magnitude and timing of 
seismic ground motions that are also uncertain. After about 600,000 years (Figures 2.1-16 and 
2.1-17), radionuclide releases from the EBS are determined primarily by processes related to the 
failure of waste packages from nominal processes. Again, thermal, chemical, waste-form 
degradation, and transport processes determine the radionuclide releases from the EBS once waste 
packages are breached. All of these processes contribute significant uncertainty to the projected 
radionuclide releases from the EBS.

To illustrate the uncertainty associated with the release of radionuclide activity from the EBS, 
radionuclide-specific release plots for selected radionuclides are presented in Figures 2.1-24 to 
2.1-29 for combined nominal and seismic ground motion induced degradation processes:

• Figure 2.1-24: 99Tc
• Figure 2.1-25: 237Np
• Figure 2.1-26: 234U
• Figure 2.1-27: 226Ra
• Figure 2.1-28: 239Pu
• Figure 2.1-29: 242Pu.

The results in these figures are expected releases (averaged over the aleatory uncertainties), and thus 
largely reflect the influence of epistemic uncertainties. This series of plots is presented to illustrate 
the impact of uncertainties on the projections of the EBS radionuclide releases. As can be noted 
from these plots, the EBS releases for all six radionuclides corresponding to the 95th percentile are 
consistently close to the corresponding mean release curves, but are distant from the 5th percentile 
curves. This demonstrates that the mean releases are determined by expected releases for a 
relatively small number of epistemic sample elements for which the expected releases are 
comparatively large (SNL 2008d, Section 8.3.3.2.2[a]).

Summary of EBS Capability—The EBS prevents or substantially reduces the release rate of 
radionuclides from the waste forms, and prevents or substantially reduces the rate of movement of 
radionuclides from the repository to the accessible environment. The EBS performs these 
functions by virtue of the materials and design of the emplacement drifts, drip shields, waste 
packages, and waste forms and waste package internals. In addition, the EBS provides for 
chemical and thermal-hydrologic environments that lead to low solubilities for the radionuclides 
that make up the greatest fraction of the inventory activity. Finally, the EBS environments are such 
that radionuclide transport from the waste to the unsaturated zone is limited to a small fraction of 
the available inventory (less than 3 × 10–3 percent in 10,000 years, and 7% in 1,000,000 years), 
even in the case of seismic-induced mechanical degradation.
2.1-77



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
2.1.2.3 Lower Natural Barrier

The Lower Natural Barrier includes the unsaturated zone below the repository horizon and the 
saturated zone below the repository and downgradient from the repository to the accessible 
environment. Both the unsaturated and saturated features of the Lower Natural Barrier are ITWI 
(Table 2.1-1) and prevent or substantially reduce the rate of movement of radionuclides from the 
repository to the accessible environment due to slow advective transport combined with matrix 
diffusion and radionuclide sorption processes. Figure 2.1-30 is a schematic illustration of the Lower 
Natural Barrier.

As discussed in Section 2.1.1, the features of the Lower Natural Barrier have different processes and 
characteristics that influence the capability of these features to prevent or substantially reduce the 
rate of movement of radionuclides from the repository to the accessible environment (SNL 2008a, 
Section 6.2.2.3). The significant processes include hydrologic and thermal-hydrologic processes 
(SNL 2008a, Table 7-4) and transport processes, as identified in Table 2.1-4. Additional chemical, 
thermal-chemical, mechanical, and thermal-mechanical processes are generally of lesser 
significance in affecting the features of the Lower Natural Barrier. The processes identified in 
Table 2.1-4 have varying degrees of influence on the capability of the Lower Natural Barrier to 
perform its barrier function.

Some processes identified in Table 2.1-4 are more important contributors than others to the overall 
capability of the Lower Natural Barrier in preventing or substantially reducing the rate of movement 
of radionuclides from the repository to the accessible environment. Table 2.1-4 identifies those 
processes that significantly influence the ability of a particular feature to contribute to barrier 
capability (SNL 2008a, Table 7-4).

In the evaluation of the important processes related to the capability of the Lower Natural Barrier, 
consideration is given to both the beneficial as well as the potentially deleterious processes that act 
on each of the features of the barrier. The presence of a beneficial process generally results in 
preventing the movement of radionuclides or substantially reducing the rate of movement of 
radionuclides from the repository to the accessible environment. The evaluation of both beneficial 
and potentially deleterious processes that could affect the movement of radionuclides assures a 
more complete understanding of the barrier capability. The presence of a potentially deleterious 
process could result in an increase in the rate of movement of radionuclides from the repository to 
the accessible environment. Both beneficial and potentially deleterious processes have been 
identified as important contributors to the Lower Natural Barrier's capability (SNL 2008a, 
Section 6.2.2.3).

A few examples illustrate both beneficial and potentially deleterious processes and their effect on 
the Lower Natural Barrier. Sorption in the unsaturated and saturated zones has the beneficial effect 
of preventing the movement or substantially reducing the rate of movement of certain radionuclides 
that are major contributors to the activity of the radioactive waste. Climate modification, which can 
affect the amount of recharge in the unsaturated zone and the water table rise in the saturated zone, 
can significantly increase the rate of movement of radionuclides by increasing the flux. While the 
presence of fracture flow has a generally deleterious effect on unsaturated and saturated zone 
transport (depending on the degree of matrix diffusion), the absence of fracture flow has a beneficial 
effect of decreasing the rate of movement of radionuclides.
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Unsaturated Zone below the Repository—The following processes and characteristics of the 
unsaturated zone below the repository are important to the capability of the Lower Natural 
Barrier:

• Climate Change—Future climate change causes several responses in the unsaturated 
zone beneath the repository, including changes in percolation flux and attendant 
radionuclide transport, water table rise, and recharge to the saturated zone. Precipitation 
and net infiltration into the unsaturated zone tends to increase with future climate change, 
causing an increase in fracture flux and, hence, a reduction in the effectiveness of matrix 
diffusion and an increase in recharge during the first 10,000 years after repository closure. 
After 10,000 years, the rate of percolation at the repository horizon is specified by 
proposed 10 CFR 63.342(c)(2) (70 FR 53313). In addition, based on forecast climate 
changes in the future, a higher water table is expected in the Yucca Mountain region for 
future, wetter climatic conditions. A higher water table impacts radionuclide transport in 
the unsaturated zone by shortening the transport distance between the repository and the 
water table, as presented in Section 2.3.8.

• Climate Modification Increases Recharge—The ability of the unsaturated zone to 
prevent or substantially reduce the rate of movement of radionuclides is dependent on the 
flux of water through the unsaturated zone and the distribution of that flux within the 
fractured rock mass. This flux is directly dependent on the surficial recharge that, in turn, 
is affected by climatic change. The increase in recharge associated with the monsoon and 
glacial-transition climate states reduces the capability of the unsaturated zone feature 
below the repository to reduce the rate of radionuclide movement. This reduction is a 
function of (1) the increase in fracture flux and corresponding reduction in the 
effectiveness of matrix diffusion; and (2) the rise in the water table and the associated 
reduction in the unsaturated zone radionuclide travel length. The effects associated with a 
future climate change are included in the models presented in Section 2.3.2.

• Stratigraphy—Stratigraphy and associated hydrologic properties have significant effects 
on unsaturated zone flow and transport processes due to (1) the contribution of faults in 
conducting flow below the repository; and (2) to the different flow characteristics of the 
TSw and zeolitic and vitric Calico Hills nonwelded (CHn) and Crater Flat 
undifferentiated (CFu) units. In particular, the low matrix permeability of the zeolitic CHn 
unit beneath the northern half of the repository block promotes fracture flow and/or lateral 
diversion towards faults. In contrast, the unaltered, vitric CHn unit beneath the southern 
region of the repository block has a relatively high matrix porosity and permeability, and 
matrix flow dominates. As a consequence, radionuclides released from the northern 
region of the repository tend to have much shorter transport times to the saturated zone 
than those released in the southern region because transport is primarily downward 
through fast flowing fractures and faults as opposed to much slower matrix flow. The 
effects of stratigraphy and hydrologic properties of the unsaturated zone are included in 
the flow and radionuclide transport models presented in Sections 2.3.2 and 2.3.8, 
respectively.

• Rock Properties of Host Rock and Other Units—Percolation of water in the 
unsaturated zone below the repository is significantly affected by the hydrogeologic 
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properties of the rock units above and below the repository. Where fracture–matrix 
properties change abruptly, such as at the contact between welded tuffs and 
low-permeability units with sparse fractures, perched water zones may form, leading to 
lateral diversion of flow. Conversely, the presence of the PTn unit, characterized by 
porous flow in the matrix, attenuates and dampens the temporally and spatially variable 
pulses of flow moving through fractures in the welded Tiva Canyon Tuff so that the 
percolation of water in the unsaturated zone above and below the repository is quasi–
steady state (Section 2.3.2).

• Fractures—Fractures below the repository conduct the majority of the percolation flux 
through the unsaturated zone, although (1) the low-matrix-permeability zeolitic rocks of 
the CHn cause increased lateral diversion toward the faults; and (2) the vitric CHn is 
dominated by matrix flow. The rate of flow and the extent of transport in fractures are 
influenced by such characteristics as orientation, aperture, asperity, spacing, fracture 
length, connectivity, and the nature of any linings or infills (Section 2.3.8).

• Faults—Faults of various sizes have been noted in the Yucca Mountain region, and 
specifically in the repository area. A significant fraction of percolation flux below the 
repository occurs through faults (SNL 2007e, Section 6.6.2.3). Faults provide fast flow 
and radionuclide transport pathways through the unsaturated zone, particularly below the 
northern region of the repository, where the low matrix permeability of the underlying 
zeolitic CHn unit promotes lateral flow and transport towards and down faults.

• Fracture Flow in the Unsaturated Zone—The rate of movement of radionuclides in the 
unsaturated zone is dependent on the flux of water through the fractured rock mass. This 
flux is distributed between faults, fractures, and the matrix of the host rock and other units 
in the unsaturated zone. The rate of movement of radionuclides is dependent on the 
degree of fracture flow, which is variable across the unsaturated zone below the 
repository. This rate of movement is not significantly reduced in the fractured portion of 
the unsaturated zone, unless matrix diffusion processes occur. The absence of fracture 
flow in the vitric portions of the Calico Hills below the southern half of the repository 
block substantially reduces the advective transport velocity, thus increasing the delay of 
movement of radionuclides in the unsaturated zone. The effects of fracture and matrix 
flow are included in the TSPA models presented in Sections 2.3.2 and 2.3.8.

• Unsaturated Groundwater Flow in the Geosphere—Unsaturated groundwater flow 
below the repository defines the redistribution of percolation flux in the unsaturated zone 
as a function of time, and is the primary mechanism for radionuclide transport below the 
repository. Although the flow rate in the unsaturated zone determines the amount of 
fracture flow, the fracture characteristics are also significant in determining the rate of 
radionuclide movement in the unsaturated zone, as discussed in Section 2.3.8.

• Perched Water Develops—The strongly altered CHn unit beneath the northern half of 
the repository is composed of zeolites and clays with low permeability and poorly 
developed, sparsely connected fractures. Because of low permeability, perched water may 
form at the contacts with CHn zeolitic tuffs below the northern half of the repository 
block, and a large portion of the percolating flux may be diverted laterally to the east 
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towards the faults, which act as main pathways for fast flow and transport in the 
unsaturated zone. The effects of existing perched water zones below the northern half of 
the repository block, and potential changes in these perched water zones caused by 
climate changes, are included in the site-scale unsaturated zone flow model presented in 
Section 2.3.2.

• Advection and Dispersion in the Unsaturated Zone—Flow in the fractured rock 
system below the repository is dominated by fracture flow. Therefore, radionuclide 
transport is primarily advection dominated, and the influence of dispersion may be 
important. However, when compared to the spreading of radionuclides due to matrix 
diffusion effects, the impact on transport times of longitudinal dispersion is expected to be 
small (Section 2.3.8.2.2.1).

• Matrix Diffusion in the Unsaturated Zone—Matrix diffusion results in the diffusion of 
dissolved radionuclides from the fractures into the matrix of the rock. Because advective 
transport is significantly slower in the matrix, matrix diffusion is an effective retardation 
mechanism, especially for moderately to strongly sorbed radionuclides, due to the 
increase in rock surface accessible to sorption. Matrix diffusion of colloidally transported 
radionuclides has been excluded from the unsaturated zone transport model presented in 
Section 2.3.8.

• Matrix Imbibition in the Unsaturated Zone—Water and (dissolved and colloidal) 
radionuclides may be imbibed into the matrix between the flowing fractures. Matrix 
imbibition affects the distribution of flow between fractures and the matrix in the 
fractured unsaturated zone near the interface between the TSw and CHn in the Calico 
Hills nonwelded vitric rock beneath the southern half of the repository block, which 
substantially slows radionuclide transport (Section 2.3.8).

• Sorption in the Unsaturated Zone—Radionuclides released from the repository have 
varying retardation characteristics. Several radionuclides that are the dominant 
contributors to the total inventory are significantly retarded in the unsaturated zone when 
there has been significant matrix diffusion or matrix-dominated flow in the vitric Calico 
Hills. These include 90Sr, 137Cs, 239Pu, 240Pu, 241Am, and 243Am. The sorption of the these 
radionuclides that diffuse into the matrix, or are transported in the matrix of Calico Hills, 
prevents the movement or significantly reduces the rate of movement of these 
radionuclides from the repository to the accessible environment. Sorption is included in 
the unsaturated zone transport models presented in Section 2.3.8.

Saturated Zone—The following processes and characteristics of the saturated zone are important 
to the capability of the Lower Natural Barrier:

• Climate Change—Climate change causes two primary responses in the saturated zone: 
(1) water table rise, and (2) increased recharge to the saturated zone. A higher water table 
is expected in the Yucca Mountain region for future, wetter climatic conditions. Also, 
groundwater flow would tend to increase for future, wetter climates. This effect is 
included in the models presented in Section 2.3.9.
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• Climate Modification Increases Recharge—The increase in recharge to the saturated 
zone associated with the monsoon and glacial-transition climate states is expected to 
increase groundwater flow in the saturated zone. This effect is included in the models 
presented in Section 2.3.9. A similar increase in groundwater flow occurs in the 
post-10,000-year analyses.

• Stratigraphy—The geometric relationships and characteristics of stratigraphic variations 
and faults have a pronounced effect on saturated zone flow at the site scale. The location 
at which groundwater flow moves from fractured volcanic rocks to alluvium is of 
particular significance from the perspective of barrier capability (Section 2.3.9.2.1). This 
volcanic/alluvium contact is important because of contrasts between the fractured 
volcanic units and the alluvium in terms of groundwater flow (fracture-dominated flow 
versus porous medium flow), and in terms of enhanced sorptive properties of the alluvium 
for some radionuclides relative to the volcanic rocks. Stratigraphic variations and 
geometry are also major factors leading to three-dimensional flow patterns in the 
saturated zone. These flow patterns have a significant impact on flow in the saturated 
zone with respect to radionuclide transport. The stratigraphic relationships are 
incorporated into the hydrogeologic framework model for the saturated zone site-scale 
flow and transport model (Section 2.3.9.2.2.2).

• Rock Properties of Host Rock and Other Units—Flow of water in the saturated zone is 
significantly affected by the hydrogeologic properties of the rock units, particularly where 
fracture–matrix properties change abruptly, such as at the contact between the volcanic 
and alluvium units. Rock properties also have a significant effect on the rate of 
radionuclide movement through their influence on the transport properties (notably, the 
flowing interval spacing, effective diffusion coefficient, fracture porosity, and effective 
porosity of the alluvium), retardation properties, and matrix porosity of the volcanic units
(Section 2.3.9). Rock properties for 23 hydrostratigraphic units and 10 discrete 
hydrogeologic features—such as faults—are explicitly included in the saturated zone 
flow and transport abstraction model (Section 2.3.9).

• Fractures—Fracture characteristics are important to the barrier capability of the 
saturated zone, because groundwater flow occurs primarily within the fracture network of 
the volcanic tuff units. The fracture networks in the saturated zone appear to be well
connected over large distances at the scales of interest (hundreds of meters to kilometers). 
Fracture networks, in turn, control the movement of dissolved and colloidal radionuclides 
below the water table. Fracture characteristics (e.g., fracture porosity, flowing interval 
porosity, and flowing interval spacing) are included in the saturated flow and transport 
abstraction model using a dual-porosity effective continuum approach (Section 2.3.9).

• Faults—Numerous faults of various sizes have been noted in the Yucca Mountain region, 
and specifically in the repository area. Faults affect the groundwater flow paths, influence 
the horizontal anisotropy in permeability, and can enhance dispersion by increasing 
permeability heterogeneities along the saturated zone flow paths. Geologic features and 
hydrostratigraphic units are explicitly included in the models for saturated zone flow and 
transport in a configuration that accounts for the effects of existing faults based on the 
hydrogeologic framework model (Section 2.3.9).
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• Water-Conducting Features in the Saturated Zone—Water flow in the saturated zone 
occurs within either the fractured tuff units or the alluvium. The groundwater flow rates, 
radionuclide transport velocities, and radionuclide retardation characteristics of these 
different water-conducting features are significantly different. In particular, the alluvium 
provides a significant reduction in the movement of radionuclides to the accessible 
environment due to the lack of fracture flow. In addition to the differences in flow and 
transport characteristics of the different lithologic units in the saturated zone, the presence 
of discrete flowing features in the fractured tuff units affects the rate of movement of 
radionuclides to the accessible environment. These characteristics of the saturated zone 
have been included in the models presented in Section 2.3.9.

• Saturated Groundwater Flow in the Geosphere—Groundwater flow in the saturated 
zone below the water table may affect long-term performance of the repository. The 
location, magnitude, and direction of flow under present and future conditions influence 
transport to the accessible environment. These effects are included in the model presented 
in Section 2.3.9.

• Advection and Dispersion in the Saturated Zone—Advection is the principal transport 
mechanism for both dissolved and colloidal radionuclides in the saturated zone. The 
advective flux is dependent on the hydrogeologic characteristics of the water-conducting 
features in the saturated zone, as well as the groundwater flow rates through these 
features. Dispersive processes tend to spread transient radionuclide pulses that may be 
released to the saturated zone (e.g., following the water table rise associated with climate 
changes). These processes have been included in the models presented in Section 2.3.9.

• Matrix Diffusion in the Saturated Zone—Matrix diffusion is the process by which 
radionuclides and other species transported in the saturated zone by advective flow in 
fractures or other pathways move into the matrix of the porous volcanic formations by 
diffusion. Matrix diffusion can be an effective radionuclide retardation mechanism, 
especially for strongly sorbed radionuclides, due to the increase in rock surface accessible 
to sorption. Field scale in situ tracer tests at the C-Wells demonstrated that matrix 
diffusion is an important transport mechanism in fractured volcanic formations in the 
saturated zone. Matrix diffusion is included in models presented in Section 2.3.9.

• Sorption in the Saturated Zone—Radionuclides released from the repository have 
varying retardation characteristics. Several radionuclides that are the dominant 
contributors to the total inventory are significantly retarded in the saturated zone. These 
include 90Sr, 230Th, 226Ra, 137Cs, 239Pu, 240Pu, 242Pu, 241Am, and 243Am. The sorption 
behavior of these radionuclides significantly reduces the rate of movement of these 
radionuclides from the repository to the accessible environment. Sorption effects are 
included in the models presented in Section 2.3.9.

The bases for the models used in the analysis of unsaturated zone flow are described in 
Section 2.3.2. The flow fields are generated using the three-dimensional site-scale unsaturated zone 
flow model with input parameters based on unsaturated zone calibrated properties. These flow 
fields are developed for spatially varying net-infiltration maps for the present-day, monsoon, and 
glacial-transition climate states and the post-10,000-year period. The processes incorporated into 
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the unsaturated zone transport model include sorption, fracture–matrix interaction, 
colloid-facilitated   radionuclide  transport,  resuspension,  and  dispersion.  The  bases  for  the 
radionuclide  transport  process  model  used  to  assess  the  capability  of  the  unsaturated  zone 
component  of  the  Lower  Natural  Barrier  are the same as those implemented in the TSPA 
abstraction regarding radionuclide transport in the unsaturated zone (Section 2.3.8.5).

The flow and radionuclide transport model for the saturated zone is discussed in detail in 
Sections 2.3.9.2 and 2.3.9.3, respectively. The analysis of the capability of the saturated zone 
component of the Lower Natural Barrier is derived from the same models used as the basis for the 
TSPA abstractions for flow and transport in the saturated zone. Key uncertainty parameters 
(i.e., groundwater flux, sorption coefficients, and matrix diffusion transport parameters) are varied, 
subject to uncertainty distributions based on the available data and observations, and these 
uncertainties are reflected in the model results.

2.1.2.3.1 Capability of the Unsaturated Zone below the Repository to Prevent or 
Substantially Reduce the Rate of Movement of Radionuclides to the Water 
Table

The unsaturated zone below the repository prevents or substantially reduces the rate of movement 
of radionuclides from the repository horizon to the water table. The radionuclides take time to move 
through the unsaturated zone.  As water percolates down, sorption, and matrix  diffusion cause 
the  movement  of  radionuclides to  be  slower  relative  to the general movement of  the percolating  
water.  The existence of  perched water bodies introduces three-dimensional lateral flow within the
unsaturated  zone  below  the  repository  level.  Below the northern half of the repository block, 
low-permeability layers and perched water bodies in the  CHn  unit channel a large fraction of flow 
laterally  to  faults  that act as conduits for water flow to the water  table  (Table 2.3.2-7; 
Section 2.3.2.2.1.4). Radio nuclides are also dispersed during movement in the unsaturated zone 
because of variability in radionuclide transport times and in the retardation characteristics of the 
various volcanic units.

The data and analyses supporting models of radionuclide transport in the unsaturated zone 
summarized below are described in detail in Section 2.3.8. Figure 2.1-31 shows the sequence of 
hydrogeologic units comprising the unsaturated zone below the repository and a conceptualization 
of flow processes in these units. This figure shows that these features include the lower part of the 
TSw and the tuffs of the CHn and CFu units. These units together provide a feature ranging from 
200 to 400 m thick (300 m thick, on average) under present-day climate conditions. The TSw unit 
is characterized by very low matrix permeability and well-connected, steeply dipping fracture 
networks. The CHn unit underlies the TSw unit. Below the southern part of the repository, the CHn 
unit is vitric, composed of unaltered glassy shards of volcanic ash, and characterized by relatively 
high matrix permeability. Fractures are rare to nonexistent in the vitric CHn unit, and flowdown 
through this unit is predominantly through the matrix. Below the vitric CHn unit are the devitrified 
and zeolitized tuffs of the Prow Pass welded tuff unit. These tuffs have low matrix permeability 
compared with the vitric CHn unit, and water flow through such tuffs is primarily in fractures. The 
fracture networks in these welded tuffs are generally bed-confined and not well connected.

The movement of radionuclides carried by water in the matrix of the TSw unit is slow because of 
sorption in the rock matrix. The rate of movement of radionuclides carried by water in the fractures 
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is more rapid than in the matrix, and sorption is weaker.  Consequently, the matrix of the TSw unit 
more  effectively  retards  the  migration  of  the  radionuclides  than  the  fracture  system.  Matrix 
diffusion transfers radionuclide mass from the fracture flow into the matrix.

At the base of the TSw unit, downward-moving radionuclides encounter the CHn unit. Because of 
the low permeability and infrequency of connected fractures of the zeolitic CHn unit beneath the 
northern part of the repository block, and because the flow down from the overlying TSw unit is 
primarily in the fractures, perched water zones form at the TSw–CHn contact. A significant fraction 
of the downward-percolating flux is diverted laterally to the east in this region. The present age of 
the perched water ranges from several thousand years to as much as 11,000 years 
(Section 2.3.2.2.1.3).

Beneath the northern part of the repository, the radionuclides either enter the zeolitic CHn unit or are 
diverted to the east in the perched water (Figure 2.1-31). The zeolitic CHn unit is strongly altered 
to a mixture of minerals, including zeolites and clays. The minerals have precipitated in the pores 
of the rock so that the matrix permeability of the zeolitic CHn unit is low. Most of the downward 
flow that reaches the zeolitic CHn unit is diverted laterally through perched water zones at the 
TSw-CHn contact, bypassing this unit and flowing through faults or connected fractures, which 
leads to short radionuclide transport times to the saturated zone.

Beneath the southern part of the repository, the radionuclides are transferred into the vitric CHn unit 
matrix, where groundwater velocity is low relative to the velocity in the fractures and where 
sorption is strong.  Below the vitric CHn unit, the radionuclides move predominantly in the 
fractures  of  the  underlying  devitrified  and  zeolitized  tuffs.  Because the fracture flow 
pathways  are  not  continuous, the alternating layers of welded, nonwelded, and zeolitized
tuffs delay the movement of radionuclides,  which leads to long transport times to the saturated 
zone compared to release locations in the northern repository region (Figure 2.3.8-36).

The combination of slow water movement from the repository to the water table, and processes that 
retard the rate of movement of radionuclides in the unsaturated zone (Figure 2.3.8-3), results in a 
reduction in the activity of the radionuclides and their release to the saturated zone.

2.1.2.3.2 Capability of the Saturated Zone to Prevent or Substantially Reduce the 
Rate of Movement of Radionuclides to the Accessible Environment

Radionuclides that migrate through the unsaturated zone to the water table are transported through 
the saturated zone before they can reach the accessible environment. The data and analyses 
supporting models of radionuclide transport in the saturated zone that are summarized below are 
described in detail in Section 2.3.9.

Figure 2.1-32 shows a cross section of the units in the saturated zone. The location of this cross 
section is shown in Figure 2.1-33. Groundwater below Yucca Mountain is part of the Alkali Flat–
Furnace Creek groundwater subbasin within the Death Valley regional groundwater system. 
Groundwater flow is generally to the south and east near Yucca Mountain. The southeasterly flow 
from the site is incorporated into the stronger southward flow in western Jackass Flats. The expected 
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pathway for movement of radionuclides through the saturated zone is southeast from the repository 
site, transitioning to southerly flow to the accessible environment in the Amargosa Desert.

The pathways for radionuclide movement in the saturated zone for the first 12 to 14 km 
downgradient from Yucca Mountain occur in fractured volcanic rocks. This portion of the saturated 
zone feature is affected by the faulting and tilting of the volcanic rocks and is represented in an 
equivalent continuum model in terms of two aquifers: (1) an upper volcanic aquifer associated with 
the Paintbrush group; (2) a lower volcanic aquifer associated with the Prow Pass, Bullfrog, and 
Tram Tuff units (Section 2.3.9.2.3).

The cross section shown in Figure 2.1-32 is located along the approximate pathways for 
radionuclide movement as the radionuclides encounter alluvial sediments approximately 12 to 
14 km from Yucca Mountain. These alluvial sediments are generally represented as a single porous 
medium with equivalent continuum properties to represent heterogeneity in the flow and transport 
characteristics of these sediments.

The saturated zone feature of the Lower Natural Barrier includes the fractured volcanic rocks from 
below the repository to approximately 12 to 14 km southeast and south of Yucca Mountain and the 
saturated alluvium at the water table from the volcanic aquifer to the accessible environment. The 
rate of radionuclide movement in the saturated zone is quite variable, with median tracer (e.g., 99Tc) 
transport times ranging from about 10 years to 22,000 years (SNL 2008f, Table 6-10[a]). In 
addition, several processes cause the rate of movement of radionuclides to be slower compared to 
the rate of movement of the water. The data and models for saturated zone flow and transport are 
discussed in Section 2.3.9.

Flow in the upper and lower volcanic aquifers is predominantly in the fractures. The matrix 
materials of the volcanic tuffs generally have a 2 to 6 order-of-magnitude lower hydraulic 
conductivity than observed in flowing fractures under natural groundwater-flow conditions. The 
matrix materials also have significantly greater porosity than do fractures, so there is a 
correspondingly greater volume of fluid stored in the matrix pore space of these saturated aquifers. 
The additional stored fluid and pore space is important to radionuclide transport because 
radionuclides can exchange between the fractures and matrix via matrix diffusion. This diffusive 
exchange results in a slower effective travel velocity for the bulk of the released radionuclides 
relative to water-flow velocities in the fractures for two reasons. First, the velocity of water in the 
pores of the matrix is slower than that in the fracture pores. Second, sorption onto mineral surface 
areas in the matrix pores will result in an even slower rate of movement of the radionuclides that 
diffuse into the matrix materials.

Because the alluvial materials are a porous medium, water flow and radionuclide transport occur in 
intergranular pores in the alluvium. The conceptual model for transport in the alluvial sediments is 
that of a porous continuum. The effective porosity of the alluvium is greater than the fracture 
porosity of the tuffs. Consequently, pore velocities in the alluvium are smaller than those in the 
fractures of the volcanic aquifers. Although matrix diffusion is not considered to be important in the 
alluvium, radionuclide rate of movement is slow because of the low water velocity. In addition, 
sorption onto minerals in the alluvium results in retardation of radionuclides relative to the water 
movement in these sediments (Section 2.3.9.3.1).
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The volcanic rocks and alluvial material in the saturated zone also reduce the rate of movement of 
radionuclides associated with colloids. Filtration of colloids results in retardation of the movement 
of radionuclides embedded in the colloids or irreversibly sorbed to these colloids. Radionuclides 
that are sorbed reversibly to colloids are affected by matrix diffusion in the volcanic aquifers and by 
sorption in the alluvial sediments. Consequently, movement of these colloid-associated 
radionuclides is also retarded relative to the movement of water in the saturated zone.

The combination of low groundwater velocity and retardation and sorption processes prevent or 
substantially reduce the rate of movement of radionuclides to the accessible environment.

2.1.2.3.3 Time Period over Which the Lower Natural Barrier Functions

The Lower Natural Barrier is a durable feature of the geologic setting at Yucca Mountain, and is not 
expected to change in any significant way in the 10,000 years following closure of the repository. 
With the exception of minor effects caused by the construction of the repository, the emplacement 
of waste, and the increase in percolation, increase in saturated zone flux, and water table rise as a 
result of future climate states, the hydrogeology and physical characteristics of the Lower Natural 
Barrier are not expected to change in any significant way in the 10,000 years after closure. It is also 
assumed that, for the purposes of projecting postclosure performance after 10,000 years, but within 
the period of geologic stability, the intrinsic hydrologic, geologic and geochemical characteristics 
of the Lower Natural Barrier will not change significantly. This assumption is consistent with the 
requirements of proposed 10 CFR 63.342(c) (70 FR 53313) by projecting the continued effects of 
the 10,000-year screened-in FEPs out to the limit of geologic stability at 1,000,000 years, with the 
exception of those FEPs outlined in proposed 10 CFR 63.342(c) (70 FR 53313) related to the effect 
of seismic events, igneous events, climate change, and general corrosion beyond 10,000 years.

The unsaturated zone is largely unaffected by the local changes associated with repository 
construction and waste emplacement. The magnitude of changes to rock hydrologic properties 
attributable to coupled thermal-hydrologic-geochemical-mechanical processes is small, and does 
not have a significant effect on the overall behavior of unsaturated zone flow and transport. 
Geochemical studies have shown that minerals, such as calcite, silica, clays, and zeolites, could be 
dissolved and/or diagenetically altered in some areas or precipitated and altered in other areas,
depending on local geochemical conditions. However, these local changes are not expected to 
change the overall hydraulic properties of the repository host rock that are included in the variability 
in performance models, because changes in fracture properties due to mineral precipitation or 
dissolution or thermal-mechanical stresses are on the order of natural variation (SNL 2008b, 
Section 6.2, FEPs 2.2.08.03.0B, Geochemical interactions and evolution in the unsaturated zone, 
and 2.2.10.04.0A, Thermo-mechanical stresses alter characteristics of fractures near repository) 
and are therefore excluded from the TSPA.

Projected climate change will raise the water table and increase the flux of percolating water 
through the unsaturated zone (SNL 2008b, Section 6.2, FEPs 1.3.01.00.0A, Climate change, and 
1.3.07.02.0A, Water table rise affects saturated zone). The impact of these two effects on transport 
through the unsaturated zone is included in the TSPA. However, these factors are not expected to 
alter appreciably the processes that influence radionuclide transport (Section 2.3.8.4.5.5). The 
potential for increased percolation flux through the unsaturated zone results in increased advective 
transport velocities through the fractured rock mass in the unsaturated zone, which tend to decrease 
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the advective transport time of radionuclides to the water table. However, the properties controlling 
matrix diffusion and radionuclide retardation on radionuclide transport through the unsaturated 
zone are not expected to change with time (SNL 2008b, Section 6.2, Excluded FEPs 2.2.10.05.0A, 
Thermo-mechanical stresses alter characteristics of rocks above and below the repository; 
2.2.10.06.0A, Thermo-chemical alteration in the unsaturated zone (solubility, speciation, phase 
changes, precipitation/dissolution); and 2.2.10.07.0A, Thermo-chemical alteration of the Calico 
Hills unit).

The volcanic tuffs and alluvium in the saturated zone are durable features of the geologic 
environment, and the characteristics of this feature of the Lower Natural Barrier system are not 
expected to change during the 10,000 year compliance period (SNL 2008a, Section 6.2.2.3.3). 
Processes acting during the first 10,000-year assessment are propagated to continue throughout the 
period of geologic stability ending at 1,000,000 years after closure (SNL 2008a, Section 6.2.2.3.3). 
Although the effects of these processes may change with time, the processes acting on the system 
are the same throughout time. The hydrologic conditions within the saturated zone may change, 
however, as the climate changes. At a regional scale, future climate conditions that are wetter than 
present-day conditions are expected to yield greater groundwater recharge, resulting in a rise in the 
water table and greater groundwater flux along the saturated zone flow path. This change in the 
water table and flux is explicitly taken into account in the model abstraction for saturated zone flow 
and transport.

2.1.2.3.4 Uncertainties Associated with Lower Natural Barrier Capability

The performance of the Lower Natural Barrier is subject to uncertainty that is a function of the 
applicability of the conceptual and numerical models used to describe flow and transport in the 
Lower Natural Barrier, and the degree of knowledge of the data and parameters that characterize 
flow and transport in the unsaturated and saturated zones beneath the repository. To accommodate 
both variability and uncertainty in the description of the site, many of the input parameters to the 
unsaturated and saturated zone flow and transport models have been defined as probabilistic 
distributions. This approach allows a large range of uncertainty to be directly incorporated into 
process and performance assessment models. The variability and uncertainty in barrier capability is 
reflected in the broad range of transport times and radionuclide breakthrough curves resulting from 
the unsaturated zone and saturated zone transport models. The treatment of data and model 
uncertainties associated with analyses of the Lower Natural Barrier are described in
(1) Sections 2.3.8.4.5 and 2.3.8.5.5 for climate and unsaturated zone flow and transport, and 
(2) Sections 2.3.9.2.3 and 2.3.9.3.3 for the saturated zone flow and transport.

Uncertainties in the flow and transport characteristics affecting radionuclide transport in the 
unsaturated zone have been included in the model abstractions or have been conservatively 
represented, as presented in Sections 2.3.2 and 2.3.8. Uncertain parameters related to unsaturated 
zone flow include the percolation flux and fracture–matrix interaction (which is correlated to the 
percolation flux), both of which affect the flux distribution in fractures. Uncertain parameters 
related to matrix diffusion include the matrix diffusion coefficient, and the geometric parameters 
that affect the effective fracture–matrix interconnection area. Uncertain parameters related to 
sorption include the sorption coefficients for various radionuclides in the vitric, devitrified, and 
zeolitic tuff rock units. Uncertain parameters used to model colloid-facilitated transport include a 
colloid retardation factor.
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Uncertainties in the unsaturated zone flow characteristics have been addressed by evaluating four 
percolation flux distributions. Uncertainties in the conceptual model of matrix diffusion are larger 
than the impact of parameter uncertainties, and have been conservatively treated by representing 
matrix diffusion in the unsaturated zone transport model using a dual-permeability formulation. 
Other transport-related uncertainties have been addressed by sampling from the range of parameter 
values determined to reasonably represent the uncertainty, including sorption parameters and 
colloid retardation parameters.

Uncertainties in flow and transport characteristics affecting radionuclide transport in the saturated 
zone have been included in the model abstractions presented in Section 2.3.9. Uncertain parameters 
related to saturated zone flow include uncertainty in the groundwater-specific discharge, flowing 
interval porosity, alluvium effective porosity, and horizontal anisotropy. Uncertain parameters 
related to matrix diffusion include flowing interval spacing, effective diffusion coefficient, and 
matrix porosity. Uncertain parameters related to sorption include the sorption coefficients for 
various radionuclides for tuff and alluvium. Uncertain parameters used to model colloid-facilitated 
transport include colloid retardation factors fast fraction of colloids, groundwater concentration of 
colloids, and sorption coefficients onto colloids.

Uncertainties in saturated zone groundwater flow and transport have been addressed by using 
probabilistic representations of parameter values that are important to transport, such as hydrologic 
and geologic properties. For example, the uncertainty in the groundwater-specific discharge has 
been evaluated by considering a base case with a median specific discharge of 0.36 m/yr near the 
repository for the present-day climate, with a range of 0.11 to 8.9 times the base-case specific 
discharge. Uncertainty in groundwater flow or advection has been considered by evaluating ranges 
of groundwater-specific discharge, flowing interval porosity, alluvium effective porosity, and 
horizontal anisotropy.

There is uncertainty concerning the nature of the geology in the saturated zone along the flow path 
from the repository at distances of approximately 10 to 18 km downgradient from the repository. 
The portions of the flow path devoted to fractured volcanic rock and alluvium are important to 
saturated zone capability, because the movement of radionuclides through the saturated zone is 
affected by the contrast in the flow between these two media and because the retardation 
characteristics of the two media are different. Uncertainty in the location of the alluvium is 
represented in terms of a probability distribution for its northwestern boundary 
(Section 2.3.9.3.3.4). This distribution is sampled in the TSPA and in barrier capability analyses
(Section 2.4.2.3.2.1.10).

2.1.2.3.5 Impact of Disruptive Events on the Lower Natural Barrier

The Lower Natural Barrier is generally unaffected by disruptive events. For seismic activity, it is 
expected that the general configuration of the geologic units below the repository and downgradient 
to the accessible environment is unchanged. The velocity of percolating water in the unsaturated 
zone and of groundwater in the saturated zone will not increase due to seismic activity. The 
characteristics of matrix and fracture flow, colloidal transport, and sorption are not expected to 
change due to seismic activity (Table 2.2-5) (SNL 2008b, FEPs 1.2.10.01.0A, Hydrologic response 
to seismic activity; 2.2.06.01.0A, Seismic activity changes porosity and permeability of rock; 
2.2.06.02.0B, Seismic activity changes porosity and permeability of fractures; 2.2.06.03.0A, 
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Seismic activity alters perched water zones). For igneous activity, both the intrusive and eruptive 
cases are the results of isolated dikes of magma that rise through the Lower Natural Barrier. 
However, the processes and characteristics of the Lower Natural Barrier are not significantly 
affected (SNL 2008b, Section 6.2, FEP 1.2.04.02.0A, Igneous activity changes rock properties). 
Therefore, the general effectiveness of the Lower Natural Barrier to prevent or substantially reduce 
the rate of movement of radionuclides from the repository to the accessible environment would not 
significantly change following disruptive events. The summary of the effects of the disruptive 
events on the Lower Natural Barrier is discussed in Section 2.2.1.

2.1.2.3.6 Quantification of the Lower Natural Barrier

The Lower Natural Barrier includes the unsaturated zone below the repository horizon and the 
saturated zone below the repository and downgradient from the repository to the accessible 
environment. Both the unsaturated and saturated features of the Lower Natural Barrier prevent or 
substantially reduce the rate of movement of radionuclides from the repository to the accessible 
environment due to slow advective transport combined with matrix diffusion and radionuclide 
sorption processes. The reduction in the rate of movement of radionuclides is examined in this 
section by reviewing radionuclide travel times for the unsaturated zone (Section 2.3.8) and 
saturated zone (Section 2.3.9), and by using the activity released from the EBS for key 
radionuclides described in Section 2.1.2.2.6, and evaluating the release of these radionuclides from 
the saturated zone to the accessible environment. This approach utilizes the TSPA model that is 
presented in Section 2.4 and in particular, the TSPA abstraction models for unsaturated zone 
transport and saturated zone flow and transport described in Sections 2.3.8 and 2.3.9, respectively.

The capability of the Lower Natural Barrier to prevent the movement or substantially reduce the rate 
of movement of radionuclides from the repository to the accessible environment is dependent on the 
effects of climate change, the sorption characteristics of the radionuclides, whether the 
radionuclides are expected to be transported colloidally, and hydrogeologic variability within the 
unsaturated and saturated zones. Climate change has the effect of increasing the recharge in the 
unsaturated zone and raising the water table in the saturated zone. Both of these effects result in an 
increase in the advective transport velocity through these two features of the Lower Natural Barrier. 
The water table rise also causes a reduction in the transport path through the unsaturated zone.
Recognizing that the rate of radionuclide of movement through the Lower Natural Barrier is a 
complex function with multiple processes (such as matrix diffusion, sorption, and decay), the 
demonstration of Lower Natural Barrier capability is presented in terms of reduction of radionuclide 
activity. This metric directly reflects impact of the delay and decay that occurs along the transport 
path from the EBS to the accessible environment.

In a seeping environment, the majority of the activity released from the EBS into the unsaturated 
zone enters into the fractures of the unsaturated zone as compared to the rock matrix. Drift seepage 
is diverted around the drip shield as it flows downward, and subsequently, through the invert 
carrying the radionuclide activity advectively into the fractures. The significance of fracture versus 
matrix releases will be discussed further below in the context of hydrogeologic variability within the 
unsaturated zone.

Unsaturated zone transport results presented in Section 2.3.8.5.4 illustrate the importance of 
hydrogeologic variability within the unsaturated zone and its impact on barrier capability. This 
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section presents breakthrough curves for different radionuclides from specified repository release 
locations to the water table, assuming median values for all uncertain parameters. Underneath the 
northern region of the repository, transport from the EBS to the saturated zone is predominantly 
fracture transport, whereas underneath the southern region of the repository, transport from the EBS 
to the saturated zone will go through the CHn, where it will be predominantly matrix transport. The 
radionuclide breakthrough curves presented in Figure 2.3.8-43 illustrate the impact of 
hydrogeologic variability for the glacial-transition 10th percentile infiltration scenario. Due to 
pervasive fracture transport along the entire flow path, arrival times for radionuclides are much 
shorter for those released from a northern location of the repository compared to those released from 
a southern location. The first arrival at the water table from the northern location is within a year, 
versus about 400 years from the southern location. Because of the longer transport time through the 
matrix units, cumulative arrivals at the water table are negligible for radionuclides released from the 
southern location, for both relatively short-lived and strongly sorbing radionuclides, including (for 
example) 137Cs, 90Sr, and 226Ra (Section 2.3.8.5.4). However, significant proportions of most 
radionuclides released from the EBS, including short-lived and strongly sorbing radionuclides, 
reach the water table for releases from the northern part of the repository.

In the TSPA, radionuclides can enter the unsaturated zone transport model in either the fracture or 
matrix domain, depending on the nature of the hydrologic and transport conditions in the EBS 
(Section 2.3.8.5.4). Figure 2.3.8-49 compares the normalized breakthrough curves for fracture 
versus matrix release for 99Tc released at the northern (upper figure) or southern (lower figure) 
release locations. For the northern release location, nearly 50% of mass released into the fracture 
reaches the water table within about 20 years, compared to about 5,000 years for 50% of mass 
released into the matrix to reach the water table (Section 2.3.8.5.4). For the southern release 
location, the breakthrough curves are very similar regardless of whether the releases are in the 
fracture or the matrix. When radionuclide mass is released into the matrix of the TSw at the 
repository horizon, local matrix percolation rates are so low that, for radionuclides to escape the 
unsaturated zone, they must first diffuse to a nearby flowing fracture. Thus, the additional transport 
time is due to the slow rate of the diffusion process transporting radionuclides to the fracture. This 
process will be governed by the diffusion coefficient, spacing between flowing fractures, and, for 
sorbing species, the sorption coefficient.

Illustrations of the expected saturated zone transport are presented in Figures 2.3.9-16, 2.3.9-45, 
2.3.9-46, and 2.3.9-47. Because of matrix diffusion, radionuclide sorption and other retardation 
processes, many of the radionuclides released from the saturated zone will be strongly retarded. 
Figure 2.3.9-16 shows nonsorbing radionuclides (e.g., 99Tc) with median transport times in the 
saturated zone ranging from about 10 to 10,000 years. A significant fraction of radionuclide mass 
has much longer transport times in many realizations, due to the effects of matrix diffusion in 
fractured volcanic units. For moderately sorbing radionuclides, such as 237Np (Figure 2.3.9-45), the 
median transport times within the saturated zone range from about 100 to more than 100,000 years. 
For highly sorbing radionuclides (e.g., 239Pu), median transport times within the saturated zone 
generally exceed 10,000 years (Figure 2.3.9-46). For radionuclides irreversibly attached onto 
colloids, median transport times in the saturated zone range from 100 to 600,000 years 
(Section 2.3.9.3.4.1.1 and Figure 2.3.9-47). These ranges in effective mass breakthrough times 
reflect the combined natural variability in transport times, as well as the effects of the uncertainties 
associated with the saturated zone flow and transport abstraction model (Section 2.3.9.3).
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Insights into the overall effectiveness of the Lower Natural Barrier were developed via 
probabilistic projections. The projections were generated using the TSPA model to simulate the 
evolution of radionuclide releases from the repository and resultant transport through the 
unsaturated zone and saturated zone, extending to the accessible environment boundary. As 
described in Section 2.1.2, two modeling cases were analyzed:

1. Combined nominal/early failure demonstration modeling case
2. Seismic ground motion modeling case.

The first modeling case provides insight into the capability of the Lower Natural Barrier to reduce 
radionuclide movement for conditions of early releases from a few early failed waste packages and 
late releases (e.g., from general corrosion patch penetrations beginning at about 600,000 years, 
from the 95th percentile curve) from an increased number of waste packages. The second modeling 
case examines the Lower Natural Barrier’s capability to reduce radionuclide movement for 
conditions of seismic-induced releases distributed over both the 10,000-year and post-10,000-year 
time periods. As described in Section 2.1.2.2.6, the radionuclide releases computed for the seismic 
ground motion modeling case occur from a variety of breach modes (e.g., seismic-induced stress 
corrosion cracking, rupture, puncture, and general corrosion patches).

To provide a relative metric of barrier effectiveness, the radionuclide activity released from the 
unsaturated zone and saturated zone was computed using the TSPA model and the balance 
equations (SNL 2008d, Section 8.3.3.3[a]):

(Eq. 2.1-2)

(Eq. 2.1-3)

where 

 

RUZ k, t e( ) AT k, t e( )= AWP k, t e( ) AI k, t e( ) AUZ k, t e( )+ +( )–

RSZ k, t e( ) AT k, t e( )= AWP k, t e( ) AI k, t e( ) AUZ k, t e( ) ASZ k, t e( )+ + +( )–

 are the expected activities (in curies) of releases of radionuclide 
k from the unsaturated zone and saturated zone, respectively. The term  is the expected 
total activity of radionuclide k in the inventory (initial inventory decayed through time); 
is the expected activity of radionuclide k in a waste package (including the activity in undegraded 
waste forms);  is the expected activity of radionuclide k in the invert;  is the 
expected activity of radionuclide k in the unsaturated zone; and  is the expected activity 
of radionuclide k in the saturated zone.

The means of the quantities  and  are denoted by , and , 

respectively, and are compared with the mean EBS releases, , to provide an indication of 

barrier capability. The mean percent reduction ( ) in activity achieved by the unsaturated zone 
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alone, and by the Lower Natural Barrier as a whole, is estimated from the equations (SNL 2008d, 
Section 8.3.3.3[a]):

(Eq. 2.1-4)

(Eq. 2.1-5)

PRUZ k, 1 RUZ k, REBS k,⁄[ ]–( ) 100×=

PRLNB k, 1 RSZ k, REBS k,⁄[ ]–( ) 100×=

where REBS k, , RUZ k, , and  are the peak values (at any time) of the mean activity release of 
radionuclide k within the time period under consideration (i.e., time 0 to 10,000 years and 10,000 
years to 1,000,000 years).

In the special case of decay chain radionuclides, the quantities RUZk(t) and RSZk(t) typically 
represent in-growth instead of transport of the individual species. This is generally the case for 
230Th and 226Ra. Their activities at any point in the Lower Natural Barrier are calculated via 
secular equilibrium and the simple decay chain:

234U (half-life 240,000 yrs) → 230Th (half-life 77,000 yrs) → 226Ra (half-life 1,600 yrs).

Both 230Th and 226Ra move through the Lower Natural Barrier at significantly slower rates than their 
precursor 234U (SNL 2008f, Table 6-10[a]). As a result, their activities are primarily determined by 
the chain decay process as opposed to by groundwater transport of their individual species.

Capability of Lower Natural Barrier to Prevent or Substantially Reduce the Rate of 
Radionuclide Movement—A demonstration of the Lower Natural Barrier capability was 
developed using the TSPA model to simulate radionuclide movement from the EBS through the 
combined unsaturated zone and saturated zone to the accessible environment. The unsaturated 
zone portion includes the TSw and CHn tuffs of the Crater Flat Group. These unsaturated rock 
layers represent a total vertical transport path of 250 to 400 m across the repository footprint, with 
an average of about 300 m to the water table for present-day climate conditions. For wetter 
climates, such as the monsoon and glacial-transition, a water table rise (Section 2.3.9.2.4.1) of 
about 120 m (SNL 2008d, Section 6.3.9) reduces the linear transport path (Section 2.3.9.2.4.1). 
The saturated zone flow path below the repository footprint, which extends 18 km to the 
accessible environment boundary, is composed of volcanic units and alluvium (Section 2.3.9). The 
projected groundwater transport pathway is southeast from the repository site, transitioning to a 
southerly direction towards the designated accessible environment boundary in the Amargosa 
Desert. The first 12 to 14 km of the saturated zone flow path is in fractured volcanic rocks; the 
remainder of the 18 km flow path is composed of alluvial sediments. The component models of 
the TSPA model account for transport in fractured-porous media, and are based on (1) a 
dual-continuum approach for the unsaturated zone (SNL 2008d, Section 6.3.9.2); and (2) a 
dual-continuum approach for the fractured volcanic units and a single-continuum approach for 
porous alluvium (Section 2.3.9.2.3.1).

RSZ k,
2.1-93



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
Probabilistic projections of radionuclides releases for the 12 representative radionuclides selected 
in Section 2.1.2.2.6 are used to compute the curie releases (from Equations 2.1-2 and 2.1-3) and 
curie reductions (from Equations 2.1-4 and 2.1-5). The radionuclides considered consist of 137Cs, 
90Sr, 241Am, 240Pu, 99Tc, 239Pu, 242Pu, 237Np, 234U, 243Am, 230Th, and 226Ra. Of these 12 
radionuclides, 5 are transported in both dissolved and irreversible colloidal phase. These 
radionuclides are: 241Am, 240Pu, 239Pu, 242Pu, and 243Am (SNL 2008d, Table 6.3.7-6). The 
calculation of radionuclide release reduction utilizes the total activity of these radionuclides, 
designated with superscript T. It is noteworthy to mention that the activity releases from the EBS for 
these five radionuclides are dominated by the dissolved-phase activities.

Barrier Capability for Nominal/Early Failure Modeling Case—The focus of this modeling 
case is to examine the capability of the Lower Natural Barrier for varied releases (in both time and 
magnitude) from the EBS. As shown in Section 2.1.2.2.6, the early failures of drip shield and 
waste package produce low releases, starting almost immediately at repository closure, which 
persist for 1,000,000 years. Added to these releases are radionuclide releases due to drip shield 
and waste package failure by nominal processes that mainly occur in the post-10,000-year period. 
These failures ultimately lead to relatively large advective radionuclide releases from an increased 
number of waste packages.

Projections of Barrier Capability for 10,000 Years after Closure—The projected mean 
activity releases from the Lower Natural Barrier, specifically RSZk(t), are shown in Figure 2.1-34. 
This figure also shows the corresponding plot for the projected releases from the EBS for 10,000 
years after closure.

At 10,000 years, the mean total activity in the inventory is about 4 × 107 Ci, but the mean total 
activity released from the saturated zone (summed over all radionuclides) is only 6 Ci. 99Tc 
comprises almost all of the mean total release (SNL 2008d, Section 8.3.3.3.1[a]).

In comparing the peak mean activity radionuclide releases for the large initial inventory group 
(SNL 2008d, Section 8.3.1[a]) (137Cs (transported as a solute and reversibly sorbed on colloids), 
90Sr (transported as a solute), 241Am (transported as a solute as reversibly and irreversibly sorbed 
on colloids), and 240Pu (transported as a solute and reversible colloid and irreversible colloid 
phases)), the calculations of PRLNB,k (Equation 2.1-5) indicate that the Lower Natural Barrier 
effectively accounts for the following reductions in the activity released from EBS (SNL 2008d, 
Section 8.3.3.3.1[a]):

• 137Cs (half-life 30.1 yrs): about 100% reduction (from about 40 µCi to about 0 µCi)
• 90Sr (half-life 28.8 yrs): about 100% reduction (from about 7 µCi to about 0 µCi)
• 241Am (half-life 433 yrs): about 99.9% reduction (from about 3 mCi to about 4 µCi)
• 240Pu (half-life 6560 yrs): about 99.5% reduction (from about 17 mCi to about 80 µCi).

This barrier effectiveness of the unsaturated zone is supported by detailed particle tracking 
calculations (Section 2.3.8) that indicate mean water transport times (to the water table) from the 
southern part of the repository are on the order of 400 years or longer, which means that these 
radionuclides would experience more than 10 half-lives of decay before reaching the water table. 
Water transport times from northern repository locations are much shorter because of the 
predominance of flow through fractures. In addition, other detailed hydrologic calculations for the 
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saturated zone (SNL 2008f, Table 6-10[a]) indicate median radionuclide transport times ranging 
from 42,000 years to greater than 1,000,000 years for cesium species, and from 9,000 years to 
greater than 1,000,000 years for strontium species.

In the case of 241Am and 240Pu, reductions in radionuclide activity released are primarily the result 
of retardation effects arising from a combination of (1) mean seepage fractions that are less than 0.5
(Table 2.1-6), indicating that (on average) more than half of the mass released from the EBS diffuses 
into the matrix of the unsaturated zone; (2) sorption of dissolved phase radionuclides, reversible 
exchanges from dissolved to colloidal phases, and reversible colloidal filtration; and 
(3) radionuclide decay occurring during transport through the Lower Natural Barrier.

For 99Tc (half-life 2.13 × 105 yrs), an apparent reduction in peak activity of about 62% (about 14 Ci 
to about 5.3 Ci) is projected to be achieved by the Lower Natural Barrier (SNL 2008d, 
Section 8.3.3.3.1[a]). Note, however, that a reduction of only about 20% within 10,000 years (about 
7 Ci to about 5.3 Ci) is projected if the activity released from the EBS was estimated to be 7 Ci at 
9,600 years (from Figure 2.1-20) to account for the rapidly changing EBS release history. This 
effectiveness of the Lower Natural Barrier is due to the interplay of (1) radionuclide transport by 
diffusion through the invert and into unsaturated zone rock matrix; (2) matrix diffusion between 
fractures and matrix of the unsaturated zone; (3) and matrix diffusion in the volcanic units of the 
saturated zone in combination with transport time in the saturated zone. However, it is important to 
note that this reduction is a transient condition; for instance, comparing the 99Tc activities at about 
1,000,000 years, the reduction is only about 5% (SNL 2008d, Section 8.3.3.3.1[a]).

Figure 2.3.9-16 shows median transport times for technetium ranging from about 10 to 10,000 
years, although a significant fraction of radionuclide mass has much longer transport times in many 
realizations due to the effects of matrix diffusion in fractured volcanic units.

Regarding projections of PRLNB,k for radionuclides in the category of low to moderate solubility, 
low sorption, and long half-life, such as 239Pu, 242Pu, 237Np, and 234U, the reductions in peak mean 
activities released within the first 10,000 years are estimated to be (SNL 2008d, 
Section 8.3.3.3.1[a]):

• 239Pu (half-life 2.41 × 104 yrs): about 99.6% reduction (from about 60 mCi to about 
0.3 mCi)

• 242Pu (half-life 3.75 × 105 yrs): about 99.1% reduction (from about 62 µCi to about 
0.5 µCi)

• 237Np (half-life 2.14 × 106 yrs): about 78% reduction (from about 0.3 mCi to about 
77 µCi)

• 234U (half-life 2.46 × 105 yrs): about 89% reduction (from about 0.1 mCi to about 
16 µCi).

With the half-lives of these radionuclides being much greater than 10,000 years, the projected 
reductions in the activity are attributed to delay in the subsurface movement produced by (1) the 
combined processes of matrix diffusion and sorption in the unsaturated zone and (2) matrix 
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diffusion and sorption in the volcanic unit and sorption in the alluvium of the saturated zone. With 
regard to 239Pu and 242Pu, the percent reductions are nearly the same because they have the same 
sorption properties.

For 243Am, 230Th, and 226Ra, the projected reductions in peak mean activity achieved by the Lower 
Natural Barrier are estimated to be (SNL 2008d, Section 8.3.3.3.1[a]):

• 243Am (half-life 7,370 yrs): about 99.8% reduction (from about 2 mCi to about 4 µCi)

• 230Th (half-life 7.54 × 104 yrs): about 99.4% reduction (from about 76 µCi to about 
0.5 µCi)

• 226Ra (half-life 1,600 yrs): about 99.9% reduction (from about 0.6 mCi to about 0.3 µCi).

These reductions occur because of very strong sorption in both the zeolitic and devitrified tuff layers 
of the unsaturated zone (Section 2.3.8), as well as in the volcanic units and alluvium of the saturated 
zone (Section 2.3.9).

Projections of Barrier Capability for the Post-10,000-Year Period—The plot for the projected 
mean activity released from the Lower Natural Barrier is shown on Figure 2.1-35; also shown in 
this figure is the corresponding projection for mean activity released from the EBS. Of the four 
radionuclides in the large inventory group (i.e., 137Cs, 90Sr, 241Am, and 240Pu), the inventories for 
137Cs and 90Sr are essentially depleted by radioactive decay by 1,000 years (e.g., more than 
30 half-lives of decay) after closure (Figure 2.1-18). As a result, there would be no releases of 
these radionuclides from the EBS or saturated zone in the post-10,000-year period. In the case of 
241Am and 240Pu, however, their total repository inventories are still substantial at 10,000 years 
and are approximately 1.4 × 104 Ci for 241Am and 1.6 × 107 Ci for 240Pu (SNL 2008d, 
Section 8.3.3.3.1[a]). Consequently, releases of these radionuclides occur until about 150,000 
years.

The calculations of PRLNBk for the post-10,000-year period show the following reductions in the 
peak mean activity of 241Am and 240Pu (SNL 2008d, Section 8.3.3.3.1[a]):

• 241Am (half-life 433 yrs): about 100% reduction (from about 0.2 mCi to about 0 mCi)
• 240Pu (half-life 6,560 yrs): about 98% reduction (from about 60 mCi to about 1 mCi).

These activity reductions are similar to those projected for the 10,000 years after closure. Moreover, 
most of the 241Am activity reduction is accounted for by the unsaturated zone. In the case of 240Pu,
the unsaturated zone accounts for 50% of the reduction (SNL 2008d, Section 8.3.3.3.1[a]).

For 99Tc (half-life 2.13 × 105 yrs), the Lower Natural Barrier achieves a reduction in peak activity 
of about 5% (from about 2.8 × 104 Ci to about 2.6 × 104 Ci) at 1,000,000 years (SNL 2008d, 
Section 8.3.3.3.1[a]). This reduction is predominantly the result of matrix diffusion in the rock 
layers of the unsaturated zone and the volcanic units of the saturated zone. This activity reduction 
is smaller than the reductions for the 10,000-year period. However, this is due to the fact that the 
technetium released from the EBS in the first 10,000-year period may not have been released from 
the saturated zone within 10,000 years. Note that for 99Tc, the travel time ranges between 10 and 
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22,190 years within the saturated zone, with a median travel time of 230 years (SNL 2008f
Table 6-10[a]).

Regarding projections for radionuclides in the category of low to moderate solubility, low sorption
in the unsaturated and saturated zones, and long half-life, such as 239Pu, 242Pu, 237Np, and 234U, the 
reductions in peak mean activities released are lower than those for the 10,000-year period. The 
projected percent reductions are (SNL 2008d, Section 8.3.3.3.1[a]):

• 239Pu (half-life 2.41 × 104 yrs): about 90% reduction (from about 0.8 Ci to about 0.08 Ci)
• 242Pu (half-life 3.75 × 105 yrs): about 66% reduction (from about 44 Ci to about 15 Ci)
• 237Np (half-life 2.14 × 106 yrs): about 23% reduction (from about 16 Ci to about 13 Ci)
• 234U (half-life 2.46 × 105 yrs): about 32% reduction (from about 1.5 Ci to about 1 Ci).

With regard to 239Pu and 242Pu, the percent reductions are distinct because of the effects of 
radioactive decay and 239Pu having a small half-life compared to the 1,000,000-year time period.

In the case of 243Am, 230Th, and 226Ra, the projected reductions in peak mean activities achieved 
by the Lower Natural Barrier are comparable to those for the 10,000-year period. They are 
estimated as follows (SNL 2008d, Section 8.3.3.3.1[a]):

• 243Am (half-life 7,370 yrs): about 99.6% reduction (from about 0.2 Ci to about 0.7 mCi)
• 230Th (half-life 7.54 × 104 yrs): about 85% reduction (from about 4.5 Ci to about 0.7 Ci)
• 226Ra (half-life 1,600 yrs): about 97.6% reduction (from about 28 Ci to about 0.7 Ci).

Barrier Capability for Seismic Ground Motions Modeling Case—This modeling case examines 
the capability of the Lower Natural Barrier under conditions of EBS releases induced by vibratory 
ground motion events (i.e., disruptive events). The seismic ground motion modeling case is 
particularly relevant because it was found to be important to projections for the Individual 
Protection Standard (Section 2.4). In this modeling case, damage and failure of the drip shields and 
waste packages occur as a result of dynamic and static loadings induced by the vibratory ground 
motion. Moreover, the waste package breach modes are quite varied, including seismic-induced 
stress corrosion cracking, rupture, and puncture, as well as general corrosion penetration of the outer 
barrier. These breach modes ultimately lead to a broad range of slow diffusional and fast advective 
releases to the Lower Natural Barrier.

Projections of Barrier Capability for 10,000 Years after Closure—The projected mean activity 
released from the Lower Natural Barrier is shown on Figure 2.1-36. Also shown in this figure is the 
corresponding plot for the projected releases from the EBS for 10,000 years after closure. At 10,000 
years, the mean total activity in the inventory is about 4 × 107 Ci, but the mean total activity released 
from the saturated zone (summed over all radionuclides) is only 540 Ci. 99Tc comprises almost all 
of the mean total release (SNL 2008d, Section 8.3.3.3.1[a]).

In comparing the peak mean activity radionuclide releases for the large initial inventory group 
(Figure 2.1-18) (137Cs (transported as a solute and reversible colloid), 90Sr (transported solute), 
241Am (transported as a solute and as reversibly and irreversibly sorbed on colloids), and 240Pu 
(transported as a solute and as reversibly and irreversibly sorbed on colloids)), the calculations of 
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PRLNB,k indicate that the Lower Natural Barrier effectively accounts for the following reductions in 
the peak mean activity (SNL 2008d, Section 8.3.3.3.1[a]):

• 137Cs (half-life 30.1 yrs): about 100% reduction (from about 0.6 µCi to about 0 µCi)
• 90Sr (half-life 28.8 yrs): about 100% reduction (from about 0.03 µCi to about 0 µCi)
• 241Am (half-life 433 yrs): about 100% reduction (from about 73 µCi to about 0 µCi)
• 240Pu (half-life 6560 yrs): about 99.6% reduction (from about 15 mCi to about 55 µCi).

These percent reductions are based on activity releases within the 10,000-year period only, and 
releases continue to increase beyond this time. These percent reductions are almost identical to 
those estimated for the combined nominal/early failure demonstration modeling case. Also similar 
is the fact that the unsaturated zone accounts for very significant reductions (e.g., 80% to 88%) of 
137Cs, 90Sr, and 241Am activities. Although the percent reductions are similar, the EBS releases for 
the seismic ground motion modeling case are much higher than those for the combined 
nominal/early failure demonstration modeling case.

The mean activity reduction projected for 99Tc (half-life 2.13 × 105 yrs) is approximately 55% (from 
941 Ci to 427 Ci) with more than half of the reduction provided by the unsaturated zone (SNL 
2008d, Section 8.3.3.3.1[a]). This level of activity reduction for 99Tc is similar to that for the 
combined nominal/early failure demonstration modeling case, but the number of curies released in 
the seismic ground motion modeling case is much higher. It is important to note that this apparent 
reduction is a transient condition, and the reduction of 99Tc becomes small over a long time period.

The percent reductions in peak mean activity projected to be achieved by the Lower Natural 
Barrier for 239Pu, 242Pu, 237Np, and 234U for are as follows (SNL 2008d, Section 8.3.3.3.1[a]):

• 239Pu (half-life 2.41 × 104 yrs): about 99.6% reduction (from about 48 mCi to about 
0.2 mCi)

• 242Pu (half-life 3.75 × 105 yrs): about 99.6% reduction (from about 49 µCi to about 
0.2 µCi)

• 237Np (half-life 2.14 × 106 yrs): about 81% reduction (from about 0.1 mCi to about 
20 µCi)

• 234U (half-life 2.46 × 105 yrs): about 93% reduction (from about 0.3 mCi to about 
22 µCi).

These percent reductions are very similar to those projected for the combined nominal/early failure 
demonstration modeling case.
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For 243Am, 230Th, and 226Ra, the projected reductions in peak mean activity to be achieved by the 
Lower Natural Barrier are estimated as follows (SNL 2008d, Section 8.3.3.3.1[a]):

• 243Am (half-life 7,370 yrs): about 100% reduction (from about 10 µCi to about 0 µCi)

• 230Th (half-life 7.54 × 104 yrs): about 96.2% reduction (from about 11 µCi to about 0.4 
µCi)

• 226Ra (half-life 1,600 yrs): about 100% reduction (from about 30 mCi to about 0.6 µCi).

These percent reductions are also very similar to those projected for the combined nominal/early 
failure modeling case.

Projections of Barrier Capability for Post-10,000 Years after Closure—The plot for the 
projected mean activity released from the Lower Natural Barrier is shown in Figure 2.1-37. This 
figure also shows the corresponding projection for mean activity released from the EBS.

The peak mean total activity released from the saturated zone (summed over all radionuclides) is 
approximately 3 × 104 Ci at 800,000 years; compared to the peak mean total activity released from 
the EBS of about 5 × 104 Ci at 800,000 years. 99Tc comprises most of the mean total release from 
the EBS. Figure 2.1-37 indicates an overall reduction (peak to peak) in activity releases due to the 
Lower Natural Barrier of about 40% (SNL 2008d, Section 8.3.3.3.1[a]).

Of the four radionuclides in the large inventory group (i.e., 137Cs, 90Sr, 241Am, and 240Pu), the 
inventories for 137Cs and 90Sr are essentially depleted by radioactive decay by 1,000 years 
(e.g., more than 30 half-lives of decay) after closure (Figure 2.1-18) (SNL 2008d, 
Section 8.3.3.3.1[a]). As a result, there would be no releases of these radionuclides from the EBS 
or saturated zone in the post-10,000-year period. In the case of 241Am and 240Pu, however, their total 
repository inventories are still substantial and are estimated to be approximately 1.4 × 104 Ci for 
241Am and 1.6 × 107 Ci for 240Pu remaining in the repository at 10,000 years after closure
(SNL 2008d, Section 8.3.3.3.1[a]).

For the post-10,000-year period, the calculations of PRLNBk show the following reductions in the 
peak mean activity of 241Am and 240Pu (SNL 2008d, Section 8.3.3.3.1[a]):

• 241Am (half-life 433 yrs): about 100% reduction (from about 3 µCi to about 0 µCi)
• 240Pu (half-life 6560 yrs): about 97% reduction (from about 0.1 Ci to about 4 mCi).

These reductions are largely achieved by the unsaturated zone, and are very similar to those 
estimated for the combined nominal/early failure modeling case for the post-10,000-year period.

For 99Tc (half-life 2.13 × 105 yrs), the Lower Natural Barrier is projected to achieve a reduction in 
peak mean activity of about 5% (from about 3.3 × 104 Ci to about 3.1 × 104 Ci) at 1,000,000 years
(SNL 2008d, Section 8.3.3.3.1[a]). This level of reduction is similar to that estimated for the 
combined nominal/early failure modeling case over the post-10,000-year period.
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Regarding projections for radionuclides in the category of low to moderate solubility, low sorption
in the unsaturated and saturated zones, and long half-life, such as 239Pu, 242Pu, 237Np, and 234U, the 
reductions in peak mean activities released are lower than those for the 10,000-year period. The 
projected percent reductions are as follows (SNL 2008d, Section 8.3.3.3.1[a]):

• 239Pu (half-life 2.41 × 104 yrs): about 88% reduction (from about 11 Ci to about 1.4 Ci)
• 242Pu (half-life 3.75 × 105 yrs): about 70% reduction (from about 200 Ci to about 62 Ci)
• 237Np (half-life 2.14 × 106 yrs): about 20% reduction (from about 100 Ci to about 81 Ci)
• 234U (half-life 2.46 × 105 yrs): about 25% reduction (from about 14 Ci to about 10 Ci).

The unsaturated zone accounts for roughly half of the reductions in 239Pu and 242Pu activity; 
whereas, for 237Np and 234U, it only accounts for about one-quarter of the reductions (SNL 2008d, 
Section 8.3.3.3.1[a]). These reductions are consistent with those projected for the combined 
nominal/early failure modeling case and post-10,000-year time period.

In the case of radionuclides 243Am, 230Th, and 226Ra, the projected peak mean activity reductions 
in the Lower Natural Barrier are comparable to those for the combined nominal/early failure 
modeling case for the post-10,000-year period. The reductions are estimated as follows 
(SNL 2008d, Section 8.3.3.3.1[a]):

• 243Am (half-life 7,370 yrs): about 99.8% reduction (from about 3 mCi to about 8 µCi)
• 230Th (half-life 7.54 × 104 yrs): about 89% reduction (from about 71 Ci to about 8 Ci)
• 226Ra (half-life 1,600 yrs): about 97% reduction (from about 260 Ci to about 8 Ci).

For these three radionuclides, the unsaturated zone accounts for one-half or more of the activity 
reductions. Again, this reduction is consistent with those projected for the combined nominal/early 
failure modeling case over the post-10,000-year time period.

Uncertainty in the projections of the Lower Natural Barrier capability is influenced by uncertainties 
in knowledge of flow and transport processes. The TSPA model accounts for these epistemic 
uncertainties by using probabilistic representations of the input parameters in the component 
models for unsaturated zone flow, unsaturated transport model, saturated zone flow, and saturated 
zone transport. In the case of unsaturated zone flow and transport, the parameters of primary 
importance include (1) sorption coefficients for various radionuclides; (2) the matrix diffusion 
coefficient; and (3) the infiltration scenario (Section 2.3.8). Important parameters related to 
groundwater flow (or advection) in the saturated zone (Section 2.3.9) are (1) groundwater-specific 
discharge; (2) flowing interval porosity; (3) alluvium effective porosity; and (4) horizontal 
anisotropy. The process of matrix diffusion is dependent on flowing interval spacing, effective 
diffusion coefficient, and matrix porosity. The process of radionuclide sorption on the fractured and 
porous media is a function of the sorption coefficients, bulk density, and porosity for various 
radionuclides and geologic media.

To illustrate the uncertainty associated with the release of radionuclide activity from the Lower 
Natural Barrier, radionuclide-specific release plots for selected radionuclides are presented in 
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Figures 2.1-38 to 2.1-43 for combined nominal and seismic ground motion-induced degradation 
processes (SNL 2008d, Section 8.3.3.3.1[a]):

• Figure 2.1-38: 99Tc
• Figure 2.1-39: 237Np
• Figure 2.1-40: 234U
• Figure 2.1-41: 226Ra
• Figure 2.1-42: 239Pu
• Figure 2.1-43: 242Pu.

The results in these figures are expected releases (averaged over the aleatory uncertainties) and thus 
largely reflect the impact of epistemic uncertainties. These plots are presented to illustrate the 
impact of uncertainties on the projections of the Lower Natural Barrier radionuclide releases. As can 
be noted from these plots, the Lower Natural Barrier releases for all six radionuclides corresponding 
to the 95th percentile are consistently close to the corresponding mean release curves, but are distant 
from the 5th percentile curves (SNL 2008d, Section 8.3.3.3.1[a]).

Summary of Lower Natural Barrier Capability—Projections of barrier capability demonstrate 
that for large initial inventory, soluble, and short half-life radionuclides, such as 137Cs and 90Sr, the 
mean activity released from the EBS would be reduced by 100% (i.e., they are highly unlikely to 
reach the accessible environment). For radionuclides with longer half-lives, such as 241Am and 
240Pu, the mean activity released would be reduced by 97% to 100% by the natural barrier. For 
radionuclides of low to moderate solubility, weak to strong sorption, and long half life—such as 
237Np, 242Pu, and 239Pu—the mean activity released from the EBS would be reduced by 80% to 
100% before reaching the accessible environment during the 10,000-year period and by 20% to 88% 
during the post-10,000-year period. These reductions of EBS releases would be achieved by the 
combination of Lower Natural Barrier processes, including slow advective water transport, matrix 
diffusion and sorption of dissolved phase radionuclides, dispersion/dilution of dissolved and 
colloidal phase radionuclides, and reversible filtration of colloidal phase radionuclides, as well as 
radioactive decay.

2.1.3 Technical Bases for Barrier Capability
[NUREG-1804, Section 2.2.1.1.3: AC 3]

Section 2.1.1 identifies the three barriers that comprise the repository system: the Upper Natural 
Barrier, the EBS, and the Lower Natural Barrier. Section 2.1.2 presents a quantitative assessment of 
the capability of these barriers. Table 2.1-5 provides the relationship between the barriers and the 
TSPA models where the performance of the features of each barrier are represented. The following 
sections provide an overview of the technical bases for the models used to represent the 
performance of the barriers in the TSPA. Further details of the technical bases are provided in the 
relevant model abstraction sections in Section 2.3 that are identified in Table 2.1-5. Because the 
technical basis for the assessment of barrier capability is the same as the technical basis for the 
model abstractions used in the TSPA, Section 2.3 provides the technical basis for both uses of the 
models (i.e., for analyses of barrier capability presented in Section 2.1.2 and for analyses of 
individual and groundwater protection presented in Sections 2.4.2 and 2.4.4).
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2.1.3.1 Upper Natural Barrier

As shown in Table 2.1-5, the Upper Natural Barrier is represented in the TSPA by the infiltration, 
site-scale unsaturated zone flow, ambient seepage, and thermal-hydrologic seepage models. The 
following paragraphs provide brief summaries of the technical bases for these models.

Infiltration Model—This model was developed on the basis of geologic and hydrologic studies 
of soil and bedrock properties, as well as data from precipitation and temperature monitoring. For 
the three climate states projected for the first 10,000 years after repository closure, ranges of 
annual precipitation and air temperatures were forecast on the basis of analogue sites, 
paleoclimate data, and earth-orbital parameters. Using this information, spatial and temporal 
infiltration estimates were developed for use as inputs to the site-scale unsaturated zone flow 
model. Infiltration estimates include the range of infiltration expected under future climatic 
conditions. The infiltration model produces net infiltration values for use in the site-scale 
unsaturated zone flow model under both present-day and future climatic conditions expected 
during the first 10,000 years after closure. For the period from 10,000 years after permanent 
closure up to 1,000,000 years after closure, infiltration rates are not provided from the analysis; 
rather, a range of deep percolation fluxes specified by the proposed 10 CFR 63.342(c)(2) 
(70 FR 53313) is used in the unsaturated zone flow simulations (Section 2.3.1.3).

Site-Scale Unsaturated Zone Flow Model—This model was developed on the basis of a 
combination of surface- and subsurface-based field investigations and laboratory studies that have 
produced a conceptual understanding of flow paths in the unsaturated zone. These studies show 
that subsurface heterogeneities have important effects on flow paths and, together with net 
infiltration, control the quantity and distribution of water that comes into contact with waste 
emplacement drifts. Several mathematical models have been developed to simulate unsaturated 
zone flow under ambient conditions and in response to future climate changes. A method that 
could represent fracture and matrix flow under ambient and thermally perturbed conditions was 
selected. A dual-permeability continuum method was selected as being most consistent with 
available data and suitable for modeling unsaturated flow at Yucca Mountain. Mathematical 
models were calibrated against multiple sources of information (e.g., water potential, pneumatic, 
perched water, temperature, and geochemical data). The unsaturated zone flow model is used to 
generate flow fields that are used directly by the TSPA to predict seepage into drifts and 
radionuclide transport through the unsaturated zone. Section 2.3.2.4 further discusses the 
unsaturated zone flow model. 

Ambient Seepage Model—The physics that control water percolating through the unsaturated 
zone, combined with hydrologic properties of the rock surrounding the emplacement drifts, 
including the geometry of the drift opening (intact versus collapsed), provide the technical basis 
for this model. When percolating water encounters an opening in unsaturated rock, it tends to be 
diverted around the opening due to capillarity. Seepage testing in the Exploratory Studies Facility 
and the Enhanced Characterization of the Repository Block Cross-Drift provided the data needed 
to develop a seepage process model. Seepage tests were conducted for both natural percolation 
flux conditions and localized, high-flux conditions that could induce seepage. Results show that 
there is a threshold water flux, such that seepage into the drift will not occur if the local 
percolation flux is below the threshold. The seepage process model relies directly on seepage-rate 
data, and is calibrated against other seepage data not used to develop the model. This model is 
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abstracted for use in the TSPA. The seepage abstraction provides seepage rates and uncertainties 
for both intact and collapsed drifts over a range of percolation fluxes, capillary strengths, and 
permeabilities. Section 2.3.3.2 further discusses the ambient seepage model. 

Thermal-Hydrologic Seepage Model—Field testing of the thermal-hydrologic response of the 
host rock, particularly the Drift Scale Test in the Exploratory Studies Facility, provides the 
technical basis for this model. The Drift Scale Test was designed to monitor evolution of 
temperature and liquid saturation and to observe evidence of thermally induced liquid refluxing. 
Results show that heat from emplaced waste will cause pore water in the rock matrix to vaporize 
and move away from emplacement drift openings. In cooler rock, the vapor will condense in 
fractures and drain either away or back toward the emplacement drift. While temperatures are 
above the boiling point of water, vaporization of percolating water in the fractured rock above the 
emplacement drifts will prevent seepage. The thermal-hydrologic seepage model, which was 
developed on the basis of these results, includes the effects of capillary diversion and vaporization 
due to heat. In the TSPA, seepage rates and the fraction of waste package locations that experience 
seepage are predicted using the ambient seepage model. The technical basis provided by the 
thermal-hydrologic seepage model is used in the TSPA to justify the assumption that seepage 
cannot enter the drift if the drift wall temperature is equal to or greater than 100°C. Section 2.3.3.3
further discusses the thermal-hydrologic seepage model.

2.1.3.2 Engineered Barrier System

The technical basis used to screen nuclear criticality from the postclosure performance assessment 
is described in Section 2.2.1.4.1. As shown in Table 2.1-5, the EBS is represented in the TSPA by 
the following models: drift degradation and rockfall, near-field chemistry, multiscale 
thermal-hydrologic, in-drift condensation, in-drift physical and chemical environment, drip shield 
degradation, waste package degradation, in-package chemistry, commercial SNF degradation, 
DOE SNF degradation, HLW degradation, dissolved concentration limits, colloidal radionuclide 
availability, and EBS flow and transport. The following paragraphs provide brief summaries of the 
technical bases for these models.

Drift Degradation and Rockfall—These analyses and models were developed on the basis of 
detailed geologic characterization of the repository host rock. Data were developed on rock mass 
structure and variability of rock properties. Laboratory and in situ testing provided ranges of 
values for mechanical and thermal properties for intact rock matrix, fractures, and large-scale 
properties of the lithophysal rock mass. Two- and three-dimensional numerical models, developed 
on the basis of these data, were used to represent the processes of degradation of drift walls and 
rockfall. These models provide the tools needed to assess rockfall and time-related drift 
degradation as a function of in situ, thermal, and seismic loading states. Results from these models 
are used to estimate impacts of vibratory ground motion, fault displacement, and rockfall induced 
by vibratory ground motion on drip shields and waste packages. Sections 2.3.4.4 and 2.3.4.5
further discuss the drift degradation and rockfall model.

Near-Field Chemistry Model—The primary role of the near field chemistry model is to provide 
the near-field gas and water chemistries for use in simulating the in-drift chemical environment. 
Field and laboratory studies have provided the hydrologic, thermal, and mineralogical data 
necessary to develop this model. Measurements of pore-water and gas chemistry data in the 
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Exploratory Studies Facility and Enhanced Characterization of the Repository Block Cross-Drift, 
supplemented with kinetic and thermodynamic data from externally published sources, provide 
the basis for modeling the evolution of water and gas compositions in near-field host rock. Heat, 
gas, and liquid in the rock affect the chemical composition of host-rock pore and fracture waters 
and the location and type of mineral dissolution and precipitation reactions. Evaporation serves to 
concentrate aqueous species in solution. The TSPA uses results from this model to calculate 
in-drift water chemistry due to seepage evaporation (Section 2.3.5.5).

Multiscale Thermal-Hydrologic Model—Field thermal testing, modeling studies, natural 
analogues, and externally published data provide the technical basis for this model. The model 
was developed by combining the results of submodels at various scales and dimensionalities to 
produce a three-dimensional representation of the natural and engineered systems. This multiscale 
model relies on the unsaturated zone flow model for hydrologic properties and percolation flux 
boundary conditions and uncertainties. The multiscale model is combined with an in-drift 
condensation model to represent temperature and relative humidity in the emplacement drifts for 
the TSPA. Section 2.3.5.4 further discusses the thermal-hydrologic model.

In-Drift Condensation Model—The in-drift condensation model complements the multiscale 
thermal-hydrologic model (Section 2.3.5.4) in terms of evaluating the in-drift thermal-hydrologic 
environment. Field thermal testing and modeling studies provide the technical basis for this model. 
The multiscale thermal-hydrologic model provides the TSPA model with the temperature and 
relative humidity at all waste package locations; however, the model simulations do not include 
axial transport of water vapor along the drifts. The in-drift condensation model was used to calculate 
the hydrologic effects of axial transport of water vapor, namely drift wall condensation, to be used 
as input to the TSPA model. The in-drift condensation model provides the TSPA model with the 
potential for drift wall condensation at waste package locations, and, when condensation occurs, 
with the magnitude of condensation, which is correlated with percolation rate. Condensation is 
another source of liquid water that can potentially contact the drip shield or waste package and flow 
through the invert in EBS flow calculations (Section 2.3.7.12) (SNL 2007d, Section 6.3.1).

In-Drift Physical and Chemical Environment—This model relies on the technical basis 
developed for the near-field chemistry model to establish the compositional range of waters that 
could contact the drip shield, the outer barrier of the waste package, and the invert. While waste 
package surface temperatures are high, seepage water will tend to evaporate and may form 
concentrated brines. The in-drift chemical environment changes with time as heat from decay 
decreases and geochemical processes modify in-drift conditions. Characteristics of the 
environment through the stages of dryout, transition, and return to a low-temperature condition are 
included in the range of parameters covered in this model. Section 2.3.5.5 further discusses the 
in-drift physical and chemical environment model.

Drip Shield Degradation and Early Failure Model—Long-term corrosion tests on titanium 
alloys provide the technical basis for models for drip shield degradation. Literature surveys were 
also used to obtain data on manufacturing defects and human error probabilities to develop a drip 
shield early failure model. The number of potential drip shield failures is very small such that, for 
example, the probability of having one early failure is about 2%. Results from testing in 
repository-relevant environments show that creviced specimens exhibit slightly lower corrosion 
rates than weight-loss specimens; only the weight-loss data were used in the model. The 
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weight-loss sample data obtained under more extreme conditions (90°C and high fluoride 
concentrations) were used to represent the corrosion rate for the outer surface of the drip shield, 
whereas data obtained for more benign conditions were used for the underside of the drip shield. 
The rationale for this choice is that the outer surface would be exposed to seepage environments, 
whereas the inner surface would only be expected to experience water films due to condensation. 
Under repository conditions, the general corrosion penetration depth in the 10,000 years after 
closure will be extremely limited. Consequently, failures resulting from through-wall penetration 
will not occur until after 270,000 years, and both localized corrosion and stress corrosion cracking 
are not expected to significantly degrade the capability of the drip shield feature. For the case of 
impacts on drip shields due to seismic-induced rockfall, stress corrosion cracking is considered 
possible. However, this degradation mode is not included in the TSPA because cracks in the 
titanium are sufficiently tight that they do not allow advective flux of water, and—even if water is 
present—the cracks are predicted to plug from mineral precipitation and corrosion products within 
a few hundred years after a seismic event. Sections 2.3.6.8 and 2.3.4 further discuss the drip shield 
degradation model.

Waste Package Degradation: General and Localized Corrosion, Stress Corrosion Cracking, 
and Early Failure—The technical basis for waste package degradation modeling was derived 
from the Yucca Mountain Project and externally published data. The technical basis includes data 
regarding general and localized corrosion, microbial processes, stress corrosion cracking, and 
early failure due to manufacturing defects. Data for general corrosion rates of the waste package 
outer barrier have been obtained from weight-loss measurements of descaled Alloy 22 samples 
after five years. General corrosion rates were also measured electrochemically to estimate the 
temperature dependence of general corrosion for Alloy 22. Localized corrosion data are available 
for Alloy 22 from a wide range of exposure environments. Long-term corrosion potential and 
short-term cyclic polarization data are available to evaluate the susceptibility of Alloy 22 to 
localized corrosion. Laboratory tests also provided estimates of the effects of microbial processes 
on general corrosion. Because penetration rate data for localized corrosion under repository 
conditions are limited, published crevice corrosion rates under highly aggressive conditions were 
also used to establish the technical basis for waste package models. Yucca Mountain Project and 
externally published data are available to estimate stress corrosion cracking of Alloy 22. 
Threshold stresses for initiation of stress corrosion cracking, crack growth rates, and stress and 
stress intensity factor profiles for welded regions, as well as data on weld flaws, were compiled. 
Literature surveys were also used to obtain data on manufacturing defects and human error 
probabilities to develop a waste package early failure model. Sections 2.3.6.3 to 2.3.6.6 further 
discuss the waste package degradation models. Section 2.3.4 discusses waste package and drip 
shield mechanical degradation associated with seismic ground motion.

In-Package Chemistry—This model is a reaction-path model that predicts the chemical features, 
such as pH and ionic strength, of in-package fluids. The technical bases for this model include 
degradation rates for waste package and basket materials as a function of surface area. 
Degradation rates for the various waste forms as a function of pH, temperature, and the surface 
area are also inputs to the model. A thermodynamic database has been compiled from Yucca 
Mountain Project and externally published data containing solubilities of radionuclides and 
corrosion products as a function of solution composition and temperature. Surface thermodynamic 
parameters for corrosion products were also obtained from the literature. The in-package water 
chemistry model is used to provide input to the EBS flow and transport model, which calculates
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the transport of radionuclides through the degraded waste form, degraded waste package, and the 
invert. Section 2.3.7.5 further discusses the in-package water chemistry model.

Commercial SNF Degradation—Yucca Mountain project and externally published data provide 
the technical basis for the commercial SNF degradation model. The rate at which the 
radionuclides enter solution is controlled by either the degradation rate of the waste form or by the 
solubility limit of the radionuclides. The commercial SNF degradation rates determine the rate at 
which soluble radionuclides can enter solution. The release rate of other radionuclides is 
determined by their solubility limits. Both Yucca Mountain Project and externally published data 
were used to develop thermodynamic databases for use with a geochemical modeling tool. 
Solubility limits, with appropriate uncertainties, are determined considering the controlling solid 
phases, water chemistry, temperature, and appropriate uncertainties. Section 2.3.7.7 further 
discusses the commercial SNF degradation model.

DOE SNF Degradation—The rate at which radionuclides enter a solution is controlled either by 
the degradation rate of the waste form or by the solubility limit of the radionuclides. All DOE SNF 
types, except naval SNF, are modeled as degrading instantaneously upon waste package breach
(SNL 2008a, Section 6.2.3.2). Commercial SNF degradation model results are used to represent 
the contribution of naval SNF in the TSPA. Section 2.3.7.8 further discusses the DOE SNF 
degradation model.

HLW Glass Degradation—Similar to other waste forms, the rate at which radionuclides enter a 
solution is controlled by either the dissolution rate of the waste form or by the solubility limit of 
the constituent elements. Glass dissolution kinetics are known, on the basis of many experiments, 
to be controlled by a single dissolved species: orthosilicic acid. Both Yucca Mountain project and 
externally published data show that release of soluble components from glass decreases when the 
concentration of orthosilicic acid increases. Dissolution studies have been conducted under 
conditions that cover the following range of water contact modes postulated for the repository: 
contact with humid air, contact with dripping water, and immersion. The data were collected over 
a wide range of borosilicate glass compositions that meet the DOE-specified acceptance 
requirements for chemical durability and other specifications. Section 2.3.7.9 further discusses the 
HLW glass degradation model.

Dissolved Concentrations Limits—This model determines the maximum dissolved 
concentration of radionuclides as a function of water chemistry over the range of physical and 
chemical conditions established in the in-package chemistry model described above. The model 
relies on a thermodynamic database compiled from Yucca Mountain project and externally 
published data. A geochemical modeling tool utilizes the database to establish solubility limits for 
radionuclides within the specified in-package water chemistries. Solubility limits are determined 
considering the controlling solid phases, water chemistry, and temperature. Section 2.3.7.10
further discusses the dissolved concentrations limits model.

Colloidal Radionuclide Availability—The technical basis for the colloidal radionuclide 
availability model rests on both Yucca Mountain project and externally published data. Both waste 
form colloids resulting from waste degradation and pseudocolloids, which are colloidal particles 
of other materials with attached radionuclides, are evaluated. Measurements of colloid 
concentrations, studies of colloid stability, and experiments to determine radionuclide sorption 
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properties were used to develop the colloid source term abstraction used in the TSPA. 
Characteristics of water in the waste package from the in-package chemistry model are used to 
describe the stability and concentration of colloids and the distribution of radionuclides in the 
waste package. Section 2.3.7.11 further discusses the colloidal radionuclide availability model 
used in the TSPA.

EBS Flow and Transport Model—The technical basis for this model is developed using the 
results of the seepage models, multiscale thermal-hydrologic and in-drift condensation models, 
in-drift chemical environment model, waste package and drip shield degradation models, 
in-package chemistry model, and waste form degradation and radionuclide mobilization models. 
The EBS flow and transport model consists of two parts: flow pathways within the EBS, and 
radionuclide transport along specific flow pathways. Transport out of the waste package can occur 
by advection when there is a liquid flux through the waste package, and by diffusion through 
continuous liquid pathways. These two transport processes depend on the types of penetrations 
through the waste package and on local seepage and condensation conditions. Diffusive transport 
depends on differences in concentrations, which are determined from the in-package water 
chemistry model and the solubility limit for each radionuclide. Concentrations in the waste 
package depend on radionuclide solubility limits, sorption of radionuclides onto corrosion 
products, sorption and desorption onto colloids, and colloid stability. Concentrations in the invert 
depend on radionuclide solubility limits and colloid stability in the invert, transfer of radionuclides 
between corrosion products and the invert, and the boundary concentrations at the invert–
unsaturated zone interface. Transport at the invert–unsaturated zone interface may be advective or 
diffusive, and an important aspect of this model is to represent partitioning of radionuclide mass 
flux to the fractures and matrix consistent with the flow conditions. This partitioning is time 
dependent, and reflects variations in rates of radionuclide release from the EBS and changes in 
seepage or condensation flux in the emplacement drifts. Section 2.3.7.12 further discusses the 
EBS flow and transport model.

2.1.3.3 Lower Natural Barrier

As shown in Table 2.1-5, the Lower Natural Barrier is represented in the TSPA by the site-scale 
unsaturated zone flow, site-scale unsaturated zone radionuclide transport, saturated zone flow, and 
saturated zone radionuclide transport models. The saturated zone flow and transport abstraction 
model is not implemented directly in the TSPA, but is used to develop radionuclide breakthrough 
curves that are implemented in the TSPA using a convolution algorithm. The following paragraphs 
provide brief summaries of the technical bases for these models.

Site-Scale Unsaturated Zone Flow Model—Section 2.1.3.1 provides an overview of this model.

Site-Scale Unsaturated Zone Radionuclide Transport Model—The technical basis for this 
model rests on the conceptual and numerical models developed to represent unsaturated zone 
flow. Advection, fracture–matrix interaction, sorption, and colloid-facilitated transport are 
important processes for radionuclide transport. Data sources supporting the site-scale unsaturated 
zone radionuclide transport model include (1) laboratory sorption and matrix diffusion 
measurements; (2) testing to support extension to larger scales at a test facility at Busted Butte; 
(3) Alcove 8–Niche 3 testing to investigate fracture–matrix interactions; (4) colloid retardation 
testing at the Busted Butte facility; (5) pore-water chemistry testing; and (6) isotope studies to 
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address the prevalence and frequency of fracture flow in the unsaturated zone. The approach used 
to represent unsaturated zone radionuclide transport is a dual-permeability model with distinct 
hydraulic and transport behavior for fractures and matrix. This approach best accounts for data 
from geochemical studies, field tracer tests, and modeling sensitivity studies. Section 2.3.8 further 
discusses the site-scale unsaturated zone radionuclide transport model.

Site-Scale Saturated Zone Flow Models—The site-scale saturated zone flow model provides a 
three-dimensional calibrated simulation of groundwater flow paths and rates near Yucca 
Mountain. The technical basis for the saturated zone flow models rests on geologic field studies in 
the region surrounding Yucca Mountain. These studies provide the overall framework in terms of 
the lateral and vertical extent of aquifers and confining units, as well as locations of recharge and 
discharge areas. This model is calibrated using water-level data, and is supported by a variety of 
field data, including hydrochemical and isotopic data, and hydraulic field testing data. The 
site-scale model was constructed using a continuum approach. A continuum model was 
considered appropriate because field evidence indicates groundwater flow occurs through 
well-connected fractures on the order of tens to hundreds of meters apart. Use of a continuum 
model allows for the use of widely accepted equations describing groundwater flow through 
porous media. Section 2.3.9.2 further discusses the site-scale saturated zone flow model.

Site-Scale Saturated Zone Transport Model—The site-scale saturated zone transport model 
provides a three-dimensional calibrated simulation of radionuclide transport and radionuclide 
concentrations in the saturated zone. The three-dimensional transport model is supplemented by a 
one-dimensional transport model that simulates transport of radionuclides that are daughter 
products resulting from ingrowth. The technical basis for this model rests on the geologic and 
hydrologic studies used to develop the site-scale saturated zone flow model, supplemented by 
additional data on chemical characteristics of dissolved or colloidal radionuclides and the 
characteristics of the geochemical environment along transport pathways. Transport of 
radionuclides as dissolved species will be affected by advection, diffusion, dispersion, and, for 
reactive radionuclides, sorption. Transport of radionuclides sorbed onto colloids is affected by the 
rate of colloid filtration, radionuclide sorption colloids, and colloid concentrations. The rate of 
radionuclide transport is a function of specific discharge, the porosity through which water flows, 
effective diffusion coefficient, dispersivity, decay constants, and radionuclide sorption 
coefficients. Data from hydraulic and tracer tests at a multiple-well complex provide the basis for 
modeling advective transport over scales relevant to radionuclide transport. These test results were 
used to develop values for flow and transport modeling parameters, and to confirm that the 
dual-porosity continuum conceptualization is appropriate for representing transport. Other field 
tests provide evidence supporting the predominance of fracture flow in the volcanic tuff units. 
Dispersivity values for the saturated zone were developed using elicitation results 
(Section 2.3.9.3.3.4). Sorption coefficients for the volcanic tuff and alluvium were obtained from 
laboratory measurements and scaled for site-scale application. Section 2.3.9.3 further discusses 
the site-scale saturated zone transport model.

2.1.3.4 Technical Basis for Disruptive Events Potentially Affecting Barrier Capability

The capability of the barriers identified in Section 2.1.2 is affected by the occurrence of disruptive 
events that may degrade, alter, or otherwise disrupt the features and components of the natural 
setting or EBS. The probability of these disruptive events is evaluated in Section 2.2.2, and models 
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used to evaluate the effects and consequences of these events are presented in Sections 2.3.4 (for 
mechanical degradation resulting from seismic events) and 2.3.11 (for disruption due to igneous 
events). Both of these event types are included in the scenario classes that have been retained for 
assessing performance of the repository system in Section 2.4.2.1.

The technical basis for ground motion analysis has been formally elicited from an expert elicitation 
based on site-specific observations of previous seismic activity and faulting, as described in 
Section 2.2.2.1. However, when the models developed in the probabilistic seismic hazard analysis 
(PSHA) were applied, low-probability ground motion values were allowed to increase without 
bound, eventually reaching levels that are inconsistent with the geologic setting for Yucca 
Mountain. Therefore, using data, analyses, and modeling results developed after the PSHA, a 
separate analysis was performed, using data that became available after the PSHA, to determine a 
reasonable bound to peak horizontal ground velocity at the waste emplacement level. A general 
discussion of the basis for the site specific ground motions and of the bounded hazard curve is 
presented in Section 2.3.4.3. The effects of seismic activity on a range of possible seismic response 
spectra at the repository have been modeled using site-specific rock property data. The effects of 
seismic activity on EBS degradation have been modeled using site-specific information on rock 
mass response, design information on structural characteristics of the engineered features, and 
laboratory testing information on material properties. This information was used to evaluate the 
degradation of the EBS as a function of seismic PGV. The results of seismic-induced consequences 
are presented in Section 2.3.4, and are represented in the TSPA as described in Section 2.4.

The technical basis of estimates of the probability of intersection of the repository by an igneous 
event has been formally elicited from an expert elicitation based on observations of previous 
igneous activity, as described in Sections 2.2.2.2 and 2.3.11.2. The effects of igneous activity on 
EBS degradation have been evaluated using analogues to similar igneous activity that have been 
supplemented by an independent peer review and a range of assumptions based on observations of 
characteristics of igneous events at analogue sites. The results of igneous-induced consequences are 
presented in Section 2.3.11, and are represented in the TSPA as described in Section 2.4.

2.1.3.5 Summary of Technical Bases for Barrier Capability

The technical bases for the assessment of the capability of the three barriers to (1) prevent or 
substantially reduce the rate of movement of water or radionuclides from the repository to the 
accessible environment; or (2) prevent or substantially reduce the rate of release of radionuclides 
from the waste are the same as the bases used for the compliance of the repository system with the 
postclosure performance assessment objectives and requirements. The barrier capability is based on 
the abstraction models of processes included in the performance assessment, as well as an 
evaluation of the processes and events that have been excluded from the performance assessment.

The identification and construction of scenario classes from the FEPs considered at Yucca Mountain 
are summarized in Section 2.1.2, and presented in more detail in Section 2.2. Those FEPs excluded 
from the TSPA and barrier capability analysis are summarized in Table 2.2-5. Details associated 
with the exclusion of processes and events are presented in Features, Events, and Processes for the 
Total System Performance Assessment: Analyses (SNL 2008b) (certain processes that have been 
excluded from representation in the TSPA are discussed in detail in Section 2.3). Details associated 
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with the inclusion of processes and events acting on the features of the three barriers are presented 
in Section 2.3, while the integration of these processes and events is summarized in Section 2.4.1.

2.1.4 Summary

The Yucca Mountain repository system comprises three barriers that have the functions of 
(1) preventing or substantially reducing the rate of movement of water or radionuclides from the 
repository to the accessible environment; or (2) preventing or substantially reducing the release rate 
of radionuclides from the waste. These three barriers include two natural barriers and one 
engineered barrier system: namely, the Upper Natural Barrier, the EBS, and the Lower Natural 
Barrier. These barriers include multiple features that have processes and events that may act on or 
within the barriers to affect the capability of the performance of the barrier.

The relevant FEPs that most significantly contribute to the capability of the barriers are presented 
in Tables 2.1-2, 2.1-3, and 2.1-4. A complete evaluation of all potential FEPs, including the 
technical basis for their inclusion or exclusion in the performance assessment, is presented in 
Features, Events, and Processes for the Total System Performance Assessment: Analyses (SNL 
2008b).

Detailed descriptions of the models used to evaluate the barrier capability, as well as the technical 
basis for the treatment of uncertainties associated with the models and parameters used in the 
evaluation, are presented in the model abstraction descriptions in Section 2.3.

The Upper Natural Barrier, by preventing or substantially reducing the amount and the rate of water 
seeping into the drifts, prevents or substantially reduces the rate of movement of water from the 
repository to the accessible environment and prevents or reduces the release rate of radionuclides 
from the waste. For the present-day climate, on average, more than 90% of the percolation flux 
would be diverted around drifts in TSw unit (Section 2.1.2.1.6.2). For the wetter climate states of 
the monsoonal and the glacial-transition climate states, the percentage of diverted flux would still 
be approximately 90% (Section 2.1.2.1.6.2). Drift collapse due to seismic events can reduce the 
potential for flow diversion. After several hundred thousand years, when drifts in the lithophysal 
units may completely fill with accumulated rubble from several seismic events, the diverted flux 
potentially reduces to a spatially-averaged value over lithophysal and nonlithophysal units of about 
50% (Section 2.1.2.1.6.2). In the nonlithophysal units, flow diversion reduces to 0% when the 
threshold rockfall volume of 0.5 m3/m drift length is exceeded. In addition, during the glacial 
transition climate state, the Upper Natural Barrier is projected to prevent water from contacting 
about 60% of the waste package locations (Section 2.1.2.1.6). For collapsed drifts in the lithophysal 
units caused by seismic events, this percentage reduces to a spatially-averaged value over 
lithophysal and nonlithophysal units of about 30% (Section 2.1.2.1.6). Overall, the observed 
seepage percentages demonstrate the important barrier capability of the unsaturated flow processes 
in the fractured rock at and above the repository horizon.

The EBS prevents or substantially reduces the release rate of radionuclides from the waste, and 
prevents or substantially reduces the rate of movement of radionuclides from the repository to the 
accessible environment. It performs these functions by virtue of the materials and design of the 
emplacement drifts, drip shields, waste packages and waste forms, and waste package internals
(Sections 2.1.1.2 and 2.1.2.2). In addition, the EBS provides for chemical and thermal-hydrologic 
2.1-110



DOE/RW-0573, Rev. 0Yucca Mountain Repository SAR
environments that lead to low solubilities for the radionuclides that make up the greatest fraction of 
the inventory activity. Finally, the EBS environments are such that radionuclide transport from the 
waste to the unsaturated zone is limited to a small fraction of the available inventory (less than 
3 × 10−3% in 10,000 years and 7% in 1,000,000 years), even under the wide range of likely and 
unlikely seismic ground motion events (Section 2.1.2.2.6).

The Lower Natural Barrier prevents or substantially reduces the rate of movement of radionuclides 
from the repository to the accessible environment. The key processes associated with the 
performance of the Lower Natural Barrier include sorption and matrix diffusion. For the 
radionuclides representing the dominant inventory during the first 10,000 years after closure (137Cs, 
90Sr, 241Am, 240Pu and 239Pu), the Lower Natural Barrier reduces activity releases from the EBS by 
greater than 99.5% (240Pu and 241Am) to 100% (137Cs and 90Sr). Activity releases of the 
solubility-limited, strongly sorbed, long half-life Pu isotopes (239Pu and 242Pu) are reduced by more 
than 99%. For radionuclides of low-to-moderate solubility, low sorption, and long half-life 
(e.g., 237Np and 234U), the Lower Natural Barrier reduces activity releases from the EBS by 78% 
(237Np) to 89% (234U). Activities associated with radionuclides important to colloid transport and 
decay chain in-growth (e.g., 243Am, 230Th, and 226Ra) are reduced by the Lower Natural Barrier by 
more than 99%. The activity of 99Tc, which is a highly soluble, nonsorbing, long half-life 
radionuclide, is reduced by the Lower Natural Barrier between about 20% to 62% during the first 
10,000 years. However, it is important to note that this reduction is a transient condition; for 
instance, comparing the 99Tc activities at about 20,000 years, the reduction in 99Tc is effectively 
zero.

For the period after 10,000 years, the inventories of 137Cs and 90Sr are depleted by radioactive decay, 
and the Lower Natural Barrier reduces activity releases of 241Am by 100% and 240Pu by 98%
(Section 2.1.2.3.6). Activities of the long half-life Pu isotopes are reduced by 90% (239Pu) and 66% 
(242Pu) respectively (Section 2.1.2.3.6). 243Am, 230Th, and 226Ra are reduced by about 99.6%, 85%, 
and 97.6%, respectively (Section 2.1.2.3.6). The activities of low-to-moderate solubility, low 
sorption, long half-life radionuclides are reduced by approximately 23% (237Np) to 32% (234U) 
(Section 2.1.2.3.6). Release of the mobile radionuclide, 99Tc, was reduced by a negligible few 
percent by the Lower Natural Barrier. It is important to note that only about 7% of the total available
radionuclide inventory in the repository is projected to be released by the EBS to the Lower Natural 
Barrier. The majority of the activity released by the EBS to the Lower Natural Barrier is attributable 
to 99Tc (Section 2.1.2.3.6). At about 200,000 years, 99Tc provides about 40% of the total activity in 
the inventory, and at 1,000,000 years less than 10% (Figure 2.1-19). The low percentage reductions 
in the small amount of total mean 99Tc activity released to the Lower Natural Barrier are due to its 
transport characteristics. The nonsorbing nature of this radionuclide causes it to be transported 
through the EBS and the Lower Natural Barrier at approximately the rate at which the groundwater 
travels.

The parameters and models used in the quantification of barrier capability are the same as those 
developed in Section 2.3 for use in the TSPA for evaluation of performance of the natural and 
engineered barriers in the assessment of the individual and groundwater protection that is presented 
in Section 2.4. Although uncertainty exists in the parameters and models of the relevant processes 
that affect the assessment of barrier capability and the TSPA, this uncertainty has been appropriately 
addressed in the assessments.
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Table 2.1-1.  ITWI Features / Components Supporting Each of the Three Barriers 

Barrier Featurea Barrier Functionb Safety Classificationc

UNB Topography and Surficial Soils Prevents or substantially reduces the 
rate of movement of water

ITWI

UNB Unsaturated Zone above the 
Repository

Prevents or substantially reduces the 
rate of movement of water

ITWI

EBS Emplacement Drift Prevents or substantially reduces the 
rate of movement of water

Prevents or substantially reduces the 
rate of movement of radionuclides

ITWI

EBS Emplacement Drift – Non 
Emplacement Openings, Closure, 
Ground Support, and Ventilation 
System

None Non-ITWI

EBS Drip Shield Prevents or substantially reduces the 
rate of movement of water

Prevents or substantially reduces the 
rate of movement of radionuclides

ITWI

EBS Waste Package Prevents or substantially reduces the 
rate of movement of water

Prevents or substantially reduces the 
release rate of radionuclides from 
the waste

Prevents or substantially reduces the 
rate of movement of radionuclides

ITWI

EBS Waste Form and Waste Package 
Internals – TAD Canister

Prevents or substantially reduces the 
release rate of radionuclides from 
the waste

Prevents or substantially reduces the 
rate of movement of radionuclides

ITWI

Waste Form and Waste Package 
Internals – Naval Canister

Prevents or substantially reduces the 
release rate of radionuclides from 
the waste

Prevents or substantially reduces the 
rate of movement of radionuclides

Reduces the probability of criticality

ITWI

EBS Waste Form and Waste Package 
Internals – DOE SNF Canister

None Non-ITWI

EBS Waste Form and Waste Package 
Internals – HLW Canister

None Non-ITWI

EBS Waste Form and Waste Package 
Internals - Naval SNF Canister 
System Components

Reduces the probability of criticality ITWI
2.1-115



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
EBS Waste Form and Waste Package 
Internals - Codisposal Waste Package 
Internals

None Non-ITWI

EBS Waste Form and Waste Package 
Internals – TAD Canister Internals

Reduces the probability of criticality ITWI

EBS Waste Form and Waste Package 
Internals - DOE SNF Canister 
Internals

Reduces the probability of criticality ITWI

EBS Waste Form and Waste Package 
Internals – Commercial Spent Nuclear 
Fuel and High Level Glass

Prevents or substantially reduces the 
release rate of radionuclides from 
the waste

Prevents or substantially reduces the 
rate of movement of radionuclides

ITWI

EBS Waste Form and Waste Package 
Internals – Naval Spent Nuclear Fuel

Prevents or substantially reduces the 
release rate of radionuclides from 
the waste

Prevents or substantially reduces the 
rate of movement of radionuclides

ITWI

EBS Waste Form and Waste Package 
Internals – DOE Spent Nuclear Fuel

None Non-ITWI

EBS Cladding – Commercial SNF / DOE 
SNF

None Non-ITWI

EBS Waste Package Emplacement Pallet None Non-ITWI

EBS Invert None Non-ITWI

LNB Unsaturated Zone below the 
Repository

Prevents or substantially reduces the 
rate of movement of radionuclides

ITWI

LNB Saturated Zone Prevents or substantially reduces the 
rate of movement of radionuclides

ITWI

NOTE: aSome features in this column are further divided into categories (signified by text after a dash) so that the 
feature as analyzed can be properly classified as ITWI or Non-ITWI.  
bBarrier Function defines how the identified barrier accomplishes or contributes to repository system 
performance. 
cITWI classification applies to barriers and features. 
LNB = Lower Natural Barrier, UNB = Upper Natural Barrier.

Source: Modified from Postclosure Nuclear Safety Design Bases (SNL 2008a, Table 7-1).

Table 2.1-1.  ITWI Features / Components Supporting Each of the Three Barriers (Continued)

Barrier Featurea Barrier Functionb Safety Classificationc
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Table 2.1-2. Summary of Features, Events, and Processes Affecting the Capability of the Upper 
Natural Barrier 

Barrier Feature
FEP Number, FEP Name, and Screening Decision

(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier

Topography and 
Surficial Soils

1.2.02.01.0A – Fractures – Included X

1.2.07.01.0A – Erosion/ denudation – Excluded

1.2.07.02.0A – Deposition – Excluded

1.3.01.00.0A – Climate change – Included X

1.4.01.01.0A – Climate modification increases recharge – 
Included

X

2.2.03.02.0A – Rock properties of host rock and other units 
– Included

X

2.2.06.04.0A – Effects of subsidence – Excluded

2.2.07.01.0A – Locally saturated flow at bedrock/alluvium 
contact – Excluded

2.2.07.08.0A – Fracture flow in the UZ – Included X

2.3.01.00.0A – Topography and morphology – Included X

2.3.11.01.0A – Precipitation – Included X

2.3.11.02.0A – Surface runoff and evapotranspiration – 
Included

X

2.3.11.03.0A – Infiltration and recharge – Included X

Unsaturated 
Zone above the 
Repository

1.1.01.01.0A – Open site investigation boreholes – 
Excluded

1.1.01.01.0B – Influx through holes drilled in drift wall or 
crown – Excluded

1.2.02.01.0A – Fractures – Included X

1.2.02.02.0A – Faults – Included

1.2.04.02.0A – Igneous activity changes rock properties – 
Excluded

1.2.04.05.0A – Magma or pyroclastic base surge transports 
waste – Excluded

1.2.06.00.0A – Hydrothermal activity – Excluded

1.2.10.01.0A – Hydrologic response to seismic activity – 
Excluded
2.1-117



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
Unsaturated 
Zone above the 
Repository 
(Continued)

1.2.10.02.0A – Hydrologic response to igneous activity – 
Excluded

1.3.01.00.0A – Climate change – Included X

1.4.01.01.0A – Climate modification increases recharge – 
Included

X

1.4.06.01.0A – Altered soil or surface water chemistry – 
Excluded

2.1.08.01.0A – Water influx at the repository – Included X

2.1.08.01.0B – Effects of rapid influx into the repository – 
Excluded

2.1.08.02.0A – Enhanced influx at the repository – Included

2.1.08.03.0A – Repository dryout due to waste heat – 
Included

2.1.08.11.0A – Repository resaturation due to waste cooling 
– Included

2.1.09.12.0A – Rind (chemically altered zone) forms in the 
near field – Excluded

2.2.01.01.0A – Mechanical effects of excavation and 
construction in the near field – Included

2.2.01.01.0B – Chemical effects of excavation and 
construction in the near field – Excluded

2.2.01.02.0A – Thermally-induced stress changes in the 
near field – Excluded

2.1.01.02.0B – Chemical changes in the near-field from 
backfill – Excluded

2.2.03.01.0A – Stratigraphy – Included X

2.2.03.02.0A – Rock properties of host rock and other units 
– Included

X

2.2.06.01.0A – Seismic activity changes porosity and 
permeability of rock – Excluded

2.2.06.02.0A – Seismic activity changes porosity and 
permeability of faults – Excluded

Table 2.1-2. Summary of Features, Events, and Processes Affecting the Capability of the Upper 
Natural Barrier (Continued)

Barrier Feature
FEP Number, FEP Name, and Screening Decision

(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Unsaturated 
Zone above the 
Repository 
(Continued)

2.2.06.02.0B – Seismic activity changes porosity and 
permeability of fractures – Excluded

2.2.06.03.0A – Seismic activity alters perched water zones – 
Excluded

2.2.06.04.0A – Effects of Subsidence – Excluded

2.2.07.01.0A – Locally saturated flow at bedrock/ alluvium 
contact – Excluded

2.2.07.02.0A – Unsaturated groundwater flow in the 
geosphere – Included

X

2.2.07.04.0A – Focusing of unsaturated flow (fingers, 
weeps) – Included

2.2.07.05.0A – Flow in the UZ from episodic infiltration – 
Excluded

2.2.07.07.0A – Perched water develops – Included

2.2.07.08.0A – Fracture flow in the UZ – Included X

2.2.07.09.0A – Matrix imbibition in the UZ – Included

2.2.07.10.0A – Condensation zone forms around drifts – 
Included

2.2.07.11.0A – Resaturation of geosphere dryout zone – 
Included

2.2.07.18.0A – Film flow into the repository – Included

2.2.07.19.0A – Lateral flow from Solitario Canyon Fault 
enters drifts – Included

2.2.07.20.0A – Flow diversion around repository drifts – 
Included

X

2.2.10.01.0A – Repository-induced thermal effects on flow 
in the UZ – Excluded

2.2.10.03.0B – Natural geothermal effects on flow in the UZ 
– Included

2.2.10.04.0A – Thermo-mechanical stresses alter 
characteristics of fractures near repository – Excluded

2.2.10.04.0B – Thermo-mechanical stresses alter 
characteristics of faults near repository – Excluded

Table 2.1-2. Summary of Features, Events, and Processes Affecting the Capability of the Upper 
Natural Barrier (Continued)

Barrier Feature
FEP Number, FEP Name, and Screening Decision

(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Unsaturated 
Zone above the 
Repository 
(Continued)

2.2.10.05.0A – Thermo-mechanical stresses alter 
characteristics of rocks above and below the repository – 
Excluded

2.2.10.10.0A – Two-phase buoyant flow/heat pipes – 
Included

2.2.10.11.0A – Natural air flow in the unsaturated zone – 
Excluded

2.2.10.12.0A – Geosphere dryout due to waste heat – 
Included

2.2.11.02.0A – Gas effects in the UZ – Excluded

2.2.12.00.0A – Undetected features in the UZ – Excluded

Source: SNL 2008a, Table A-1.

Table 2.1-2. Summary of Features, Events, and Processes Affecting the Capability of the Upper 
Natural Barrier (Continued)

Barrier Feature
FEP Number, FEP Name, and Screening Decision

(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System 

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier

Emplacement 
Drift

1.1.01.01.0A – Open site investigation boreholes – Excluded

1.1.02.00.0A – Chemical effects of excavation and construction 
in EBS – Excluded

1.1.02.00.0B – Mechanical effects of excavation and 
construction in EBS – Excluded

1.1.02.01.0A – Site flooding (during construction and 
operation) – Excluded

1.1.02.02.0A – Preclosure ventilation – Included

1.1.02.03.0A – Undesirable materials left – Excluded

1.1.03.01.0A – Error in waste emplacement – Excluded

1.1.04.01.0A – Incomplete closure – Excluded

1.1.07.00.0A – Repository design – Included

1.1.08.00.0A – Inadequate quality control and deviations from 
design – Excluded

1.2.02.03.0A – Fault displacement damages EBS components 
– Included

1.2.03.02.0A – Seismic Ground Motion Damages EBS 
Components – Included

X

1.2.03.02.0B – Seismic-induced Rockfall damages EBS 
Components – Excluded

X

1.2.03.02.0C – Seismic-induced Drift Collapse Damages EBS 
Components – Included

X

1.2.03.02.0D – Seismic-induced Drift Collapse Alters In-drift 
Thermal-Hydrology – Included

X

1.2.03.02.0E – Seismic-induced Drift Collapse Alters In-drift 
Chemistry – Excluded

1.2.03.03.0A – Seismicity Associated with Igneous Activity – 
Included

1.2.04.03.0A – Igneous Intrusion into repository – Included

1.2.04.04.0A – Igneous Intrusion interacts with EBS 
Components – Included
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Emplacement 
Drift 
(Continued)

1.2.04.04.0B – Chemical Effects of Magma and Magmatic 
Volatiles – Included

1.2.04.05.0A – Magma or Pyroclastic Base Surge Transports 
Waste – Excluded

1.2.04.06.0A – Eruptive Conduit to Surface Intersects 
Repository – Included

2.1.01.04.0A – Repository-scale Spatial Heterogeneity of 
Emplaced Waste – Included

2.1.03.09.0A – Copper corrosion in EBS – Excluded

2.1.04.01.0A – Flow in the Backfill – Excluded

2.1.04.02.0A – Chemical Properties and Evolution of Backfill – 
Excluded

2.1.04.03.0A – Erosion or Dissolution of Backfill – Excluded

2.1.04.04.0A – Thermal-mechanical effects of backfill – 
Excluded

2.1.04.05.0A – Thermal-mechanical Properties and Evolution 
of Backfill – Excluded

2.1.05.02.0A – Radionuclide transport through seals – 
Excluded

2.1.06.01.0A – Chemical effects of rock reinforcement and 
cementitious materials in EBS – Excluded

2.1.06.02.0A – Mechanical effects of rock reinforcement 
materials in EBS – Excluded

2.1.06.04.0A – Flow through rock reinforcement materials in 
EBS – Excluded

2.1.06.07.0A – Chemical effects at EBS component interface – 
Excluded

2.1.06.07.0B – Mechanical effects at EBS component 
interfaces – Excluded

2.1.07.01.0A – Rockfall – Excluded

2.1.07.02.0A – Drift collapse – Excluded

2.1.07.06.0A – Floor buckling – Excluded

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
2.1-122



DOE/RW-0573, Rev. 0Yucca Mountain Repository SAR
Emplacement 
Drift 
(Continued)

2.1.08.01.0B – Effects of Rapid Influx into the Repository – 
Excluded

2.1.08.03.0A – Repository Dry-out Due to Waste Heat – 
Included

2.1.08.04.0A – Condensation forms on roofs of drifts 
(drift-scale cold traps) – Included

2.1.08.04.0B – Condensation forms at repository edges 
(repository-scale cold traps) – Included

2.1.08.06.0A – Capillary effects (wicking) in EBS – Included

2.1.08.07.0A – Unsaturated flow in the EBS – Included X

2.1.08.09.0A – Saturated flow in the EBS – Excluded

2.1.08.15.0A – Consolidation of EBS components – Excluded

2.1.09.01.0A – Chemical characteristics of water in drifts – 
Included

X

2.1.09.02.0A – Chemical interaction with corrosion products – 
Included

2.1.09.03.0C – Volume increase of corrosion products impacts 
other EBS components – Excluded

2.1.09.09.0A – Electrochemical effects in EBS – Excluded

2.1.10.01.0A – Microbial activity in EBS – Excluded

2.1.11.01.0A – Heat generation in EBS – Included X

2.1.11.02.0A – Nonuniform heat distribution in EBS – Included

2.1.11.03.0A – Exothermic reactions in the EBS – Excluded

2.1.11.07.0A – Thermal expansion/stress of in-drift EBS 
components – Excluded

2.1.11.08.0A – Thermal effects on chemistry and microbial 
activity in the EBS – Included

X

2.1.11.09.0A – Thermal effects on flow in the EBS – Included

2.1.11.09.0C – Thermally-driven flow (convection) in drifts – 
Included

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Emplacement 
Drift 
(Continued)

2.1.12.01.0A – Gas generation (repository pressurization) – 
Excluded

2.1.12.03.0A – Gas generation (H2) from waste package 
corrosion – Excluded

2.1.12.04.0A – Gas generation (CO2, CH4, H2S) from microbial 
degradation – Excluded

2.1.12.08.0A – Gas explosions in EBS – Excluded

2.1.13.01.0A – Radiolysis – Excluded

2.1.13.02.0A – Radiation damage in EBS – Excluded

2.1.13.03.0A – Radiological mutation of microbes – Excluded

2.2.01.01.0B – Chemical effects of excavation and construction 
in the near field – Excluded

2.2.01.02.0A – Thermally- induced stress changes in the near 
field – Excluded

2.2.01.02.0B – Chemical Changes in the Near-Field from 
Backfill – Excluded

2.2.07.06.0B – Long-Term Release of Radionuclides from the 
Repository – Included

2.2.08.03.0B – Geochemical Interactions and Evolution in the 
UZ – Excluded

2.2.08.04.0A – Re-dissolution of precipitates directs more 
corrosive fluids to waste packages – Excluded

2.2.08.12.0A – Chemistry of water flowing into the drift – 
Included

X

Drip Shield 1.2.02.03.0A – Fault Displacement Damages EBS 
Components – Included

1.2.03.02.0A – Seismic ground motion damages EBS 
components – Included

1.2.03.02.0B – Seismic-induced rockfall damages drip shield – 
Excluded

1.2.03.02.0C – Seismic-induced drift collapse damages EBS 
components – Included

X

2.1.03.01.0B – General corrosion of drip shields – Included X

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Drip Shield 
(Continued)

2.1.03.02.0B – Stress corrosion cracking of drip shields – 
Excluded

X

2.1.03.03.0B – Localized corrosion of drip shields – Excluded X

2.1.03.04.0B – Hydride cracking of drip shields – Excluded

2.1.03.05.0B – Microbially influenced corrosion (MIC) of drip 
shields – Excluded

2.1.03.07.0B – Mechanical impact on drip shield – Excluded

2.1.03.08.0B – Early failure of drip shields – Included X

2.1.03.10.0B – Advection of liquids and solids through cracks in 
the drip shield – Excluded

X

2.1.03.11.0A – Physical form of waste package and drip shield 
– Included

X

2.1.06.06.0A – Effects of drip shield on flow – Included X

2.1.06.06.0B – Oxygen embrittlement of drip shields – 
Excluded

2.1.06.07.0A – Chemical Effects at EBS Component Interface 
– Excluded

2.1.06.07.0B – Mechanical Effects at EBS Component 
Interfaces – Excluded

2.1.07.01.0A – Rockfall – Excluded

2.1.07.04.0B – Hydrostatic pressure on drip shield – Excluded

2.1.07.05.0B – Creep of metallic materials in the drip shield – 
Excluded

X

2.1.08.14.0A – Condensation on underside of drip shield – 
Excluded

2.1.09.28.0B – Localized corrosion on drip shield surfaces due 
to deliquescence – Excluded

X

2.1.11.06.0B – Thermal sensitization of drip shields – Excluded

2.1.11.07.0A – Thermal expansion/stress of in-drift EBS 
components – Excluded

2.1.13.02.0A – Radiation Damage in EBS – Excluded

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Waste 
Package

1.2.02.03.0A – Fault Displacement Damages EBS 
Components – Included

1.2.03.02.0A – Seismic ground motion damages EBS 
components – Included

X

2.1.03.01.0A – General corrosion of waste packages – 
Included

X

2.1.03.02.0A – Stress corrosion cracking of waste packages – 
Included

X

2.1.03.03.0A – Localized corrosion of waste packages – 
Included

X

2.1.03.04.0A – Hydride cracking of waste packages – Excluded

2.1.03.05.0A – Microbially influenced corrosion (MIC) of waste 
packages – Included

2.1.03.06.0A – Internal corrosion of waste packages prior to 
breach – Excluded

2.1.03.07.0A – Mechanical impact on waste package – 
Excluded

2.1.03.08.0A – Early failure of waste packages – Included X

2.1.03.10.0A – Advection of liquids and solids through cracks in 
the waste package – Excluded

X

2.1.03.11.0A – Physical form of waste package and drip shield 
– Included

X

2.1.06.07.0B – Mechanical Effects at EBS Component 
Interfaces – Excluded

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Waste 
Package 
(Continued)

2.1.07.01.0A – Rockfall – Excluded

2.1.07.04.0A – Hydrostatic pressure on waste package – 
Excluded

2.1.07.05.0A – Creep of metallic materials in the waste 
package – Excluded

2.1.08.12.0A – Induced hydrologic changes in invert – 
Excluded

2.1.08.14.0A – Condensation on underside of drip shield – 
Excluded

2.1.08.15.0A – Consolidation of EBS Components – Excluded

2.1.09.03.0B – Volume increase of corrosion products impacts 
waste package – Excluded

2.1.09.28.0A – Localized corrosion on waste package outer 
surface due to deliquescence – Excluded

X

2.1.11.03.0A – Exothermic Reactions in the EBS – Excluded

2.1.11.06.0A – Thermal sensitization of waste packages – 
Excluded

2.1.11.07.0A – Thermal expansion/stress of in-drift EBS 
components – Excluded

2.1.12.03.0A – Gas generation (H2) from waste package 
corrosion – Excluded

2.1.13.01.0A – Radiolysis – Excluded

2.1.13.02.0A – Radiation damage in EBS – Excluded

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Cladding 1.2.02.03.0A – Fault Displacement Damages EBS 
Components – Included

1.2.03.02.0A – Seismic Ground Motion Damages EBS 
Components – Included

2.1.02.11.0A – Degradation of cladding from waterlogged rods 
– Excluded

2.1.02.12.0A – Degradation of cladding prior to disposal – 
Included

2.1.02.13.0A – General corrosion of cladding – Excluded

2.1.02.14.0A – Microbially influenced corrosion (MIC) of 
cladding – Excluded

2.1.02.15.0A – Localized (radiolysis enhanced) corrosion of 
cladding – Excluded

2.1.02.16.0A – Localized (pitting) corrosion of cladding – 
Excluded

2.1.02.17.0A – Localized (crevice) corrosion of cladding – 
Excluded

2.1.02.18.0A – Enhanced corrosion of cladding from dissolved 
silica – Excluded

2.1.02.19.0A – Creep rupture of cladding – Excluded

2.1.02.20.0A – Internal pressurization of cladding – Excluded

2.1.02.21.0A – Stress corrosion cracking of cladding – 
Excluded

2.1.02.22.0A – Hydride cracking of cladding – Excluded

2.1.02.23.0A – Cladding unzipping – Included

2.1.02.24.0A – Mechanical impact on cladding – Excluded

2.1.02.25.0A – DOE SNF cladding – Excluded

2.1.02.25.0B – Naval SNF cladding – Included X

2.1.02.26.0A – Diffusion- controlled cavity growth in cladding – 
Excluded

2.1.02.27.0A – Localized (fluoride enhanced) corrosion of 
cladding – Excluded

2.1.09.03.0A – Volume increase of corrosion products impacts 
cladding – Excluded

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Waste Form 
and Waste 
Package 
Internals

1.2.02.03.0A – Fault Displacement Damages EBS 
Components – Included

1.2.03.02.0A – Seismic ground motion damages EBS 
components – Included

X

2.1.01.01.0A – Waste inventory – Included

2.1.01.02.0A – Interactions between colocated waste – 
Excluded

2.1.01.02.0B – Interactions between codisposed waste – 
Included

2.1.01.03.0A – Heterogeneity of waste inventory – Included

2.1.01.04.0A – Repository-scale spatial heterogeneity of 
emplaced waste – Included

2.1.02.01.0A – DOE SNF degradation (alteration, dissolution, 
and radionuclide release) – Included

X

2.1.02.02.0A – Commercial SNF degradation (alteration, 
dissolution, and radionuclide release) – Included

X

2.1.02.03.0A – HLW glass degradation (alteration, dissolution, 
and radionuclide release) – Included

X

2.1.02.04.0A – Alpha recoil enhances dissolution – EXcluded

2.1.02.05.0A – HLW glass cracking – Included

2.1.02.06.0A – HLW glass recrystallization – Excluded

2.1.02.07.0A – Radionuclide release from gap and grain 
boundaries – Included

2.1.02.08.0A – Pyrophoricity from DOE SNF – Excluded

2.1.02.09.0A – Chemical effects of void space in waste 
package – Included

X

2.1.02.10.0A – Organic/cellulosic materials in waste – 
Excluded

2.1.02.28.0A – Grouping of DOE SNF waste types into 
categories – Included

2.1.02.29.0A – Flammable gas generation from DOE SNF – 
EXcluded

2.1.03.06.0A – Internal corrosion of waste packages prior to 
breach – EXcluded

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Waste Form 
and Waste 
Package 
Internals 
(Continued)

2.1.09.01.0B – Chemical characteristics of water in waste 
package – Included

X

2.1.09.02.0A – Chemical interaction with corrosion products – 
Included

X

2.1.09.04.0A – Radionuclide solubility, solubility limits, and 
speciation in the waste form and EBS – Included

X

2.1.09.05.0A – Sorption of dissolved radionuclides in EBS – 
Included

X

2.1.09.06.0A – Reduction-oxidation potential in waste package 
– Included

2.1.09.07.0A – Reaction kinetics in waste package – Included X

2.1.09.08.0A – Diffusion of dissolved radionuclides in EBS – 
Included

X

2.1.09.08.0B – Advection of dissolved radionuclides in EBS – 
Included

X

2.1.09.10.0A – Secondary phase effects on dissolved 
radionuclide concentrations – Excluded

2.1.09.11.0A – Chemical effects of waste–rock contact – 
Excluded

2.1.09.15.0A – Formation of true (intrinsic) colloids in EBS – 
Excluded

2.1.09.16.0A – Formation of pseudocolloids (natural) in EBS – 
Included

2.1.09.17.0A – Formation of pseudocolloids (corrosion product) 
in EBS – Included

2.1.09.18.0A – Formation of microbial colloids in EBS – 
Excluded

2.1.09.19.0A – Sorption of colloids in EBS –Excluded

2.1.09.19.0B – Advection of colloids in EBS – Included

2.1.09.20.0A – Filtration of colloids in EBS – Excluded

2.1.09.23.0A – Stability of colloids in EBS – Included

2.1.09.24.0A – Diffusion of colloids in EBS – Included

2.1.09.25.0A – Formation of colloids (waste form) by 
co-precipitation in EBS – Included

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Waste Form 
and Waste 
Package 
Internals 
(Continued)

2.1.11.05.0A – Thermal expansion/stress of in-package EBS 
components –Excluded

2.1.11.09.0B – Thermally-driven flow (convection) in waste 
packages – Excluded

2.1.12.02.0A – Gas generation (He) from waste form decay – 
Excluded

2.1.14.15.0A – In-Package Criticality (intact configuration) – 
Excluded

2.1.14.16.0A – In-Package Criticality (degraded configurations) 
– Excluded

2.1.14.18.0A – In-Package Criticality Resulting from a Seismic 
Event (intact configuration) – Excluded

2.1.14.19.0A – In-Package Criticality Resulting from a Seismic 
Event (degraded configurations) – Excluded

2.1.14.21.0A – In-Package Criticality Resulting from Rockfall 
(intact configuration) – Excluded

2.1.14.22.0A – In-Package Criticality Resulting from Rockfall 
(degraded configurations) – Excluded

2.1.14.24.0A – In-package Criticality Resulting from an 
Igneous Event (intact configuration) – Excluded

2.1.14.25.0A – In-Package Criticality Resulting from an 
Igneous Event (degraded configurations) – Excluded

2.2.08.12.0B – Chemistry of water flowing into the waste 
package – Included

3.1.01.01.0A – Radioactive decay and ingrowth – Included

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
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FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
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Waste 
Package 
Pallet

1.2.02.03.0A – Fault Displacement Damages EBS 
Components – Included

1.2.03.02.0A – Seismic ground motion damages EBS 
components – Included

X

2.1.06.05.0A – Mechanical degradation of emplacement pallet 
– Excluded

2.1.06.05.0C – Chemical degradation of emplacement pallet – 
Included

2.1.06.07.0A – Chemical Effects at EBS Component Interface 
– Excluded

2.1.06.07.0B – Mechanical Effects at EBS Component 
Interfaces – Excluded

2.1.11.07.0A – Thermal Expansion/ Stress of In-drift EBS 
Components – Excluded

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)

Barrier 
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Invert 1.2.02.03.0A – Fault displacement damages EBS components 
– Included

1.2.03.02.0A – Seismic ground motion damages EBS 
components – Included

2.1.06.05.0B – Mechanical degradation of invert – Excluded

2.1.06.05.0D – Chemical degradation of invert – Excluded

2.1.08.05.0A – Flow through invert – Included

2.1.06.07.0B – Mechanical Effects at EBS Component 
Interfaces – Excluded

2.1.08.06.0A – Capillary effects (wicking) in EBS – Included

2.1.08.07.0A – Unsaturated flow in the EBS – Included

2.1.08.12.0A – Induced hydrologic changes in invert – 
Excluded

2.1.09.01.0A – Chemical characteristics of water in drifts – 
Included

2.1.09.04.0A – Radionuclide solubility, solubility limits, and 
speciation in the waste form and EBS – Included

2.1.09.05.0A – Sorption of dissolved radionuclides in EBS – 
Included

2.1.09.06.0B – Reduction- oxidation potential in drifts – 
Included

2.1.09.07.0B – Reaction kinetics in drift – Included

2.1.09.08.0A – Diffusion of dissolved radionuclides in EBS – 
Included

2.1.09.08.0B – Advection of dissolved radionuclides in EBS – 
Included

2.1.09.13.0A – Complexation in EBS – Excluded

2.1.09.19.0A – Sorption of colloids in EBS – Excluded

2.1.09.19.0B – Advection of colloids in EBS – Included

2.1.09.20.0A – Filtration of colloids in EBS – Excluded

2.1.09.21.0A – Transport of particles larger than colloids in 
EBS – Excluded

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)
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(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier
2.1-133



DOE/RW-0573, Rev. 0 Yucca Mountain Repository SAR
Invert 
(Continued)

2.1.09.22.0A – Sorption of colloids at air–water interface – 
Excluded

2.1.09.23.0A – Stability of colloids in EBS – Included

2.1.09.24.0A – Diffusion of colloids in EBS – Included

2.1.09.26.0A – Gravitational settling of colloids in EBS – 
Excluded

2.1.09.27.0A – Coupled effects on radionuclide transport in 
EBS – Excluded

2.1.11.07.0A – Thermal Expansion/ Stress of In-drift EBS 
Components – Excluded

2.1.11.10.0A – Thermal effects on transport in EBS – Excluded

2.1.12.06.0A – Gas transport in EBS – Excluded

2.1.12.07.0A – Effects of radioactive gases in EBS – Excluded

2.1.14.17.0A – Near-field criticality – Excluded

2.1.14.20.0A – Near-field criticality resulting from a seismic 
event – Excluded

2.1.14.23.0A – Near-field criticality resulting from rockfall – 
Excluded

2.1.14.26.0A – Near-field criticality resulting from an igneous 
event – Excluded

2.2.07.06.0A – Episodic or pulse release from repository – 
Excluded

2.2.07.06.0B – Long-term release of radionuclides from the 
repository – Included

3.1.01.01.0A – Radioactive decay and ingrowth – Included

Source: SNL 2008a, Table A-2.

Table 2.1-3. Summary of Features, Events, and Processes Affecting the Capability of the Engineered 
Barrier System (Continued)
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Table 2.1-4. Summary of Features, Events, and Processes Affecting the Capability of the Lower 
Natural Barrier 

Barrier 
Feature

FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
that are Important to the 
Capability of the Barrier

Unsaturated 
Zone below the 
Repository

1.2.02.01.0A – Fractures – Included X

1.2.02.02.0A – Faults – Included X

1.2.04.02.0A – Igneous activity changes rock properties – 
Excluded

1.2.04.05.0A – Magma or pyroclastic base surge transports 
waste – Excluded

1.2.04.06.0A – Eruptive conduit to surface intersects 
repository – Included

1.2.06.00.0A – Hydrothermal activity – Excluded

1.2.10.01.0A – Hydrologic response to seismic activity – 
Excluded

1.2.10.02.0A – Hydrologic response to igneous activity – 
Excluded

1.3.01.00.0A – Climate change – Included X

1.3.07.02.0B – Water table rise affects UZ – Included

1.4.01.01.0A – Climate modification increases recharge – 
Included

X

2.1.09.12.0A – Rind (chemically altered zone) forms in the 
near field – Excluded

2.1.09.21.0C – Transport of particles larger than colloids in 
the UZ – Excluded

2.2.01.03.0A – Changes in fluid saturations in the 
excavation disturbed zone – Excluded

2.2.01.04.0A – Radionuclide solubility in the excavation 
disturbed zone – Excluded

2.2.01.05.0A – Radionuclide transport in the excavation 
disturbed zone – Excluded

2.2.03.01.0A – Stratigraphy – Included X

2.2.03.02.0A – Rock properties of host rock and other units 
– Included

X

2.2.06.01.0A – Seismic activity changes porosity and 
permeability of rock – Excluded

2.2.06.02.0A – Seismic activity changes porosity and 
permeability of faults – Excluded
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Unsaturated 
Zone below the 
Repository 
(Continued)

2.2.06.02.0B – Seismic activity changes porosity and 
permeability of fractures – Excluded

2.2.06.03.0A – Seismic activity alters perched water zones 
– Excluded

2.2.07.02.0A – Unsaturated groundwater flow in the 
geosphere – Included

X

2.2.07.03.0A – Capillary rise in the UZ – Included

2.2.07.07.0A – Perched water develops – Included X

2.2.07.08.0A – Fracture flow in the UZ – Included X

2.2.07.09.0A – Matrix imbibition in the UZ – Included X

2.2.07.15.0B – Advection and dispersion in the UZ – 
Included

X

2.2.07.21.0A – Drift shadow forms below repository – 
Excluded

2.2.08.01.0B – Chemical characteristics of groundwater in 
the UZ – Included

2.2.08.03.0B – Geochemical interactions and evolution in 
the UZ – Excluded

2.2.08.05.0A – Diffusion in the UZ – Excluded

2.2.08.06.0B – Complexation in the UZ – Included

2.2.08.07.0B – Radionuclide solubility limits in the UZ – 
Excluded

2.2.08.08.0B – Matrix diffusion in the UZ – Included X

2.2.08.09.0B – Sorption in the UZ – Included X

2.2.08.10.0B – Colloidal transport in the UZ – Included

2.2.09.01.0B – Microbial activity in the UZ – Excluded

2.2.10.04.0A – Thermo-mechanical stresses alter 
characteristics of fractures near repository – Excluded

Table 2.1-4. Summary of Features, Events, and Processes Affecting the Capability of the Lower 
Natural Barrier (Continued)

Barrier 
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FEP Number, FEP Name, and Screening Decision
(Section 2.2, Table 2.2-5)

Processes and Characteristics 
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Capability of the Barrier
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Unsaturated 
Zone below the 
Repository 
(Continued)

2.2.10.04.0B – Thermo-mechanical stresses alter 
characteristics of faults near repository – Excluded

2.2.10.05.0A – Thermo-mechanical stresses alter 
characteristics of rocks above and below the repository – 
Excluded

2.2.10.06.0A – Thermo-chemical alteration in the 
unsaturated zone (solubility, speciation, phase changes, 
precipitation/dissolution) – Excluded

2.2.10.07.0A – Thermo-chemical alteration of the Calico 
Hills unit – Excluded

2.2.10.09.0A – Thermo-chemical alteration of the Topopah 
Spring basal vitrophyre – Excluded

2.2.10.14.0A – Mineralogic dehydration reactions – 
Excluded

2.2.11.03.0A – Gas transport in geosphere – Excluded

2.2.12.00.0A – Undetected features in the UZ – Excluded

2.2.14.09.0A – Far-field criticality – Excluded

2.2.14.10.0A – Far-field criticality resulting from a seismic 
event – Excluded

2.2.14.11.0A – Far-field criticality resulting from rockfall – 
Excluded

2.2.14.12.0A – Far-field criticality resulting from an igneous 
event – Excluded

3.1.01.01.0A – Radioactive decay and ingrowth – Included

Saturated 
Zone 

1.2.02.01.0A – Fractures – Included X

1.2.02.02.0A – Faults – Included X

1.2.04.02.0A – Igneous activity changes rock properties – 
Excluded

1.2.04.07.0B – Ash redistribution in groundwater – 
Excluded

1.2.06.00.0A – Hydrothermal activity – Excluded

1.2.09.02.0A – Large-scale dissolution – Excluded

1.2.10.01.0A – Hydrologic response to seismic activity – 
Excluded

Table 2.1-4. Summary of Features, Events, and Processes Affecting the Capability of the Lower 
Natural Barrier (Continued)

Barrier 
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Capability of the Barrier
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Saturated 
Zone 
(Continued)

1.2.10.02.0A – Hydrologic response to igneous activity – 
Excluded

1.3.01.00.0A – Climate change – Included X

1.3.07.01.0A – Water table decline – Excluded

1.3.07.02.0A – Water table rise affects SZ – Included

1.4.01.01.0A – Climate modification increases recharge – 
Included

X

1.4.07.02.0A – Wells – Included

2.1.09.21.0B – Transport of particles larger than colloids in 
the SZ – Excluded

2.2.03.01.0A – Stratigraphy – Included X

2.2.03.02.0A – Rock properties of host rock and other units 
– Included

X

2.2.06.01.0A – Seismic activity changes porosity and 
permeability of rock – Excluded 

2.2.06.02.0A – Seismic activity changes porosity and 
permeability of faults – Excluded

2.2.06.02.0B – Seismic activity changes porosity and 
permeability of fractures – Excluded

2.2.07.12.0A – Saturated groundwater flow in the 
geosphere – Included

X

2.2.07.13.0A – Water- conducting features in the SZ – 
Included

X

2.2.07.14.0A – Chemically induced density effects on 
groundwater flow – Excluded

2.2.07.15.0A – Advection and dispersion in the SZ – 
Included

X

2.2.07.16.0A – Dilution of radionuclides in groundwater – 
Included

2.2.07.17.0A – Diffusion in the SZ – Included

2.2.08.01.0A – Chemical characteristics of groundwater in 
the SZ – Included

2.2.08.03.0A – Geochemical interactions and evolution in 
the SZ – Excluded

Table 2.1-4. Summary of Features, Events, and Processes Affecting the Capability of the Lower 
Natural Barrier (Continued)
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Saturated 
Zone 
(Continued)

2.2.08.06.0A – Complexation in the SZ – Included

2.2.08.07.0A – Radionuclide solubility limits in the SZ – 
Excluded

2.2.08.08.0A – Matrix diffusion in the SZ – Included X

2.2.08.09.0A – Sorption in the SZ – Included X

2.2.08.10.0A – Colloidal transport in the SZ – Included

2.2.09.01.0A – Microbial activity in the SZ – Excluded

2.2.10.02.0A – Thermal convection cell develops in SZ – 
Excluded

2.2.10.03.0A – Natural geothermal effects on flow in the SZ 
– Included

2.2.10.08.0A – Thermal-chemical alteration in the SZ 
(solubility, speciation, phase changes, 
precipitation/dissolution) – Excluded

2.2.10.13.0A – Repository- induced thermal effects on flow 
in the SZ – Excluded

2.2.11.01.0A – Gas effects in the SZ – Excluded

2.2.12.00.0B – Undetected features in the SZ – Included

3.1.01.01.0A – Radioactive decay and ingrowth – Included

3.2.07.01.0A – Isotopic dilution – Excluded

Source: SNL 2008a, Table A-3.

Table 2.1-4. Summary of Features, Events, and Processes Affecting the Capability of the Lower 
Natural Barrier (Continued)

Barrier 
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Capability of the Barrier
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Table 2.1-5.  Relationship between Barriers and Total System Performance Assessment Models  

Barrier Model SAR Section

Upper Natural Barrier Infiltration 2.3.1.3.3

Unsaturated zone flow 2.3.2.4

Ambient seepage 2.3.3.2.3

Thermal-hydrologic seepage 2.3.3.3.3

Engineered Barrier System Drift degradation and rockfall 2.3.4.4, 2.3.4.5

Near-field chemistry 2.3.5.3.3

Multiscale thermal-hydrologic 2.3.5.4.1

In-drift condensation 2.3.5.4.2

In-drift physical and chemical environment 2.3.5

Drip shield degradation

Mechanical Damage 
General corrosion 
Early failure

2.3.4.5
2.3.6.8.1
2.3.6.8.4

Waste package degradation

Mechanical damage 
General corrosion 
Localized corrosion 
Stress corrosion cracking 
Early failure

2.3.4.5
2.3.6.3.3
2.3.6.4.3
2.3.6.5.3
2.3.6.6.3

In-package chemistry 2.3.7.5.3

Commercial SNF degradation 2.3.7.7.3

DOE SNF degradation 2.3.7.8.3

HLW glass degradation 2.3.7.9.3

Dissolved concentration limits 2.3.7.10.3

Colloidal radionuclide availability 2.3.7.11.3

EBS flow and transport 2.3.7.12.3

Lower Natural Barrier Unsaturated zone flow 2.3.2.4

Unsaturated zone transport 2.3.8.4

Saturated zone flow 2.3.9.2.3

Saturated zone transport 2.3.9.3.3
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Table 2.1-6. Seepage Fractions for Codisposal and Commercial SNF Waste Packages for Combined 
Nominal/Early Failure Modeling Case for Glacial-Transition Climate, 2,000 to 10,000 Years

Percolation Subregion
Seepage Fraction for Codisposal 

Waste Packages
Seepage Fraction for Commercial 

SNF Waste Packages

Subregion 
Index

Quantile Range 5th 
Percentile

Mean 95th 
Percentile

5th 
Percentile

Mean 95th 
Percentile

1 p < 0.05 0.0031 0.0881 0.2764 0.0020 0.0887 0.2823

2 0.05 ≤ p < 0.30 0.0261 0.2292 0.5782 0.0217 0.2308 0.5780

3 0.30 ≤ p < 0.70 0.0448 0.3306 0.7395 0.0455 0.3294 0.7439

4 0.70 ≤ p < 0.95 0.0453 0.3846 0.7955 0.0431 0.3848 0.7998

5 p ≥ 0.95 0.0880 0.4656 0.8447 0.0870 0.4666 0.8386

Repository Average 0.0441 0.3134 0.6898 0.0424 0.3134 0.6950

NOTE: The repository average values are based on weighted averages for each realization using the percolation 
subregion quantile ranges.

Source:  SNL 2008d, Table 8.3-2[a].

Table 2.1-7. Seepage Fractions for Codisposal and Commercial SNF Waste Packages for Combined 
Nominal/Early Failure Modeling Case for Post-10,000-Year Period

Percolation Subregion
Seepage Fraction for Codisposal 

Waste Packages
Seepage Fraction for Commercial 

SNF Waste Packages

Subregion 
Index

Quantile Range 5th 
Percentile

Mean 95th 
Percentile

5th 
Percentile

Mean 95th 
Percentile

1 p < 0.05 0.0092 0.1251 0.3166 0.0082 0.1251 0.3121

2 0.05 ≤ p < 0.30 0.0623 0.3393 0.6525 0.0617 0.3402 0.6555

3 0.30 ≤ p < 0.70 0.0933 0.4382 0.8072 0.0949 0.4369 0.7943

4 0.70 ≤ p < 0.95 0.0626 0.4365 0.8464 0.0606 0.4364 0.8439

5 p ≥ 0.95 0.0941 0.4935 0.8872 0.0934 0.4944 0.8802

Repository Average 0.0750 0.4001 0.7483 0.0784 0.3999 0.7449

NOTE: The repository average values are based on weighted averages for each realization using the percolation 
subregion quantile ranges.

Source:  SNL 2008d, Table 8.3-3[a].
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Table 2.1-8. Seepage Fractions for Codisposal and Commercial SNF Waste Packages for Seismic 
Ground Motion Modeling Case for Glacial-Transition Climate, 2,000 to 10,000 Years

Percolation Subregion
Seepage Fraction for Codisposal 

Waste Packages
Seepage Fraction for Commercial 

SNF Waste Packages

Subregion 
Index

Quantile Range 5th 
Percentile

Mean 95th 
Percentile

5th 
Percentile

Mean 95th 
Percentile

1 p < 0.05 0.0031 0.0881 0.2764 0.002 0.0887 0.2823

2 0.05 ≤ p < 0.30 0.0261 0.2292 0.5782 0.0217 0.2308 0.578

3 0.30 ≤ p < 0.70 0.0448 0.3306 0.7395 0.0455 0.3294 0.7439

4 0.70 ≤ p < 0.95 0.0453 0.3846 0.7955 0.0431 0.3848 0.7998

5 p ≥ 0.95 0.088 0.4656 0.8447 0.087 0.4666 0.8386

Repository Average 0.0441 0.3134 0.6898 0.0424 0.3134 0.6950

NOTE: The repository average values are based on weighted averages for each realization using the percolation 
subregion quantile ranges.

Source:  SNL 2008d, Table 8.3-4[a].

Table 2.1-9. Seepage Fractions for Codisposal and Commercial SNF Waste Packages for Seismic 
Ground Motion Modeling Case for Post-10,000-year Period

Percolation Subregion
Seepage Fraction for Codisposal 

Waste Packages
Seepage Fraction for Commercial 

SNF Waste Packages

Subregion 
Index

Quantile Range 5th 
Percentile

Mean 95th 
Percentile

5th 
Percentile

Mean 95th 
Percentile

1 p < 0.05 0.3252 0.4666 0.6965 0.3231 0.4673 0.6923

2 0.05 ≤ p < 0.30 0.3077 0.6484 0.9164 0.3089 0.6491 0.9173

3 0.30 ≤ p < 0.70 0.309 0.7196 0.9725 0.3114 0.7193 0.975

4 0.70 ≤ p < 0.95 0.231 0.7051 0.9793 0.226 0.7041 0.9803

5 p ≥ 0.95 0.3076 0.7525 0.9878 0.3107 0.7518 0.9869

Repository Average 0.2909 0.6871 0.9450 0.2912 0.6870 0.9465

NOTE: The repository average values are based on weighted averages for each realization using the percolation 
subregion quantile ranges.

Source:  SNL 2008d, Table 8.3-5[a].
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Table 2.1-10. Drift Wall Condensation for Commercial SNF Waste Packages for Stage 2 and Stage 3 
Condensation

Percolation 
Subregion

Commercial SNF Waste Packages

Stage 2 Stage 3

Probability

Mean 
Waste 

Package 
Fraction

Mean 
Rate 

(m3/yr)
Mean 

Duration

Probability 
at 1,500 
years

Mean 
Waste 

Package 
Fraction

Mean Rate 
(m3/yr) at 

1,500 years
Mean 

Duration

1 0 0 0 NA 0.020 0.020 7.50 × 10−5 750 to 
2,000 
years

2 0 0 0 NA 0.023 0.023 6.74 × 10−5 750 to 
2,000 
years

3 0 0 0 NA 0.020 0.020 7.94 × 10−5 750 to 
2,000 
years

4 0 0 0 NA 0.0067 0.0067 6.95 × 10−6 750 to 
2,000 
years

5 0 0 0 NA 0.010 0.010 4.78 × 10−5 750 to 
2,000 
years

NOTE: Drift wall condensation fraction and flux is the same for both the Nominal/Early Failure and Seismic Ground 
Motion Modeling Cases. 
NA = not applicable

Source: SNL 2008d, Table 8.3-6[a].
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Table 2.1-11. Drift Wall Condensation for Codisposal Waste Packages for Stage 2 and Stage 3 
Condensation

Percolation 
Subregion

Codisposal Waste Packages

Stage 2 Stage 3

Probability 

Mean 
Waste 

Package 
Fraction

Mean 
Rate 

(m3/yr)
Mean 

Duration 

Probability 
at 1,500 
years

Mean 
Waste 

Package 
Fraction

Mean Rate 
(m3/yr) at 

1,500 years
Mean 

Duration 

1 1 1 0.54 0 to 1,000 
years

0.020 0.020 6.78 × 10−5 750 to 
2,000 
years

2 1 1 0.54 0 to 1,000 
years

0.017 0.017 5.97 × 10−5 750 to 
2,000 
years

3 1 1 0.54 0 to 1,000 
years

0.017 0.017 7.16 × 10−5 750 to 
2,000 
years

4 1 1 0.54 0 to 1,000 
years

0.0033 0.0033 6.00 × 10−5 750 to 
2,000 
years

5 1 1 0.54 0 to 1,000 
years

0.010 0.010 4.32 × 10−5 750 to 
2,000 
years

NOTE: Drift wall condensation fraction and flux is the same for both the Nominal/Early Failure and Seismic Ground 
Motion Modeling Cases.

Source: SNL 2008d, Table 8.3-7[a].
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Table 2.1-12.  Mean Seepage Rates for Waste Packages during Stage 2 and Stage 3 Condensation

Percolation Subregion

Mean Seepage Rates (m3/yr) 0 to 2,000 Years
(Seepage at 1,500 years)

Commercial SNF Waste Packages Codisposal Waste Packages

1 0.0112 0.0111

2 0.0517 0.0517

3 0.0736 0.0733

4 0.0803 0.0798

5 0.112 0.110

NOTE: Mean seepage rate is the same for both the Nominal/Early Failure and Seismic Ground Motion Modeling 
Cases over the first 2,000 years.

Source: SNL 2008d, Table 8.3-8[a].

Table 2.1-13. Decay of Total Curie Inventory as a Function of Time and Dominant Contributors to Total 
Curie Inventory 

Time After 
Closure
(years)

Percent of Total 
Initial Curie
Inventory Major Contributors to Total Inventory at Time after Closure

0 100.00 137Cs (46%), 90Sr (29%), 241Am (10%)

10 81.20 137Cs (45%), 90Sr (28%), 241Am (12%)

100 20.75 241Am (41%), 137Cs (22%), 90Sr (13%), 238Pu (11%))

1,000 4.20 241Am (48%), 240Pu (29%), 239Pu (19%)

10,000 1.18 239Pu (52%), 240Pu (40%)

100,000 0.10 239Pu (46%), 99Tc (27%)

500,000 0.03 99Tc (26%), 229Th (9%), 230Th (9%), 226Ra (9%), 233U (9%), 237Np (9%), 
242Pu (8%), 234U (7%)

1,000,000 0.02 233U (15%), 229Th (15%), 237Np (14%), 99Tc (9%), 230Th (7%), 226Ra (7%), 
135Cs (7%), 236U (6%), 242Pu (6%)

Source: SNL 2008d, Table 8.3-1.
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Figure 2.1-1.  Schematic Illustration of the Multiple Barrier Repository System

NOTE: Some of the features/components shown are not important to barrier capability, but are illustrated here for 
completeness. The approximate RMEI location is the southern-most edge of the controlled area at 
36°40’13.6661” North latitude. This is approximately 18 km south of the repository along the predominant 
direction of groundwater flow. 
ITWI = important to waste isolation; Non-ITWI = not important to waste isolation.
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Figure 2.1-2. Schematic of the Upper Natural Barrier
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Figure 2.1-3. Cross Section of Unsaturated Zone from 
Surface to Repository Horizon
NOTE: The location of the cross section is shown in Figure 2.1-4. The portion of the 
repository shown is only the portion that intersects this plane.The PTn 
includes the nonwelded bedded tuffs and the Yucca Mountain Tuff. Source: Day et al. 1998.
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Figure 2.1-4. Simplified Geologic Map Showing Major Lithostratigraphic Units in the Yucca Mountain 
Site Area

NOTE: The location of the cross sections shown in Figures 2.1-3 and 2.1-30 is indicated by the line crossing the 
southern part of the repository. The line crossing through WT#13 and J-13 indicates the beginning portion of 
the cross section shown in Figure 2.1-32. Repository footprint is shown for illustrative purposes only.

Source: Potter et al. 2002.
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Figure 2.1-5. Upper Natural Barrier Capability to Prevent or Substantially Reduce the Rate of Water 
Movement to the Waste for the Mean Spatially-Averaged (a) Annual Precipitation, Net 
Infiltration, and Post-10,000-Year Percolation and (b) Drift Seepage Fluxes for the 
Combined Nominal/Early Failure Modeling Case and Seismic Ground Motion Modeling 
Case—1,000,000 Year Period

Source: SNL 2008d, Figure 8.3-3[a].
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Figure 2.1-6.  Volume of (a) Lithophysal and (b) Nonlithophysal Rockfall Over 20,000 Years

NOTE Median and 5th percentile are below the plotted range.

Source: SNL 2008d, Figure 7.3.2-19.
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Figure 2.1-7. Schematic of the Engineered Barrier 
System
NOTE: ITWI = Important to waste isolation, Non-ITWI = Not important to waste 
isolation.
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Figure 2.1-8. Probability of Drip Shield Failure by General Corrosion for the Nominal Modeling Case 
Based on 300 Epistemic Realizations of Drip Shield General Corrosion Rates

Source: SNL 2008d, Figure 8.3-4[a].
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Figure 2.1-9. Summary Statistics for Fraction of Waste Packages Breached for (a) Commercial SNF 
Waste Packages and (b) Codisposal Waste Packages for the Nominal Modeling Case as a 
Function of Time

Source: SNL 2008d, Figure 8.3-5[a].
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