

Entergy Nuclear South Entergy Operations, Inc. 17265 River Road Killona, LA 70057-3093 Tel 504-739-6715 Fax 504-739-6698 rmurill@entergy.com

Robert J. Murillo Licensing Manager Waterford 3

NRR

W3F1-2008-0041

May 20, 2008 .

U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

SUBJECT: Core Operating Limits Report – Cycle 16 Revision 0 Waterford Steam Electric Station, Unit 3 Docket No. 50-382 License No. NPF-38

Dear Sir or Madam:

Waterford 3 Technical Specification 6.9.1.11.3 requires submittal of the Core Operating Limits Report for each reload cycle. Attached is the Waterford 3 submittal of the Core Operating Limits Report for Cycle 16.

If you have any questions concerning this submittal, please contact Robert Murillo at (504) 739-6715.

There are no new commitments contained in this submittal.

Sincerely,

Tung anno

RJM/RLW/

Attachment: Waterford 3 Core Operating Limits Report Cycle 16, Revision 0

cc:

Mr. Elmo E. Collins, Jr. Regional Administrator U. S. Nuclear Regulatory Commission Region IV 612 E. Lamar Blvd., Suite 400 Arlington, TX 76011-4125

NRC Senior Resident Inspector Waterford Steam Electric Station Unit 3 P.O. Box 822 Killona, LA 70066-0751

U. S. Nuclear Regulatory Commission Attn: Mr. N. Kalyanam Mail Stop O-07D1 Washington, DC 20555-0001

Wise, Carter, Child & Caraway ATTN: J. Smith P.O. Box 651 Jackson, MS 39205

Louisiana Department of Environmental Quality Office of Environmental Compliance Surveillance Division P. O. Box 4312 Baton Rouge, LA 70821-4312

American Nuclear Insurers Attn: Library Town Center Suite 300S 29th S. Main Street West Hartford, CT 06107-2445

Attachment

(

W3F1-2008-0041

Waterford 3 Core Operating Limits Report Cycle 16, Revision 0

J

ENTERGY OPERATIONS

WATERFORD 3

CORE OPERATING LIMITS REPORT

FOR CYCLE 16

REVISION 0

Prepared by:	Nasser Pazooki / Maner Payooh 5/13/05	5
Reviewed by:	Dennis Barr and Gregory & Scott	11408
Approved by:	Mehavie Mikin 5/13/08/06 the state	,
M:در Approved by:	aci R. Mck Mane Fuels and Nuclear Analysis Fred A Sh	12008
	Licensing	

WATERFORD 3

Page 1

CYCLE 16 REVISION 0

- **3** • ·

WATERFORD 3

CORE OPERATING LIMITS REPORT CYCLE 16, REVISION 0

INDEX

<u>PAGE</u>

	ł. I	NTRODUCTION	5
	11. A	AFFECTED TECHNICAL SPECIFICATIONS	6
	3.1.1.1	Shutdown Margin - Any CEA Withdrawn	COLR 3/4 1-1
	3.1.1.2	Shutdown Margin - All CEAs Fully Inserted	COLR 3/4 1-3
	3.1.1.3	Moderator Temperature Coefficient	COLR 3/4 1-4
	3.1.2.9	Boron Dilution	COLR 3/4 1-15
	3.1.3.1	Movable Control Assemblies - CEA Position	COLR 3/4 1-18
	3.1.3.6	Regulating and Group P CEA Insertion Limits	COLR 3/4 1-25
	3.2.1	Linear Heat Rate	COLR 3/4 2-1
	3.2.3	Azimuthal Power Tilt - Tq	COLR 3/4 2-4
	3.2.4	DNBR Margin	COLR 3/4 2-6
1	3.2.7	Axial Shape Index	COLR 3/4 2-12
	3.9.1	Boron Concentration	COLR 3/4 9-1

III. METHODOLOGIES

38

	LIST OF EFFECTIVE PAGES
Revision 0	Pages 1-6, COLR 3/4 1-1, 1-3, 1-4, 1-15, 1-18, 1-25, 2-1, 2-4, 2-6, 2-12, 9-1, and Pages 38 through 40

WATERFORD 3

LIST OF FIGURES		PAGE
COLR Figure 1	Shutdown Margin Versus Cold Leg Temperature	COLR 3/4 1-3A
COLR Figure 2	Moderator Temperature Coefficient Versus % of Rated Thermal Power	COLR 3/4 1-4A
COLR Figure 3	Required Power Reduction After Single CEA Deviation	COLR 3/4 1-18A
COLR Figure 4	Regulating CEA Group Insertion Limits Versus Thermal Power	COLR 3/4 1-25A
COLR Figure 5	Group P CEA Group Insertion Limits Versus Thermal Power	COLR 3/4 1-25B
COLR Figure 6	Not Used	COLR 3/4 2-1A
COLR Figure 7	Not Used	COLR 3/4 2-1B
COLR Figure 8	Allowable DNBR with Any CEAC Operable (COLSS Out of Service) (applicable only to Cycle 16 burnups up to 400 EFPD)	COLR 3/4 2-6A
COLR Figure 8A	Subset of Allowable DNBR with Any CEAC Operable (COLSS Out of Service) (applicable only to Cycle 16 burnups up to 400 EFPD)	COLR 3/4 2-6B
COLR Figure 8.1	Allowable DNBR with Any CEAC Operable (COLSS Out of Service)	COLR 3/4 2-6C
COLR Figure 8.1A	Subset of Allowable DNBR with Any CEAC Operable (COLSS Out of Service)	COLR 3/4 2-6D
COLR Figure 9	Allowable DNBR with No CEAC(s) Operable (COLSS Out of Service) (applicable only to Cycle 16 burnups up to 400 EFPD)	COLR 3/4 2-6E
COLR Figure 9A	Subset of Allowable DNBR with No CEAC(s) Operable (COLSS Out of Service) (applicable only to Cycle 16 burnups up to 400 EFPD)	COLR 3/4 2-6F
COLR Figure 9.1	Allowable DNBR with No CEAC(s) Operable (COLSS Out of Service)	COLR 3/4 2-6G
COLR Figure 9.1A	Subset of Allowable DNBR with No CEAC(s) Operable (COLSS Out of Service)	COLR 3/4 2-6H

LIST OF EFFECTIVE FIGURE PAGES					
Revision 0	COLR 3/4 1-3A, 1-4A, 1-18A, 1-25A, 1-25B, 2-1A, 2-1B,				
2-6A, 2-6B, 2-6C, 2-6D, 2-6E, 2-6F, 2-6G, 2-6H					

WATERFORD 3

LIST OF TABLE	<u>S</u>	PAGE
COLR Table 1	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for K _{eff} Greater Than 0.98.	COLR 3/4 1-15A
COLR Table 2	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for K _{eff} Greater Than 0.97 and Less Than or Equal to 0.98.	COLR 3/4 1-15B
 COLR Table 3	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for K _{eff} Greater Than 0.96 and Less Than or Equal to 0.97.	COLR 3/4 1-15C
COLR Table 4	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for K _{eff} Greater Than 0.95 and Less Than or Equal to 0.96.	COLR 3/4 1-15D
COLR Table 5	Required Monitoring Frequencies for Backup Boron Dilution Detection as a Function of Operating Charging Pumps and Plant Operational Modes for K _{eff} Greater Than or Equal to 0.95.	COLR 3/4 1-15E

LIST OF EFFECTIVE TABLE PAGES					
Revision 0	COLR 3/4 1-15A through COLR 3/4 1-15E				

·

WATERFORD 3

CORE OPERATING LIMITS REPORT CYCLE 16, REVISION 0

I. INTRODUCTION

This CORE OPERATING LIMITS REPORT (COLR) has been prepared in accordance with the requirements of Waterford 3 Technical Specification 6.9.1.11 for Waterford 3 Cycle 16. The core operating limits have been developed using the NRC approved methodologies specified in Section III. This is Revision 0 of the Cycle 16 COLR.

The major changes between the Cycle 16 Revision 0 COLR and the Cycle 15 Revision 0 COLR are listed below:

- Titles, headings, and page footers were revised to indicate Cycle 16.
- The Table of Contents List of Effective Pages and List of Effective Figure Pages were updated.
- This Introduction section was revised to reflect the changes for Cycle 16.
- Section 3.2.1 was revised to include linear heat rate limits for minimum containment average air temperatures less than 95°F but greater than or equal to 90°F.
- Section 3.2.4 was revised to:
 - Incorporate a burnup restriction on the previously existing COLSS Out-of-Service figures;
 - Include new COLSS Out-of-Service figures that incorporate a restriction on the positive ASI limit for ≥50% power conditions. These figures are applicable throughout Cycle 16; and
 - Incorporate revised wording to describe the use of the existing and new figures.
- Section 3.2.7 was revised to:
 - Incorporate a burnup restriction on the previously existing ASI limits for ≥50% power conditions; and
 - Include new ASI limits that incorporate a restriction on the positive ASI limit for <a>50% power conditions. These limits are applicable throughout Cycle 16.
- Items 15-19 of Section III were added to include Next Generation Fuel Topical Reports.

WATERFORD 3

II. AFFECTED TECHNICAL SPECIFICATIONS

WATERFORD 3

Page 6

CYCLE 16 REVISION 0

ţ

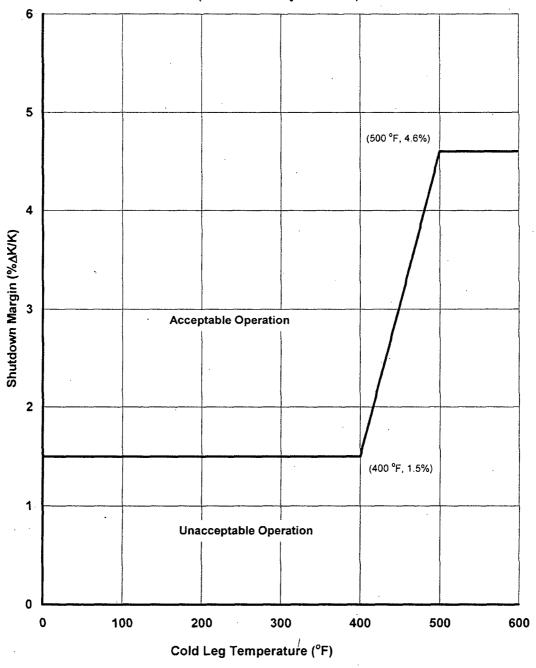
.

CORE OPERATING LIMITS REPORT

SHUTDOWN MARGIN - ANY CEA WITHDRAWN

3.1.1.1 The SHUTDOWN MARGIN shall be greater than or equal to 5.15% $\Delta k/k$ when T_{avg} is greater than 200 °F or 2.0% $\Delta k/k$ when T_{avg} is less than or equal to 200 °F.

WATERFORD 3


CORE OPERATING LIMITS REPORT

SHUTDOWN MARGIN - ALL CEAS FULLY INSERTED

3.1.1.2 The SHUTDOWN MARGIN shall be maintained within the region of acceptable operation of COLR Figure 1.

WATERFORD 3

COLR 3/4 1-3

Shutdown Margin Versus Cold Leg Temperature (All CEAs Fully Inserted)

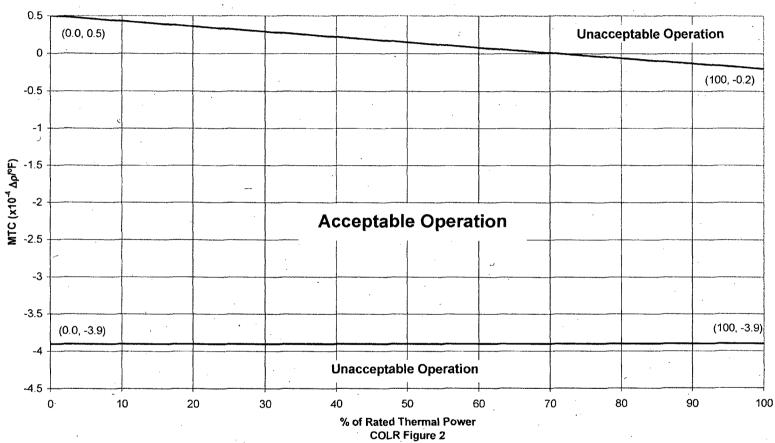
COLR Figure 1

WATERFORD 3

COLR 3/4 1-3A

CORE OPERATING LIMITS REPORT

MODERATOR TEMPERATURE COEFFICIENT


3.1.1.3 The Moderator Temperature Coefficient (MTC) shall be maintained within the region of acceptable operation of COLR Figure 2.

WATERFORD 3

COLR 3/4 1-4

CYCLE 16 REVISION 0

J

Moderator Temperature Coefficient Versus % of Rated Thermal Power

WATERFORD 3

COLR 3/4 1-4A

CORE OPERATING LIMITS REPORT

BORON DILUTION

3.1.2.9 See COLR Tables 1 through 5 for required RCS boron concentration monitoring frequencies and Charging Pump operation limits.

SURVEILLANCE REQUIREMENTS

Each required boron dilution alarm shall be adjusted to less than or equal to 1.75 times (1.75x) the existing neutron flux (cps) at the following frequencies:

- a. No sooner than one half hour after shutdown and no later than 1 hour after shutdown.
- b. At least once per one-half (1/2) hour if the reactor has been shut down ≥ 0.5 hour but < 2 hours
- c. At least once per hour if the reactor has been shutdown ≥ 2 hours but < 10 hours.</p>
- d. At least once per 5 hours if the reactor has been shut down ≥ 10 hours but < 25 hours.</p>
- At least once per 24 hours if the reactor has been shut down
 ≥ 25 hours but < 21 days.

f. At least once per 7 days if the reactor has been shut down \geq 21 days.

WATERFORD 3

COLR 3/4 1-15

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff GREATER THAN 0.98

K_{eff} >0.98

OPERATIONAL MODE	<u>Numbe</u> 0	er of Operating Charging Pumps [*] 1 2 3	
. 3	12 hours	0.75 hours Operation not allowed **	
4	12 hours	Operation not allowed **	
5 RCS filled	8 hours	Operation not allowed **	
5 RCS partially drair	8 hours red	Operation not allowed **	

* Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.

Operation not allowed **

** The precluded number of charging pumps shall be verified to be inoperable by racking out their motor circuit breakers.

WATERFORD 3

6

COLR 3/4 1-15A

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR K_{eff} GREATER THAN 0.97 AND LESS THAN OR EQUAL TO 0.98

 $0.98 \ge K_{eff} > 0.97$

DPERATIONAL MODE	Number of (0	Dperating Cha 1	rging Pumps 2 3	*
3	12 hours	2.0 hours	0.5 hours	Operation not allowed**
4	12 hours	0.75 hours	Operation r	not allowed**
5 RCS filled	8 hours	0.75 hours	Operation n	ot allowed**
5 RCS partially draine		0.5 hours	Operation n	ot allowed**
6		Operation n	ot allowed**	

* Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.

** The precluded number of charging pumps shall be verified to be inoperable by racking out their motor circuit breakers.

WATERFORD 3

COLR 3/4 1-15B

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff GREATER THAN 0.96 AND LESS THAN OR EQUAL TO 0.97

$0.97 \ge K_{eff} > 0.96$

OPERATIONAL MODE	<u>Numbe</u> 0	r of Operating 1	<u>a Charging Pu</u> 2	<u>imps</u> * 3	1
3	12 hours	3.0 hours	1.25 hours	0.5 hours	
4	12 hours	1.5 hours	Operatior	n not allowed**	
5 RCS filled	8 hours	1.5 hours	Operatior	n not allowed**	
5 RCS partially drained	8 hours t	0.75 hours	Operation	n not allowed**	

Operation not allowed**

Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.

* The precluded number of charging pumps shall be verified to be inoperable by racking out their motor circuit breakers.

WATERFORD 3

6

COLR 3/4 1-15C

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR Keff GREATER THAN 0.95 AND LESS THAN OR EQUAL TO 0.96

0.96 ≥ K_{eff} >0.95

OPERATIONAL Number of Operating Charging Pumps*				
MODE	0	1	2	3.
3	12 hours	4.0 hours	2.0 hours	1.0 hours
4 ·	12 hours	2.25 hours	0.75 hours	Operation not allowed**
5 RCS filled	8 hours	2.0 hours	0.75 hours	Operation not allowed**
5 RCS partially draine	8 hours d	2.0 hours	0.5 hours	Operation not allowed**
6		Operation n	ot allowed**	

* Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.

** The precluded number of charging pumps shall be verified to be inoperable by racking out their motor circuit breakers.

WATERFORD 3

COLR 3/4 1-15D

REQUIRED MONITORING FREQUENCIES FOR BACKUP BORON DILUTION DETECTION AS A FUNCTION OF OPERATING CHARGING PUMPS AND PLANT OPERATIONAL MODES FOR K_{eff} LESS THAN OR EQUAL TO 0.95

K_{eff} ≤0.95

OPERATIONAL	Number of Operating Charging Pumps*			
MODE	0	1	2	3
3	12 hours	5.0 hours	2.0 hours	1.0 hours
4	12 hours	2.75 hours	1.0 hours	Operation not allowed**
5 RCS filled	8 hours	3.0 hours	1.0 hours	0.5 hours
5 RCS partially drai	8 hours ined	2.5 hours	0.75 hours	Operation not allowed**
6	24 hours	2.25 hours	0.5 hours	Operation not allowed**

^{*} Charging pump OPERABILITY for any period of time shall constitute OPERABILITY for the entire monitoring frequency.

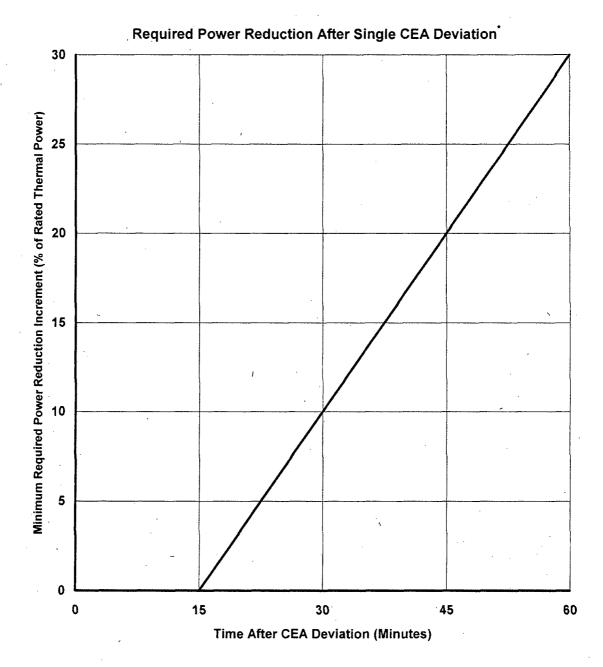
* The precluded number of charging pumps shall be verified to be inoperable by racking out their motor circuit breakers.

WATERFORD 3

COLR 3/4 1-15E

CORE OPERATING LIMITS REPORT

MOVABLE CONTROL ASSEMBLIES - CEA POSITION


- 3.1.3.1.a With one CEA trippable but misaligned from any other CEA in its group by more than 19 inches, operation in MODES 1 and 2 may continue, provided that core power is reduced in accordance with COLR Figure 3.
- 3.1.3.1.b With one or more CEAs trippable but misaligned from any other CEAs in its group by more than 7 inches but less than or equal to 19 inches, operation in MODES 1 and 2 may continue, provided that core power is reduced in accordance with COLR Figure 3.

NOTES

1. Item 3.1.3.1.a corresponds with ACTION "c" of Technical Specification 3.1.3.1.

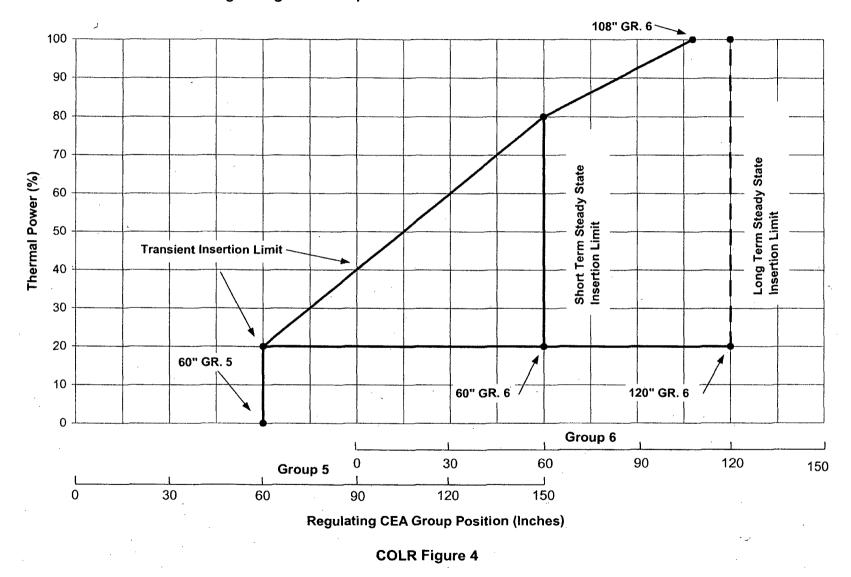
2. Item 3.1.3.1.b corresponds with ACTION "d" of Technical Specification 3.1.3.1.

COLR 3/4 1-18

COLR Figure 3

* When thermal power is reduced to 60% of rated thermal power per this limit curve, further reduction is not required by this Technical Specification.

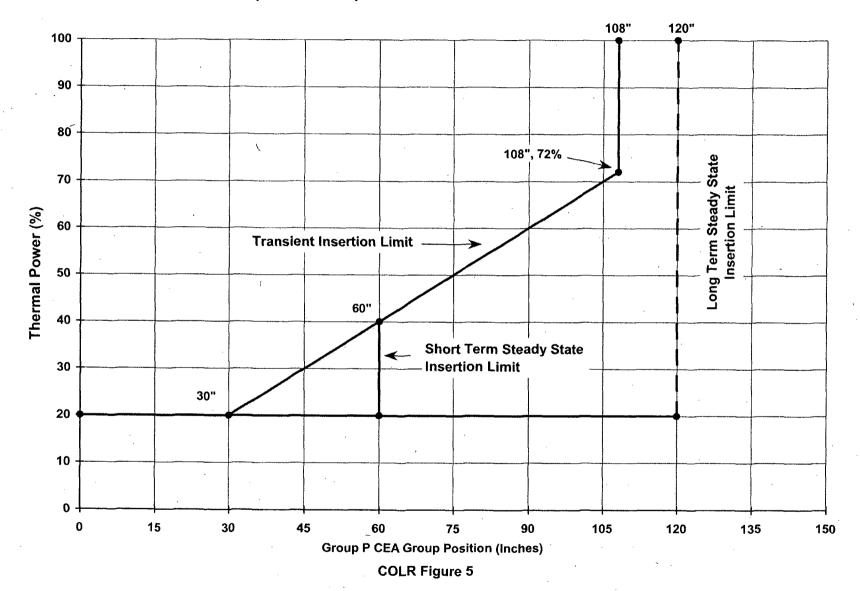
WATERFORD 3


COLR 3/4 1-18A

CORE OPERATING LIMITS REPORT

REGULATING AND GROUP P CEA INSERTION LIMITS

3.1.3.6 The regulating CEA groups and Group P CEAs shall be limited to the withdrawal sequence and to the insertion limits shown on COLR Figure 4 (regulating groups) and Figure 5 (Group P).


COLR 3/4 1-25

Regulating CEA Group Insertion Limits Versus Thermal Power

WATERFORD 3

COLR 3/4 1-25A

Group P CEA Group Insertion Limits Versus Thermal Power

WATERFORD 3

COLR 3/4 1-25B

CORE OPERATING LIMITS REPORT LINEAR HEAT RATE

3.2.1 The linear heat rate shall be maintained:

a. ≤ 12.9 kW/ft when COLSS is in service

b. ≤ 13.2 kW/ft when COLSS is out of service

In accordance with Technical Specification 3.6.1.5 Action a, with the minimum containment average air temperature less than 95°F but greater than or equal to 90°F, the linear heat rate shall be maintained:

a. \leq 12.7 kW/ft when COLSS is in service

b. ≤ 13.0 kW/ft when COLSS is out of service

WATERFORD 3

COLR 3/4 2-1

COLR Figure 6 (Not Used)

WATERFORD 3

COLR 3/4 2-1A

CYCLE 16 REVISION 0

ì

COLR Figure 7

(Not Used)

WATERFORD 3

COLR 3/4 2-1B

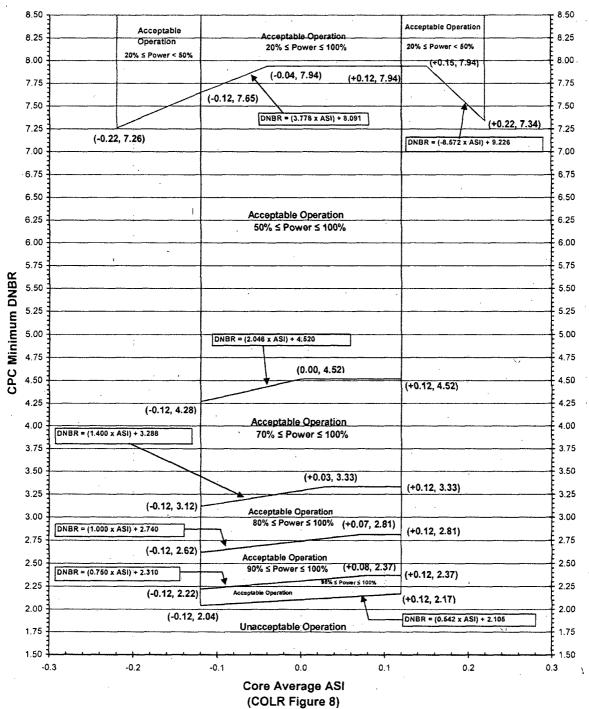
CORE OPERATING LIMITS REPORT AZIMUTHAL POWER TILT- T_q

3.2.3 The measured AZIMUTHAL POWER TILT shall be maintained ≤ 0.03 .

WATERFORD 3

COLR 3/4 2-4

CORE OPERATING LIMITS REPORT DNBR MARGIN

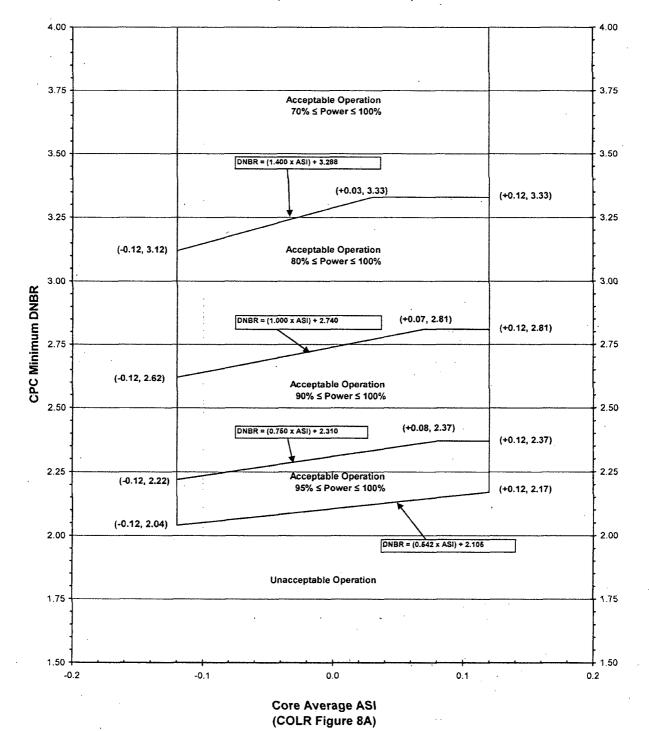

- 3.2.4 The DNBR margin shall be maintained by one of the following methods:
 - a) When COLSS is in service and neither CEAC is operable: maintain COLSS calculated core power less than or equal to COLSS calculated core power operating limit based on DNBR decreased by 13% RATED THERMAL POWER.
 - b) When COLSS is out of service and at least one CEAC is operable: operate within the region of acceptable operation shown on COLR Figure 8.1 (or 8.1A as appropriate), using any operable CPC channel. Figures 8 and 8A may be used in place of Figures 8.1 and 8.1A through 400 EFPD.
 - c) When COLSS is out of service and neither CEAC is operable: operate within the region of acceptable operation shown on COLR Figure 9.1 (or 9.1A as appropriate), using any operable CPC channel. Figures 9 and 9A may be used in place of Figures 9.1 and 9.1A through 400 EFPD.

NOTES

- 1. The various DNBR limit lines shown between the vertical ASI limit lines on Figures 8, 8A, 9, 9A, 8.1, 8.1A, 9.1, and 9.1A represent the minimum CPCcalculated DNBR value required for operation in the power range displayed in the area above each line. Operation at lower power levels requires that a larger DNBR value be maintained. For example, with ASI equal to -0.12 and a core power of 85%, CPC calculated DNBR must be a minimum of 2.62 with any CEAC Operable. At 79% power and the same ASI value with any CEAC Operable, the calculated DNBR must be at least 3.12. At 65% power and the same ASI value, DNBR must be a minimum of 4.28. At 90% power and an ASI value of +0.08, DNBR must be no less than 2.37.
- 2. The vertical ASI limit lines shown on Figures 8, 8A, 9, 9A, 8.1, 8.1A, 9.1, and 9.1A may be considered as extending beyond the maximum DNBR value on the Y-axis of the charts. Therefore, when monitoring DNBR with these figures, compliance is achieved at all power levels shown on a given figure when DNBR is greater than the largest DNBR value on the vertical scale.
- 3. Figures 8A and 8.1A are provided to offer better resolution for the four power ranges in the lower portion of Figures 8 and 8.1. Figures 9A and 9.1A are provided to offer better resolution for the four power ranges in the lower portion of Figures 9 and 9.1.
- 4. Equations are provided on Figures 8, 8A, 9, 9A, 8.1, 8.1A, 9.1, and 9.1A to assist in determining DNBR limits in the sloped portions of the plots.

WATERFORD 3

COLR 3/4 2-6

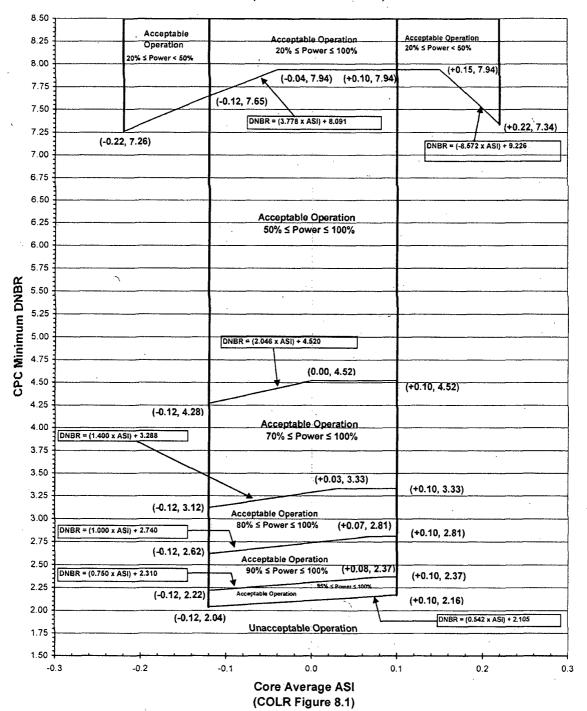


Allowable DNBR with Any CEAC Operable (COLSS Out of Service)

NOTE: This figure is applicable only to Cycle 16 burnups up to 400 EFPD

WATERFORD 3

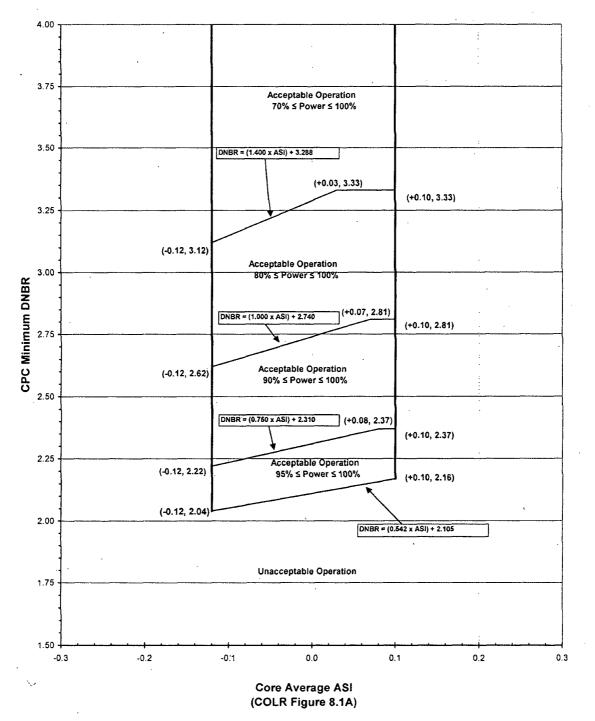
COLR 3/4 2-6A



Subset of Allowable DNBR with Any CEAC Operable (COLSS Out of Service)

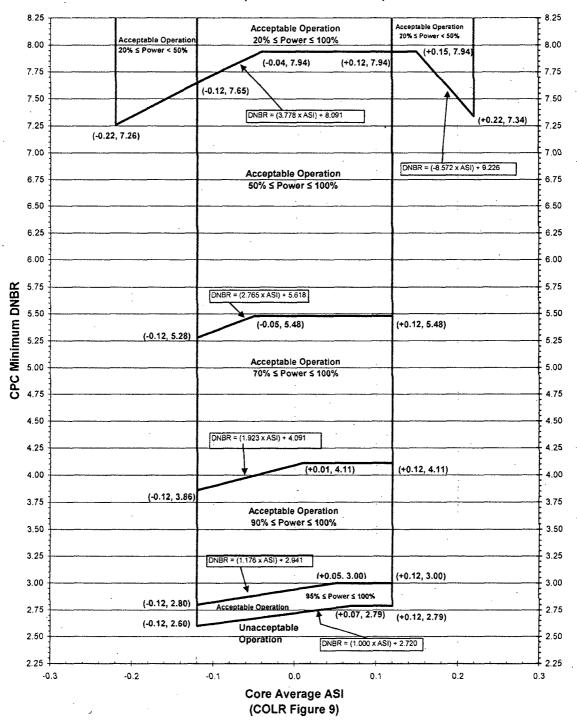
NOTE: This figure is applicable only to Cycle 16 burnups up to 400 EFPD

WATERFORD 3


COLR 3/4 2-6B

Allowable DNBR with Any CEAC Operable (COLSS Out of Service)

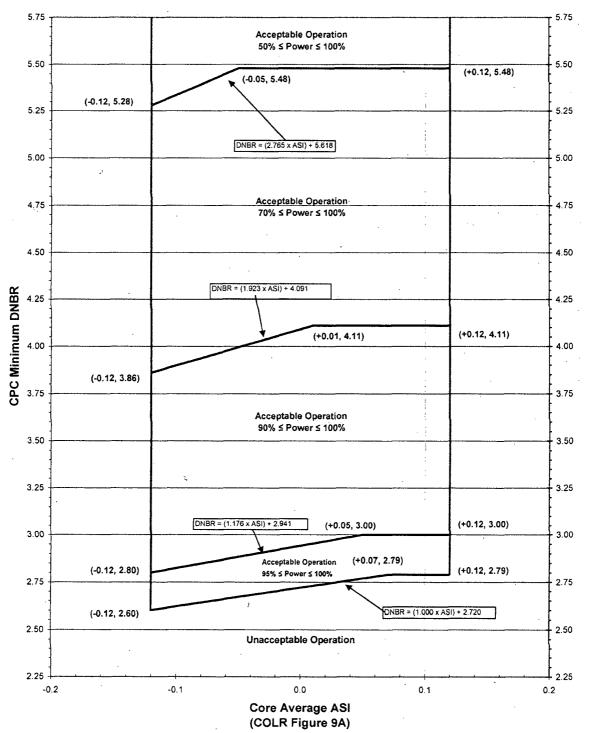
WATERFORD 3


COLR 3/4 2-6C

Subset of Allowable DNBR with Any CEAC Operable (COLSS Out of Service)

WATERFORD 3

COLR 3/4 2-6D

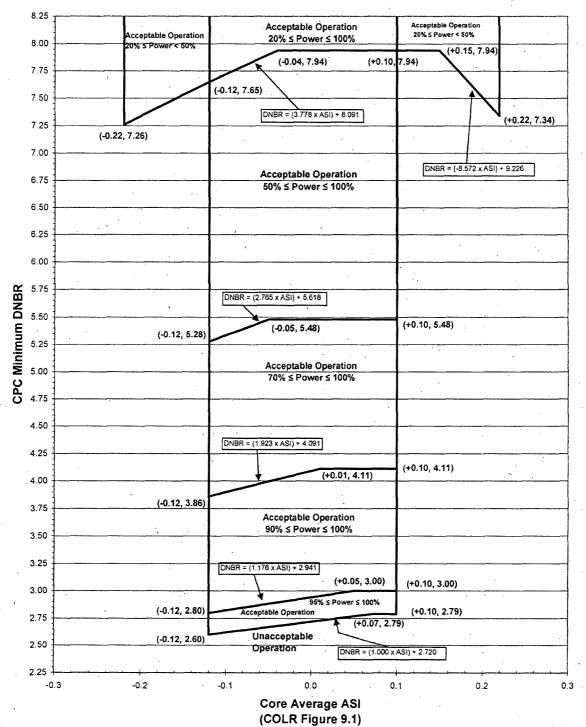


Allowable DNBR with No CEAC(s) Operable (COLSS Out of Service)

NOTE: This figure is applicable only to Cycle 16 burnups up to 400 EFPD

WATERFORD 3

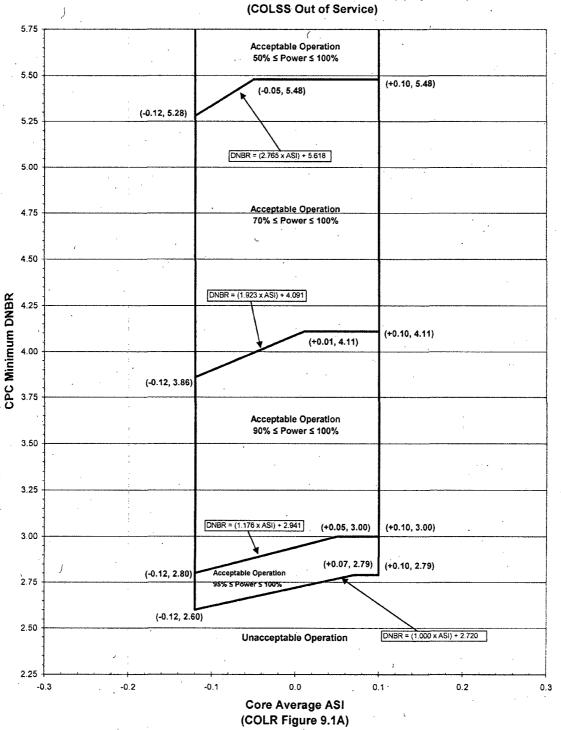
COLR 3/4 2-6E



Subset of Allowable DNBR with No CEAC(s) Operable (COLSS Out of Service)

NOTE: This figure is applicable only to Cycle 16 burnups up to 400 EFPD

WATERFORD 3


COLR 3/4 2-6F

Allowable DNBR with No CEAC(s) Operable (COLSS Out of Service)

WATERFORD 3

COLR 3/4 2-6G

Subset of Allowable DNBR with No CEAC(s) Operable

WATERFORD 3

COLR 3/4 2-6H

CORE OPERATING LIMITS REPORT AXIAL SHAPE INDEX

3.2.7 The AXIAL SHAPE INDEX (ASI) shall be maintained within the following limits:

COLSS Operable, valid through 400 EFPD

-0.16 ≤ ASI ≤ +0.16	for THERMAL POWERS ≥ 50% of RATED THERMAL POWER
-0.26 ≤ ASI ≤ +0.26	for THERMAL POWERS from 20% to <50% of RATED THERMAL POWER

COLSS Out of Service, valid through 400 EFPD

-0.12 ≤ ASI ≤ +0.12	for THERMAL POWERS ≥ 50% of RATED THERMAL POWER
-0.22 ≤ ASI ≤ +0.22	for THERMAL POWERS from 20% to <50% of RATED THERMAL POWER

COLSS Operable, valid for the entire cycle

−0.16 ≤ ASI < +0.14	for THERMAL POWERS ≥ 50% of RATED THERMAL POWER
−0.26 ≤ ASI ≤ +0.26	for THERMAL POWERS from 20% to <50%

COLSS Out of Service, valid for the entire cycle

-0.12 ≤ ASI ≤ +0.10	for THERMAL POWERS ≥ 50% of RATED THERMAL POWER
-0.22 ≤ ASI ≤ +0.22	for THERMAL POWERS from 20% to <50% of RATED THERMAL POWER

WATERFORD 3

COLR 3/4 2-12

CORE OPERATING LIMITS REPORT BORON CONCENTRATION

- 3.9.1 While in Mode 6, the RCS boron concentration shall be maintained sufficiently to ensure that the more restrictive of the following reactivity conditions is met:
 - a. Either Keff of 0.95 or less, or
 - b. A boron concentration of greater than or equal to 2050 ppm.

WATERFORD 3

COLR 3/4 9-1

III. METHODOLOGIES

The analytical methods used to determine the core operating limits listed above are those previously reviewed and approved by the NRC in:

- "The ROCS and DIT Computer Codes for Nuclear Design," CENPD-266-P-A, April 1983; and "C-E Methodology for Core Designs Containing Gadolinia-Urania Burnable Absorber," CENPD-275-P-A, May 1988. (Methodology for Specifications 3.1.1.1 and 3.1.1.2 for Shutdown Margins, 3.1.1.3 for MTC, 3.1.3.6 for Regulating and Group P CEA Insertion Limits, 3.1.2.9 Boron Dilution (Calculation of CBC & IBW), and 3.9.1 Boron Concentration).
- "C-E Method for Control Element Assembly Ejection Analysis," CENPD-0190-A, January 1976. (Methodology for Specification 3.1.3.6 for Regulating and Group P CEA Insertion Limits and 3.2.3 for Azimuthal Power Tilt).
- 3. "Modified Statistical Combination of Uncertainties" CEN-356(V)-P-A, May 1988. (Methodology for Specification 3.2.4 for DNBR Margin and 3.2.7 for ASI).
- "Calculative Methods for the CE Large Break LOCA Evaluation Model For The Analysis of C-E and W Designed NSSS," CENPD-132, Supplement 3-P-A, June 1985. (Methodology for Specification 3.1.1.3 for MTC, 3.2.1 for Linear Heat Rate, 3.2.3 for Azimuthal Power Tilt and 3.2.7 for ASI).
- 5. "Calculative Methods for the ABB CE Small Break LOCA Evaluation Model," CENPD-137-P, August 1974: Supplement 2-P-A, April 1998. (Methodology for Specification 3.1.1.3 for MTC, 3.2.1 for Linear Heat Rate, 3.2.3 for Azimuthal Power Tilt and 3.2.7 for ASI).
- "CESEC Digital Simulation of a Combustion Engineering Nuclear Steam Supply System," (CE letter LD-82-001 and NRC SE to CE dated April 3, 1984). (Methodology for Specification 3.1.1.1 and 3.1.1.2 for Shutdown Margins, 3.1.1.3 for MTC, 3.1.3.1 for Movable Control Assemblies – CEA Position, 3.1.3.6 for Regulating and Group P CEA Insertion Limits, and 3.2.3 for Azimuthal Power Tilt).
- "Qualification of Reactor Physics Methods for the Pressurized Water Reactors of the Entergy System," ENEAD-01-P, Revision 0, December 21, 1993. (Methodology for Specifications 3.1.1.1 and 3.1.1.2 for Shutdown Margins, 3.1.1.3 for MTC, 3.1.3.6 for Regulating and Group P CEA Insertion Limits, 3.1.2.9 Boron Dilution (calculation of CBC & IBW), and 3.9.1 Boron Concentration).
- 8. "Fuel Rod Maximum Allowable Gas Pressure," CEN-372-P-A, May 1990. (Methodology for Specification 3.2.1, Linear Heat Rate).

WATERFORD 3

- "Technical Description Manual for the CENTS Code," WCAP-15996-P-A, April 2004. (Methodology for Specification 3.1.1.1 and 3.1.1.2 for Shutdown Margins, 3.1.1.3 for MTC, 3.1.3.1 for Movable Control Assemblies – CEA Position, 3.1.3.6 for Regulating and group P CEA Insertion Limits, and 3.2.3 for Azimuthal Power Tilt).
- "Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model," CENPD-132, Supplement 4-P-A, March 2001. (Methodology for Specification 3.1.1.3 for MTC, 3.2.1 for Linear Heat Rate, 3.2.3 for Azimuthal Power Tilt and 3.2.7 for ASI).
- "Implementation of ZIRLO Material Cladding in CE Nuclear Power Fuel Assembly Designs," CENPD-404-P-A, November 2001. (Methodology for Specification 3.1.1.3 for MTC, 3.2.1 for Linear Heat Rate, 3.2.3 for Azimuthal Power Tilt, and 3.2.7 for ASI).
- "Qualification of the PHOENIX-P/ANC Nuclear Design System for Pressurized Water Reactor Cores," WCAP-11596-P-A, June 1988; "ANC: A Westinghouse Advanced Nodal Computer Code," WCAP-10965-P-A, September 1986; and "ANC: A Westinghouse Advanced Nodal Computer Code: Enhancements to ANC Rod Power Recovery," WCAP-10965-P-A Addendum 1, April 1989. (Methodology for Specifications 3.1.1.1 and 3.1.1.2 for Shutdown Margins, 3.1.1.3 for MTC, 3.1.3.6 for Regulating and group P CEA Insertion Limits, 3.1.2.9 Boron Dilution (Calculation of CBC and IBW), and 3.9.1 Boron Concentration).
- "Qualification of the Two-Dimensional Transport Code PARAGON," WCAP-16045-P-A, August 2004. (Methodology for Specifications 3.1.1.1 and 3.1.1.2 for Shutdown Margins, 3.1.1.3 for MTC, 3.1.3.6 for Regulating and group P CEA Insertion Limits, 3.1.2.9 Boron Dilution (Calculation of CBC & IBW), and 3.9.1 Boron Concentration).
- "Implementation of Zirconium Diboride Burnable Absorber Coatings in CE Nuclear Power Fuel Assembly Designs," WCAP-16072-P-A, Revision 0, August 2004 (Methodology for Specification 3.1.1.3 for MTC, 3.2.1 for Linear Heat Rate, 3.2.3 for Azimuthal Power Tilt, and 3.2.7 for ASI).
- 15. "CE 16 x 16 Next Generation Fuel Core Reference Report," WCAP-16500-P and Final Safety Evaluation for Westinghouse Electric Company (Westinghouse) Topical Report (TR) WCAP-16500-P, Revision 0, "CE [Combustion Engineering] 16x16 Next Generation Fuel [(NGF)] Core Reference Report," (Methodology for Specification 3.1.1.3 for MTC, 3.2.1 for Linear Heat Rate, 3.2.3 for Azimuthal Power Tilt, 3.2.4.b, 3.2.4.c, and 3.2.4.d for DNBR Margin, and 3.2.7 for ASI).

WATERFORD 3

Page 39

- 16. "Optimized ZIRLO[™]," WCAP-12610-P-A and CENPD-404-P-A Addendum 1-A, (Methodology for Specification 3.1.1.3 for MTC, 3.2.1 for Linear Heat Rate, 3.2.3 for Azimuthal Power Tilt, and 3.2.7 for ASI).
- 17. "Westinghouse Correlations WSSV and WSSV-T for Predicting Critical Heat Flux in Rod Bundles with Side-Supported Mixing Vanes," WCAP-16523-P-A and Final Safety Evaluation for Westinghouse Electric Company (Westinghouse) Topical Report (TR), WCAP-16523-P, "Westinghouse Correlations WSSV and WSSV-T for Predicting Critical Heat Flux in Rod Bundles with Side-Supported Mixing Vanes," (Methodology for Specification 3.2.4.b, 3.2.4.c, and 3.2.4.d for DNBR Margin).
- "ABB Critical Heat Flux Correlations for PWR Fuel," CENPD-387-P-A (Methodology for Specification 3.2.4.b, 3.2.4.c, and 3.2.4.d for DNBR Margin and 3.2.7 for ASI).
- "Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model -Improvement to 1999 Large Break LOCA EM Steam Cooling Model for Less Than 1 in/sec Core Reflood" CENPD-132, Supplement 4-P-A, Addendum 1-P and Final Safety Evaluation for Westinghouse Electric Company (Westinghouse) Topical Report (TR) CENPD-132 Supplement 4-P-A, Addendum 1-P, "Calculative Methods for the CE [Combustion Engineering] Nuclear Power Large Break LOCA Evaluation Model - Improvement to 1999 Large Break LOCA EM Steam Cooling Model for Less Than 1 in/sec Core Reflood (Methodology for Specification 3.1.1.3 for MTC, 3.2.1 for Linear Heat Rate, 3.2.3 for Azimuthal Power Tilt, and 3.2.7 for ASI).