Exelon Generation Company, LLC Quad Cities Nuclear Power Station 22710 206th Avenue North Cordova, IL 61242–9740 www.exeloncorp.com

SVP-08-023

May 9, 2008

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

> Quad Cities Nuclear Power Station, Units 1 and 2 Renewed Facility Operating License Nos. DPR-29 and DPR-30 <u>NRC Docket Nos. 50-254 and 50-265</u>

Subject: Quad Cities Nuclear Power Station Annual Radiological Environmental Operating Report

In accordance with Quad Cities Technical Specifications 5.6.2, enclosed is the 2007 Radiological Environmental Operating Report for Quad Cities Nuclear Power Station. This report contains the results of the radiological environmental and meteorological monitoring programs. Also attached is the 2007 Radiological Groundwater Protection Program (RGPP) report, as Appendix E of the enclosure.

Should you have any questions concerning this letter, please contact W.J. Beck at (309) 227-2800.

Respectfully,

Timothy J. Tulon SiteWice President Quad Cities Nuclear Power Station

Attachment: Quad Cities Nuclear Power Station 2007 Annual Radiological Environmental Operating Report

cc: Regional Administrator – NRC Region III NRC Senior Resident Inspector – Quad Cities Nuclear Power Station

Attachment

Quad Cities Nuclear Power Station 2007 Annual Radiological Environmental Operating Report

Docket No:

50-254 50-265

QUAD CITIES NUCLEAR POWER STATION UNITS 1 and 2

Annual Radiological Environmental Operating Report

1 January Through 31 December 2007

Prepared By

Teledyne Brown Engineering Environmental Services

Nuclear Quad Cities Nuclear Power Station Cordova, IL 61242

May 2008

Table Of Contents

зà

I. Summary and Conclusions	1
II. Introduction	2
A. Objectives of the REMP	2
B. Implementation of the Objectives	2
III. Program Description	2
Ă. Sample Collection	2
B. Sample Analysis	4
C. Data Interpretation	5
D. Program Exceptions	6
E. Program Changes	8
IV Results and Discussion	8
A Aquatic Environment	8
1 Surface Waters And Auto Auto Auto Auto Auto	8
2 Ground Water	ğ
3 Fish	g
4 Sediment	0
B. Atmospheric Environment	0
1. Airborne	0
a. Air Particulates1	0
b. Airborne lodine1	1
2. Terrestrial1	1
a. Milk	1
b. Food Products1	2
C. Ambient Gamma Radiation1	2
D. Interim Spent Fuel Storage1	2
E. Land Use Survey1	2
F. Errata Data1	3
G. Summary of Results – Inter-laboratory Comparison Program 1	4

2 of 108

Appendices

Appendix A	Radiological Environmental Monitoring Report Summary
Tables	
Table A-1	Radiological Environmental Monitoring Program for Quad Cities Nuclear Power Station, 2007
Appendix B	Location Designation, Distance & Direction, and Sample Collection & Analytical Methods
Tables	
Table B-1:	Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Quad Cities Nuclear Power Station, 2007
Table B-2:	Radiological Environmental Monitoring Program - Summary of Sample Collection and Analytical Methods, Quad Cities Nuclear Power Station, 2007
<u>Eigures</u>	
Figure B-1:	Quad Cities REMP Sampling Locations – 2 Mile Radius, 2007
Figure B-2:	Quad Cities REMP Sampling Locations – 9.3 Mile Radius, 2007
· .	
Appendix C	Data Tables and Figures - Primary Laboratory
Tables	
Table C-I.1	Concentrations of Gross Beta in Surface Water Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-I.2	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-I.3	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-II.1	Concentrations of Tritium in Ground Water Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-II.2	Concentrations of Gamma Emitters in Ground Water Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.

, ,

.

Table C-III.1	Concentrations of Gamma Emitters in Fish Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3 pCi/cu meter) in Air Particulate Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-VI.1	Concentrations of I-131 in Air lodine Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-VII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-VIII.1	Concentrations of Gamma Emitters in Food Products Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table C-IX.1	Quarterly TLD Results for Quad Cities Nuclear Power Station, 2007.
Table C-IX.2	Mean Quarterly TLD Results for the Inner Ring, Outer Ring, Other and Control Locations for Quad Cities Nuclear Power Station, 2007.
Table C-IX.3	Summary of the Ambient Dosimetry Program for Quad Cities Nuclear Power Station, 2007.
<u>Figures</u>	
Figure C-1	Surface Water - Gross Beta – Stations Q-33 and Q-34 (C) Collected in the Vicinity of QCNPS, 2000 - 2007.
Figure C-2	Surface Water - Tritium – Stations Q-33 and Q-34 (C) Collected in the Vicinity of QCNPS, 2000 - 2007.
Figure C-3	Ground Water - Tritium – Station Q-35 and Q-36 Collected in the Vicinity of QCNPS, 2000 - 2007.
Figure C-4	Air Particulates - Gross Beta – Stations Q-01 and Q-02 Collected in the Vicinity of QCNPS, 2000 - 2007.
Figure C-5	Air Particulates - Gross Beta – Stations Q-03 and Q-04 Collected in the Vicinity of QCNPS, 2000 - 2007.
Figure C-6	Air Particulates - Gross Beta – Station Q-07 (C) Collected in the Vicinity of QCNPS, 2000 - 2007.

	•
Figure C-7	Air Particulates - Gross Beta – Stations Q-13 and Q-16 Collected in the Vicinity of QCNPS, 2007.
Figure C-8	Air Particulates - Gross Beta – Stations Q-37 and Q-38 Collected in the Vicinity of QCNPS, 2007.
Appendix D	Inter-Laboratory Comparison Program
<u>Tables</u>	
Table D-1	Analytics Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2007
Table D-2	ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering, 2007
Table D-3	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Teledyne Brown Engineering, 2007
Table D-4	ERA Statistical Summary Proficiency Testing Program Environmental, Inc., 2007
Table D-5	DOE's Mixed Analyte Performance Evaluation Program (MAPEP) Environmental, Inc., 2007
Appendix E	Annual Radiological Groundwater Protection Program Report (ARGPPR)

: ...¹.

I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program (REMP) conducted for the Quad Cities Nuclear Power Station (QCNPS) by Exelon covers the period 1 January 2007 through 31 December 2007. During that time period, 1,417 analyses were performed on 1,322 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of QCNPS had no adverse radiological impact on the environment.

Surface water samples were analyzed for concentrations of gross beta, tritium and gamma emitting nuclides. Ground water samples were analyzed for concentrations of tritium and gamma emitting nuclides. No fission or activation products were detected. Gross beta activities detected were consistent with those detected in previous years and consistent with the control stations.

Fish (commercially and recreationally important species) and sediment samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected in fish. No fission products or activation products were found in sediment.

Air particulate samples were analyzed for concentrations of gross beta and gamma emitting nuclides. No fission or activation products were detected.

High sensitivity I-131 analyses were performed on air samples. No I-131 was detected.

Cow milk samples were analyzed for concentrations of I-131 and gamma emitting nuclides. No I-131 was detected. Concentrations of naturally occurring isotopes were consistent with those detected in previous years. No fission or activation products were detected.

Food product samples were analyzed for concentrations of gamma emitting nuclides. No fission or activation products were detected.

Environmental gamma radiation measurements were performed quarterly using thermoluminescent dosimeters. Levels detected were consistent with those observed in previous years.

11. Introduction

The Quad Cities Nuclear Power Station (QCNPS), consisting of two 2957 MWth boiling water reactor owned and operated by Exelon Corporation, is located in Cordova, Illinois along the Mississippi River. Unit No. 1 went critical on 16 March 1972. Unit No. 2 went critical on 02 December 1973. The site is located in northern Illinois, approximately 182 miles west of Chicago, Illinois.

This report covers those analyses performed by Teledyne Brown Engineering (TBE), Global Dosimetry, and Environmental Inc. (Midwest Labs) on samples collected during the period 1 January 2007 through 31 December 2007.

Objective of the REMP Α.

The objectives of the REMP are to:

and the second 1. Provide data on measurable levels of radiation and radioactive materials in the site environs.

Evaluate the relationship between guantities of radioactive material released from the plant and resultant radiation doses to individuals from principal pathways of exposure. the second state of the second

ł

Implementation of the Objectives Β.

The implementation of the objectives is accomplished by:

1. Identifying significant exposure pathways.

2. Establishing baseline radiological data of media within those pathways.

· : , **3**. . . Continuously monitoring those media before and during Station operation to assess Station radiological effects (if any) on man and the environment.

111. **Program Description**

2.

· .

. . .

Α. Sample Collection

> Samples for the QCNPS REMP were collected for Exelon Nuclear by Environmental Inc. (Midwest Labs). This section describes the general sampling methods used by Environmental Inc. to obtain environmental samples for the QCNPS REMP in 2007. Sample locations and

descriptions can be found in Table B–1 and Figures B–1 and B–2, Appendix B.

Aquatic Environment

The aquatic environment was evaluated by performing radiological analyses on samples of surface water, ground water, fish, and sediment. Surface water samples were collected weekly from two locations, Q-33 and Q-34 (Control). Ground water samples were collected quarterly from two locations, Q-35 and Q-36. All water samples were collected in new containers, which were rinsed with source water prior to collection.

Fish samples comprising the edible portions of commercially and recreationally important species were collected semiannually at two locations, Q-24 and Q-29 (Control). Sediment samples composed of recently deposited substrate were collected at one location semiannually, Q-39.

and the second second

Atmospheric Environment

The atmospheric environment was evaluated by performing radiological analyses on samples of air particulate, airborne iodine, and milk. Airborne iodine and particulate samples were collected and analyzed at nine locations (Q-01, Q-02, Q-03, Q-04, Q-07, Q-13, Q-16, Q-37 and Q-38). The control location was Q-07. Airborne iodine and particulate samples were obtained at each location, using a vacuum pump with charcoal and glass fiber filters attached. The pumps were run continuously and sampled air at the rate of approximately one cubic foot per minute. The air particulate filters and air iodine samples were replaced weekly and sent to the laboratory for analysis.

Milk samples were collected biweekly at one location (Q-26) from May through October, and monthly from November through April. All samples were collected in new plastic containers from the bulk tank, preserved with sodium bisulfite, and shipped promptly to the laboratory.

Food products were collected annually in July at five locations (Q-Quad 1 Control, Q-Quad 1, Q-Quad 2, Q-Quad 3, and Q-Quad 4). The control location was Q-Quad 1 - Control. Various types of broadleaf and root vegetables were collected and placed in new plastic bags, and sent to the laboratory for analysis.

Ambient Gamma Radiation

Direct radiation measurements were made using thermoluminescent

dosimeters (TLD). Each location consisted of 2 TLD sets. The TLD locations were placed on and around the QCNPS site as follows:

An inner ring consisting of 15 locations (Q-101, Q-102, Q-103, Q-104, Q-105, Q-106, Q-107, Q-108, Q-109, Q-111, Q-112, Q-113, Q-114, Q-115 and Q-116). These TLD are located in 15 of the 16 meteorological sectors in the general area of the site boundry (approximately 0.1 - 3 miles from the site). There are no TLDs located in the SSW sector because this sector is located over water.

An <u>outer ring</u> consisting of 16 locations (Q-201, Q-202, Q-203, Q-204, Q-205, Q-206, Q-207, Q-208, Q-209, Q-210, Q-211, Q-212, Q-213, Q-214, Q-215 and Q-216). These TLDs are located in each of the 16 meteorological sectors (approximately 3.7 – 5 miles from the site)

An <u>other</u> set consisting of eight locations (Q-01, Q-02, Q-03, Q-04, Q-13, Q-16, Q-37 and Q-38). The locations are at each of the air sample stations around the site.

The balance of one location (Q-07) is the control site.

The specific TLD locations were determined by the following criteria:

The presence of relatively dense population;

Site meteorological data taking into account distance and elevation for each of the sixteen–22 1/2 degree sectors around the site, where estimated annual dose from QCNPS, if any, would be most significant;

3. On hills free from local obstructions and within sight of the stack (where practical);

4. And near the closest dwelling to the stack in the prevailing downwind direction.

The TLDs were exchanged quarterly and sent to Global Dosimetry for analysis.

B. Sample Analysis

1.

2.

This section describes the general analytical methodologies used by TBE and Environmental Inc. (Midwest Labs) to analyze the environmental samples for radioactivity for the QCNPS REMP in 2007 and the type of analyses. The analytical procedures used by the laboratories are listed in

Table B-2.

In order to achieve the stated objectives, the current program includes the following analyses:

1. Concentrations of beta emitters in surface water and air particulates.

2. Concentrations of gamma emitters in ground and surface water, air particulates, milk, fish, sediment and vegetation.

3. Concentrations of tritium in ground and surface water.

4. Concentrations of I-131 in air and milk.

5. Ambient gamma radiation levels at various site environs.

C. Data Interpretation

and the second

The radiological and direct radiation data collected prior to Quad Cities Nuclear Power Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Quad Cities Nuclear Power Station was considered operational at initial criticality. In addition, data were compared to previous years' operational data for consistency and trending. Several factors were important in the interpretation of the data:

1. Lower Limit of Detection and Minimum Detectable Concentration

The lower limit of detection (LLD) was defined as the smallest concentration of radioactive material in a sample that would yield a net count (above background) that would be detected with only a 5% probability of falsely concluding that a blank observation represents a "real" signal. The LLD was intended as an *a priori* (a before the fact) estimate of a system (including instrumentation, procedure and sample type) and not as an *a posteriori* (after the fact) criteria for the presence of activity. All analyses were designed to achieve the required QCNPS detection capabilities for environmental sample analysis.

The minimum detectable concentration (MDC) is defined above with the exception that the measurement is an *a posteriori* (after the fact) estimate of the presence of activity. 2. Net Activity Calculation and Reporting of Results

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations may result in sample activity being lower than the background activity effecting a negative number. An MDC was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface water, groundwater and vegetation 12 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Zr-95, Nb-95, I-131, Cs-134, Cs-137, Ba-140, and La-140 were reported.

For fish, sediment, air particulate and milk 11 nuclides, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Cs-134, Cs-137 and Ba-140 andLa-140 were reported.

an 1999 an 1999 an 1916 an 1917 an 191

Means and standard deviations of the results were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty.

-

· . .

D. Program Exceptions

and the second second

an de la composition Composition de la comp

. .

4 · · .

۰,

	· · ·	· ,	
Sample Type	Location Code	Collection Date	Reason
	•.		
A/I	Q-38	03/23/07	Estimated time; timer malfunction
	· · ·	,	
A/I	Q-03	04/06/07	Reported 30 min power outage due to station work
• (I	0.00	04/00/07	
A/I	Q-02	04/06/07	station work
· • • //	0.37	04/07/07	Estimated times law times reading for no
AVI	Q-37	04/27/07	apparent reason

Table D-1 LISTING OF SAMPLE ANOMALIES

1

Sample Type	Location Code	Collection Date	Reason
A/I	Q-37	07/20/07	Estimated time; low timer reading possibly due to adverse weather
A/I	Q-38	07/20/07	Estimated time; low timer reading possibly due to adverse weather
A/I	Q-38	09/14/07	Estimated time; low timer reading for no apparent reason
A/I	Q-37	09/14/07	Estimated time; low timer reading for no apparent reason
A/I	Q-38	12/07/07	Estimated time; low timer reading possibly due to adverse weather
A/I .	Q-38	12/14/07	Estimated time; low timer reading possibly due to adverse weather
TLD	Q-213-1	.01/01/08	TLD read higher than expected (35.0 mrem) during 4 th quarter; duplicate TLD in same sector read 22 mrem, which is expected

Table D-1 LISTING OF SAMPLE ANOMALIES (continued)

the states and the

•

Table D	D-2 <u>LISTING</u>	OF MISSED SAMPLE	<u>s</u> .

Sample Type	Location Code	Collection Date	Reason	_
SW	Q-33	01/19/07	No sample; water frozen	
SW	Q-34	01/19/07	No sample; water frozen	
SW	Q-33	01/26/07	No sample; water frozen	
SW	Q-33	02/02/07	No sample; water frozen	
SW	Q-34	02/02/07	No sample; water frozen	
SW	Q-33	02/16/07	No sample; water frozen	
SW	Q-34	02/16/07	No sample; water frozen	

Sample Type	Location Code	Collection Date	Reason
A/I	Q-03	03/09/07	Collector found 4" of water inside sample station
TLD	Q-210-5	03/30/07	TLD not received from vendor; collector placed spare
TLD	Q-215-2	03/30/07	TLD found broken; collector placed
SW	Q-34	12/07/07	spare No sample; water frozen
SW	Q-33	12/14/07	No sample; water frozen
SW	Q-33	12/28/07	No sample; water frozen
AP	All	08/04/07 – 08/10/07	Shipment damaged. In repackaging, UPS discarded all the APs.

Table D-2 LISTING OF MISSED SAMPLES (continued)

The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation.

E. Program Changes

Starting in 2007, the mean and two standard deviation values are calculated using the positive values only.

IV. Results and Discussion

.`

A. Aquatic Environment

1. Surface Water

Samples were taken weekly and composited monthly at two locations (Q-33 and Q-34). Of these locations only Q-33 located downstream, could be affected by Quad Cities' effluent releases. The following analyses were performed.

Gross Beta

١

Samples from all locations were analyzed for concentrations of

~,

gross beta (Table C–I.1, Appendix C). Gross beta activity was detected in 22 of 24 samples. The values ranged from 2.5 to 7.8 pCi/L. Concentrations detected were consistent with those detected in previous years and the control location (Figure C–1, Appendix C). The required LLD was met.

<u>Tritium</u>

Quarterly composites of weekly collections were analyzed for tritium activity (Table C–I.2, Appendix C). No tritium activity was detected (Figure C–2, Appendix C). The 2000 pCi/L OCDM and contractually required 200 pCi/L LLDs were met.

Gamma Spectrometry

Samples from both locations were analyzed for gamma emitting nuclides (Table C–I.3, Appendix C). No nuclides were detected and all required LLDs were met.

The second s

2. Ground Water

Quarterly grab samples were collected at two locations (Q-35 and Q-36). Both locations could be affected by Quad Cities' effluent releases. The following analyses were performed:

<u>Tritium</u>

Quarterly grab samples from the locations were analyzed for tritium activity (Table C–II.1, Appendix C). No tritium activity was detected (Figure C–3, Appendix C). The 2000 pCi/L OCDM and contractually required 200 pCi/L LLDs were met.

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–II.2, Appendix C). No nuclides were detected.

3. Fish

Fish samples comprised of various commercially and recreationally important species were collected at two locations (Q-24 and Q-29) semiannually. Location Q-24 could be affected by Quad Cities' effluent releases. The following analysis was performed:

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for gamma emitting nuclides (Table C–III.1, Appendix C). No nuclides were detected and all required LLDs were met.

4. Sediment

Aquatic sediment samples were collected at one location (Q-39) semiannually. The location, located downstream, could be affected by Quad Cities' effluent releases. The following analysis was performed:

Gamma Spectrometry

Sediment samples from Q-39 were analyzed for gamma emitting nuclides (Table C–IV.1, Appendix C). Cesium-137 was detected in one sample at a concentration of 70 pCi/kg dry. No other nuclides were detected and all required LLDs were met.

B. Atmospheric Environment

. . .

		しかい ため付替 ゆうたい しょうちゃく たいたくしてい	• .
14 A	· 1. · ·	Airborne: A construction of the former	•••
		the second s	1

a. Air Particulates

Continuous air particulate samples were collected from nine locations on a weekly basis. The nine locations were separated into three groups: Near-field samplers within 4 km of the site (Q-01, Q-02, Q-03 and Q-04), far-field samplers between 4 and 10 km from the site (Q-13, Q-16, Q-37, Q-38) and the Control sampler between 10 and 30 km from the site (Q-07). The following analyses were performed:

Gross Beta

Weekly samples were analyzed for concentrations of beta emitters (Table C–V.1 and C–V.2, Appendix C).

Detectable gross beta activity was observed at all locations. Comparison of results among the four groups aid in determining the effects, if any, resulting from the operation of QCNPS. The results from the near-field locations (Group I) ranged from <5 to 54 E–3 pCi/m^3 with a mean of 21 E–3 pCi/m³. The results from the far-field locations (Group II) ranged from 9 to 54 E–3 pCi/m³ with a mean of 22 E–3 pCi/m³. The results from the Control location (Group III) ranged from 9 to 49 E–3 pCi/m³ with a mean of 23 E–3 pCi/m³. Comparison of the 2007 air particulate data with previous years data indicate no effects from the operation of QCNPS. In addition a comparison of the weekly mean values for 2007 indicate no notable differences among the three groups (Figures C–4 through C–6, Appendix C).

Gamma Spectrometry

Weekly samples were composited quarterly and analyzed for gamma emitting nuclides (Table C–V.3, Appendix C). No nuclides were detected and all required LLDs were met.

b. Airborne lodine

Continuous air samples were collected from nine locations (Q-01, Q-02, Q-03, Q-04, Q-07, Q-13, Q-16, Q-37, and Q-38) and analyzed weekly for I-131 (Table C–VI.1, Appendix C). All results were less than the MDC and the required LLD was met.

Terrestrial

a. Milk

· 2.

Samples were collected from one location (Q-26) biweekly May through October and monthly November through April. The following analyses were performed:

lodine-131

Milk samples from the location were analyzed for concentrations of I-131 (Table C–VII.1, Appendix C). No I-131 was detected and the LLD was met.

Gamma Spectrometry

Each milk sample was analyzed for concentrations of gamma emitting nuclides (Table C–VII.2, Appendix C). No nuclides were detected and all required LLDs were met.

b. Food Products

Food product samples were collected at four locations plus a control location (Q-Quad 1 - Control, Q-Quad 1, Q-Quad 2, Q-Quad 3, and Q-Quad 4) annually during growing season. Four locations, (Q-Quad 1, Q-Quad 2, Q-Quad 3 and Q-Quad 4) could be affected by Quad Cities' effluent releases. The following analysis was performed:

Gamma Spectrometry

Samples from all locations were analyzed for gamma emitting nuclides (Table C–VIII.1, Appendix C). No nuclides were detected and all required LLDs were met.

C. Ambient Gamma Radiation

1

Ambient gamma radiation levels were measured utilizing thermoluminescent dosimeters. Forty TLD locations were established around the site. Results of TLD measurements are listed in Tables C-IX.1 to C-IX.3, Appendix C.

1.7 14 41

Most TLD measurements were below 30 mR/quarter, with a range of 17 to 35 mR/quarter. A comparison of the Inner Ring, Outer Ring and Other data to the Control Location data, indicate that the ambient gamma radiation levels from all the locations were comparable.

D. Independent Spent Fuel Storage Installation

QCNPS commenced use of an Independent Spent Fuel Storage Installation (ISFSI) in Dec 2005. There were no measurable changes in ambient gamma and radiation level as a result of ISFSI operations.

E. Land Use Survey

A Land Use Survey conducted during August 2007 around QCNPS was performed by Environmental Inc. (Midwest Labs) for Exelon Nuclear to comply with the Quad Cities' Offsite Dose Calculation Manual. The purpose of the survey was to document the nearest resident and milk producing animals in each of the sixteen 22 ½ degree sectors around the site. The results from the land use census have not identified any locations, which yield a calculated dose or dose commitment, via the same pathway, that is at least 20% greater than at a location from which samples are currently being obtained. The results of this survey are summarized below.

Distance in Miles from QCNPS						
Sector	Residence Miles	Livestock Miles	Milk Farm Miles			
N	0.6	2.7	-			
NNE	3.8	5.4	-			
NE	1.3	• • · · · ·	-			
ENE	2.9	2.9	-			
E	2.3	2.7	-			
ESE	2.8	3.1	3.1			
SE	2.5	5.5	-			
SSE	1.1	3.6	6.6			
S	0.8	1.6	-			
SSW	3.2	-	-			
SW	2.9	3.3	-			
ŴSW	2.2	2.2	-			
W	2.6	4.3	4.6			
WNW	2.7	3.8	-			
NW	2.6	4.7	-			
NNW	2.1	2.2	-			

and the second second

F. C. Frrata Data 1947, product dimensional cases of additional

normal a strategy and and a strategy and a strategy

There were several "location with the highest annual mean" values (averages) that were not correct that appear to be a cut /paste error. These errors are described below.

Errata data from 2006 AREOR

Page 28 of 227, 1Q06, Q-215-2 is recorded as 8 but is actually 30 (page 88).

Page 37 of 227, 2Q06, Q-205-1 is recorded as 11 but is actually 37 (page 88).

Page 45 of 227, 3Q06, Q-108-1 is recorded as 30 but is actually 27 (page 87).

Page 54 of 227, 4Q06, Q-205-1 is recorded as 13 but is actually 33 (page $_{\sim}$ 88).

Page 64 of 227, Annual, Q-205-1 is recorded as 30 but is actually 27 (page 88).

Page 7 (12 of 227), Q-03 02/25/06 – The value for this sample on page 79 (week 8, Q-03) is significantly less than the other samples for this week. If "no air was going through (the sample media)" then this is likely a "missed"

sample.

Page 133 of 227 – section 3.2 (Dose to Man section); The asterisked note indicates that liquid effluent dose calculations are performed using RG 1.109 calculations. The site dose calculation software uses both NUREG 0133 and RG 1.109.

G. Summary of Results – Inter-Laboratory Comparison Program

The primary and secondary laboratories analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation and water matrices (Appendix D). The PE samples, supplied by Analytics Inc., Environmental Resource Associates (ERA) and DOE's Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

1. Analytics Evaluation Criteria

Analytics' evaluation report provides a ratio of laboratory results and Analytics' known value. Since flag values are not assigned by Analytics, TBE-ES evaluates the reported ratios based on internal QC requirements, which are based on the DOE MAPEP criteria.

and the states

i de la composición d

2. ERA Evaluation Criteria

ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, NELAC, state specific PT program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

3. DOE Evaluation Criteria

MAPEP's evaluation report provides an acceptance range with associated flag values.

The MAPEP defines three levels of performance: Acceptable (flag = "A"), Acceptable with Warning (flag = "W"), and Not Acceptable (flag = "N"). Performance is considered acceptable when a mean result for the specified analyte is $\pm 20\%$ of the reference value. Performance is acceptable with warning when a mean result falls in the range from $\pm 20\%$ to $\pm 30\%$ of the reference value (i.e., 20% <

bias < 30%). If the bias is greater than 30%, the results are deemed not acceptable.

For the primary laboratory, 17 out of 19 analytes met the specified acceptance criteria. Two samples did not meet the specified acceptance criteria for the following reasons:

- Teledyne Brown Engineering's Analytics March 2007 I-131 in charcoal result of 34.7 pCi was lower than the known value of 71.3, resulting in a found to known ratio of 0.49. A new technician counted the charcoal cartridge on the back rather than the face side due to a label covering the flow indicator arrow. Due to decay of the I-131, recounting could not be performed. Counting the 2nd quarter Analytics charcoal cartridge on the face and the back resulted in approximately 220% more activity on the face of the cartridge. This indicates that we would have had acceptable results (ratio approximately 1.07) if the cartridge had been counted on the face side. The investigation was documented by Nonconformance Report NCR 07-02.
- 2. Teledyne Brown Engineering's ERA July 2007 Cs-134 result of 57.6 pCi/L exceeded the lower acceptance limit of 60.2 pCi/L. The high activity of the sample resulted in the lower acceptance limit of 8.66, although the ratio of found to known was 83.6%, which is considered acceptable by TBE. The investigation was documented by Nonconformance Report NCR 07-07.

For the secondary laboratory, 18 out of 19 analytes met the specified acceptance criteria. One sample did not meet the specified acceptance criteria for the following reasons:

 Environmental Inc.'s ERA March 2007 air particulate Cs-137 result of 345.3 pCi/L exceeded the upper control limit of 336 pCi/L. The reported result was calculated using composite filter geometry rather than the single filter geometry. The recalculated result of 305.8 pCi/filter fell within the acceptance limits. This was entered into their June 2007 Program Deviation Report.

The Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

. ÷ ÷ •

PENDIX A

i.

*. · ENVIRONMENTAL MONITORING RADIOLOGICA . • . :` REPORT SUMMARY REI

an p ... · • . арана (р. 1999) 1940 — Принска (р. 1997) 1940 — Принска (р. 1997) . 4.

.

.

7

NAME OF FACILI LOCATION OF FACILI	TY: QUAD CITIES TY: CORDOVA, IL			DOCKET NU REPORTING	MBER: PERIOD:	50-254 &50- ANNUAL 20	265)07	
	,			INDICATOR	CONTROL	LOCATION	WITH HIGHEST ANNUAL MEAN	(M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN(M) (F) RANGE	LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	GR-B	24	4	5.2 (10/12) (2.5/7.8)	5.3 (12/12) (3.8/7.5)	5.3 (12/12) (3.8/7.5)	Q-34 CONTROL CAMANCHE - UPSTREAM 4.4 MILES NNE OF SITE	0
	H-3	8	200	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	GAMMA	24	1. A.	• •				
	MN-54		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
		· · ·						
	CO-58		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>. 0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>. 0</td></lld<>	-		. 0
				14 - 14 - 14				
	FE-59		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
				. *				
	CO-60		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

MEAN AND RANGE BASED ON DETECTABLE MEASUREMENTS ONLY (M) FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

22 of 108

·· · · · ·

NAME OF FACIL LOCATION OF FACIL	NAME OF FACILITY: QUAD CITIES LOCATION OF FACILITY: CORDOVA, IL			DOCKET NU REPORTING	MBER: PERIOD:	50-254 & 50-265 ANNUAL 2007			
				INDICATOR	CONTROL	LOCATION	WITH HIGHEST ANNUAL MEAN	(M)	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN(M) (F) RANGE	LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
SURFACE WATER (PCI/LITER)	ZN-65		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	NB-95		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	ZR-95		30	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	I-131		15	<lld< td=""><td><lld< td=""><td></td><td></td><td>· 0 · · ·</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>· 0 · · ·</td></lld<>			· 0 · · ·	
	CS-134		15	<lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0	
	CS-137			、: <lld< td=""><td><lld< td=""><td></td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td></td><td></td><td>0</td></lld<>			0	

MEAN AND RANGE BASED ON DETECTABLE MEASUREMENTS ONLY (M)

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

A - 2

NAME OF FACIL	NAME OF FACILITY: QUAD CITIES LOCATION OF FACILITY: CORDOVA, IL				MBER: PERIOD:	50-254 &50-265 ANNUAL 2007			
				INDICATOR	CONTROL	LOCATION	WITH HIGHEST ANNUAL MEAN	(M)	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS ´PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN(M) (F) RANGE	LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
SURFACE WATER (PCI/LITER)	BA-140		60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0.</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0.</td></lld<>	-		0.	
	LA-140		15	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
GROUND WATER (PCI/LITER)	H-3	. 8	200	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0	
	GAMMA MN-54	8	15	<lld< td=""><td>NA 1.7 (1.1.1</td><td> _</td><td></td><td>0</td></lld<>	NA 1.7 (1.1.1	 _		0	
	CO-58	· .	15	<ĽLD	NA	-		0	
	FE-59		30	<lld< td=""><td>NA</td><td>, -</td><td></td><td>0</td></lld<>	NA	, -		0	
	CO-60		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0	

 \geq w

e e servición de la construcción d Reconstrucción de la construcción de

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FORQUAD CITIES NUCLEAR POWER STATION, 2007

NAME OF FACIL LOCATION OF FACIL	ITY: QUAD CITIES ITY: CORDOVA, IL			DOCKET NU REPORTING INDICATOR	MBER: PERIOD: CONTROL	50-254 &50- ANNUAL 20 LOCATION	50-254 &50-265 ANNUAL 2007 Location with highest annual mean(m)			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN(M) (F) RANGE	LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS		
GROUND WATER (PCI/LITER)	ZN-65		30	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0		
	NB-95		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0		
	ZR-95		30	<lld< td=""><td>NA</td><td>2</td><td></td><td>• 0</td></lld<>	NA	2		• 0		
			с <u>т</u> (р.							
	I-131		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>. 0</td></lld<>	NA	-		. 0		
	CS-134		15	<lld ,<="" td=""><td>NA</td><td>-</td><td></td><td>0</td></lld>	NA	-		0		
	CS-137	• • •		<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0		
	BA-140		60	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0		

MEAN AND RANGE BASED ON DETECTABLE MEASUREMENTS ONLY (M)

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACIL LOCATION OF FACIL	JITY: QUAD CITIES JITY: CORDOVA, IL			DOCKET NU REPORTING INDICATOR	MBER: PERIOD: CONTROL	50-254 &50-265 ANNUAL 2007 L LOCATION WITH HIGHEST ANNUAL MEAN(M)			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN(M) (F) RANGE	LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
GROUND WATER (PCI/LITER)	LA-140		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>. 0</td></lld<>	NA	-		. 0	
FISH (PCI/KG WET)	GAMMA MN-54	8	130	! D</td <td><</td> <td>_</td> <td></td> <td>0</td>	<	_		0	
	CO-58		130	<lĺd< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lĺd<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	FE-59		260	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	CO-60		130	<lld,< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld,<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	ZN-65		260	< <u>LLD</u>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	NB-95		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	

MEAN AND RANGE BASED ON DETECTABLE MEASUREMENTS ONLY (M) FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

26 of 108

NAME OF FACILIT LOCATION OF FACILIT	Y: QUAD CITIES Y: CORDOVA, IL			DOCKET NU REPORTING	MBER: PERIOD:	50-254 &50- ANNUAL 20	265 007	
				INDICATOR	CONTROL	LOCATION	WITH HIGHEST ANNUAL MEAN	(M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN(M) (F) RANGE	LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
FISH (PCI/KG WET)	ZR-95		NA	<lld< td=""><td><ĽĽD</td><td>-</td><td></td><td>0</td></lld<>	<ĽĽD	-		0
	CS-134		130	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	CS-137		150	<lld td="" ·="" ·<=""><td><lld< td=""><td>· -</td><td></td><td>. 0 .</td></lld<></td></lld>	<lld< td=""><td>· -</td><td></td><td>. 0 .</td></lld<>	· -		. 0 .
	BA-140	. ·	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA-140		NA	<lld< td=""><td><ĽĽD</td><td>_</td><td>···· · ·</td><td>0</td></lld<>	<ĽĽD	_	···· · ·	0
SEDIMENT (PCI/KG DRY)	GAMMA MN-54	2	NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0

MEAN AND RANGE BASED ON DETECTABLE MEASUREMENTS ONLY (M) FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

27 of 108

.

NAME OF FACIL	ITY: QUAD CITIES ITY: CORDOVA, IL			DOCKET NU REPORTING	MBER: PERIOD:	50-254 &50-2 ANNUAL 20	65 07	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN(M) (F) RANGE	CONTROL LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	(M) NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SEDIMENT (PCI/KG DRY)	CO-58		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
				.:	.,			
	FE-59		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	CO-60		NA · · · ·	<lld< td=""><td> NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	ZN-65		NA	<lld< td=""><td>NA ,</td><td></td><td></td><td>0</td></lld<>	NA ,			0
	NB-95		NA	<lld< td=""><td>NA</td><td>· · · ·</td><td></td><td>0</td></lld<>	NA	· · · ·		0
	ZR-95 .		NA	<lld< td=""><td>NA</td><td>- .</td><td></td><td>0</td></lld<>	NA	- .		0
	CS-134		150	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0

MEAN AND RANGE BASED ON DETECTABLE MEASUREMENTS ONLY (M) FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

28 of 108

NAME OF FACIL LOCATION OF FACIL	ATY: QUAD CITIES ATY: CORDOVA, IL			DOCKET NU REPORTING	MBER: PERIOD:	50-254 &50- ANNUAL 20	265 107	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	INDICATOR LOCATIONS MEAN(M) (F) RANGE	CONTROL LOCATION MEAN(M) (F) RANGE	LOCATION MEAN(M) (F) RANGE	WITH HIGHEST ANNUAL MEAN STATION # NAME DISTANCE AND DIRECTION	(M) NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SEDIMENT (PCI/KG DRY)	CS-137		180	70 (1/2) (70)	NA	70 (1/2) (70)	Q-39 INDICATOR CORDOVA - DOWNSTREAM I 0.8 MILES SSW OF SITE	0 MISSISSIPPI RIVER
	BA-140		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	LA-140		NA	<lld td="" ·<="" ···=""><td>NA</td><td>* <u>-</u></td><td></td><td>0</td></lld>	NA	* <u>-</u>		0
AIR PARTICULATE (PCI/TOTAL)	GR-B	459	. 10	21 (407/408) (6/54)	23 (51/51) (9/49)	23 (51/51) (9/50)	Q-13 INDICATOR PRINCETON 4.7 MILES SW OF SITE	Ó.
	GAMMA MN-54	36	NA	<lld< td=""><td><lld< td=""><td>- ,</td><td>•.</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>- ,</td><td>•.</td><td>0</td></lld<>	- ,	•.	0
	CO-58		NA.	<lld< td=""><td><lld< td=""><td>-</td><td>• •••</td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td>• •••</td><td>0</td></lld<>	-	• •••	0
	FE-59		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0

MEAN AND RANGE BASED ON DETECTABLE MEASUREMENTS ONLY (M)

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

NAME OF FACILI LOCATION OF FACILI	NAME OF FACILITY: QUAD CITIES LOCATION OF FACILITY: CORDOVA, IL			DOCKET NUMBER: REPORTING PERIOD: INDICATOR CONTROL		50-254 & 50-265 D: ANNUAL 2007 'ROL LOCATION WITH HIGHEST ANNUAL MEAN(M)			
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN(M) (F) RANGE	LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
AIR PARTICULATE (PCI/TOTAL)	CO-60		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	ZN-65	•	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
				: 7.					
	NB-95		NA T	<lld td="" ····<=""><td>"- <ĽLD</td><td>-</td><td></td><td>· 0 ·</td></lld>	"- <ĽLD	-		· 0 ·	
	ZR-95	· · · · · ·	NA.	<lld< td=""><td><lld< td=""><td>-</td><td> </td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td> </td><td>0</td></lld<>	-	 	0	
	CS 124		50	 <td></td><td>•</td><td></td><td>0</td>		•		0	
· ·	03-134	. .						Ū	
	CS-137	• _ •	60	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	
	BA-140	x	NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0	

30 of 108

 \geq 9

• •

TABLE A-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL SUMMARY FOR **QUAD CITIES NUCLEAR POWER STATION, 2007**

:

NAME OF FACILITY: QUAD CITIES				DOCKET NU	MBER:	50-254 & 50-	50-254 & 50-265			
LOCATION OF FACILI	ITY: CORDOVA, IL			REPORTING	PERIOD:	ANNUAL 2007				
				INDICATOR	CONTROL	LOCATION V	WITH HIGHEST ANNUAL MEAN((M)		
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN(M) (F) RANGE	LOCATION MEAN(M) (F), RANGE	MEAN(M) (F) RANGE	STATION # -NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS		
AIR PARTICULATE (PCI/TOTAL)	LA-140		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0		
					- :					
AIR IODINE	GAMMA	468								
(E-3 PCI/CU.METER)	I-131		70	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0		
			,	•						
MILK	1-131	19	i	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0		
(PCI/LITER)	CANDIA	10			,			•		
	MN-54	19	NA	<lld< td=""><td>NA .</td><td></td><td></td><td>0</td></lld<>	NA .			0		
					;					
					· · 2:		· · · · · ·	•		
-	CO-58		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0		
			e c Carron y s				• • • • •	• ••• ••		
			, • . • ·	. • • •						
	FE-59 ,		NA	, <lld< td=""><td>· NA</td><td>-</td><td>· · ·</td><td>0</td></lld<>	· NA	-	· · ·	0		
	~ ~ ()							<u>^</u>		
	CO-60		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0		

31 of 108

NAME OF FACIL LOCATION OF FACIL	ITY: QUAD CITIES ITY: CORDOVA, IL			DOCKET NU REPORTING INDICATOR	MBER: PERIOD: CONTROL	50-254 &50-2 ANNUAL 200 LOCATION W	65 07 /ITH HIGHEST ANNUAL MEAN	(M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN(M) (F) RANGE	LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
MILK (PCI/LITER)	ZN-65	,	NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
	NB-95		NA	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
				, es				
	ZR-95		• • NA • •	<lld< td=""><td>· NA ·</td><td>- ·</td><td></td><td>0</td></lld<>	· NA ·	- ·		0
	CS-134		. 15	<lld< td=""><td>NA</td><td></td><td></td><td>0</td></lld<>	NA			0
				•				1 1 1
	CS-137		18	<lld< td=""><td>NA</td><td>-</td><td>,</td><td>0</td></lld<>	NA	-	,	0
					e te c			
				- · · · ·	· .	•		
	BA-140		60	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0
		:		•				
	LA-140		15	<lld< td=""><td>NA</td><td>-</td><td></td><td>0</td></lld<>	NA	-		0

50-254 &50-265 ANNUAL 2007 LOCATION WITH HIGHEST ANNUAL MEAN(M)		
NUMBER OF NONROUTINE REPORTED MEASUREMENTS		
0		
0		
, , ,		
. 0		
0		
0		

and the second second

×,

MEAN AND RANGE BASED ON DETECTABLE MEASUREMENTS ONLY (M) FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

and the state

: •

NAME OF FACILIT LOCATION OF FACILIT	Y: QUAD CITIES Y: CORDOVA, IL			DOCKET REPORTI INDICATÒ	NUMBER: NG PERIOD: R CONTROL	50-254 & 50- ANNUAL 20 LOCATION	265 D07 WITH HIGHEST ANNUAL MEAN	(M)
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPES OF ANALYSIS PERFORMED	NUMBER OF ANALYSIS PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATION MEAN(M) (F) RANGE	S LOCATION MEAN(M) (F) RANGE	MEAN(M) (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
VEGETATION (PCI/KG WET)	ZR-95		NA	ې <lld< td=""><td></td><td>-</td><td></td><td>0</td></lld<>		-		0
	I-131		60	<lld *<="" td=""><td>۲۰۰۰ CLLD</td><td></td><td></td><td>0</td></lld>	۲۰۰۰ CLLD			0
	CS-134		60	<lld< td=""><td>a sin sin sin sin sin sin sin sin sin sin</td><td>-</td><td></td><td>0</td></lld<>	a sin	-		0
	CS-137	-	80	ر د د د د د د د د د د د د د د د د د د د	LLD	-	٢	0
	BA-140 .		NA	<lld< td=""><td>• <lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	• <lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
	LA-140		NA	<lld< td=""><td><lld< td=""><td>-</td><td></td><td>0</td></lld<></td></lld<>	<lld< td=""><td>-</td><td></td><td>0</td></lld<>	-		0
DIRECT RADIATION (MILLI-ROENTGEN/QTR.)	TLD-QUARTERLY	324	NA	21.8 (316/316) (17/35)	21.9 (8/8) (19/27)	25.3 (4/4) (23/29)	Q-211-2 INDICATOR 4.5 MILES SW	0

.

MEAN AND RANGE BASED ON DETECTABLE MEASUREMENTS ONLY (M) FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

34 of 108
APPENDIX B

t

1

LOCATION DESIGNATION, DISTANCE & DIRECTION, AND SAMPLE COLLECTION & ANALYTICAL METHODS

; .

Location	Location Description	Distance & Direction From Site
A. Surface W	/ater	
Q-33	Cordova (indicator)	3.1 miles SSW
Q-34		
B. Ground/M	/ell Water	
Q-35	McMillan Well (indicator)	1.5 miles S
Q-36	Cordova Well (Indicator)	3.3 miles SSW
C. Milk - bi-w	eekly / monthly	
Q-26	Bill Stanley Dairy (indicator)	3.5 miles ESE
D. Air Partici	<u>lates / Air Iodine</u>	
O-01	Onsite 1 (indicator)	0.5 miles N
Q-02	Onsite 2 (indicator)	0.4 miles FNF
Q-03	Onsite 3 (indicator)	0.6 miles S
Q-04	Nitrin (indicator)	1.7 miles NE
Q-07	Clinton (control)	8.8 miles NE
Q-13	Princeton (indicator)	4.7 miles SW
Q-16	Low Moor (indicator)	5.7 miles NNW
Q-37	Meredosia Road (indicator)	4.4 miles FNF
Q-38	Fuller Road (indicator)	4.7 miles E
EFish		. •
Q-24	Pool #14 of Mississippi River, Downstream (indicator)	0.5 miles SW
Q-29	Mississippi River, Upstream (control)	1.0 miles N
F. Sediment		
Q-39	Cordova, Downstream on Mississippi River (indicator)	0.8 miles SSW
G. Food Pro	ducts	
Quadrant 1	lanet Price	6.0 miles NE
Quadrant 2	Dale Nimmic	3.0 miles ESE
Quadrant 3	Amy Johnston	1.8 miles S
Quadrant 4	Mike Fawcett	4.5 miles NW
Control	Charles Leavens	9.5 miles NE
H. Environm	ental Dosimetry - TLD	
Inner Ring		
Q-101-1		0.6 miles N
Q-101-2		0.9 miles N
Q-102-1		1.3 miles NNE
Q-102-3		1.4 miles NNE
Q-103-1 and -2		1.2 miles NE
Q-104-1		1 1 miles ENE
Q-104-2		0.9 miles ENE
Q-105-1 and -2		0.8 miles E
0.106.2 and -3		0.7 miles ESE
0-107-2 and -5		0.7 miles SF
Q-107-3		0.8 miles SE
Q-108-1		
0-108-2		
G-100-2		0.3 THES OUL

 TABLE B-1:
 Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Quad Cities Nuclear

 Power Station, 2007
 Power Station, 2007

.

. .

Location	Location Description	Distance & Direction From Site
Q-109-1		Ω 9 miles S
Q-109-2		1.2 miles S
0-111-1		2.6 miles SW
Q-111-2	•	2.5 miles SW
Q-112-1		2.5 miles WSW
0-112-2		2.2 miles WSW
Q-112-2 O-113-1 and -2		2.5 miles W
Q-11/-1		2.1 miles WNW
Q-114-7 O-114-2		2.5 miles WNW
0-115-1		2.6 miles NW
Q-115-1 O-115-2		2.3 miles NW
Q-116-1		2.3 miles NNW
Q-116-3		2.4 miles NNW
Outer Ring		· · · ·
Q-201-1 and -2		4.2 miles N
Q-202-1		4.4 miles NNE
Q-202-2		4.8 miles NNE
Q-203-1		4.7 miles NE
Q-203-2		5.0 miles NE
Q-204-1		4.7 miles ENE,
Q-204-2	$(x_{i}) \in [x_{i}] \in \{x_{i}\} $	4.5 miles ENE
Q-205-1	1 1 3 A 3 A	4.7 miles E
Q-205-4	and the second sec	4.8 miles E
Q-206-1 and -2		4.8 miles ESE
Q-207-1 and -4		4.7 miles SE
Q-208-1		4.3 miles SSE
Q-208-2	and the second	4.9 miles SSE
Q-209-1 and -4		4.7 miles S
Q-210-1 and -4 *		4.1 miles SSW
Q-210-5		3.3 miles SSW
Q-211-1 and -2		4.5 miles SW
Q-212-1		5.4 miles WSW
Q-212-2		4.4 miles WSW
Q-213-1		4.3 miles W
Q-213-2		4.8 miles W
Q-214-1		4.7 miles WNW
Q-214-2		4.4 miles WNW
Q-215-1		5.0 miles NW.
Q-215-2		4.2 miles NW
Q-216-1	· ·	4.6 miles NNW
Q-216-2		4.3 miles NNW
Other		
Q-01	Onsite 1 (indicator)	0.5 miles N
Q-02	Onsite 2 (indicator)	0.4 miles ENE
Q-03	Onsite 3 (indicator)	0.6 miles S
Q-04	Nitrin (indicator)	1.7 miles NE
Q-13	Princeton (indicator)	4.7 miles SW
Q-16	Low Moor (indicator)	5.7 miles NNW
Q-37	Meredosia Road (indicator)	4.4 miles ENE
Q-38	Fuller Road (indicator)	4.7 miles E
Control		
Q-07		8.9 miles NF

TABLE B-1: Radiological Environmental Monitoring Program - Sampling Locations, Distance and Direction, Quad Cities Nuclear Power Station, 2007

•

* Removed from ODCM in December 2006 and replaced by Q-210-5. Q-210-4 is for trending only.

.

TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Quad Cities Nuclear Power Station, 2007

5 × 5 ×

Sample Medium	Analysis	Sampling Method	Analytical Procedure Number
Surface Water	Gamma Spectroscopy	Monthly composite from weekly grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Surface Water	Gross Beta	Monthly composite from weekly grab samples.	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices
			Env. Inc., W(DS)-01 Determination of gross alpha and/or gross beta in water (dissolved solids or total residue)
Surface Water	Tritium	Quarterly composite from weekly grab samples.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation
			Env. Inc., T-02 Determination of tritium in water (direct method)
Ground Water	Gamma Spectroscopy	Quarterly grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis
			Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Ground Water	Tritium	Quarterly grab samples.	TBE, TBE-2011 Tritium analysis in drinking water by liquid scintillation
			Env. Inc., T-02 Determination of tritium in water (direct method)
Fish	Gamma Spectroscopy	Semi-annual samples collected via	TBE-2007 Gamma emitting radioisotope analysis
		electroshocking or other techniques	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Sediment	Gamma Spectroscopy	Semi-annual grab	TBE, TBE-2007 Gamma emitting radioisotope analysis
			Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air Particulates	Gross Beta	One-week composite of continuous air sampling through glass fiber filter	TBE, TBE-2008 Gross Alpha and/or gross beta activity in various matrices
		paper	Env. Inc., AP-02 Determination of gross alpha and/or gross beta in air particulate filters
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	TBE, TBE-2007 Gamma emitting radioisotope analysis
			Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air lodine	Gamma Spectroscopy	Weekly composite of continuous air sampling	TBE, TBE-2007 Gamma emitting radioisotope analysis
		through charcoal filter	Env. Inc., I-131-02 Determination of I-131 in charcoal canisters by gamma spectroscopy (batch method)

* ~ *)*

B - 3

TABLE B-2: Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methods, Quad Cities Nuclear Power Station, 2007

Sample Medium	Analysis	Sampling Method	Analytical Procedure Number
Milk	1-131	Bi-weekly grab sample when cows are on pasture. Monthly all other times	TBE, TBE-2012 Radioiodine in various matrices Env. Inc., I-131-01 Determination of I-131 in milk by anion exchange
Milk	Gamma Spectroscopy	Bi-weekly grab sample when cows are on pasture. Monthly all other times	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Food Products	Gamma Spectroscopy	Annual grab samples.	TBE, TBE-2007 Gamma emitting radioisotope analysis Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
TLD	Thermoluminescence Dosimetry	Quarterly TLDs	Global Dosimetry

الم المراجع ال المراجع المراجع

Figure B-1 Quad Cities REMP Sample Locations – 2 Mile Radius, 2007

B - 5

40 of 108

Figure B-2 Quad Cities REMP Sampling Locations – 9.3 Mile Radius, 2007

and a second second

DATA TABLES AND FIGURES PRIMARY LABORATORY

· ·

- 1, 1, - 14

TABLE C-I.1 CONCENTRATIONS OF GROSS BETA IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION PERIOD	Q-33	Q-34		
12/29/06 - 01/05/07	2.5 ± 1.4	4.3 ± 1.7		
02/23/07 - 02/23/07	4.3 ± 1.8	4.6 ± 1.9		
03/02/07 - 03/30/07	5.2 ± 1.8	5.2 ± 1.8		
04/06/07 - 04/27/07	< 2.6	5.0 ± 2.0		
05/04/07 - 05/31/07	7.8 ± 2.1	7.2 ± 2.0		
06/08/07 - 06/29/07	6.4 ± 1.8	6.7 ± 1.8		
07/06/07 - 07/27/07	5.2 ± 1.8	3.8 ± 1.5		
08/03/07 - 08/31/07	5.4 ± 1.8	7.5 ± 2.0		
09/07/07 - 09/28/07	4.5 ± 1.8	4.8 ± 1.8		
10/05/07 - 10/25/07	4.9 ± 1.9	6.1 ± 2.0		
11/02/07 - 11/30/07	< 2.8	4.7 ± 2.1		
12/14/07 - 12/28/07	6.3 ± 1.9	4.1 ± 1.7		

MEAN* 5.5 ± 2.2 5.4 ± 2.5

TABLE C-I.2 CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION	Q-33	Q-34		
PERIOD		* a a.	× 1.09	
01/05/07 - 03/30/07	< 159	 3. (< 167 / ™) 		المراجع المراجع المراجع
04/06/07 - 06/29/07	< 178	< 178		
07/06/07 - 09/28/07	< 192	< 198	N 2	,
10/05/07 - 12/28/07	< 171	< 172	5 "	£. °,

MEAN

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

TABLE C-I.3CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140	: <u>-</u>
Q-33	12/29/06 - 01/05/07	< 0.4	< 1	< 1	< 0	< 1	< 1	< 1	< 14	< 0	< 0	< 13	< 4	, and the second se
	02/23/07 - 02/23/07	< 3	< 3	< 6	< 2	< 5	< 3	< 5	< 12	< 2	< 2	< 27	< 8	
	03/02/07 - 03/30/07	< 2	< 2	< 5	< 2	< 4	< 2	< 4	< 10	< 2	< 2	< 18	< 6	
	04/06/07 - 04/27/07	< 3	< 3	< 8	< 3	< 7	< 4	< 6	< 15	< 3	< 3	< 28	< 10	
	05/04/07 - 05/31/07	< 1	< 2	< 3	< 1	< 3	< 2	< 3	< 8	< 1	< 1	< 14	< 4	
	06/08/07 - 06/29/07	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 11	< 1	< 1	< 16	< 5	<u> </u>
	07/06/07 - 07/27/07	< 2	< 2	< 4	< 1	< 3	< 2	< 3	< 13	< 1	< 2	< 20	< 6	
	08/03/07 - 08/31/07	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 15	< 1	< 1	< 19	< 6	•
	09/07/07 - 09/28/07	< 3	< 3	< 7	< 3	< 6	< 3	< 5	< 15	< 3	< 3	< 26	< 9	÷.,
	10/05/07 - 10/25/07	< 1	< 1	< 2	< 1	< 1	< 1	< 2	< 10	< 1	< 1	< 12	< 5	۰.
	11/02/07 - 11/30/07	< 2	< 3	< 6	< 2	< 6	< 3	< 5	< 11	< 2	< 2	< 22	< 7	
	12/07/07 - 12/21/07	< 1	< 1	< 3	< 1	< 2	< 1 .	< 3	< 13	< 1	< 1	< 29	< 8	:
	MEAN	-	-	-	-	-	-	-	-	-	-	· _·	-	· •
Q-34	12/29/06 - 01/05/07	< 0.4	< 1	< 1	< 0	< 1	< 1	< 1	< 15	< 0	< 0	< 13	< 4	• .
	02/23/07 - 02/23/07	< 3	< 3	< 6	< 3	< 5	< 3	< 5	< 14	< 2	< 3	< 27	< 8	
	03/02/07 - 03/30/07	< 2	< 3	< 6	< 2	< 5	< 3	< 5	< 11	< 2	< 2	< 21	< 7	
	04/06/07 - 04/27/07	< 3	< 3	< 8	< 3	< 6	< 3	< 6	< 15	< 3	< 3	< 27	< 10	. • `
	05/04/07 - 05/31/07	< 2	< 2	< 4	< 2	< 3	< 2	< 3	< 10	< 1	< 2	< 17	< 5	÷
	06/08/07 - 06/29/07	< 1	< 2	< 4	< 1	< 3	< 2	< 3	< 15	< 1	< 1	<.21	, < 7	
	07/06/07 - 07/27/07	< 2	< 2	< 4	< 1	< 3	< 2	< 3	< 13	< 1	< 2	< 20	< 6	
	08/03/07 - 08/31/07	< 1	< 1	< 3	< 1	< 2	< 1	< 2	< 15	< 1	< 1	< 18	< 6	
	09/07/07 - 09/28/07	< 2	< 2	< 7	< 2	< 5	< 3	< 5	< 15	< 2	< 3	< 24	< 8	
	10/05/07 - 10/25/07	< 2	< 3	< 7	< 3	< 5	< 3	< 5	< 14	< 2	< 2	< 43	< 14	
	11/02/07 - 11/30/07	< 2	< 2	< 6	< 3	< 5	< 3	< 4	< 11	< 2	< 2	< 21	< 8	
	12/14/07 - 12/28/07	< 1	< 2	< 4	< 2	< 3	< 2	< 3	< 12	• < 1	< 2	< 27	< 9	
	MEAN	-	-	-	-	-	-	-	-	-	-	_	-	

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

C - 2

TABLE C-II.1CONCENTRATIONS OF TRITIUM IN GROUND WATER SAMPLES COLLECTED
IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

.

2

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

COLLECTION	Q-35	Q-36
PERIOD		
01/12/07 - 01/12/07	< 184	< 183
04/13/07 - 04/13/07	< 168	< 164
07/13/07 - 07/13/07	< 164	< 162
10/12/07 - 10/12/07	< 190	< 188

- -

MEAN

45 of 108

.

TABLE C-II.2CONCENTRATIONS OF GAMMA EMITTERS IN GROUND WATER SAMPLES
COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
Q-35	01/12/07 - 01/12/07	< 4	< 6	< 12	< 5	< 11	< 5	< 10	< 13	< 5	< 5	< 27	< 11
	04/13/07 - 04/13/07	< 5	< 5	໌< 10	< 5	< 10	< 5	< 8	< 13	< 4	< 5	< 31	< 9
	07/13/07 - 07/13/07	< 4	< 4	< 9	< 4	< 10	< 5	< 7	< 11	< 4	< 4	< 29	< 8
	10/12/07 - 10/12/07	< 5	< 5	< 10	< 5	< 7	< 5	< 9	< 13	< 5	< 5	< 32	< 8
	MEAN	-	-	-	-	· –	1. 99 	•		-	-	-	-
Q-36	01/12/07 - 01/12/07	< 4	< 4	< 9	< 4	< 7	[;] < 4	· < 7	< 11	< 4	< 4	< 27	·< 8
	04/13/07 - 04/13/07	< 6	< 6	< 15	< 9	< 12	< 8	< 15	< 15	< 7	< 4	< 38	< 11
	07/13/07 - 07/13/07	< 4	< 3	< 8	< 4	< 7	< 4	< 6	< 10	< 3	< 4	< 23	< 7
	10/12/07 - 10/12/07	< 5	< 4	< 11	< 5	< 9	< 5	< 7	< 15	< 4	< 4	< 30	< 8
	MEAN	-	-	-	-	-	-	-	-	-	-	-	-
							• •				-		• •
								-					
						$a_{i} \in C_{i}$	• 2	- 1 ⁴		•			
				`		••	۰۰,	· ;	•:	,			

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

and the second second

· · · · · · · · · · · · · ·

.

TABLE C-III.1CONCENTRATIONS OF GAMMA EMITTERS IN FISH SAMPLES COLLECTED IN
THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
Q-24								· · · · ·				
Channel Catfish	05/02/07	< 52	< 57	< 121	< 52	< 114	< 74	< 111	< 51	< 51	< 452	< 144
White Bass	05/02/07	< 58	< 53	< 95	< 63	< 100	< 66	< 96	< 55	< 57	< 491	< 142
Channel Catfish	10/02/07	< 37	< 44	< 126	< 46	< 111	< 55	< 94	< 44	< 53	< 470	< 121
Common Carp	10/02/07	< 55	< 61	< 145	< 48	< 133	< 53	< 100	< 43	< 50	< 519	< 165
	MEAN	-	-	-	-	-	-	-	-	-	-	-
				,	1 L		, •					
Q-29							•		•			
Channel Catfish	05/02/07	< 43	< 49	< 110	< 46	< 93 ·	< 54	< 90	< 46	< 45	< 395	< 125
Largemouth Bass	05/02/07	< 59	< 54	< 169	< 48	< 150	< 64	< 96 ·	< 49	< 57	< 502	< 139
Channel Catfish	10/02/07	< 50	< 56	< 143	< 47	< 96	< 47	< 94	< 49	< 54	< 429	< 165
Common Carp	10/02/07	< 36	< 45	< 114	< 41	< 97	< 54	< 106	< 39	< 39	< 444	< 91
	MEAN	-	-		-		.* - • •	-	-	-	-	-
					•							
	• •		·		n Marina karat		• * • • •	. •			•	
				•	·* • .	5						
						· · · ·						
		, • ,					· · · ·		۰.			

RESULTS IN UNITS OF PC/KG WET ± 2 SIGMA

C		Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140	
39	05/25/07 10/05/07	< 46 < 74	< 50 < 70	< 112 < 233	< 49 < 56	< 112 < 235	< 68 < 118	< 98 < 162	< 40 < 60	70 ± 48 < 117	< 362 < 618	< <u>1</u> 02 < 138	·
	MEAN	-	-	-			- '''		-	70 ± 0	-	-	-
								\$ • • • •	n An An An	. <u>.</u> .			• • •
												•	
				. •	, <u>,</u> , ,	; ; ;	n an an An An An An An An An		• •	• • •			
				. •		• 、		· · · ·	 		· •	- - - -	۰.
		•	·	•	•					:			
						• . •		-				-	

. ..

.

.

TABLE C-IV.1 CONCENTRATIONS OF GAMMA EMITTERS IN SEDIMENT SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007 ////

,

C - 6

48 of 108

TABLE C-V.1 CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

		NEAR-	FIELD			CONTROL			
-		GRC	UP I			GROU	IP II		GROUP III
PERIOD	Q-01	Q-02	Q-03	Q-04	Q-13	Q-16	Q-37	Q-38	Q-07
12/29/06 - 01/05/07	25 ± 5	20 ± 4	18 ± 4	24 ± 5	22 ± 4	21 ± 4	23 ± 4	22 ± 4	24 ± 5
01/05/07 - 01/12/07	22 ± 4	19 ± 4	20 ± 4	27 ± 5	24 ± 5	26 ± 5	25 ± 5	25 ± 4	20 ± 4
01/12/07 - 01/19/07	20 ± 4	18 ± 4	18 ± 4	24 ± 5	20 ± 4	23 ± 5	22 ± 4	16 ± 4	20 ± 4
01/19/07 - 01/26/07	38 ± 5	34 ± 5	29 ± 5	44 ± 6	38 ± 5	38 ± 5	36 ± 5	35 ± 5	42 ± 5
01/26/07 - 02/02/07	21 ± 5	24 ± 5	22 ± 4	24 ± 5	23 ± 5	26 ± 5	22 ± 5	22 ± 4	23 ± 5
02/02/07 - 02/09/07	24 ± 5	24 ± 5	25 ± 5	29 ± 5	30 ± 5	24 ± 5	25 ± 5	24 ± 4	24 ± 5
02/09/07 - 02/16/07	20 ± 5	17 ± 4	22 ± 5	20 ± 5	22 ± 5	21 ± 4	19 ± 5	24 ± 5	23 ± 5
02/15/07 - 02/22/07	27 ± 5	23 ± 4	27 ± 5	22 ± 4	26 ± 5	23 ± 4	29 ± 5	25 ± 5	26 ± 5
02/22/07 - 03/02/07	10 ± 3	10 ± 3	11 ± 3	8 ± 3	13 ± 4	13 ± 4	11 ±.3	12 ± 3	9 ± 3
03/02/07 - 03/08/07	13 ± 4	16 ± 4	14 ± 4	12 ± 4	16 ± 5	16 ± 5	20 ± 4	15 ± 4	20 ± 5
03/08/07 - 03/16/07	18 ± 4	15 ± 4	20 ± 4	21 ± 4	19 ± 4	20 ± 4	20 ± 4	20 ± 4	16 ± 4
03/16/07 - 03/23/07	16 ± 4	18 ± 4	16 ± 4	15 ± 4	17 ± 4	18 ± 4	22 ± 4	17 ± 4	18 ± 4
03/23/07 - 03/30/07	12 ± 4	14 ± 4	10 ± 4	13 ± 4	13 ± 4	15 ± 4	15 ± 4	13 ± 4	11 ± 4
03/30/07 - 04/06/07	14 ± 4	12 ± 4	15 ± 4	12 ± 4	16 ± 5	13 ± 4	16 ± 4	11 ± 4	13 ± 4
04/06/07 - 04/13/07	15 ± 4	16 ± 4	14 ± 4	17 ± 4	18 ± 4	13 ± 4	17 ± 4	15 ± 4	12 ± 4
04/13/07 - 04/20/07	19 ± 4	19 ± 4	16 ± 4	19 ± 4	18 ± 4		14 ± 4	19 ± 4	20 ± 4
04/20/07 - 04/27/07	17 ± 4	14 ± 4	13 ± 4	11 ± 4	14 ± 4	13 ± 4	11 ± 4	13 ± 4	16 ± 4
04/27/07 - 05/03/07	19 ± 4	14 ± 4	13 ± 4	18 ± 4	21 ± 5	22 ± 5	16 ± 4	15 ± 4	18 ± 5
05/03/07 - 05/11/07	18 ± 4	20 ± 4	17 ± 4	24 ± 5	21 ± 4	19 ± 4	22 ± 4	15 ± 4	22 ± 4
05/11/07 - 05/18/07	15 ± 4	13 ± 4	14 ± 4	17 ± 4	16 ± 4	12 ± 4	13 ± 4	13 ± 4	13 ± 4
05/18/07 - 05/25/07	27 ± 5	19 ± 4	22 ± 4	27 ± 5	22 ± 4	-21 ± 4	20 ± 4	22 ± 4	23 ± 5
05/25/07 - 05/31/07	17 ± 4	10 ± 4	17 ± 4	15 ± 4	10 ± 5	20 ± 5	19 ± 4	17 ± 4	22 ± 3
	11 ± 3	12 ± 3	12 ± 3	14 ± 4	10 ± 4 ··	12 ± 3	17 ± 4	13 14	10 ± 4
06/06/07 - 06/15/07	20 ± 5	17 ± 4	10 ± 4	22 ± 4 22 ± 5	22 ± 4 30 ± 6	21 ± 5	20 ± 4	23 ± 4 20 ± 4	21 ± 4 27 ± 5
06/21/07 06/20/07	22 ± 3 16 ± 4	17 ± 4 16 ± 4	12 + 1	22 ± 3 15 + 4	30 ± 0 23 ± 4	$\frac{24}{14} \pm 3$	13 ± 4	17 + 4	27 ± 3 17 ± 4
06/29/07 - 07/06/07	10 ± 4 16 + 4	17 + 4	16 + 4	19 + 4	20 ± 4 20 + 5	20 + 5	19 + 4	17 ± 4 18 + 4	17 ± 7 19 ± 5
07/06/07 - 07/13/07	17 + 4	21 + 5	20 ± 5	21 + 5	20 ± 5 23 + 5	19 + 5	17 + 4	15 ± 4	15 ± 3 17 + 4
07/13/07 - 07/20/07	13 + 4	12 + 4	11 + 4	10 + 4	13 + 4	(13 ± 4)	13 + 4	10 ± 4	13 + 4
07/20/07 ~ 07/27/07	18 ± 4	20 ± 5	22 ± 5	22 ± 5	27 ± 5	22 ± 5	24 ± 5	24 ± 5	25 ± 5
07/27/07 - 08/04/07	24 ± 4	26 ± 4	21 ± 4	31 ± 5	30 ± 5	27 ± 5	24 ± 4	23 ± 4	26 ± 5
(1)									
08/10/07 - 08/17/07	23 ± 5	29 ± 5	33 ± 5	25 ± 5	28 ± 5	26 ± 5	、31 ± 5	29 ± 5	30 ± 5
08/17/07 - 08/24/07	16 ± 4	11 ± 4	14 ± 4	18 ± 4	17 ± 4	11 ± 4	13 ± 4	12 ± 4	16 ± 4
08/24/07 - 08/31/07	20 ± 4	20 ± 4	< 5	21 ± 4	23 ± 5	27 ± 5	24 ± 5	23 ± 5	22 ± 5
08/31/07 - 09/07/07	24 ± 4	25 ± 4	31 ± 5	30 ± 5	29 ± 5	26 ± 5	26 ± 4	33 ± 5	28 ± 5
09/07/07 - 09/14/07	15 ± 4	15 ± 4	18 ± 4	16 ± 4	20 ± 4	16 ± 4	16 ± 4	17 ± 4	17 ± 4
09/14/07 - 09/21/07	30 ± 5	26 ± 5	26 ± 5	34 ± 5	30 ± 5	28 ± 5	27 ± 5	25 ± 5	30 ± 5
09/21/07 - 09/30/07	25 ± 4	29 ± 4	27 ± 4	31 ± 4	21 ± 4	20 ± 4	24 ± 4	25 ± 4	28 ± 5
09/30/07 - 10/07/07	19 ± 4	21 ± 4	21 ± 5	20 ± 5	22 ± 5	32 ± 5	21 ± 4	26 ± 5	29 ± 5
10/07/07 - 10/13/07	7 ± 4	8 ± 4	6 ± 4	8 ± 5	9 ± 4	12 ± 4	11 ± 5	10 ± 5	10 ± 4
10/13/07 - 10/19/07	22 ± 5	25 ± 6	26 ± 6	25 ± 6	28 ± 5	28 ± 5	32 ± 6	32 ± 6	31 ± 5
10/19/07 - 10/25/07	19 ± 4	15 ± 4	18 ± 4	17 ± 4	21 ± 5	19 ± 5	20 ± 4	16 ± 4	22 ± 5
10/25/07 - 11/02/07	21 ± 5	22 ± 5	23 ± 5	21 ± 5	23 ± 4	22 ± 4	15 ± 4	21 ± 5	22 ± 4
11/02/07 - 11/09/07	20 ± 4	21 ± 4	24 ± 5	24 ± 5	22 ± 5	21 ± 4	20 ± 4	29 ± 5	22 ± 4
11/09/07 - 11/16/07	23 ± 5	23 ± 5	25 ± 6	30 ± 5	26 ± 5	29 ± 5	27 ± 5	26 ± 5	25 ± 4
11/16/07 - 11/23/07	25 ± 5	21 ± 4	26 ± 5	28 ± 5	22 ± 4	21 ± 4	23 ± 4	27 ± 5	22 ± 4
11/23/07 - 11/30/07	28 ± 4	29 ± 5	27 ± 5	29 ± 5	26 ± 5	33 ± 5	29 ± 5	33 ± 5	35 ± 5
11/30/07 - 12/07/07	18 ± 5	21 ± 5	18 ± 5	23 ± 5	19 ± 4	19 ± 4	20 ± 5	16 ± 6	19 ± 4
12/07/07 - 12/14/07	45 ± 6	44 ± 6	54 ± 5	49 ± 6	50 ± 6	54 ± 6	49 ± 6	54 ± 6	49 ± 6
12/14/07 - 12/21/07	44 ± 6	35 ± 5	47 ± 6	40 ± 6	41 ± 0	02 ± 0 25 ± 0	45 ± 6 29 ± = "	52 ± 5 32 ± 5	40 ± 0
12/21/07 - 12/28/07	3U ± 3	20 ± 0	29 İ Ə	32 ± 3	31 ± 0	30 ± 0	20 ± J	32 I J	30 I 0
MEAN*	20 ± 16	20 ± 14	21 ± 17	22 ± 17	23 ± 15	22 ± 18	22 ± 15	22 ± 18	23 ± 17

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-V.2	MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS (PCI/CU METER) IN AIR
	PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

٠.

.

GROUP I - NEAR	-FIELD LO	CATIONS	GROUP II - FAR-F	FIELD LOCAT	IONS	GROUP III - CONTROL LOCATIONS			
COLLECTION PERIOD	MIN MA	X MEAN* ± 2SD	COLLECTION PERIOD	MIN MAX	MEAN ± 2SD	COLLECTION PERIOD	MIN MAX	MEAN ± 2SD	
12/29/06 - 02/02/07	18 44	25 ± 14	12/29/06 - 02/02/07	16 38	25 ± 12	12/29/06 - 02/02/07	20 42	26 ± 19	
02/02/07 - 03/02/07	8 29) 20 ± 13	02/02/07 - 03/02/07	11 30	21 ± 12	02/02/07 - 03/02/07	9 26	20 ± 16	
03/02/07 - 03/30/07	10 2 ⁻	15 ± 6	03/02/07 - 03/30/07	13 22	17 ± 5	03/02/07 - 03/30/07	11 20	16 ± 8	
03/30/07 - 04/27/07	11 19) 15 ± 5	03/30/07 - 04/27/07	11 19	15 ± 5	03/30/07 - 04/27/07	12 20	15 ± 7	
04/27/07 - 06/01/07	13 27	′ 18 ± 8	04/27/07 - 06/08/07	12 22	18 [°] ± 7	04/27/07 - 06/08/07	13 23	19 ± 7	
06/01/07 - 06/29/07	11 26	6 17 ± 9	06/01/07 - 06/29/07	13 30	21 ± 9	06/08/07 - 06/29/07	17 27	'22 ± 10	
06/29/07 - 07/27/07	10 22	2 17 ± 8	06/29/07 - 07/27/07	10 27	18 ± 10	06/29/07 - 07/27/07	13 25	19 ± 10	
07/27/07 - 08/31/07	< 5 33	3 22 ± 12	07/27/07 - 08/31/07	11 31	23 ± 13	07/27/07 - 08/31/07	16 30	23 ± 12	
08/31/07 - 09/30/07	15 34	25 ± 12	08/31/07 - 10/05/07	16 33	24 ± 10	08/31/07 - 10/05/07	17 30	26 ± 10	
09/30/07 - 11/03/07	6 26	5 18 ± 12	09/30/07 - 11/09/07	9 32	20 ± 13	10/05/07 - 11/09/07	10 31	·21 ± 15	
11/03/07 - 12/01/07	20 30) 25 ± 6	11/03/07 - 12/07/07	19 · 33	26 ± 9	11/09/07 - 12/07/07	19 35	25 ± 14	
12/01/07 - 12/29/07	18 54	35 ± 24	12/01/07 - 12/29/07	16 54	40 ± 26	12/07/07 - 12/28/07	36 49	43 ± 13	
12/29/06 - 12/29/07	< 5 54	21 ± 11	12/29/06 - 12/29/07	9 54	22 ± 13	12/29/06 - 12/28/07	9 49	23 ± 15	

. Star and a

.

.

* THE MEAN AND 2 STANDARD DEVIATION VALUES ARE CALCULATED USING THE POSITIVE VALUES

1

· ·

. :

e sur sur

• .•

TABLE C-V.3CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES
COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

,

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
Q-01	12/29/06 - 03/30/07	< 3	< 4	< 10	< 5	< 7	< 5	< 6	< 3	< 4	< 81	< 35
	03/30/07 - 06/29/07	< 3	< 5	< 19	< 3	< 8	< 5	< 8	< 4	< 2	< 472	< 179
	06/29/07 - 09/30/07	< 4	< 3	< 13	< 2	< 8	< 5	< 7	< 5	< 4	< 100	< 28
	09/30/07 - 12/29/07	< 2	< 3	< 9	< 3	< 6	< 3	< 6	< 3	< 2	< 63	< 28
	MEAN	-	-	-	- 	-	- • • · · · · · · · · · · · · · · · · · ·	-	-	-	-	-
Q-02	12/29/06 - 03/30/07	< 3	< 4	< 11	< 4	< 7	< 4	< 7	< 3	< 4	< 82	< 38
	03/30/07 - 06/29/07	< 3	<`6	< 15	< 3	< 10	< 7	< 14	< 4	< 3	< 553	< 226
	06/29/07 - 09/30/07	< 3	< 5	< 11	< 2	< 9	< 4	< 7 '	< 4	· < 3	< 71	< 25
	09/30/07 - 12/29/07	< 4	· < 5	< 11	< 4	< 8	< 5	< 8	< 4	< 3	< 79	< 29
· · .	MEAN	-	-	τ	-	1 - 3. : .		2 <u> </u>	-	- `	:	-
Q-03	12/29/06 - 03/30/07	< 3	< 5	< 15	< 3	< 7	< 3	< 5	< 3	`< 4	< 73	< 19
	03/30/07 - 06/29/07	< 4	< 6	< 17	< 2	< 11 [°] '	< 6	< 11	< 4	< 3	< 635	< 244
	06/29/07 - 09/30/07	< 3	< 4	< 10	< 3	< 8	< 4	< 5	< 4	< 2	< 62	< 11
	09/30/07 - 12/29/07	< 4	< 3	< 13	< 2	< 5	< 5	< 7	· < 4	< 3 .	< 95	< 38
	MEAN	-	1 - <u>-</u> 1	• - •		×	~		, -	-		-
		_	_		•		15 g 4	· · ·			1	
Q-04	12/29/06 - 03/30/07	< 5	< 6	< 14	< 6	< 9	< 6	< 6	< 4	< 5	< 85	< 28
	03/30/07 - 06/29/07	< 2	< 6	< 17	< 3	< 9,. ·	< 5	< 7 .	< 3 .	< 2	< 358	< 173
	06/29/07 - 09/30/07	< 4	< 5	< 12	< 5	< 12	< 5	< 7	< 5	< 3	< 76	< 25
•	09/30/07 - 12/29/07	< 2	< 3	< 7	< 2	< 5	< 3	< 5	< 2	< 2	< 39	< 25
	MEAN		-		-			-	-		-	· · · · ·
Q-07	12/29/06 - 03/30/07	< 3	< 4	< 12	< 2	< 6	< 5	< 7	< 2	< 3	< 68	< 27
	03/30/07 - 06/29/07	< 3	< 5	< 16	< 3	< 10	< 6	< 13	< 4	< 3	< 557	< 207
	06/29/07 - 09/30/07	< 3	< 3	< 8	< 3	< 7	< 3	< 5	< 3	< 2	< 56	< 19
	09/28/07 - 12/28/07	< 3	< 3	< 7	< 2	< 6	< 3	< 5	< 2	< 2	< 63	< 24
	MEAN	-	-	-	-	-	-	-	-	-	-	-

		RES	ULTS IN U	UNITS OF	E-3 PCI	CU METI	ER ± 2 SI	GMA ·		. ,	•		
тс	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140	₹
7-13	12/29/06 - 03/30/07	< 3	< 3	< 13	< 5	< 12	< 4	< 7	< 3	< 4	< 92	.< 33	
. 10	03/30/07 - 06/29/07	< A	< 5	< 22	< 3	< 9	< 7	< 13	< 5	< 3	< 591	< 225	
	06/29/07 - 09/30/07	< 3	< 4	< 9	< 4	< 9	. < 4 .	< 7	< 4	< 3	< 62	< 34	
	09/28/07 - 12/28/07	< 3	< 4	< 9	< 3	< 6	< 4	< 5	< 3	< 2	< 77	< 23	
	MEAN	-	-	-	-	-	-	-	-	-	-	- ·	
Q-16	12/29/06 - 03/30/07	< 3	< 4	< 5	< 3	< 5	< 4	< 6	< 2	· < 2	< 76	< 18	
	03/30/07 - 06/29/07	< 4	< 3	< 13	< 3	< 8	< 5	< 9	< 4	< 3	< 575	·< 171	
	06/29/07 - 09/30/07	< 3	< 4	< 7	< 3	< 7	< 4	< 6	· < 4	< 2	< 54	< 18	
	09/28/07 - 12/28/07	< 2	< 3	< 5	< 3	< 5	< 3	< 3	< 2	< 2	< 47	< 24	
	MEAN	-	-	· _	-	· -	· <u>·</u>	-	-	-	-	-	
2-37	12/29/06 - 03/30/07	< 3	< 5	< 12	< 5	< 10	< 4	< 8	< 4	< 3	< 105	< 36	
	03/30/07 - 06/29/07	< 5	< 5	< 23	< 3	· < 9 · ;	< .6	< 11	< 4	< 3	< `693	< 259	
	06/29/07 - 09/30/07	< 3	< 3	< 10	< 2	· < 12	< 4	< 7	< 4	< 3	< 81	< 27	
	09/30/07 - 12/29/07	< 3	< 4	< 9	< 4	< 6	< 4	< 6	< 3	< 4	< 74	< 36	
	MEAN	-	• , -					-	-	-	-	-	
-38	12/29/06 - 03/30/07	< 2	< 3	< 7	< 2	< 5	< 3	< 4	< 2	< 2	< 56	< 23	
	03/30/07 - 06/29/07	< 4	· < 6	< 18	< 3	< 7	< 6	< 11	< 4	·< 3 [·]	< 521	. < 261	
	06/29/07 - 09/30/07	< 3	< 4	< 9	< 3	< 10	< 4	< 7	< 4	<.2	< 74	< 33	
	09/30/07 - 12/29/07	< 3	< 4	< 11	[°] < 2	< 6	< 4	< 8	< 4 .	< 3	< 71	< 25	
·	MEAN	- 🤅	-	-	-	-			_	- '		-	

۰,

TABLE C-V.3

CONCENTRATIONS OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

52 of 108

C - 10

`

TABLE C-VI-.1CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES
COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

		NEAF	R-FIELD			CONTROL				
		GR	OUP I			GROUP II				
COLLECTION						,			<u></u>	
PERIOD	Q-01	Q-02	Q-03	Q-04	Q-13	Q-16	Q-37	Q-38	Q-07	
12/29/06 - 01/05/07	< 63	< 61	< 61	< 63	< 67	< 67	< 68	< 68	< 37	
01/05/07 - 01/12/07	< 35	< 43	< 43	< 44	< 45	< 45	< 46	< 46	< 42	
01/12/07 - 01/19/07	< 14	< 21	< 21	< 21	< 28	< 28	< 28	< 28	< 21	
01/19/07 - 01/26/07	< 42	< 40	< 40	< 42	< 28	< 29	< 28	< 16	< 29	
01/26/07 - 02/02/07	< 29	< 37	< 37	< 39	< 39	< 39	< 39	< 39	< 38	
02/02/07 - 02/09/07	< 55	< 29	< 53	< 55	< 45	< 45	< 44	· < 44	< 54	
02/09/07 - 02/16/07	< 61	< 59	< 59	< 61	< 48	< 48	< 58	< 58	< 27	
02/16/07 - 02/23/07	< 48	< 47	< 31	< 48	< 46	< 46	< 51	< 51	< 42	
02/23/07 - 03/02/07	< 26	< 25	< 25 [·]	< 26	< 32	< 31	< 30	< 30	< 16	
03/02/07 - 03/08/07	< 31	< 30	< 30	< 31	< 39	< 39	< 29	< 29	< 22	
03/08/07 - 03/16/07	< 32	< 31	< 31	< 32	< 33	< 33	< 37	< 37	< 15	
03/16/07 - 03/23/07	< 47	< 46	< 47	< 47	< 43	< 43	< 42	< 42	< 26	
03/23/07 - 03/30/07	< 51	< 50	< 50	`< [`] 51	< 59	< 58	< 61	< 61	< 29	
03/30/07 - 04/06/07	< 57 🦯	< 55	< 55	< 57	< 47	< 47	< 35	< 35	< 56	
04/06/07 - 04/13/07	< 70	< 68	< 68	< 70	< 46	< 46	< 55	< 55	< 32	
04/13/07 - 04/20/07	< 27	< 27	< 26	< .27	< 55	< 27	< 54	< 54	< 54	
04/20/07 - 04/27/07	< 8	< 15	< 15	· < 16	< 14	< 14 '	< 14	< 14	< 16	
04/27/07 - 05/03/07	< 55	< 53	< 53	< 55	< 58	< 58	< 56	. < 56	< 37	
05/03/07 - 05/11/07	< 39	< 37	< 37	< 39	< 30	< 29	< ¹ 18	< 33	< 29	
05/11/07 - 05/18/07	< 47	< 46	< 46	< .47	< 47 ·	< 47	< 47 📰	<i>-</i> ∵ < 47	< 36	
05/18/07 - 05/25/07	< 49	< 47	< 47	< 49	< 63	< 63	< 60	··· < 60	< 34	
05/25/07 - 05/31/07	< 23	< 22	< 22	< 23	< 31	< 30	< .24	< 24	< 20	
05/31/07 - 06/08/07	< 19	< 18	< 18	< 19	< 19	< 19	< 21	< 11	< 19	
06/08/07 - 06/15/07	< 58	< 56	< 56	< 58	< 62	< 62	< 58	< 32	< 62	
06/15/07 - 06/21/07	< 32	< 31 ·	< 31	< 17	< 42	· < 42	< 33	< 33	< 40	
06/21/07 - 06/29/07	< 35	< 34	< 34	< 35	< 42	< 42	< 48	< 50	< 16	
06/29/07 - 07/06/07	< 42	< 40	< 40	< 42	< 29	< 29	< 27	< 14	< 29	
07/06/07 - 07/13/07	< 35	< 55	< 55	< 57	< 42∙	< 41	< 41	·< 42	< 56	
07/13/07 - 07/20/07	< 19	< 11	< 18	< 19	< 19	< 19	< 19	< 20	< 19	
07/20/07 - 07/27/07	< 39	< 39	< 21	< 40	< 38	< 38	< 36	< 37	< 41	
07/27/07 - 08/04/07	< 24	< 48	< 48	< 50	< 46	< 46	< 40	< 41	< 55	
08/04/07 - `08/10/07	< 60	< 61	< 60	´< 62	< 55	< 54	< 59	< 61	< 37	
08/10/07 - 08/17/07	< 69	< 69	< 69	< 43	< 64	< 64	< 67	< 69	< 66	
08/17/07 - 08/24/07	< 58	< 59	< 58	< 61	< 59	< 59	< 46	< 48	< 25	
08/24/07 - 08/31/07	< 37	< 68	< 68	< 68	< 66	< 66	< 65	< 67	< 69	
08/31/07 - 09/07/07	< 36	< 45	< 47	< 47	< 58	< 57	< 57	< 59	< 46	
09/07/07 - 09/14/07	< 51	< 51	< 52	< 52	< 28	< 52	< 51	< 53	< 52	
09/14/07 - 09/21/07	< 26	< 27	< 27	< 27	< 27	< 22	< 27	< 28	< 27	
09/21/07 - 09/30/07	< 60	< 60	< 62	< 62	< 39	< 39	< 31	< 32	< 32	
09/30/07 - 10/07/07	< 27	< 50	< 52	< 52	< 68	< 68	< 55	< 57	< 62	
10/07/07 - 10/13/07	< 51	< 64	< 66	< 66	< 59	< 60	< 66	< 68	< 59	
10/13/07 - 10/19/07	< 37	< 48	< 48	< 48	< 53	< 53	< 59	< 61	< 42	
10/19/07 - 10/25/07	< 45	< 45	< 47	< 47	< 66	< 66	< 45	< 31	< 66	
10/25/07 - 11/02/07	< 24	< 56	< 58	< 58	< 46	< 48	< 48	< 49	< 57	
11/02/07 - 11/10/07	< 34	< 43	< 44	< 44	< 13	< 12	< 21	< 22	< 46	
11/10/07 - 11/16/07	< 65	< 65	< 67	< 67	< 58	< 60	< 70	< 31	< 58	
11/16/07 - 11/23/07	< 36	< 48	< 49	< 49	< 44	< 44	< 44	< 45	< 48	
11/23/07 - 11/30/07	< 43	< 18	< 44	< 44	< 36	< 37	< 30	< 31	< 54	
11/30/07 - 12/07/07	< 26	< 44	< 45	< 45	< 37	< 37	< 43	< 64	< 39	
12/07/07 - 12/14/07	< 63	< 61	< 40	< 62	< 61	< 61	< 63	< 67	< 60	
12/14/07 - 12/21/07	< 21	< 21	< 14	< 22	< 29	< 30	< 29	< 30	< 22	
12/21/07 - 12/28/07	< 8	< 15	< 15	< 15	< 31	< 30	< 24	< 24	< 19	
	-		· •			~~	2.			

RESULTS IN UNITS OF E-3 PCI/CU METER ± 2 SIGMA

MEAN

53 of 108

,

TABLE C-VII.1CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED
IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	INDICATOR FARM										
COLLECTION PERIOD	Q-26			•. *					: :		
01/05/07	< 0.3								÷		
02/02/07	< 0.3					•					
03/02/07	< 0.8									•	
04/07/07	< 0.9										
05/04/07	< 0.8										
05/18/07	< 0.9								,		
06/01/07	< 0.8								,		
06/15/07	< 0.6										
06/29/07	< 0.8										
07/13/07	< 0.7								,		
07/27/07	< 0.5										
08/10/07	< 0.9								·		
08/24/07	< 0.6						:	,	-		
09/07/07	< 0.9								·)·		
09/21/07	< 0.7								ŝ		
10/07/07	< 0.6										
10/19/07	< 0.6									· .	
11/03/07	< 0.8	,	• •	ъ - -	11	i	1. J. J.		 1. A.		
12/07/07	< 0.7	• •					· ·		i internet i		
MEAN	-										

54 of 108

C - 12

TABLE C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED
IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

STC	COLLECTION PERIOD	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	Cs-134	Cs-137	Ba-140	La-140
Q-26	01/05/07	< 6	< 6	< 16	< 6	< 12	< 5	< 11	< 3	< 4	< 35	< 11 ·
	02/02/07	< 6	< 7	< 14	< 5	< 13	< 7	< 11	< 6	< 6	< 29	`<9
	03/02/07	< 9	< 10	< 21	< 9	< 27	< 9	< 15	< 9	< 9	< 48	< 13
	04/07/07	< 5	< 8	< 18	< 8	< 17	< 8	< 15	< 7	< 7	< 38	< 13
	05/04/07	< 5	< 5	< 13	< 5	< 12	< 6	< 10	< 4	< 6	< 30	< 11
	05/18/07	< 4	< 6	< 17	< 6	< 12	< 6	< 10	< 5	< 5	< 59	< 13
	06/01/07	< 4	< 5	< 9	< 5	< 10	< 5	< 9	< 4	< 5	< 41	< 11
	06/15/07	< 5	< 6	< 13	< 5	< 13	< 6	< 9	< 4	< 5	< 42	< 14
	06/29/07	< 5	< 5	< 10	< 5	< 10	< 5	< 9	< 4	< 5	< 41	< 13
	07/13/07	< 5	< 5	< 12	< 5	< 13	< 7	< 9	< 5	< 6	< 31	< 8 [`]
	07/27/07	< 4	< 4	< 10	< 5	< 10	< 4	< 7	< 3	< 4	< 23	< 7
	08/10/07	< 4	< 5	< 12	< 4	< 9	< 5	< 9	< 4	< 4	< 54	< 15
	08/24/07	< 6	< 6	< 18	< 7	< 13	< 7	< 13	< 5	< 6	< 42	< 12
	09/07/07	< 5	< 6	< 15	< 6	< 15	< 6	< 10	< 5	< 6	< 35	< 13
	09/21/07	< 2	< 2	< 5	< 2	< 5	< 2	< 4	< 2	< 2	< 19	< 5
	10/07/07	< 6	< 8	< 17	< 6	< 18	< 8	< 14	< 7	< 8	< 46	< 9
	10/19/07	< 2	< 3	< 6	< 2	< 6	< 3	< 5	< 2	< 2	< 20	< 7
	11/03/07	< 2	< 3	< 7	< 2	< 6	< 3	< 6	< 2	< 2	< 31	< 9
	12/07/07	< 5	< 6	< 14	< 6	< 13	< 7	< 11	< 5	< 5	·< 50	< 15
	MEAN	-	-	-	· _	-	-	-	-	-	* - •	

.....

.

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

~

		COL	LECTED	IN THE \	/ICINITY O	FQUAD	CITIES NU	ICLEAR	POWER S	TATION, 2	2007	:	•
		RES	ULTS IN U	JNITS O	F PCI/KG V	VET ± 2 S	IGMA					• :	
STC	COLLECTION	I Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
Q-CONTROL		*	• • •	•	*				•	· .		5	
Potatoes	07/09/07	< 25	< 29	< 56	< 18	< 51	< 30	< 34	< 52	< 21	< 29	< 112	< 35
Rhubarb Leaves	07/09/07	< 11	< 12	< 27	< 10	< 25	< 12	< 22	< 20	< 10	< 11	.< 52	< 16 .
	MEAN			-				-	-	-		· -	-
Q-QUAD 1													
Potatoes	07/09/07	< 26	< 28	< 63	< 21	< 52	< 26	< 41	< 46	< 21	< 28	< 145	< 44
Rhubarb Leaves	07/09/07	< 15	< 17	< 39	< 19	< 43	< 16	< 31	< 33	< 18	< 19	< 88	< 16
	MEAN	-	-	-		-	-	-	-	-	-	· -	
			•	· · · ·				• •	•	• •			· · ·
Q-QUAD 2 Kobirabi	07/00/07	< 23	< 21	< 75	< 28	< 63	< 21	< 37	- 13	< .21	< 30	c 131	· ~ 31 ·
Ronnau Phubarh Loavos	07/09/07	~ 20	< 24	< 51	< 20	< 46	< 24	~ 32	< 30	< 20	< 20	2 89	< 22
Kildbarb Leaves	01/03/01	~ 22	~ 22	- 51	~ 20	~ 40	~ 20	× 02	× 00	~ 20	~ 20	τ, 	· 22
	MEAN	-	-	-	-	-	-	-	-	-	-	· -	· -
	· .	4		; ·		a de les de la companya de la company La companya de la comp				2	·	·	· · ·
Q-QUAD 3						:		. ~	24			- ·	
Horseradish	07/09/07	< 22	< 21 [·]	< 49	< 25	< 49 [^]	< 23 ·	· < 40 ·	< 45	·< 21	< 22 ·	< 121	< 36
Rhubarb Leaves	07/09/07	< 14	· < 11	< 21	< 12 .	< 25	< 10	< 24	< 22	< 11	< 13	<u><</u> 65	< 9
	MEAN	-	-	-	-	-		-	-	-	-	- -	· _ ·
0.0110.0.4													
Q-QUAD 4	07/00/07	< 31	< 20	~ 77	< 27	~ 79	< 32	~ 51	< 55	c 31	< 31	- 122	< 10
Pototoos	07/09/07	 31 49 	~ 29	< 52	< 22	~ 10	 > 3Z > 27 	< 14 < 15	< 30 < 36	< 20	< 23	~ 107	< 49
FUIDUES	07709/07	× 10	 25 . 	× 03	. ~ 22	~ 49	21	× 45	× 30	× 20	× 20	. 107	► 40 .
	MEAN	-		-	-	-	-	· -	-	-	•	•	-

CONCENTRATIONS OF GAMMA EMITTERS IN FOOD PRODUCT SAMPLES

. .

TABLE C-VIII.1

TABLE C-IX.1 QUARTERLY TLD RESULTS FOR QUAD CITIES NUCLEAR POWER STATION, 2007

Υ.

STATION	MEAN	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
CODE	± 2 S.D.		•	· · ·	
Q-01-1	23.0 ± 7.1	26	26	19	21
Q-01-2	20.5 ± 5.3	24	19	18	21
Q-02-1	21.8 ± 6.4	24	. 19	19	25
Q-02-2	20.8 ± 8.5	27	18	18	20
Q-03-1	19.0 ± 4.3	22	18	[°] 17	. 19
Q-03-2	19.5 ± 5.3	23	17	18	20
Q-04-1	20.8 ± 4.7	• 24	19	19	21
Q-04-2	22.8 ± 7.0	27	21	⁵ 19	24
Q-07-1	22.8 ± 6.0	27	22	20	22
Q-07-2	21.0 ± 3.7	23	22	19	.20
Q-13-1	21.3 ± 7.7	27	19	. 19	· 20
Q-13-2	21.8 ± 3.4	24	22	20	21
Q-16-1	20.0 ± 5.9	23	17	: 18	22
Q-16-2	21.0 ± 4.9	23	20	18	23
Q-37-1	23.8 ± 6.6	. 28	. 23	20	⁶ 24
Q-37-2	21.3 ± 3.0	23	20	20	22
Q-38-1	23.3 ± 6.6 \	28	21	: 21	
Q-38-2	23.3 ± 6.4	26	21	20	26
Q-101-1	20.5 ± 3.5	. 23	20	19	20
Q-101-2	21.3 ± 4.7	23	21	18	[`] 23
Q-102-1	22.3 ± 5.3	25	20	20	24
Q-102-3	20.8 ± 4.1	23	·- 21	18	21
Q-103-1	19.5 ± 5.3	23	18	17	20
Q-103-2	20.3 ± 7.2	25	18	17	1 21
Q-104-1	20.3 ± 7.2	25	18	· 17	21
Q-104-2	19.8 ± 4.7	23	18	: 18	20
Q-105-1	21.3 ± 7.0	25	20	17	23
Q-105-2	19.3 ± 6.6	24	17	17	19
Q-106-2	20.0 ± 4.3	23	18 -	໌ 19	20
Q-106-3	20.0 ± 5.2	23	21	5 17	19
Q-107-2	21.0 ± 5.4	25	20	19	. 20
Q-107-3	21.3 ± 6.4	26	20	19	20
Q-108-1	20.0 ± 4.3	23	19	· 18	20
Q-108-2	20.0 ± 4.9	23	20	: 17	20
Q-109-1	21.5 ± 6.0	25	19	19	23
Q-109-2	21.3 ± 5.7	25	18	· 21	.21
Q-111-1	23.3 ± 1.9	24	22	23	24
Q-111-2	20.8 ± 3.4	23	21	19	20
Q-112-1	22.3 ± 6.8	27	22	19	21
Q-112-2	20.3 ± 4.1	23	18	20	20
Q-113-1	21.3 ± 5.3	23	19	19	24
Q-113-2	19.3 ± 5.3	22	17	17	21
Q-114-1	21.3 ± 5.7	25	19	19	22
Q-114-2	22.3 ± 4.7	24	22	19	24
Q-115-1	20.8 ± 8.4	27	19	18	19
Q-115-2	20.5 ± 5.8	23	18	18	23
Q-116-1	21.5 ± 5.3	25	20	19	22
Q-116-3	21.3 ± 5.7	25	19	19	22

RESULTS IN UNITS OF MILLI-ROETGEN/QUARTER ± 2 STANDARD DEVIATIONS

/

TABLE C-IX.1 QUARTERLY TLD RESULTS FOR QUAD CITIES NUCLEAR POWER STATION, 2007

STATION	MEAN	JAN - MAR	APR - JUN	JUL - SEP	OCT - DEC
CODE	± 2 S.D.			· •	
Q-201-1	22.8 ± 5.5	26	21	20	24
Q-201-2	23.5 ± 2.6	25	23	22	. 24
Q-202-1	20.8 ± 3.4	. 23	20	. 21	19
Q-202-2	20.0 ± 8.2	26	18	17	19
Q-203-1	22.5 ± 6.0	27	21 [·]	21	21
Q-203-2	23.3 ± 4.1	. 26	21	23	23
Q-204-1	. 23.0 ± 7.1	28	21	20	23
Q-204-2	24.5 ± 7.7	30	21	24	23
Q-205-1	23.5 ± 6.6	28	23	20	23
Q-205-4	23.5 ± 7.4	28	21	20	25
Q-206-1	21.8 ± 4.4	24	23	. 19	21
Q-206-2	22.8 ± 5.5	26	20	21	24
Q-207-1	22.0 ± 3.7	24	20	23	21
Q-207-4	23.0 ± 4.0	26	22	22	22
Q-208-1	22.0 ± 4.0	25	21 7	21	21
Q-208-2	23.5 ± 7.4	28	23	19	24
Q-209-1	21.8 ± 4.7	25	20	20	22
Q-209-4	22.0. ± 3.3	24	22	20	22
Q-210-1	22.3 ± 3.4	24	22	20	23
Q-210-4 *	21.8 ± 8.5	. 28	. 19 `	19	21
Q-210-5	20.3 ± 6.8	25	19	17	20
Q-211-1	25.0 ± 4.6	27	23	23	27
Q-211-2	25.3 ± 5.3	29	24	23	25
Q-212-1	23.5 ± 3.5	25	24	21	24
Q-212-2	22.3 ± 7.5		21	··. 18	, 23
Q-213-1	24.8 ± 14	24	21	19	35
Q-213-2	21.5 ± 8.1	27	. 19		22
Q-214-1	22.8 ± 7.7	28	. 21	19	23
Q-214-2	25.3 ± 6.6	30	23	23	25
Q-215-1	22.0 ± 4.3	25	21	. 20	22
Q-215-2	23.3 ± 6.6	28	21	21	23
Q-216-1	23.0 ± 6.7	[·] 28	21	· 22	21
Q-216-2	25.3 ± 6.6	29	25	21 -	26
		· ·			۰.

RESULTS IN UNITS OF MILLI-ROETGEN/QUARTER ± 2 STANDARD DEVIATIONS

* Removed from ODCM in December 2006 and replaced by Q-210-5. Q-210-4 is for trending only.

TABLE C-IX.2 MEAN QUARTERLY TLD RESULTS FOR THE INNER RING, OUTER RING, OTHER AND CONTROL LOCATION FOR QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN UNITS OF MILLI-ROETGEN/QUARTER ± 2 STANDARD DEVIATIONS OF THE STATION DATA 10 A. 20

COLLECTION PERIOD	INNER RING ± 2 S.D.		OUTER RING	OTHER	CONTROL
JAN-MAR	24.1 ± 2.6	• •	26.5 ± 3.8	24.9 ± 4.0	25.0 ± 5.7
APR-JUN	19.4 ± 2.9	-	21.4 ± 3.2	20.0 ± 4.7	. 22.0 ± 0.0
JUL-SEP	18.5 ± 2.7		20.5 ± 3.6	18.9 ± 2.1	19.5 ± 1.4
OCT-DEC	21:2 ± 3.2		23.1 ± 5.7	-22.0 ± 4.0	21.0 ± 2.8
		•			

. . .

the second second second

TABLE C-IX.3 SUMMARY OF THE AMBIENT DOSIMETRY PROGRAM FOR QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN	UNITS OF MIL	LI-ROENTGEN	V/QUARTER
	· · · · · · · · · · · · · · · · · · ·		

LOCATION	• •	SAMPLE ANALYZE	S ED	PERIOD MINIMUM	F M	PERIOD AXIMUM	PERIOD MEAN ± 2 S.D.
INNER RING	. *	120	.`	17	• 2	27	20.8 ± 5.1
OUTER RING		132	(en	17		35	22.8 ± 6.1
OTHER		64	• • •	17		28	21.5 ± 5.9
CONTROL		8	• • •	19	•	27	[°] 21.9 ± 4.9
			- ,		·.		

INNER RING STATIONS - Q-101-1, Q-101-2, Q-102-1, Q-102-3, Q-103-1, Q-103-2, Q-104-1, Q-104-2, Q-105-1, Q-105-2, Q-106-2, Q-106-3, Q-107-2, Q-107-3, Q-108-1, Q-108-2, Q-109-1, Q-109-2, Q-111-1, Q-111-2, Q-112-1, Q-112-2, Q-113-1, Q-113-2, Q-114-1, Q-114-2, Q-115-1, Q-115-2, Q-116-1, Q-116-3

OUTER RING STATIONS - Q-201-1, Q-201-2, Q-202-1, Q-202-2, Q-203-1, Q-203-2, Q-204-1, Q-204-2, Q-205-1, Q-205-4, Q-206-1, Q-206-2, Q-207-1, Q-207-4, Q-208-1, Q-208-2, Q-209-1, Q-209-4, Q-210-1, Q-210-4*, Q-210-5, Q-211-1, Q-211-2, Q-212-1, Q-212-2, Q-213-1, Q-213-2, Q-214-1, Q-214-2, Q-215-1, Q-215-2, Q-216-1, Q-216-2

OTHER STATIONS - Q-01-1, Q-01-2, Q-02-1, Q-02-2, Q-03-1, Q-03-2, Q-04-1, Q-04-2, Q-13-1, Q-13-2, Q-16-1, Q-16-2, Q-37-1, Q-37-2, Q-38-1, Q-38-2

CONTROL STATIONS - Q-07-1, Q-07-2

^{*} Removed from ODCM in December 2006 and replaced by Q-210-5. Q-210-4 is for trending only.

FIGURE C-1 Surface Water - Gross Beta - Stations Q-33 and Q-34 (C) Collected in the Vicinity of QCNPS, 2000 - 2004

Q-34 (C) Camanche

Q-33 Cordova

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY 2005

Q-34 (C) Camanche

FIGURE C-2 (cont.) Surface Water - Tritium - Stations Q-33 and Q-34 (C) Collected in the Vicinity of QCNPS, 2005 - 2007

Q-33 Cordova

Q-34 (C) Camanche

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY 2005

FIGURE C-3 Ground Water - Tritium - Stations Q-35 and Q-36 Collected in the Vicinity of QCNPS, 2000 - 2004

Q-36 Cordova Well

C - 22

FIGURE C-3 (cont.) Ground Water - Tritium - Stations Q-35 and Q-36 Collected in the Vicinity of QCNPS, 2005 - 2007

Q-35 McMillan Well

500

DUE TO VENDOR CHANGE, < VALUES ARE LLD VALUES JANUARY THROUGH JUNE 2005 AND MDC VALUES AFTER JULY 2005

FIGURE C-4 Air Particulates - Gross Beta- Stations Q-01 and Q-02 Collected in the Vicinity of QCNPS, 2000 - 2004

Q-01 Onsite No. 1

Q-02 Onsite No. 2

FIGURE C-4 (cont.) Air Particulates - Gross Beta- Stations Q-01 and Q-02 Collected in the Vicinity of QCNPS, 2005 - 2007

;

Q-01 Onsite No. 1

Station Q-01 lost power 10-07-05 - 10-21-05.

Q-02 Onsite No. 2

Station Q-02 lost power 08-19-05 - 08-26-05.

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

Q-03 Onsite No. 3

۰.

Q-03 Onsite No. 3

Q-04 Nitrin

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

FIGURE C-6 Air Particulates - Gross Beta- Stations Q-07 (C) Collected in the Vicinity of QCNPS, 2000 - 2004

Q-07 (C) Clinton

DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

Q-13 Princeton

Q-16 Princeton

AIR PARTICULATE GROSS BETA ANALYSES OF FAR FIELD LOCATIONS STARTED IN JULY 2005 DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3

FIGURE C-8 Air Particulates - Gross Beta- Stations Q-37 and Q-38 Collected in the Vicinity of QCNPS, 2005 - 2007

1

Q-37 Meredosia Road

Q-38 Fuller Road

AIR PARTICULATE GROSS BETA ANALYSES OF FAR FIELD LOCATIONS STARTED IN JULY 2005 DUE TO VENDOR CHANGE IN 2005, THE REPORTED UNITS CHANGED FROM E-02 PCI/M3 TO E-03 PCI/M3 . · ·*

.

APPENDIX D

INTER-LABORATORY COMPARISON

PROGRAM

· · · · · $\tilde{\mathcal{O}}_{1} = \{1, 2, \dots, n\}$

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM **TELEDYNE BROWN ENGINEERING, 2007**

(PAGE 1 OF 3)

	Identification)			Reported	Known	Ratio (c)	
Month/Year	Number	Matrix	Nuclide	Units	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
			•					-
March 2007	E5255-396	Milk	Sr-89	pCi/L	125	137	0.91	A
,			Sr-90	pCi/L	10.8	10	1.08	A
	E5256-396	Milk	1-131	nCi/l	107	85.2	1.26	W
	20200 000	10 million	Ce-141	nCi/l	269	297	0.91	A
			Cr-51	nCi/l	244	245	1.00	Δ
			Ce-134	pOi/L	98.1	112	0.88	Δ
			$C_{2} = 137$	pOi/L	227	234	0.00	Δ
			Co 59	pCi/L	02.5	09.9	0.94	Δ
			CO-50 Mr. 54	pCi/L	192.0	192	1.00	~ ^
			MI1-54	poi/L	102.0	102	1.00	
			FE-59	poi/∟ ∞Ci/l	100.0	100	1.02	A _
			20-00	pCI/L	965	1000	0.99	A
			C0-60	pCI/L	143	152	0.94	A
	E5258-396	AP	Ce-141	pCi	252	245	1.03	А
			Cr-51	, pCi	204	202	1.01	А
			Cs-134	pCi	74.9	92.3	0.81	А
			Cs-137	pCi	190.0	197.0	0.96	А
			Co-58	pCi	79.7	81.6	0.98	А
			Mn-54	pCi	156	151	1.03	A
		en a state	< Ee+59 >	⇒ nCi .r	. 99 15	87.2	1.14	A
			Zn-65	pĊi	894	826	1.08	A
			Co-60	pCi	122	126	0.97	А
	E5257-396	Charcoal	I-131	pCi	34.7	71.3	0.49	N (1)
June 2007	F5384-396	Milk	Sr-89	pCi/L	98.3	95.2	1.03	А
	2000.000		Sr-90	pCi/L	16.1	12.9	1.25	W
	E5385-396	Milk	I-131	pCi/L	71.0	70.1	1.01	Α
			Ce-141	pCi/L	176	200	0.88	A
			Cr-51	pCi/L	459	512	0.90	A
			Cs-134	pCi/L	197	242	0.81	A
			Cs-137	pCi/L	158	169	0.93	A
			Co-58	pCi/L	180	198	0.91	А
			Mn-54	pCi/L	163	166	0.98	A
			Fe-59	pCi/L	158	167	0.95	A
			Zn-65	pCi/L	318	334	0.95	A
			Co-60	pCi/L	212	238	0.89	A
	E5387-396	۸Þ	Co-141	nCi	87 5	105	0.83	Δ
	E0007-000		Cr-51	nCi	232	268	0.00	Δ
			Ce 134	pOi nCi	101	127	0.80	Δ
			Co 127	pOi nCi	79.0	99.5	0.00	~
			Co 59	pCi	10.9 01 0	104.0	0.09	~
			00-00 Mp 54	pCi	31.0 95 c	07	0.00	~ ~
			IVIII-34	pCi -	0.00	0/	0.99	A .
			ге-59 7- 65	pCI	09.0	01.3	1.03	A ^
			20-02	pCI	1/0	1/0	1.02	A ^
			CO-60	рСі	111	125	0.89	A
	E5386-396	Charcoal	I-131	pCi	79.3	79.1	1.00	А
	20000000	2		- -				

an the second second	Identification	an Managaran an Ar		1919-194 - F	Reported	Known	Ratio (c)	•
Month/Year	Number	Matrix	Nuclide	Units.	Value (a)	Value (b)	TBE/Analytics	Evaluation (d)
September 2007	E5492-396	Milk	Sr-89	pCi/L	99.0	94.9 ·	1.04	A
			Sr-90	pCi/L	13.9	13.1	1.06	A
	E5493-396	Milk	I-131	pCi/L	81.9	85.2	0.96	А
			Ce-141	pCi/L	200	211	0.95	A
			Cr-51	pCi/L	271	289	0.94	A
			Cs-134	pCi/L	131	147	0.89	А
			Cs-137	pCi/L	131	131	1.00	A
			Co-58	pCi/L	114	114	1.00	А
			Mn-54	pCi/L	171	168	1.02	А
			Fe-59	pCi/L	117	111	1.05	A
			Zn-65	pCi/L	212	202	1.05	A
			Co-60	pCi/L	143	148	0.97	А
	E5495-396	ΔP	Ce-141	nCi	128	136	0.94	Δ
	20100 000	/	Cr-51	nCi	181	186	0.97	Δ
			Cs-134	nCi	85.9	94 7	0.91	A
			Cs-137	nCi	83.2	83.9	0.01	Δ
			Co-58	pCi nCi	69.4	73.3	0.95	A
			Mn-54	pCi nCi	112	108	1.04	A
			Fe-59	nCi	79.6	71 1	1 12	A
			Zn-65	nCi	159	130	1.12	Ŵ
			Co-60	pCi	92.0	95.2	0.97	A
	E5494-396	Charcoal	I-131	рСі	70.8	69.5	1.02	Α
December 2007	F5749-396	Milk	Sr-89	nCi/l	87.6	93.7	0.93	Δ
2000112001	207 10 000	(V)IIX	Sr-90	pCi/L	15.5	15.2	1.02	A
			01 00	p0//2	10.0	10.2	1.02	
	E5750-396	Milk	I-131	pCi/L	60.6	60.8	1.00	А
			Ce-141	pCi/L	137	141	0.97	А
			Cr-51	pCi/L	497	512	0.97	А
			Cs-134	pCi/L	117	137	0.85	A
			Cs-137	pCi/L	166	166	1.00	A
			Co-58	pCi/L	159	174	0.91	A
			Mn-54	pCi/L	190	190	1.00	A
			Fe-59	pCi/L	149	148	1.01	A
			Zn-65	pCi/L	231	234	0.99	A
			Co-60	pCi/L	198	211	0.94	A
	E5752-396	AP	Ce-141	pCi	88.6	93.4	0.95	А
			Cr-51	рСі	352	340	1.04	А
			Cs-134	рСі	84.6	91.2	0.93	А
			Cs-137	рСі	111	110.0	1.01	А
			Co-58	рСі	114	116.0	0.98	А
			Mn-54	рСі	135	126	1.07	А
			Fe-59	рСі	119	98.5	1.21	W
			Zn-65	pCi	172	155	1.11	А
			Co-60	pCi	137	141	0.97	А

TABLE D-1 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

(PAGE 2 OF 3)

TABLE D-1

,.

ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

(PAGE 3 OF 3)

Month/Year	Identification Number	Matrix	Nuclide	Units	Reported Value (a)	Known Value (b)	. Ra TBE/.	atio (c) Analytics	Evaluation (d)
December 2007	E5751-396	Charcoal	I-131	pCi	65.8	74.1	÷ (0.89	А
			•						
						,	·		
	۰.	•							
					·				
	•								
			. •		• •				
		• •	÷		2 .				
					· •.		. •		
	· ·		· •.						
		· ·	· · · ·	· .	•				
		•	м.		 				
		·							
۰.									
			. ,		•				
		•	it i i i i i i i i i i i i i i i i i i		• •				
		•	2		•	•			
			· · · .						
							•		
	-,	·	•						`
			· · .						
•	ι .								

(1) New technician counted charcoal cartridge on the back rather than the face, resulting in low activity. If the charcoal cartridge had been counted on the face, the ratio would have been approximately 1.07, which is acceptable. NCR 07-02

- (a) Teledyne Brown Engineering reported result.
- (b) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.
- (c) Ratio of Teledyne Brown Engineering to Analytics results.
- (d) Analytics evaluation based on TBE internal QC limits: A= Acceptable. Reported result falls within ratio limits of 0.80-1.20.
 W-Acceptable with warning. Reported result falls within 0.70-0.80 or 1.20-1.30. N = Not Acceptable. Reported result falls outside the ratio limits of < 0.70 and > 1.30.

TABLE D-2 ERA ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING, 2007

	Identifica	ation	n an the state of φυσιαγια. Για παραγικά του φυσιαγια	ನ 🔮 ಚಿತ್ರಿಗೆ ಸಂಕಟ್ಟು	Reported	Known	n a shi ann taban na pisana. A	
Month/Year	Number	Medi	a Nuclide	Units	Value (a)	Value (b)	Control Limits	Evaluation (c)
	D 1 70		0.00	• • •		50.0 "	10.5.00.0	
July 2007	Rad 70	Water	Sr-89	pCi/L	58.6	58.2	49.5 - 66.9	A
		2	Sr-90	pCi/L	18.7	19.0	10.3 - 27.7	A
			Ba-133	pCi/L	18.6	19.4	10.7 - 28.1	A
			Cs-134	pCi/L	57.6	68.9	60.2 - 77.6	N (1)
			Cs-137	pCi/L	55.4	61.3	52.6 - 70.0	A
	۰.		Co-60	pCi/L	31.3	33.5	24.8 - 42.2	A
			Zn-65	pCi/L	49.0	54.6	45.2 - 64.0	Α
		· •	Gr-A	pCi/L	.26.8	27.1	15.4 - 38.8	Α
			Gr-B	pCi/L	12	11.5	2.84 - 20.2	A
			I-131	pCi/L	31.1	26.5	21.3 - 31.7	A
			H-3	pCi/L	1700	1770	1180 - 2360	A
October 2007	RAD 71	Water	Sr-89	pCi/L	27.07	~27.4	19.3 - 33.9	А
			Sr-90	pCi/l	17.40	18.2	12.9 - 21.6	A
		•	Ba-133	pCi/L ·	12.57	12.6	8.64 - 15.5	A
			Cs-134	pCi/L	63.33	71.1	58.0 - 78.2	A
		·· : •	Cs-137	pCi/L	168	180	162 - 200	A
	. •	¢.	Co-60	pCi/L	21.93	23.2	19.9 - 28.3	A
		•	Zn-65	pCi/L	245.33	251	226 - 294	A
			`Gr-A	pCi/L	55.60	58.6	30.6 - 72.9	A
			Gr-B	pCi/L	15.23	9.73	4.26 - 18.2	A
		1 J. 1	· "I-131	pCi/L	27.43	28.9	24.0 - 33.8	A
	•		• H-3 • • • • • • • • • •	pCi/L	9263.3	9700	8430 - 10700	А
	•							
				5. S.	۰.			
		,	•		. (s			
		. • •	•					
		· •	· · · · .	. "				
		÷ .				·		
		•	۰.					
			. •		. •			

🧭 (PAGE 1 OF 1)

(1) The Cs-134 TBE found/ERA known ratio is 83.6%, which TBE considers acceptable. NCR 07-07

(a) Teledyne Brown Engineering reported result.

.

(b) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(c) ERA evaluation: A=acceptable. Reported result falls within the Warning Limits. NA=not acceptable. Reported result falls outside of the Control Limits. CE=check for Error. Reported result falls within the Control Limits and outside of the Warning Limit.

TABLE D-3

DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP) TELEDYNE BROWN ENGINEERING, 2007

(PAGE 1 OF 1)

	Identificatio	n			Reported	Known -	Acceptance	w.**
Month/Year	Number	Media	Nuclide	Units	Value (a)	Value (b)	Range	Evaluation (c)
	No. K. Contraction							····
February 2007	07-MaW17	Water	Cs-134	Bq/L	74.5	83.5	58.5 - 108.6	А
	· ,		Cs-137	Bq/L	162	163.0	114-1 - 211.9	А
			Co-57	Bq/L	140	143.7	100.6 - 186.8	A
		•	Co-60	Bq/L	.27.9	26.9	18.8 - 35.0	A
			H-3	Bq/L	346	283.0	198.1 - 367.9	[·] W
		•	Mn-54	Bq/L 🔄	125	123.8	86.7 - 160.9	А
		··· ·	Sr-90	Bq/L	8.90	8.87	6.21- 11.53	A
		· · ·	Zn-65	Bq/L	· · <i>`</i> 117	114.8	80.4 - 149.2	А
		•	•					
	07-GrW17 :	Water	Gr-A	Bq/L	0.502	0.327	>0.0 - 0.654	A
,	•		Gr-B	Bq/L	0.975	0.851	0.426 - 1.277	A
		A "	a	-				-
	07-MaS17	Soil	Cs-134	Bq/kg	, 322	327.4	229.2 - 425.6	A
		2 ³⁴	Cs-137	Bq/kg	893	799.7	559.8 - 1039.6	A
		· ·	Co-57	Bq/kg	508.3	471.2	329.8 - 612.6	Α
•		- F 1	Co-60	Bq/kg.⁺	300.3	274.7	192.3 - 357.1	A
•		• • •	Mn-54	Bq/kg	.779	685.2	479.6 - 890.8	A
	· .	, tr	K-40	Bq/kg	682	602	421 - 783	A
· · ·	Ϋ.		Sr-90	Bq/kg	293	319.0	223.3 - 414.7	A
			: Zn-65	Bq/kg	-618.7	536.8	375.8 - 697.8	A
					1947) 1947 - 1949 - 1949			
	07-RdF17	AP	. Cs-134	Bq/sample	3.230	1.4960	2.9372 - 5.4548	W
,		a ta	1Cs-137 as	Bq/sample	2.453	2.5693	1.7985 - 3.3401	A
			Co-57	Bq/sample	3.067	2.8876	2.0213 - 3.7539	A
			Co-60	Bq/sample	2.767	2.9054	2.0338 - 3.7770	A
			Mn-54	Bq/sample	3.557	3.5185	2.4630 - 4.5741	A
			Sr-90	Bq/sample	0.584	0.6074	0.4252 - 0.7896	A
			Zn-65	Bq/sample	2.463	2.6828	1.8780 - 3.4876	A
	07 GrE17		Gr A	Ra/comple	0.253	0 601	>0.0 1.202	۸
	07-GIL II	AF	Gr-R	Bq/sample	0.355	0.001	0.221 0.662	A ^
			GI-B	by/sample	0.500	0.441	0.221 - 0.002	A
February 2007	07-RdV17	Vegetation	Cs-134	Bo/sample	6.207	6 2101	4 3471 - 8.0731	А
		regetation	Cs-137	Bo/sample	7 80	6 9949	4 8964 - 9 0934	A
			Co-57	Bo/sample	8.64	8,1878	5 7315 - 10 6441	A
			Co-60	Bg/sample	6,10	5.8215	4.0751 - 7.5680	A
			Mn-54	Bo/sample	9,41	8,4492	5.9144 - 10.9840	
			K-40	Bg/sample	63.5	Not evaluater	by MAPEP	
			Sr-90	Bg/sample	1.51	1.5351	1.0746 - 1.9956	А
			Zn-65	Bg/sample	7.15	5.6991	3.9894 - 7.4088	W

(a) Teledyne Brown Engineering reported result.

⁽b) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

⁽c) DOE/MAPEP evaluation: A=acceptable, W=acceptable with warning, N=not acceptable.

TABLE D-4 ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM ENVIRONMENTAL, INC., 2007

(Page 1 of 2)

		·.	Concentra	ation (pCi/L)		
Lab Code *	Date	Analysis	Laboratory	ERA	Control	
			Result ^b	Result ^c	Limits	Acceptance
STAP-1116	03/19/07	Gr. Alpha	34.64 ± 2.56	25.8	12.4 - 39	Pass
STAP-1116	03/19/07	Gr. Beta	93.41 ± 3.20	79.5	48.8 - 116	Pass
STAP-1117	03/19/07	Co-60 [°]	1610.00 ± 8.40	1300.0	1010.0 - 1620	Pass
STAP-1117 [.]	03/19/07	Cs-134	1340.40 ± 48.84	1120.0	732.0 - 1380	Pass
STAP-1117 ^e	03/19/07	Cs-137	345.30 ± 8.20	255.0	192.0 - 336	Fail
STAP-1117	03/19/07	Mn-54	< 5.0	0.0	· · · ·	Pass
STAP-1117	03/19/07	Sr-90	156.10 ± 6.60	156.0	66.6 - 246	Pass
STAP-1117	03/19/07	Zn-65	363.80 ± 11.90	245.0	208.0 - 412	Pass
STSO-1118	03/19/07	Ac-228	3097.77 ± 94.96	2790.0	1790.0 - 3930	Pass
STSO-1118	03/19/07	Bi-212	2467.87 ± 114.33	2500.0	658.0 - 3730 ⁻	Pass
STSO-1118 :	03/19/07	Co-60	7847.40 ± 86.60	7330.0	5340.0 - 9820	Pass
STSO-1118	03/19/07	Cs-134	7910.60 ± 356.88	7560.0	4850.0 - 9070	Pass
STSO-1118	03/19/07	Cs-137	4635.00 ± 99.10	4300:0	3290.0 - 5580	Pass
STSO-1118 '	03/19/07	K-40	12201.60 ± 423.20	11100.0	8050.0 - 15000	Pass
STSO-1118 ¹³	03/19/07	Mn-54	< 34:0	0.0		Pass
STSO-1118	03/19/07	Pb-212	2046.80 ± 127.20	1730.0	1120.0 - 2430	Pass
STSO-1118	03/19/07	Pb-214	4142.80 ± 110.40	3330.0	1980.0 - 4980	Pass
STSO-1118	03/19/07	Sr-90	6163.30 ± 791.60	7500.0	2610.0 - 1.2400	Pass
STSO-1118	03/19/07	Th-234	4329.40 ± 569.10	3590.0	2190.0 - 4560	Pass
STSO-1118 '	03/19/07	Zn-65	0.00 ± 0.00	0.0	0.0 - 0	Pass
•.	•				· · · ·	· · · ·
STVE-1119	03/19/07	Co-60	2827.90 ± 62.40	2600.0	1760.0 - 3720	 Pass
STVE-1119	03/19/07	Cs-134	654.80 ± 48.40	579.0	308.0 - 822	、Pass
STVE-1119	03/19/07	Cs-137	3307.30 ± 58.80	2920.0	2150.0 - 4060	Pass
SIVE-1119	03/19/07	K-40	40814.20 ± 618.80	37900.0	27200.0 - 53600	Pass
SIVE-1119	03/19/07	Mn-54	< 27.6	0.0		Pass
STVE-1119	03/19/07	Sr-90	8999.70 ± 580.90	8890.0	4900.0 - 11800	Pass
STVE-1119	03/19/07	Zn-65	474.30 ± 45.70	366.0	267.0 - 500	Pass
STW-1120	03/19/07	Co-60	541.40 ± 9.00	536.0	467.0 - 631	Pass
STW-1120	03/19/07	Cs-134	1623.80 ± 66.10	1750.0	1290.0 - 2020	Pass
STW-1120	03/19/07	Cs-137	1839.10 ± 17.90	1850.0	1570.0 - 2220	Pass
STW-1120 [†]	03/19/07	Mn-54	< 8.1	0.0		Pass
STW-1120	03/19/07	Sr-90	949.40 ± 16.70	989.0	630.0 - 1320	Pass
STW-1120	03/19/07	Zn-65	2009.00 ± 36.40	1910.0	1600.0 - 2410	Pass
STW-1121	04/09/07	Sr-89	30.7 ± 4.3	35.4	26:7 - 44.1 ·	Pass
STW-1121	04/09/07	Sr-90	39.3 ± 1.8	42.1	33.4 - 50.8	Pass
					· .	
					<i>,</i>	· .

TABLE D-4

ERA^(a) STATISTICAL SUMMARY PROFICIENCY TESTING PROGRAM **ENVIRONMENTAL, INC., 2007**

(Page 2 of 2)

			Concentrat	tion (pCi/L)		
Lab Code '	* Date	Analysis	Laboratory	ERA	Control	
			Result ^b	Result ^c	Limits	Acceptance
STW-1122	04/09/07	Ba-133	30.0 ± 2.4	29.3	20.6 - 38.0	Pass
. STW-1122	04/09/07	Co-60	118.5 ± 3.9	119.0	109.0 - 129.0	Pass
STW-1122	04/09/07	Cs-134	52.6 ± 2.3	54.3	45.6 - 63.0	Pass
STW-1122	04/09/07	Cs-137	49.5 ± 3.8	50.3	41.6 - 59.0	Pass
STW-1122	04/09/07	Zn-65	91.7 ± 6.3	88.6	73.3 - 104.0	Pass
STW-1123	04/09/07	Gr. Alpha	33.8 ± 3.5	56.5	32.0 - 81.0	Pass
STW-1123	04/09/07	Gr. Beta	24.2 ± 2.3	25.3	16.6 - 34.0	Pass
STW-1124	04/09/07	I-131	19.2 ± 1,2	18.9	13.7 - 24.1	Pass
STW-1125	• 04/09/07	H-3	7540.0 ± 255.0	8060.0	6660.0 - 9450.0	Pass
STW-1127	07/09/07	Sr-89	51.7 ± 5.0	58.2	49.5 [,] - 66.9	Pass
STW-1127	07/09/07	Sr-90	21.4 ± 2.3	19.0	10.3 - 27.7	Pass
STW-1128	07/09/07.	Ba-133	19.4 ± 2.2	19:4	10.7 - 28.1	Pass
STW-1128	.07/09/07	Co-60	32.8 ± 2.0	33.5	24.8 - 42.2	Pass
STW-1128	07/09/07	Cs-134	67.0 ± 2.9	68.9	60.2 - 77.6	Pass
STW-1128	07/09/07	Cs-137	61.6 ± 3.8	61.3	52.6 - 70.0	Pass
STW-1128	07/09/07	Zn-65	55.6 ± 7.5	54.6	45.2 - 64.0	Pass
STW-1129	07/09/07	Gr. Alpha	19.2 ± 1.6	27.1	15.4 - 38.8	Pass
្ច់ STW-1129	07/09/07	Gr. Beta	9.1 ± 0.9	11.5	2.8 - 20.2	Pass
STW-1131	10/05/07	Sr-89	27.3 ± 3.3	27.4	19.3 - 33.9	Pass
STW-1131	10/05/07	Sr-90	17.7 ± 1.2	18.2	12.9 - 21.6	Pass
STW-1132	10/05/07	Ba-133	12.2 ± 3.3	12.6	8.6 - 15.5	Pass
STW-1132	2 10/05/07	Co-60	23.8 ± 1.4	23.2	19.9 - 28.3	Pass
STW-1132	2 10/05/07	Cs-134	70.5 ± 4.2	71.1	58.0 - 78.2	Pass
₩ŠTW-1132	2 10/05/07·	Cs-137	178.2 ± 3.3	180.0	162.0 - 200.0	Pass
STW-1132	2 10/05/07	Zn-65	263.9 ± 6.9	251.0	226.0 - 294.0	Pass
STW-1133	10/05/07	Gr. Alpha	54.7 ± 2.1	58.6	30.6 - 72.9	Pass
STW-1133	3 10/05/07	Gr. Beta	11.9 ± 0.9	9.7	4.3 - 18.2	Pass
STW-1134	10/05/07	I-131	33.0 ± 1.5	28.9	24.0 - 33.8	Pass
STW-1135	5 10/05/07	H-3 [,]	9965.0 ± 250.0	9700:0	8430.0 - 10700.0	Pass

·: ' ,

Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

^c Unless otherwise indicated, the laboratory result is given as the mean ± standard deviation for three determinations. ^d Results are presented as the known values, expected laboratory precision (1 sigma, 1 determination) and control limits as provided by ERA.

^e A high bias (~ 20%) was observed in gamma results for air filters. A composite filter geometry was used in the calculations vs. a single filter geometry. Result of recalculation. Cs-137, 305.8 ± 6.0 pCi/filter.

^f Included in the testing series as a "false positive". No activity expected.

TABLE D-5DOE'S MIXED ANALYTE PERFORMANCE EVALUATION PROGRAM (MAPEP)^aENVIRONMENTAL, INC., 2007

(Page 1 of 1)

			Conce	ntration ^b		
				Known	Control	
Lab Code ^c	Date	Analysis	Laboratory result	Activity	Limits ^d	Acceptance
STW-1110	01/01/07	Gr. Alpha	0.45 ± 0.08	0.33	0.00 - 0.65	Pass
STW-1110	01/01/07	Gr. Beta	0.90 ± 0.14	0.85	0.43 - 1.28	Pass
STW-1111	01/01/07	Co-57	151 60 + 10 00	143 70	100 60 - 186 80	Pass
STW-1111	01/01/07	Cs-134	79 20 + 8 00	83 50	58 50 - 108 60	Pass
STW-1111	01/01/07	Cs-137	168.70 + 12.10	163.00	114 10 - 211 90	Pass
STW-1111	01/01/07	H-3	262.20 + 9.10	283.00	198 10 - 367 90	Pass
STW-1111	01/01/07	Mn-54	130.60 + 11.50	123 80	86 70 - 160 90	Pass
STW-1111	01/01/07	Sr-90	9 60 + 1 40	8 87	6 21 - 11 53	Pass
STW-1111	01/01/07	Zn-65	123.70 ± 17.00	114 80	80 40 - 149 20	Pass
••••	0.10.101	_			00.10 110.20	1 400
STSO-1112	01/01/07	Co-57	501.20 ± 2.90	471.20	329.80 - 612.60	Pass
STSO-1112	01/01/07	Co-60	285.90 ± 2.10	274.70	192.30 - 357.10	Pass
STSO-1112	01/01/07	Cs-134	325.90 ± 7.40	327,40	229.20 - 425.60	Pass
STSO-1112	01/01/07	Cs-137	. 855.70 ±.4.60	799.70	- 559.80 - 1039.60	Pass
STSO-1112	01/01/07	Mn-54	750.90 ± 4.70	685.20	479.60 - 890.80	Pass
	الموني المراجع	and the second	70000000000000000000000000000000000000			
STAP-1113	01/01/07	Gr. Alpha	0.27 ± 0.04	0.60	0.00 - 1.20	Pass
STAP-1113	01/01/07	Gr. Beta	0.57 ± 0.05	0.44	0.22 - 0.66	Pass
			·			
STAP-1114	01/01/07	Co-57	3.51 ± 0.07	2.89	2.02 - 3.75	Pass
STAP-1114	01/01/07	Co-60	2.98 ± 0.10	2.91	2.03 - 3.78	Pass
STAP-1114	01/01/07	Cs-134	4.02 ± 0.16	4.20	2.94 - 5.45	Pass
STAP-1114	01/01/07	Cs-137	2.75 ± 0.12	2.57	1.80 - 3.34	Pass
STAP-1114	01/01/07	Mn-54	3.94 ± 0.12	3.52	2.46 - 4.57	Pass
STAP-1114	01/01/07	Sr-90	0.58 ± 0.18	0.61	0.43 - 0.79	Pass
STAP-1114	01/01/07	Zn-65	2.70 ± 0.10	2.68	1.88 - 3.49	Pass
STVE-1115	01/01/07	Co-57	8.90 ± 0.20	8.19	5.73 - 10.64	Pass
STVE-1115	01/01/07	Co-60	6.50 ± 0.20	5.82	4.08 - 7.57	Pass
STVE-1115	01/01/07	Cs-134	6.90 ± 0.30	6.21	4.35 - 8.07	Pass
STVE-1115	01/01/07	Cs-137	8.20 ± 0.30	6.99	4.90 - 9.09	Pass
STVE-1115	01/01/07	Mn-54	10.10 ± 0.30	8.46	5.91 - 10.98	Pass

^a Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the Department of Energy's Mixed Analyte Performance Evaluation Program, Idaho Operations office, Idaho Falls, Idaho

^b Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

^c Laboratory codes as follows: STW (water), STAP (air filter), STSO (soil), STVE (vegetation).

^d MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP.

.

APPENDIX E

ANNUAL RADIOLOGICAL GROUNDWATER PROTECTION PROGRAM REPORT (ARGPPR)

ъ 1₁ 1.55 . . 50 Δ. *** . · • • • • • : - 3.1 · · 5 • - 5 • . 1 5 ... ί. ٠. ٠,٠

Docket No: 50-254 50-265

QUAD CITIES NUCLEAR POWER STATION UNITS 1 and 2

Annual Radiological Groundwater Protection Program Report

1 January Through 31 December 2007

.

Prepared By

. . . .

Teledyne Brown Engineering Environmental Services

Nuclear

Quad Cities Nuclear Power Station Cordova, IL 61242

May 2008

84 of 108

Table Of Contents

·· · ·

· · · ·

• •

	and the second	
II. Introduction		
A. Objectives c	of the RGPP	
B. Implementat	tion of the Objectives	
	, opintion	5
C. Program De	SCNDUON	
D. Characterist	ics of Tritium (H-3)	
D. Characterist	ics of Tritium (H-3)	6
D. Characterist	scription ics of Tritium (H-3)	6
 D. Characterist III. Program Description A. Sample Ana 	scription ics of Tritium (H-3) on	
U. Program De D. Characterist III. Program Description A. Sample Ana B. Data Interpr	n Inscription Inscription Inscription	
 C. Program De D. Characterist III. Program Description A. Sample Ana B. Data Interprint C. Background 	scription ics of Tritium (H-3) on lysis etation Analysis	

IV.	Resu	Its and Discussion1	10
	А.	Groundwater Results1	10

• •

ţ

.,

Appendices

Appendix A	Location Designation
Tables	
Table A-1:	Radiological Groundwater Protection Program - Sampling Locations, Quad Cities Nuclear Power Station, 2007
Figures	
Figure A-1:	Sampling Locations Near the Site Boundary of the Quad Cities Nuclear Power Station, 2007
Appendix B <u>Tables</u>	n Data Tables ⁴
Table B-I.1	Concentrations of Tritium in Groundwater Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table B-I.2	Concentrations of Gamma Emitters in Groundwater Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table B-II.1	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.
Table B-II.2	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Quad Cities Nuclear Power Station, 2007.

•

..

,

 \mathbf{n}

86 of 108

•

I. Summary and Conclusions

1

This report on the Radiological Groundwater Protection Program (RGPP) conducted for the Quad Cities Nuclear Power Station (QCNPS) by Exelon Nuclear covers the period 01 January 2007 through 31 December 2007.

In 2006, Exelon instituted a comprehensive program to evaluate the impact of station operations on groundwater and surface water in the vicinity of QCNPS. This evaluation involved numerous station personnel and contractor support personnel.

This report covers groundwater samples, collected from the environment on station property in 2007. During that time period, 236 analyses were performed on 199 samples from 38 locations.

In assessing all the data gathered for this report, it was concluded that the operation of QCNPS had no adverse radiological impact on the environment offsite of QCNPS.

Tritium was detected in two groundwater samples at concentrations of 21,900 pCi/L and 30, 400 pCi/L, exceeding the United States Environmental Protection Agency (USEPA) drinking water standard (and the Nuclear Regulatory Commission Reporting Limit) of 20,000 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L in 14 of 38 groundwater monitoring locations. The tritium concentrations greater than the LLD of 200 pCi/L. Low levels of tritium greater than the LLD of 200 pCi/L in 14 of 38 groundwater monitoring locations. The tritium concentrations greater than the LLD of 200 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L. The tritium concentrations greater than the LLD of 200 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L. The tritium concentrations greater than the LLD of 200 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L. The tritium concentrations greater than the LLD of 200 pCi/L. Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L both surface water monitoring locations. The concentrations ranged from 275 to 438 pCi/L.

Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs) as specified in the Offsite Dose Calculation Manual (ODCM) in any of the groundwater samples. In the case of tritium, Exelon specified that it's laboratories achieve a lower limit of detection 10 times lower than that required by federal regulation. Most of the tritium that was detected in groundwater at the Station is on the south and east side of the Reactor / Turbine buildings.

Strontium-90 was not evaluated in 2007.

Intentionally left blank

II. Introduction

The Quad Cities Nuclear Power Station (QCNPS), consisting of two 2957 MWth boiling water reactor owned and operated by Exelon Corporation, is located in Cordova, Illinois along the Mississippi River. Unit No. 1 went critical on 16 March 1972. Unit No. 2 went critical on 02 December 1973. The site is located in northern Illinois, approximately 182 miles west of Chicago, Illinois.

This report covers those analyses performed by Teledyne Brown Engineering (TBE) on samples collected in 2007.

A. Objective of the RGPP

The long-term objectives of the RGPP are as follows:

- 1. Identify suitable locations to monitor and evaluate potential impacts from station operations before significant radiological impact to the environment and potential drinking water sources.
- 2. Understand the local hydrogeologic regime in the vicinity of the station and maintain up-to-date knowledge of flow patterns on the surface and shallow subsurface.
- 3. Perform routine water sampling and radiological analysis of water from selected locations.
- 4. Report new leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner.
- 5. Regularly assess analytical results to identify adverse trends.
- 6. Take necessary corrective actions to protect groundwater resources.
- B. Implementation of the Objectives

The objectives identified have been implemented at Quad Cities Nuclear Power Station as discussed below:

 Exelon and its consultant identified locations as described in the Phase 1 study. Phase 1 studies were conducted by Conestoga Rovers and Associates (CRA) and the results and conclusions were made available to state and federal regulators as well as the public on an Exelon web site in station specific reports. <u>http://www.exelonCorp.com/ourcompanies/powergen/nuclear/Tritiu</u> m.htm 2. The Quad Cities Nuclear Power Station reports describe the local hydrogeologic regime. Periodically, the flow patterns on the surface and shallow subsurface are updated based on ongoing measurements.

3. Quad Cities Nuclear Power Station will continue to perform routine sampling and radiological analysis of water from selected locations.

4. Quad Cities Nuclear Power Station has implemented procedures to identify and report new leaks, spills, or other detections with potential radiological significance in a timely manner.

5. Quad Cities Nuclear Power Station staff and consulting hydrogeologist assess analytical results on an ongoing basis to identify adverse trends.

C. Program Description

Groundwater and Surface Water

Samples of water are collected, managed, transported and analyzed in accordance with approved procedures following regulatory methods. Both groundwater and surface water are collected. Sample locations, sample collection frequencies and analytical frequencies are controlled in accordance with approved station procedures. Contractor and/or station personnel are trained in the collection, preservation management, and shipment of samples, as well as in documentation of sampling events. Analytical laboratories are subject to internal quality assurance programs, inter-laboratory cross-check programs, as well as nuclear industry audits. Station personnel review and evaluate all analytical data deliverables after initial review by the contractor.

Analytical data results are reviewed by both station personnel and an independent hydrogeologist for adverse trends or changes to hydrogeologic conditions. D.

Characteristics of Tritium (H-3)

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common form of tritium is tritium oxide, which is also called "tritiated water." The chemical properties of tritium are essentially those of ordinary hydrogen.

Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine with a clearance rate characterized by an effective biological half-life of about 14 days. Within one month or so after ingestion, essentially all tritium is cleared. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are activated to produce tritium. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like nontritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (3He). This radioactive decay releases a beta particle (low-energy electron). The radioactive decay of tritium is the source of the health risk from exposure to tritium. Tritium is one of the least dangerous radionuclides because it emits very weak beta radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

III. Program Description

A. Sample Analysis

This section describes the general analytical methodologies used by TBE to analyze the environmental samples for radioactivity for the Quad Cities Nuclear Power Station RGPP in 2007.

In order to achieve the stated objectives, the current program includes the following analyses:

- 1. Concentrations of gamma emitters in groundwater and surface water.
- 2. Concentrations of strontium in groundwater and surface water.
- 3. Concentrations of tritium in groundwater and surface water.
- B. Data Interpretation

i

. .

The radiclogical data collected prior to Quad Cities Nuclear Power Station becoming operational were used as a baseline with which these operational data were compared. For the purpose of this report, Quad

Cities Nuclear Power Station was considered operational at initial criticality. Several factors were important in the interpretation of the data:

Lower Limit of Detection and Minimum Detectable Concentration ECar And Antiputed State and All

an share ta f

The lower limit of detection (LLD) is specified by federal regulation as a minimum sensitivity value that must be achieved routinely by the analytical parameter.

2. Laboratory Measurements Uncertainty

The estimated uncertainty in measurement of tritium in environmental samples is frequently on the order of 50% of the measurement value.

Statistically, the exact value of a measurement is expressed as a range with a stated level of confidence. The convention is to report results with a 95% level of confidence. The uncertainty comes from calibration standards, sample volume or weight measurements, sampling uncertainty and other factors. Exelon reports the uncertainty of a measurement created by statistical process (counting error) as well as all sources of error (Total Propagated Uncertainty or TPU). Each result has two values calculated. Exelon reports the TPU by following the result with plus or minus ± the estimated sample standard deviation, as TPU, that is obtained by propagating all sources of analytical uncertainty in measurements.

Analytical uncertainties are reported at the 95% confidence level in this report for reporting consistency with the Annual Radiological Environmental Operating Report (AREOR).

Gamma spectroscopy results for each type of sample were grouped as follows:

For groundwater and surface water 14 nuclides, Be-7, K-40, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, I-131, Cs-134, Cs-137, Ba-140 and La-140 were reported.

C. Background Analysis

a sa a sa sa

1. A. 11

٦,

A pre-operational radiological environmental monitoring program (preoperational REMP) was conducted to establish background radioactivity levels prior to operation of the Station. The environmental media sampled and analyzed during the pre-operational REMP were atmospheric radiation, fall-out, domestic water, surface water, marine life, and vegetation. The results of the monitoring were detailed in the reports entitled, Quad Cities Nuclear Power Plant Environmental Monitoring Report; Commonwealth Edison; Company, covering the period from July 1968 through September 1971.

and the Complex CALL when we have a reader of

The pre-operational REMP contained analytical results from samples collected from the surface water and groundwater.

1. Background Concentrations of Tritium

The purpose of the following discussion is to summarize background measurements of tritium in various media performed by others.

a. Tritium Production

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "Cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium present in crystalline rocks by neutrons produced by the radioactive decay of naturally abundant uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium and strontium-90 comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased significantly during the 1950s and early 1960s, and later with additional testing, resulting in the release of significant amounts of tritium to the atmosphere. The Canadian heavy water nuclear power reactors, other commercial power reactors, nuclear research and weapons production continue to influence tritium concentrations in the environment.

Precipitation Data

5.

b.

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provide tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected world wide from 1960 to 2006. RadNet provides tritium precipitation concentration data for samples collected at stations through out the U.S. from 1960 up to and including 2006. Based on GNIP data for sample stations located in the U.S. Midwest, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of thermonuclear weapons. Tritium concentrations in surface water showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been below 100 pCi/L since around 1980. Tritium concentrations in wells may still be above the 200 pCi/L detection limit from the external causes described above.

C. Surface Water Data

> Tritium concentrations are routinely measured in large surface water bodies, including the Mississippi River. Illinois surface water data were typically less than 100 pCi/L.

The USEPA RadNet surface water data typically has a reported 'Combined Standard Uncertainty' of 35 to 50 pCi/L. According to USEPA, this corresponds to a \pm 70 to 100 pCi/L 95% confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately ± 70 to

100 pCi/L.

The radio-analytical laboratory is counting tritium results to an Exelon specified LLD of 200 pCi/L. Typically, the lowest positive measurement will be reported within a range of 40 -240 pCi/L or 140 ± 100 pCi/L. Clearly, these sample results cannot be distinguished as different from background at this concentration.

e .

Results and Discussion IV.

Α.	Gro	oundv	vate	er Res	sults	• •	•	 •	
		•		٦.		•		. •	. t ^{a a}

Groundwater and the second
Samples were collected from on-site wells in accordance with the station radiological groundwater protection program. Analytical and the prove 1 1. results and anomalies are discussed below.

En le <u>Tritium</u> 相当の自然になったとしている。 でのないない。 The Conserval Automatic and the star

Samples from all locations were analyzed for tritium activity (Table B–I.1 Appendix B). Tritium values ranged from the detection limit to 30,400 pCi/l. All samples obtained at the site boundaries were less then the detection limit of 200 pCi/L. The location most representative of potential offsite user of drinking water was <200 pCi/Let do subset they dead the m

- <u>Strontium</u>

. .

· •

Strontium-90 was not evaluated in 2007.

Gamma Emitters

Naturally occurring Potassium-40 was detected in three of 27 samples. The concentrations ranged from 155 pCi/liter to 226 pCi/liter. No other gamma emitting nuclides were detected. (Table B–I.2, Appendix B).

Surface Water

Tritium

Samples from two locations were analyzed for tritium activity (Table

B–II.1 Appendix B). Tritium values ranged from the detection limit to 438 pCi/l. The location most representative of potential offsite user of drinking water was <200 pCi/L.

<u>Strontium</u>

Strontium-90 was not evaluated in 2007.

网络特别教师 建基本合金成的 医白色的

Gamma Emitters

No gamma emitting nuclides were detected. (Table B–II.2, Appendix B).

م . مراجع

۰.

and a second
APPENDIX A

LOCATION DESIGNATION

J

TABLE A-1: Radiological Groundwater Protection Power Station, 2007	Program - Sampling Locations, Quad Cities Nuclear
Site	Site Type
MW-1	Monitoring Well
MW-2	Monitoring Well
MW-QC-1011	Monitoring Well
MW-QC-101S	Monitoring Well
MW-QC-102D	Monitoring Well
MW-QC-1021	Monitoring Well
MW-QC-102S	Monitoring Well
MW-QC-103I	Monitoring Well
MW-QC-104S	Monitoring Well
MW-QC-105I	Monitoring Well
MW-QC-106I	Monitoring Well
MW-QC-106S	Monitoring Well
MW-QC-107I	Monitoring Well
MW-QC-108D	Monitoring Well
MW-QC-108I	Monitoring Well
MW-QC-108S	Monitoring Well
MW-QC-109I	Monitoring Well
MW-QC-109S	Monitoring Well
MW-QC-110I	Monitoring Well
MW-QC-111D1	Monitoring Well
MW-QC-111D2	Monitoring Well
MW-QC-111I	Monitoring Well
MW-QC-112I	Monitoring Well
MW-QC-113	Monitoring Well
MW-QC-114I	Monitoring Well
MW-QC-115S	Monitoring Well
MW-QC-116S	Monitoring Well
STP SAND POINT WELL	Production Well
WELL #1	Production Well
WELL #5	Production Well
WELL #6 LITTLE FISH	Production Well
WELL #7 BIG FISH WELL	Production Well
WELL #8 FIRE TRAINING WELL	Production Well
WELL #9 DRY CASK WELL	Production Well
WELL #10 FISH HOUSE WELL	Production Well
WELL #11 SPRAY CANAL WELL	Production Well
SURFACE WATER #1 SPRAY CANAL - ACCESS ROAD	D Surface Water
SURFACE WATER #2 SPRAY CANAL - RIVER ROAD	Surface Water

FIGURE A-1 Sampling Locations Near the Site Boundary of the Quad Cities Nuclear Power Station, 2007

	• •	• •			
•					

2	

· · ·

and the second
· · ••• 1 . . .

5 - 5 5 - 5 5 - 5 5 - 5 .

APPENDIX B

	ž.	1000 MAQ
	•	13 1 <u>1</u> 21
	- 7	. * W.
	• <u>.</u> * .	
· · ·		

DATA TABLES --

**	. '	1.41
• • • •		
	•	1
	2	· •
		18 d. g.
		1
•	•	s - 1
		1 a.

· .

-· • ÷., 1 ۰.' . • . . · · ·

v[‡] .

.

TABLE B-I.1

CONCENTRATIONS OF TRITIUM IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	COLLECTION	
SITE	DATE	H-3
MW-1	02/22/07	203 ± 126
MW-1	05/16/07	< 162
MW-1	09/19/07	< 189
MW-1	10/17/07	< 196
MW-1	12/12/07	< 181
MW-2	02/22/07	< 192
MW-2	05/16/07	< 161
MW-2	09/19/07	< 189
MW-2	10/17/07	< 195
MW-2	12/12/07	< 181
MW-QC-1011	02/22/07	< 190
MW-QC-1011	05/16/07	< 155
MW-QC-1011	09/19/07	188 ± 119
MW-QC-1011	10/16/07	< 187
MW-QC-101I	12/12/07.1t,	< 169
MW-QC-101S	02/22/07	< 192
MW-QC-101S	05/16/07	< 158
MW-QC-101S	09/19/07	< 180
MW-QC-101S	10/16/07	< 189
MW-QC-101S	12/12/07	< 162
MW-QC-102D	02/22/07	3640 ± 426
MW-QC-102D	05/16/07	3970, ± 440
MW-QC-102D	06/05/07	3060 ± 353
MW-QC-102D	06/19/07	2940 ± 350
MW-QC-102D	09/19/07	3760 ± 440
MW-QC-102D	10/16/07	3110 ± 218
MW-QC-102D	12/12/07	3340 ± 398
MW-QC-102I	02/22/07	5590 ± 616
MW-QC-1021	05/16/07	17100 ± 1740
MW-QC-1021	06/05/07	30400 ± 3060
MW-QC-102I	06/19/07	21900 ± 2230
MW-QC-1021	07/16/07	8280 ± 873
MW-QC-102I	09/19/07	4090 ± 472
MW-QC-1021	10/16/07	6120 ± 363
MW-QC-102I	12/12/07	3900 ± 455
MW-QC-102S	02/22/07	< 176
MW-QC-102S	05/16/07	2160 ± 263
MW-QC-102S	06/05/07	724 ± 132
MW-QC-102S	06/19/07	< 188
MW-QC-102S	09/19/07	< 184
MW-QC-102S	10/16/07	< 189
MW-QC-102S	12/12/07	< 174
MW-QC-103I	02/23/07	< 189
MW-QC-103I	05/16/07	< 154

1

101 of 108

TABLE B-I.1 CONCENTRATIONS OF TRITIUM IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

	COLLECTION	te te		
SITE	DATE	Н-3	-	
MW-QC-103I	09/19/07	< 186		· · ·
MW-QC-103I	10/17/07	< 190		
MW-QC-103I	12/12/07	. < 171	. ·	
MW-QC-104S	02/23/07	< 188	· ·	, · · ·
MW-QC-104S	05/16/07	< 150	· · ·_	, *
MW-QC-104S	09/19/07	· < 185		
MW-QC-104S	10/16/07	. < 188		· · ·
MW-QC-104S	12/12/07	< 172		
MW-QC-105I	02/23/07	< 189	·	
MW-QC-105I	05/16/07	< 159	1 ¹¹	
MW-QC-105I	09/19/07	< 188		1. A. A. A.
MW-QC-105I	10/16/07	< 188		
MW-QC-105I	12/12/07	< 181 ·	$\mathcal{L} = \mathcal{L}_{\mathbf{k}}^{\mathcal{L}} (\mathbf{r}, \mathbf{r})$	*
MW-QC-106I	02/23/07	< 193 🕡	1. 1. 1. 1. 1.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MW-QC-106I	05/16/07	< 154	10 - 1 S	 A provide the second sec
MW-QC-106I	09/19/07	€194 ± 122	1977 E 21	• * · ·
MW-QC-106I	10/17/07	< 187		1
MW-QC-106I	12/12/07	< 183	NA 197 201	
MW-QC-106S	02/23/07	≥230° ± 127		· · · · ·
MW-QC-106S	05/16/07	< 154.:	And Sec.	•
MW-QC-106S	09/19/07	< 192.	4 F F	
MW-QC-106S	10/17/07	< 188	2001 - C	۰.
MW-QC-106S	12/12/07	< 183 ⁰	6 g. 9 g.	۰.
MW-QC-1071	02/21/07	< 191		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MW-QC-1071	05/15/07	< 156		· •
MW-QC-107I	09/18/07	< 191		
MW-QC-107I	10/15/07	< 187 ·	3	с. с. Ч <i>и</i>
MW-QC-107I	12/10/07	< 182	1 .	•
MW-QC-108D	02/22/07	3300 ± 398		
MW-QC-108D	05/15/07	5180 ± 563	·* 1	
MW-QC-108D	06/05/07	. 6260 ± 671		<i>•</i> •
MW-QC-108D	06/19/07	5810 ± 632		
MW-QC-108D	09/18/07	5950 ± 656		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
MW-QC-108D	10/16/07	8050 ± 870		
MW-QC-108D	12/11/07	6770 ± 741		
MW-QC-108I	02/22/07	1290 ± 199		
MW-QC-108I	05/15/07	1730 ± 223		
MW-QC-108I	06/05/07	3080 ± 355	i -	
MW-QC-108I	06/19/07	3500 ± 406		•
MW-QC-108I	09/18/07	3680 ± 433		
MW-QC-1081	10/16/07	4930 ± 560		
MW-QC-1081	12/11/07	5330 ± 597		,
MW-QC-108S	02/21/07	363 ± 128		
MW-QC-108S	05/15/07	787 ± 137		

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE B-I.1 CONCENTRATIONS OF TRITIUM IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

	COLLECTION		,	
SITE	DATE	H-3		
MW-QC-108S	06/05/07	843 ± 142		
MW-QC-108S	06/19/07	870 ± 157		· -
MW-QC-108S	09/18/07	478 ± 135		
MW-QC-108S	10/16/07	< 190		:
MW-QC-108S	12/11/07	424 ± 132		
MW-QC-1091	02/22/07	1380 ± 214		
MW-QC-109I	05/16/07	429 ± 118	· ·	
MW-QC-109I	09/19/07	492 ± 139	÷. "	
MW-QC-109I	10/17/07	< 196	·	
MW-QC-109I	12/12/07	· 396 ± 129		, · ·
MW-QC-109S	02/22/07	< 187	i al	• •
MW-QC-109S	05/16/07	< 159	1 - 1 A	· .
MW-QC-109S	09/19/07	< 191	. `	
MW-QC-109S	10/17/07	< 192	1	
MW-QC-109S	12/12/07	< 182 · ·		6 C
MW-QC-110I	02/21/07	. < 189	a (5	10 ⁻¹
MW-QC-110I	05/15/07	< 157	n d. 24	
MW-QC-110I	09/19/07	< 188 ···	an Na sa sa	3 m 1 m
MW-QC-110I	12/11/07	_ < 180	en e	و واهای د م
MW-QC-111 D1	02/21/07	< 193.	, š 1. , s	
MW-QC-111 D1	05/15/07	< 157 [°]		· .
MW-QC-111 D1	09/18/07	< 190	•	4
MW-QC-111 D1	10/16/07	< 195. · · ·	· ·	•
MW-QC-111 D1	12/11/07	< 186	•••	ę
MW-QC-111 D2	02/21/07	< 191		• •
MW-QC-111 D2	05/15/07	< 162		
MW-QC-111 D2	09/18/07	< 187	<u>.</u>	
MW-QC-111 D2	10/16/07	< 197·		
MW-QC-111 D2	12/11/07	< 181		
MW-QC-1111	02/21/07	< 185		,
MW-QC-1111	05/15/07	409 ± 115		
MW-QC-1111	09/18/07	< 187		
MW-QC-1111	10/16/07	< 196		
MW-QC-111I	12/11/07	< 184		
MW-QC-112I	02/21/07	< 184		
MW-QC-112I	05/15/07	< 163		
MW-QC-112I	09/18/07	< 185		· · ·
MW-QC-1121	10/16/07	< 195		
MW-QC-112I	12/11/07	446 ± 132		
MW-QC-112I	12/11/07	252 ± 125		
MW-QC-112I	12/11/07	5		
MW-QC-113I	02/21/07	. < 184		
MW-QC-113I	05/15/07	< 160		
MW-QC-113I	09/18/07	< 192		

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

TABLE B-I.1

CONCENTRATIONS OF TRITIUM IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	COLLECTION	· · · ·	
SITE	DATE	H-3	
MW-QC-1131	10/16/07	< 195	
MW-QC-113I	12/11/07	< 180	
MW-QC-114I	02/21/07	< 189	
MW-QC-114I	05/15/07	< 160	
MW-QC-114I	09/18/07	< 190	
MW-QC-114I	10/16/07	< 189	
MW-QC-114I	12/11/07	< 182	e :
MW-QC-115S	02/22/07	< 190	
MW-QC-115S	05/15/07	< 160	
MW-QC-115S	09/17/07	< 192	
MW-QC-115S	10/15/07	< 198	•
MW-QC-115S	12/10/07	< 178	
MW-QC-116S	02/21/07	< 189 [°]	
MW-QC-116S	05/15/07	,< 156	, .
MW-QC-116S	09/17/07	203 ± 122	1
MW-QC-116S	10/15/07	< 195	••
MW-QC-116S	12/10/07	222 ± 118	•
MW-QC-116S	12/10/07	< 195	
STP-SANDPOINT WELL	02/22/07	< 191	•
STP-SANDPOINT WELL	05/14/07	< 157	
STP-SANDPOINT WELL	09/20/07	< 192	•
STP-SANDPOINT WELL	10/30/07	< 189	
WELL #1	02/06/07	287 ± 128	,
WELL #1	02/22/07	327 ± 124	
WELL #1	03/26/07	395 ± 140	
WELL #1	05/14/07	313 ± 110	
WELL #1	06/05/07	414 ± 117	
WELL #1	06/19/07	257 ± 126	•
WELL #1	07/16/07	< 164	
WELL #1	08/22/07	373 ± 109	
WELL #1	09/20/07	307 ± 128	
WELL #1	10/30/07	225 ± 127	
WELL #1	11/30/07	231 ± 126	
WELL #10 FISH HOUSE WELL	02/22/07	< 190	
WELL #10 FISH HOUSE WELL	05/14/07	< 159	
WELL #10 FISH HOUSE WELL	09/20/07	< 192	
WELL #10 FISH HOUSE WELL	11/01/07	< 190	
WELL #11 SPRAY CANAL WELL	05/14/07	< 159	
WELL #11 SPRAY CANAL WELL	09/20/07	< 192	
WELL #11 SPRAY CANAL WELL	11/01/07	< 193	
	05/20/07	 190 151 	
	00/14/07	N 101 - 150	
		S 100	
VVELL #5	00/19/07	< 184 ·	

TABLE B-I.2

CONCENTRATIONS OF GAMMA EMITTERS IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

.

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

SITE		Be-7	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
QC-MW-1	09/19/07	< 42	< 41	< 5	< 5	< 9	< 4	< 9	< 5	< 7	< 9	< 4	< 4	< 22	·< 8
QC-MW-2	09/19/07	< 30	226 ± 56	< 4	< 3	< 8	< 4	< 8	< 4	< 6	< 7	< 3	< 4	< 17	< 5
QC-MW-QC-1011	09/19/07	< 16	< 18	< 2	< 2	< 4	< 2	< 4	< 2	< 3	< 3	< 2	< 2	< 9	< 3
QC-MW-QC-101S	09/19/07	< 20	< 21	< 2	< 2	< 4	< 2	< 4	< 2	< 4	< 4	< 2	< 2	< 11 ·	< 4
QC-MW-QC-102D	09/19/07	< 27	< 30	< 3	< 3	< 7	< 4	< 6	< 4	< 6	< 6	< 3	< 3	< 15	[`] < 6
QC-MW-QC-1021	09/19/07	< 38	< 40	< -5 -	< 5	< 9	< 4 …	< 11	< 4	< 8	< 9	< 4	;< 5	< 25	< 8
QC-MW-QC-102S	09/19/07	< 46	< 46	< 6	< 5	< 11	< 6	< 9	< 6	< 10	< 10	< 5	·< 5	< 27	< 9
QC-MW-QC-103I	09/19/07	< 42	< 85	< 4	< 5	< 8	< 4	< '9	< 6	< 8	< 8	< 4	·< 4	< 24	< 9
QC-MW-QC-104S	09/19/07	< 30	< 36	< 3	< 3	< 9	< 5	< 8	< 4	< 7	< 8	< 3	(< 4	< 19	< 6
QC-MW-QC-1051	09/19/07	< 34	< 93	< 4	< 5	~ < 8 .	< 4	< 7	< 5	< 8	< 7	< 4	. < 4	< 21	< 7
QC-MW-QC-106I	09/19/07	< 30	< 65	< 3	< 4	< 7	< 4	< 6	< 3 [.]	< 6	< 7 ¹	< 3 ·	< 4	< 18	< 6
QC-MW-QC-106S	09/19/07	< 39	< 107	< 4	< 5	['] < 10 [']	< 4	< 10	~ 5	< 9	< 9	< 4	< 5	< 22	< 8
QC-MW-QC-107I	09/18/07	< 33	< 33	< 4	< 4	< 8	< 4	< 9	< 4	< 7	< 8	< 4	< 4	< 22	< 6
QC-MW-QC-108D	09/18/07	< 39	< 91	< 4	< 5	< 10	< 4	< 8	< 5	< 10	< 8	< 4	< 4	< 25	< 9
QC-MW-QC-108I	09/18/07	< 41	< 50	< 5	< 5	< 12	7 < ۲	< 11	< 5	< 9	< 9	< 4	< 5	< 27	< 9
QC-MW-QC-108S	09/18/07	< 42	< 53	< 5	< 5	< 11	< 4	< 10	< 6	< 9	< 11	< 5	< 5.	< 27	< 7
QC-MW-QC-109I	09/19/07	< 50	< 107	< '6	< 6	< 11	< 6	`< 9	< 5	< 9	< 12	< 5	< 6	< 33	< 10
QC-MW-QC-109S	09/19/07	< 47	155 ± 79	< 5	< 5	< 11	< 5	<`11	< 5	< 10	< 9	< 5	. < 5	< 27	< 11
QC-MW-QC-110	09/19/07	< 44	< 41	< 5	< 6	< 12	< 5	< 10	< 6	< 8	< 11	< 5	ີ< 6	< 30	< 10
QC-MW-QC-111 D1	09/18/07	< 54	< 122	< 6	< 5	< 12	< 6	< 11	< 7	< 10	< 12	< 5	·< 6	< 30	< 9
QC-MW-QC-111 D2	09/18/07	< 41	< 46	< 5	< 4	< 9	< 5	< 10	< 5	< 8	< 9	< 4	< 5	< 25	< 7
QC-MW-QC-111I	09/18/07	< 47	< 39	< 5	< 5	< 10	< 5	< 10	< 5	< 9	< 11	< 5	< 6	< 27	< 9
QC-MW-QC-112I	09/18/07	< 31	< 62	< 4	< 3	< 7	< 4	< 9	< 4	< 7	< 8	< 4	< 4	< 23	< 6
QC-MW-QC-113I	09/18/07	< 50	< 120	< 6	< 6	< 10	< 6	< 10	< 7	< 9	< 12	< 5	< 6	< 31	< 11
QC-MW-QC-114I	09/18/07	< 48	< 89	< 5	< 5	< 10	~ 7	< 10	< 6	< 8	< 11	< 4	< 5	< 26	< 9
QC-MW-QC-115S	09/17/07	< 33	197 ± 47	< 4	< 4	< 8 .	< 4 · ·	·< 7	< 4	< 7	< 8	< 3	< 4	< 20	< 6
QC-MW-QC-116S	09/17/07	< 38	< 116	< 5	< 4	< 10	< 6	.' < 9	< 5	< 9 .	< 11	< 4 "	< 5	< 29	·< 11
											•		÷		.'

B - 5

105 of 108

TABLE B-II.1CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED
IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

SITE	COLLECTION DATE	H-3
SURFACE WATER #1	05/14/07	413 ± 115
SURFACE WATER #1	06/04/07	438 ± 116
SURFACE WATER #1	06/18/07	< 191
SURFACE WATER #1	09/17/07	< 190
SURFACE WATER #2	05/14/07	330 ± 110
SURFACE WATER #2	06/04/07	275 ± 108
SURFACE WATER #2	06/18/07	< 187
SURFACE WATER #2	09/17/07	< 187
TABLE B-II.2CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES
COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

SITE	COLLECTION PERIOD	Be-7	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Nb-95	Zr-95	I-131	Cs-134	Cs-137	Ba-140	La-140
SURFACE WATER #1 SURFACE WATER #2	09/17/07 09/17/07	< 45 < 43	< 100 < 52	< 5 < 5	< 6 < 5	< 10 < 12	< 6 < 6	< 11 < 11	< 6 < 4	< 9 < 10	< 1 <mark>1</mark> < 11	< 4 < 5	< 5 < 5	< 29 < 29	< 9 < 9
	·											,			
										- *	· · ·			· · ·	
								-			2	4 	•		
								·							

107 of 108

TABLE B-I.1

CONCENTRATIONS OF TRITIUM IN GROUNDWATER SAMPLES COLLECTED IN THE VICINITY OF QUAD CITIES NUCLEAR POWER STATION, 2007

RESULTS IN UNITS OF PCI/LITER ± 2 SIGMA

	COLLECTION	
SITE	DATE	Н-3
WELL #5	07/16/07	< 165
WELL #5	08/22/07	< 144
WELL #5	09/20/07	< 187
WELL #5	10/30/07	< 192
WELL #5	11/30/07	< 191
WELL #6 LITTLE FISH WELL	02/22/07	< 195
WELL #6 LITTLE FISH WELL	05/14/07	< 152
WELL #6 LITTLE FISH WELL	09/20/07	< 190
WELL #6 LITTLE FISH WELL	11/01/07	< 193
WELL #7 BIG FISH WELL	02/22/07	205 ± 126
WELL #7 BIG FISH WELL	05/14/07	341 ± 110
WELL #7 BIG FISH WELL	06/05/07	421 ± 119
WELL #7 BIG FISH WELL	06/19/07	236 ± 129
WELL #7 BIG FISH WELL	09/20/07	221 ± 126
WELL #7 BIG FISH WELL	11/01/07	< 191
WELL #8 FIRE TRAINING WELL	02/22/07	< 189
WELL #8 FIRE TRAINING WELL	05/14/07	169 ± 105
WELL #8 FIRE TRAINING WELL	09/20/07	< 193
WELL #8 FIRE TRAINING WELL	10/30/07	< 196
WELL #9 DRY CASK WELL	02/22/07	< 190
WELL #9 DRY CASK WELL	05/14/07	< 156
WELL #9 DRY CASK WELL	09/20/07	< 191
WELL #9 DRY CASK WELL	10/30/07	< 188

j.

,