# Beaver Valley Power Station - Units 1 & 2

# **Radioactive Effluent Release Report**

Calendar Year - 2007 Attachment 2 Unit 1 and 2 Offsite Dose Calculation Manual Changes

## Attachment 2

Attached is a complete copy of the Offsite Dose Calculation Manual (ODCM) that includes revision bars in the page margins. It should be noted that only the pages changed in 2007 include a reference to the month/year (06/2007) that the changes were implemented. The changes implemented in 2007 are included in the following:

Change (24) of the ODCM (Effective: June, 2007)

# **Attachment 2 Clarification**

A complete copy of the ODCM has been provided to the following offices to comply with the submittal requirements of Technical Specification Administrative Control 5.5.1, and SAP Order 200197646-0420:

United States Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555-0001

United States Nuclear Regulatory Commission Regional Administrator 475 Allendale Road King of Prussia, PA 19406

For a complete copy of the ODCM, contact Mr. Anthony T Lonnett at 724-682-4223.

# **Beaver Valley Power Station**

Unit 1/2

# 1/2-ODC-1.01

**ODCM: Index, Matrix and History of ODCM Changes** 

# Document Owner Manager, Nuclear Environmental and Chemistry

| Revision Number          | 6                       |
|--------------------------|-------------------------|
| Level Of Use             | General Skill Reference |
| Safety Related Procedure | Yes                     |
| Effective Date           | 06/23/07                |

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01                  |                         |
|-------------------------------------------------|-------------------------------------------------|-------------------------|
| Title:                                          | Unit: Level Of Use: 1/2 General Skill Reference |                         |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                                       | Page Number:<br>2 of 82 |

# TABLE OF CONTENTS

|     |     |          |                                                                         | -    |
|-----|-----|----------|-------------------------------------------------------------------------|------|
| 1.0 |     |          |                                                                         |      |
| 2.0 |     |          |                                                                         |      |
| 3.0 | REF |          | S AND COMMITMENTS                                                       |      |
|     | 3.1 |          | ces Used in This Procedure                                              |      |
|     | 3.2 | Summar   | y of References Used Throughout Other Procedures of the ODCM            | 5    |
|     | 3.3 | Commit   | ments                                                                   | 12   |
| 4.0 | REC | ORDS AN  | ND FORMS                                                                | 13   |
|     | 4.1 | Records  |                                                                         | 13   |
|     | 4.2 | Forms    | ······································                                  | 13   |
| 5.0 | PRE | CAUTION  | NS AND LIMITATIONS                                                      | 13   |
| 6.0 |     |          | E CRITERIA                                                              |      |
| 7.0 | PRE | REQUISIT | TES                                                                     | 14   |
| 8.0 | PRO | CEDURE   | ······································                                  | 15   |
|     | 8.1 | Descript | ion of ODCM Structure                                                   |      |
|     |     | 8.1.1    | 1/2-ODC-1.01, ODCM: Index, Matrix and History of ODCM changes           | 15   |
| ٠.  | *   | 8.1.2    | 1/2-ODC-2.01, ODCM: Liquid Effluents                                    |      |
|     |     | 8.1.3    | 1/2-ODC-2.02, ODCM: Gaseous Effluents                                   | 16   |
|     |     | 8.1.4    | 1/2-ODC-2.03, ODCM: Radiological Environmental Monitoring Program       |      |
|     |     | 8.1.5    | 1/2-ODC-2.04, ODCM: Information Related to 40 CFR 190                   | 17   |
|     |     | 8.1.6    | 1/2-ODC-3.01, ODCM: Dispersion Calculational Procedure and Source Terr  | m    |
|     |     |          | Inputs                                                                  |      |
|     |     | 8.1.7    | 1/2-ODC-3.02, ODCM: Bases for ODCM Controls                             | 18   |
|     |     | 8.1.8    | 1/2-ODC-3.03, ODCM: Controls for RETS and REMP Programs                 | 18   |
|     | 8.2 |          | Of ODCM Changes                                                         |      |
|     |     | 8.2.1    | Change (1) of BV-1 ODCM (Issue 1), Effective January, 1984              | 19   |
|     |     | 8.2.2    | Change (2) of BV-1 ODCM (Issue 1, Rev 1), Effective October, 1984       | 19   |
|     |     | 8.2.3    | Change (3) of BV-1 ODCM (Issue 1, Rev 2), Effective July, 1986          | 20   |
|     |     | 8.2.4    | Change (4) of BV-1 ODCM (Issue 2), and BV-2 ODCM (Issue 1, Rev 1),      |      |
|     |     |          | Effective July, 1987                                                    | 20   |
|     |     | 8.2.5    | Change (5) of BV-1 ODCM (Issue 2, Rev 1), and BV-2 ODCM (Issue 1,       |      |
|     |     |          | Revision 2), Effective December, 1987                                   | 21   |
|     |     | 8.2.6    | Change (6) of BV-1 ODCM (Issue 2, Rev 2), and BV-2 ODCM (Issue 1, Rev   | 7    |
|     |     |          | 3), Effective June, 1989                                                | 22   |
|     |     | 8.2.7    | Change (7) of BV-1 and 2 ODCM (Issue 3), Effective August, 1995         | 24   |
|     |     | 8.2.8    | Change (8) of BV-1 and 2 ODCM (Issue 3, Rev 1), Effective October, 1995 | 28   |
|     |     | 8.2.9    | Change (9) of BV-1 and 2 ODCM (Issue 3, Rev 2), Effective May 1997      | 31   |
|     |     | 8.2.10   | Change (10) of BV-1 and 2 ODCM (Issue 3, Rev 3), Effective June 1997    | 32   |
|     |     | 8.2.11   | Change (11) of BV-1 and 2 ODCM (Issue 3, Rev 4), Effective March 1998   | 33   |
|     | •   | 8.2.12   | Change (12) of BV-1 and 2 ODCM (Issue 3, Rev 5), Effective November 199 | 9834 |
|     |     | 8.2.13   | Change (13) of BV-1 and 2 ODCM (Issue 3, Rev 6), Effective May 1999     | 36   |
|     |     | 8.2.14   | Change (14) of BV-1 and 2 ODCM (Rev 14), Effective March 2000           | 37   |
|     |     | 8.2.15   | Change (15) of BV-1 and 2 ODCM (Rev 15), Effective August 2000          | 38   |
|     |     | 8.2.16   | Change (16) of BV-1 and 2 ODCM (Effective April 2002)                   | 39   |
|     |     | 8.2.17   | Change (17) of BV-1 and 2 OCDM (Effective August 2002)                  |      |
| •   |     |          |                                                                         |      |

| Beaver Valley Power Station                     | Procedure Number:<br>1/2-ODC-1.01 |                                                            |  |
|-------------------------------------------------|-----------------------------------|------------------------------------------------------------|--|
| ODCM: Index, Matrix and History of ODCM Changes | Unit: 1/2 Revision: 6             | Level Of Use: General Skill Reference Page Number: 3 of 82 |  |
| TABLE OF CONTENTS                               | ٠,                                |                                                            |  |

| 8.2.18       | Change (18) of the BV-1 and 2 ODCM (Effective October 2002) | 43 |
|--------------|-------------------------------------------------------------|----|
| 8.2.19       | Change (19) of BV-1 and 2 ODCM (Effective November 2002)    | 44 |
| 8.2.20       | Change (20) of BV-1 and 2 ODCM (Effective October 2003)     | 44 |
| 8.2.21       | Change (21) of BV-1 and 2 ODCM (Effective November 2004)    |    |
| 8.2.22       | Change (22) of BV-1 and 2 ODCM (Effective August 2006)      | 50 |
| 8.2.23       | Change (23) of BV-1 and 2 ODCM (Effective December 2006)    | 51 |
| 8.2.24       | Change (24) of BV-1 and 2 ODCM (Effective May 2007)         | 53 |
| ATTACHMENT A | LIST OF ODCM TABLES                                         | 57 |
| ATTACHMENT B | LIST OF ODCM FIGURES                                        | 63 |
| ATTACHMENT C | ODCM CONTROLS PROCEDURE MATRIX                              | 64 |

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number: 4 of 82                     |

# 1.0 PURPOSE

- 1.1 This procedure provides an index for the entire Offsite Dose Calculation Manual (ODCM).
- 1.2 This procedure also provides an historical description of all changes to the ODCM.
- This procedure also contains a matrix of plant procedure references for Radiological Effluent Technical Specifications (RETS), Radiological Environmental Monitoring Program (REMP) surveillances that were transferred from the Technical Specification Procedure Matrix to the ODCM via Change (8) and Change (16).
  - 1.3.1 Prior to issuance of this procedure, these items were located in the Index and Appendix F of the old ODCM.
  - 1.3.2 The numbering of each specific ODCM Controls, ODCM Surveillance Requirements and ODCM Controls Tables contained in this procedure does not appear to be sequential. This is intentional, as all ODCM Controls, ODCM Surveillance Requirements and ODCM Controls Tables numbers remained the same when they were transferred from the Technical Specifications Procedure Matrix. This was done in an effort to minimize the amount of plant procedure changes and to eliminate any confusion associated with numbering changes.

#### 2.0 SCOPE

2.1 This procedure is applicable to all station personnel that are qualified to perform activities as described and referenced in this procedure.

#### 3.0 REFERENCES AND COMMITMENTS

- 3.1 References Used in This Procedure
  - 3.1.1 NUREG-0472, Draft 7 for Rev. 3, Standard Radiological Effluent Technical Specifications For PWRs September, 1982.
  - 3.1.2 NUREG-0133, Preparation Of Radiological Effluent Technical Specifications For Nuclear Power Plants, October, 1978.
  - 3.1.3 Generic Letter 89-01, Implementation Of Programmatic Controls For Radiological Effluent Technical Specifications In The Administrative Controls Section Of The Technical Specifications And The Relocation Of Procedural Details Of RETS To The ODCM Or To The PCP, January 31, 1989.
  - 3.1.4 NUREG-1301, Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls For Pressurized Water Reactors, Generic Letter 89-01, Supplement No. 1, April, 1991.
  - 3.1.5 1/2-ODC-3.03, ODCM: Controls for RETS and REMP Programs

| Beaver Valley Power Station  Procedure Number: 1/2-OD0 |           | mber:<br>1/2-ODC-1.01                    |
|--------------------------------------------------------|-----------|------------------------------------------|
| Title:                                                 | Unit: 1/2 | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes        | Revision: | Page Number: 5 of 82                     |

- 3.1.6 1/2-ADM-1640, Control of the Offsite Dose Calculation Manual
- 3.1.7 1/2-ADM-0100, Procedure Writer's Guide
- 3.1.8 NOP-SS-3001, Procedure Review and Approval
- 3.1.9 CR04-09895, Missed ODCM Channel Functional Test (Gas Effluent Sampler Flowrate). CA-04, Revise ODCM procedure 1/2-ODC-1.01, Attachment C, Table F:3a to show that the Channel Functional Test requirements for the Unit 1 Sampler Flowrate Measuring Devices delineated in ODCM procedure 1/2-ODC-3.03, Attachment F, Table 4.3-13 are being met by Form 1/2-ENV-01.04.F01 instead of 1MSP-43.71-I
- 3.1.10 CR05-01169 Chemistry Action Plan For Transition of RETS, REMP and ODCM, CA-14 thru CA-21, Revise ODCM procedures to change document owner from "Manager, Radiation Protection" to Manager Nuclear Environmental & Chemistry".
- 3.1.11 CR06-04908, Radiation Monitor Alarm Setpoint Discrepancies. CA-03; revise ODCM procedure 1/2-ODC-2.01 to update the alarm setpoints of [RM-1RM-100] and [RM-1DA-100] for incorporation of the Extended Power Uprate per Unit 1 TS Amendment No. 275. Also, CA-04; revised ODCM procedure 1/2-ODC-2.02 to add a"\leq" designation to all alarm setpoints for Unit 1 and Unit 2 low range noble gas effluent monitors.
- 3.1.12 CR06-6476, Procedure 1/2-ODC-2.01 Needs Revised for Plant Uprate. CA-01; revise ODCM procedure 1/2-ODC-2.01 to update the alarm setpoints of [2SWS-RQ101] for incorporation of the Extended Power Uprate per Unit 2 TS Amendment No. 156.
- 3.2 Summary of References Used Throughout Other Procedures of the ODCM
  - 3.2.1 BVPS-1 and 2 UFSAR:
    - 3.2.1.1 BVPS-1 UFSAR Section 11.2.3; Gaseous Waste Disposal System
    - 3.2.1.2 BVPS-1 UFSAR Section 11.2.4; Liquid Waste Disposal System
    - 3.2.1.3 BVPS-2 UFSAR Section 11.2; Liquid Waste Management Systems
    - 3.2.1.4 BVPS-2 UFSAR Section 11.3; Gaseous Waste Management Systems
  - 3.2.2 <u>Condition Reports and SAP Orders</u>:
    - 3.2.2.1 CR 971578, MEMBERS OF THE PUBLIC Discrepancies. CA-01, Revise Section 4 of the ODCM to clarify how doses due to effluents for members of the public (conducting activities inside the site boundary) are derived and reported.
    - 3.2.2.2 CR 980129, ODCM Procedure Matrix Discrepancies. CA-01, Revise Appendix F of the ODCM to correct discrepancies with 1/2-OM L5 Surveillance Logs.

| $\overline{\mathbf{B}}$ | eaver Valley Power Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Procedure N      | umber:<br>1/2-ODC-1.01  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|
| Title:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit:            | Level Of Use:           |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2              | General Skill Reference |
| ODCM: Index,            | Matrix and History of ODCM Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Revision:        | Page Number:<br>6 of 82 |
| 3.2.2.3                 | CR 980353, EPMP 2.01 Discrepancies for Envir CA-01, Revise Section 3 of the ODCM to correct sectors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
| 3.2.2.4                 | CR 981488, Chemistry Related ODCM Procedu<br>References. CA-01, Revise ODCM Appendix F<br>references.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                         |
| 3.2.2.5                 | CR 981489, ODCM Table 4.11-2 Row A (Waste Tritium). CA-01, Revise Appendix C of the OD clarification as to where and when tritium sample discharges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CM (Table 4.1    | 1-2) to add             |
| 3.2.2.6                 | CR 981490, ODCM Table 4.11-2 Note e, and Re Procedures. CA-01, Revise Appendix C of the C specify the proper tritium sample point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | <i>y</i> 1              |
| 3.2.2.7                 | CR 982097, Liquid Discharge Post Release Revi<br>Section 1 of the ODCM to add clarification for concentration when the Post Dose Correction Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alculation of ra |                         |
| 3.2.2.8                 | CR 990025, Unnecessary Radiation Monitor Set Discharges. No ODCM changes are required for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | After Waste             |
| 3.2.2.9                 | CR 992652, Discrepancies Concerning ODCM S<br>Effluent Instrumentation. CA-02, Revise Appen<br>proper reference to the HP Shift logs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                         |
| 3.2.2.10                | CR 993021, Apparent Failure to Test RM-DA-10 ODCM. No ODCM changes are required for this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | on as Required by       |
| 3.2.2.11                | CR 001682, ODCM Action 28 Guidance. CA-0. ODCM (Table 3.3-13, Action 28) to differentiate Inoperable Process Flow Rate Monitors vs. Sample Process | e actions assoc  | iated with              |
| 3.2.2.12                | CR02-05533, Procedure 1/2-ODC-3.03, ATTAC CA-01, Revise ODCM procedure 1/2-ODC-3.03 minimum channels operable and associated action Device [FR-1LW-103] is inoperable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Table 3.3-12    | ) to include            |
| 3.2.2.13                | CR02-05711, TS and ODCM changes not reflect Log. CA-01, Revise 1/2-ODC-3.03 to add a required groups notification of pending ODCM changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                         |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                         |

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>7 of 82                  |

- 3.2.2.14 CR02-06174, Tracking of Activities for Unit 1 RCS Zinc Addition Implementation. CA-13, Revise ODCM procedure 1/2-ODC-1.01 to include a discussion as to why Zn-65 is being added to the ODCM. CA-14, Revise ODCM procedure 1/2-ODC-2.01 (Tables 1.1-1a and 1b) to include the addition of Zn-65 to ODCM liquid source term.
- 3.2.2.15 CR 03-02466, RFA-Radiation Protection Effluent Control Provide
  Recommendation on Processing when Performing Weekly Sample of [1LW-TK-7A/7B]. CA-02, Revise ODCM Procedure 1/2-ODC-2.01, (Attachment D) to show the liquid waste flow path cross-connect between Unit 1 and Unit 2.
- 3.2.2.16 CR03-04830, Containment Vacuum Pump Replacement Increases ODCM Source Term. CA-03, Revise Unit 1 Containment Vacuum Pump Source-Term in ODCM procedure 1/2-ODC-2.02, Attachment A, Table 2.1-1a.
- 3.2.2.17 CR03-06123, Enhance Table 3.3-6 of 1/2-ODC-3.03 to Add More Preplanned Method of Monitoring. CA-01, Revise Table 3.3-6 and Table 4.3-3 to allow use of Eberline SPING Channel 5 as an additional 2<sup>nd</sup> PMM when the Unit 1 Mid or High Range Noble Gas Effluent Monitors are Inoperable.
- 3.2.2.18 CR03-06281, Gaseous Tritium Sampling Required by ODCM (1/2-ODC-3.03)
  Unclear for Chemistry. CA-01, Revise procedure Attachment K Table 4.11-2 for RP & Chemistry sampling of Gaseous Effluent Pathways to show which effluent pathways need sampled for compliance to ODCM Control 3.11.2.1 requirements.
- 3.2.2.19 CR03-07487, Results of NQA Assessment of the Radiological Effluents Program. CA-01, Revise Calculation Package No. ERS-ATL-95-007 to clarify the term "Surface Water Supply" per guidance presented in NUREG-0800 SRP 15.7.3. CA-05, Revise 1/2-ODC3.03 Control 3.11.1.4 to update the activity limits for the outside storage tanks.
- 3.2.2.20 CR03-07668, Benchmark Effluent & Environmental Programs VS Papers
  Presented at 13<sup>th</sup> REMP/RETS Workshop. CA-01, Evaluate procedure
  Attachment K Table 4.11-2 to reduce the amount of Effluent Samples obtained during a power transient.
- 3.2.2.21 CR03-09288, LAR 1A-321 & 2A-193, Increased Flexibility in Mode Restraints. CA-19, Review LAR 1A-321/2A-193 to identify the affected Rad Effluent procedures, programs, manuals, and applicable plant modification documents that will need to be revised to support implementing the LAR.
- 3.2.2.22 CR03-09959, RFA-Rad Protection Provide Clarification to ODCM 1/Day Air Tritium Sample. CA-01, Revise ODCM procedure 1/2-ODC-3.03 Attachment K (Table 4.11-2 note c & note e) to allow sampling of the appropriate building atmosphere.

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |  |
|-------------------------------------------------|--------------------------------|------------------------------------------|--|
| Title:                                          | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>8 of 82                  |  |

- 3.2.2.23 CR03-11726, Typographical Error Found in ODCM 3.11.2.5. CA-01, Revise ODCM procedure 1/2-ODC-3.03, Attachment O, Control 3.11.2.5 to correct a typographical error. Specifically, the final word in Action (a) needs changed from "nad" to "and".
- 3.2.2.24 CR04-00149, Radiation Protection Performance Review Committee Action Items. CA-12. Incorporate the Global Positioning System [GPS] in the Radiological Environmental Monitoring Program.
- 3.2.2.25 CR04-01643, Procedure Correction Typographical Error in the ODCM. CA-01, Revise ODCM procedure 1/2-ODC-3.03, Attachment F, (Table 3.3-13 and 4.3-13) to correct a typographical error. Specifically, the Asset Number for the Vacuum Gauge used for measurement of sample flow (from the Alternate Sampling Device) needs changed from [PI-1GW-13] to [PI-1GW-135].
- 3.2.2.26 CR04-02275, Discrepancies in Table 3.3-13 of the ODCM. CA-01, Revise ODCM procedure 1/2-ODC-3.03, Attachment F, (Table 3.3-13 and 4.3-13) to add clarification that the "Sampler Flow Rate Monitors are the devices used for "Particulate and Iodine Sampling".
- 3.2.2.27 CR05-01169, Chemistry Action Plan For Transition of RETS, REMP and ODCM, CA-14 thru CA-21, Revise ODCM procedures to change document owner from "Manager, Radiation Protection" to Manager Nuclear Environmental & Chemistry".
- 3.2.2.28 CR05-01390, Include GPS data in 2004 REMP Report and related 1/2-ODC and 1/2-ENV procedures. CA-02, revise ODCM procedure 1/2-ODC-2.03 to include an update of REMP sample locations (using the GPS Satellite data).
- 3.2.2.29 CR05-03306, Incorporated Improved Technical Specifications (ITS). This includes transfer of programmatic controls for BV-2 Noble Gas Effluent Steam Monitors [2MSS-RQ101A], [2MSS-RQ101B] and [2MSS-RQ101C] from the Technical Specifications to ODCM procedure 1/2-ODC-3.03 (Attachment D Tables 3.3-6 and 4.3-3). This was permitted via Unit 1/2 Technical Specification Amendments No. 278/161.
- 3.2.2.30 CR05-03854, ODCM Figure for Liquid Effluent Release Points Needs Updated. CA-01, revise ODCM procedure 1/2-ODC-2.01 (ODCM: Liquid Effluents) Attachment D, Figure 1.4-3 to incorporate a modified version of Plant Drawing No. 8700-RM-27F.
- 3.2.2.31 CR06-04908, Radiation Monitor Alarm Setpoint Discrepancies. CA-03; revise ODCM procedure 1/2-ODC-2.01 to update the alarm setpoints of [RM-1RM-100] and [RM-1DA-100] for incorporation of the Extended Power Uprate per Unit 1 TS Amendment No. 275. Also, CA-04; revised ODCM procedure 1/2-ODC-2.02 to add a"≤" designation to all alarm setpoints for Unit 1 and Unit 2 low range noble gas effluent monitors.

| Be                | aver Valley Power Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Procedure N                                        | umber:<br>1/2-ODC-1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit:                                              | Level Of Use: General Skill Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ODCM: Index. N    | Matrix and History of ODCM Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2<br>Revision:                                   | Page Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                  | 9 of 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.2.2.32          | CR06-6476, Procedure 1/2-ODC-2.01 Needs Revised revise ODCM procedure 1/2-ODC-2.01 to update the RQ101] for incorporation of the Extended Power Up Amendment No. 156.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alarm set                                          | points of [2SWS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.2.2.33          | SAP Order 200197646-0110: Revise ODCM procedu 1/2-HPP-3.06.001, 1/2-ENV-05-01, Form 1/2-HPP-3 Form 1/2-ENV-05.1.F05 to incorporate revised outsid limits via Calculation Package No. ERS-ATL-95-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .06.001.F<br>de liquid s                           | 05 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.2.2.34          | SAP Order 200240681: Revise ODCM procedure 1/2 Table 3.3-12) to add an alternate Action when the pri Measurement Device [FT-1CW-101-1] is not OPER Action (25A) uses local measurements (as described determine a total dilution flow rate during liquid effluence of the control of | mary Flov<br>ABLE. TI<br>in 1MSP-                  | w Rate<br>he alternate<br>31.06-I) to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.2.2.35          | CR06-04944: ODCM 3.03 Attachment E conflict bet Action Statement. CA-01; revise ODCM procedure to clarify Applicability for tank level indicating devictank.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2-ODC-                                           | 3.03, Attachment E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.2.2.36          | CR07-12924 and SAP Order 200247228-0410: Revis 1/2-ODC-3.03 (Attachment F Tables 3.3-13 and 4.3-Location of the Sampler Flow Rate Monitors for the pathways. Specifically, the procedure was changed t [2HVS-FIT101-1] instead of [2HVS-FIT101], [2RMQ-FIT301], [2HVL-FIT112-1] instead of [2HV [2RMQ-FIT303-1] instead of [2RMQ-FIT303].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13) to clar<br>BV-2 gase<br>o refer to<br>Q-FIT301 | ify the Functional<br>cous effluent release<br>Functional Location<br>-1] instead of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.2.3 <u>Calc</u> | ulation Packages:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.2.3.1           | ERS-ATL-83-027, Liquid Waste Dose Factor Calcul Issue 3 and Later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation for I                                        | HPM-RP 6.5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3.2.3.2           | ERS-SFL-85-031; Gaseous Effluent Monitor Efficier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ncy Data                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.2.3.3           | ERS-ATL-86-008; ODCM Alarm Setpoint Revisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | for Gase                                           | ous Monitors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.2.3.4           | ERS-HHM-87-014, Unit 1/2 ODCM Gaseous Effluence Determinations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt Monito                                          | r Alarm Setpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.2.3.5           | ERS-ATL-87-026; BVPS-1 and BVPS-2 ODCM T F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | actor Just                                         | ification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.2.3.6           | ERS-ATL-89-014; Verification/Validation of ODCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R Value                                            | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.2.3.7           | ERS-ATL-90-021; Justification for Removal of Tech<br>Flowrate Measurement Requirements for 2RMQ-RQ<br>2HVL-RQ112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                  | and the second s |

| $\mathbf{B}_{0}$  | eaver Valley Power Station                                                                                                                          | Procedure Ni     | umber:<br>1/2-ODC-1.01               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|
| Γitle:            |                                                                                                                                                     | Unit:            | Level Of Use:                        |
| ODCM: Indox       | Matrix and History of ODCM Changes                                                                                                                  | 1/2<br>Revision: | General Skill Reference Page Number: |
| ODCM: Index,      | Matrix and History of ODCM Changes                                                                                                                  | 6                | 10 of 82                             |
| 3.2.3.8           | ERS-ATL-95-006; Re-evaluation of TS/ODCM S<br>Notes e and g of TS/ODCM Table 4.11-1                                                                 | R's 4.11.1.1.    | 3, 4.11.1.1.4 and                    |
| 3.2.3.9           | ERS-ATL-95-007; Verification of Outside Storag TS 3.11.1.4                                                                                          | e Tank Activ     | ity Limit of                         |
| 3.2.3.10          | Stone and Webster UR(B)-160, BVPS Liquid Rac<br>Concentrations - Expected and Design Cases (Per                                                     |                  |                                      |
| 3.2.3.11          | Vendor Calculation Package No. 8700-UR(B)-22. Containment Conversion, Power Uprate, and Alte Alarm Setpoints for the Radiation Monitors at Un       | rnate Source     |                                      |
| 3.2.3.12          | Engineering Change Package No. ECP-04-0440, l                                                                                                       | Extended Pov     | wer Uprate (Unit 1)                  |
| 3.2.3.13          | Vendor Calculation Package No. 8700-UR(B)-500<br>Containment Conversion, Power Uprate, and Alte<br>Alarm Setpoints for the Radiation Monitors at Un | rnate Source     |                                      |
| 3.2.3.14          | Engineering Change Package No. ECP-04-0440, I                                                                                                       | Extended Pov     | wer Uprate (Unit 2)                  |
| 3.2.3.15          | ERS-MPD-93-007, BVPS-1 Gaseous Radioactivit<br>Levels                                                                                               | y Monitor E      | mergency Action                      |
| 3.2.4 <u>Inte</u> | ernal Letters:                                                                                                                                      |                  |                                      |
| 3.2.4.1           | DLC Response to NRC Unresolved Item 50-334/8 Study- Particle Distribution Evaluation, November                                                      |                  | diation Monitor                      |
| 3.2.4.2           | ND1SHP:776, BVPS-1 ODCM Table 2.2-2, Appe                                                                                                           | endix B, Febr    | uary 12, 1988                        |
| 3.2.4.3           | ND3NSM:3431; Technical Specification Verifica                                                                                                       | tion Effort, A   | august 11, 1988                      |
| 3.2.4.4           | NDLNSM:3522, Technical Specification Verifica<br>September 14, 1988                                                                                 | tion Effort C    | hecklist,                            |
| 3.2.4.5           | ND1NSM:3652; Technical Specification Verifica                                                                                                       | tion Effort, N   | lovember 21, 1988                    |
| 3.2.4.6           | NPD3SHP:2466; Self Assessment of the Liquid a<br>BVPS - Final Report, July 16, 1997                                                                 | nd Gaseous E     | Effluent Processes at                |
| 3.2.4.7           | NPD3SHP:2257, ODCM Liquid Waste Recircula                                                                                                           | tion Rates, Fe   | ebruary 11, 1998                     |
| 3.2.4.8           | NPD3SHP:2643; Action 28 of ODCM Appendix                                                                                                            | C Table 3.3-1    | 13, January 14, 1999                 |
| 3.2.4.9           | ND3MNO:4309; Response to Request for Technic April 20, 1999.                                                                                        | cal Specificat   | tion Interpretation,                 |
| 3.2.5 <u>Cor</u>  | ntractor Technical Evaluation Reports:                                                                                                              |                  |                                      |

| d History of ODCM C HY-8194; Technical Ed through Issue 2, Revelber 1988 HY-8217; Technical Ed through Issue 1, Revisiber 1988 173; Development of Technical Ed through Issue 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evaluation Reportision 1, Beaver V Evaluation Reportision 2, Beaver V Ferrain Adjustme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | for the Evaluation of the Valuation of the Evaluation of the Evaluation of the Valuation of | uation<br>Stati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on, Unit 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HY-8194; Technical Ed through Issue 2, Reviber 1988 HY-8217; Technical Ed through Issue 1, Reviber 1988 173; Development of Power Station for the Station for  | Evaluation Reportision 1, Beaver V Evaluation Reportision 2, Beaver V Ferrain Adjustme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Revision 6 t for the Evaluation of the Evaluatio | uation<br>Stati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Page Number: 11 of 82  n of ODCM on, Unit 1, n of ODCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HY-8194; Technical Ed through Issue 2, Reviber 1988 HY-8217; Technical Ed through Issue 1, Reviber 1988 173; Development of Power Station for the Station for  | Evaluation Reportision 1, Beaver V Evaluation Reportision 2, Beaver V Ferrain Adjustme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | for the Evaluate Power for the Evaluation of the | Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n of ODCM<br>on, Unit 1,<br>n of ODCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| d through Issue 2, Revoluter 1988 HY-8217; Technical Ed through Issue 1, Revoluter 1988 173; Development of The Sewer Station for the Sewer Sewer Station for the Sewer Station for the Sewer Station for the Sewer Station for the Sewer Sewe | ision 1, Beaver V<br>Evaluation Report<br>sion 2, Beaver V<br>Ferrain Adjustme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | for the Evaluation of the Valuation of the Evaluation of the Evaluation of the Valuation of | Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on, Unit 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| through Issue 1, Revi<br>ber 1988<br>173, Development of T<br>Power Station for the S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sion 2, Beaver V<br>Cerrain Adjustme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | alley Power S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Power Station for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Straight-Line Atr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factors of Chem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ical Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dible Aquatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Technical Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Amendment 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , March 28, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dose Calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on Manual, O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M (TAC 63996),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he Offsite Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alculation Manuals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ents 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A-188/2A-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ents 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A-194/2A-77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed June 9, 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ted May 20, 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s 1A-246/2A-124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Technical Specification Valley Unit 2 - Offsite 1, 1987  Valley Units 1 and 2 - 93996 and 67421), Mar 2 Technical Specification 1A-175/2A-37), Implem 2 Technical Specification 1A-231/2A-101), Implem 2 Technical Specification 1A-202/2A-83 (2 Technical Specification 1A-220/2A-97 (2 Technical Specification 1A-287/2A-159), Implem 2 Technical Specification 1 Spec | Technical Specification Amendment 66 Yalley Unit 2 - Offsite Dose Calculation 4, 1987  Yalley Units 1 and 2 - Acceptance of the 193996 and 67421), March 2, 1989  Yalley Units 1 Specification 6.8.6, including 1A-175/2A-37), Implemented August 7, 1989  Yalley Units 1 pecification 6.8.6, including 1A-175/2A-37), Implemented August 7, 1989  Yalley Units 1 and 2 - Acceptance of the 193996 and 67421), March 2, 1989  Yalley Units 1 and 2 - Acceptance of the 193996 and 67421), Implemented August 7, 1989  Yalley Units 1 and 2 - Acceptance of the 193996 and 67421), Implemented August 7, 1989  Yalley Units 2 - Offsite Dose Calculation 6.8.6, including 1A-175/2A-37), Implemented August 7, 1989  Yalley Units 2 - Offsite Dose Calculation 6.8.6, including 1A-231/2A-37), Implemented Decemnos 1A-231/2A-101), Implemented April 11 (2 Technical Specification 3.3.3.1, including 1A-287/2A-159), Implemented April 11 (2 Technical Specifications 3.11.1.4, 3.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Technical Specification Amendment 66, March 28, 17 Valley Unit 2 - Offsite Dose Calculation Manual, Or 1, 1987  Valley Units 1 and 2 - Acceptance of the Offsite Dose Offsite | Technical Specification Amendment 66, March 28, 1983  Valley Unit 2 - Offsite Dose Calculation Manual, ODCN 1, 1987  Valley Units 1 and 2 - Acceptance of the Offsite Dose C 93996 and 67421), March 2, 1989  Z Technical Specification 6.8.6, including Amendments 1 1A-175/2A-37), Implemented August 7, 1995  Z Technical Specification 6.8.6, including Amendments 1 3 1A-231/2A-101), Implemented December 1, 1995  Z Technical Specification Figure 5.1-2, including Iments 1A-202/2A-83 (LAR 1A-234/2A-107, Implemented Iments 1A-202/2A-97 (LAR 1A-246/2A-116), Implemented Iments 1A-220/2A-97 (LAR 1A-246/2A-116), Implemented Impl |

3.3

3.3.1

Commitments

| Be               | aver Valley Power Station                                                                                                          | Procedure Nu | umber:<br>1/2-ODC-1.01  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|
| Title:           | <u> </u>                                                                                                                           | Unit:        | Level Of Use:           |
|                  |                                                                                                                                    | 1/2          | General Skill Reference |
| ODCM: Index, N   | Matrix and History of ODCM Changes                                                                                                 | Revision:    | Page Number:            |
| -                |                                                                                                                                    | 6            | 12 of 82                |
| 3.2.7 <u>NUI</u> | REG's:                                                                                                                             | . ,          |                         |
| 3.2.7.1          | NUREG-0017, Calculation of Releases of Radioact<br>Liquid Effluents from Pressurized Water Reactors,<br>April 1985                 |              |                         |
| 3.2.7.2          | NUREG 0133; Preparation of Radiological Effluent<br>Nuclear Power Plants, October 1978                                             | Technical    | Specification for       |
| 3.2.7.3          | NUREG-0172; Age-Specific Radiation Dose Comm<br>Chronic Intake, November 1977                                                      | nitment Fac  | tors for a One-Year     |
| 3.2.7.4          | NUREG-0324, XOQDOQ, Program for the Meteor<br>Releases at Nuclear Power Stations, September 197                                    | •            | aluation of Routine     |
| 3.2.7.5          | NUREG-0472, Radiological Effluent Technical Spe                                                                                    | ecifications | for PWR's.              |
| 3.2.7.6          | NUREG-0800, Standard Review Plan, Postulated R<br>Liquid-Containing Tank Failures, July 1981                                       | adioactive   | Releases Due to         |
| 3.2.7.7          | NUREG-1301; Offsite Dose Calculation Manual Gradiological Effluent Controls for Pressurized Wate 01, Supplement No. 1), April 1991 |              |                         |
| 3.2.7.8          | NUREG-1431; Standard Technical Specification - V<br>Specifications                                                                 | Westinghou   | se Plants               |
| 3.2.7.9          | NUREG/CR-2919, Meteorological Evaluation of Ro<br>Nuclear Power Stations, September 1982                                           | outine Efflu | ent Releases At         |
| 3.2.8 <u>Reg</u> | ulatory Guides:                                                                                                                    |              | •                       |
| 3.2.8.1          | RG-1.23; Meteorological Measurement Program Fo                                                                                     | or Nuclear I | Power Plants            |
| 3.2.8.2          | RG-1.109; Calculation of Annual Doses to Man Fro<br>Effluents for the Purpose of Evaluating Compliance<br>Appendix I, April 1977   |              |                         |
| 3.2.8.3          | RG-1.111; Methods For Estimating Atmospheric To<br>Gaseous Effluents In Routine Releases From Light-<br>Revision 1, July 1977      | -            | _                       |
| 3.2.8.4          | RG-1.113; Estimating Aquatic Dispersion of Efflue<br>Routine Reactor Releases For The Purpose of Imple<br>April 1977               |              |                         |
| 1.00             |                                                                                                                                    |              | -                       |

10 CFR Part 20, Standards for Protection Against Radiation

| Beaver Valley Power Station                     |              | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>13 of 82                 |  |

- 3.3.2 10CFR20.1302, Compliance with Dose Limits for Individual Members of the Public.
- 3.3.3 10 CFR Part 50. Domestic Licensing of Production and Utilization Facilities
- 3.3.4 10CFR50.36a, Technical Specifications on Effluents from Nuclear Power Reactors
- 3.3.5 Appendix I to 10 CFR Part 50, Numerical Guides For Design Objectives and Limiting Conditions For Operation to Meet The Criterion "As Low As Reasonably Achievable" For Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents
- 3.3.6 40 CFR Part 141
- 3.3.7 40 CFR Part 190, Environmental Radiation Protection Standards For Nuclear Power Operations
- 3.3.8 Licensee Response to NRC Unresolved Item 50-334/83-30-05. The Radiation Monitor Particle Distribution Evaluation showed that the Licensee must continue to use correction factors to determine particulate activity in samples obtained from the effluent release pathways.
- 3.3.9 CR 05-03854, ODCM Figure for Liquid Effluent Release Points Need Updated. CA-01, revise ODCM procedure 1/2-ODC-2.01 (ODCM: Liquid Effluents) Attachment D, Figure 1.4-3 to incorporate a modified version of Plant Drawing No. 8700-RM-27F.

#### 4.0 RECORDS AND FORMS

#### 4.1 Records

- 4.1.1 Any calculation supporting ODCM changes shall be documented, as appropriate, by a retrievable document (e.g.; letter or calculation package) with an appropriate RTL number.
- 4.1.2 Changes to the ODCM shall be documented and records of reviews shall be retained in accordance with the applicable record retention provisions of the quality assurance program description included in the Updated Final Safety Analysis Report.

#### 4.2 Forms

4.2.1 None

#### 5.0 PRECAUTIONS AND LIMITATIONS

This OFFSITE DOSE CALCULATION MANUAL (ODCM) provides the information and methodologies to be used by Beaver Valley Power Station Unit 1 and Unit 2 (BV-1) and (BV-2) to assure compliance with the Administrative Controls Section of the operating Technical Specifications. They are intended to show compliance with 10 CFR 20.1302, (3.2.1) 10 CFR 50.36a, (3.2.2) Appendix I of 10 CFR Part 50, (3.2.3) and 40 CFR Part 190. (3.2.4)

| Beaver Valley Power Station                     | Procedure Number:<br>1/2-ODC-1.01 |                                          |
|-------------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                         | Page Number:<br>14 of 82                 |

- 5.2 This ODCM is based on the NUREG's and Generic Letter documents from the United States Nuclear Regulatory Commission. (3.1.1, 3.1.2, 3.1.3, 3.1.4) Specific plant procedures for implementation of the ODCM are included in various site procedures and documents, and are utilized by the operating staff to assure compliance with Technical Specifications and the CONTROLS Procedure of the ODCM. (3.1.5)
- 5.3 The ODCM has been prepared as generically as possible in order to minimize the need for future versions. However, some changes to the ODCM may be necessary in the future. Any such changes will be properly prepared, reviewed, and approved as indicated in the Administrative Control Section of the Technical Specifications. Additionally, changes to the ODCM require review and acceptance by the PORC.
  - 5.3.1 An implementation procedure for control of the ODCM is included in 1/2-ADM-1640. (3.1.6)
- This procedure also contains information that was previously contained in Appendix F of the previous BV-1 and 2 Offsite Dose Calculation Manual.
  - 5.4.1 In regards to this, the Tables that were transferred from Appendix F to the appropriate ATTACHMENTS of this procedure will still contain a prefix denoting an "F".
- This procedure includes Improved Technical Specifications ([ITS]) information that is NOT applicable to current Technical Specifications ([CTS]) information that is NOT applicable in [ITS]. The [CTS] information shall be used prior to the [ITS] effective date. The [ITS] information shall be used on or after the [ITS] effective date.

## 6.0 ACCEPTANCE CRITERIA

- All changes to this procedure shall contain sufficient justification that the change will maintain the level of radioactive Effluent Control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50, and not adversely impact the accuracy or reliability of effluent dose or alarm setpoint calculation. (3.1.7)
  - 6.1.1 All changes to this procedure shall be prepared in accordance with 1/2-ADM-0100<sup>(3.1.7)</sup> and 1/2-ADM-1640. (3.1.6)
  - 6.1.2 All changes to this procedure shall be reviewed and approved in accordance with NOP-SS-3001 (3.1.8) and 1/2-ADM-1640. (3.1.6)

# 7.0 PREREQUISITES

7.1 The user of this procedure shall be familiar with ODCM structure and content.

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:<br>6                 | Page Number:<br>15 of 82                 |

# 8.0 PROCEDURE

# 8.1 <u>Description of ODCM Structure</u>

- 8.1.1 <u>1/2-ODC-1.01, ODCM: Index, Matrix and History of ODCM changes</u> (formerly: ODCM Index and Appendix F)
  - 8.1.1.1 History of ODCM Changes
  - 8.1.1.2 Summary of ODCM References
  - 8.1.1.3 List of Tables (ATTACHMENT A)
  - 8.1.1.4 List of Figures (ATTACHMENT B)
  - 8.1.1.5 Matrix of Procedures Used to Meet ODCM Controls (ATTACHMENT C)
    - 8.1.1.5.1 BV-1 Radiation Monitor Surveillances
    - 8.1.1.5.2 BV-1 Liquid Effluent Monitor Surveillances
    - 8.1.1.5.3 BV-2 Liquid Effluent Monitor Surveillances
    - 8.1.1.5.4 BV-1 Gaseous Effluent Monitor Surveillances
    - 8.1.1.5.5 BV-2 Gaseous Effluent Monitor Surveillances
    - 8.1.1.5.6 BV-1 and 2 Liquid Effluent Concentration Surveillances
    - 8.1.1.5.7 BV-1 and 2 Liquid Effluent Dose Surveillances
    - 8.1.1.5.8 BV-1 and 2 Liquid Effluent Treatment Surveillances
    - 8.1.1.5.9 BV-1 and 2 Gaseous Effluent Air Dose Surveillances
    - 8.1.1.5.10 BV-1 and 2 Gaseous Effluent Particulate and Iodine Surveillances
    - 8.1.1.5.11 BV-1 and 2 Gaseous Effluent Treatment Surveillances
    - 8.1.1.5.12 BV-1 and 2 Gaseous Effluent Total Dose Surveillances
    - 8.1.1.5.13 BV-1 and 2 Gaseous Effluent REMP Surveillances
    - 8.1.1.5.14 BV-1 and 2 Gaseous Effluent Land Use Census Surveillances
    - 8.1.1.5.15 BV-1 and 2 Gaseous Effluent Interlaboratory Comparison Program Surveillances

| Beav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ver Valley Power Station                                       | Procedure Nu     | umber:<br>1/2-ODC-1.01   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------|--------------------------|
| Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                          | Unit:            | Level Of Use:            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | 1/2              | General Skill Reference  |
| ODCM: Index, Mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | trix and History of ODCM Changes                               | Revision:        | Page Number:<br>16 of 82 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OC-2.01, ODCM: Liquid Effluents<br>rly; ODCM Sections 1 and 5) |                  |                          |
| 8.1.2.1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alarm Setpoints                                                |                  |                          |
| 8.1.2.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-1 Setpoint Determination Based On A                         | A Conservative   | Mix                      |
| 8.1.2.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-1 Setpoint Determination Based On A                         | Analysis Prior T | o Release                |
| 8.1.2.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-2 Setpoint Determination Based On A                         | A Conservative   | Mix                      |
| 8.1.2.1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-2 Setpoint Determination Based On A                         | Analysis Prior T | o Release                |
| 8.1.2.2 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Compliance With 10 CFR 20 EC Limits                            |                  |                          |
| 8.1.2.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Batch Releases                                                 |                  |                          |
| 8.1.2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Continuous Releases                                            |                  |                          |
| 8.1.2.3 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Compliance With 10 CFR 50 Dose Limits                          |                  |                          |
| 8.1.2.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cumulation Of Doses                                            |                  |                          |
| 8.1.2.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Projection Of Doses                                            |                  |                          |
| 8.1.2.4 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iquid Radwaste Treatment System                                |                  |                          |
| 8.1.2.4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-1 Liquid Radwaste Treatment System                          | Components       |                          |
| 8.1.2.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-1 Laundry and Contaminated Shower                           | r Drain System ( | Components               |
| 8.1.2.4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-2 Liquid Radwaste Treatment System                          | n Components     |                          |
| 8.1.2.5 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ite Boundary for Liquid Effluents                              |                  |                          |
| 8.1.2.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Liquid Effluent Site Boundary                                  |                  | ·                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C-2.02, ODCM: Gaseous Effluents<br>ly; ODCM Sections 2 and 5)  |                  |                          |
| 8.1.3.1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alarm Setpoints                                                |                  |                          |
| 8.1.3.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-1 Setpoint Determination Based On A                         | A Calculated Mi  | x                        |
| 8.1.3.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-1 Setpoint Determination Based On A                         | Analysis Prior T | o Release                |
| 8.1.3.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-2 Setpoint Determination Based On A                         | A Calculated Mi  | x                        |
| 8.1.3.1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BV-2 Setpoint Determination Based On A                         | Analysis Prior T | o Release                |
| the state of the s |                                                                |                  |                          |

| Be             | aver Valley Power Station                                                   | Procedure N      | umber:<br>1/2-ODC-1.01  |
|----------------|-----------------------------------------------------------------------------|------------------|-------------------------|
| Title:         |                                                                             | Unit:            | Level Of Use:           |
|                | ( ) AND COROLOGI                                                            | 1/2<br>Revision: | General Skill Reference |
| ODCM: Index; N | fatrix and History of ODCM Changes                                          | Revision:        | 17 of 82                |
| 8.1.3.1.       | 5 BV-1/2 Setpoint Determination Based On A C                                | Calculated 1     |                         |
| 8.1.3.1.       | BV-1/2 Setpoint Determination Based On Ana                                  | alysis Prior     | To Release              |
| 8.1.3.2        | Compliance With 10 CFR 20 Dose Rate Limits                                  |                  |                         |
| 8.1.3.2.       | Dose Rate Due To Noble Gases                                                |                  | ·                       |
| 8.1.3.2.       | Dose Rate Due To Radioiodines And Particula                                 | ates             |                         |
| 8.1.3.3        | Compliance With 10 CFR 50 Dose Limits                                       |                  |                         |
| 8.1.3.3.       | 1 Doses Due To Noble Gases                                                  |                  |                         |
| 8.1.3.3.       | Doses Due To Radioiodines And Particulates                                  |                  |                         |
| 8.1.3.4        | Gaseous Radwaste Treatment System                                           | * •              |                         |
| 8.1.3.4.       | BV-1 Gaseous Radwaste Treatment System C                                    | omponents        | 3                       |
| 8.1.3.4.       | BV-2 Gaseous Radwaste Treatment System C                                    | omponents        | 5                       |
| 8.1.3.5        | Site Boundary for Gaseous Effluents                                         | •                |                         |
|                | ODC-2.03, ODCM: Radiological Environmental Monnerly; ODCM Section 3)        | nitoring Pro     | ogram                   |
| 8.1.4.1        | Program Requirements                                                        |                  |                         |
|                | ODC-2.04, ODCM: Information Related to 40 CFR 1 nerly; ODCM Section 4)      | <u>90</u>        |                         |
| 8.1.5.1        | Compliance with 40 CFR 190 Dose Limits                                      | ,                |                         |
| 8.1.5.2        | Report Requirements                                                         |                  |                         |
| 8.1.5.3        | Inside the Site Boundary Radiation Doses                                    | •                |                         |
| 8.1.5.3.       | 1 Gaseous Effluent Site Boundary                                            |                  |                         |
|                | ODC-3.01, ODCM: Dispersion Calculational Procedurerly; ODCM Appendix A & B) | ure and So       | urce Term Inputs        |
| 8.1.6.1        | Dispersion and Deposition Parameters                                        |                  | •                       |
| 8.1:6.2        | BV-1 and 2 Release Conditions                                               |                  |                         |
| 8.1.6.3        | BV-1 Liquid Source Term Inputs                                              |                  |                         |
| •              |                                                                             |                  |                         |

| Ве           | eaver Valley Power Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Procedure Nu     | amber:<br>1/2-ODC-1.01                   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|
| Title:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit:            | Level Of Use:<br>General Skill Reference |
| ODCM: Index. | Matrix and History of ODCM Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2<br>Revision: | Page Number:                             |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                | 18 of 82                                 |
| 8.1.6.4      | BV-2 Liquid Source Term Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                          |
| 8.1.6.5      | BV-1 Gaseous Source Term Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          |
| 8.1.6.6      | BV-2 Gaseous Source Term Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                          |
|              | -ODC-3.02, ODCM: Bases for ODCM Controls merly, ODCM Appendix D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                          |
| 8.1.7.1      | Bases 3.3.3.1: Radiation Monitoring Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on               |                                          |
| 8.1.7.2      | Bases 3.3.3.9: Radioactive Liquid Effluent Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ring Instrun     | nentation                                |
| 8.1.7.3      | Bases 3.3.3.10: Radioactive Gaseous Monitoring In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nstrumentat      | ion                                      |
| 8.1.7.4      | Bases 3.11.1.1: Liquid Effluent Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                          |
| 8.1.7.5      | Bases 3.11.1.2: Liquid Effluent Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                          |
| 8.1.7.6      | Bases 3.11.1.3: Liquid Radwaste Treatment System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 .              |                                          |
| 8.1.7.7      | Bases 3.11.1.4: Liquid Holdup Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                          |
| 8.1.7.8      | Bases 3.11.2.1: Gaseous Effluent Dose Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                          |
| 8.1.7.9      | Bases 3.11.2.2: Dose- Noble Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • .              |                                          |
| 8.1.7.10     | Bases 3.11.2.3: Dose - Radioiodines, Radioactive Mand Radionuclides Other Than Noble Gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aaterial in I    | Particulate Form,                        |
| 8.1.7.11     | Bases 3.11.2.4: Gaseous Radwaste Treatment Systematics of the Control of the Cont | em               |                                          |
| 8.1.7.12     | Bases 3.11.2.5: Gas Storage Tanks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                          |
| 8.1.7.13     | Bases 3.11.4.1: Total Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                | •                                        |
| 8.1.7.14     | Bases 3.12.1: REMP Program Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                          |
| 8.1.7.15     | Bases 3.12.2: REMP - Land Use Census                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                          |
| 8.1.7.16     | Bases 3.12.3: REMP - Interlaboratory Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Program          |                                          |
|              | ODC-3.03, ODCM: Controls for RETS and REMP P merly; ODCM Appendix C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rograms          | •                                        |
| 8.1.8.1      | Controls 3.0.1 thru 3.0.4: Applicability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                          |
| 8.1.8.2      | Controls 4.0.1 thru 4.0.4: Surveillance Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ts               |                                          |

| Be                 | eaver Valley Power Station                                                               | Procedure N     | umber:<br>1/2-ODC-1.01                |
|--------------------|------------------------------------------------------------------------------------------|-----------------|---------------------------------------|
| Title:             |                                                                                          | Unit:           | Level Of Use: General Skill Reference |
| ODCM: Index, I     | Matrix and History of ODCM Changes                                                       | Revision:       | Page Number:<br>19 of 82              |
| 8.1.8.3            | Control 3.3.3.1: Radiation Monitoring Instrumen                                          | ntation         |                                       |
| 8.1.8.4            | Control 3.3.3.9: Radioactive Liquid Effluent Mo                                          | onitoring Instr | umentation                            |
| 8.1.8.5            | Control 3.3.3.10: Radioactive Gaseous Monitori                                           | ing Instrument  | ation                                 |
| 8.1.8.6            | Control 3.11.1.1: Liquid Effluent Concentration                                          |                 |                                       |
| 8.1.8.7            | Control 3.11.1.2: Liquid Effluent Dose                                                   |                 |                                       |
| 8.1.8.8            | Control 3.11.1.3: Liquid Radwaste Treatment S                                            | ystem           | •                                     |
| 8.1.8.9            | Control 3.11.1.4: Liquid Holdup Tanks                                                    |                 | •                                     |
| 8.1.8.10           | Control 3.11.2.1: Gaseous Effluent Dose Rate                                             |                 |                                       |
| 8.1.8.11           | Control 3.11.2.2: Dose- Noble Gases                                                      |                 |                                       |
| 8.1.8.12           | Control 3.11.2.3: Dose - Radioiodines, Radioact and Radionuclides Other Than Noble Gases | ive Material in | n Particulate Form,                   |
| 8.1.8.13           | Control 3.11.2.4: Gaseous Radwaste Treatment                                             | System          |                                       |
| 8.1.8.14           | Control 3.11.2.5: Gas Storage Tanks                                                      |                 |                                       |
| 8.1.8.15           | Control 3.11.4.1: Total Dose                                                             | e e             |                                       |
| 8.1.8.16           | Control 3.12.1: REMP Program Requirements                                                | ;               |                                       |
| 8.1.8.17           | Control 3.12.2: REMP - Land Use Census                                                   |                 |                                       |
| 8.1.8.18           | Control 3.12.3: REMP - Interlaboratory Compar                                            | rison Program   |                                       |
| 8.1.8.19           | Control 6.9.2: Annual REMP Report                                                        | ٠.              |                                       |
| 8.1.8.20           | Control 6.9.3: Annual RETS Report                                                        | • •             | •                                     |
| 8.2 <u>History</u> | Of ODCM Changes                                                                          | *.              |                                       |

# 8.2.1 Change (1) of BV-1 ODCM (Issue 1), Effective January, 1984

- 8.2.1.1 This is the initial issue of the BV-1 ODCM, as prepared for implementation of the Radiological Effluent Technical Specifications (RETS). Implementation of this manual was commensurate with Amendment No. 66 to the Unit 1 Technical Specifications as approved by the NRC on March 28, 1983.
- 8.2.2 Change (2) of BV-1 ODCM (Issue 1, Rev 1), Effective October, 1984
  - 8.2.2.1 A description of the changes implemented with this revision are as follows:

| Beaver Valley Power Station                                 | Procedure Number: 1/2-ODC-1.01 |                                          |  |
|-------------------------------------------------------------|--------------------------------|------------------------------------------|--|
| Title:                                                      | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes             | Revision:                      | Page Number:<br>20 of 82                 |  |
| 8.2.2.1.1 <u>Section 1.0</u> : Table 1.3-1 was revised to i | nclude liquid do               | se factors for                           |  |

- nuclides presently identified at BVPS and not included in the original table.
- 8.2.2.1.2 Section 2.0: Equations 2.1-19 and 2.1-22 were revised as approved at RSC Meeting No. BVPS-RSC-1-84 on January 31, 1984. The equations were revised to clarify flow rate terminology.
- Section 2.0: Section 2.2.2 was revised to delete the food and ground 8.2.2.1.3 pathways for gaseous dose rate calculations of I-131, tritium, and radionuclides in particulate form with half lives greater than 8 days.
- 8.2.2.1.4 Section 2.0: Table 2.2-13 was revised to include 7 organs rather than only the maximum organ. Also, the receptor was changed from infant to child, and addition/deletion of nuclides to be consistent with the Technical Specifications and nuclides identified at BV-1.

#### 8.2.3 Change (3) of BV-1 ODCM (Issue 1, Rev 2), Effective July, 1986

- 8.2.3.1 A description of the changes that were implemented with this revision are as follows:
  - 8.2.3.1.1 Section 1.0: Provide a flow based monitor setpoint adjustment factor in Section 1.1.2. This change makes Section 1.1.2 consistent with Section 1.1.1 and current procedures.
  - 8.2.3.1.2 Section 1.0 and 2.0: Revise the 31-day dose projection limits and methodology in Sections 1.3.2, 2.3.1.2, and 2.3.2.2. This change corrected the 31-day dose projection limits and changed the dose projection methodology to be consistent with proposed software.
  - 8.2.3.1.3 Section 2.0: Revise the Gaseous Effluent Monitor Setpoints in Sections 2.1.1 and 2.1.2. They were revised due to pressure corrections determined for the detectors, changes in isotopic literature, and the addition of SPING Channel 5 alternate monitor data. The calculations supporting this item are contained in Calculation Packages ERS-SFL-85-031 and ERS-ATL-86-008.
- 8.2.4 Change (4) of BV-1 ODCM (Issue 2), and BV-2 ODCM (Issue 1, Rev 1), Effective July, 1987
  - With the start-up of BV-2 in the second half of 1987, the BV-1 ODCM required 8.2.4.1 revision and the BV-2 ODCM required initial implementation. A description of the changes are as follows:

| Beaver Valley Power Station                     |           | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>21 of 82                 |  |

- 8.2.4.1.1 Produce functionally compatible BV-1 and BV-2 ODCMs which address site dose rate limits and meet regulatory requirements. Note that due to the scope of the revisions to the Unit 1 ODCM, it was re-issued as Issue 2.

  Also, for clarity, the draft BV-2 ODCM previously submitted to the NRC was regarded as Issue 1 (historical) and operation of BV-2 began with Issue 1, Revision 1 of the BV-2 ODCM.
- 8.2.4.1.2 <u>Section 1.0</u>: A shared liquid radwaste system, permitting mixing of waste for processing, the sharing of dilution water, and the apportionment of dose according to NUREG-0133 was incorporated into both ODCMs.
- 8.2.4.1.3 <u>Section 2.0</u>: A shared <u>elevated</u> gaseous radwaste system, permitting the mixing of gaseous radwaste and the apportionment of dose, according to NUREG-0133 was incorporated into both ODCMs.
- 8.2.4.1.4 Section 2.0: Separate ground level gaseous releases were maintained. The BV-1 ODCM was updated to incorporate the BV-2 five year meteorology base. Gaseous source terms were revised to that calculated for BV-1 in the BV-2 FSAR, and terms were added for calculation of a turbine building release.
- 8.2.4.1.5 <u>Section 2.0</u>: The gaseous effluent monitor alarm setpoints of both ODCMs were revised as required by revisions to meteorology, source terms, monitor efficiencies, and revised percentages of site dose rate limits.
- 8.2.4.1.6 Section 2.0: Formal justification was provided for use of the "T" factor as described in the Containment Purge Dose Rate calculations. Whereas, the dose rate for a Containment Purge may be averaged over a time period not to exceed 960 minutes. Since the Containment air volume change time period is 60 minutes, then the maximum value for "T" is 16 (i.e., 960 minutes/60 minutes = 16).
- 8.2.5 Change (5) of BV-1 ODCM (Issue 2, Rev 1), and BV-2 ODCM (Issue 1, Revision 2), Effective December, 1987
  - 8.2.5.1 Section 2.0: Sections 2.1.3 and 2.1.4 of both ODCMs were changed to delete a note concerning noble gas nuclides as requested by a NRC letter dated July 14, 1987 titled Beaver Valley Unit 2 Offsite Dose Calculation Manual, ODCM (TAC 63996).

| Beaver Valley Power Station                     | Procedure Number:<br>1/2-ODC-1.01 |                                          |
|-------------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                         | Page Number:<br>22 of 82                 |

- 8.2.6 Change (6) of BV-1 ODCM (Issue 2, Rev 2), and BV-2 ODCM (Issue 1, Rev 3), Effective June, 1989
  - 8.2.6.1 A description of the changes implemented with this revision are as follows:
    - 8.2.6.1.1 Section 1.0 and 2.0: Both ODCMs were revised for addition of Sections 1.4 and 2.4. This addition gives a description of and includes flow diagrams of the Liquid Radwaste System and the Gaseous Radwaste System. (See justification 1)
    - 8.2.6.1.2 <u>Section 1.0</u>: Corrected typos to BV-1 ODCM Equation 1.1-8 to show differentiation between the two f's, and add the division sign. (See Justification 1)
    - 8.2.6.1.3 Section 1.0: Re-define  $F_k$  in equation 1.3-1 of both ODCMs, as allowed by the NRC. (See Justification 1)
    - 8.2.6.1.4 Section 1.0 and 2.0: Typos were corrected to the following: (1) BV-1 ODCM equation 1.3-7; add a division sign between the brackets. (2) BV-1 ODCM equation 1.3-8; add a division sign between the brackets. (3) Equation 2.1-20 of both ODCMs; change the HHSP to HSP multiplier from 0.70 to 0.33. (4) Equation 2.1-24 of both ODCMs, change the HHSP to HSP multiplier from 0.70 to 0.33. (See Justification 1)
    - 8.2.6.1.5 Section 1.0 and 2.0: Typos were also corrected as follows: (1) Add the words "from each reactor unit" to five places (Sections 1.3.1, 1.3.2, 2.3.1.1, 2.3.1.2, and 2.3.2.2) of both ODCMs. This ensures compliance with the current requirements of the Technical Specifications. (2) Correct punctuation in Section 2.3.2.1 of the BV-1 ODCM. (3) Correct typos in Table 3.0-1 of both ODCMs. (4) Correct typos in Figure 3.0-3 of both ODCMs.
    - 8.2.6.1.6 Section 2.0: Add a Reference to Section 2 of the BV-1 ODCM. (See Justification 3)
    - 8.2.6.1.7 Section 2.0: Add the words "from the site" to Section 2.2.2 of both ODCMs. This ensures compliance with the current requirements of the Technical Specifications. (See Justification 2)
    - 8.2.6.1.8 Section 2.0: Revise BV-1 ODCM Table 2.2-2 to change the particulate and iodine radionuclide mix for the Unit 1 Ventilation Vent and to correct a typo for Xe-135m in the Containment Vacuum Pumps. (See Justification 3)
    - 8.2.6.1.9 <u>Section 2.0</u>: Provide re-verified P<sub>iτ</sub> values for the Beaver Valley site in Table 2.2-13 of both ODCMs. (See Justification 1)
    - 8.2.6.1.10 Section 2.0: Correct the definition for the t<sub>f</sub> value in the cow-meat pathway in Section 2.3.2.1 of both ODCMs. (See Justification 1)

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>23 of 82                 |

- 8.2.6.1.11 Section 2.0: Provide re-verified R values for the Beaver Valley site in Tables 2.3-2 through 2.3-20 of both ODCMs. (See Justification 1)
- 8.2.6.1.12 Appendix B: Change the particulate and iodine release fractions in Appendix B of the BV-1 ODCM. (See Justification 3)
- 8.2.6.2 The justification used for Change (6) to the ODCMs are as follows:
  - A letter dated March 2, 1989 (from the NRC) was received by Duquesne Light regarding acceptance of the Offsite Dose Calculation Manuals. The NRC acceptance of the BV-1 and BV-2 ODCMs was based on Technical Evaluation Reports (TER No. EGG-PHY-8194 and EGG-PHY-8217) provided by the Idaho National Engineering Laboratory.

As stated in the letter, minor concerns are delineated in Section 4 of the TER. In general, these concerns are considered typos or additions and in one way impact any of the calculations currently being performed for dose contributions. However, one of these concerns is regarding the inability to reproduce the ODCM R values for the cow-meat, cow-milk and goat-milk pathways when using the ODCM/NUREG-0133 methodology. These R values (along with all other ODCM R values) were re-validated VIA Calculation Package No. ERS-ATL-89-014. The results of this package showed that the R values for the three aforementioned pathways were in error. SINCE the R values in error do not involve the controlling receptor for gaseous release (i.e., the controlling receptor is VIA the Inhalation, Ground, and Vegetation pathways, not the pathways subject to error), THEN the changes will not adversely impact the accuracy or reliability of effluent dose calculations.

- 8.2.6.2.2 As requested by DLC letters ND3NSM:3431, ND1NSM:3522, and ND1NSM:3652, Technical Specifications were required to be verified in all plant implementing procedures. As part of this effort, wording errors/typos were identified in various sections of the ODCM. This revision corrects the anomalies identified during the verification effort.
- As delineated in letter ND1SHP:776, dated February 12, 1988 (BVPS-1 ODCM Table 2.2-2, Appendix B) a series of apparent discrepancies were identified between ODCM Table 2.2-2 and similar tables of the BVPS-2 FSAR. Evaluation showed that apparent credit was given for continuous filtration of SLCRS releases which is invalid at Unit 1. However, the calculation package on which the BVPS-2 FSAR expected release tables are based, is correct (i.e.; no credit was taken for routine filtration for Unit 1 releases). Except for revising the ODCM, no further corrective action is necessary because the particulates and iodines in the ODCM were not used for gaseous effluent alarm setpoint. Therefore, this change does not adversely impact the accuracy or reliability of setpoint calculations.

| Beaver Valley Power Station                     | Procedure Number:<br>1/2-ODC-1.01             |     |
|-------------------------------------------------|-----------------------------------------------|-----|
| Title:                                          | Unit: Level Of Use: 1/2 General Skill Referen | ice |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: Page Number: 6 24 of 82             |     |

- 8.2.7 Change (7) of BV-1 and 2 ODCM (Issue 3), Effective August, 1995
  - 8.2.7.1 The combined ODCM contains the following changes:
    - 8.2.7.1.1 Prior to ISSUE 3, BV-1 and BV-2 had individual ODCMs that were generically equal. In an effort to simplify the implementing documents, the ODCMs have been combined. This merger of the individual ODCMs will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR Part 50. Also, this merger will not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations.
    - 8.2.7.1.2 Section 1.0: Revised Section 1.0 (Liquid Effluents) to show compliance with 10 CFR 20 Appendix B (20.1001 20.2401), Table 2, Col. 2 EC's. This includes the following: (1) Revising the alarm setpoints for monitors [RM-1LW-104, RM-1LW-116, and 2SGC-RQ100]. (2) Updating the BV-1 monitor detection efficiencies. (3) Updating discharge rate and dilution rate parameters for BV-1 and BV-2. (4) Adding the alarm setpoints for monitors [RM-1RW-100, RM-1DA-100, 2SWS-RQ101, and 2SWS-RQ102].
    - 8.2.7.1.3 Section 1.0: Revised Section 1.0 (Liquid Effluents) and Section 2.0 (Gaseous Effluents) to merge the BV-1 alarm setpoint calculations with the BV-2 alarm setpoint calculations. For all practical purposes, when Tables, Figures, and Equations were transferred to the combined ODCM, the numbering was kept generically equal. The two exceptions to this are as follows: (1) If a table was contained in both ODCMs, but each had data specific to BV-1 or BV-2, then an a or b was added to the table. For example. Table 1.1-1 was previously included in the BV-1 ODCM and the BV-2 ODCM. These tables are now numbered 1.1-1a and 1.1-1b denoting BV-1 and BV-2 respectively. A cross reference for ODCM tables is provided in the Table Of Contents. (2) If an equation was contained in both ODCMs, but each had data specific to BV-1 or BV-2, then a (1) or (2) was added to the equation. For example, Equation 1.1-1 was previously included in the BV-1 ODCM and the BV-2 ODCM. These equations are now numbered 1.1(1)-1 and 1.1(2)-1, denoting BV-1 and BV-2 respectively. A cross reference for ODCM equations is provided in the Table Of Contents.
    - 8.2.7.1.4 Section 3.0: Revised Section 3.0 (Radiological Environmental Monitoring Program) to list the program requirements from the Radiological Assessment Branch Technical Position (Revision 1, 1979).
    - 8.2.7.1.5 Section 4.0: Revised Section 4.0 (Information Related To 40 CFR 190) to provide clarified reporting requirements for the Special Report. The clarifications were taken from Generic Letter 89-01, Supplement No. 1 (NUREG-1301).

| Beaver Valley Power Station                     |           | Procedure Number: 1/2-ODC-1.01             |  |
|-------------------------------------------------|-----------|--------------------------------------------|--|
| Title:                                          | Unit:     | Level Of Use: ,<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>25 of 82                   |  |

- 8.2.7.1.6 Appendix A: Revised Appendix A to transfer the Batch Release dispersion parameters from Appendix A (Tables A-2 through A-5) to Section 2.3 (Tables 2.3-35 through 2.3-38). This revision was done for clarification. For example, all dispersion parameters are now included in one area of the ODCM.
- 8.2.7.1.7 Appendix C: This is a new Appendix to the ODCM. Procedural details for the Radiological Effluent Technical Specifications (RETS) were transferred from the Technical Specifications to Appendix C of the ODCM per Generic Letter 89-01 and Generic Letter 89-01, Supplement No. 1 (NUREG 1301). This Appendix also includes selected Definitions and Tables as delineated in the Technical Specifications (Section 1) and selected Applicability and Surveillance Requirement statements as delineated in the Technical Specifications (Section 3/4). These were added to Appendix C for reference purposes, even though they are currently described in the Technical Specification.
- 8.2.7.1.8 Appendix D: This is a new Appendix to the ODCM. The bases for ODCM Controls were transferred from the Bases Section of the Technical Specifications to Appendix D of the ODCM per Generic Letter 89-01.
- 8.2.7.1.9 Appendix E: This is a new Appendix to the ODCM. The Annual Radioactive Effluent Release Report and the Annual Radiological Environmental Report reporting requirements are listed in this appendix to the ODCM.
- 8.2.7.1:10 There are three differences (i.e., non-editorial changes) in this ODCM revision when compared to the previous BV-1 and BV-2 Technical Specifications. These are the only changes that are identified by revision bars. These differences are as follows:

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number: 26 of 82                    |

8.2.7.1.10.1

First Difference - LLD Definition Clarification is described as follows: (1) There was a sentence removed in the LLD Standard Deviation Definitions delineated in Appendix C Tables 4.11-1 and 4.11-2. This sentence stated: "In calculating the LLD for a radionuclide determined by gamma ray spectrometry, the background shall include the typical contributions of other radionuclides normally present in the samples (e.g., potassium in milk samples)." (2) This sentence was removed by justification of NUREG-0472, Rev. 2 (i.e., this revision to the NUREG removed the sentence from Tables 4.11-1 and 4.11-2). At BV-1 and 2, there are <u>no</u> other radionuclides normally present in effluent samples. However, there is applicability to environmental LLD calculations due to the existence of other radionuclides in environmental samples. This sentence, therefore, will not be removed from Appendix C, Table 4.12-1. (3) Removal of the sentence from Appendix C, Tables 4.11-1 and 4.11-2 does not adversely impact the accuracy or reliability of current or past effluent LLD calculations. This change maintains the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR Part 50, and does not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations. (4) This change brings ODCM Appendix C, Tables 4.11-1 and 4.11-2 in generic agreement with NRC guidance (i.e., NUREG-0472) and industry standard.

8.2.7.1.10.2

Second Difference - Change From Semi-Annual Report To Annual Report as follows: (1) The frequency of the Radioactive Effluent Release Report was changed from Semi-Annual to Annual. This change is justified by Federal Register, Rules And Regulations (Vol. 57, No. 169, Monday, August 31, 1992), where as; 10 CFR Part 50.36a(a)(2) states, in part. "Each licensee shall submit a report to the Commission annually that specifies the quantity of each of the principal radionuclides released to unrestricted areas in liquid and in gaseous effluents during the previous 12 months of operation...the time between submission of the reports must be no longer than 12 months..." (2) This change maintains the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR Part 50, and does not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations.

8.2.7.1.10.3

Third Difference - Implementation Of New 10 CFR 20 is described as follows: (1) The definition for MEMBER(S) OF THE PUBLIC was revised to agree with the definition in 10 CFR 20.1003. (2) The definition for UNRESTRICTED AREA was modified from the definition that was in the Technical Specifications prior to transferring to the ODCM. This modification was necessary to ensure that the ODCM dose model for gaseous releases is not affected. The modification involved adding the following sentence: "For gaseous

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number: 27 of 82                    |

release dose calculations, the UNRESTRICTED AREA should exclude any public road, railway, or waterway adjacent to or crossing the site that is not occupied continuously by MEMBER(S) OF THE PUBLIC". (3) The limits for liquid effluent concentration were changed from 1 times 10 CFR 20 Appendix B (20.1 - 20.601), Table II, Col. 2 MPC's to 10 times 10 CFR 20 Appendix B (20.1001 -20.2401), Table 2, Col. 2 EC's. This limit will now be referred to as the ODCM Effluent Concentration Limit (OEC). (4) For gaseous effluents, no changes were made to implement the New 10 CFR 20. As justification, when the utility adopted the RETS (1/1/84), compliance to 10 CFR 20 shifted from the MPC concept to the Unrestricted Area Dose Rate concept. The Dose Rate concept is the preferred method of controlling gaseous effluent release rate, and will continue to be used in-lieu of the MPC or EC concept. (5) Changing to the OEC limit for liquid effluents accommodates needed operational flexibility to facilitate implementation of the New 10 CFR 20 requirements. (6) For information, the general intent of the New Part 20 is that radiation doses to members of the public not exceed 100 mrems per year, which is more restrictive than the 500 mrems per year limit in the Old Part 20, and that fuel cycle licensees also comply with 40 CFR 190. The New Part 20 does not include a requirement on limiting radioactivity concentrations in effluents, which is less restrictive than the Old Part 20. (7) The basic requirements for RETS (i.e.; ODCM Appendix C Controls) are stated in 10 CFR 50.36a. These requirements indicate that compliance with the RETS will keep average annual releases of radioactive material in effluents to small percentages of the limits specified in the 10 CFR 20.106 (10 CFR 20.1302). These requirements also indicate that operational flexibility is allowed (with considerations for public health and safety) which may temporarily result in releases higher than such small percentages, but still within the MPC limits specified in the 10 CFR 20.106. The MPC's relate to an annual dose of 500 mrem. Also, 10 CFR 50.36a indicates that when using operational flexibility, best efforts shall be exerted to keep levels of radioactive materials in effluents to ALARA as set forth in 10 CFR 50 Appendix I. (8) As stated in the Introduction to Appendix B of the New 10 CFR 20, the liquid EC's are based on an annual dose of 50 mrem. Since a release concentration corresponding to a limiting dose rate of 500 mrem/year has been acceptable as a RETS limit for liquid effluents, it should not be necessary to reduce this limit by a factor of ten. (9) BV-1 and BV-2 has demonstrated that the use of the MPC's associated with the 10 CFR 20.106 has resulted in calculated maximum individual doses to a member of the public that are small percentages of the limits of 10 CFR 50 Appendix I. Therefore, the use of the OEC's, which correspond to an annual dose of 500 mrem (i.e., 10 times the 10 CFR 20 EC's) should not have a negative impact on the ability to continue

| Beaver Valley Power Station                     | Procedure Number:<br>1/2-ODC-1.01 |                                          |
|-------------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                         | Page Number:<br>28 of 82                 |

to operate within the limits of 10 CFR 50 Appendix I, and 40 CFR 190. (10) Operational flexibility is also necessary in establishing a basis for effluent monitor setpoint calculations. As previously discussed, the EC's stated in 10 CFR 20 relate to a dose of 50 mrem in a year. This is too restrictive to base effluent monitor setpoint calculations. For many liquid effluent release situations, the monitor background is high, which could result in a monitor setpoint that is approximately equal to the monitor background. (11) In summary, to accommodate operational flexibility needed for effluent releases, the limits associated with the liquid release concentration (i.e., the OEC) are based on 10 times the EC's stated in the 10 CFR 20. The multiplier of 10 is used because the annual dose of 500 mrem (10 CFR 20 MPC bases) is a factor of 10 higher than the annual dose of 50 mrem (10 CFR 20 EC bases). Compliance with the 100 mrem dose limit of the 10 CFR 20.1302 will be demonstrated by operating within the dose limits of 10 CFR 50 Appendix I, and 40 CFR 190 (which are also ODCM Controls for liquid and gaseous effluents). Implementation of the 10 CFR 20 for liquid effluents maintains the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR Part 50, and does not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations.

- 8.2.7.2 In summary, Per Generic Letter 89-01, the transfer of RETS procedural details fulfills the goal of the USNRC Policy Statement for Technical Specification improvements. It is not the USNRC's (or DLC's) intent to reduce the level of radioactive effluent control. Rather, the intent is to provide programmatic controls for RETS (as delineated in Technical Specification 6.8.6) and allow for relocation of the procedural details of the RETS to the ODCM.
- 8.2.8 Change (8) of BV-1 and 2 ODCM (Issue 3, Rev 1), Effective October, 1995
  - 8.2.8.1 A description of the changes implemented with this revision are as follows:
    - 8.2.8.1.1 <u>Index</u>: Editorial changes were made for clarity. (See justification 1)
    - 8.2.8.1.2 <u>Section 1.0</u>: Revised Nb-95 and Nb-97 dose factors in Table 1.3-1 due to changing the niobium bioaccumulation factor. (see justification 2)
    - 8.2.8.1.3 Appendix A: A change was made to Table 1.1 so that the letter A would proceed the table number. (See justification 1)
    - 8.2.8.1.4 Appendix B: A descriptive paragraph was added at the front of this Appendix. Also, changes were made to the tables so that the letter B would proceed the table numbers. (See justification 1)

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>29 of 82                 |

- 8.2.8.1.5 Appendix C: Descriptive paragraphs were added at the front of the Appendix (See justification 1). Removed the process flow rate operability and surveillance requirements for gaseous effluent radiation monitors [2RMQ-RQ301, 2RMQ-RQ303 and 2HVL-RQ112] from Tables 3.3-13 and 4.3-13 (See justification 3). Added alternate system effluent flow rate measuring devices for the three gaseous effluent pathways to Tables 3.3-13 and 4.3-13 (See justification 4). Revised Surveillance Requirements 4.11.1.1.3 and 4.11.1.1.4 and notes e and g of Table 4.11-1 to clarify Turbine Building sump sampling requirements (See justification 5).
- 8.2.8.1.6 Appendix D. Descriptive paragraphs were added at the front of the Appendix. (See justification 1)
- 8.2.8.1.7 <u>Appendix E</u>: Descriptive paragraphs were added at the front of the Appendix. (See justification 1)
- 8.2.8.1.8 Appendix F: This is a new Appendix to the ODCM. It contains plant procedure references for Radiological Effluent Technical Specification (RETS) that were transferred from the Technical Specification Procedure Matrix. (See justification 1)
- 8.2.8.2 The justification used for change (8) to the ODCM are as follows:
  - 8.2.8.2.1 These changes are considered editorial in nature. Therefore, these editorial changes will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also the editorial changes will not adversely impact the accuracy or reliability of effluent dose or setpoint calculation.
  - This change resulted from revising the bioaccumulation factor (BF) for niobium from the value posted in Table A-1 of Regulatory Guide 1.109, Revision 1, 1977 (30,000 pCi/kg per pCi/l). Since this change in niobium BF (as documented and justified in Appendix A to Calculation Package No. ERS-ATL-83-027) merely removes the conservatism associated with organism uptake, then the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, removing the conservatism will not adversely impact the accuracy or reliability of effluent dose or setpoint calculation.
  - 8.2.8.2.3 This change removes the process flow rate operability and surveillance requirements for BV-2 Gaseous Effluent Radiation Monitors [2RMQ-RQ301, 2RMQ-RQ303 and 2HVL-RQ112] from Appendix C Tables 3.3-13 and 4.3-13. These items were removed from the ODCM by justification provided in Calculation Package No. ERS-ATL-90-021. A safetý analysis and a no significant hazards evaluation were prepared and approved prior to submitted it to the NRC via TSCR No. 2A-61 in 1992. However, it was

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number: 30 of 82                    |

withdrawn in 1993 in an effort to alleviate any further delays associated with approval of TSCR No. 1A-175/2A-37 (Generic Letter 89-01 implementation). Removal of these requirements from the ODCM will maintain the level of radioactive effluent control required by 10 CFR 20,1302, 40 CFR Part 190, 10 CFR 50,36a and Appendix I to 10 CFR 50. Also removal of these items will not adversely impact the accuracy or reliability of effluent dose or setpoint calculation. The following is a summary of the justification. (1) BVPS-1 and BVPS-2 is currently using, and will continue to use design (maximum) system flow rates in ODCM Dose & Dose Rate Calculations, rather than those flow rates observed during normal plant operation. (2) BVPS-2 UFSAR Section 11.3.3 indicates that the source term for these three pathways are not significant. These pathways are not included in UFSAR Tables 11.3-1 through 11.3-4 that list the expected and design releases for each potentially radioactive pathway. (3) The DLC commitment to Regulatory Guide 1.97, Rev. 2 (Section 1.8-1 of the BVPS-2 UFSAR) is not affected. This RG applies to instrumentation used during and after postulated accident conditions. These three process flow rate instruments were not used in any accident analysis, nor are they used to assess plant conditions during and following an accident. (4) The DLC commitment to Regulatory Guide 1.21, Rev. 1 (Section 1.8-1 of the BVPS-2 UFSAR) is not affected. RG 1.21, Section C.2 (Location of Monitoring) states in part: "All major and potentially significant paths for release of radioactive material during normal reactor operation, including anticipated operational occurrences, should be monitored. Measurements of effluent volume, rates of release, and specific radionuclides should be made insofar as practical .. " As previously stated, the three process flow rate instruments are located on effluent pathways that do not have a significant source term. (5) BVPS-2 UFSAR Sections 9.4.13 and 9.4.16 indicate that the building ventilation system for these three pathways are non-safety related and are not required to perform any safety-related function. (6) There is no effect to the Noble Gas Monitors located on these three pathways. The Noble Gas Monitors are still capable of performing their intended functions as described in BVPS-2 UFSAR Section 11.5.2.4.

8.2.8.2.4

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                    |
|-------------------------------------------------|--------------------------------|------------------------------------|
| Title:                                          |                                | l Of Use:<br>neral Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: Page                 | Number:<br>31 of 82                |

- This change adds alternate system effluent flowrate measuring devices for the three BV-1 gaseous effluent pathways to Appendix C Tables 3.3-13 and 4.3-13. A 10 CFR 50.59 safety evaluation has concluded that no unreviewed safety question is involved by adding the alternate measuring devices to Appendix C Tables 3.3-13 and 4.3-13. This conclusion is based on the following: (1) There is no increase in the probability or consequences of accidents or malfunctions of equipment important to safety. (2) There is no creation of a possibility for an accident or malfunction of a different type than any evaluated previously. (3) There is no reduction in the margin of safety. (4) Also, since this change merely adds alternate measuring devices that meet the same surveillance requirements of the primary channel, then the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, addition of the alternate flow rate measuring devices will not adversely impact the accuracy or reliability of effluent dose or setpoint calculations.
- 8.2.8.2.5 This change to the ODCM clarifies Turbine Building sump sampling requirements and clarifies effluent related actions associated with detection of radioactivity in the secondary system. These clarifications are documented and justified in Calculation Package No. ERS-ATL-95-006. Also, since these clarifications were shown to meet the intent of NUREG-1301 (superseding NUREG-0472) and the BVPS-1 and 2 UFSAR's, then the clarification will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50. Also, the clarifications will not adversely impact the accuracy or reliability of effluent dose or setpoint calculation. Also, a 10 CFR 50.59 safety evaluation has concluded that no unreviewed safety question is involved by clarifying these actions. This conclusion is based on the following: (1) There is no increase in the probability or consequences of accidents or malfunctions of equipment important to safety. (2) There is no creation of a possibility for an accident or malfunction of a different type than any evaluated previously. (3) There is no reduction in the margin of safety.
- 8.2.9 Change (9) of BV-1 and 2 ODCM (Issue 3, Rev 2), Effective May 1997
  - 8.2.9.1 A description of the changes implemented with this revision are as follows:
    - 8.2.9.1.1 <u>Index</u>: Editorial changes were made for clarity. (See Justification 1)
    - 8.2.9.1.2 Section 1.0: Clarifying statements were added to Tables 1.2-1a and 1.2-1b to show that the recirculation times listed are based on historical recirculation rates. Figure 1.4-3 was added to show BV-1 and 2 liquid Effluent Release Points. (See Justification 1)

| Beaver Valley Power Station                     |              | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>32 of 82                 |  |

- 8.2.9.1.3 <u>Section 3.0</u>: Removed the option to perform broad leaf vegetation sampling at the site boundary in a sector with the highest D/Q. (See Justification 2)
- 8.2.9.1.4 Appendix C: Added plant specific Mark Numbers to Tables 3.3-12, 4.3-12, 3.3-13 and 4.3-13 (See Justification 1). Corrected typographical errors on Surveillance Requirement 4.11.4.1.1 (See Justification 1). Added clarifying statements from NUREG-1301 and the Radiological Assessment Branch Technical Position to Tables 3.12-2 and 4.12-1 (See Justification 1). Removed the option to perform broad leaf vegetation sampling at the site boundary in a sector with the highest D/Q (See Justification 2).
- 8.2.9.1.5 <u>Appendix E</u>: Corrected typographical error on Table 6.9-1. (See Justification 1)
- 8.2.9.1.6 Appendix F: Added procedure details to Tables 11, 12 and 13. (See Justification 1)
- 8.2.9.2 The justification used for Change (9) to the ODCM are as follows:
  - 8.2.9.2.1 These changes are considered editorial in nature. The changes either correct typographical errors or add editorial details from previously approved station documents. Therefore, these changes will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50. Also, the editorial changes will not adversely impact the accuracy or reliability of effluent dose or setpoint calculations.
  - This change removes the option to perform broad leaf vegetation sampling at the site boundary (in a sector with the highest D/Q) in lieu of the garden census. Per NUREG-1301 and the Radiological Branch Technical Position, this option does not apply to plants with elevated releases. Since BV-1 and 2 have elevated releases, the option should not be exercised. A review of past garden census showed that the option was never exercised at BV-1 and 2. Since this change removes an option that should not be exercised, then the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50. Also, removal of the option will not adversely impact the accuracy or reliability of effluent dose or setpoint calculations.

#### 8.2.10 Change (10) of BV-1 and 2 ODCM (Issue 3, Rev 3), Effective June 1997

- 8.2.10.1 A description of the changes implemented with this revision are as follows:
  - 8.2.10.1.1 Section 2.0: A release point for the BV-2 Turbine Building Vent was added (for editorial purposes) to Figure 2.4-2.
- 8.2.10.2 The justification used for Change (10) to the ODCM is as follows:

| Beaver Valley Power Station                     | 4            | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number: 33 of 82                    |  |

This change is considered editorial in nature. The change adds an equivalent item that was previously located on BV-2 Technical Specification Figure 5.1-2. Since BV-2 Technical Specification Amendment 83 removed this figure, then the gaseous release point for the BV-2 Turbine Building Vent needed transferred to the ODCM. Therefore, since this change is considered editorial, the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50. Also, the editorial change will not adversely impact the accuracy or reliability of effluent dose or setpoint calculations.

# 8.2.11 Change (11) of BV-1 and 2 ODCM (Issue 3, Rev 4), Effective March 1998

- 8.2.11.1 A description of the changes implemented with this revision are as follows:
  - 8.2.11.1.1 <u>Index</u>: Editorial changes were made for clarity.
  - 8.2.11.1.2 Section 3.0: The distances for the environmental monitoring sample points were revised to show a more accurate measurement from the center of the Unit 1 Containment Building. The actual sample locations and descriptions remain unchanged. Also, the 4 individual quadrant maps showing TLD locations were consolidated into 1 map. This is a Corrective Action to Condition Report CR 980353.
  - 8.2.11.1.3 <u>Section 4.0</u>: Added clarifying statements as to how doses due to radioactive effluents for MEMBERS OF THE PUBLIC conducting activities inside the site boundary are derived and reported. This is a Corrective Action to Condition Report CR 971578.

8.2.11.1.4

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>34 of 82                 |

Appendix C: Added statements to Action 23 of Table 3.3-12 to clarify that batch liquid releases may also be initiated with the same Action needed for resuming the release. This is a recommendation from the 1997 RETS Self-Assessment. A note was also added to this table to clarify that independent signatures on the discharge permit satisfy the requirement for "two technically qualified members of the Facility Staff independently verify the release rate calculation..." Added Action 29 to RM-1GW-108B on Table 3.3-13. This addition ensures consistency with the other 7 continuous gaseous effluent pathway Actions for Noble Gas Monitor inoperability. Added plant specific Mark Numbers for primary and alternate instrumentation to Tables 3.3-13 and 4.3-13 as follows: (1) For Noble Gas Activity Monitors, [RM-1VS-109 Channel 5] was added as an alternate to [RM-1VS-101B] and [RM-1V1S-110 Channel 5] was added as an alternate to [RM-1VS-107B]. [RM-1GW-109 Channel 5] was not added as an alternate to [RM-1GW-108B] at this time, because it does not perform on auto-isolation of gaseous waste decay tank release upon upper activity alarm. (2) For Particulate Activity Monitors, [RM-1VS-109 Channel 1] was added as an alternate to [RM-1VS-101A], [RM-1VS-1110 Channel 1] was added as an alternate to [RM-VS-1107A], and [RM-1GW-109 Channel 1] was added as an alternate to RM-1GW-108A.

- 8.2.11.1.5 Appendix E: Corrected typographical errors on Table E:6.9-1
- 8.2.11.1.6 Appendix F: Updated the procedure details for primary and alternate instrumentation included in Appendix C Tables 3.3-13 and 4.3-13. Reduced the amount of detail contained in reference to the Operating Manual L-5 logs so that the position of the surveillance on the logs can be changed without having a need to change the Tables in this Appendix. This is a Corrective Action to Condition Report CR 980129.
- 8.2.11.2 The justification used for Change (11) to the ODCM is as follows:
  - 8.2.11.2.1 These changes are considered editorial in nature. The changes either correct typographical errors or add editorial details from previously approved station documents. Therefore, these changes will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50. Also, the editorial changes will not adversely impact the accuracy or reliability of effluent dose or alarm setpoint calculations.
- 8.2.12 Change (12) of BV-1 and 2 ODCM (Issue 3, Rev 5), Effective November 1998
  - 8.2.12.1 A description of the changes implemented with this revision are as follows.
    - 8.2.12.1.1 <u>Index</u>: Editorial changes were made for clarity. (See Justification 1.)
    - 8.2.12.1.2 <u>Section 1.0</u>: Added clarification for calculation of radionuclide concentration when the Post Dose Correction Factor is >1. (See Justification 1).

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>35 of 82                 |

- 8.2.12.1.3 <u>Section 3.0</u>: Added an additional site location for the upstream environmental surface water sample. Added additional method after collecting and compositing this sample. (See Justification 2.)
- 8.2.12.1.4 Appendix C: Revised the definitions for MEMBER(S) OF THE PUBLIC and UNRESTRICTED AREA to ensure compliance with 10 CFR 20,1003. (See Justification 1.) Added a definition for MEMBER(S) OF THE PUBLIC to ensure compliance with 40 CFR 190.02(k). (See Justification 1.) Added plant specific Mark Numbers for primary and alternate instrumentation to Table 3.3-13 that were inadvertently omitted from change (11) to the ODCM. (See Justification 1.) Added clarification to Table 4.11-2 as to where and when H-3 samples of Waste Gas Storage Tanks are to be obtained. This is a Corrective Action to Condition Report CR 981489. (See Justification 1.) Added clarification to note "e" of Table 4.11-2 as to the appropriate ventilation release path. This is a Corrective Action to CR 981490. (See Justification 1.). Corrected an obvious omission on Table 3.12-1 to ensure that 2 TLD's are used for determination of Direct Radiation. (See Justification 1.) Incorporated the appropriate changes to Table 3.12-1 that are described above for Section 3.0. (See Justification 2.)
- 8.2.12.1.5

  Appendix F: Added procedure details from the Chemistry Manual to Table
  6. This is a Corrective Action to Condition Report CR 981488. (See
  Justification 1.)
- 8.2.12.2 The justifications used for Change (12) to the ODCM are as follows:
  - 8.2.12.2.1 These changes are considered editorial in nature. The changes either correct typographical errors or add editorial details from previously approved station documents. Therefore, these changes will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the editorial changes will not adversely impact the accuracy or reliability of effluent dose or alarm setpoint calculations.

8.2.12.2.2

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:<br>6                 | Page Number:<br>36 of 82                 |

These changes involve the upstream environmental surface water sample method and sample site. Since these changes were shown to meet the intent of NUREG-1301, and BVPS-1 and 2 UFSAR's, then the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50. Also, the change will not adversely impact the accuracy or reliability of effluent dose or alarm setpoint calculations. Also, a 10 CFR 10.50 safety evaluation has concluded that no unreviewed safety question is involved by adding an additional sample site and sample method. This evaluation is based on the following: (1) There is no increase in the probability or consequences of accidents or malfunctions of equipment important to safety. (2) There is no creation of a possibility for an accident or malfunction of a different type than any evaluated previously. (3) There is no reduction in the margin of safety.

#### 8.2.13 Change (13) of BV-1 and 2 ODCM (Issue 3, Rev 6), Effective May 1999

- 8.2.13.1 A description of the changes implemented with this revision are as follows:
  - 8.2.13.1.1 Index: Editorial changes were made for clarity.
  - 8.2.13.1.2 <u>Section 3.0</u>: Updated figure number and table reference. Removed a redundant upstream environmental surface water sampling location.
  - 8.2.13.1.3 Appendix C: Made editorial changes for clarity. Added definitions for SHUTDOWN and STARTUP. Changed definition for ODCM to ensure agreement with definition provided in Unit 1/2 Technical Specification Amendments 220/97. Changed designations for primary and alternate instruments on Tables 3.3-12, 4.3-12, 3.3-13 and 4.3-13 from "P" and "A" to "Pri" and "Alt". Clarified use of the Flow Rate Measurement Devices for the Cooling Tower Blowdown Line on Tables 3.3-12 and 4.3-12 to show that the Unit 1/2 combined instrument [FT-1CW-101-1] is the primary and both of the individual Unit 1 and Unit 2 instruments [FT-1CW-101] and [2CWS-FT101] are the alternates. Updated Actions 24, 25 and 26 of Table 3.3-12 to describe use of comparable alternate monitoring channels when the primary channels are INOPERABLE. Clarified Table 3.3-13 Action 28 applicability for Unit 2 gaseous effluent monitors. Clarified Table 3.3-13 Action 30 to show that applicability is for batch purges of the reactor containments. Changed reference of Special Report compliance requirement from Technical Specification 6.9.2f to 10 CFR 20.2203 and 10 CFR 50.4 as permitted by Unit 1/2 Technical Specification Amendments 220/97. Clarified note b of Table 4.11-2 regarding sampling and surveillances frequencies. Clarified Controls 3, 12, 1 and 3, 12, 2 to ensure compliance with NUREG-1301.

| Beaver Valley Power Station                     | Procedure Number:<br>1/2-ODC-1.01 |                                          |
|-------------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                         | Page Number:<br>37 of 82                 |

- 8.2.13.1.4 Appendix E: Made editorial changes for clarity. Changed reference of Special Report compliance requirement from Technical Specification 6.9.2f to 10 CFR 20.2203 and 10 CFR 50.4 as permitted by Unit 1/2 Technical Specification Amendments 220/97. Changed submittal date of annual REMP report from May 1 to May 15 as permitted by Unit 1/2 Technical Specification Amendments 220/97. Changed column heading in Table E: 6.9-1 to ensure consistency with NUREG-1301.
- 8.2.13.2 The justification used for change (13) to the ODCM is as follows:
  - 8.2.13.2.1 All changes are considered editorial in nature. The changes either clarify the intent of the original specification or add equivalent items form the standard guidance document (NUREG-1301) or recent Technical Specification Amendments. Therefore, since these changes are considered editorial, the changes will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50. Also, the editorial changes will not adversely impact the accuracy or reliability of effluent dose or set point calculations.

### 8.2.14 Change (14) of BV-1 and 2 ODCM (Rev 14), Effective March 2000

- 8.2.14.1 Prior to this ODCM change, the change numbers did not match the Issue and Revision numbers. For example, the last implemented ODCM change was (13), but carried an Issue 3, Revision 6 designation. Therefore, as of this ODCM change (14), consecutive Revision numbers will begin with Revision 14.
- 8.2.14.2 A description of the changes implemented with this revision are as follows:
  - 8.2.14.2.1 <u>Index</u>: Editorial changes were made for clarity. References to condition reports CR 982097, CR 992652 and CR 993021 were added.
  - 8.2.14.2.2 Appendix C: Editorial changes were made for clarity. Corrected a typographical error on Table 3.3-12 in regards to FT-CW-101-1. Changed the grab sampling requirement from 8 hours to 12 hours for Table 3.3-12 Action 24 (NUREG-1301, Table 3.3-12, Action 36 and 37 allow this change). Enhanced the Channel Functional Test requirements on Table 4.3-12 from Q(6) to Q(1) for RM-1DA-100 (Corrective Action to Condition Report CR 993021). Add clarification to Table 3.3-13 and 4.3-13 to show the plant specific Mark Numbers for the primary and alternate BV-1 Sample Flow Rate Measuring Devices. Corrected a typographical error on Table 3.3-13 Action 27. Separated Action 28 of Table 3.3-13 into individual Action 28 requirements for System Effluent Flow Rate Measuring Devices/Process Flowrate Monitors and individual Action 28 requirements for Sample Flow Rate Measuring Devices/Sample Flowrate Monitors. Added clarification to Table 3.3-13 to show that Action 29 and Action 32 are applicable for continuous releases. Added an alternate method in lieu of grab sample collection (ie., local monitor readings can be obtained when

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>38 of 82                 |

communication is lost to the Control Room) to show compliance to Table 3.3-13 Action 29. Changed the grab sampling requirement from 8 hours to 12 hours for Table 3.3-13 Action 29 and Action 32 (NUREG-1301, Table 3.3-013, Action 47 allows this change). Corrected typographical errors on Table 4.11-1 in regards to liquid composite analysis frequency and table notation.

- 8.2.14.2.3 Appendix F: Made editorial changes for clarity. Updated the procedure details for primary and alternate instrumentation included in Appendix C Tables 3.3-13 and 4.3-13. Added appropriate references to the HP Shift Logs (ie., HPM Appendix 1) when these logs are used satisfy ODCM Appendix C Surveillances and Actions (Corrective Action to Condition Report CR 992652).
- 8.2.14.3 The justification used for change (14) to the ODCM is as follows:
  - 8.2.14.3.1 Most of these changes are considered editorial in nature. All changes were screened for 10CFR50.59 applicability. In summary, the BVPS-1 and 2 UFSAR's are not impacted, because the changes either clarify the intent of the original specification, add plant specific Mark Numbers, or add equivalent items from the standard guidance document (NUREG-1301). Therefore, these changes will maintain the level of radioactive effluent control required by 10CFR20.1302, 40CFR Part 190, 10 CFR50.36a, and Appendix I to 10CFR50. Also, these changes will not adversely impact the accuracy or reliability of effluent dose or alarm setpoint calculations.
- 8.2.15 Change (15) of BV-1 and 2 ODCM (Rev 15), Effective August 2000
  - 8.2.15.1 A description of the changes implemented with this revision are as follows:
    - 8.2.15.1.1 <u>Index</u>: Editorial changes were made for clarity. Reference to Condition Report CR 001682 was added. Reference to NRC unresolved Item 83-30-05 was added.
    - 8.2.15.1.2 Appendix C: Editorial changes were made for clarity. Annotated Actions 28 of Table 3.3-13 into Action 28A and 28B to show differentiation between Action 28A requirements for system/process flow rate measurement and Action 28B requirements for sampler flow rate measurement. Added an alternate method in lieu of 4 hour flow rate estimations (ie; assume ODCM design values for system/process flow rate) to show compliance with Table 3.3-13 Action 28A when the system/process flow rate monitor is inoperable. Annotated Actions 30 of Table 3.3-13 into Action 30A and 30B to show differentiation between Action 30A requirements for BV-1 reactor containment purges and Action 30B requirements for BV-2 reactor containment purges.

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number: 39 of 82                    |

- 8.2.15.2 The justification used for change (15) to the ODCM is as follows:
  - 8.2.15.2.1 Some of these changes are considered editorial in nature. These changes were screened for 10CFR50.59 applicability and determined not to impact the BVPS-1 and 2 UFSAR's. Since the editorial changes clarify the intent of the original specification, then these changes will maintain the level of radioactive effluent control required by 10CFR20.1302, 40CFR Part 190, 10CFR50.36a, and Appendix I to 10CFR50. Also, these changes will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation.
  - 8.2.15.2.2 The change to allow use of design (maximum) system flow rates in lieu of 4 hour flow rate estimations (for five of the eight gaseous effluent release pathways) was screened for 10CFR50.59 applicability and determined not to impact the BVPS-1 and 2 UFSAR's. The 4 hour flow rate estimations for these effluent release pathways have never been used in ODCM Dose and Dose Rate Calculations. The method for use of process flow rates in ODCM Dose and Dose Rate Calculations remains unchanged. For example, BVPS-1 and BVPS-2 is currently using, and will continue to use design (maximum) system flow rates in ODCM Dose and Dose Rate Calculations for all eight gaseous effluent release pathways. This is necessary to ensure that DLC response to NRC Unresolved Item 50-334/83-30-05 is not compromised. Also this change is considered similar and within the justification provided for ODCM change (8) that removed all of the process flow rate operability and surveillance requirements for the other three gaseous effluent release pathways. Based on the above, these changes will maintain the level of radioactive effluent control required by 10CFR20.1302, 40CFR Part 190, 10CFR50.36a, and Appendix I to 10CFR50. Also, these changes will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation.

#### 8.2.16 Change (16) of BV-1 and 2 ODCM (Effective April 2002)

- 8.2.16.1 A description of the changes implemented with this revision are as follows:
  - 8.2.16.1.1 The entire BV-1 and 2 ODCM was converted to the ODC format as delineated in 1/2-ADM-0100. As part of this process, the ODCM was separated into eight procedures as follows:
    - 8.2.16.1.1.1 <u>1/2-ODC-1.01, Rev 0</u>; ODCM: Index, Matrix and History of ODCM Changes (formerly; ODCM Index and Appendix F)
    - 8.2.16.1.1.2 <u>1/2-ODC-2.01, Rev 0;</u> ODCM: Liquid Effluents (formerly; ODCM Section 1 and 5)
    - 8.2.16.1.1.3 <u>1/2-ODC-2.02, Rev 0</u>; ODCM: Gaseous Effluents (formerly; ODCM Section 2 and 5)

| Beave              | er Valley Power Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Procedure N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | umber:<br>1/2-ODC-1.01                                                                                                                                                                           |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Level Of Use:                                                                                                                                                                                    |
| ODCM: Index, Matri | x and History of ODCM Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 Revision:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | General Skill Reference Page Number: 40 of 82                                                                                                                                                    |
| 8.2.16.1.          | 1.4 <u>1/2-ODC-2.03, Rev 0; ODCM:</u> Radio Monitoring Program (formerly; ODC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                  |
| 8.2.16.1.          | 1.5 <u>1/2-ODC-2.04, Rev 0; ODCM:</u> Information (formerly; ODCM Section 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mation Relat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed to 40CFR190                                                                                                                                                                                   |
| 8.2.16.1.          | 1.6 <u>1/2-ODC-3.01, Rev 0; ODCM: Disperand Source Term Inputs (formerly; Olders of Source Term Inputs (formerly)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                  |
| 8.2.16.1.          | 1.7 <u>1/2-ODC-3.02, Rev 0;</u> ODCM: Bases ODCM Appendix D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s for ODCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Controls (formerly;                                                                                                                                                                              |
| 8.2.16.1.          | 1.8 <u>1/2-ODC-3.03, Rev 0; ODCM: Control</u> Programs (formerly, ODCM Appendi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S and REMP                                                                                                                                                                                       |
| 8.2.16.1.2         | Procedure 1/2-ODC-3.02, Rev 0: Technical was duplicated in the Bases for ODCM Cor. Technical Specification Amendments 1A-24                                                                                                                                                                                                                                                                                                                                                                                                                                                             | trols as perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | itted by Unit 1/2                                                                                                                                                                                |
| 8.2.16.1.3         | Procedure 1/2-ODC-3.03, Rev 0: Portions of 3.3.3.1 (including portions of Tables 3.3-6 a ODCM Controls as permitted by Unit 1/2 TAmendments 1A-246/2A-124. Specific High Range Channels of Noble Gas Effluent 9), RM-1VS-110 (7 and 9), RM-1GW-109 (and 109D], the Atmospheric Steam Dump Valoric Discharge Monitors [RM-1MS-100A, Band Pump Turbine Exhaust Monitor [RM-1MS-Monitoring (PMM) was also added for claric when the primary instrument is inoperable considered an editorial change because it may (or appropriate form number), which were it approved station documents. | and 4.3-3) we echnical Specially, this in the Monitors [16] and 9), and alve/Code Standard Aux 101]. The Profession of new Addition of erely specification specification of the control of | ere transferred to the cification acludes the Mid and RM-1VS-109 (7 and 1 2HVS-RQ109C afety Relief Valve iliary Feedwater replanned Method of ecessary actions the PMM's are es the asset number |
| 8.2.16.1.4         | Procedure 1/2-ODC-3.03, Rev 0: Added cla 3.3.3.9 Table 3.3-13 to show that Action 30 to the initial batch purge of the reactor contareleases of reactor containment atmosphere are considered continuous releases.                                                                                                                                                                                                                                                                                                                                                                      | A and Action ainment atmo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3B are applicable sphere. All other                                                                                                                                                              |

| Beaver Valley Power Station                     |           | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>41 of 82                 |  |

- 8.2.16.1.5 Procedure 1/2-ODC-3.03, Rev 0: Added specific plant asset numbers to ODCM Control 3.3.3.10 Table 3.3-13 and Table 4.3-13 to show that Sample Flow Rate Monitor flow transmitters [2HVS-FIT101-1, 2RMQ-FIT301-1, 2HVL-FIT112-1 and 2RMQFIT303-1] may be used as comparable alternates when the primary instruments [RM-11 Monitor Item 28 for 2HVS-RQ101, 2RMQ-RQ301, 2HVL-RQ112 and 2RMQ-RQ303], respectively, are INOPERABLE. This is considered an editorial change because the primary monitoring channel (i.e.; RM-11 Monitor Item 28) display already receives its input from these same flow transmitters.
- 8.2.16.1.6 Procedure 1/2-ODC-3.03, Rev 0: Added notation to ODCM Control 3.3.3.10 Table 3.3-13 and Table 4.3-13 to show that [RM-1GW-109 Channel 5] may be used as a comparable alternate to [RM-1GW-108B] for continuous releases. However, since [RM-1GW-109 Channel 5] cannot perform an automatic isolation of gaseous waste decay or storage tank releases, then notation was also added to prevent using this monitor as a comparable alternate for batch releases. This is considered an editorial change because it merely specifies the asset number of a redundant alternate monitoring channel that was included in previously approved station documents.
- 8.2.16.1.7 Procedure 1/2-ODC-3.03, Rev 0: Replaced the requirements for "Particulate Activity Monitors" in ODCM Control 3.3.3.10 Tables 3.3-13 and Table 4.3-13 with requirements for "Particulate and Iodine Samplers". This is considered an editorial change because the NRC guidance document used for preparation of ODCM Controls (NUREG-1301) contains the clarification that the requirements listed in these Tables are for the "Particulate and Iodine Samplers", and not for the "Particulate Activity Monitors".
- 8.2.16.2 The justification used for change (16) to the ODCM is as follows:
  - 8.2.16.2.1 The specific radiation monitoring channels transferred to the ODCM provide alarms and indications to alert plant personnel of high radiation conditions and to assist in evaluating and trending plant effluents. The Actions applicable if the monitors are inoperable require only that area surveys be performed on a daily basis, or that explanations of inoperability be provided in an annual effluent report. The Actions do not impact or reference the operability of other systems nor do the Actions require that plant operation be terminated at any time.
  - 8.2.16.2.2 Some of the radiation monitoring effluent monitors transferred to the ODCM provide indications used to assess selected plant parameters following an accident consistent with the recommendations of NUREG-0737. However, the monitors do not provide indication for post accident variables that have been identified as Regulatory Guide 1.97 Type A or Category I.

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>42 of 82                 |

- 8.2.16.2.3 The Safety Analysis performed for the License Amendments conclude that the radiating monitoring channels transferred to the ODCM do not reduce the effectiveness of the requirements being relocated. Rather, the transferred results in a change in the regulatory control required for future changes made to the requirements. The requirements will continue to be implemented by the appropriate plant procedures in the same manner as before. However, future changes to the transferred requirements will be controlled in accordance with 10 CFR 50.59 instead of requiring a license amendment per 10 CFR 50.90.
- 8.2.16.2.4 Based on the above, these changes will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, these changes will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation.
- 8.2.17 Change (17) of BV-1 and 2 OCDM (Effective August 2002)
  - 8.2.17.1 A description of the changes implemented with this revision are as follows:
    - 8.2.17.1.1 Procedure 1/2-ODC-3.03, Rev 1: Technical Specification LCO 3.11.1.4 for Liquid Storage Tank Activity Limits, and LCO 3.11.2.5, for Gas Storage Tank Activity Limits were transferred to ODCM Controls 3.11.1.4 and 3.11.2.5 respectively as permitted by Unit 1/2 Technical Specification Amendments 1A- 250/2A-130. (3.2.6.9)
      - As part of the preparation work for transfer of the Liquid Storage Tank Activity Limits to the ODCM, the 10 Curie Limit for these tanks was re-verified and documented in Calculation Package ERS-ATL-95-007. The results of this calculation provide tank specific activity limits to ensure that the 10CFR20 Appendix B Table 2, Col. 2 EC Limits will be maintained should an accidental release of the tank(s) contents occur. Previously, LCO 3.11.1.4 used a generic limit of 10 Curies for each of the four tanks listed. However, formal documentation for derivation of the 10 Curie value could not be located in the records storage system.
      - 8.2.17.1.1.2 In addition, individual tank Activity limits were developed for the Unit 1 and 2 Refueling Water Storage Tanks (RWST's), which were also added to this ODCM Control. The Surveillance Requirements for determination of RWST Activity will not be performed once per 7 days like the other Liquid Storage Tanks, because radioactive material is not added to the RWST's on a weekly basis. Therefore, the surveillance for determination of (RWST's) Activity will be performed within 7 days of returning reactor cavity water (radioactive material) back to the RWST (i.e.; during a refueling outage).

| Beaver Valley Power Station                     | Procedure N | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|-------------|------------------------------------------|--|
| Title:                                          | Unit: 1/2   | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:   | Page Number:<br>43 of 82                 |  |

- 8.2.17.1.2 Procedure 1/2-ODC-3.03, Rev 1: Changed the due date of the Annual Radioactive Effluent Release Report from April 1 to May 1 as permitted by Unit 1/2 Technical Specification Amendments 1A-250/2A-130. (3.2.6.9)
- 8.2.17.1.3 Procedure 1/2-ODC-3.03, Rev 1: Changed Table 3.3-12 of Control 3.3.3.9 to correct an obvious omission of Channel Operability and Action Statement Requirements for Flow Rate Measurement Device [FR-1LW-103] on the Liquid Waste Containment Drain Line. This obvious omission is detailed in CR 02-05533. (3.2.2.12)
- 8.2.17.1.4 Procedure 1/2-ODC-3.03, Rev 1: Made editorial changes to correct the primary asset numbers of the BVPS-2 Sample Flowrate Monitors as shown on Tables 3.3-13 and 4.3-13 of Control 3.3.3.10. These changes clarify that the primary Sampler Flowrate Monitor is the device that is used for monitoring sample flowrate through the Particulate and Iodine Sampler Flowpath, not the Particulate and Iodine Monitoring Flowpath.
- 8.2.17.2 The justification used for change (17) of the ODCM is as follows:
  - 8.2.17.2.1 These changes merely transfers existing storage tank activity limits from the Technical Specification to the ODCM and changes the due date for the Annual Radioactive Effluent Release Report as permitted by Unit 1/2 Technical Specification Amendments 1A-250/2A-130. As part of this change, the ODCM Control for Liquid Storage Tank Activity Limits was enhanced to add ODCM Controls and Surveillance Requirements for the Unit 1 and Unit 2 RWST's. Therefore, these changes (as delineated in the Technical Specification Amendments) will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, these changes will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation.
- 8.2.18 Change (18) of the BV-1 and 2 ODCM (Effective October 2002)
  - 8.2.18.1 A description of the changes implemented with this revision are as follows:
    - 8.2.18.1.1 Procedure 1/2-ODC-3.03, Rev 2: Added requirement for applicable station groups notification of pending ODCM changes as described in CR 09-05711. (3.2.2.13)
  - 8.2.18.2 The justification used for change (18) of the ODCM is as follows:
    - 8.2.18.2.1 This change is considered editorial in nature, which exempts the change from Regulatory Applicability Determination. Therefore, this change will not impact the level of radioactive effluent control required by 10CFR20.1302, 40CFR Part 190, 10CFR50.36a, and Appendix I to 10CFR50. Also this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation.

| Beaver Valley Power Station                     | Procedure Number:<br>1/2-ODC-1.01 |                                          |
|-------------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                         | Page Number:<br>44 of 82                 |

### 8.2.19 Change (19) of BV-1 and 2 ODCM (Effective November 2002)

- 8.2.19.1 A description of the changes implemented with this revision are as follows:
  - 8.2.19.1.1

    Procedure 1/2-ODC-2.01, Rev 1: Changed Table 1.1-1a and 1.1-1b to add Zn-65 to the respective BV-1 and 2 Liquid Source Term as described in CR 02-06174 (CA-01, CA-13 and CA-14). For information, zinc may be added to the reactor coolant system in an effort to reduce general corrosion of primary system materials and mitigation of stress corrosion cracking. Added benefits to zinc addition involve preferential release of nickel and cobalt which, in-turn, reduces plant dose rates. Development of the specific Zn-65 Annual Release Activity is delineated in Calculation Package No. ERS-ATL-83-027. (3.2.3.1) Addition of Zn-65 to the source terms also caused changes in the Liquid Effluent Monitor Alarm Setpoints, and appropriate monitor conversion factors.
  - 8.2.19.1.2 <u>Procedure 1/2-ODC-2.01, Rev 1</u>: Table 1.1-1a was changed to update the remainder of the source term with annual release values derived in Stone and Webster Calculation Package No. UR(B)-160. (3.2.3.10)
  - 8.2.19.1.3 Procedure 1/2-ODC-2.01, Rev 1: Editorial changes were made to this procedure for update of ODCM references and to add discussion of why Liquid Waste Evaporators are no longer used at BV-1 and 2 to process liquid waste.
- 8.2.19.2 The justification used for change (19) of the ODCM is as follows:
  - 8.2.19.2.1 Addition of Zn-65 to the BV-1 and 2 Liquid Source Terms, along with update of the BV-1 and 2 Liquid Source Term is considered a procedure correction, and is enveloped by the Regulatory Applicability Determination performed for BV-1 ECP-02-0410. Based on the above, these changes will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, these changes will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation.
- 8.2.20 Change (20) of BV-1 and 2 ODCM (Effective October 2003)
  - 8.2.20.1 A description of the changes implemented with this revision are as follows:
    - 8.2.20.1.1 Procedure 1/2-ODC-2.01, Rev 2: Changed LW System diagrams
      (Attachment D) to indicate the flow path for cross connect of LW between
      Unit 1 and Unit 2.
    - 8.2.20.1.2 <u>Procedure 1/2-ODC-2.02, Rev 1</u>: Changed Table 2.1-1 to revise the source term for the Unit 1 Containment Vacuum Pumps as described in CR03-04830 (CA-03).

| Beaver Valley Power Station                     |           | Procedure Number:<br>1/2-ODC-1.01        |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>45 of 82                 |  |

- 8.2.20.1.3 Procedure 1/2-ODC-3.03, Rev 3: Changed the Preplanned Method of Monitoring (PMM) in Attachment D Table 3.3-6 and Table 4.3-3. Specifically, the 2nd PMM for the Reactor Building/SLCRS Mid & High Range Noble Gas Monitors (RM-1VS-110 Ch 7 & Ch 9) was changed FROM "(RM-1VS-107B)" TO "(RM-1VS-107B, or RM-1VS-110 Ch 5)". Also, the 2nd PMM for the Auxiliary Building Ventilation System Mid & High Range Noble Gas Monitors (RM-1VS-109 Ch 7 & Ch 9) was changed FROM "(RM-1VS-101B)" TO "(RM-1VS-101B, or RM-1VS-109 Ch 5)". Similarly, the 2nd PMM for the Gaseous Waste/ Process Vent System Mid & High Range Noble Gas Monitors (RM-1GW-109 Ch 7 & Ch 9) was changed FROM "(RM-1GW-108B)" TO "(RM-1GW-108B, or RM-1GW-109 Ch 5)".
- 8.2.20.1.4 <u>Procedure 1/2-ODC-3.03, Rev 3</u>: Changed Attachment J Control 3.11.1.4 to update the activity limits for the liquid storage tanks to the values specified in Calculation Package No. ERS-ATL-95-007.
- 8.2.20.1.5 Procedure 1/2-ODC-3.03, Rev 3: Changed Attachment K Table 4.11-2 to add more specific guidance for sampling of Gaseous Effluent Pathways. Specifically, this table is generic for Unit 1 & Unit 2 Gaseous Effluent Pathways, but sampling may only need required at some of the Gaseous Effluent Pathways rather than all of the Gaseous Effluent Pathways (as could be inferred from the wording in the Table Notation). Therefore to prevent unnecessary sampling, applicability statements were added to this table to delineate which ventilation systems are affected by the note(s). Also, note (f) includes a clarification of how compliance to this requirement is achieved per response to NRC Unresolved Item 50-334/83-30-05.
- 8.2.20.2 The justifications used for change (20) of the ODCM are as follows:
  - 8.2.20.2.1 Procedure 1/2-ODC-2.01, Rev 2: Changing the diagram to show the LW cross connect between Unit 1 and Unit 2 is not a change to plant configuration, and is considered a procedure correction. Specifically, this procedure of the ODCM already describes the shared radwaste treatments system. Also, the UFSAR's describe the cross connect. Based on the above, this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation.

8.2.20.2.2

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>46 of 82                 |

Procedure 1/2-ODC-2.02, Rev 1: The original source-term calculation for the GW System was based on an operating flow rate of 5 scfm for the Unit 1 containment vacuum pumps. The flow rate for the new pumps is 70 scfm. Consequently, the source-term was revised per Calculation Package ERS-HHM-87-014 and then transcribed to this procedure. Although the new pumps represent a factor of 15 increase in flow rate, the gaseous effluent monitor alarm setpoints are unchanged. Specifically, the previous setpoints were based on a percentage of Offsite Dose Rate Limits, and those values were actually above the range of the instruments, so an on-scale value was substituted. This is also true for the re-calculated setpoints, so the same onscale values are used. In summary, changing the source term is considered a procedure correction, and is enveloped by the Regulatory Applicability Determination performed for BV-1 ECP-02-0079. Based on the above, this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. This procedure change implements a Corrective Action per CR03-04830-03.

- 8.2.20.2.3 Procedure 1/2-ODC-3.03, Rev 3: Changing the Preplanned Method of Monitoring (PMM) will prevent unnecessary grab sampling (ie; the 3rd PMM) when the primary channel for the Mid or High Range Noble Gas Monitor is inoperable. Specifically, IF other Noble Gas Monitoring channels are available on that effluent pathway, THEN monitoring should be assumed with those channels as the 2nd PMM. In summary, the 3rd PMM (ie; obtaining grab gas samples every 12 hours) should only be performed as a last resort to a complete lack of continuous noble gas monitoring channels being available on that effluent pathway. Based on the above, this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. This procedure change implements a Corrective Action per CR03-06123-01.
- 8.2.20.2.4 Procedure 1/2-ODC-3.03, Rev 3: Changing the activity limits for liquid storage tanks does not affect original plant accident analyses. Specifically, the original analyses were performed in accordance with NUREG-0800 SRP 15.7.3 using the best available data at that time. The updated analyses were also performed in accordance the same NUREG, but current (more accurate) data was used to determine allowable activity content in each tank. Based on the above, this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. This procedure change implements a Corrective Action per CR03-07487-05.

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>47 of 82                 |

8.2.20.2.5 Procedure 1/2-ODC-3.03, Rev 3: Changing Attachment K Table 4.11-2 to add more specific guidance for sampling of Gaseous Effluent Pathways is considered a simple change. Specifically, this change merely prevents unnecessary sampling of unaffected ventilation pathways. Based on the above, this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. This procedure change implements a Corrective Action per CR03-06281-01.

#### 8.2.21 Change (21) of BV-1 and 2 ODCM (Effective November 2004)

- 8.2.21.1 A description of the changes implemented with this revision are as follows:
  - 8.2.21.1.1 Procedure 1/2-ODC-1.01, Rev 4, Procedure 1/2-ODC-2.01, Rev 3 and
    Procedure 1/2-ODC-3.03, Rev 4: Changed ownership of procedures from the
    Radiation Protection Section to the Nuclear Environmental & Chemistry
    Section per CR05-01169-14, CR05-01169-15 and CR05-01169-21.
  - 8.2.21.1.2 Procedure 1/2-ODC-2.01, Rev 3: Changed Attachment D to correct the volume of Liquid Waste Drain Tanks (2LWS-TK21A/21B) from 7,500 gal/tank to 10,000 gal/tank.
  - 8.2.21.1.3 Procedure 1/2-ODC-3.03, Rev 4: Changed Attachment C to implement the increased flexibility in Mode restraints that is described in LAR 1A-321/2A-193 and CR03-09288-19.
  - 8.2.21.1.4 Procedure 1/2-ODC-3.03, Rev 4: Corrected a typographical error in Attachment O, Control 3.11.2.5 per CR03-11726-01. Specifically, the final word in Action (a) was changed from "nad" to "and".
  - 8.2.21.1.5 Procedure 1/2-ODC-3.03, Rev 4: Revised Attachment F, (Table 3.3-13 and 4.3-13) to correct a typographical error per CR04-01643-01. Specifically, the Asset Number for the Vacuum Gauge used for measurement of sample flow (from the Alternate Sampling Device) was changed from [PI-1GW-13] to [PI-1GW-135].
  - 8.2.21.1.6 Procedure 1/2-ODC-3.03, Rev 4: Revised Attachment F, (Table 3.3-13 and 4.3-13) per CR04-02275-01. Specifically, clarification was provided to indicate that the "Sampler Flow Rate Monitors are the devices used for "Particulate and Iodine Sampling".
  - 8.2.21.1.7 Procedure 1/2-ODC-3.03, Rev 4: Revised Attachment J, Control 3.11.1.4, ACTION a, to add clarification that requires specific calculation of 10 CFR Part 20 EC's when the individual tank limits are exceeded.

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>48 of 82                 |

- 8.2.21.2 The justifications used for change (21) of the ODCM are as follows:
  - Procedure 1/2-ODC-1.01, Rev 4, Procedure 1/2-ODC-2.01, Rev 3 and Procedure 1/2-ODC-3.03, Rev 4: Changing ownership of these procedures from Radiation Protection to Nuclear Environmental & Chemistry is considered a procedure correction. SINCE the changes merely transfers RETS, REMP and ODCM responsibilities to a different manager, THEN the changes will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the changes will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. The procedure changes implement Corrective Actions per CR05-01169-14, CR05-01169-15, and CR05-01169-21.
  - 8.2.21.2.2 Procedure 1/2-ODC-2.01, Rev 3: Changing the volume of the Unit 2 Liquid Waste Tank is considered a procedure correction. SINCE this was a typographical error on the Attachment, THEN it does not impact the actual tank volume that is used in effluent release calculations and offsite dose determinations. Therefore, this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation.
  - 8.2.21.2.3 Procedure 1/2-ODC-3.03, Rev 4: Changing Attachment C to implement the increased flexibility in Mode restraints (described in LAR 1A-321/2A-193) is considered a simple change. SINCE the change implements guidance provided in the Technical Specifications, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. This procedure change implements a Corrective Action per CR03-09288-19.
  - 8.2.21.2.4 Procedure 1/2-ODC-3.03, Rev 4: The typographical error in Attachment O, Control 3.11.2.5 is considered a procedure correction. Therefore, this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. This procedure change implements a Corrective Action per CR03-11726-01.

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number:<br>49 of 82                 |

- 8.2.21.2.5 Procedure 1/2-ODC-3.03, Rev 4: Correcting the typographical error in Attachment F, (Table 3.3-13 and 4.3-13) is considered a procedure correction. SINCE this change merely corrects an obvious error, THEN this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. This procedure change implements a Corrective Action per CR04-01643-01.
- 8.2.21.2.6 Procedure 1/2-ODC-3.03, Rev 4: Providing clarification for the Sampler Flow Rate Monitors is considered a simple change, because it was possible to misinterpret which filter paper sampler (e.g.; moving filter or fixed filter) the specification was referring to. SINCE no changes were made to actual samplers used for effluent release calculations or offsite dose determinations, THEN this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. This procedure change implements a Corrective Action per CR04-02275-01.
- 8.2.21.2.7 Procedure 1/2-ODC-3.03, Rev 4: Providing clarification that requires calculation of 10 CFR Part 20 EC's (when the individual tank limits are exceeded) is considered a simple change. Specifically, the individual tank limits were derived from an assumed source-term and may not be representative of the actual source term at time of sample. This clarification also ensures that a "Special Report" is submitted only when the 10 CFR Part 20 EC limits are actually exceeded (i.e.; when calculated using actual sample analysis) at the nearest surface water supply and the nearest potable water supply in the unrestricted area. Per Calculation Package No. ERS-ATL-95-007 (5.2.3.9), the nearest surface water supply and the nearest potable water supply are considered to be the entrance to the Midland Water Treatment Facility. SINCE no changes were made to the bases for the tank activity limits, THEN this change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, this change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation.

| Beaver Valley Power Station                     | Beaver Valley Power Station  Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|-------------------------------------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                                                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                                                   | Page Number: 50 of 82                    |

### 8.2.22 Change (22) of BV-1 and 2 ODCM (Effective August 2006)

- 8.2.22.1 A description of the changes implemented with this revision are as follows:
  - 8.2.22.1.1

    Procedure 1/2-ODC-2.01, Rev 4: Incorporated Improved Technical Specification Reference changes from T.S. 6.8.6 to T.S. 5.5.2, per CR05-03306. Revised the alarm setpoints of [RM-1RM-100] and [RM-1DA-100] via vendor calculation Package No. 8700-UR(B)-223. These changes reflect the Extended Power Uprate (EPU) at Unit 1 per ECP-04-0440, Unit 1 TS Amendment No. 275 and CR06-04908-03. Updated the figure of Liquid Effluent Release Points (Attachment D, Figure 1.4-3) to incorporate a modified version of Plant Drawing No. 8700-RM-27F per CR05-03854-01.
  - 8.2.22.1.2 Procedure 1/2-ODC-2.02, Rev 2: Changed ownership of procedure from the Radiation Protection Section to the Nuclear Environmental & Chemistry Section per CR05-01169-16. Incorporated a "\leq" designation for all low range noble gas effluent monitor alarm setpoints to meet the provisions of vendor calculation Package No. 8700-UR(B)-223. These changes reflect the Extended Power Uprate (EPU) at Unit 1 per ECP-04-0440, Unit 1 TS Amendment No. 275 and CR06-04908-04.
  - 8.2.22.1.3 Procedure 1/2-ODC-3.03, Rev 5: Revised the alarm setpoints of the mid range and high range noble gas effluent monitors via vendor calculation Package No. 8700-UR(B)-223. These changes reflect the Extended Power Uprate (EPU) at Unit 1 per ECP-04-0440, Unit 1 TS Amendment No. 275 and CR06-04908-03.
- 8.2.22.2 The justifications used for change (22) of the ODCM are as follows:
  - 8.2.22.2.1 Procedure 1/2-ODC-2.01, Rev 4: Updating the alarm setpoints and the figure of liquid effluent release points are considered procedure corrections, because they merely update the ODCM to agree with previously approved documents that were implemented with TS Amendments. SINCE the change merely updates the ODCM, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. SINCE PORC review & acceptance is required per TS 6.14 and 1/2-ADM-1640, THEN the review is considered complete per Regulatory Applicability Determination RAD-06-03831, RAD-06-01658 and RAD-06-05070. As previously noted, these procedure changes implement Corrective Actions per CR06-04908-03, and CR05-03854-01.

| Beaver Valley Power Station                     |           | Procedure Number:<br>1/2-ODC-1.01        |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number: 51 of 82                    |  |

- 8.2.22.2.2 Procedure 1/2-ODC-2.02, Rev 2: Changing the ownership of the procedure and updating the alarm setpoints with a "<"designation are considered procedure corrections, because they merely update the ODCM to agree with previously approved documents that were implemented with TS Amendments. SINCE the change merely updates the ODCM, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. SINCE PORC review & acceptance is required per TS 6.14 & 1/2-ADM-1640, THEN the review is considered complete per Regulatory Applicability Determination RAD-06-03831 and RAD-06-01658. As previously noted, these procedure changes implement Corrective Actions per CR05-01169-16 and CR06-04908-04.
- Procedure 1/2-ODC-3.03, Rev 5: Updating the alarm setpoints is considered a procedure correction, because this merely updates the ODCM to agree with previously approved documents that were implemented with TS Amendments. SINCE the change merely updates the ODCM, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. SINCE PORC review & acceptance is required per TS 6.14 & 1/2-ADM-1640, THEN the review is considered complete per Regulatory Applicability Determination RAD-06-03831 and RAD-06-01658. As previously noted, these procedure changes implement Corrective Actions per CR06-04908-03.
- 8.2.23 Change (23) of BV-1 and 2 ODCM (Effective December 2006)
  - 8.2.23.1 A description of the changes implemented with this revision are as follows:
  - Procedure 1/2-ODC-1.01, Rev 5: Changed Attachment C, Table F: 3a of the procedure matrix to add Form 1/2-ENV-01.04.F01 as documentation for performing a Channel Functional Test of the Unit 1 Primary and Alternate Gaseous Effluent Sampler Flowrate Measuring Devices per CR04-09895. Attachment C Tables were also changed to denote transition of ODCM Channel Checks from Operations (L5 Logs) to Nuclear Environmental & Chemistry (Form 1/2-ADM-0606.F01 & F02) per CR05-01422. Also, per Improved Technical Specifications (ITS), changed Attachment C Tables to reflect change in term from CHANNEL FUNCTIONAL TEST to CHANNEL OPERATIONAL TEST (COT), and added step 4.1.2 to identify requirements for ODCM changes record review and retention requirements. Revised step 5.3 to require ODCM changes be reviewed and accepted by PORC per CR05-03306.

| Beaver Valley Power Station                     |              | 1/2-ODC-1.01                             |
|-------------------------------------------------|--------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>52 of 82                 |

- 8.2.23.1.2 Procedure 1/2-ODC-2.01, Rev 5: Revised the alarm setpoints of [2SWS-RQ101] via vendor calculation Package No. 10080-UR(B)-508. These changes reflect the Extended Power Uprate (EPU) at Unit 2 per ECP-04-0441, Unit 2 TS Amendment No. 156 and CR06-6476-01.
- 8.2.23.1.3 Procedure 1/2-ODC-2.03, Rev 1: Updated the existing REMP sampling locations with the most recent survey results that were performed using a Global Positioning System per CR05-01390-02.
- 8.2.23.1.4 <u>Procedure 1/2-ODC-3.02, Rev 2</u>: Changed ownership of procedure from the Radiation Protection Section to the Nuclear Environmental & Chemistry Section per CR05-01169-20.
- 8.2.23.1.5 Procedure 1/2-ODC-2.03, Rev 1, Procedure 1/2-ODC-2.04, Rev 1 and Procedure 1/2-ODC-3.01, Rev 1: Changed ownership of procedures from the Radiation Protection Section to the Nuclear Environmental & Chemistry Section per CR05-01169-17, CR05-01169-18 and CR06-01169-19.
- 8.2.23.2 The justifications used for change (23) of the ODCM are as follows:
  - 8.2,23.2,1 Procedure 1/2-ODC-1.01, Rev 5: Changing Attachment C, Table F: 3a of the procedure matrix to add Form 1/2-ENV-01.04.F01 as documentation for performing the Channel Functional Test of the Unit 1 Primary and Alternate Gaseous Effluent Sampler Flowrate Measuring Devices is considered a procedure correction, because no Acceptance Criteria was altered. Transition of ODCM Channel Checks from Operations (L5 Logs) to Nuclear Environmental & Chemistry (Form 1/2-ADM-0606.F01 & F02) is also considered a procedure correction, because the no Acceptance Criteria was altered. SINCE these changes merely correct the procedure matrix, THEN the changes will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. As previously noted, these procedure changes implement Corrective Actions per CR04-09895, CR05-01422 and CR05-03306.

| Beaver Valley Power Station                     | ey Power Station  Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                                        | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                                        | Page Number: 53 of 82                    |

- 8.2.23.2.2 Procedure 1/2-ODC-2.01, Rev 5: Updating the alarm setpoints is considered a procedure correction, because this merely updates the ODCM to agree with previously approved documents that were implemented with TS Amendments. SINCE the change merely updates the ODCM, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. SINCE PORC review & acceptance is required per TS 6.14 & 1/2-ADM-1640, THEN the review is considered complete per Regulatory Applicability Determination RAD-06-04585. As previously noted, these procedure changes implement Corrective Actions per CR06-6476-01.
- 8.2.23.2.3 Procedure 1/2-ODC-2.03, Rev 1: Updating the existing REMP sampling locations with the most recent survey results that were performed using a Global Positioning System is considered a procedure correction. SINCE the change provides more accurate distances to existing REMP sampling locations, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. The procedure change implements Corrective Actions per CR04-00149-12 and CR05-01390-02.
- 8.2.23.2.4 Procedure 1/2-ODC-2.03, Rev 1, Procedure 1/2-ODC-2.04, Rev 1 and Procedure 1/2-ODC-3.01, Rev 1: Changing ownership of these procedures from Radiation Protection to Nuclear Environmental & Chemistry is considered a procedure correction. SINCE the changes merely transfers RETS, REMP and ODCM responsibilities to a different manager, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. These procedure changes implement Corrective Actions per CR05-01169-17, CR05-01169-18 and CR06-01169-19.
- 8.2.24 Change (24) of BV-1 and 2 ODCM (Effective June 2007)
  - 8.2.24.1 A description of the changes implemented with this revision are as follows:
    - 8.2.24.1.1 Procedure 1/2-ODC-3.03, Rev 6: Incorporated Improved Technical Specifications (ITS). This includes transfer of programmatic controls for BV-2 Noble Gas Effluent Steam Monitors [2MSS-RQ101A], [2MSS-RQ101B] and [2MSS-RQ101C] from the Technical Specifications to ODCM procedure 1/2-ODC-3.03 (Attachment D Tables 3.3-6 and 4.3-3). Reference CR05-03306.

| Beaver Valley Power Station                     | Procedure Number:<br>1/2-ODC-1.01 |                                          |
|-------------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                          | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                         | Page Number: .54 of 82                   |

- 8.2.24.1.2 Procedure 1/2-ODC-3.03, Rev 6: Revised Attachment J to update the outside liquid storage tank activity limits via Calculation Package No. ERS-ATL-95-007, R2. Reference SAP Order 200197646-0110.
- 8.2.24.1.3 Procedure 1/2-ODC-3.03, Rev 6: Revised Attachment E to clarify that the Applicability for tank level indicating devices is during additions to the tank. Reference CR06-04944.
- 8.2.24.1.4 Procedure 1/2-ODC-3.03, Rev 6: Revised Attachment E Table 3.3-12 to add an alternate Action when the primary Flow Rate Measurement Device [FT-1CW-101-1] is not OPERABLE. The alternate Action (25) uses local measurements (as described in 1MSP-31.06-I) to determine a total dilution flow rate during liquid effluent releases. Reference SAP Order 200240681.
- 8.2.24.1.5 Procedure 1/2-ODC-3.03, Rev 6: Revised Attachment F Tables 3.3-13 and 4.3-13 to clarify the Functional Location of the Sampler Flow Rate Monitors for the BV-2 gaseous effluent release pathways. Specifically, the procedure was changed to refer to Functional Location [2HVS-FIT101-1] instead of [2HVS-FIT101], [2RMQ-FIT301-1] instead of [2RMQ-FIT303-1] instead of [2RMQ-FIT303]. Reference CR07-12924 and SAP Order 200247228-0410.
- 8.2.24.2 The justifications used for change (24) of the ODCM are as follows:
  - 8.2.24.2.1 Procedure 1/2-ODC-3.03, Rev 6: Incorporating the Improved Technical Specifications (ITS) is considered a simple change, because this was performed in accordance with the guidance provided in Unit 1/2 Technical Specification Amendments No. 278/161. The ITS upgrade includes transfer of programmatic controls for BV-2 Noble Gas Effluent Steam Monitors [2MSS-RQ101A], [2MSS-RQ101B] and [2MSS-RQ101C] from the Technical Specifications to ODCM procedure 1/2-ODC-3.03 (Attachment D Tables 3.3-6 and 4.3-3. **SINCE** the change was performed in accordance with the TS Amendments, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. PORC review and acceptance of this change was completed in May 2007. The procedure change implements Corrective Actions per CR05-03306.

| Beaver Valley Power Station                     | 4         | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number: 55 of 82                    |  |

- Procedure 1/2-ODC-3.03, Rev 6: Revising Attachment J to update the outside liquid storage tank activity limits via Calculation Package No. ERS-ATL-95-007, R2 is considered a simple change, because this change merely implements updated release volumes and source-terms from other station documents. SINCE the change was performed in accordance with the guidance provided in Standard Review Plan 15.7.3 of NUREG-0800, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. PORC review and acceptance of this change was completed in May 2007. The procedure change implements Corrective Actions per SAP Order 200197646-0110.
- 8.2.24.2.3 Procedure 1/2-ODC-3.03, Rev 6: Revising Attachment E to indicate that the Applicability for tank level indicating devices is during additions to the tank is considered a simple change, because this merely clarifies the existing Applicability of the instrument. SINCE this change merely provides clarification of existing Applicability, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. PORC review and acceptance of this change was completed in May 2007. The procedure change implements Corrective Actions per CR06-04944-01.
- 8.2.24.2.4 Procedure 1/2-ODC-3.03, Rev 6: Revising Attachment E Table 3.3-12 to add an alternate Action when the primary Flow Rate Measurement Device [FT-1CW-101-1] is not OPERABLE is considered a simple change, because use of an alternate Action does not modify the intent of estimating flow rate when the primary and alternate flow rate instruments are not OPERABLE. SINCE this change merely provides an alternate means of estimating dilution flow rate during liquid releases, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. PORC review and acceptance of this change was completed in May 2007. The procedure change implements Corrective Actions per SAP Order 200240681.

8.2.24.2.5

| Beaver Valley Power Station                     | aver Valley Power Station  Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|-----------------------------------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                                              | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                                                 | Page Number: 56 of 82                    |

Procedure 1/2-ODC-3.03, Rev 6: Revising Attachment F Tables 3.3-13 and 4.3-13 to clarify the Functional Location of the Sampler Flow Rate Monitors for the BV-2 gaseous effluent release pathways is considered a simple change, because this merely clarifies the actual Functional Location in use. SINCE this change merely updates a location title, THEN the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50. Also, the change will not impact the accuracy or reliability of effluent dose or alarm setpoint calculation. PORC review and acceptance of this change was completed in May 2007. The procedure change implements Corrective Actions per CR07-12924 and SAP Order 200247228-0410.

| Beaver Valley Power Station                     |           | Procedure Number:<br>1/2-ODC-1.01        |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit:     | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number: 57 of 82                    |  |

## ATTACHMENT A

|                | ATTACHMENT A Page 1 of 6 LIST OF ODCM TABLES                                                         |
|----------------|------------------------------------------------------------------------------------------------------|
| •              |                                                                                                      |
| LIQUID         | EFFLUENTS Included in Procedure 1/2-ODC-2.01                                                         |
| 1.1-1a         | BV-1 Liquid Source Term                                                                              |
| 1.1-1b         | BV-2 Liquid Source Term                                                                              |
| 1.2-1a         | BV-1 Recirculation Times Required Before Sampling Of Liquid Discharge Tanks                          |
| 1.2-1b         | BV-2 Recirculation Times Required Before Sampling Of Liquid Discharge Tanks                          |
| 1.3-1          | Ait Values For An Adult For The Beaver Valley Site                                                   |
| GASEOL         | S EFFLUENTS Included in Procedure 1/2-ODC-2.02                                                       |
| 2.1-1a         | BV-1 Radionuclide Mix For Gaseous Effluents                                                          |
| 2.1-1b         | BV-2 Radionuclide Mix For Gaseous Effluents                                                          |
| 2.1-2a         | BV-1 Monitor Detector Efficiencies                                                                   |
| 2.1-2b         | BV-2 Monitor Detector Efficiencies                                                                   |
| 2.2-1          | Modes Of Gaseous Release From Beaver Valley Site Vents For Implementation Of 10 CFR 20 And 10 CFR 50 |
| 2.2-2a         | BV-1 Radionuclide Mix For Gaseous Effluents                                                          |
| 2.2-2b         | BV-2 Radionuclide Mix For Gaseous Effluents                                                          |
| 2.2-3          | Distances Of Limiting Maximum Individual Receptors To Release Points For Annual $\chi/Q$ Values      |
| <u>ANNUA</u> I | _ AVERAGE χ/Q Included in Procedure 1/2-ODC-2.02                                                     |
| 2.2-4          | BV-1 And 2 Containment Vents (Ground Release)                                                        |
| 2.2-5          | BV-1 And 2 Ventilation Vents (Ground Release)                                                        |
| 2.2-6          | BV-1 And 2 Process Vent (Elevated Release)                                                           |
| 2.2-7          | BV-1 And 2 Turbine Building Vents (Ground Release)                                                   |
| 2.2-8          | BV-2 Decontamination Building Vent (Ground Release)                                                  |
|                |                                                                                                      |

|                   | Beaver Valley Power Station                                          | Procedure Nu          | nmber:<br>1/2-ODC-1.01              |
|-------------------|----------------------------------------------------------------------|-----------------------|-------------------------------------|
| Title:            | · · · · · · · · · · · · · · · · · · ·                                | Unit:                 | Level Of Use: General Skill Referen |
| ODCM:             | Index, Matrix and History of ODCM Changes                            | 1/2<br>Revision:<br>6 | Page Number: 58 of 82               |
|                   | ATTACHMENT A                                                         |                       | 38 01 82                            |
|                   | Page 2 of 6<br>LIST OF ODCM TABI                                     | LES                   | •                                   |
| 2.2-9             | BV-2 Waste Gas Storage Vault Vent (Ground Rel                        | ease)                 | •                                   |
| 2.2-10            | BV-2 Condensate Polishing Building (Ground Re                        | lease)                |                                     |
| NOBLE             | GAS DOSE FACTORS AND DOSE PARAMETER                                  | RS Included in 1/2-C  | DDC-2.02                            |
| 2.2-11            | Dose Factors For Noble Gases And Daughters                           | ,                     |                                     |
| 2.2-12            | Dose Parameters For Finite Elevated Plumes, Bea                      | ver Valley Site       |                                     |
| <u>P&amp;I DO</u> | SE PARAMETERS Included in 1/2-ODC-2.02                               |                       |                                     |
| 2.2-13            | Piτ Values For A Child For The Beaver Valley Signature               | te                    |                                     |
| MODES             | OF GASEOUS RELEASES Included in Procedure                            | 1/2-ODC-2.02          |                                     |
| 2.3-1             | Modes Of Gaseous Release From The Beaver Val<br>CFR 20 And 10 CFR 50 | ley Site Vents For I  | mplementation Of 10                 |
| P&I OR            | GAN DOSE FACTORS Included in 1/2-ODC-2.02                            |                       |                                     |
| 2.3-2             | R Values for Inhalation - Adult                                      |                       | •                                   |
| 2.3-3             | R Values for Inhalation - Teen                                       |                       |                                     |
| 2.3-4             | R Values for Inhalation - Child                                      |                       |                                     |
| 2.3-5             | R Values for Inhalation - Infant                                     |                       |                                     |
| 2.3-6             | R Values for Ground                                                  |                       |                                     |
| 2.3-7             | R Values for Vegetation - Adult                                      | •                     |                                     |
| 2.3-8             | R Values for Vegetation - Teen                                       |                       | 5                                   |
| 2.3-9             | R Values for Vegetation - Child                                      |                       | . •                                 |
| 2.3-10            | R Values for Meat - Adult                                            |                       |                                     |
| 2.3-11            | R Values for Meat - Teen                                             | · .                   |                                     |
| 2.3-12            | R Values for Meat - Child                                            |                       |                                     |
| 2.3-13            | R Values for Cow Milk - Adult                                        |                       |                                     |
| 2.3-14            | R Values for Cow Milk - Teen                                         |                       |                                     |

|                   | Beaver Valley Power Station                                  | Procedure Nu    | umber:<br>1/2-ODC-1.01                   |
|-------------------|--------------------------------------------------------------|-----------------|------------------------------------------|
| Title:            |                                                              | Unit:           | Level Of Use:<br>General Skill Reference |
| ODCM:             | Index, Matrix and History of ODCM Changes                    | Revision:       | Page Number: 59 of 82                    |
|                   | ATTACHMENT A Page 3 of 6 LIST OF ODCM TABLES                 |                 | 37 01 82                                 |
| 2.3-15            | R Values for Cow Milk - Child                                | -               |                                          |
| 2.3-16            | R Values for Cow Milk - Infant                               | ·               |                                          |
| 2.3-17            | R Values for Goat Milk - Adult                               |                 |                                          |
| 2.3-18            | R Values for Goat Milk - Teen                                |                 |                                          |
| 2.3-19            | R Values for Goat Milk - Child                               |                 | · · ·                                    |
| 2.3-20            | R Values for Goat Milk - Infant                              |                 |                                          |
| CONTI             | NUOUS RELEASE DEPOSITION PARAMETERS (0-5 Mile                | es) Included in | n Procedure 1/2-ODC-2.02                 |
| 2.3-21            | BV-1 And 2 Process Vent (Elevated Release)                   |                 |                                          |
| 2.3-22            | BV-1 And 2 Containment Vents (Ground Release)                |                 |                                          |
| 2.3-23            | BV-1 And 2 Ventilation Vents (Ground Release)                |                 |                                          |
| 2.3-24            | BV-1 And 2 Turbine Building Vents (Ground Release)           |                 | • .                                      |
| 2.3-25            | BV-2 Condensate Polishing Building (Ground Release)          |                 |                                          |
| 2.3-26            | BV-2 Decontamination Building Vent (Ground Release)          |                 |                                          |
| 2.3-27            | BV-2 Waste Gas Storage Vault Vent (Ground Release)           |                 |                                          |
| CONTII<br>Procedu | NUOUS RELEASE DEPOSITION PARAMETERS (SPEC<br>re 1/2-ODC-2.02 | CIAL DIST       | 'ANCES) Included i                       |
| 2.3-28            | BV-1 And 2 Process Vent (Elevated Release)                   |                 |                                          |
| 2.3-29            | BV-1 And 2 Containment Vents (Ground Release)                |                 |                                          |
| 2.3-30            | BV-1 And 2 Ventilation Vents (Ground Release)                |                 |                                          |
| 2.3-31            | BV-1 And 2 Turbine Building Vents (Ground Release)           |                 |                                          |
| 2.3-32            | BV-2 Condensate Polishing Building (Ground Release)          |                 |                                          |
| 2.3-33            | BV-2 Decontamination Building Vent (Ground Release)          |                 |                                          |
| 2.3-34            | BV-2 Waste Gas Storage Vault Vent (Ground Release)           |                 | e e                                      |
|                   |                                                              |                 |                                          |

C:4.3-3

C:3.3-12

C:4.3-12

C:3.3-13

|                    | Beaver Valley Power Station                                                 | Procedure Nu | ımber:<br>1/2-ODC-1.01                |
|--------------------|-----------------------------------------------------------------------------|--------------|---------------------------------------|
| Title:             |                                                                             | Unit:        | Level Of Use: General Skill Reference |
| ODCM: Ir           | dex, Matrix and History of ODCM Changes                                     | Revision:    | Page Number:<br>60 of 82              |
|                    | ATTACHMENT A Page 4 of 6 LIST OF ODCM TABLES                                |              |                                       |
| BATCH FOR ODC-2.02 | RELEASE DISPERSION PARAMETERS (Special Distance                             | ces) Include | d in Procedure 1/2-                   |
| 2.3-35             | BV-1 And 2 Containment Vents (Ground Release)                               |              |                                       |
| 2.3-36             | BV-1 And 2 Ventilation Vents (Ground Release)                               |              |                                       |
| 2.3-37             | BV-1 And 2 Process Vent (Elevated Release)                                  |              |                                       |
| BATCH F            | RELEASE DISPERSION PARAMETERS (0-5 Miles) Inclu                             | uded in Proc | cedure 1/2-ODC-2,02                   |
| 2.3-38             | BV-1 And 2 Process Vent (Elevated Release)                                  |              |                                       |
| ENVIRO             | NMENTAL MONITORING Included in Procedure 1/2-OD                             | C-2.03       |                                       |
| 3.0-1              | Radiological Environmental Monitoring Program                               |              |                                       |
| <b>DISPERS</b>     | ION CALCULATION Included in Procedure 1/2-ODC-3.0                           | <u>)1</u>    |                                       |
| A:1                | BV-1 And 2 Release Conditions                                               |              |                                       |
| INPUTS T           | TO COMPUTER CODES Included in Procedure 1/2-ODC-                            | <u>3.01</u>  |                                       |
| B:1a               | Inputs To GALE Code For Generation Of BV-1 Liquid S                         | Source Term  | Mixes                                 |
| B:1b               | Inputs To SWEC LIQ1BB Code For Generation Of BV-2                           | 2 Liquid Sou | rce Term Mixes                        |
| B:2a               | Inputs To SWEC GAS1BB Code For Generation Of BV-1 Gaseous Source Term Mixes |              |                                       |
| B:2b               | Inputs To SWEC GAS1BB Code For Generation of BV-2 Gaseous Source Term Mixes |              |                                       |
| ODCM C             | ONTROLS Included in Procedure 1/2-ODC-3.03                                  |              |                                       |
| C:1.1              | Operational Modes                                                           |              |                                       |
| C:1.2              | Frequency Notation                                                          |              |                                       |
| C:3.3-6            | Radiation Monitoring Instrumentation                                        |              |                                       |

Radiation Monitoring Instrumentation Surveillance Requirements

Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements

Radioactive Liquid Effluent Monitoring Instrumentation

Radioactive Gaseous Effluent Monitoring Instrumentation

| · · · · · · · · · · · · · · · · · · · | Beaver Valley Power Station                             | Procedure Nu     | umber:<br>1/2-ODC-1.01               |
|---------------------------------------|---------------------------------------------------------|------------------|--------------------------------------|
| Title:                                |                                                         | Unit:            | Level Of Use:                        |
| ODCM: In                              | dex, Matrix and History of ODCM Changes                 | 1/2<br>Revision: | General Skill Reference Page Number: |
|                                       | ATTACHMENT A                                            | 1 6              | 61 of 82                             |
|                                       | Page 5 of 6 LIST OF ODCM TABLES                         |                  | *                                    |
| C:4.3-13                              | Radioactive Gaseous Effluent Monitoring Instrumentatio  | n Surveillar     | ace Requirements                     |
| C:4.11-1                              | Radioactive Liquid Waste Sampling And Analysis Progr    |                  |                                      |
| C:4.11-2                              | Radioactive Gaseous Waste Sampling And Analysis Prog    | gram             |                                      |
| C:3.12-1                              | Radiological Environmental Monitoring Program           | ·                |                                      |
| C:3.12-2                              | Reporting Levels For Radioactivity Concentrations In En | vironmenta       | l Samples                            |
| C:4.12-1                              | Maximum Values For The Lower Limits Of Detection (I     | LD)              | :                                    |
| <u>FORMAT</u>                         | FOR ANNUAL REPORT Included in Procedure 1/2-ODG         | C-3.03           |                                      |
| E:6.9-1                               | Environmental Radiological Monitoring Program Summa     | ary              |                                      |
| ODCM CO                               | ONTROLS PROCEDURE MATRIX Included in Procedure          | e 1/2-ODC-       | 1.01                                 |
| F:1a                                  | BV-1 Radiation Monitoring Instrumentation Surveillance  | •                |                                      |
| F:1b                                  | BV-2 Radiation Monitoring Instrumentation Surveillance  | •                |                                      |
| F:2a                                  | BV-1 Liquid Effluent Monitor Surveillances              |                  |                                      |
| F:2b                                  | BV-2 Liquid Effluent Monitor Surveillances              |                  |                                      |
| F:3a                                  | BV-1 Gaseous Effluent Monitor Surveillances             |                  | ·<br>·                               |
| F:3b                                  | BV-2 Gaseous Effluent Monitor Surveillances             |                  | •                                    |
| F:4                                   | BV-1 and 2 Liquid Effluent Concentration Surveillances  |                  |                                      |
| F:5                                   | BV-1 and 2 Liquid Effluent Dose Surveillances           |                  |                                      |
| F:6                                   | BV-1 and 2 Liquid Effluent Treatment Surveillances      |                  |                                      |
| F:7                                   | BV-1 and 2 Liquid Storage Tank Activity Limit Surveilla | ances            |                                      |
| F:8                                   | BV-1 and 2 Gaseous Effluent Dose Surveillances          | **               |                                      |
| <b>F</b> :9                           | BV-1 and 2 Gaseous Effluent Air Dose Surveillances      |                  |                                      |
| F:10                                  | BV-1 and 2 Gaseous Effluent Particulate and Iodine Dos  | e Surveillan     | ces                                  |
| F:11                                  | BV-1 and 2 Gaseous Effluent Treatment Surveillances     |                  |                                      |

| Beaver Valley Power Station                     |              | Procedure Number:<br>1/2-ODC-1.01        |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>62 of 82                 |  |
|                                                 |              |                                          |  |

## ATTACHMENT A Page 6 of 6 LIST OF ODCM TABLES

| F:12a        | BV-1 Gaseous Storage Tank Activity Limit Surveillances |
|--------------|--------------------------------------------------------|
| F:12a        | BV-2 Gaseous Storage Tank Activity Limit Surveillances |
| F:13         | BV-1 and 2 Total Dose Surveillances                    |
| F:14         | BV-1 and 2 REMP Surveillances                          |
| F:15         | BV-1 and 2 Land Use Census Surveillances               |
| <b>F</b> :16 | BV-1 and 2 Interlaboratory Comparison Program          |

3.0 - 5

3.0-6

**Foodcrop Sampling Locations** 

Fish Sampling Locations

| Beaver Valley Power Station                     | Procedure Number: 1/2-ODC-1.01 |                                          |
|-------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:                      | Page Number: 63 of 82                    |

## ATTACHMENT B Page 1 of 1 LIST OF ODCM FIGURES

### LIST OF ODCM FIGURES JENTS Included in Procedure 1/2-ODC-2.01 1.4-1 BV-1 Liquid Radwaste System 1.4-2 BV-2 Liquid Radwaste System BV-1 and 2 Liquid Effluent Release Points 1.4-3 5-1 Site Boundary For Liquid Effluents GASEOUS EFFLUENTS Included in Procedure 1/2-ODC-2.02 2.4 - 1BV-1 and 2 Gaseous Radwaste System BV-1 and 2 Gaseous Effluent Release Points 2.4 - 25-1 Site Boundary For Gaseous Effluents RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM Included in Procedure 1/2-ODC-2.03 3.0 - 1Air Sampling Locations **TLD Locations** 3.0-2Shoreline Sediment, Surface Water, And Drinking Water Sampling Locations 3.0 - 33.0-4 Milk Sampling Locations

| Beaver Valley Power Station                     |              | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>64 of 82                 |  |

## ATTACHMENT C Page 1 of 19 ODCM CONTROLS PROCEDURE MATRIX

#### **BV-1 RADIATION MONITORING INSTRUMENTION SURVEILLANCES**

TABLE F: 1a

1/2-ODC-3.03, Attachment D Control 3.3.3.1: Maintain Radiation Monitoring Channels in Table 3.3-6 OPERABLE APPLICABILITY: MODES 1 thru 4

| ODCM SR      | DESCRIPTION                           | PROCEDURE                                            |
|--------------|---------------------------------------|------------------------------------------------------|
| 4.3.3.1      | Test Monitors at Table 4.3-3          |                                                      |
| •            | Frequency                             |                                                      |
| 4.3.3.1.1    | Noble Gas Effluent Monitors -         | NOTE: Actions for INOPERABLE Monitors are documented |
|              | SPINGS                                | in the Operations & Rad Effluent Shift Logs.         |
| 4.3.3.1.1.a  | Supplementary Leak Collection and     | 1MSP-43.59-I: Channel Calibration                    |
|              | Release System                        | Form 1/2-ADM-1611.F03: Channel Check or              |
|              | (RM-1VS-110 CH7 & CH9)                | Form 1/2-ADM-0606.F01: Channel Check                 |
|              | 1                                     | 1OST-43.07: Channel Operational Test                 |
| 4.3.3.1.1.b  | Auxiliary Building Ventilation System | 1MSP-43.60-I: Channel Calibration                    |
|              | (RM-1VS-109 CH7 & CH9)                | Form 1/2-ADM-1611.F03: Channel Check or              |
|              |                                       | Form 1/2-ADM-0606.F01: Channel Check                 |
|              | ·                                     | 1OST-43.07: Channel Operational Test                 |
| 4.3.3.1.1.c  | Process Vent System (RM-1GW-109       | 1MSP-43.58-I: Channel Calibration                    |
|              | CH7 & 9)                              | Form 1/2-ADM-1611.F03: Channel Check or              |
|              |                                       | Form 1/2-ADM-0606.F01: Channel Check                 |
| ·            |                                       | 1OST-43.07: Channel Operational Test                 |
| 4.3.3.1.2    | Noble Gas Steam Effluent              | NOTE: Actions for INOPERABLE Monitors are documented |
|              | Monitors                              | in the Operations & Rad Effluent Shift Logs.         |
| 4.3.3.1.2.ci | Atmospheric Steam Dump Valve and      | 1MSP-43.62-I: RM-1MS-100A Channel Calibration        |
| v.1.2a       | Code Safety Valve Discharge           | 1MSP-43.63-I: RM-1MS-100B Channel Calibration        |
|              | (RM-1MS-100A, B, C)                   | 1MSP-43.64-I: RM-1MS-100C Channel Calibration        |
|              |                                       | Form 1/2-ADM-1611.F03: Channel Check or              |
|              |                                       | Form 1/2-ADM-0606.F01: Channel Check                 |
|              |                                       | 1OST-43.05: Channel Operational Test                 |
| 4.3.3.1.2.b  | Auxiliary Feedwater Pump Turbine      | 1MSP-43.65-I: Channel Calibration                    |
|              | Exhaust (RM-1MS-101)                  | Form 1/2-ADM-1611.F03: Channel Check or              |
|              | , ·                                   | Form 1/2-ADM-0606.F01: Channel Check                 |
|              |                                       | 1OST-43.05: Channel Operational Test                 |

| Beaver Valley Power Station                     |           | Procedure Number:<br>1/2-ODC-1.01        |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>65 of 82                 |  |

## ATTACHMENT C Page 2 of 19 ODCM CONTROLS PROCEDURE MATRIX

### **BV-2 RADIATION MONITORING INSTRUMENTION SURVEILLANCES**

TABLE F: 1b

1/2-ODC-3.03, Attachment D Control 3.3.3.1: Maintain Radiation Monitoring Channels in Table 3.3-6 OPERABLE APPLICABILITY: MODES 1 thru 4

| ODCM SR                 | DESCRIPTION                                                        | PROCEDURE                                                                                                                                                    |
|-------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.3.3.1                 | Test Monitors at Table 4.3-3 Frequency                             |                                                                                                                                                              |
| 4.3.3.1.1               | Noble Gas Effluent Monitors                                        | NOTE: Actions for INOPERABLE Monitors are documented in the Operations & Rad Effluent Shift Logs.                                                            |
| 4.3.3.1.2.<br>c.i.1.1.a | Supplementary Leak Collection and Release System (2HVS-RQ109C & D) | 2MSP-43.33-I: Channel Calibration<br>Form 1/2-ADM-1611.F04: Channel Check or<br>Form 1/2-ADM-0606.F02: Channel Check<br>2OST-43.08: Channel Operational Test |

| Beaver Valley Power Station                     |              | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>66 of 82                 |  |

## ATTACHMENT C Page 3 of 19 ODCM CONTROLS PROCEDURE MATRIX

### **BV-1 LIQUID EFFLUENT MONITOR SURVEILLANCES**

TABLE F: 2a

1/2-ODC-3.03, Attachment E Control 3.3.3.9: Maintain Liquid Effluent Monitors in Table 3.3-12 OPERABLE

APPLICABILITY: During Releases Through The Flow Path

| ODCM SR      | DESCRIPTION                                           | PROCEDURE                                                                                                             |
|--------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 4.3.3.9      | Test Monitors at Table 4.3-12 Frequency               |                                                                                                                       |
| 4.3.3.9.1    | Monitors Providing Alarm and<br>Automatic Termination | NOTE: Actions for INOPERABLE monitors are documented in the Operations & Rad Effluent Shift Logs.                     |
| 4.3.3.9.1.a  | Liquid Radwaste Effluent Line                         | 1MSP-43.18-I: Channel Calibration                                                                                     |
|              | (RM-1LW-104)                                          | Form 1/2-ENV-05.04.F01: Source Check                                                                                  |
|              | · ·                                                   | 1/2OM-17.4A.D: Source Check                                                                                           |
|              |                                                       | 1OST-43.09: Channel Operational Test                                                                                  |
|              |                                                       | Form 1/2-ADM-1611.F03: Channel Check or                                                                               |
|              |                                                       | Form 1/2-ADM-0606.F01: Channel Check                                                                                  |
| 4.3.3.9.1.b  | Liquid Waste Contaminated Drain Line                  | 1MSP-43.23-I: Channel Calibration                                                                                     |
|              | (RM-1LW-116)                                          | Form 1/2-ENV-05.04.F01: Source Check                                                                                  |
|              | Γ΄ ΄                                                  | 1/2OM-17.4A.D: Source Check                                                                                           |
|              |                                                       | 1OST-43.09; Channel Operational Test                                                                                  |
|              |                                                       | Form 1/2-ADM-1611.F03: Channel Check or                                                                               |
| •            | 1                                                     | Form 1/2-ADM-0606.F01: Channel Check                                                                                  |
| 4.3.3.9.1.c  | Auxiliary Feed Pump Bay Drain Monitor                 | 1MSP-43.70-I: Channel Calibration                                                                                     |
|              | (RM-1DA-100)                                          | 10M-54.3 L5 Log: Source Check                                                                                         |
|              |                                                       | 10ST-43.09: Channel Operational Test                                                                                  |
|              |                                                       | Form 1/2-ADM-1611.F03: Channel Check or                                                                               |
|              |                                                       | Form 1/2-ADM-0606.F01: Channel Check                                                                                  |
| 4.3.3.9.2    | Monitors Providing Alarm, but Not                     | NOTE: Actions for INOPERABLE monitors are documented in the                                                           |
| 7.0.0.5.2    | Prividing Auto Termination                            | Operations & Rad Effluent Shift Logs.                                                                                 |
| 4.3.3.9.2.a  | Component Cooling - Recirculation                     | 1MSP-43.10-I: Channel Calibration                                                                                     |
| 4.0.0.3.2.a  | Spray Hx River Water Monitor                          | 10ST-43.09: Channel Operational Test                                                                                  |
|              | (RM-1RW-100)                                          | 10ST-43.09A: Source Check                                                                                             |
|              | (1/141-11/44-100)                                     | Form 1/2-ADM-1611.F03: Channel Check or                                                                               |
|              |                                                       | Form 1/2-ADM-1611.F03. Channel Check                                                                                  |
| 42202        | Flow Rate Measurement Devices                         | * * * * * * * * * * * * * * * * * * * *                                                                               |
| 4.3.3.9.3    | Flow Rate Measurement Devices                         | NOTE: Actions for INOPERABLE monitors are documented in the<br>Operations & Rad Effluent Shift Logs and 1/2-ENV-05.04 |
| 4.3.3.9.3a,b | Liquid Radwaste Effluent Lines                        | 1MSP-17.05-I: Channel Calibration (3b)                                                                                |
| ,            | 3a: (FR-1LW-104 for RM-1LW-104)                       | 1MSP-17.06-I: F-LW-104-1 Channel Calibration (3a)                                                                     |
|              | 3b: (FR-1LW-103 for RM-1LW-116)                       | 1MSP-17.07-I: F-LW-104-2 Channel Calibration (3a)                                                                     |
|              |                                                       | 1MSP-17.08-I: F-LW-104-1 Channel Operational Test (3a)                                                                |
|              |                                                       | 1MSP-17.09-I: F-LW-104-2 Channel Operational Test (3a)                                                                |
|              |                                                       | 1MSP-17.10-I: F-LW-103 Channel Operational Test (3b)                                                                  |
|              | ·                                                     | Form 1/2-ADM-1611.F03: Channel Check or                                                                               |
|              |                                                       | Form 1/2-ADM-0606.F01: Channel Check                                                                                  |
| 4.3.3.9.3.c  | Cooling Tower Blowdown Line                           | 1MSP-31.04-I: F-CW-101 Channel Calibration                                                                            |
| J.U.J.J.J.U  | (FT-1CW-101)                                          | 1MSP-31.05-I: F-CW-101 Channel Operational Test                                                                       |
|              | (FT-1CW-101)                                          | 1MSP-31.06-I. F-CW-101 Channel Calibration                                                                            |
|              | (1-1044-101-1)                                        | 1MSP-31.00-1. F-CW-101-1 Channel Calibration  1MSP-31.07-1: F-CW-101-1 Channel Operational Test                       |
|              |                                                       |                                                                                                                       |
|              |                                                       | 10M-54.3 L5 Log: FT-CW-101 Channel Check                                                                              |
| 43304        | Tout I avail bedienties Devices                       | 10M-54.3 L5 Log: FT-CW-101-1 Channel Check                                                                            |
| 4.3.3.9.4    | Tank Level Indicating Devices                         | NOTE: Actions for INOPERABLE monitors are documented in the                                                           |
| 10001        | 1                                                     | Operations Shift Logs                                                                                                 |
| 4.3.3.9.4.a  | Primary Water Storage Tank                            | 1MSP-8.01-I: L-PG115A Channel Operational Test                                                                        |
|              | (LI-1PG-115A for 1BR-TK-6A)                           | 1MSP-8.03-I: L-PG115A Channel Calibration                                                                             |
|              |                                                       | 10M-54.3 L5 Log: Channel Check (When Adding to Tank)                                                                  |
| 4.3.3.9.4.b  | Primary Water Storage Tank                            | 1MSP-8.02-I: L-PG-115B Channel Operational Test                                                                       |
|              | (LI-1PG-115B for 1BR-TK-6B)                           | 1MSP-8.04-I: L-PG-115B Channel Calibration                                                                            |
|              |                                                       | 10M-54.3 L5 Log: Channel Check (When Adding to Tank)                                                                  |
| 4.3.3.9.4.c  | Steam Generator Drain Tank                            | 1MSP-17.01-I: L-LW110 Channel Operational Test                                                                        |
|              | (LI-1LW-110 for 1LW-TK-7A)                            | 1MSP-17.03-I: L-LW110 Channel Calibration                                                                             |
|              |                                                       | 10M-54.3 L5 Log: Channel Check (When Adding to Tank)                                                                  |
| 4.3.3.9.4.d  | Steam Generator Drain Tank                            | 1MSP-17.02-I: L-LW111 Channel Operational Test                                                                        |
|              | (LI-1LW-111 for 1LW-TK-7B)                            | 1MSP-17.04-I: L-LW111 Channel Calibration                                                                             |
|              |                                                       | 10M-54.3 L5 Log: Channel Check (When Adding to Tank)                                                                  |
|              | <u></u>                                               | 1                                                                                                                     |

| Beaver Valley Power Station                     |              | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number: 67 of 82                    |  |

## ATTACHMENT C Page 4 of 19 ODCM CONTROLS PROCEDURE MATRIX

### **BV-2 LIQUID EFFLUENT MONITOR SURVEILLANCES**

TABLE F: 2b

1/2-ODC-3.03, Attachment E Control 3.3.3.9: Maintain Liquid Effluent Monitors in Table 3.3-12 OPERABLE

APPLICABILITY: During Releases Through The Flow Paths

| ODCM SR     | DESCRIPTION                   | PROCEDURE                                                |
|-------------|-------------------------------|----------------------------------------------------------|
| 4.3.3.9     | Test Monitors at Table 4.3-12 |                                                          |
|             | Frequency                     |                                                          |
| 4.3.3.9.1   | Monitors Providing Alarm and  | NOTE: Actions for INOPERABLE monitors are documented     |
|             | Automatic Termination         | in the Operations & Rad Effluent Shift Logs.             |
| 4.3.3.9.1.a | Liquid Waste Process Effluent | Form 1/2-ADM-1611.F04: Channel Check or                  |
| •           | Monitor                       | Form 1/2-ADM-0606.F02: Channel Check                     |
|             | (2SGC-RQ100)                  | Form 1/2-ENV-05.04.F01; Source Check                     |
|             | 1                             | 2MSP-43.39-I: Channel Calibration                        |
|             |                               | 1/2OM-17.4A.C: Source Check                              |
|             | 1                             | 2OM-25.4.L: Source Check                                 |
|             |                               | 2OM-25.4.N: Source Check                                 |
|             | 1                             | 2OST-43.03: Channel Operational Test                     |
| 4.3.3.9.2   | Flow Rate Measurement Devices | NOTE: Actions for INOPERABLE monitors are documented     |
|             |                               | in the Operations & Rad Effluent Shift Logs and 1/2-ENV- |
|             |                               | 05.04                                                    |
| 4.3.3.9.2.a | Liquid Radwaste Effluent      | 2MSP-25.01-I: 2SGC-P26A,B Channel Calibration            |
|             | (2SGC-FIS100)                 | 2MSP-25.01-I: 2SGC-P26A,B Channel Operational Test       |
| •           |                               | 2MSP-43.39-I: Channel Calibration                        |
|             |                               | Form 1/2-ADM-1611.F04: Channel Check or                  |
|             | ·                             | Form 1/2-ADM-0606.F02: Channel Check                     |
| 4.3.3.9.2.b | Cooling Tower Blowdown Line   | 2MSP-31.04-I; Channel Calibration                        |
|             | (2CWS-FT101)                  | 2MSP-31.05-I: Channel Operational Test                   |
|             |                               | Form 1/2-ADM-1611.F04: Channel Check or                  |
|             |                               | Form 1/2-ADM-0606.F02: Channel Check                     |

| Beaver Valley Power Station                     |           | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>68 of 82                 |  |

## ATTACHMENT C Page 5 of 19 ODCM CONTROLS PROCEDURE MATRIX

### **BV-1 GASEOUS EFFLUENT MONITOR SURVEILLANCES**

TABLE F: 3a

1/2-ODC-3.03, Attachment F Control 3.3.3.10: Maintain Gaseous Effluent Monitors in Table 3.3-13 OPERABLE APPLICABILITY: During Releases Through The Flow Paths

| ODCM SR      | DESCRIPTION                             | PROCEDURE                                                         |
|--------------|-----------------------------------------|-------------------------------------------------------------------|
| 4.3.3.10     | Test Monitors at Table 4.3-13 Frequency |                                                                   |
| 4.3.3.10.1   | Gaseous Waste / Process Vent            | NOTE: Actions for INOPERABLE monitors are documented              |
|              | System                                  | in the Operations & Rad Effluent Shift Logs and 1/2-ENV-<br>05.05 |
| 4.3.3.10.1.a | Noble Gas Activity Monitor              | 1MSP-43.22-I: Channel Calibration                                 |
|              | Pri: (RM-1GW-108B)                      | 1OM-19.4.E, H: Channel Check (Batch Release)                      |
|              | Alt: (RM-1GW-109 Ch 5): for             | 1OM-19.4.E, H. Source Check                                       |
|              | continuous releases only, not an        | 1/2-OM-19.4A.D: Source Check                                      |
|              | alternate for batch releases            | 1/2-OM-19.4A.D: Channel Check (Batch Release)                     |
|              | · ·                                     | 1OST-43.09: Channel Operational Test                              |
|              | •                                       | Form 1/2-ADM-1611.F03: Channel Check or                           |
|              |                                         | Form 1/2-ADM-0606.F01: Channel Check                              |
| 4.3.3.10.1.b | Particulate & Iodine Sampler            | Form 1/2-ADM-1611.F03: Channel Check or                           |
|              | Pri: Filter Paper and Charcoal          | Form 1/2-ADM-0606.F01: Channel Check                              |
|              | Cartridge for (RM-1GW-109)              |                                                                   |
|              | Alt: Filter Paper and Charcoal          | <u>'</u>                                                          |
|              | Cartridge for (RM-1GW-110)              |                                                                   |
| 4.3.3.10.1.c | System Effluent Flow Rate               | 1MSP-19.05-I: Channel Operational Test                            |
|              | Measuring Device                        | 1MSP-19.06-I: Channel Calibration                                 |
|              | Pri: (FR-1GW-108)                       | Form 1/2-ADM-1611.F03: Channel Check or                           |
|              | Alt: (RM-1GW-109 Ch 10)                 | Form 1/2-ADM-0606.F01: Channel Check                              |
| 4.3.3.10.1.d | Sampler Flow Rate Measuring             | 1MSP-43.21-I: Channel Calibration                                 |
|              | Device                                  | Form 1/2-ENV-01.04.F01: Channel Operational Test                  |
|              | Pri: (RM-1GW-109 Ch 15)                 | Form 1/2-ADM-1611.F03: Channel Check or                           |
|              | Alt: (Rotometer: FM-1GW-101 and         | Form 1/2-ADM-0606.F01: Channel Check                              |
|              | Vacuum Gauge: PI-1GW-135                | •                                                                 |
|              | for RM-1GW-110)                         |                                                                   |
| 4.3.3.10.2   | Auxiliary Building Ventilation          | NOTE: Actions for INOPERABLE monitors are documented              |
|              | System (Ventilation Vent)               | in the Operations & Rad Effluent Shift Logs and 1/2-ENV-<br>05.05 |
| 4.3.3.10.2.a | Noble Gas Activity Monitor              | 1MSP-43.13-I: Channel Calibration                                 |
|              | Pri: (RM-1VS-101B)                      | 1OST-43.07A: RM-1VS-109 Channel Operational Test                  |
|              | Alt: (RM-1VS-109 Ch 5)                  | 1OST-43.09: Channel Operational Test                              |
|              |                                         | 1OST-43.09A: Source Check                                         |
|              |                                         | Form 1/2-ADM-1611.F03: Channel Check or                           |
|              |                                         | Form 1/2-ADM-0606.F01: Channel Check                              |
| 4.3.3.10.2.b | Particulate & Iodine Sampler            | Form 1/2-ADM-1611.F03: Channel Check or                           |
|              | Pri: Filter Paper and Charcoal          | Form 1/2-ADM-0606.F01: Channel Check                              |
|              | Cartridge for (RM-1VS-109)              |                                                                   |
|              | Alt: Filter Paper and Charcoal          | ·                                                                 |
|              | Cartridge for (RM-1VS-111)              |                                                                   |
| 4.3.3.10.2.c | System Effluent Flow Rate               | 1MSP-44.07-I: Channel Operational Test                            |
|              | Measuring Device                        | 1MSP-44.08-I: Channel Calibration                                 |
|              | Pri: (FR-1VS-101)                       | Form 1/2-ADM-1611.F03: Channel Check or                           |
|              | Alt. (RM-1VS-109 Ch 10)                 | Form 1/2-ADM-0606.F01: Channel Check                              |

| Beaver Valley Power Station                     |              | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>69 of 82                 |  |

## ATTACHMENT C Page 6 of 19 ODCM CONTROLS PROCEDURE MATRIX

## BV-1 GASEOUS EFFLUENT MONITOR SURVEILLANCES Continued

TABLE F: 3a

1/2-ODC-3.03, Attachment F Control 3.3.3.10: Maintain Gaseous Effluent Monitors in Table 3.3-13 OPERABLE APPLICABILITY: During Releases Through The Flow Paths

| ODCM SR      | DESCRIPTION                              | PROCEDURE                                                         |
|--------------|------------------------------------------|-------------------------------------------------------------------|
| 4.3.3.10.2.d | Sampler Flow Rate Measuring              | 1MSP-44.07-I: Channel Functional Test                             |
|              | Device                                   | 1MSP-44.08-I: Channel Calibration                                 |
|              | Pri: (RM-1VS-109 Ch 15)                  | Form 1/2-ENV-01.04.F01 Channel Operational Test                   |
| .]           | Alt: (Rotometer: FM-1VS-102 and          | Form 1/2-ADM-1611.F03: Channel Check or                           |
| ì            | Vacuum Gauge: PI-1VS-659                 | Form 1/2-ADM-0606.F01: Channel Check                              |
|              | for RM-1VS-111)                          |                                                                   |
| 4.3.3.10.3   | Rx Containment / SLCRS                   | NOTE: Actions for INOPERABLE monitors are documented              |
|              | (Elevated Release)                       | in the Operations & Rad Effluent Shift Logs and 1/2-ENV-<br>05.05 |
| 4.3.3.10.3.a | Noble Gas Activity Monitor               | 1MSP-43.20-I: Channel Calibration                                 |
|              | Pri: (RM-1VS-107B)                       | 1OM-54.3 L5 Log: RM-1VS-107B Channel Check                        |
| ì            | Alt. (RM-1VS-110 Ch 5)                   | 1OST-43.07A: RM-1VS-110 Channel Operational Test                  |
|              |                                          | 1OST-43.09: Channel Operational Test                              |
| 1 .          | 1                                        | 1OST-43.09A: Source Check                                         |
| ŧ            |                                          | Form 1/2-ADM-1611.F03: Channel Check or                           |
|              |                                          | Form 1/2-ADM-0606.F01: Channel Check                              |
| 4.3.3.10.3.b | Particulate & lodine Sampler             | Form 1/2-ADM-0606.F01: Channel Check                              |
|              | Pri: Filter Paper and Charcoal           |                                                                   |
| :            | Cartridge for (RM-1VS-110)               |                                                                   |
| ł            | Alt: Filter Paper and Charcoal           |                                                                   |
|              | Cartridge for (RM-1VS-112)               |                                                                   |
| 4.3.3.10.3.c | System Effluent Flow Rate                | 1MSP-44.09-I: Channel Calibration                                 |
|              | Measuring Device                         | 1MSP-44.10-I: Channel Operational Test                            |
|              | Pri: (FR-1VS-112)                        | Form 1/2-ADM-1611.F03: Channel Check or                           |
|              | Alt: (RM-1VS-110 Ch 10)                  | Form 1/2-ADM-0606.F01: Channel Check                              |
| 4.3.3.10.3.d | Sampler Flow Rate Measuring              | 1MSP-43.19-I: Channel Calibration                                 |
| 1            | Device                                   | Form 1/2-ENV-01.04.F01: Channel Operational Test                  |
| 1            | Pri: (RM-1VS-110 Ch 15)                  | Form 1/2-ADM-1611 F03: Channel Check or                           |
|              | Alt: (Rotometer: FM-1VS-103 and          | Form 1/2-ADM-0606.F01: Channel Check                              |
|              | Vacuum Gauge: PI-1VS-660 for RM-1VS-112) |                                                                   |

| Beaver Valley Power Station                     |              | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number: 70 of 82                    |  |

## ATTACHMENT C Page 7 of 19 ODCM CONTROLS PROCEDURE MATRIX

## BV-2 GASEOUS EFFLUENT MONITOR SURVEILLANCES Continued

TABLE F: 3b

1/2-ODC-3.03, Attachment F Control 3.3.3.10: Maintain Gaseous Effluent Monitors in Table 3.3-13 OPERABLE APPLICABILITY: During Releases Through The Flow Paths

| ODCM SR      | DESCRIPTION                                                                                                                     | PROCEDURE                                                                                                                                                                                                                                                                       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.3.3.10     | Test Monitors at Table 4.3-13 Frequency                                                                                         |                                                                                                                                                                                                                                                                                 |
| 4.3.3.10.1   | SLCRS Unfiltered Pathway<br>(Ventilation Vent)                                                                                  | NOTE: Actions for INOPERABLE monitors are documented in the Operations & Rad Effluent Shift Logs and 1/2-ENV-05.05                                                                                                                                                              |
| 4.3.3.10.1.a | Noble Gas Activity Monitor<br>Pri: (2HVS-RQ101B)                                                                                | 2MSP-43.36-I: Channel Calibration<br>2OST-43.09: Channel Operational Test<br>Form 1/2-ADM-1611.F04: Channel Check or<br>Form 1/2-ADM-0606.F02: Channel Check<br>2-ENV-05.23: Source Check (DRMS Auto Function)                                                                  |
| 4.3.3.10.1.b | Particulate & Iodine Sampler Pri: Filter Paper and Charcoal Cartridge for (2HVS-RQ101A)                                         | Form 1/2-ADM-1611.F04: Channel Check or Form 1/2-ADM-0606.F02: Channel Check                                                                                                                                                                                                    |
| 4.3.3.10.1.c | Process Flow Rate Monitor<br>Pri: (Monitor Item 29 for 2HVS-<br>VP101)                                                          | 2MSP-43.36-I: Channel Calibration<br>2MSP-43.36A-I: Channel Operational Test<br>Work Request: Channel Calibration (Velocity Probe)<br>Form 1/2-ADM-1611.F04: Channel Check or<br>Form 1/2-ADM-0606.F02: Channel Check                                                           |
| 4.3.3.10.1.d | Sampler Flow Rate Monitor<br>Pri: (2HVS-FIT101-1)                                                                               | 2MSP-43.36-I: Channel Calibration<br>2MSP-43.36A-I: Channel Operational Test<br>Form 1/2-ADM-1611.F04: Channel Check or<br>Form 1/2-ADM-0606.F02: Channel Check                                                                                                                 |
| 4.3.3.10.2   | SLCRS Filtered Pathway<br>(Elevated Release)                                                                                    | NOTE: Actions for INOPERABLE monitors are documented in the Operations & Rad Effluent Shift Logs and 1/2-ENV-05.05                                                                                                                                                              |
| 4.3.3.10.2.a | Noble Gas Activity Monitor<br>Pri: (2HVS-RQ109B)                                                                                | 2MSP-43,32-I: 2HVS-RQ109A Channel Calibration<br>2MSP-43,33-I: 2HVS-RQ109B,C,D Channel Calibration<br>2OST-43.08: Channel Operational Test<br>Form 1/2-ADM-1611.F04: Channel Check or<br>Form 1/2-ADM-0606.F02: Channel Check<br>2-ENV-05.23: Source Check (DRMS Auto Function) |
| 4.3.3.10.2.b | Particulate & Iodine Sampler Pri: Filter Paper and Charcoal Cartridge for (2HVS-RQ109A)                                         | Form 1/2-ADM-1611.F04: Channel Check or Form 1/2-ADM-0606.F02: Channel Check                                                                                                                                                                                                    |
| 4.3.3.10.2.c | Process Flow Rate Monitor Pri: (Monitor Item 29 for 2HVS-FR22)  1st Alt: (2HVS-FI22A and FI22C) 2st Alt: (2HVS-FI22B and FI22D) | 2MSP-43.32A-I: Channel Operational Test<br>2MSP-43.33-I: 2HVS-RQ109B,C,D, Channel Calibration<br>Form 1/2-ADM-1611.F04: Channel Check or<br>Form 1/2-ADM-0606.F02: Channel Check                                                                                                |
| 4.3.3.10.2.d | Sampler Flow Rate Monitor<br>Pri: (Monitor Items 28 & 72 for<br>2HVS-DAU109A)                                                   | 2MSP-43.32-I: 2HVS-RQ109A Channel Calibration<br>2MSP-43.32A-I: Channel Operational Test<br>2MSP-43.33-I: 2HVS-RQ109B,C,D, Channel Calibration<br>Form 1/2-ADM-1611.F04: Channel Check or<br>Form 1/2-ADM-0606.F02: Channel Check                                               |

| Beaver Valley Power Station                     |              | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number: 71 of 82                    |  |

# ATTACHMENT C Page 8 of 19 ODCM CONTROLS PROCEDURE MATRIX

## BV-2 GASEOUS EFFLUENT MONITOR SURVEILLANCES Continued

TABLE F: 3b

1/2-ODC-3.03, Attachment F Control 3.3.3.10: Maintain Gaseous Effluent Monitors in Table 3.3-13 OPERABLE

APPLICABILITY: During Releases Through The Flow Paths

| ODCM SR       | DESCRIPTION                      | PROCEDURE                                                |
|---------------|----------------------------------|----------------------------------------------------------|
| 4.3.3.10.3    | Decontamination Building         | NOTE: Actions for INOPERABLE monitors are documented     |
|               | Vent                             | in the Operations & Rad Effluent Shift Logs and 1/2-ENV- |
|               |                                  | 05.05                                                    |
| 4.3.3.10.3.a  | Noble Gas Activity Monitor       | 2MSP-43.35-I: Channel Calibration                        |
| •             | Pri: (2RMQ-RQ301B)               | 2OST-43.09: Channel Operational Test                     |
|               |                                  | 2-ENV-05.23: Source Check (DRMS Auto Function)           |
|               |                                  | Form 1/2-ADM-1611.F04: Channel Check or                  |
|               |                                  | Form 1/2-ADM-0606.F02: Channel Check                     |
| 4.3.3.10.3.b  | Particulate & Iodine Sampler     | Form 1/2-ADM-1611.F04: Channel Check or                  |
|               | Pri: Filter Paper and Charcoal   | Form 1/2-ADM-0606.F02: Channel Check                     |
|               | Cartridge for (2RMQ-RQ301A)      | TOTAL NEW COOST OF CHAINE CHOCK                          |
| 4.3.3.10.3.d  | Sampler Flow Rate Monitor        | 2MSP-43.35-I: Channel Calibration                        |
| 4.0.0. 10.0.u | Pri: (2RMQ-FIT301-1)             | 2MSP-43.35A-I: Channel Operational Test                  |
|               | F11. (21/WG-F11301-1)            | Form 1/2-ADM-1611.F04: Channel Check or                  |
|               |                                  | Form 1/2-ADM-1611.F04. Channel Check of                  |
| 4.3.3.10.4    | On done do Delinhia a Delinhia a |                                                          |
| 4.3.3.10.4    | Condensate Polishing Building    | NOTE: Actions for INOPERABLE monitors are documented     |
|               | Vent                             | in the Operations & Rad Effluent Shift Logs and 1/2-ENV- |
|               | <u> </u>                         | 05.05                                                    |
| 4.3.3.10.4.a  | Noble Gas Activity Monitor       | 2MSP-43.38-I; Channel Calibration                        |
|               | Pri: (2HVL-RQ112B)               | 2OST 2.43.09: Channel Operational Test                   |
| •             | •                                | Form 1/2-ADM-1611 F04: Channel Check or                  |
|               | ,                                | Form 1/2-ADM-0606.F02: Channel Check                     |
|               |                                  | 2-ENV-05.23: Source Check (DRMS Auto Function)           |
| 4.3.3.10.4.b  | Particulate & Iodine Sampler     | Form 1/2-ADM-1611.F04: Channel Check or                  |
|               | Pri: Filter Paper and Charcoal   | Form 1/2-ADM-0606.F02: Channel Check                     |
|               | Cartridge for (2HVL-RQ112A)      | <u></u>                                                  |
| 4.3.3.10.4.d  | Sampler Flow Rate Monitor        | 2MSP-43.38-I: Channel Calibration                        |
|               | Pri: (2HVL-FIT112-1)             | 2MSP-43.38A-I: Channel Operational Test                  |
| •             |                                  | Form 1/2-ADM-0606.F02: Channel Check                     |
| 4.3.3.10.5    | Waste Gas Storage Vault Vent     | NOTE: Actions for INOPERABLE monitors are documented     |
|               |                                  | in the Operations & Rad Effluent Shift Logs and 1/2-ENV- |
|               |                                  | 05.05                                                    |
| 4.3.3.10.5.a  | Noble Gas Activity Monitor       | 2MSP-43.37-I: Channel Calibration                        |
|               | Pri: (2RMQ-RQ303B)               | 2OST-43.09: Channel Operational Test                     |
|               | The (Etting Hasses)              | Form 1/2-ADM-1611.F04: Channel Check or                  |
| •             |                                  | Form 1/2-ADM-0606.F02: Channel Check                     |
| r             |                                  | 2-ENV-05.23: Source Check (DRMS Auto Function)           |
| 4.3.3.10.5.b  | Particulate & Iodine Sampler     | Form 1/2-ADM-1611.F04: Channel Check or                  |
| 7.5.5. 10.5.0 | Pri: Filter Paper and Charcoal   | Form 1/2-ADM-1611.F04. Channel Check                     |
|               |                                  | TOTAL NZ-ADIVI-0000.FUZ. CHAIIIIRI CHRCK                 |
| 4224253       | Cartridge for (2RMQ-RQ303A)      | OMCD 42 27 Is Channel Calibration                        |
| 4.3.3.10.5.d  | Sampler Flow Rate Monitor        | 2MSP-43.37-I: Channel Calibration                        |
|               | Pri: (2RMQ-FIT303-1)             | 2MSP-43.37A-I Channel Operational Test                   |
| •             |                                  | Form 1/2-ADM-1611.F04: Channel Check or                  |
|               | i                                | Form 1/2-ADM-0606.F02: Channel Check                     |

| Beaver Valley Power Station                     |              | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>72 of 82                 |  |

# ATTACHMENT C Page 9 of 19 ODCM CONTROLS PROCEDURE MATRIX

# **BV-1 AND 2 LIQUID EFFLUENT CONCENTRATION SURVEILLANCES**

TABLE F: 4
1/2-ODC-3.03, Attachment G Control 3.11.1.1: Maintain Effluent Concentration within 10 Times 10CFR20 EC's APPLICABILITY: At All Times

| Batch Waste Release Tanks:       | CHM CP 3: Sampling and Testing                                                                                                                                                                                                                                                                                                         |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                                                                                                                                                                                                        |
| Sample and Analyze Radioactive   | CHM CP 5: Radiochemical Procedures                                                                                                                                                                                                                                                                                                     |
| Liquid Wastes per Table 4.11-1   | CHM CP 8: Logs and Forms (Analysis)                                                                                                                                                                                                                                                                                                    |
| · ·                              | CHM CP 9: Conduct of Operation                                                                                                                                                                                                                                                                                                         |
|                                  | Form 1/2-ADM-1611.F03 & F04: LW Tank Sampling, or                                                                                                                                                                                                                                                                                      |
|                                  | Form 1/2-ADM-0606.F01 & F02: LW Tank Sampling                                                                                                                                                                                                                                                                                          |
|                                  | Form 1/2-ENV-05.01.F01: LW Tank Sampling                                                                                                                                                                                                                                                                                               |
|                                  | Form 1/2-ENV-05.11.F02: Rad Monitor Sampling                                                                                                                                                                                                                                                                                           |
|                                  | 1/2-ENV-05.25: Sample Analysis Matrix                                                                                                                                                                                                                                                                                                  |
| Continuous Dalassasi             |                                                                                                                                                                                                                                                                                                                                        |
|                                  | CHM CP 3: Sampling and Testing                                                                                                                                                                                                                                                                                                         |
|                                  | CHM CP 5: Radiochemical Procedures                                                                                                                                                                                                                                                                                                     |
| Liquid Wastes per Table 4.11-1   | CHM CP 8: Logs and Forms (Analysis)                                                                                                                                                                                                                                                                                                    |
|                                  | CHM CP 9: Conduct of Operation                                                                                                                                                                                                                                                                                                         |
|                                  | Form 1/2-ADM-1611.F03 & F04: LW Tank Sampling, or                                                                                                                                                                                                                                                                                      |
|                                  | Form 1/2-ADM-0606.F01 & F02: LW Tank Sampling                                                                                                                                                                                                                                                                                          |
|                                  | Form 1/2-ENV-05.01.F01: LW Tank Sampling                                                                                                                                                                                                                                                                                               |
|                                  | Form 1/2-ENV-05.11.F02: Rad Monitor Sampling                                                                                                                                                                                                                                                                                           |
|                                  | 1/2-ENV-05.25: Sample Analysis Matrix                                                                                                                                                                                                                                                                                                  |
| Use ODCM Methodology to          | Form 1/2-ENV-05.04.F01: RWDA-L                                                                                                                                                                                                                                                                                                         |
|                                  | 1/20M-17.4A.D. RWDA-L                                                                                                                                                                                                                                                                                                                  |
|                                  | CHM CP 3: Sampling and Testing                                                                                                                                                                                                                                                                                                         |
| Sample Miner DV 1 Drimon to      |                                                                                                                                                                                                                                                                                                                                        |
| Sample when By-1 Primary to      | CHM CP 5: Leak Rate Calculations                                                                                                                                                                                                                                                                                                       |
|                                  | CHM CP 8: Logs and Forms (Analysis)                                                                                                                                                                                                                                                                                                    |
| gpm (142 gpd)                    | Form 1/2-ADM-1611.F03 & F04: Sump Sampling, or                                                                                                                                                                                                                                                                                         |
|                                  | Form 1/2-ADM-0606.F01 & F02: Sump Sampling                                                                                                                                                                                                                                                                                             |
|                                  | Form 1/2-ENV-05.01.F01: LW Tank Sampling                                                                                                                                                                                                                                                                                               |
|                                  | Form 1/2-HPP-3.06.005.F01: RWDA-L, or                                                                                                                                                                                                                                                                                                  |
|                                  | Form 1/2-ENV-05.04.F01: RWDA-L                                                                                                                                                                                                                                                                                                         |
|                                  | Form 1/2-ENV-05.11.F02: Rad Monitor Sampling                                                                                                                                                                                                                                                                                           |
|                                  | 1/2-ENV-05.25: Sample Analysis Matrix                                                                                                                                                                                                                                                                                                  |
| Obtain Turbine Building Grab     | CHM CP 3: Sampling and Testing                                                                                                                                                                                                                                                                                                         |
|                                  | CHM CP 5: Leak Rate Calculations                                                                                                                                                                                                                                                                                                       |
|                                  | CHM CP 8: Logs and Forms (Analysis)                                                                                                                                                                                                                                                                                                    |
|                                  | Form 1/2-ADM-1611.F03 & F04: Sump Sampling, or                                                                                                                                                                                                                                                                                         |
| gpiii (142 gpu)                  | Form 1/2-ADM-1611.F03 & F04: Sump Sampling, of Form 1/2-ADM-0606.F01 & F02: Sump Sampling                                                                                                                                                                                                                                              |
|                                  | , , , ,                                                                                                                                                                                                                                                                                                                                |
|                                  | Form 1/2-ENV-05.01.F01: LW Tank Sampling                                                                                                                                                                                                                                                                                               |
|                                  | Form 1/2-HPP-3.06.005.F01: RWDA-L, or                                                                                                                                                                                                                                                                                                  |
|                                  | Form 1/2-ENV-05.04.F01: RWDA-L                                                                                                                                                                                                                                                                                                         |
|                                  | Form 1/2-ENV-05.11.F02: Rad Monitor Sampling                                                                                                                                                                                                                                                                                           |
|                                  | 1/2-ENV-05.25: Sample Analysis Matrix                                                                                                                                                                                                                                                                                                  |
| Obtain Grab Samples Prior to BV- | Form 1/2-ADM-1611.F03 & F04: Sump Sampling, or                                                                                                                                                                                                                                                                                         |
|                                  | Form 1/2-ADM-0606.F01 & F02: Sump Sampling                                                                                                                                                                                                                                                                                             |
|                                  | Form 1/2-ENV-05.01.F01: LW Tank Sampling                                                                                                                                                                                                                                                                                               |
|                                  | 20M-9.2: Rx Plant Vents and Drains (CB-16)                                                                                                                                                                                                                                                                                             |
|                                  | 20M-9.4F: Drain RSS Pump Casing / Pit                                                                                                                                                                                                                                                                                                  |
|                                  | 20M 51: OM Clearance 51-86 (2DAS-P215A/B)                                                                                                                                                                                                                                                                                              |
| · ·                              | 1/2-ENV-05.25: Sample Analysis Matrix                                                                                                                                                                                                                                                                                                  |
|                                  | Continuous Releases: Sample and Analyze Radioactive Liquid Wastes per Table 4.11-1  Use ODCM Methodology to Assure Compliance Take Turbine Building Grab Sample When BV-1 Primary to Secondary Leakage Exceeds 0.1 gpm (142 gpd)  Obtain Turbine Building Grab Sample When BV-2 Primary to Secondary Leakage Exceeds 0.1 gpm (142 gpd) |

| Beaver Valley Power Station                     |                | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|----------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:<br>6 | Page Number: 73 of 82                    |  |

# ATTACHMENT C Page 10 of 19 ODCM CONTROLS PROCEDURE MATRIX

# **BV-1 AND 2 LIQUID EFFLUENT DOSE SURVEILLANCES**

TABLE F: 5
1/2-ODC-3.03, Attachment H Control 3.11.1.2: Liquid Effluent Dose
APPLICABILITY: At All Times

| ODCM SR    | DESCRIPTION                 | PROCEDURE                                                 |
|------------|-----------------------------|-----------------------------------------------------------|
| 4,11.1.2.1 | Using the ODCM - Determine  | Form 1/2-HPP-3.06.005.F01: RWDA-L, or                     |
|            | Cumulative Dose From Liquid | Form 1/2-ENV-05.04.F01: RWDA-L                            |
|            | Effluents Every 31 Days     | SAP Order (Issue NPD3NRE Letter: Monthly Dose Projection) |
|            |                             | 1/20M-17.4A.D: RWDA-L                                     |

| Beaver Valley Power Station                     |           | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>74 of 82                 |  |

# ATTACHMENT C Page 11 of 19 ODCM CONTROLS PROCEDURE MATRIX

# **BV-1 AND 2 LIQUID EFFLUENT TREATMENT SURVEILLANCES**

TABLE F: 6

1/2-ODC-3.03, Attachment | Control 3.11.1.3: Liquid Effluent Treatment System APPLICABILITY: At All Times

|   | ODCM SR    | DESCRIPTION                         | PROCEDURE                                                 |
|---|------------|-------------------------------------|-----------------------------------------------------------|
|   | 4.11.1.3.1 | Using the ODCM - Project the Liquid | Form 1/2-HPP-3.06.005.F01: RWDA-L, or                     |
| Ì |            | Release Dose Every 31 Days          | Form 1/2-ENV-05.04.F01: RWDA-L                            |
|   |            |                                     | SAP Order (Issue NPD3NRE Letter: Monthly Dose Projection) |
|   | ļ          |                                     | 1/20M-17.4A.D: RWDA-L                                     |

| Beaver Valley Power Station                     |           | Procedure Number:<br>1/2-ODC-1.01        |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>75 of 82                 |  |

# ATTACHMENT C Page 12 of 19 ODCM CONTROLS PROCEDURE MATRIX

# **BV-1 AND 2 LIQUID STORAGE TANK ACTIVITY LIMIT SURVEILLANCES**

# TABLE F: 7

1/2-ODC-3.03, Attachment J Control 3.11.1.4: Maintain Liquid Tank Activity within the following limits:

≤18 Curies in 1BR-TK-6A ≤18 Curies in 1BR-TK-6B ≤7 Curies in 1LW-TK-7A ≤7 Curies in 1LW-TK-7B

≤6 Curies in 1QS-TK-1 ≤62 Curies in 2QSS-TK21

≤10 Curies in Unit 1 and Unit 2 miscellaneous temporary outside radioactive liquid storage tanks.

# APPLICABILITY: At All Times

| ODCM<br>SR | DESCRIPTION                           | PROCEDURE                                            |
|------------|---------------------------------------|------------------------------------------------------|
| 4.11.1.4.1 | Every 7 days Analyze a tank sample    | Form 1/2-ENV-05.01.F03: Activity Determination       |
|            | when radioactive material is added to | Form 1/2-HPP-3.06.005.F01: RWDA-L, or                |
|            | tanks except the RWST's.              | Form 1/2-ENV-05.04.F01: RWDA-L                       |
|            |                                       | 1/2-ENV-05.25: Sample Analysis Matrix                |
|            | For RWST's, analyze sample within 7   | 10M-8.4.Z: Recirculate Test Tanks Thru Ion Exchanger |
|            | days of reactor cavity drain down     | 10M-17.4.AJ: LW Transfer to 1LW-TK-7A&B              |
|            | back to the RWST.                     | 1OM-54.3 L5 Log Item 197:                            |
|            |                                       | 1OM-54.3 L5 Log Item 132:                            |
|            | 4.4                                   | 1OM-54.3 L5 Log Item 134:                            |
|            | · · · .                               | 1OM-54.3 L5 Log Item 200:                            |
|            |                                       | 2OM-17.4B: LW to SG Blowdown Tank                    |
|            |                                       | ZOW-17.4B. LVV to SG Blowdown Tank                   |

| Beaver Valley Power Station                     |           | mber:<br>1/2-ODC-1.01                    |
|-------------------------------------------------|-----------|------------------------------------------|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>76 of 82                 |

# ATTACHMENT C Page 13 of 19 ODCM CONTROLS PROCEDURE MATRIX

# BV-1 AND 2 GASEOUS EFFLUENT DOSE SURVEILLANCES

TABLE F: 8
1/2-ODC-3.03, Attachment K Control 3.11.2.1: Gaseous Effluent Dose Rates
APPLICABILITY: At All Times

| ODCM SR        | DESCRIPTION                    | PROCEDURE                                                            |
|----------------|--------------------------------|----------------------------------------------------------------------|
| 4.11.2.1.1     | Using the ODCM - Determine the | Form 1/2-HPP-3.06.006.F01: RWDA-G, or                                |
|                | Noble Gas Effluent Dose Rate   | Form 1/2-ENV-05.05.F01: RWDA-G                                       |
|                |                                | Form 1/2-ENV-01.03.F01: Continuous Release Permit                    |
|                |                                | Form 1/2-HPP-3.06.012.F01: Abnormal Gaseous Releases, or             |
|                |                                | Form 1/2-ENV-05.06.F01: Abnormal Gaseous Releases                    |
|                |                                | 10M-19.4E, H: RWDA-G for Unit 1 GWDT's                               |
|                |                                | 1/2OM-19.4A.B: RWDA-G for Unit 2 GWST's                              |
| 4.11.2.1.2     |                                | 4.11-2 to Determine Inhalation Pathway Dose                          |
| 4.11.2.1.2.A   | Waste Gas Storage Tank -       | CHM CP 3: Sampling and Testing                                       |
|                | Grab Sample Each Tank          | CHM CP 5: Radiochemical Procedures                                   |
|                | <u>'</u>                       | CHM CP 8: Logs and Forms (Analysis)                                  |
|                |                                | CHM CP 9: Conduct of Operation                                       |
|                |                                | Form 1/2-ADM-1611.F03 & F04: GW Tank Sampling, or                    |
|                |                                | Form 1/2-ADM-0606.F01 & F02: GW Tank Sampling                        |
|                |                                | Form 1/2-ENV-05.02.F01: GW Tank Sampling                             |
|                |                                | Form 1/2-HPP-3.06.006.F01: RWDA-G, or                                |
|                |                                | Form 1/2-ENV-05.05.F01: RWDA-G                                       |
|                |                                | Form 1/2-ENV-05.11.F01: Rad Monitor Sampling                         |
|                | •                              | 1/2-ENV-05.25: Sample Analysis Matrix                                |
| 4.11.2.1.2 B   | Containment Purge -            | CHM CP 3: Sampling and Testing                                       |
|                | Grab Sample Each Purge         | CHM CP 5: Radiochemical Procedures                                   |
|                | Crab campic Each Large         | CHM CP 8: Logs and Forms (Analysis)                                  |
|                |                                | CHM CP 9: Conduct of Operation                                       |
|                | •                              | Form 1/2-ADM-1611.F03 & F04: GW Tank Sampling, or                    |
|                |                                | Form 1/2-ADM-0606.F01 & F02: GW Tank Sampling                        |
|                |                                | Form 1/2-ENV-05.05.F01: RWDA-G                                       |
|                |                                | Form 1/2-HPP-3.07.003.F01: Air Sample Record                         |
|                |                                | Form 1/2-ENV-05.11.F01: Rad Monitor Sampling                         |
|                |                                | 1/2-ENV-05.25: Sample Analysis Matrix                                |
| 4.11.2.1,2.C   | Ventilation Systems            |                                                                      |
| 4.11.2.1.2.C.1 | BV-1 Grab and Continuous       | CHM CP 3: Sampling and Testing                                       |
| thru           | Samples                        | CHM CP 5: Radiochemical Procedures                                   |
| 4.11.2.1,C.3   | Samples                        | CHM CP 8: Logs and Forms (Analysis)                                  |
|                |                                | CHM CP 9: Conduct of Operation                                       |
| and            | · ·                            | Form 1/2-ADM-1611.F03 & F04: GW Tank Sampling, or                    |
| 4.11.2.1,2.D.1 |                                | Form 1/2-ADM-0606.F01 & F02: GW Tank Sampling                        |
| thru           |                                | Form 1/2-ENV-01.03.F01: Continuous Release Permit                    |
| 4.11.2.1.2.D.3 |                                | Form 1/2-ENV-05.11.F01: Rad Monitor Sampling                         |
|                |                                | Form 1/2-HPP-4.02.017.F01-90; RMS & DRMS Valve Verification, or      |
|                | j                              | Form 1/2-ENV-05.24.Fxx: RMS & DRMS Valve Verification                |
|                |                                | 1-HPP-5.01.001: SA-9/10 Emergency Operation                          |
|                |                                | 1-HPP-5.01.002: SPING-4 Emergency Operation                          |
|                |                                |                                                                      |
| 44404004       | BY 6 Cook and Continuous       | 1/2-ENV-05.25: Sample Analysis Matrix CHM CP 3: Sampling and Testing |
| 4.11.2.1.2.C.4 | BV-2 Grab and Continuous       |                                                                      |
| thru           | Samples                        | CHM CP 5: Radiochemical Procedures                                   |
| 4.11.2.1.2.C.8 |                                | CHM CP 8: Logs and Forms (Analysis)                                  |
| and            |                                | CHM CP 9: Conduct of Operation                                       |
| 4.11.2.1.2.D.4 | 1                              | Form 1/2-ADM-1611.F03 & F04: GW Tank Sampling, or                    |
| thru           |                                | Form 1/2-ADM-0606.F01 & F02: GW Tank Sampling                        |
|                | ·                              | Form 1/2-ENV-01.03.F01: Continuous Release Permit                    |
| 4.11.2.1,2.D.8 |                                | Form 1/2-ENV-05.11.F01: Rad Monitor Sampling                         |
|                |                                | Form 1/2-HPP-4.02.017.F01-90: RMS & DRMS Valve Verification, or      |
|                |                                | Form 1/2-ENV-05.24.F01-90: RMS & DRMS Valve Verification             |
|                |                                | 2-HPP-5.04.001: Emergency Operation of WRGM Assembly                 |
|                |                                | 1/2-ENV-05.25: Sample Analysis Matrix                                |

| Beaver Valley Power Station                     | Procedure N  | umber:<br>1/2-ODC-1.01                   |
|-------------------------------------------------|--------------|------------------------------------------|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number: 77 of 82                    |

# ATTACHMENT C Page 14 of 19 ODCM CONTROLS PROCEDURE MATRIX

# **BV-1 AND 2 GASEOUS EFFLUENT AIR DOSE SURVEILLANCES**

TABLE F: 9

1/2-ODC-3.03, Attachment L Control 3.11.2.2: Gaseous Effluent Air Doses APPLICABILITY: At All Times

| ODCM<br>SR | DESCRIPTION                                                                          | PROCEDURE                                                                                                                                                                                                                         |
|------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.11.2.2.1 | Using the ODCM - Determine the Noble Gas Cumulative Dose Contributions Every 31 Days | Form 1/2-HPP-3.06.006.F01: RWDA-G, or Form 1/2-ENV-05.05.F01: RWDA-G Form 1/2-ENV-01.03.F01: Continuous Release Permit Form 1/2-HPP-3.06.012.F01: Abnormal Gaseous Releases, or Form 1/2-ENV-05.06.F01: Abnormal Gaseous Releases |
| 1          |                                                                                      | Form 1/2-ENV-05.11.F01: Rad Monitor Sampling SAP Order (Issue NPD3NRE Letter: Monthly Dose Projection)                                                                                                                            |

| Beaver Valley Power Station                     |           | Procedure Number:<br>1/2-ODC-1.01        |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>78 of 82                 |  |

# ATTACHMENT C Page 15 of 19 ODCM CONTROLS PROCEDURE MATRIX

# BV-1 AND 2 GASEOUS EFFLUENT PARTICULATE AND IODINE DOSE SURVEILLANCES

TABLE F: 10

1/2-ODC-3.03, Attachment M Control 3.11.2.3: Gaseous Effluent Particulate And Iodine Doses APPLICABILITY: At All Times

| ODCM<br>SR | DESCRIPTION                                                                                          | PROCEDURE                                                                                                                                                                                                                                                                                                                                                  |
|------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.11.2.3.1 | Using the ODCM - Determine the Particulate & Radioiodine Cumulative Dose Contributions Every 31 Days | Form 1/2-HPP-3.06.006.F01: RWDA-G, or<br>Form 1/2-ENV-05.05.F01: RWDA-G<br>Form 1/2-ENV-01.03.F01: Continuous Release Permit<br>Form 1/2-HPP-3.06.012.F01: Abnormal Gaseous Releases, or<br>Form 1/2-ENV-05.06.F01: Abnormal Gaseous Releases<br>Form 1/2-ENV-05.11.F01: Rad Monitor Sampling<br>SAP Order (Issue NPD3NRE Letter: Monthly Dose Projection) |

| Beaver Valley Power Station                     |           | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>79 of 82                 |  |

# ATTACHMENT C Page 16 of 19 ODCM CONTROLS PROCEDURE MATRIX

# BV-1 AND 2 GASEOUS EFFLUENT TREATMENT SURVEILLANCES

TABLE F: 11

1/2-ODC-3.03, Attachment N Control 3.11.2.4: Gaseous Effluent Treatment System APPLICABILITY: At All Times

| ODCM<br>SR | DESCRIPTION                                                                     | PROCEDURE                                                                                                                                                                                                                                                                                                  |
|------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.11.2.4.1 | Using the ODCM - Project the Gas<br>Release Dose from the Site Every 31<br>Days | Form 1/2-HPP-3.06.006.F01: RWDA-G, or<br>Form 1/2-ENV-05.05.F01: RWDA-G<br>Form 1/2-ENV-01.03.F01: Continuous Release Permit<br>Form 1/2-HPP-3.06.012.F01: Abnormal Gaseous Releases, or<br>Form 1/2-ENV-05.06.F01: Abnormal Gaseous Releases<br>SAP Order (Issue NPD3NRE Letter: Monthly Dose Projection) |

| Beaver Valley Power Station                     |              | Procedure Number:<br>1/2-ODC-1.01        |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>80 of 82                 |  |

# ATTACHMENT C Page 17 of 19 ODCM CONTROLS PROCEDURE MATRIX

# **BV-1 GASEOUS STORAGE TANK ACTIVITY LIMIT SURVEILLANCES**

TABLE F: 12a

1/2-ODC-3.03, Attachment O Control 3.11.2.5: Maintain Gas Storage Tank Activity within the following limits:

1GW-TK-1A: ≤52000 Curies Noble Gas (Considered Xe-133)

1GW-TK-1B: ≤52000 Curies Noble Gas (Considered Xe-133)

1GW-TK-1B: ≤52000 Curies Noble Gas (Considered Xe-133)

#### APPLICABILITY: At All Times

| ODCM<br>SR | DESCRIPTION                                                                      | PROCEDURE                                                                                                           |
|------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 4.11.2.5.1 | Determine Tank Gas Contents when Adding Rad Material & (RCS Activity >100uCi/ml) | Form 1/2-ENV-05.02.F01: GW Tank Sampling<br>1OM-19.4.G: GW Disposal System<br>1/2-ENV-05.25: Sample Analysis Matrix |

# **BV-2 GASEOUS STORAGE TANK ACTIVITY LIMIT SURVEILLANCES**

TABLE F: 12b

1/2-ODC-3.03, Attachment O Control 3.11.2.5: Maintain Gas Storage Tank Activity with the following limit:

2GWS-TK25A thru 25G: <19000 Curies Noble Gas (Considered Xe-133) in any connected group of Gas Storage Tanks

**APPLICABILITY: At All Times** 

| ODCM SR    | DESCRIPTION                                                                           | PROCEDURE                                                                                                                                                                         |  |
|------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4.11.2.5.1 | Determine Gaseous Waste Tank<br>Rad Material When Adding Rad<br>Material to the Tank. | Form 1/2-ENV-05.02.F01: GW Tank Sampling 20M-19.2: GW Precautions & Limitations 20M-19.4G: GW transfer from Unit 2 20M-54.3 L5 Log Item 133 1/2-ENV-05.25: Sample Analysis Matrix |  |
|            |                                                                                       |                                                                                                                                                                                   |  |

| Beaver Valley Power Station                     |              | Procedure Number:<br>1/2-ODC-1.01        |  |
|-------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                          | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision:    | Page Number:<br>81 of 82                 |  |

# ATTACHMENT C Page 18 of 19 ODCM CONTROLS PROCEDURE MATRIX

# **BV-1 AND 2 TOTAL DOSE SURVEILLANCES**

TABLE F: 13

1/2-ODC-3.03, Attachment P Control 3.11.4.1: Liquid And Gaseous Doses

APPLICABILITY: At All Times

| ODCM<br>SR | DESCRIPTION                                                 | PROCEDURE                                                                                                                  |
|------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 4.11.4.1.1 | Using the ODCM - Determine Cumulative Gas & Liquid Dose per | Form 1/2-ENV-01.05.F01: Annual RETS Report (40CFR190) Form 1/2-HPP-3.06.005.F01: RWDA-L, or Form 1/2-ENV-05.04.F01: RWDA-L |
|            | Control 3.11.1.2, 3.11.2.2, 3.11.2.3                        | Form 1/2-ENV-05.04.F01: RWDA-L<br>Form 1/2-HPP-3.06.006.F01: RWDA-G, or<br>Form 1/2-ENV-05.05.F01: RWDA-G                  |
|            |                                                             | Form 1/2-ENV-01.03.F01: Continuous Release Permit Form 1/2-HPP-3.06.012.F01: Abnormal Gaseous Releases, or                 |
|            |                                                             | Form 1/2-ENV-05.06.F01: Abnormal Gaseous Releases 1/2-ENV-01.04: Effluent Data Logs (40CFR190)                             |

| Beaver Valley Power Station                     |           | Procedure Number: 1/2-ODC-1.01           |  |
|-------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                          | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Index, Matrix and History of ODCM Changes | Revision: | Page Number:<br>82 of 82                 |  |

# ATTACHMENT C Page 19 of 19 ODCM CONTROLS PROCEDURE MATRIX

# **BV-1 AND 2 REMP PROGRAM SURVEILLANCES**

TABLE F: 14

1/2-ODC-3.03, Attachment Q Control 3.12.1: Radiological Environmental Monitoring Program (REMP) APPLICABILITY: At All Times

| ODCM<br>SR | DESCRIPTION                                                                                 | PROCEDURE                                                                           |
|------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 4.12.1.1   | Using Locations in the ODCM -Collect and Analyze Samples per Tables 3.12-1, 3.12-2 & 4.12-1 | 1/2-ENV-02.01: Description of overall REMP<br>1/2-ENV-03.01: Environmental Sampling |

1/2-ODC-3.03, Attachment R Control 3.12.2: Land Use Census

APPLICABILITY: At All Times

| ODCM<br>SR | DESCRIPTION                                                                                 | PROCEDURE                                                                                                  |
|------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 4.12.2.1   | Using the Best Available Method -<br>Conduct a Land Use Census Yearly<br>Between 6/1 & 10/1 | 1/2-ENV-02.01: Description of overall REMP 1/2-ENV-04.02: Compliance to ODCM Control 3.12.2 Action a and b |

#### TABLE F: 16

1/2-ODC-3.03, Attachment S Control 3.12.3: Interlaboratory Comparison Program

APPLICABILITY: At All Times

| ODCM<br>SR | DESCRIPTION                                                                                                                 | PROCEDURE                                  |
|------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 4.12.3.1   | Include Analysis Results of the<br>Interlaboratory Comparison Program<br>in the Annual Radiological<br>Environmental Report | 1/2-ENV-02.01: Description of overall REMP |

# **Beaver Valley Power Station**

**Unit 1/2** 

1/2-ODC-2.01

**ODCM: LIQUID EFFLUENTS** 

# <u>Document Owner</u> **Manager, Nuclear Environmental and Chemistry**

| Revision Number          | 5                       |
|--------------------------|-------------------------|
| Level Of Use             | General Skill Reference |
| Safety Related Procedure | Yes                     |
| Effective Date           | 12/29/06                |

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.01           |  |  |
|-----------------------------|-----------|------------------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: LIQUID EFFLUENTS      | Revision: | Page Number:<br>2 of 42                  |  |  |

# TABLE OF CONTENTS

| 1.0 | PURI | POSE     |                                                                  | 3       |
|-----|------|----------|------------------------------------------------------------------|---------|
| 2.0 | SCO  | PE       | <u></u>                                                          | 3       |
| 3.0 | REFI | ERENCES  | AND COMMITMENTS                                                  | 3       |
|     | 3.1  | Referenc | es                                                               | 3       |
|     | 3.2  |          | nents                                                            |         |
| 4.0 | REC  |          | D FORMS                                                          |         |
|     | 4.1  |          |                                                                  |         |
|     | 4.2  |          |                                                                  |         |
| 5.0 |      |          | S AND LIMITATIONS                                                |         |
| 6.0 |      |          | E CRITERIA                                                       |         |
| 7.0 |      |          | ES                                                               |         |
| 8.0 | PRO  |          |                                                                  |         |
|     | 8.1  |          | etpoints                                                         | 7       |
|     |      | 8.1.1    | BV-1 Monitor Alarm Setpoint Determination                        |         |
|     |      | 8.1.2    | BV-2 Monitor Alarm Setpoint Determination                        |         |
|     | 8.2  | -        | nce With 10 CFR 20 EC Limits (ODCM CONTROL 3.11.1.1)             |         |
|     |      | 8.2.1    | Batch Releases                                                   |         |
|     |      | 8.2.2    | Continuous Releases                                              |         |
|     | 8.3  |          | nce With 10 CFR 50 Dose Limits (ODCM CONTROLS 3.11.1.2 And 3.11. | 1.3).21 |
|     |      | 8.3.1    | Cumulation Of Doses (ODCM CONTROL 3.11.1.2)                      |         |
|     |      | 8.3.2    | Projection Of Doses (ODCM CONTROL 3.11.1.3)                      |         |
|     | 8.4  | _        | adwaste System                                                   |         |
|     |      | 8.4.1    | BV-1 Liquid Radwaste System Components                           |         |
|     |      | 8.4.2    | BV-1 Laundry and Contaminated Shower Drain System Components     |         |
|     |      | 8.4.3    | BV-2 Liquid Radwaste System Components                           |         |
|     |      | MENT A   | LIQUID SOURCE TERMS                                              |         |
|     |      | MENT B   | RECIRCULATION TIMES                                              |         |
|     |      | MENT C   | INGESTION DOSE COMMITMENT FACTORS                                |         |
|     |      | MENT D   | LIQUID RADWASTE SYSTEM                                           |         |
| ATT | ACH  | MENT E   | SITE BOUNDARY FOR LIQUID EFFLUENTS                               | 42      |
|     |      |          |                                                                  |         |

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.01 |                                          |
|-----------------------------|-----------------------------------|------------------------------------------|
| Title:                      | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision: 5                       | Page Number:<br>3 of 42                  |

# 1.0 PURPOSE

- 1.1 This procedure provides the calculational methodology to be used for determination of the following release parameters as denoted in [CTS] the Administrative Controls Section of the Unit 1/2 Technical Specifications [ITS] T.S. 5.5.2. (3.2.1)
  - 1.1.1 Liquid effluent monitor alarm setpoints ([CTS] Technical Specification 6.8.6.a, Item 1 [ITS] T.S. 5.5.2.a)
  - 1.1.2 Liquid effluent release concentration calculations ([CTS] Technical Specification 6.8.6.a, Item 2 [ITS] T.S. 5.5.2.b)
  - Liquid effluent dose projection and cumulative dose calculations ([CTS] Technical Specification 6.8.6.a, Items 4 and 5[ITS] T.S. 5.5.2.d and T.S. 5.5.2.e)
- 1.2 This procedure also provides information related to the following:
  - 1.2.1 Liquid Radwaste Treatment System ([CTS] Technical Specification 6.8.6.a, Item 6 [ITS] T.S. 5.5.2.f)
  - 1.2.2 Site Boundary used for liquid effluents
- 1.3 Prior to issuance of this procedure, these items were contained in Section 1 of the old ODCM.

#### 2.0 SCOPE

2.1 This procedure is applicable to all station personnel that are qualified to perform activities as described and referenced in this procedure.

# 3.0 REFERENCES AND COMMITMENTS

#### 3.1 References

- 3.1.1 References For BV-1 Liquid Effluent Monitor Setpoints
  - 3.1.1.1 Beaver Valley Power Station, Appendix I Analysis Docket No. 50-334 and 50-412; Table 2.1-3
  - 3.1.1.2 Beaver Valley Power Station, Appendix I Analysis Docket No. 50-334 and 50-412; Table 2.1-2
  - 3.1.1.3 10 CFR 20, Appendix B, (20.1001-20.2402) Table 2, Column 2 EC's
  - 3.1.1.4 Calculation Package No. ERS-SFL-92-039, Isotopic Efficiencies For Unit 1 Liquid Process Monitors
  - 3.1.1.5 Calculation Package No. ERS-ATL-93-021, Process Alarm Setpoints For Liquid Effluent Monitors

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.01           |  |  |
|-----------------------------|-----------|------------------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: LIQUID EFFLUENTS      | Revision: | Page Number:<br>4 of 42                  |  |  |

- 3.1.1.6 Stone and Webster Calculation Package No. UR(B)-160, BVPS Liquid Radwaste Releases and Concentrations Expect and Design Cases (per Unit and Site)
- 3.1.2 References for BV-2 Liquid Effluent Monitor Setpoints
  - 3.1.2.1 10 CFR 20, Appendix B, (20.1001-20.2402) Table 2, Column 2 EC's
  - 3.1.2.2 Calculation Package No. ERS-SFL-86-026, Unit 2 DRMS Isotopic Efficiencies
  - 3.1.2.3 Stone and Webster Computer Code LIQ1BB; "Normal Liquid Releases From A Pressurized Water Reactor"
  - 3.1.2.4 Calculation Package No. ERS-JWW-87-015, Isotopic Efficiencies For 2SGC-RQ100
    - 3.1.2.4.1 The Isotopic Efficiencies for 2SGC-RQ100 are superceded by the values presented in Calculation Package No. ERS-SFL-86-026.
  - 3.1.2.5 Calculation Package No. ERS-WFW-87-021, Conversion Factor for 2SGC-RO100
    - 3.1.2.5.1 The Monitor Conversion Factor (CF<sub>11</sub>) for 2SGC-RQ100 is superceded by the value presented in Calculation Package No. ERS-ATL-93-021.
  - 3.1.2.6 Calculation Package No. ERS-ATL-93-021, Process Alarm Setpoints For Liquid Effluent Monitors
  - 3.1.2.7 Stone and Webster Calculation Package No. UR(B)-160, BVPS Liquid Radwaste Releases and Concentrations Expect and Design Cases (per Unit and Site)
- 3.1.3 References used for Other Portions of this procedure
  - 3.1.3.1 NUREG-0133, Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants
  - 3.1.3.2 NUREG-1301, Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactors (Generic Letter 89-01, Supplement No. 1)
  - 3.1.3.3 NUREG-0017; Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from PWR's, Revision 0
  - 3.1.3.4 Regulatory Guide 1.113; Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I, April 1977
  - 3.1.3.5 Regulatory Guide 1.109; Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance to 10CFR Part 50, Appendix I

| Beaver Valley Power Station |                                                                                                                                                                                                  |                              | Procedure Number: 1/2-ODC-2.01           |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|--|
| Title:                      | Γitle:                                                                                                                                                                                           |                              | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUI                 | D EFFLUENTS                                                                                                                                                                                      | Revision:                    | Page Number: 5 of 42                     |  |
| 3.1.3.6                     | Calculation Package No. ERS-ATL-83-027; Liqu<br>Calculation for HPM-RP 6.5, Issue 3 and Later                                                                                                    | id Waste Dos                 | se Factor                                |  |
| 3.1.3.7                     | NUREG-0172, Age-Specific Radiation Dose Cor<br>Chronic Intake                                                                                                                                    | nmitment Fac                 | ctors for a One-Year                     |  |
| 3.1.3.8                     | UCRL-50564; Concentration Factors of Chemica Organisms, Revision 1, 1972                                                                                                                         | l Elements in                | Edible Aquatic                           |  |
| 3.1.3.9                     | 1/2-ADM-1640, Control of the Offsite Dose Calc                                                                                                                                                   | ulation Manu                 | al                                       |  |
| 3.1.3.10                    | 1/2-ADM-0100, Procedure Writers Guide                                                                                                                                                            |                              | •                                        |  |
| 3.1.3.11                    | NOP-SS-3001, Procedure Review and Approval                                                                                                                                                       |                              | ·                                        |  |
| 3.1.3.12                    | 1/2-ODC-3.03, ODCM: Controls for RETS and                                                                                                                                                        | REMP Progra                  | ums                                      |  |
| 3.1.3.13                    | CR 02-06174, Tracking of Activities for Unit 1 R Implementation. CA-014, Revise ODCM Proced and 1b) to include the addition of Zn-65 to the Ol                                                   | lure 1/2-ODC                 | -2.01 (Tables 1.1-1a                     |  |
| 3.1.3.14                    | CR 03-02466, RFA-Radiation Protection Effluent<br>Recommendation on Processing when Performing<br>7A/7B]. CA-02, Revise ODCM Procedure 1/2-0<br>show the liquid waste flow path cross-connect be | g Weekly San<br>DC-2.01, (At | nple of [1LW-TK-<br>tachment D) to       |  |
| 3.1.3.15                    | CR 05-03306, Incorporated Improved Technical Specifications (ITS).                                                                                                                               |                              |                                          |  |
| 3.1.3.16                    | CR 05-03854, ODCM Figure for Liquid Effluent CA-01, revise ODCM procedure 1/2-ODC-2.01 (Attachment D, Figure 1.4-3 to incorporate a mod No. 8700-RM-27F.                                         | ODCM: Liqu                   | uid Effluents)                           |  |
| 3.1.3.17                    | Unit 1 Technical Specification Amendment No. 2 DPR-66. This amendment to the Unit 1 license w July 19, 2006.                                                                                     | `                            | ,                                        |  |
| 3.1.3.18                    | Vendor Calculation Package No. 8700-UR(B)-22<br>Containment Conversion, Power Uprate, and Alta<br>Alarm Setpoints for the Radiation Monitors at Ur                                               | ernative Source              | <u> </u>                                 |  |
| 3.1.3.19                    | Engineering Change Package No. ECP-04-0440,                                                                                                                                                      | Extended Pov                 | wer Uprate.                              |  |
| 3.1.3.20                    | CR 06-04908, Radiation Monitor Alarm Setpoint ODCM procedure 1/2-ODC-2.01 to update the al and [RM-1DA-100] for incorporation of the Exte Amendment No. 275.                                     | arm setpoints                | of [RM-1RW-100]                          |  |

| Beaver Valley Power Station |              | Procedure Number: 1/2-ODC-2.01           |  |
|-----------------------------|--------------|------------------------------------------|--|
| Title:                      | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUID EFFLUENTS      | Revision:    | Page Number:<br>6 of 42                  |  |

3.1.3.21 CR 06-6476, Procedure 1/2-ODC-2.01 needs revised for Plant Uprate. CA-01; revise ODCM procedure 1/2-ODC-2.01 to update the alarm setpoints of [2SWS-RQ101] for incorporation of the Extended Power Update at Unit 2 (ECP-04-0441) per Unit 2 TS Amendment No. 156

#### 3.2 Commitments

3.2.1 [CTS] Unit 1/2 Technical Specification 6.8.6.a

[ITS] T.S. 5.5.2

#### 4.0 RECORDS AND FORMS

- 4.1 Records
  - 4.1.1 Any calculation supporting ODCM changes shall be documented, as appropriate, by a retrievable document (e.g.; letter or calculation package) with an appropriate RTL number.
- 4.2 Forms
  - 4.2.1 None

# 5.0 PRECAUTIONS AND LIMITATIONS

- 5.1 BV-1 and BV-2 utilize the concept of a shared liquid radioactive waste system according to NUREG 0133. (3.1.3.1) This permits the mixing of liquid radwaste for processing and allocating of dose due to release as defined in Section 8.4.
  - 5.1.1 In Section 8.1 of this procedure, effluent monitor setpoints for a conservative mix are based on the individual Units' specific parameters, but effluent monitor setpoints for analysis prior to release permit use of the total dilution flow available at the site.
- There is a difference in alarm setpoint terminology presentations for the radiation monitoring systems of BV-1 and BV-2.
  - 5.2.1 Where HIGH and HIGH-HIGH terminology are used for BV-1 monitors, Alert and High terminology is used for BV-2 monitors.
  - 5.2.2 BV-2 setpoints are presented in uCi/ml rather than cpm as in BV-1. This difference is due to BV-2 software which applies a conversion factor to the raw data (cpm). Note that the uCi/ml presentation is technically correct only for the specific isotopic mix used in the determination of the conversion factors. Therefore, BV-2 setpoints determined on analysis prior to release will be correct for properly controlling dose rate, but the indicated uCi/ml value may differ from the actual value.

| Beaver Valley Power Station |                | Procedure Number: 1/2-ODC-2.01           |  |  |
|-----------------------------|----------------|------------------------------------------|--|--|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5 | Page Number:<br>7 of 42                  |  |  |

- 5.3 This procedure also contains information that was previously contained in Section 5 of the previous BV-1 and 2 Offsite Dose Calculation Manual.
  - 5.3.1 In regards to this, the site boundary for liquid effluents was included in this procedure.
  - 5.3.2 The Site Boundary for Liquid Effluents is shown in ATTACHMENT E Figure 5-1.
- This procedure includes Improved Technical Specifications ([ITS]) information that is NOT applicable to current Technical Specifications ([CTS]) and [CTS] information that is NOT applicable in [ITS]. The [CTS] information shall be used prior to the [ITS] effective date. The [ITS] information shall be used on or after the [ITS] effective date.

#### 6.0 ACCEPTANCE CRITERIA

- All changes to this procedure shall contain sufficient justification that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50, and not adversely impact the accuracy or reliability of effluent dose or alarm setpoint calculation. (3.1.3.2)
  - 6.1.1 All changes to this procedure shall be prepared in accordance with 1/2-ADM-0100<sup>(3.1,3.10)</sup> and 1/2-ADM-1640.<sup>(3.1,3.9)</sup>
  - All changes to this procedure shall be reviewed and approved in accordance with NOP-SS-3001<sup>(3.1.3.11)</sup> and 1/2-ADM-1640.<sup>(3.1.3.9)</sup>

#### 7.0 PREREQUISITES

7.1 The user of this procedure shall be familiar with ODCM structure and format.

#### 8.0 PROCEDURE

#### 8.1 Alarm Setpoints

#### 8.1.1 BV-1 Monitor Alarm Setpoint Determination

This procedure determines the monitor HIGH-HIGH Alarm Setpoint that indicates if the concentration of radionuclides in the liquid effluent released from the site to unrestricted areas exceeds 10 times the EC's specified in 10 CFR 20, Appendix B (20.1001-20.2402), Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases or exceeds a concentration of 2E-4 uCi/ml for dissolved or entrained noble gases. (3.1.1.5)

The methodology described in Section 8.1.1.2 is an alternative method to be used to determine the (RM-1LW-104 or RM-1LW-116) monitor HIGH-HIGH Alarm Setpoint (HHSP). The methodology in Section 8.1.1.2 may be used for any batch release and shall be used when the respective total gamma activity concentration of the liquid effluent prior to dilution exceeds 3.14E-3 uCi/ml and 7.33E-3 uCi/ml. This concentration is equivalent to the respective HHSP's derived in Section 8.1.1.1 and allows for respective tritium concentrations up to 4.26E+0 uCi/ml and 9.94E+0 uCi/ml. (3.1.1.5)

| Beaver Valley Power Station |                | Procedure Number: 1/2-ODC-2.01           |  |
|-----------------------------|----------------|------------------------------------------|--|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5 | Page Number:<br>8 of 42                  |  |

# 8.1.1.1 BV-1 Setpoint Determination Based On A Conservative Mix

The Alarm Setpoints for the liquid monitors shall be set at the values listed in the following table:

| BV-1 LIQUID MONITOR SETPOINTS                                       |            |         |           |              |  |
|---------------------------------------------------------------------|------------|---------|-----------|--------------|--|
|                                                                     |            |         | cpm Abov  | e Background |  |
| ·                                                                   | Monitor    | CR      | HHSP      | HSP          |  |
| Liquid Waste Effluent Monitor                                       | RM-1LW-104 | 3.53E+5 | ≤ 3.53E+5 | ≤ 2.47E+5    |  |
| Laundry And Contaminated<br>Shower Drains Monitor                   | RM-1LW-116 | 8.24E+5 | ≤ 8.24E+5 | ≤ 5.77E+5    |  |
| Component Cooling/<br>Recirculation Spray Hx River<br>Water Monitor | RM-1RW-100 | 2.57E+4 | ≤2.09E+4  | ≤ 1.46E+4    |  |
| Component Cooling Hx River<br>Water Monitor                         | RM-1RW-101 | 9.02E+3 | ≤ 9.02E+3 | ≤ 6.32E+3    |  |
| Aux Feed Pump Bay Drain<br>Monitor                                  | RM-1DA-100 | 1.22E+4 | ≤ 1.20E+4 | ≤ 8.43E+3    |  |

The setpoints for RM-1LW-104 and RM-1LW-116 are based on the following conditions. The setpoint bases for all monitors can be found in Calculation Package ERS-ATL-93-021 and/or S&W Calculation Package No. 8700-UR(B)-223. (3.1.3.18)

- Source terms given in ATTACHMENT A Table 1.1-1a. These source terms (without Zn-65) have been generated from the GALE Computer Code, as described in NUREG-0017. The inputs to GALE are given in 1/2-ODC-3.01 Appendix B. The Zn-65 source term was generated via Calculation Package No. ERS-ATL-93-021. (3.1.1.5, 3.1.3.13)
- Dilution water flow rate of 22,800 gpm = (15,000 gpm BV-1 + 7,800 gpm BV-2).
- Discharge flow rate prior to dilution of 35 gpm for the Liquid Waste Effluent Monitor (RM-1LW-104).
- Discharge flow rate prior to dilution of 15 gpm for the Laundry and Contaminated Shower Drains Monitor (RM-1LW-116).

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.01           |  |
|-----------------------------|-----------|------------------------------------------|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUID EFFLUENTS      | Revision: | Page Number:<br>9 of 42                  |  |

The above setpoints for (RM-1LW-104 and RM-1LW-116) can be varied based on actual operating conditions resulting in changes in the discharge and dilution flow rates as follows:

 $HHSP = \frac{542F}{f}$ 

[1.1(1)-1]

where:

HHSP = Monitor HIGH-HIGH Alarm Setpoint above background (ncpm).

542 = Most restrictive proportionality constant based on nominal flow conditions:

 $542 = 3.53E+5 \text{ ncpm x } 35 \text{ gpm} \div 22,800 \text{ gpm } (RM-1LW-104)$ 

 $542 = 8.24E+5 \text{ ncpm x } 15 \text{ gpm} \div 22,800 \text{ gpm } (RM-1LW-116)$ 

F = Dilution water flow rate (gpm), BV-1 plus BV-2 Cooling Tower Blowdown Rate (not including release through the Emergency Outfall Structure).

f = Discharge flow rate prior to dilution (gpm).

#### 8.1.1.1.1 BV-1 Mix Radionuclides

The "mix" (radionuclides and composition) of the liquid effluent was determined as follows:

- The liquid source terms that are representative of the "mix" of the liquid effluent were determined. Liquid source terms are the radioactivity levels of the radionuclides in the effluent from ATTACMENT A Table 1.1-1a.
- The fraction of the total radioactivity in the liquid effluent comprised by radionuclide "i" (S<sub>i</sub>) for each individual radionuclide in the liquid effluent was determined as follows:

$$S_{i} = \frac{A_{i}}{\sum_{i} A_{i}}$$
[1.1(1)-2]

where:

A<sub>i</sub> = Annual release of radionuclide "i" (Ci/yr) in the liquid effluent from ATTACHMENT A Table 1.1-1a.

### 8.1.1.1.2 BV-1 Maximum Acceptable Concentration (All Radionuclides)

The maximum acceptable total radioactivity concentration (uCi/ml) of all radionuclides in the liquid effluent prior to dilution (C<sub>t</sub>) was determined by:

$$C_1 = F$$
 [1.1(1)-3]

| Beaver Valley Power Station | Procedure Nur  | nber:<br>/2-ODC-2.01                     |
|-----------------------------|----------------|------------------------------------------|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5 | Page Number:<br>10 of 42                 |

 $f \Sigma \underline{S_i}$ i OEC;

where:

F = Dilution water flow rate (gpm), BV-1 plus BV-2 Cooling Tower Blowdown Rate (not including release through the Emergency Outfall Structure).

= 22,800 gpm = (15,000 gpm BV-1 + 7,800 gpm BV-2)

f = Maximum acceptable discharge flow rate prior to dilution (gpm).

= 35 gpm for Liquid Waste Effluent Monitor (RM-1LW-104).

= 15 gpm for Laundry and Contaminated Shower Drains Monitor (RM-1LW-116).

OEC<sub>i</sub> = The ODCM liquid effluent concentration limit for radionuclide "i" (uCi/ml) from ATTACHMENT A Table 1.1-1a. The OEC is set at 10 times the new 10 CFR 20, Appendix B (20.1001-20.2402) Table 2, Col. 2 EC values.

S<sub>i</sub> = The fraction of total radioactivity attributed to radionuclide "i", from Equation [1.1(1)-2].

#### 8.1.1.1.3 BV-1 Maximum Acceptable Concentration (Individual Radionuclide)

The maximum acceptable radioactivity concentration (uCi/ml) of radionuclide "i" in the liquid effluent prior to dilution (C<sub>i</sub>) was determined by:

$$C_i = S_i C_t$$
 [1.1(1)-4]

#### 8.1.1.1.4 BV-1 Monitor Count Rate

The calculated monitor count rate (ncpm) above background attributed to the radionuclides; (CR) was determined by:

$$CR = \sum_{i} C_{i} E_{i}$$
 [1.1(1)-5]

where:

E<sub>i</sub> = Detection efficiency of the monitor for radionuclide "i" (cpm/uCi/ml) from ATTACHMENT A Table 1.1-1a. If not listed there, from Calculation Package ERS-SFL-92-039. (3.1.1.4)

| Beaver Valley Power Station | Procedure Nun  | nber:<br>/2-ODC-2.01                     |
|-----------------------------|----------------|------------------------------------------|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5 | Page Number:<br>11 of 42                 |

#### 8.1.1.1.5 **BV-1 Monitor HHSP**

The monitor HIGH-HIGH Alarm Setpoint above background (ncpm) should be set at the CR value. Since only one tank can be released at a time, adjustment of this value is not necessary to compensate for release from more than one source.

# 8.1.1.2 BV-1 Setpoint Determination Based On Analysis Prior To Release

The following method applies to liquid releases when determining the setpoint for the maximum acceptable discharge flow rate prior to dilution and the associated HIGH-HIGH Alarm Setpoint based on this flow rate for the Liquid Waste Effluent Monitor (RM-1LW-104) and the Laundry and Contaminated Shower Drains Monitor (RM-1LW-116) during all operational conditions.

The monitor alarm setpoint is set slightly above (a factor of 1.25) the count rate that results from the concentration of gamma emitting radionuclides in order to avoid spurious alarms. To compensate for this increase in the monitor alarm setpoint, the allowable discharge flow rate is reduced by the same factor.

When the discharge flow rate is limited by the radwaste discharge pump rate capacity or by administrative selection rather than the allowable flow rate determined form activity concentration, the alarm setpoint will be proportionally adjusted based upon the excess dilution factor provided.

#### 8.1.1.2.1 BV-1 Maximum Acceptable Discharge Flow Rate

The maximum acceptable discharge flow rate (f) prior to dilution (gpm) is determined by:

$$f = \frac{F}{1.25 \sum_{i} \frac{C_{i}}{OEC_{i}}}$$

where:

F = Dilution water flow rate, BV-1 plus BV-2 Cooling Tower Blowdown (gpm).

The dilution water flow rate may include the combined cooling tower blowdown flow from both units exiting the discharge structure (but excluding emergency outfall structure flow) when simultaneous liquid discharges are administratively prohibited.

C<sub>i</sub> = Radioactivity concentration of radionuclide "i" in the liquid effluent prior to dilution (uCi/ml) from analysis of the liquid effluent to be released.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.01 |                                          |
|-----------------------------|--------------------------------|------------------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision: 5                    | Page Number:<br>12 of 42                 |

- 1.25 = A factor to prevent spurious alarms caused by deviations in the mixture of radionuclides which affect the monitor response.
- OEC<sub>i</sub> = The ODCM liquid effluent concentration limit for radionuclide "i" (uCi/ml) from ATTACHMENT A Table 1.1-1a. The OEC is set at 10 times the new 10 CFR 20, Appendix B (20.1001-20.2402) Table 2, Col. 2 EC values.

#### 8.1.1.2.2 BV-1 Monitor Count Rate

The calculated monitor count rate (ncpm) above background attributed to the radionuclides, (CR) is determined by:

$$CR = 1.25 \Sigma C_i E_i$$
 [1.1(1)-7]

where:

- E<sub>i</sub> = The detection efficiency of the monitor for radionuclide "i" (cpm/uCi/ml) from ATTACHMENT A Table 1.1-1a. If not listed there, from Calculation Package ERS-SFL-92-039. (3.1.1.4)
- 1.25 = A factor to prevent spurious alarms caused by deviations in the mixture of radionuclides which affect the monitor response.

#### 8.1.1.2.3 BV-1 Monitor HHSP

The liquid effluent monitor HIGH-HIGH Alarm Setpoint above background (ncpm) should be set at the CR value adjusted by any excess dilution factor provided as defined in the following equation:

$$HHSP = CR \underbrace{f}_{f'}$$
 [1.1(1)-8]

where:

HSP= Monitor HIGH-HIGH Alarm Setpoint above background.

CR = Calculated monitor count rate (ncpm) from equation [1.1(1)-7].

- f = Maximum acceptable discharge flow rate prior to dilution determined by equation [1.1(1)-6].
- f' = Actual maximum discharge flow rate to be maintained for the discharge. The reduced value of f' may be due to pump limitations or administrative selection.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.01 |                                          |
|-----------------------------|--------------------------------|------------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5                 | Page Number:<br>13 of 42                 |

# 8.1.2 **BV-2 Monitor Alarm Setpoint Determination**

This procedure determines the monitor HIGH Alarm Setpoint that indicates if the concentration of radionuclides in the liquid effluent released from the site to unrestricted areas exceeds 10 times the EC's specified in 10 CFR 20, Appendix B (20.1001-20.2402), Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases or exceeds a concentration of 2E-4 uCi/ml for dissolved or entrained noble gases. (3.1.2.6)

The methodology described in Section 8.1.2.2 is an alternative method to be used to determine the (2SGC-RQ100) monitor HIGH Alarm Setpoint (HSP). The methodology in Section 8.1.2.2 may be used for any batch release and shall be used when the total gamma radioactivity concentration of the liquid effluent prior to dilution exceeds 1.14E-3 uCi/ml. This concentration is equivalent to a monitor response and HIGH Alarm Setpoint derived in Section 8.1.2.1 and allows for a tritium concentration of up to 2.16E+0 uCi/ml. The setpoint was obtained by use of a conversion factor of 5.61E-9 uCi/ml/cpm determined for the nuclide mix. (3.1.2.6)

### 8.1.2.1 BV-2 Setpoint Determination Based On A Conservative Mix

The HIGH Alarm Setpoint for the liquid monitors shall be set at the values listed in the following Table:

| BV-2 LI                          | QUID MONITOR | SETPOIN | TS            | ,          |
|----------------------------------|--------------|---------|---------------|------------|
|                                  |              | μ(      | Ci/ml Above I | Background |
|                                  | Monitor      | DV      | HSP           | ASP        |
| Liquid Waste Effluent<br>Monitor | 2SGC-RQ100   | 1.14E-3 | ≤ 1.14E-3     | ≤ 7.99E-4  |
| Service Water Monitor            | 2SWS-RQ101   | 4.30E-5 | ≤ 4.30E-5     | ≤ 3.01E-5  |
| Service Water Monitor            | 2SWS-RQ102   | 4.30E-5 | ≤ 4.30E-5     | ≤ 3.01E-5  |

The setpoint for 2SGC-RQ100 is based on the following conditions, however, the setpoint bases for 2SWS-RQ101 and 2SWS-RQ102 can be found in Calculation Package ERS-ATL-93-021. (3.1.2.6)

- Source terms given in ATTACHMENT A Table 1.1-1b. These source terms (without Zn-65) have been generated by using models and input similar to NUREG-0017. The inputs are given in 1/2-ODC-3.01. The Zn-65 source term was generated via Calculation Package No. ERS-ATL-93-021. (3.1.2.6, 3.1.3.13)
- Dilution water flow rate of 22,800 gpm = (15,000 gpm BV-1 + 7,800 gpm BV-2).
- Discharge flow rate prior to dilution of 80 gpm for the Liquid Waste Effluent Monitor (2SGC-RQ100).

| Beaver Valley Power Station | Procedure Nu | mber:<br>1/2-ODC-2.01                    |
|-----------------------------|--------------|------------------------------------------|
| Title:                      | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:    | Page Number:<br>14 of 42                 |

• A software conversion factor of 5.61E-9 uCi/ml/cpm associated with Liquid Waste Effluent Monitor (2SGC-RQ100). (3.1.2.6)

The above setpoint for (2SGC-RQ100) can be varied based on actual operating conditions resulting in the discharge and dilution flow rates as follows:

$$HSP = \frac{4.00E-6 F}{f}$$
 [1.1(2)-1]

where:

HSP = Monitor HIGH Alarm Setpoint (uCi/ml) above background.

4.00E-6 = Proportionality constant based on nominal flow conditions: 4.00E-6 = 1.14E-3 net uCi/ml x 80 gpm ÷ 22,800 gpm

F = Dilution water flow rate, BV-1 plus BV-2 Cooling Tower Blowdown Rate (gpm).

f = Discharge flow rate prior to dilution (gpm).

#### 8.1.2.1.1 BV-2 Mix Radionuclides

The "mix" (radionuclides and composition) of the liquid effluent was determined as follows:

- The liquid source terms that are representative of the "mix" of the liquid effluent were determined. Liquid source terms are the radioactivity levels of the radionuclides in the effluent from ATTACHMENT A Table 1.1-1b.
- The fraction of the total radioactivity in the liquid effluent comprised by radionuclide "i" (Si) for each individual radionuclide in the liquid effluent was determined as follows:

$$Si = \underline{Ai}$$

$$\sum_{i} A_{i}$$

$$i$$
[1.1(2)-2]

where:

Ai = Annual release of radionuclide "i" (Ci/yr) in the liquid effluent from ATTACHMENT A Table 1.1-1b.

| Beaver Valley Power Station | Procedure Nun  | nber:<br>/2-ODC-2.01                     |
|-----------------------------|----------------|------------------------------------------|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5 | Page Number:<br>15 of 42                 |

# 8.1.2.1.2 BV-2 Maximum Acceptable Concentration (All Radionuclides)

The maximum acceptable total radioactivity concentration (uCi/ml) of all radionuclides in the liquid effluent prior to dilution (C<sub>t</sub>) was determined by:

$$C_{t} = F$$

$$f \Sigma_{i} \frac{S_{i}}{OEC_{i}}$$
[1.1(2)-3]

where:

- F = Dilution water flow rate (gpm), BV-1 plus BV-2 Cooling Tower Blowdown Rate (not including release out through the Emergency Outfall Structure).
  - = 22,800 gpm = (15,000 gpm BV-1 + 7,800 gpm BV-2).
- f = Maximum acceptable discharge flow rate prior to dilution (gpm).
  - = 80 gpm for Liquid Waste Process Effluent Monitor (2SGC-RQ100).
- OECi = The ODCM liquid effluent concentration limit for radionuclide "i" (uCi/ml) from ATTACHMENT A Table 1.1-1b. The OEC is set at 10 times the new 10 CFR 20, Appendix B (20.1001-20.2402) Table 2, Col. 2 EC values.
- S<sub>i</sub> = The fraction of total radioactivity attributed to radionuclide "i", from Equation [1.1(2)-2].
- 8.1.2.1.3 BV-2 Maximum Acceptable Concentration (Individual Radionuclide)

The maximum acceptable radioactivity concentration (uCi/ml) of radionuclide "i" in the liquid effluent prior to dilution (C<sub>i</sub>) was determined by:

$$C_i = S_i C_t$$
 [1.1(2)-4]

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.01 |                                          |
|-----------------------------|--------------------------------|------------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5                 | Page Number:<br>16 of 42                 |

#### 8.1.2.1.4 BV-2 Monitor Display Value

The calculated monitor Display Value (uCi/ml) above background attributed to the radionuclides; (DV), was determined by:

 $DV = 5.61E-9 \Sigma_i C_i E_i$ 

[1.1(2)-5]

where:

5.61E-9 = Conversion factor (uCi/ml/cpm), an average determined for the source term mix.

E<sub>i</sub> = Detection efficiency of the monitor for radionuclide "i" (cpm/uCi/ml) from ATTACHMENT A Table 1.1-1b. If not listed there, from Calculation Package ERS-SFL-86-026. (3.1.2.2)

#### 8.1.2.1.5 BV-2 Monitor HSP

The monitor HIGH Alarm Setpoint above background (uCi/ml) should be set at the DV value.

#### 8.1.2.2 BV-2 Setpoint Determination Based On Analysis Prior To Release

The following method applies to liquid releases when determining the setpoint for the maximum acceptable discharge flow rate prior to dilution and the associated HIGH Alarm Setpoint based on this flow rate for the Liquid Waste Effluent Monitor (2SGC-RQ100) during all operational conditions.

The monitor alarm setpoint is set slightly above (a factor of 1.25) the concentration reading that results from the concentration of gamma emitting radionuclides in order to avoid spurious alarms. To compensate for this increase in the monitor alarm setpoint, the allowable discharge flow rate is reduced by the same factor.

When the discharge flow rate is limited by the radwaste discharge pump rate capacity or by administrative selection rather than the allowable flow rate determined form activity concentration, the alarm setpoint will be proportionally adjusted based upon the excess dilution factor provided.

| Beaver Valley Power Station |              | Procedure Number: 1/2-ODC-2.01           |  |  |
|-----------------------------|--------------|------------------------------------------|--|--|
| Title:                      | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: LIQUID EFFLUENTS      | Revision: 5  | Page Number:<br>17 of 42                 |  |  |

# 8.1.2.2.1 BV-2 Maximum Acceptable Discharge Flow Rate

The maximum acceptable discharge flow rate (f) prior to dilution (gpm) is determined by:

$$f = \underline{F}$$

$$1.25 \Sigma_{i} \underbrace{C_{i}}_{OEC_{i}}$$
[1.1(2)-6]

where:

F = Dilution water flow rate, BV-1 plus BV-2 Cooling Tower Blowdown (gpm).

The dilution water flow rate may include the combined cooling tower blowdown flow from both units exiting the discharge structure (but excluding emergency outfall structure flow) when simultaneous liquid discharges from both plants are administratively prohibited.

- C<sub>i</sub> = Radioactivity concentration of radionuclide "i" in the liquid effluent prior to dilution (uCi/ml) from analysis of the liquid effluent to be released.
- 1.25 = A factor to prevent spurious alarms caused by deviations in the mixture of radionuclides which affect the monitor response.
- OEC<sub>i</sub> = The ODCM liquid effluent concentration limit for radionuclide "i" (uCi/ml) from Table 1.1-1b. The OEC is set at 10 times the new 10 CFR 20, Appendix B (20.1001-20.2402)
  ATTACHMENT A Table 2, Col. 2 EC values.

| Beaver Valley Power Station | Procedure Num  | nber:<br>/2-ODC-2.01                     |
|-----------------------------|----------------|------------------------------------------|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5 | Page Number:<br>18 of 42                 |

### 8.1.2.2.2 BV-2 Monitor Display Value

The calculated monitor Display Value (uCi/ml) above background attributed to the radionuclides; (DV) is determined by:

$$DV = (1.25) (5.61E-9) \Sigma_i C_i E_i$$

[1.1(2)-7]

where:

- E<sub>i</sub> = The detection efficiency of the monitor for radionuclide "i" (cpm/uCi/ml) from ATTACHMENT A Table 1.1-1b. If not listed there, from Calculation Package ERS-SFL-86-026. (3.1.2.2)
- 1.25 = A factor to prevent spurious alarms caused by deviations in the mixture of radionuclides which affect the monitor response.
- 5.61E-9 = Conversion factor (uCi/ml/cpm), an average determined for the source term mix.

#### 8.1.2.2.3 BV-2 Monitor HSP

The liquid effluent monitor HIGH Alarm Setpoint above background (uCi/ml) should be set at the DV value adjusted by any excess dilution factor provided as defined in the following equation:

$$HSP = DV \underline{f}$$

$$f'$$
[1.1(2)-8]

where:

HSP = Monitor HIGH Alarm Setpoint above background.

- DV = Calculated monitor concentration reading (uCi/ml) from equation [1.1(2)-7].
- f = Maximum acceptable discharge flow rate prior to dilution determined by equation [1.1(2)-6].
- f' = Actual maximum discharge flow rate to be maintained for the discharge.

  The reduced value of f' may be due to pump limitations or administrative selection.

| Beaver Valley Power Station | Procedure Num  | ber:<br>/ <b>2-ODC-2</b> .01             |
|-----------------------------|----------------|------------------------------------------|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5 | Page Number:<br>19 of 42                 |

### 8.2 Compliance With 10 CFR 20 EC Limits (ODCM CONTROL 3.11.1.1)

#### 8.2.1 Batch Releases

#### 8.2.1.1 Pre-Release

The radioactivity content of each batch release will be determined prior to release in accordance with 1/2-ODC-3.03, Table 4.11-1. In order to assure representative samples, at least two tank volumes of entrained fluid from each tank to be discharged shall be recirculated through the mixing eductors. This will be accomplished by recirculating the tank contents for at least the time periods indicated in ATTACHMENT B Table 1.2-1a and 1.2-1b. BV-1 and BV-2 will show compliance with ODCM Control 3.11.1.1 in the following manner:

The activity of the various radionuclides in the batch release, determined in accordance with 1/2-ODC-3.03, Table 4.11-1, is divided by the minimum dilution flow to obtain the concentration at the unrestricted area. This calculation is shown in the following equation:

$$Conc_{i} = \frac{C_{i} R}{MDF}$$
 [1.2-1]

where:

Conc<sub>i</sub> = Concentration of radionuclide "i" at the unrestricted area (uCi/ml).

C<sub>i</sub> = Concentration of radionuclide "i" in the potential batch release (uCi/ml).

R = Release rate of the batch (gpm).

MDF = Minimum dilution flow (gpm). (May be combined BV-1/BV-2 flow when simultaneous liquid discharges are administratively prohibited).

The projected concentrations in the unrestricted area are compared to the OEC's. Before a release is authorized, Equation [1.2-2] must be satisfied.

$$\Sigma_i \left( \text{Conc}_i / \text{OEC}_i \right) < 1$$
 [1.2-2]

where:

OEC<sub>i</sub> = The ODCM effluent concentration limit of radionuclide "i" (uCi/ml) from ATTACHMENT A Table 1.1-1a and 1.1-1b. The OEC is set at 10 times the new 10 CFR 20, Appendix B, (20.1001-20.2402) Table 2, Col. 2 EC values. (3.1.1.3, 3.1.2.1)

| Beaver Valley Power Station |                                                                                                | Procedure N           | Procedure Number: 1/2-ODC-2.01                              |  |
|-----------------------------|------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------|--|
| Fitle: ODCM: LIQUII         | D EFFLUENTS                                                                                    | Unit: 1/2 Revision: 5 | Level Of Use: General Skill Reference Page Number: 20 of 42 |  |
| 8.2.1.2                     | Post-Release  Following release from the batch tank, the Pocalculated in the following manner: | ost Dose Correction   | on Factor will be                                           |  |
|                             | $PDCF = \frac{(VA_t)/(DFA)}{(VI_t)/(DFI)}$                                                     |                       | [1.2-3]                                                     |  |

PCDF = Post Dose Correction Factor.

VA<sub>t</sub> = Actual Volume of tank released (gal).

DFA = Actual Dilution Flow during release (gpm).

 $VI_t$  = Initial Volume authorized for release (gal).

DFI = Initial Dilution Flow authorized for release (gpm).

The concentration of each radionuclide following release from the batch tank will be calculated in the unrestricted area in the following manner when the Post Dose Correction Factor shown in equation [1.2-3] is >1:

The average activity of radionuclide "i" during the time period of release is divided by the actual dilution flow during the period of release to obtain the concentration in the unrestricted area. This calculation is shown in the following equation:

$$Conc_{ik} = \frac{C_{ik} V_{tk}}{ADF_k}$$
 [1.2-4]

where:

Conc<sub>ik</sub> = The concentration of radionuclide "i" (uCi/ml) at the unrestricted area, during the release period of time k.

| NOTE: | Since discharge is from an isolated well-mixed tank at essentially a uniform rate, the difference between average and peak concentration within any discharge period is minimal. |     |                                                                                   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------|
|       | $C_{ik}$                                                                                                                                                                         | =   | Concentration of radionuclide "i" (uCi/ml) in batch release during time period k. |
|       | $V_{tk}$                                                                                                                                                                         | . = | Volume of Tank released during time period k (gal).                               |
|       | $ADF_k$                                                                                                                                                                          | =   | Actual volume of Dilution Flow during the time period of release                  |

k (gal).

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.01           |  |
|-----------------------------|-----------|------------------------------------------|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUID EFFLUENTS      | Revision: | Page Number:<br>21 of 42                 |  |

To show compliance with ODCM CONTROL 3.11.1.1, the following relationship must be satisfied:

 $\Sigma_i(Conc_{ik}/OEC_i) \leq 1$ 

[1.2-5]

# 8.2.2 Continuous Releases

Continuous releases of liquid effluents do not normally occur at BV-1 or BV-2. When they do occur, the concentration of various radionuclides in the unrestricted area would be calculated using Equation [1.2-1] with C<sub>ik</sub>, the concentration of isotope i in the continuous release. To show compliance with ODCM CONTROL 3.11.1.1, Equation [1.2-5] must again be satisfied.

# 8.3 Compliance With 10 CFR 50 Dose Limits (ODCM CONTROLS 3.11.1.2 And 3.11.1.3)

BV-1 and 2 utilize the concept of a shared liquid radioactive waste system according to NUREG 0133. (3.1.3.1) This permits mixing of the liquid radwaste for processing. Since the resulting effluent release cannot accurately be ascribed to a specific reactor unit, the treated effluent releases are allocated as defined below.

### 8.3.1 Cumulation Of Doses (ODCM CONTROL 3.11.1.2)

The dose contribution from the release of liquid effluents will be calculated monthly for each batch release during the month and a cumulative summation of the total body and organ doses will be maintained for each calendar month, current calendar quarter, and the calendar year to date. The dose contribution will be calculated using the following equation:

$$D_{\tau} = \text{UAF } \Sigma \text{ Air } \Sigma^{m} \Delta t_{k} \text{ Ci}_{k} \text{ F}_{k}$$

$$i \quad k=1$$
[1.3-1]

where:

 $D_{\tau}$  = The cumulative dose commitment to the total body or any organ,  $\tau$ , from the liquid effluents for the total time period

m

 $\Sigma \Delta t_k \text{ (mrem)}$ 

k=1

 $\Delta t_k$  = The length of the kth release over which  $C_{ik}$  and  $F_k$  are averaged for all liquid releases (hours).

 $C_{ik}$  = The average concentration of radionuclide, "i" (uCi/ml), in undiluted liquid effluent during time period  $\Delta t_k$  from any liquid release.

 $A_{i\tau}$  = The site related ingestion dose commitment factor to the total body or any organ  $\tau$  for each identified principal gamma and beta emitter (mrem-ml per hr-uCi) from ATTACHMENT C Table 1.3-1.

| Beaver Valley Power Station |             | Procedure Number: 1/2-ODC-2.01           |  |
|-----------------------------|-------------|------------------------------------------|--|
| Title:                      | Unit: 1/2   | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUID EFFLUENTS      | Revision: 5 | Page Number:<br>22 of 42                 |  |

m = Number of releases contributing to the cumulative dose, D<sub>t</sub>.

UAF = Unit allocation factor. Provides apportionment of dose between BV-1 and BV-2. Normally set at 0.5 for each unit. (Must total to  $\leq 1.0$ ).

F<sub>k</sub> = The near field average dilution factor for Cik during any liquid effluent release. Defined as the ratio of the average undiluted liquid waste flow to the product of the average flow from the site discharge structure during the report period to unrestricted receiving waters, times 3. (3 is the site specific applicable factor for the mixing effect of the BV-1 and BV-2 discharge structure).

The site specific applicable factor of 3 results in a conservative estimate of the near field dilution factor based upon Regulatory Guide 1.113<sup>(3.1.3.4)</sup> methodology and is a factor of 10 below the limit specified in NUREG-0133, Section 4.3.<sup>(3.1.3.1)</sup>

The dose factor A<sub>it</sub> was calculated for an adult for each isotope using the following equation from NUREG-0133. (3.1.3.1)

$$Ai\tau = 1.14E5 (730/D_w + 21BF_i)DF_{i\tau}$$
 [1.3-2]

where:

1.14E5 = 
$$\left[\frac{1E6 \text{ pCi}}{\text{uCi}}\right] \times \left[\frac{1E3 \text{ ml}}{1}\right] \times \left[\frac{1\text{yr}}{8760 \text{ hr}}\right]$$

730 = Adult water consumption rate (liters/yr).

D<sub>w</sub> = Far field dilution factor from the near field area within 1/4 mile of the release point to the potable water intake for adult water consumption.

21 = Adult fish consumption (kg/yr).

BF<sub>i</sub> = Bioaccumulation factor for radionuclide "i" in fish from Table A-1 of Regulatory Guide 1.109<sup>(3.1.3.5)</sup> (pCi/kg per pCi/l). However, if data was not available from that reference, it was obtained from Table 6 of UCRL-50564.<sup>(3.1.3.8)</sup>

The bioaccumulation factor for niobium (300 pCi/kg per pCi/l) was not obtained from either of the above references noted. It was otained from IAEA Safety Series No. 57. Justification for use of this value is documented in Appendix A to Calculation Package No. ERS-ATL-83-027. (3.1.3.6)

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.01 |                                          |
|-----------------------------|-----------------------------------|------------------------------------------|
| Title:                      | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5                    | Page Number:<br>23 of 42                 |

 $DF_{i\tau}$  = Dose conversion factor for radionuclide "i" for adults for a particular organ  $\tau$  (mrem/pCi) from Table E-11 of Regulatory Guide 1.109, or NUREG-0172. (3.1.3.7)

A table of A<sub>ix</sub> values for an adult at BV-1 and BV-2 are presented in ATTACHMENT C Table 1.3-1.

The far field dilution factor (Dw) for BV-1 and BV-2 is 200. This value is based on a total dilution factor of 600 applicable to the Midland water intake located 1.3 miles downstream and on the opposite bank from BV-1 and BV-2 (i.e.,  $200 = 600 \div 3$ ). The total dilution factor of 600 represents a conservative fully mixed annual average condition. Since the Midland intake is located on the opposite bank and is below the water surface, essentially fully mixed conditions would have to exist for the radioactive effluent to be transported to the intake.

The cumulative doses (from each reactor unit) for a calendar quarter and a calendar year are compared to ODCM CONTROL 3.11.1.2 as follows:

For the calendar quarter,

| $D_{\tau} < 1.5$ mrem total body   | 1[1.3-3] |
|------------------------------------|----------|
| $D_{\tau} \le 5$ mrem any organ    | [1.3-4]  |
| For the calendar year,             |          |
| $D_{\tau} \le 3$ mrem total body   | [1.3-5]  |
| D <sub>•</sub> < 10 mrem any organ | [1 3-6]  |

If any of the limits in Equation [1.3-3] through [1.3-6] are exceeded, a Special Report pursuant to ODCM Control 3.11.1.2 of 1/2-ODC-3.03 is requried. (3.1.3.12)

# 8.3.2 **Projection Of Doses (ODCM CONTROL 3.11.1.3)**

Doses due to liquid releases shall be projected at least once per 31 days in accordance with ODCM CONTROL 3.11.1.3 and this section. The Liquid Radwaste Treatment System shall be used to reduce the radioactive materials in each liquid waste batch prior to its discharge, when the projected doses due to liquid effluent releases from each reactor unit, when averaged over 31 days would exceed 0.06 mrem to the total body or 0.2 mrem to any organ. Doses used in the projection are obtained according to equation [1.3-1]. The 31-day dose projection shall be performed according to the following equations:

When including pre-release data,

$$D_{31} = \left\lceil \frac{A+B}{T} \right\rceil \quad 31+C \tag{13-7}$$

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.01           |  |
|-----------------------------|-----------|------------------------------------------|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUID EFFLUENTS      | Revision: | Page Number:<br>24 of 42                 |  |

When not including pre-release data,

$$\mathbf{D}_{31} = \left[ \frac{\mathbf{A}}{\mathbf{T}} \right] \quad 31 + \mathbf{C} \tag{1.3-8}$$

where:

 $D_{31}$  = Projected 31 day dose (mrem).

A = Cumulative dose for quarter (mrem).

B = Projected dose from this release (mrem).

T = Current days into quarter.

C = Value which may be used to anticipate plant trends (mrem).

# 8.4 Liquid Radwaste System

The liquid radwaste system has the capability to control, collect, process, store, recycle, and dispose of liquid radioactive waste generated as a result of plant operations, including anticipated operational occurrences. This system also uses some of the components of the steam generator blowdown system for processing.

Simplified flow diagrams of the liquid radwaste systems for BV-1 and BV-2 are provided as ATTACHMENT D Figures 1.4-1 and 1.4-2 respectively. A diagram showing the liquid effluent release points is provided as ATTACHMENT D Figure 1.4-3. A diagram of the site boundary for liquid effluents is provided as ATTACHMENT E Figure 5-1.

Since the concept of a shared liquid radwaste system is used, then any liquid waste generated can be stored, processed and discharged from either BV-1 or BV-2.

#### 8.4.1 BV-1 Liquid Radwaste System Components

### 8.4.1.1 1LW-TK-2A/2B: High Level Waste Drain Tanks

There are two of these tanks, each tank has a capacity of 5,000 gallons. They are located on the northwest wall of the Auxiliary Building (elevation 735'). They receive liquid wastes from the vent and drain system.

#### 8.4.1.2 1LW-TK-3A/3B: Low Level Waste Drain Tanks

There are two of these tanks, each tank has a capacity of 2,000 gallons. They are located in the northwest corner of the Auxiliary Building (elevation 735'). They also receive liquid wastes from the vent and drain system.

#### 8.4.1.3 1LW-I-2: Liquid Waste Pre-Conditioning Filter & Demineralizer

The main purpose of the pre-conditioning filter & demineralizer is to clean liquid waste water of particulate and dissolved radioactive contaminants that is stored in ILW-TK-2A/2B and ILW-TK-3A/3B. There are four resin beds and a pre-conditioning filter associated with this system. The pre-conditioning filter can be

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.01 |                                          |
|-----------------------------|--------------------------------|------------------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5                 | Page Number:<br>25 of 42                 |

customized with varying grades of activated charcoal intended for removal of radionuclides in a colloidal state. Each of the demineralizer beds can be customized with different resins for effective removal of chemical contaminants along with radioactive contaminants. Generally, beds 1 and 2 contain a Cation Resin and beds 3 and 4 contain a Mixed Bed Resin. This system is located in the Decontamination Building (elevation 735').

8.4.1.3.1 An evaporator (6 gpm) was originally used to process liquid waste at Unit 1. However, this evaporator was retired prior to initial issue of the ODCM, because of concerns for creating a mixed-waste.

#### 8.4.1.4 1LW-TK-7A/7B: Steam Generator Drain Tanks

There are two of these tanks, each tank has a capacity of 34,500 gallons. They are located in the Fuel Pool Leakage Monitoring Room (elevation 735'). They normally receive liquid waste that has been processed through the liquid waste demineralizer. These tanks can also receive liquid waste from Unit 2. Upon completion of filling operation, the tank is placed on recirculation through the demineralizer until the radioactivity concentration is acceptable for discharge. A minimum of two tank volumes must be recirculated prior to sampling for discharge permit preparation.

#### 8.4.1.5 RM-1LW-104: Liquid Waste Discharge Radiation Monitor

This off-line gamma scintillator radiation monitor continuously analyzes liquid waste as it is being discharged. The upper activity alarm on this radiation monitor has a setpoint that would indicate we are approaching OEC limits for radioactive water leaving the site. If an upper activity alarm on this radiation monitor is received, it automatically terminates the discharge by closing the discharge line isolation valve.

#### 8:4.2 BV-1 Laundry and Contaminated Shower Drain System Components

#### 8.4.2.1 1LW-TK-6A/6B: Laundry and Contaminated Shower Drain Tanks

There are two of these tanks, each has a capacity of 1200 gallons. They are located in the northwest corner of the Auxiliary Building (elevation 722'). They receive laundry and contaminated shower drains waste from the Service Building. These tanks can also receive mop water waste from Unit 2. The waste in these tanks is not sent to the liquid waste demineralizer for cleanup because this waste may contain organic compounds that will deplete a resin bed. Upon completion of filling operation, the tank must be recirculated a minimum of two tank volumes prior to sampling for discharge permit preparation.

# 8.4.2.2 RM-1LW-116: Laundry and Contaminated Shower Drains Tank Discharge Radiation Monitor

This off-line gamma scintillator radiation monitor continuously analyzes laundry and contaminated shower drains waste as it is being discharged. The upper activity alarm on this radiation monitor has a setpoint that would indicate we are approaching

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.01 |                                          |
|-----------------------------|-----------------------------------|------------------------------------------|
| Title:                      | Unit:                             | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision: 5                       | Page Number:<br>26 of 42                 |

OEC limits for radioactive water leaving the site. If an upper activity alarm on this radiation monitor is received, it automatically terminates the discharge by closing the discharge line isolation valve.

#### 8.4.3 **BV-2 Liquid Radwaste System Components**

#### 8.4.3.1 2LWS-TK21A/21B: Waste Drain Tanks

There are two of these tanks, each tank has a capacity of 10,000 gallons. They are located in the northeast corner of the Auxiliary Building (elevation 710'). They receive liquid wastes from the vent and drain system. These tanks can also receive liquid wastes from Unit 1. <u>IF</u> further processing is not necessary, <u>THEN</u> it may be placed on recirculation. A minimum of two tank volumes must be recirculated prior to sampling for discharge permit preparation.

8.4.3.2 2SGC-IOE21A/21B: Steam Generator Blowdown Cleanup Ion Exchangers

The main purpose of the ion exchangers is to clean liquid waste water of particulate and dissolved radioactive contaminants through an ion exchange process. There is a resin bed, outlets strainer, and cleanup filter associated with each of these ion exchangers. They are located in the Waste Handling Building (elevation 722').

- 8.4.3.2.1 Two evaporators (20 gpm each) were originally used to process liquid waste at Unit 2. However, this evaporator was retired prior to initial issue of the ODCM, because of concerns for creating a mixed-waste.
- 8.4.3.3 2SGC-TK23A/23B: Steam Generator Blowdown Test Tanks

There are two of these tanks, each has a capacity of 18,000 gallons. They are located in the Auxiliary Building (elevation 755'). They receive liquid waste that has been processed through the cleanup ion exchangers. Upon completion of filling operation, the tank is placed on recirculation through the demineralizer until the radioactivity concentration is acceptable for discharge. A minimum of two tank volumes must be recirculated prior to sampling for discharge permit preparation.

8.4.3.4 2SGC-TK21A/21B: Steam Generator Blowdown Hold Tanks

There are two of these tanks, each has a capacity of 50,000 gallons. They are located in the Waste Handling Building (elevation 722'). These tanks are used to store liquid waste when the radioactive concentration of the steam generator blowdown test tank is not acceptable for discharge. These tanks can also receive liquid wastes from Unit 1. The contents of this tank may be drained or processed through the Unit 1 or Unit 2 Liquid Radwaste Treatment System until the radioactivity concentration is acceptable for discharge. A minimum of two tank volumes must be recirculated prior to sampling for discharge permit preparation.

8.4.3.5 2SGC-RQ100: Liquid Waste Effluent Monitor

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.01 |                                          |
|-----------------------------|--------------------------------|------------------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | <br>Revision:<br>5             | Page Number:<br>27 of 42                 |

This off-line gamma scintillator radiation monitor continuously analyzes liquid waste as it is being discharged. The upper activity alarm on this radiation monitor has a setpoint that would indicate we are approaching OEC limits for radioactive water leaving the site. If an upper activity alarm is received, it automatically terminates the discharge by closing the discharge line isolation valves.

| Beaver Valley Power Station | Procedure N | umber:<br>1/2-ODC-2.01                   |
|-----------------------------|-------------|------------------------------------------|
| Title:                      | Unit: 1/2   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:   | Page Number:<br>28 of 42                 |
|                             |             |                                          |

## ATTACHMENT A Page 1 of 4 LIQUID SOURCE TERMS

TABLE 1.1-1a BV-1 LIQUID SOURCE TERM

|                             |                                               |              | (4)                |
|-----------------------------|-----------------------------------------------|--------------|--------------------|
|                             | Ø                                             |              | $\mathbf{E_{i}}$   |
|                             | $\mathbf{A}_{\!\scriptscriptstyle\mathbf{I}}$ | (3)          | DETECTION          |
| •                           | ANNUAL RELEASE                                | OEC,         | EFFICIENCY         |
| NUCLIDE                     | (Ci)                                          | (uCi/ml)     | (cpm/uCi/ml)       |
| Cr-51                       | 13E3                                          | 5E-3         | 1.18E+7            |
| Mn-54                       | 3.1E4                                         | 3E4          | 8.59E+7            |
| Fo-55                       | 1.6E-3                                        | 1E3          | (5)                |
| Fo-59                       | 83E4                                          | 1E4          | 9.17E+7            |
| Co-58                       | 1.4E-2                                        | 2E4          | 1.16E+8            |
| Co-60                       | 2.0E-3                                        | 3E-5         | 1.73E+8            |
| Zn-65 <sup>(3.1.3.13)</sup> | 2.69E-2                                       | 5E-5         | 4.67E+7            |
| Np-239                      | 1.4E-4                                        | 2E4          | 8.49E+7            |
| Br-83                       | 2.5E-5                                        | 9E-3         | 1.36E+6            |
| Br-84                       | 2.5E-5                                        | 4E-3         | 9.75E+7            |
| Br-85                       | 2.7E-6                                        | (5)          | 6.19E+6            |
| Rb-86                       | 7.5E-5                                        | 7E-5         | ·                  |
| Sr-89                       | 29E4                                          | 8E-5         | (5)                |
| Sr-90                       | 1.1E-5                                        | 5E-6         | (5)                |
| Y-90                        | 9.4E-6                                        | 7E-5         | (5)                |
| Y-91m                       | 8.7E-6                                        | 7E-3<br>2E-2 | (5)<br>8.98E+7     |
| Y-91                        | 5.7E-5                                        | 8E-5         | 2.60E+5            |
| Y-93                        | 7.4E-7                                        | 2E-4         |                    |
| Zr-95                       | 7.4E-7<br>5.1E-5                              | 2E-4<br>2E-4 | (5)<br>8 60E±7     |
| Nb-95                       | 5.1E-5<br>5.2E-5                              | 2E-4<br>3E-4 | 8.60E+7            |
| Sr-91                       | 1.3E-5                                        | 3E-4<br>2E-4 | 8.64E+7            |
| Mo-99                       | 1.3E-3<br>1.1E-2                              | 2E-4<br>2E-4 | 6.97E+7            |
| Tc-99m                      | 1.1E-2<br>1.1E-2                              | 1E-2         | 2.84E+7<br>8.96E+7 |
|                             | 3.4E-5                                        | 3E-4         |                    |
| Ru-103<br>Ru-106            | 3.4E-3<br>1.0E-5                              | 3E-4<br>3E-5 | 9.5E+7             |
| Ru-100<br>Rh-103m           | 3.4E-5                                        | 3E-3<br>6E-2 | (5)                |
|                             |                                               |              | (5)                |
| Rh-106                      | 1.0E-5                                        | (5)<br>2F. 4 | (5)                |
| Te-125m                     | 2.5E-5<br>2.6E-4                              | 2E-4         | 1.83E+5            |
| Te-127m                     | 2.6E-4<br>2.7E-4                              | 9E-5         | 4.09E+4            |
| Te-127                      |                                               | 1E-3         | 1.38E+6            |
| Te-129m                     | 1.1E-3                                        | 7E-5         | 4.02E+6            |
| Te-129                      | 6.7E-4                                        | 4E-3         | 1.12E+7            |
| I-130                       | 1.2E-4                                        | 2E-4         | 3.08E+8            |
| Te-131m                     | 1.6E-4                                        | 8E-5         | 1.82E+8            |
| Te-131                      | 3E-5                                          | 8E-4         | 1.20E+8            |
| I-131                       | 1.6E-1                                        | 1E-5         | 1.11E+8            |
| Te-132                      | 4.3E-3                                        | 9E-5         | 1.17E+8            |
| I-132                       | 4.9E-3                                        | 1E-3         | 2.66E+8            |
| I-133                       | 4.0E-2                                        | 7E-5         | 9.90E+7            |
| I-134                       | 8.0E-5                                        | 4E-3         | 2.70E+8            |
| Cs-134                      | 4.6E-2                                        | 9E-6         | 1.99E+8            |

| Beaver Valle           | y Power Sta | ition    |      | Procedure N    | umber:<br>1/2-ODC-2.01                   |
|------------------------|-------------|----------|------|----------------|------------------------------------------|
| Title:                 |             |          |      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS | :           |          |      | Revision:<br>5 | Page Number:<br>29 of 42                 |
|                        | ATTAC       | HMENT A  |      |                |                                          |
|                        | Pag         | e 2 of 4 |      |                |                                          |
|                        | LIQUID SO   |          | RMS  |                |                                          |
| I-135                  | 4.3E-3      |          | 3E-4 |                | 1.19E+8                                  |
| Cs-136                 | 8.9E-3      |          | 6E-5 |                | 2.80E+8                                  |
| Cs-137                 | 3.3E-2      |          | 1E-5 |                | 8.01E+7                                  |
| Ba-137m                | 3.1E-2      |          | 1E-5 |                | 8.01E+7                                  |
| Ba-140                 | 1.1E-4      |          | 8E-5 |                | 4.37E+7                                  |
| La-140                 | 1.1E-4      |          | 9E-5 |                | 2.00E+8                                  |
| Ce-141                 | 5.1E-5      |          | 3E-4 |                | 5.07E+7                                  |
| Ce-143                 | 2.8E-6      |          | 2E-4 |                | 7.27E+7                                  |
| Ce-144                 | 3.2E-5      |          | 3E-5 | . 1            | 1.06E+7                                  |
| Pr-143                 | 2.7E-5      |          | 2E-4 |                | 1.04E+0                                  |
| Pr-144                 | 3.2E-5      |          | 6E-3 |                | 2.25E+6                                  |
| H-3                    | 5.50E+2     |          | 1E-2 |                | (5)                                      |
| TOTAL <sup>(1)</sup>   | 4.05E-1     |          |      |                |                                          |

Excluding Tritium and Entrained Noble Gases

Source Term for (RM-1LW-104 and RM-1LW-116) from Stone and Webster Calculation Package UR(B)-160 (3.1.1.6)

ODCM Effluent Concentration Limit = 10 times the EC values of 10 CFR 20 (3.1.1.3)

Detection Efficiency for (RM-1LW-104 and RM-1LW-116) from Calculation Package ERS-SFL-92-039 (3.1.1.4)

Insignificant

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.01 |                                          |
|-----------------------------|--------------------------------|------------------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:                      | Page Number: 30 of 42                    |

## ATTACHMENT A Page 3 of 4 LIQUID SOURCE TERMS

#### TABLE 1.1-1b BV-2 LIQUID SOURCE TERM

| UID SOURCE T         | ERM              |                  | •            |
|----------------------|------------------|------------------|--------------|
| OID SOURCE I         | (2)              |                  | (4)          |
|                      | $A_{\mathbf{i}}$ | (3)              | DETECTION    |
|                      | ANNUALRELEASE    | OEC <sub>i</sub> | EFFICIENCY   |
| NUCLIDE              | (C)              | (uCi/ml)         | (cpm/uCi/ml) |
| <u>Cr-51</u>         | 1.00E-4          | 5E-3             | 2.01E+7      |
| Mn-54                | 2.50E-5          | 3E-4             | 1.27E+8      |
| Fe-55                | 1.30E-4          | 1E-3             | (5)          |
| Fe-59                | 6.50E-5          | 1E-4             | 1.26E+8      |
| Co-58                | 1.10E-3          | 2E-4             | 1.82E+8      |
| Co-60                | 1.60E-4          | 3E-5             | 2.38E+8      |
| $Zn-65^{(3.1.3.13)}$ | 5.10E-2          | 5E-5             | 6.50E+7      |
| Np-239               | 3.20E-5          | 2E-4             | 1.65E+8      |
| Br-83                | 2.90E-5          | 9E-3             | 2.42E+6      |
| Br-84                | 5.90E-9          | 4E-3             | 1.38E+8      |
| Rb-86                | 3.70E-5          | 7E-5             | 1.04E+7      |
| Sr-89                | 2.20E-5          | 8E-5             | 1.83E+4      |
| Sr-90                | 8.50E-7          | 5E-6             | (5)          |
| Sr-91                | 5.30E-6          | 2E-4             | 1.04E+8      |
| Mo-99                | 2.30E-3          | 2E-4             | 4.47E+7      |
| Tc-99m               | 2.10E-3          | 1E-2             | 1.40E+8      |
| Te-125m              | 1.90E-6          | 2E-4             | 3.94E+5      |
| Te-127m              | 2.10E-5          | 9E-5             | 1.26E+5      |
| Te-127               | 2.50E-5          | 1E-3             | 2.43E+6      |
| Te-129m              | 8.20E-5          | 7E-5             | 6.53E+6      |
| Te-129               | 5.30E-5          | 4E-3             | 1.96E+7      |
| I-130                | 2.30E-4          | 2E-4             | 5.18E+8      |
| Te-131m              | 5.20E-5          | 8E-5             | 2.85E+8      |
| Te-131               | 9.40E-6          | 8E-4             | 1.88E+8      |
| I-131                | 1.00E-1          | 1E-5             | 1.96E+8      |
| Te-132               | 7.80E-4          | 9E-5             | 1.76E+8      |
| I-132                | 2.30E-3          | 1E-3             | 4.22E+8      |
| I-133                | 6.50E-2          | 7E-5             | 1.73E+8      |
| I-134                | 4.60E-6          | 4E-3             | 4.06E+8      |
| Cs-134               | 3.00E-2          | 9E-6             | 3.25E+8      |
| I-135                | 9.20E-3          | 3E-4             | 1.71E+8      |
| Cs-136               | 3.90E-3          | 6E-5             | 4.28E+8      |
| Cs-137               | 2.20E-2          | 1E-5             | 1.28E+8      |
| Ba-137m              | 2.10E-2          | 1E-5             | 1.33E+8      |
| Ba-140               | 9.30E-6          | 8E-5             | 7.50E+7      |
| La-140               | 8.40E-6          | 9E-5             | 3.08E+8      |
|                      |                  |                  |              |

| Beaver Valley Power Station |              | Procedure Number: 1/2-ODC-2.01           |  |
|-----------------------------|--------------|------------------------------------------|--|
| Title:                      | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUID EFFLUENTS      | Revision:    | Page Number:<br>31 of 42                 |  |

### ATTACHMENT A Page 4 of 4 LIQUID SOURCE TERMS

TABLE 1.1-1b (continued) BV-2 LIQUID SOURCE TERM

|                      | (2)                      |                  | (4)                         |
|----------------------|--------------------------|------------------|-----------------------------|
| 1                    | A <sub>i</sub><br>ANNUAL | (3)              | E <sub>i</sub><br>DETECTION |
|                      | RELEASE                  | OEC <sub>i</sub> | <b>EFFICIENCY</b>           |
| <b>NUCLIDE</b>       | ( <u>Ci</u> )            | (uCi/ml)         | (cpm/uCi/ml)                |
| Y-90                 | 6.00E-7                  | 7E-5             | · -, —                      |
| Y-91m                | 3.60E-6                  | 2E-2             | 1.59E+8                     |
| Y-91                 | 4.40E-6                  | 8E-5             | 3.55E+5                     |
| Y-93                 | 3.00E-7                  | 2E-4             | 2.03E+7                     |
| <b>Zr-</b> 95        | 4.00E-6                  | 2E-4             | 1.35E+8                     |
| Nb-95                | 4.00E-6                  | 3E-4             | 1.33E+8                     |
| Ru-103               | 2.70E-6                  | 3E-4             | 1.71E+8                     |
| Ru-106               | 8.20E-7                  | 3E-5             | (5)                         |
| Rh-103m              | 2.70E-6                  | 6E-2             | (5)                         |
| Rh-106               | 8.20E-7                  |                  | 5.65E+7                     |
| Ce-141               | 4.00E-6                  | 3E-4             | 7.75E+7                     |
| Ce-143               | 8.60E-7                  | 2E-4             | 1.20E+8                     |
| Ce-144               | 2.60E-6                  | 3E-5             | 1.87E+7                     |
| Pr-143               | 2.30E-6                  | 2E-4             | 1.63E+0                     |
| Pr-144               | 2.60E-6                  | 6E-3             | 3.40E+6                     |
| <u>H-3</u>           | 5.50E+2                  | 1E-2             | (5)                         |
| TOTAL <sup>(1)</sup> | 2.40E-1                  |                  | • • • •                     |

(5) Insignificant

<sup>(1)</sup> Excluding Tritium and Entrained Noble Gases

Source Term for (2SGC-RQ100) from Computer Code LIQ1BB (3.1.2.3)

ODCM Effluent Concentration Limit = 10 times the EC values of 10 CFR 20 (3.1.2.1)

Detection Efficiency for (2SGC-RQ100) from Calculation Package ERS-SFL-86-026 (3.1.2.2)

| Beaver Valley Power Station | Procedure Num  | ber:<br>/2-ODC-2.01                      |
|-----------------------------|----------------|------------------------------------------|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5 | Page Number:<br>32 of 42                 |

### ATTACHMENT B Page 1 of 2 RECIRCULATION TIMES

TABLE 1.2-1a
BV-1 RECIRCULATION TIMES REQUIRED BEFORE SAMPLING OF LIQUID DISCHARGE TANKS

| TANK DESCRIPTION                              | ASSET NO.    | APPROXIMATE RECIRCULATION TIME <sup>(1)</sup> (Based on Historical Recirculation Rates) |
|-----------------------------------------------|--------------|-----------------------------------------------------------------------------------------|
| Laundry And Contaminated<br>Shower Dain Tanks | 1LW-TK-6A/6B | 2.5 hrs - (1200 gal) (2) / (16 gpm)                                                     |
| Low Level Waste Drain Tanks                   | 1LW-TK-3A/3B | 1.5  hrs = (2000  gal) (2) / (45  gpm)                                                  |
| High Level Waste Drain Tanks                  | 1LW-TK-2A/2B | 3.4 hrs = (5000 gal) (2) / (50 gpm)                                                     |
| Respirator Test Tanks                         | 1LW-TK-5A/5B | 1.4 hrs = (3000 gal) (2) / (73 gpm)                                                     |
| Steam Generator Drain Tanks                   | 1LW-TK-7A/7B | 17.2 hrs -(35000 gal) (2)/(68 gpm)                                                      |
| Boron Recovery Test Tanks                     | 1BR-TK-2A/2B | 9.7 hrs =(13,000 gal) (2)/(45 gpm)                                                      |

<sup>(1)</sup> The times listed are those approximated for <u>two</u> recirculations of a <u>full</u> tank with <u>one</u> recirculation pump in operation (using <u>historical</u> recirculation rates). Recirculation times for a partially full tank are directly proportional to the fraction of the tank capacity occupied by the entrained liquid waste (after isolation). Actual recirculation times are determined prior to sampling using actual tank volumes and actual recirculation rates available in the BV-1 Control Room.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.01 |                                          |
|-----------------------------|--------------------------------|------------------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5                 | Page Number:<br>33 of 42                 |

### ATTACHMENT B Page 2 of 2 RECIRCULATION TIMES

#### **TABLE 1.2-1b**

#### BV-2 RECIRCULATION TIMES REQUIRED BEFORE SAMPLING OF LIQUID DISCHARGE TANKS

| TANK DESCRIPTION                       | ASSET NO.      | APPROXIMATE RECIRCULATION TIME <sup>(1)</sup> (Based on Historical Recirculation Rates) |
|----------------------------------------|----------------|-----------------------------------------------------------------------------------------|
| Liquid Waste Tanks                     | 2LWS-TK21A/21B | 11.5 hrs = (10,000 gal) (2)/(29 gpm)                                                    |
| Steam Generator Blowdown<br>Hold Tanks | 2SGC-TK21A/21B | 25.8 hrs = (51,000 gal) (2)/(66 gpm)                                                    |
| Steam Generator Blowdown<br>Test Tanks | 2SGC-TK23A/23B | 9.1 hrs = (18,000 gal) (2)/(66 gpm)                                                     |

The times listed are those approximated for two recirculations of a full tank with one recirculation pump in operation (using historical recirculation rates). Recirculation times for a partially full tank are directly proportional to the fraction of the tank capacity occupied by the entrained liquid waste (after isolation). Actual recirculation times are determined prior to sampling using actual tank volumes and actual recirculation rates available in the BV-2 Control Room.

| Beaver Valley Power Station | Procedure Nu   | mber:<br>1/2-ODC-2.01                    |
|-----------------------------|----------------|------------------------------------------|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:<br>5 | Page Number:<br>34 of 42                 |

### ATTACHMENT C Page 1 of 5 INGESTION DOSE COMMITMENT FACTORS

TABLE 1.3-1  $A_{it} \ VALUES \ FOR \ THE \ ADULT \ FOR \ THE \ BEAVER \ VALLEY \ SITE \ (mrem/hr \ per \ uCi/ml)$ 

| <u>NUCLIDE</u>     | <b>BONE</b> | LIVER     | <u>T-BODY</u> | <u>THYROID</u> | <b>KIDNEY</b>    | <u>LUNG</u> | <u>GI-LLI</u> |
|--------------------|-------------|-----------|---------------|----------------|------------------|-------------|---------------|
| H-3                | 0.00E-01    | 2.70E-01  | 2.70E-01      | 2.70E-01       | 2.70E-01         | 2,70E-01    | 2,70E-01      |
| C-14               | 3.13E04     | 6.26E03   | 6.26E03       | 6.26E03        | 6.26E03          | 6.26E03     | 6.26E03       |
| Na-24              | 4.08E02     | 4.08E 02  | 4.08E 02      | 4.08E 02       | 4.08E02          | 4.08E 02    | 4.08E 02      |
|                    |             |           |               |                |                  |             |               |
| -<br>P-32          | 4.62E 07    | 2.87E06   | 1.79E06       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 5.19E06       |
| Cr-51              | 0.00E-01    | 0.00E-01  | 1.27E00       | 7.62E-01       | 2.81E-01         | 1.69E00     | 3.21E02       |
| Mn-54              | 0.00E-01    | 4.38E03   | 8.35E02       | 0.00E-01       | 1.30E03          | 0.00E-01    | 1.34E04       |
| •                  | 0.007.01    |           | 105           | 0.007.01       | 1.40=00          |             |               |
| Mn-56              | 0.00E-01    | 1.10E02   | 1.95E01       | 0.00E-01       | 1.40E02          | 0.00E-01    | 3.52E03       |
| Fe-55              | 6.59E02     | 4.56E 02  | 1.06E02       | 0.00E-01       | 0.00E-01         | 2.54E02     | 2.61E02       |
| F <del>o</del> -59 | 1.04E03     | 2.45E03   | 9.38E02       | 0.00E-01       | 0.00E-01         | 6.83E02     | 8.15E03       |
| -<br>Co-57         | 0.00E-01    | 2.10E01   | 3.50E01       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 533E02        |
| Co-58              | 0.00E-01    | 8.95E01   | 2.01E02       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 1.81E03       |
| Co-60              | 0.00E-01    | 2.57E02   | 5.67E02       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 4.83E03       |
|                    |             |           |               | 0.001701       |                  | ·····       |               |
| -<br>Ni-63         | 3.12E04     | 2.16E03   | 1.05E03       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 4.51E02       |
| Ni-65              | 1.27E 02    | 1.65E01   | 7.51E00       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 4.17E02       |
| Cu-64              | 0.00E-01    | 1.00E 01  | 4.70E00       | 0.00E-01       | 2.52E01          | 0.00E-01    | 8.53E02       |
| -                  |             |           |               |                |                  |             |               |
| Zn-65              | 2.32E 04    | 737E04    | 3.33E04       | 0.00E-01       | 4.93E04          | 0.00E-01    | 4.64E 04      |
| Zn-69              | 4.93E01     | 9.43E01   | 6.56E00       | 0.00E-01       | 6.13E01          | 0.00E-01    | 1.42E01       |
| Br-83              | 0.00E-01    | 0.00E-01  | 4.04E01       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 5.82E01       |
| -<br>Br-84         | 0.00E-01    | 0.00E-01  | 524E01        | 0.00E-01       | 0.00E-01         | 0.00E-01    | 4.11E-04      |
| Br-85              | 0.00E-01    | 0.00E-01  | 2.15E.00      | 0.00E-01       | 0.00E-01         | 0.00E-01    | 0.00E-01      |
| Rb-86              | 0.00E-01    | 1.01E 05  | 4.71E04       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 1.99E 04      |
| <br>-              |             |           |               |                |                  |             |               |
| Rb-88              | 0.00E-01    | 2,90E 02  | 1.54E02       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 4.00E-09      |
| Rb-89              | 0.00E-01    | 1.92E 02  | 1.35E02       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 1.12E-11      |
| Sr-89              | 2.22E04     | 0.00E-01  | 6.39E02       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 3.57E03       |
|                    | E 40T-05    | 0.0051.01 | 104500        | 0.007.01       | 0.000            | 0.005.01    | 1.600.07      |
| <b>Sr</b> -90      | 5.48E 05    | 0.00E-01  | 1.34E05       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 1.58E 04      |
| Sr-91<br>S00       | 4.10E02     | 0.00E-01  | 1.65E01       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 1.95E03       |
| Sr-92              | 1.55E02     | 0.00E-01  | 6,72E00       | 0.00E-01       | 0.00E-01         | 0.00E-01    | 3.08E 03      |
| -<br>Y-90          | 5.80E-01    | 0.00E-01  | 1.55E-02      | 0.00E-01       | 0.00E-01         | 0.00E-01    | 6.15E03       |
| 1-50<br>Y-91m      | 5.48E-03    | 0.00E-01  | 2.12E-04      | 0.00E-01       | 0.00E-01         | 0.00E-01    | 1.61E-02      |
| Y-91               | 8.50E00     | 0.00E-01  | 2.27E-01      | 0.00E-01       | 0.00E-01         | 0.00E-01    | 4.68E03       |
|                    |             |           |               |                | 5,50 <b>2</b> 01 |             |               |
|                    |             |           |               |                |                  |             |               |

|                | Beaver V             | alley Po                         | wer Stat                         | tion                                                 |                              | Procedure Num       | tber:<br>/2-ODC-2.01                                     |
|----------------|----------------------|----------------------------------|----------------------------------|------------------------------------------------------|------------------------------|---------------------|----------------------------------------------------------|
| Title:         | UID EFFLUI           | CNITC                            |                                  |                                                      |                              | Unit: 1/2 Revision: | Level Of Use:<br>General Skill Reference<br>Page Number: |
| ODCM. LIQ      | OID ELLFOI           | ZINI 3                           | •                                |                                                      |                              | 5                   | 35 of 42                                                 |
| Y-92<br>Y-93   | 5.09E-02<br>1.62E-01 | INGESTIO<br>0.00E-01<br>0.00E-01 |                                  | IMENT C<br>2 of 5<br>MMITMEN<br>0.00E-01<br>0.00E-01 | T FACT<br>0.00E-0<br>0.00E-0 | 0.00E               |                                                          |
| 7r-97          | 2.53E-01             | 8.11E-02<br>2.82E-03             | 4.40E-03<br>5.49E-02<br>1.29E-03 | 0.00E-01<br>0.00E-01                                 | 1.27E-0                      | 0.00E               | 2.57E 02                                                 |
| Nb-95<br>Nb-97 | 4.47E 00<br>3.75E 02 | 2.49E00<br>9.49E03               | 1.34E 00<br>3.46E 03             | 0,00E-01<br>0,00E-01                                 | 246E0<br>1.11E-0             | 0.00E               | 201 1.51E04                                              |

| Beaver Valley Power Station | Procedure Nu | mber:<br>1/2-ODC-2.01                    |
|-----------------------------|--------------|------------------------------------------|
| Title:                      | Unit: 1/2    | Level Of Use:<br>General Skill Reference |
| ODCM: LIQUID EFFLUENTS      | Revision:    | Page Number:<br>36 of 42                 |

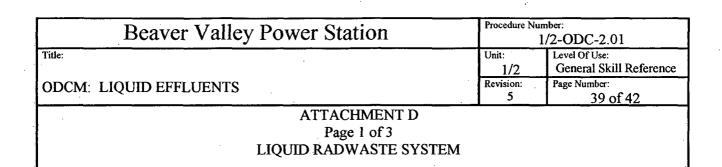
## ATTACHMENT C Page 3 of 5 INGESTION DOSE COMMITMENT FACTORS

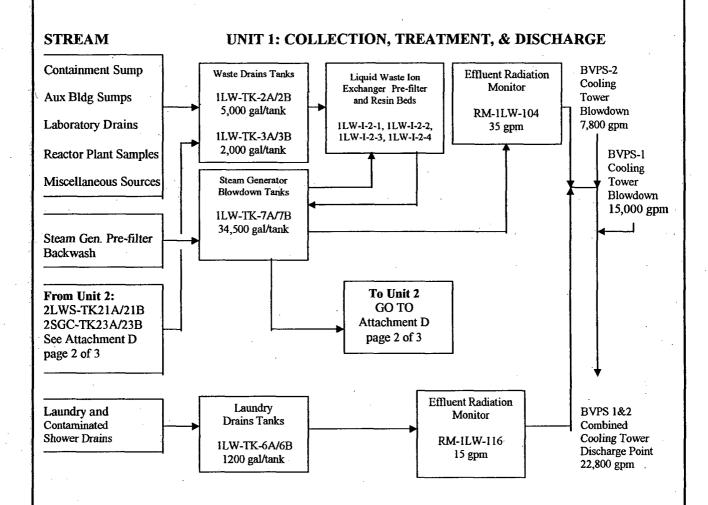
TABLE 1.3-1

A<sub>it</sub> VALUES FOR THE ADULT FOR THE BEAVER VALLEY SITE (mrem/hr per uCi/ml)

| NUCLIDE            | <b>BONE</b>          | <b>LIVER</b>         | T-BODY               | THYROID              | <b>KIDNEY</b>        | LUNG                 | GI-LL               |
|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|
| Mo-99              | 0.00E-01             | 1.05E02              | 2.00E01              | 0.00E-01             | 2.38E02              | 0.00E-01             | 2.43E02             |
| To-99m<br>To-101   | 8.97E-03<br>9.23E-03 | 2.54E-02<br>1.33E-02 | 3.23E-01<br>1.30E-01 | 0.00E-01<br>0.00E-01 | 3.85E-01<br>2.39E-01 | 1.24E-02<br>6.79E-03 | 1.50E01<br>4.00E-14 |
| 10-101             | 9.23E-03             | 1.55E-02             | 1.500-01             | 0.006/01             | 2.37E-U1             | 0,19E403             | 4.00£-14            |
| -<br>Ru-103        | 4.51E00              | 0.00E-01             | 1.94E00              | 0.00E-01             | 1.72E01              | 0.00E-01             | 5.26E02             |
| Ru-105             | 3.75E-01             | 0.00E-01             | 1.48E-01             | 0.00E-01             | 4.85E00              | 0.00E-01             | 2.29E02             |
| Ru-106             | 6.70E01              | 0.00E-01             | 8.48E00              | 0.00E-01             | 1.29E02              | 0.00E-01             | 4.34E03             |
| -<br>Ag-110m       | 9.48E-01             | 8.77E-01             | 5.21E-01             | 0.00E-01             | 1.72E00              | 0.00E-01             | 3.58E02             |
| Sb-124             | 7.87E00              | 1.49E-01             | 3.12E00              | 1.91E-02             | 0.00E-01             | 6.13E00              | 2.23E02             |
| Sb-125             | 5.03E00              | 5.62E-02             | 1.20E00              | 5.11E-03             | 0.00E-01             | 3.88E00              | 5.54E01             |
| -<br>T 105         | 0.55500              | 0.2017.02            | 0.447.00             | ##PE00               | 100704               | 0.005.01             | 1.005.04            |
| Te-125m<br>Te-127m | 2.57E03<br>6.49E03   | 9.30E02<br>2.32E03   | 3.44E02<br>7.90E02   | 7.72E02<br>1.66E03   | 1.04E04<br>2.63E04   | 0.00E-01<br>0.00E-01 | 1.03E04<br>2.17E04  |
| Te-127             | 1.05E02              | 3.78E01              | 2.28E01              | 7.81E01              | 4.29E02              | 0.00E-01             | 8.32E03             |
| -                  |                      |                      |                      |                      |                      |                      |                     |
| Te-129m            | 1.10E04              | 4.11E03              | 1.74E03              | 3.78E03              | 4.60E04              | 0.00E-01             | 5.55E04             |
| Te-129<br>Te-131m  | 3.01E01<br>1.66E03   | 1.13E01<br>8.10E02   | 7.33E00<br>6.75E02   | 2.31E01<br>1.28E03   | 1.26E02<br>8.21E03   | 0.00E-01<br>0.00E-01 | 2.27E01<br>8.05E04  |
| 10-13111           | 1.002.03             | 0.10E02              | 0.73E02              | 12000                | 0.211.503            | 0.002-01             | 0.001.04            |
| Te-131             | 1.89E01              | 7.88E00              | 5.96E00              | 1.55E01              | 8 <i>27</i> E01      | 0.00E-01             | 2.67E00             |
| Te-132             | 2.41E03              | 1.56E03              | 1.47E03              | 1.72E03              | 1.50E04              | 0.00E-01             | 7.39E04             |
| Te-134             | 3.10E01              | 2.03E01              | 125E01               | 2.71E01              | 1.96E02              | 0.00E-01             | 3.44E-02            |
| -<br>I-129         | 1.19E02              | 1.02E02              | 3.35E02              | 2.63E05              | 2.19E02              | 0.00E-01             | 1.61E01             |
| I-130              | 2.75E01              | 8.10E01              | 3.20E01              | 6.87E03              | 1.26E02              | 0.00E-01             | 6.97E01             |
| I-131              | 1.51E02              | 2.16E02              | 1.24E02              | 7.08E04              | 3.71E02              | 0.00E-01             | 5.70E01             |
| -<br>I-132         | 7.37E00              | 1.97E01              | 6.90E00              | 6.90E02              | 3.14E01              | 0.00E-01             | 3.71E00             |
| I-133              | 5.16E01              | 8.97E01              | 2.74E01              | 1.32E04              | 1.57E02              | 0.00E-01             | 8.06E01             |
| I-134              | 3.85E00              | 1.05E01              | 3.74E00              | 1.81E02              | 1.66E01              | 0.00E-01             | 9.12E-03            |
| I-135              | 1.61E01              | 42lE01               | 1.55E01              | 2.78E03              | 6.76E01              | 0.00E-01             | 4.76E01             |
| I-133<br>Cs-134    | 2,98E05              | 4.21E01<br>7.09E05   | 5.79E05              | 2.78E03<br>0.00E-01  | 6.76E01<br>2.29E05   | 7.61E04              | 4.76E01<br>1.24E04  |
| Cs-136             | 3.12E04              | 1.23E05              | 8.86E04              | 0.00E-01             | 6.85E04              | 9.39E03              | 1.40E04             |
| -                  | 2.0017.05            | 5 00E 0#             | 2.400.05             | 0.005.01             | 1.7773.05            | E DOTE O             | 10224               |
| Cs-137<br>Cs-138   | 3,82E05<br>2,64E02   | 5.22E05<br>5.22E02   | 3.42E05<br>2.59E02   | 0.00E-01<br>0.00E-01 | 1.77E05<br>3.84E02   | 5.89E04<br>3.79E01   | 1.01E04<br>2.23E-03 |
| Cs-136<br>Ba-139   | 2.64E 02<br>9.69E-01 | 6.90E-04             | 2.39E 02<br>2.84E-02 | 0.00E-01<br>0.00E-01 | 6.45E-04             | 3.79E-01<br>3.92E-04 | 1.72E00             |
| 100                | 7.071.01             | U.JULTUT             | 2.0 11. 02           | J,001 01             | U, IJAJ VT           | VT                   | 1.141.00            |

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-2,01 |                                          |  |
|-------------------------------------------|-----------------------------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUID EFFLUENTS                    | Revision:                         | Page Number: 37 of 42                    |  |
| ATTACHMENT C                              |                                   |                                          |  |
| Page 4 of 5 INGESTION DOSE COMMITMENT FAC | TORS                              |                                          |  |


| Ba-140 | 2.03E02  | 2.55E-01 | 1.33E01  | 0.00E-01 | 8.66E-02 | 1.46E-01 | 4.18E 02 |
|--------|----------|----------|----------|----------|----------|----------|----------|
| Ba-141 | 4.71E-01 | 3.56E-04 | 1.59E-02 | 0.00E-01 | 3.31E-04 | 2.02E-04 | 2.22E-10 |
| Ba-142 | 2.13E-01 | 2.19E-04 | 1.34E-02 | 0.00E-01 | 1.85E-04 | 1.24E-04 | 3.00E-19 |
| La-140 | 1.51E-01 | 7.59E-02 | 2.01E-02 | 0.00E-01 | 0.00E-01 | 0.00E-01 | 5.57E03  |
| La-142 | 7.71E-03 | 3.51E-03 | 8.74E-04 | 0.00E-01 | 0.00E-01 | 0.00E-01 | 2.56E01  |
| Co-141 | 2.63E-02 | 1.78E-02 | 2.02E-03 | 0.00E-01 | 8.26E-03 | 0.00E-01 | 6.80E01  |


| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.01 |                                          |  |
|-----------------------------|-----------------------------------|------------------------------------------|--|
| Title:                      | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |  |
| ODCM: LIQUID EFFLUENTS      | Revision:                         | Page Number:<br>38 of 42                 |  |

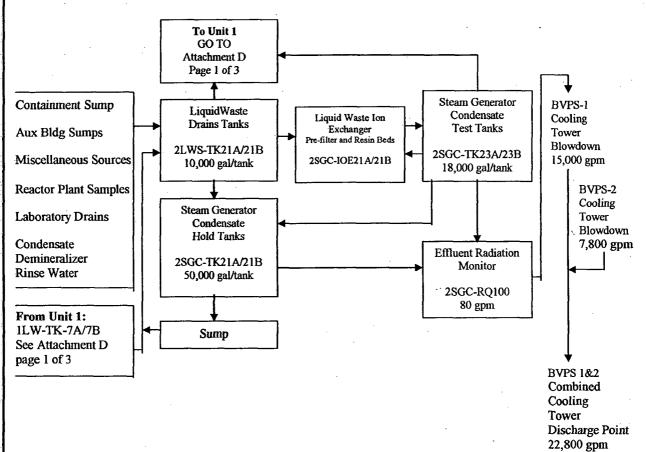
## ATTACHMENT C Page 5 of 5 INGESTION DOSE COMMITMENT FACTORS

# TABLE 1.3-1 A<sub>it</sub> VALUES FOR THE ADULT FOR THE BEAVER VALLEY SITE (mrem/hr per uCi/ml)

| NUCLIDE     | BONE     | LIVER    | T-BODY   | THYROID  | <b>KIDNEY</b> | <b>LUNG</b> | GI-LLI   |
|-------------|----------|----------|----------|----------|---------------|-------------|----------|
| Ce-143      | 4.64E-03 | 3.43E00  | 3.79E-04 | 0.00E-01 | 1.51E-03      | 0.00E-01    | 1.28E 02 |
| Ce-144      | 1.37E 00 | 5.73E-01 | 7.36E-02 | 0.00E-01 | 3.40E-01      | 0.00E-01    | 4.64E 02 |
| Pr-143      | 5.54E-01 | 2.22E-01 | 2.75E-02 | 0.00E-01 | 1.28E-01      | 0.00E-01    | 2.43E 03 |
| Pr-144      | 1.81E-03 | 7.53E-04 | 9.22E-05 | 0.00E-01 | 4.25E-04      | 0.00E-01    | 2.61E-10 |
| Nd-147      | 3.79E-01 | 4.38E-01 | 2.62E-02 | 0.00E-01 | 2.56E-01      | 0.00E-01    | 2.10E 03 |
| W-187       | 2.96E 02 | 2.47E 02 | 8.65E 01 | 0.00E-01 | 0.00E-01      | 0.00E-01    | 8.10E 04 |
| -<br>Np-239 | 2.90E-02 | 2,85E-03 | 1.57E-03 | 0.00E-01 | 8.89E-03      | 0.00E-01    | 5.85E02  |

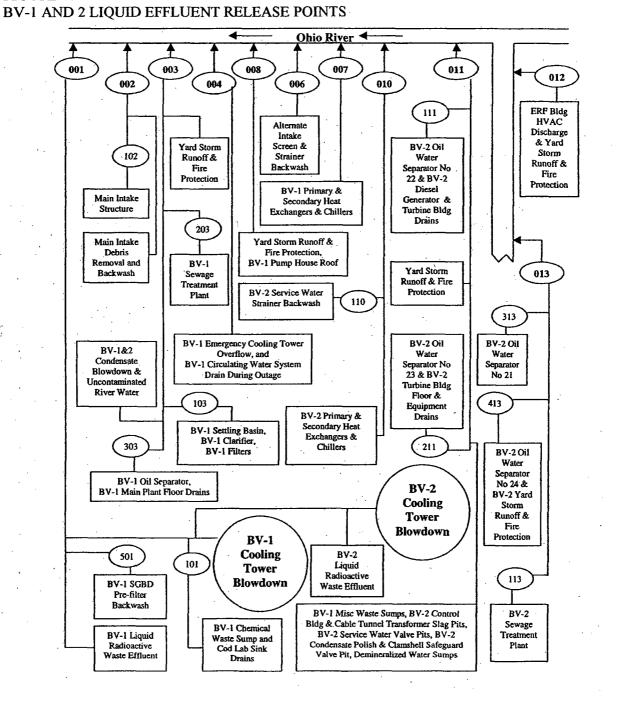


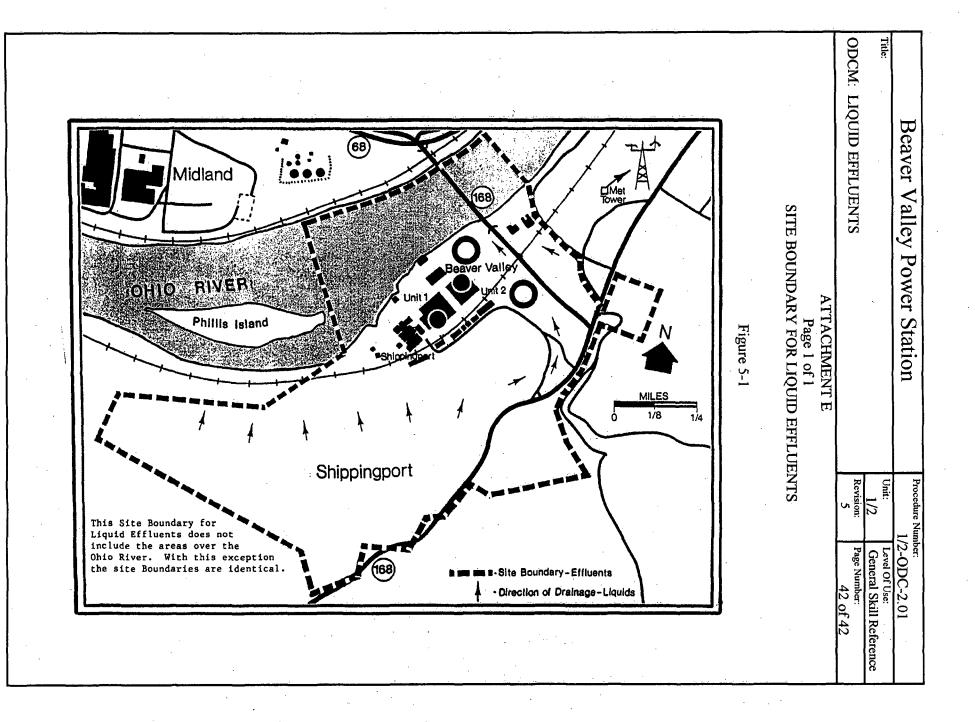



LIQUID WASTE DISCHARGES TO BVPS-1 COOLING TOWER BLOWDOWN AND ENVIRONMENT

| Beaver Valley Power Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Procedure N | Procedure Number:<br>1/2-ODC-2.01        |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|--|--|--|
| Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unit: 1/2   | Level Of Use:<br>General Skill Reference |  |  |  |
| ODCM: LIQUID EFFLUENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Revision: 5 | Page Number:<br>40 of 42                 |  |  |  |
| ACCEPTED TO THE PARTY OF THE PA |             |                                          |  |  |  |

ATTACHMENT D
Page 2 of 3
LIQUID RADWASTE SYSTEM


**STREAM** 


#### **UNIT 2: COLLECTION, TREATMENT, & DISCHARGE**



LIQUID WASTE DISCHARGES TO BVPS-2 COOLING TOWER BLOWDOWN AND ENVIRONMENT

### LIQUID RADWASTE SYSTEM FIGURE 1.4-3





### **Beaver Valley Power Station**

Unit 1/2

1/2-ODC-2.02

**ODCM: GASEOUS EFFLUENTS** 

#### <u>Document Owner</u> Manager, Nuclear Environmental & Chemistry

| Revision Number          | 2                  |
|--------------------------|--------------------|
| Level Of Use             | In-Field Reference |
| Safety Related Procedure | Yes                |
| Effective Date           | 08/30/06           |

| Beaver Valley Power Station |  |           | Procedure Number: 1/2-ODC-2.02      |  |
|-----------------------------|--|-----------|-------------------------------------|--|
| Title:                      |  | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     |  | Revision: | Page Number:<br>2 of 128            |  |

#### TABLE OF CONTENTS

| 1.0 | DI ID | DOCE     |                                                                      | 1  |
|-----|-------|----------|----------------------------------------------------------------------|----|
| 2.0 | SCO   |          |                                                                      |    |
| 3.0 |       |          | S AND COMMITMENTS                                                    |    |
| 3.0 | 3 1   |          | ces                                                                  |    |
|     |       |          |                                                                      |    |
|     | 3.2   |          | ments                                                                |    |
| 4.0 |       |          | ND FORMS                                                             |    |
|     | 4.1   |          | ·                                                                    |    |
|     | 4.2   |          |                                                                      |    |
| 5.0 |       |          | NS AND LIMITATIONS                                                   |    |
| 6.0 |       |          | E CRITERIA                                                           |    |
| 7.0 | PRE   | REQUISI  | TES                                                                  | 8  |
| 8.0 | PRO   |          |                                                                      |    |
|     | 8.1   |          | etpoints                                                             |    |
|     |       | 8.1.1    | BV-1 Monitor Alarm Setpoint Determination                            |    |
|     |       | 8.1.2    | BV-2 Monitor Alarm Setpoint Determination                            |    |
|     |       | 8.1.3    | BV-1/2 Monitor Alarm Setpoint Determination                          | 28 |
|     | 8.2   | Complian | ce With 10 CFR 20 Dose Rate Limits (ODCM CONTROL 3.11.2.1)           | 34 |
|     |       | 8.2.1    | Dose Rate Due To Noble Gases                                         | 34 |
|     |       | 8.2.2    | Dose Rate Due To Radioiodines And Particulates                       | 41 |
|     | 8.3   | Complia  | ance With 10 CFR 50 Dose Limits (ODCM CONTROLS 3.11.2.2 And 3.11.2.3 | )  |
|     |       | (Gaseou  | s)                                                                   | 44 |
|     |       | 8.3.1    | Dose Due To Noble Gases                                              | 45 |
|     |       | 8.3.2    | Dose Due To Radioiodines And Particulates                            | 52 |
|     | 8.4.  | Gaseous  | Radwaste System                                                      |    |
|     |       | 8.4.1    | BV-1 Gaseous Radwaste System Components                              |    |
|     |       | 8.4.2    | BV-2 Gaseous Radwaste System Components                              |    |
|     |       |          | · · · · · · · · · · · · · · · · · · ·                                |    |

| Beaver Valley Power Station |                | Procedure Number: 1/2-ODC-2.02      |  |
|-----------------------------|----------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2 | Page Number:<br>3 of 128            |  |

#### TABLE OF CONTENTS

| ATTACHMENT A | GASEOUS SOURCE TERM                                  | 70  |
|--------------|------------------------------------------------------|-----|
| ATTACHMENT B | GASEOUS EFFLUENT MONITOR DETECTION EFFICIENCIES      |     |
| ATTACHMENT C | MODES OF GASEOUS RELEASE                             | 74  |
| ATTACHMENT D | RADIONUCLIDE MIX                                     | 75  |
| ATTACHMENT E | DISTANCES TO RELEASE POINTS                          |     |
| ATTACHMENT F | 0-5 MILE DISPERSION PARAMETERS                       | 78  |
| ATTACHMENT G | NOBLE GAS DOSE FACTORS AND DOSE PARAMETERS           | 85  |
| ATTACHMENT H | ORGAN DOSE PARAMETERS                                |     |
| ATTACHMENT I | MODES OF GASEOUS RELEASE                             | 88  |
| ATTACHMENT J | P&I ORGAN DOSE FACTORS                               | 89  |
| ATTACHMENT K | CONTINUOUS RELEASE DEPOSITION PARAMETERS (0-5 MILES) | 108 |
| ATTACHMENT L | CONTINUOUS RELEASE DEPOSITION PARAMETERS (SPECIAL    |     |
|              | DISTANCES)                                           | 115 |
| ATTACHMENT M | BATCH RELEASE DISPERSION PARAMETERS (SPECIAL         |     |
| •            | DISTANCES)                                           | 122 |
| ATTACHMENT N | BATCH RELEASE DISPERSION PARAMETERS (0 - 5 MILES)    | 125 |
| ATTACHMENT O | GASEOUS RADWASTE SYSTEM                              | 126 |
| ATTACHMENT P | BV-1 AND BV-2 GASEOUS EFFLUENT RELEASE POINTS        |     |
| ATTACHMENT Q | SITE BOUNDARY FOR GASEOUS EFFLUENTS                  | 128 |

| Beaver Valley Power Station | 1            | Procedure Number: 1/2-ODC-2.02   |  |  |
|-----------------------------|--------------|----------------------------------|--|--|
| Title:                      | Unit:<br>1/2 | Level Of Use: In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:    | Page Number:<br>4 of 128         |  |  |

#### 1.0 PURPOSE

- 1.1 This procedure provides the calculational methodology to be used for determination of the following release parameters.
  - 1.1.1 Gaseous effluent monitor alarm setpoints
  - 1.1.2 Gaseous effluent dose rate calculations
  - 1.1.3 Gaseous effluent dose calculations
- 1.2 This procedure also provides information related to the following:
  - 1.2.1 Gaseous Radwaste Treatment System.
  - 1.2.2 Site Boundary used for gaseous effluents.
- 1.3 Prior to issuance of this procedure, these items were located in Section 2 and Section 5 of the old ODCM.

#### 2.0 SCOPE

2.1 This procedure is applicable to all station personnel (including subcontractors) that are qualified to perform activities as described and referenced in this procedure.

#### 3.0 REFERENCES AND COMMITMENTS

#### 3.1 References

- 3.1.1 References for BV-1 Gaseous Effluent Monitor Setpoints
  - 3.1.1.1 Beaver Valley Power Station, Appendix I Analysis Docket No. 50-334 and 50-412; Table 2.1-3
  - 3.1.1.2 Beaver Valley Power Station, Unit 2 FSAR; Table 11.3-1
  - 3.1.1.3 BVPS Specification No. BVS 414, Table V Nuclide Data,; Table 1 and Figure 1, Table 3, and Figure 2, May 30, 1974
  - 3.1.1.4 Calculation Package No. ERS-SFL-85-031, Unit 1 Gaseous Effluent Monitor Efficiency Data
  - 3.1.1.5 Calculation Package No. ERS-HHM-87-014, Unit 1/Unit 2 ODCM Gaseous Alarm Setpoint Determinations
  - 3.1.1.6 Calculation Package No. ERS-ATL-87-026, BVPS-1 and BVPS-2 ODCM T Factor Justification

| $\mathrm{B}\epsilon$ | eaver Valley Power Station                                                                                     | Procedure N    | umber:<br>1/2-ODC-2.02 |
|----------------------|----------------------------------------------------------------------------------------------------------------|----------------|------------------------|
| le:                  |                                                                                                                | Unit:          | Level Of Use:          |
|                      |                                                                                                                | 1/2            | In-Field Referenc      |
| DCM: GASE            | OUS EFFLUENTS                                                                                                  | Revision:      | Page Number:           |
|                      |                                                                                                                | 2              | 5 of 128               |
| 3.1.1.7              | Letter ND1SHP:776, dated February 12, 1988, B<br>Appendix B                                                    | VPS-1 ODCN     | /I Table 2.2-2,        |
| 3.1.1.8              | Stone and Webster Calculation No. UR(B)-262, Containment Vacuum Pumps                                          | Gaseous Relea  | ases From              |
| 3.1.2 Ref            | erences for BV-2 Gaseous Effluent Monitor Setpoir                                                              | nts            |                        |
| 3.1.2.1              | Calculation Package No ERS-SFL-86-026, Unit 2                                                                  | DRMS Isoto     | pic Efficiencies       |
| 3.1.2.2              | Calculation Package No. ERS-HHM-87-014, Uni<br>Alarm Setpoint Determinations                                   | it 1/Unit 2 OE | OCM Gaseous            |
| 3.1.2.3              | Beaver Valley Power Station, Unit 2 FSAR; Tabl                                                                 | e 11.3-2       | ·                      |
| 3.1.2.4              | Calculation Package No. ERS-ATL-87-026, BVF Factor Justification                                               | PS-1 and BVP   | S-2 ODCM T             |
| 3.1.2.5              | Stone and Webster Calculation No. UR(B)-262, Containment Vacuum Pumps                                          | Gaseous Relea  | ases From              |
| 3.1.3 Ref            | erences Used for other portions of this procedure                                                              | ,              |                        |
| 3.1.3.1              | NUREG-0133, Preparation of Radiological Efflu<br>Nuclear Power Plants                                          | ent Technical  | Specifications for     |
| 3.1.3.2              | NUREG-1301, Offsite Dose Calculation Manual Effluent Controls for Pressurized Water Reactors Supplement No. 1) |                |                        |
| 3.1.3.3              | NUREG-0324; XOQDOQ Program for the Meter<br>Releases at Nuclear Power Stations, September 1                    |                | aluation of Routine    |
| 3.1.3.4              | NUREG-0017, Calculation of Releases of Radioa Liquid Effluents form PWR's Revision 0.                          | active Materia | ls in Gaseous and      |
| 3.1.3.5              | Regulatory Guide 1.109, Calculation of Annual I<br>Releases of Reactor Effluents for the Purpose of 1<br>1977  |                |                        |
| 3.1.3.6              | NUREG-0172, Age - Specific Radiation Dose Co<br>Chronic Intake                                                 | ommitment Fa   | actors for a one-year  |
| 3.1.3.7              | 1/2-ADM-1640, Control of the Offsite Dose Calc                                                                 | ulation Manu   | al                     |
| 3.1.3.8              | 1/2-ADM-0100, Procedure Writers Guide                                                                          |                | e Se                   |
| 3.1.3.9              | NOP-SS-3001, Procedure Review and Approval                                                                     |                | •                      |
|                      |                                                                                                                |                | •                      |

| Beaver Valley Power Station |           | Procedure Number:<br>1/2-ODC-2.02   |  |
|-----------------------------|-----------|-------------------------------------|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     |           | Page Number:<br>6 of 128            |  |

- 3.1.3.10 CR03-04830, Containment Vacuum Pump Replacement Increases ODCM Source Term. CA-03, Revise Unit 1 Containment Vacuum Pump Source-Term in ODCM procedure 1/2-ODC-2.02, Attachment A, Table 2.1-1a.
  - 3.1.3.11 CR 05-01169, Chemistry Action Plan for Transition of RETS, REMP and ODCM. CA-16, Revise procedure 1/2-ODC-2.02 to change document owner from Manager, Radiation Protection to Manager, Nuclear Environmental & Chemistry.
  - 3.1.3.12 Unit 1 Technical Specification Amendment No. 275 (LAR 1A-302) to License No. DPR-66. This amendment to the Unit 1 license was approved by the NRC on July 19, 2006.
  - 3.1.3.13 Vendor Calculation Package No. 8700-UR(B)-223, Impact of Atmospheric Containment Conversion, Power Uprate, and Alternative Source Terms on the Alarm Setpoints for the Radiation Monitors at Unit 1.
  - 3.1.3.14 Engineering Change Package No. ECP-04-0440, Extended Power Uprate.
  - 3.1.3.15 CR 06-04908, Radiation Monitor Alarm Setpoint Discrepancies. CA-03; revise ODCM procedure 1/2-ODC-2.02 to update the alarm setpoints of gaseous effluent radiation monitor for incorporation of the Extended Power Uprate per Unit 1 TS Amendment No. 275.

#### 3.2 Commitments

3.2.1 None

#### 4.0 RECORDS AND FORMS

#### 4.1 Records

4.1.1 Any calculation supporting ODCM changes shall be documented, as appropriate, by a retrievable document (e.g.; letter or calculation package) with an appropriate RTL number.

#### 4.2 Forms

4.2.1 None

#### 5.0 PRECAUTIONS AND LIMITATIONS

- 5.1 ODCM CONTROLS applicable to dose rate apply to the site. The site dose rate is due to the summation of releases from both units.
- 5.2 ODCM CONTROLS applicable to accumulated dose apply individually to each unit.

| Beaver Valley Power Station |  | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--|--------------------------------|-------------------------------------|
| Title:                      |  | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     |  | Revision:                      | Page Number:<br>7 of 128            |

- 5.3 Releases at the Beaver Valley site may be ground level or elevated in nature.
  - 5.3.1 All ground level releases are identified with a specific unit in the determination of site dose rate and dose attributed to that unit.
  - 5.3.2 Elevated releases from both units are considered to originate from a shared radwaste system and are discharged from a common release point, the Process Vent, at the top of the BV-1 cooling tower.
- At BV-1 and BV-2, the dose from continuous and batch (Gas Waste Storage Tanks) releases via the shared radwaste system (Process Vent) are normally apportioned equally to the units. Other continuous and batch releases via non-shared radwaste systems shall be attributed to a specific unit. The only exception is a containment purge via the Process Vent which shall be attributed to a specific unit.
- 5.5 There is a difference in setpoint terminology presentations of the radiation monitoring systems of BV-1 and BV-2.
  - 5.5.1 Where HIGH and HIGH-HIGH terminology are used for the BV-1 Victoreen monitors, ALERT and HIGH terminology are used for the BV-1 Eberline SPING monitors and the BV-2 monitors.
  - Also, BV-2 setpoints are presented in uCi/cc rather than cpm as in BV-1. This difference is due to BV-2 software which applies a conversion factor to the BV-2 raw data (cpm). The user is cautioned that the uCi/cc presentation is technically correct only for the specific isotopic mix used in the determination of the conversion factor. In practice, setpoints determined for a calculated mix are correct for that mix. Setpoints determined on analysis prior to release will be correct for properly controlling dose rate, but the indicated uCi/cc value may differ from the actual value.
  - 5.5.3 All BV-1 and BV-2 effluent monitors specified herein have Upper Alarm Setpoints established at 60 percent of the site limit, and Lower Alarm Setpoints established at 30 percent of the site limit.
- 5.6 A release may be batch or continuous in nature. Batch refers to releases that are intermittent in radionuclide concentrations or flow, such as releases from gas storage tanks, containment purges and ventings of systems or components with infrequent use.
  - 5.6.1 Batch releases may be due to operational variations which result in radioactive releases greater than 50% of the releases normally considered as continuous. Batch releases from these sources during normal operation, including anticipated operational occurrences, are defined as those which occur for a total of 500 hours or less in a calendar year, but not more than 150 hours in any quarter.
  - 5.6.2 The batch relative concentration value has been calculated in accordance with the guidelines provided in NUREG-0324<sup>(3.1.3.3)</sup> for short-term release.

| Beaver Valley Power Station |                | Procedure Number: 1/2-ODC-2.02      |  |
|-----------------------------|----------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2 | Page Number:<br>8 of 128            |  |

- 5.6.3 <u>IF</u> simultaneous batch and continuous release out of one vent occurs, <u>THEN</u> use the lowest setpoint obtained according to Sections 8.1.1.1 through 8.1.3.2.
- 5.7 This procedure also contains information that was previously contained in Section 5 of the previous BV-1 and BV-2 Offsite Dose Calculation Manual.
  - 5.7.1 In regards to this, the site boundary for gaseous effluents was included in this procedure.
    - 5.7.2 The Site Boundary for Gaseous Effluents is shown in ATTACHMENT P Figure 5-1.

#### 6.0 <u>ACCEPTANCE CRITERIA</u>

- All changes to this procedure shall contain sufficient justification that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50, and not adversely impact the accuracy of effluent dose or alarm setpoint calculation. (3.1.3.2)
  - 6.1.1 All changes to this procedure shall be prepared in accordance with 1/2-ADM-0100<sup>(3.1.3.8)</sup> and 1/2-ADM-1640. (3.1.3.7)
  - 6.1.2 All changes to this procedure shall be reviewed and approved in accordance with NOP-SS-3001<sup>(3.1.3.9)</sup> and 1/2-ADM-1640. (3.1.3.7)

#### 7.0 PREREQUISITES

7.1 The user of this procedure shall be familiar with ODCM structure and content.

#### 8.0 PROCEDURE

#### 8.1 Alarm Setpoints

#### 8.1.1 BV-1 Monitor Alarm Setpoint Determination

ODCM CONTROL 3.11.2.1 require that the dose rate in unrestricted areas due to noble gas radionuclides in the gaseous effluent released from the site shall be limited to  $\leq$  500 mrem/yr to the total body and to  $\leq$  3000 mrem/yr to the skin.

This section describes the methodology used to maintain the release of noble gas radionuclides within ODCM CONTROL 3.11.2.1 for the site, and determines monitor setpoints for BV-1.

The methodologies described in Section 8.1.1.2, 8.1.2.2, and 8.1.3.2 provide an alternate means of determining monitor alarm setpoints that may be used when an analysis is performed prior to release.

Control of the site dose rate limit due to noble gases is shown in the following Table. Dose rate control is exercised through a total of 8 effluent stream monitors, of which 3 are located at BV-1 (alternates exists for these monitors), and 5 are located at BV-2. As previously noted, BV-1 and BV-2 elevated releases are via the PV-1/2 Process Vent.

| Monitor Setpoint Specifications Based On Fraction Of Site Limit |                               |                |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------|----------------|--|--|--|--|
| UNIT RELEASE POINT                                              | FRACTION OF SITE LIMITING DOS |                |  |  |  |  |
| MONITOR NO.                                                     | TT Alam.                      | RATE           |  |  |  |  |
|                                                                 | Upper Alarm                   | Lower Alarm    |  |  |  |  |
| (VV-1) Unit 1, Auxiliary Building Vent<br>Pri.: RM-1VS-101B or  | 60% (HIGH-HIGH)               | 30% (HIGH)     |  |  |  |  |
| Alt.: RM-1VS-109 (5)                                            | 60% (HIGH)                    | 30% (ALERT)    |  |  |  |  |
| (CV-1) Unit 1, Rχ Containment/SLCRS                             | •                             |                |  |  |  |  |
| Pri.: RM-1VS-107B or                                            | 60% (HIGH-HIGH)               | 30% (HIGH)     |  |  |  |  |
| Alt.: RM-1VS-110 (5)                                            | 60% (HIGH)                    | 30% (ALERT)    |  |  |  |  |
| (PV-1/2), Unit 1/2, Gaseous Waste/Prod                          |                               |                |  |  |  |  |
| Pri.: RM-1GW-108B or                                            | 60% (HIGH-HIGH)               | 30% (HIGH)     |  |  |  |  |
| Alt.: RM-1GW-109 (5)                                            | 60% (HIGH)                    | 30% (ALERT)    |  |  |  |  |
| (CV-2), Unit 2, SLCRS Filtered Pathwa 2HVS-RQ109E               | y<br>60% (HIGH)               | 30% (ALERT)    |  |  |  |  |
|                                                                 | ,                             | 30% (ALEKT)    |  |  |  |  |
| (VV-2), Unit 2, SLCRS Unfiltered Path<br>2HVS-RQ101B            | way<br>60% (HIGH)             | 30% (ALERT)    |  |  |  |  |
| (WV-2), Unit 2, Waste Gas Storage Vau                           | ` ,                           | 3370 (1222112) |  |  |  |  |
| 2RMQ-RQ303B                                                     | 60% (HIGH)                    | 30% (ALERT)    |  |  |  |  |
| (DV-2), Unit 2, Decontamination Build                           | , ,                           | ,              |  |  |  |  |
| 2RMQ-RQ301B                                                     | 60% (HIGH)                    | 30% (ALERT)    |  |  |  |  |
| (CB-2), Condensate Polishing Building Vent                      |                               |                |  |  |  |  |
| 2HVL-RQ112B                                                     | 60% (HIGH)                    | 30% (ALERT)    |  |  |  |  |

With the monitor setpoints based on fractions of the site limit as defined above, the following criteria may be applied to determine that the dose rate due to noble gas released from the site complies with ODCM CONTROL 3.11.2.1:

- The site dose rate is 30% of the site dose rate limit when any monitor is indicating a Lower Alarm.
- The site dose rate is 60% of the site dose rate limit when any two monitors are indicating Lower Alarms.
- The site dose rate is 60% of the site dose rate limit when any monitor is indicating an Upper Alarm.
- The site dose rate is 90% of the site dose rate limit when any monitor is indicating an Upper Alarm and any other monitor is indicating a Lower Alarm.

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02      |  |
|-----------------------------|-----------|-------------------------------------|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>10 of 128           |  |

### 8.1.1.1 <u>BV-1 Setpoint Determination Based On A Calculated Mix For VV-1 and CV-1 Ground Releases</u>

The table below gives the calculated monitor count rate above background (CR), in ncpm, and provides the equivalent monitor indication associated with the most limiting site dose rate limit (i.e., 500 mrem/yr Total Border or 3000 mrem/yr skin). The monitor HIGH-HIGH alarm setpoint above background (HHSP), and the monitor HIGH alarm setpoint above background (HSP) for each vent and operational condition shall be as follows:

| BV-1 ALARM SETPOINTS FOR GROUND RELEASES            |                  |           |              |              |  |
|-----------------------------------------------------|------------------|-----------|--------------|--------------|--|
| cpm ABOVE BACKGROUND                                |                  |           |              |              |  |
|                                                     |                  | 1         | 60%          | 30%          |  |
|                                                     | (P)PRIMARY*      |           | SITE         | SITE         |  |
|                                                     | <b>MONITOR</b>   |           | LIMIT        | LIMIT        |  |
|                                                     | (A) ALTERNATE    |           | UPPER        | <b>UPPER</b> |  |
|                                                     | <b>MONITOR</b>   | <u>CR</u> | <u>ALARM</u> | <b>ALARM</b> |  |
| • Continuous Release Via The BV-1                   | (P)RM-1VS-101B   | 3000      | ≤ 1800       | ≤ 900        |  |
| Auxilary Building Vent (VV-1)                       | (A)RM-1VS-109(5) | 1470      | ≤ 879        | ≤ 440        |  |
| Batch Release Of Containment                        | (P)RM-1VS-101B   | 1200      | ≤ 718        | ≤ 359        |  |
| Purge Via The BV-1 Auxiliary Building Vent (VV-1)   | (A)RM-1VS-109(5) | 1430      | ≤ 860        | ≤ 430        |  |
| • Continuous Release Via The BV-1                   | (P)RM-1VS-107B   | 6440      | ≤ 3870       | ≤ 1930       |  |
| Rx Containment/SLCRS Vent (CV-1)                    | (A)RM-1VS-110(5) | 3380      | ≤ 2030       | ≤ 1010       |  |
| Batch Release Of Containment                        | (P)RM-1VS-107B   | 12,700    | ≤ 7630       | ≤ 3810       |  |
| Purge Via The BV-1 Rx Containment/SLCRS Vent (CV-1) | (A)RM-1VS-110(5) | 6660      | ≤ 4000       | ≤ 2000       |  |
| ·                                                   |                  |           |              |              |  |

<sup>\*</sup>IF the primary monitor is out of service, THEN ODCM CONTROL 3.3.3.10 is met for the respective alternate monitor. The alternate setpoints shall be utilized.

The setpoints were determined using the following conditions and information:

- Source terms given in ATTACHMENT A Table 2.1-1a. The gaseous source terms were derived from Stone & Webster computer code GAS1BB (similar to NUREG-0017), (3.1.3.4) and computer code DRAGON 4 (for the containment vacuum pump sources). ATTACHMENT A Table 2.1-1a does not include particulates and iodines, which are not used in site noble gas dose rate calculations.
- Onsite meteorological data for the period January 1, 1976 through December 31, 1980.
- Discharge flow rate of 62,000 cfm for a VV-1 Continuous Release.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|--------------------------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>11 of 128           |  |

- Discharge flow rate of 92,000 cfm for a VV-1 Batch Release of Containment Purge.

  This is comprised of 30,000 cfm from the containment purge plus 62,000 cfm for VV-1.
- Discharge flow rate of 49,300 cfm for a CV-1 Continuous Release.
- Discharge flow rate of 56,800 cfm for a CV-1 Batch Release of Containment Purge. This is comprised of 7,500 cfm from the containment purge plus 49,300 cfm for CV-1.
- Information listed under References for BV-1 Gaseous Effluent Monitor Setpoints.

The calculation method given in Sections 8.1.1.1.1 through 8.1.1.1.7 was used to derive the monitor setpoints for the following operational conditions:

- Continuous release via VV-1.
- Continuous release via CV-1.
- Batch release of BV-1 Containment Purge via VV-1.
- Batch release of BV-1 Containment Purge via CV-2.

#### 8.1.1.1.1 **BV-1 Mix Radionuclides**

The "mix" (noble gas radionuclides and composition) of the gaseous effluent was determined as follows:

- The gaseous source terms that are representative of the "mix" of the gaseous effluent were selected. Gaseous source terms are the radioactivity of the noble gas radionuclides in the effluent. Gaseous source terms can be obtained from ATTACHMENT A Table 2.1-1a.
- The fraction of the total radioactivity in the gaseous effluent comprised of noble gas radionuclide "i" (Si) for each individual noble gas radionuclide in the gaseous effluent was determined by:

$$S_{i} = \frac{A_{i}}{\sum_{i} A_{i}}$$
 [2.1(1)-1]

where:

A<sub>i</sub> = The total radioactivity or radioactivity concentration of noble gas radionuclide "i" in the gaseous effluent from ATTACHMENT A Table 2.1-1a.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|--------------------------------|-------------------------------------|--|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>12 of 128           |  |

#### 8.1.1.1.2 BV-1 Maximum Acceptable Release Rate (Whole Body Exposure)

The maximum acceptable total release rate (uCi/sec) of all noble gas radionuclides in the gaseous effluent (Qt) based upon the whole body exposure limit was calculated by:

$$Q_{t} = \frac{500}{(X/Q)\sum_{i}K_{i}S_{i}}$$
 [2.1(1)-2]

where:

- (X/Q)<sub>vv</sub> = The highest calculated annual average relative concentration of effluents released via VV-1 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT F Table 2.2-5.
  - =  $1.03E-4 \text{ sec/m}^3$  for continuous releases.
- (X/q)<sub>vv</sub> = The highest calculated short term relative concentration of effluents released via VV-1 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT M Table 2.3-36.
  - = 3.32E-4 sec/m<sup>3</sup> for batch release of containment purge.
- (X/Q)<sub>cv</sub> = The highest calculated annual average relative concentration of effluents released via CV-1 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT F Table 2.2-4.
  - = 9.24E-5 sec/m<sup>3</sup> for continuous releases.
- (X/q)<sub>cv</sub> = The highest calculated short term relative concentration of effluents released via CV-1 for any area at or beyond the unrestricted area boundary for any sectors (sec/m³) from ATTACHMENT M Table 2.3-35.
  - = 3.08E-4 sec/m<sup>3</sup> for batch release of containment purge.
- K<sub>i</sub> = The total whole body dose factor due to gamma emissions from noble gas radionuclide "i" (mrem/year/uCi/m<sup>3</sup>) from ATTACHMENT G Table 2.2-11.
- $S_i$  = From equation [2.1(1)-1] above.

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02      |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>13 of 128           |  |  |

#### 8.1.1.1.3 BV-1 Maximum Acceptable Release Rate (Skin Exposure)

Qt was also determined based upon the skin exposure limit by:

$$Q_{t} = \frac{3000}{(X/Q) \sum_{i} (L_{i} + 1.1M_{i}) S_{i}}$$

where:

L<sub>i</sub> = The skin dose factor due to beta emissions from noble gas radionuclide "i"(mrem/year/uCi/m<sup>3</sup>) from ATTACHMENT G Table 2.2-11.

M<sub>i</sub> = The air dose factor due to gamma emissions from noble gas radionuclide "i"(mrad/year/uCi/m³) from ATTACHMENT G Table 2.2-11.

1.1 = The ratio of the tissue to air absorption coefficients over the energy range of the photons of interest, (mrem/mrad).

(X/Q) = Same as in Section 8.1.1.1.2.

#### 8.1.1.1.4 BV-1 Maximum Acceptable Release Rate (Individual Radionuclide)

The maximum acceptable release rate (uCi/sec) of noble gas radionuclide "i" in the gaseous effluent (Q<sub>i</sub>) for each individual noble gas radionuclide in the gaseous effluent was determined by:

$$Q_i = S_i Q_t$$
 [2.1(1)-4]

NOTE: Use the lower of the  $Q_t$  values obtained in Section 8.1.1.1.2 and 8.1.1.1.3.

#### 8.1.1.1.5 BV-1 Maximum Acceptable Concentrations (Individual Radionuclide)

The maximum acceptable radioactivity concentration (uCi/cc) of noble gas radionuclide "i" in the gaseous effluent (C<sub>i</sub>) for each individual noble gas radionuclide "i" in the gaseous effluent was determined by:

$$C_{i} = \frac{2.12E - 3 Q_{i}}{F}$$
 [2.1(1)-5]

where:

F = The maximum acceptable effluent flow rate at the point of release (cfm) as listed in Section 8.1.1.1.

2.12E-3 = Unit conversion factor (60 sec/min x 3.53E-5  $ft^3/cc$ ).

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>14 of 128           |

#### 8.1.1.1.6 **BV-1 Monitor Count Rate**

The calculated monitor count rate (ncpm) above background attributed to the noble gas radionuclide. CR was determined by:

$$CR = \sum_{i} C_i E_i$$
 [2.1(1)-6)]

where:

E<sub>i</sub> = The detection efficiency of the monitor for noble gas radionuclide "i" (cpm/uCi/cc) from ATTACHMENT B Table 2.1-2a.

#### 8.1.1.1.7 **BV-1 Monitor Setpoints**

The monitor alarm setpoints above background were determined as follows:

 The monitor HIGH-HIGH Alarm Setpoint above background (ncpm) was determined by:

HHSP = 
$$0.60 \times CR$$
 [2.1(1)-7]

 The monitor HIGH Alarm Setpoint above background (ncpm) was determined by:

$$HSP = 0.30 \text{ x CR}$$
 [2.1(1)-8]

NOTE: The values 0.60 for the HHSP and 0.30 for the HSP are fractions of the total radioactivity concentration that may be released via the monitored pathway to ensure that the site boundary limit is not exceeded due to simultaneous releases from both units.

### 8.1.1.2 <u>BV-1 Setpoint Determination Based On Analysis Prior To Release For VV-1 and CV-1 Ground Releases</u>

When the setpoints established using "the calculated mix" for ground releases do not provide adequate flexibility for operational needs, the method described below may be used in lieu of that set forth in Step 8.1.1.1. In this case, the results of sample analysis are used to determine the source term "mix." This calculational method applies to gaseous releases via VV-1 and CV-1 when determining the setpoint for the maximum acceptable discharge flow rate and the associated HIGH-HIGH Alarm Setpoint based on this flow rate during the following operational conditions:

- Batch release of Containment Purge via VV-1.
- Batch release of Containment Purge via CV-1.

#### 8.1.1.2.1 BV-1 Maximum Acceptable Release Rate

The maximum acceptable discharge flow rate from VV-1 and CV-1 during purging is determined as follows:

• The maximum acceptable gaseous discharge flow rate (f) from VV-1 and CV-1 (cfm) during purging based upon the whole body exposure limit is calculated by:

$$f = \frac{1.06 \text{ S T}}{(X/q) \sum K_i C_i}$$
 [2.1(1)-17]

where:

1.06 = 500 mrem/yr x 2.12E-3

500 mrem/yr = dose rate limit

2.12E-3 = unit conversion factor

=  $(60 \text{ sec/min } \times 3.53 \text{E-5 } \text{ft}^3/\text{cc})$ 

S = Percent of site dose rate released via this pathway. Up to 60% of the site dose rate is permissible for one release point under the alarm set point rules of Section 8.1.1.

T = Maximum valve for T is 16 based on the limiting restriction in ODCM CONTROL 3.11.2.1 where the dose rate for a containment purge may be averaged over a time period not to exceed 960 minutes. (As containment air volume change time period is 60 minutes; T = 960/60 = 16). (3.1.1.6)

(X/q)<sub>vv</sub> = The highest calculated short term relative concentration of effluents released via VV-1 for any area at or beyond the unrestricted area boundary for all sectors (sec/m<sup>3</sup>) from ATTACHMENT M Table 2.3-36.

 $= 3.32E-4 \text{ sec/m}^3$ 

(X/q)<sub>cv</sub> = The highest calculated short term relative concentration of effluents released via CV-1 for areas at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT M Table 2.3-37.

 $= 3.08E-4 \text{ sec/m}^3$ 

K<sub>i</sub> = The total whole body dose factor due to gamma emissions from noble gas radionuclide "i" (mrem/year/uCi/m³) from ATTACHMENT G Table 2.2-11.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |
|-----------------------------|--------------------------------|----------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>16 of 128        |

- C<sub>i</sub> = The undiluted radioactivity concentration of noble gas radionuclide "i" in the gaseous source (uCi/cc) as determined by analysis of the gas to be released.
- The flow rate (f) is also determined based upon the skin exposure limit as follows:

$$f = \frac{6.36 \text{ S T}}{(X/q) \sum_{i} (L_i + 1.1 M_i) C_i}$$
 [2.1(1)-18]

where:

6.36 = 3000 mrem/yr x 2.12E-3

3000 mrem/yr = dose rate limit

2.12E-3 = unit conversion factor =  $(60 \text{ sec/min } \times 3.53\text{E-5 ft}^3/\text{cc})$ 

L<sub>i</sub> = The skin dose factor due to beta emissions from noble gas radionuclide "i" (mrem/year/uCi/m<sup>3</sup>) from ATTACHMENT G Table 2.2-11.

M<sub>i</sub> = The air dose factor due to gamma emissions from noble gas radionuclide "i" (mrad/year/uCi/m³) from ATTACHMENT G Table 2.2-11.

(X/q) = Same as above.

• The flow rate (f) is determined by selecting the smaller of the calculated (f) values based on the whole body exposure limit, or the skin exposure limit shown above. The actual purge flow rate (cfm) must be maintained at or below this calculated (f) value or the discharge cannot be made from the vent.

#### 8.1.1.2.2 **BV-1 Monitor Setpoints**

The monitor alarm setpoints above background are determined as follows:

• The calculated monitor HIGH-HIGH Alarm Setpoint above background (ncpm) attributed to noble gas radionuclides is determined by:

$$HHSP = \frac{f \sum_{i} C_{i} E_{i}}{F'}$$
where: [2.1(1)-19]

f = The maximum acceptable gaseous discharge flow rate (cfm) determined in Section 8.1.1.2.1.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|--------------------------------|-------------------------------------|--|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>17 of 128           |  |

- F' = The maximum actual or design effluent flow rate (cfm) at the point of release.
  - = 92,000 cfm for VV-1
  - = 56,800 cfm for CV-1
- C<sub>i</sub> = The undiluted radioactivity concentration of noble gas radionuclide "i" in the gaseous source (uCi/cc) as determined by analysis of the gas to be released.
- E<sub>i</sub> = The detection efficiency of the monitor for noble gas radionuclide "i" (cpm/uCi/cc) from ATTACHMENT B Table 2.1-2a.
- When a HIGH-HIGH set point has been calculated according to this section, the monitor HIGH Alarm Setpoint above background (ncpm) is determined as follows:

 $HSP = HHSP \times 0.5$ 

[2.1(1)-20]

#### 8.1.2 BV-2 Monitor Alarm Setpoint Determination

See Section 8.1.1 for a description of Monitor Alarm Setpoint Determinations.

### 8.1.2.1 <u>BV-2 Setpoint Determination Based On A Calculated Mix For VV-2, CV-2, DV-2, WV-2 and CB-2 Ground Releases.</u>

The table below gives the calculated monitor count rate above background (CR) in ncpm, and provides the equivalent monitor indication (DV) in net uCi/cc associated with the most limiting site dose rate limit (i.e., 500 mrem/yr Total Body or 3000 mrem/yr Skin). The HIGH alarm setpoint (HSP) in uCi/cc above background, and the ALERT alarm setpoint (ASP) in uCi/cc above background for each vent and operational condition shall be as follows:

| Beaver Valley Power Station |           | Procedure Number:<br>1/2-ODC-2.02 |  |  |
|-----------------------------|-----------|-----------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use: In-Field Reference  |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>18 of 128         |  |  |

|     | BV2 ALARM SET                                                                         | POINTS FOR GR   | OUND RE     | LEASES          |                   |                  |
|-----|---------------------------------------------------------------------------------------|-----------------|-------------|-----------------|-------------------|------------------|
|     | uCi/cc ABOVE BACKGROUND                                                               |                 |             |                 |                   |                  |
|     |                                                                                       |                 |             | (unless         | otherwise s       | pecified)        |
|     | * .                                                                                   |                 |             |                 | 60%               | 30%              |
|     |                                                                                       |                 |             |                 | SITE              | SITE             |
|     |                                                                                       |                 |             |                 | LIMIT             | LIMIT            |
|     |                                                                                       |                 | CR          |                 | <b>UPPER</b>      | LOWER            |
|     |                                                                                       | <b>MONITOR</b>  | <u>ncpm</u> | DV              | <u>ALARM</u>      | <b>ALARM</b>     |
| •   | Continuous Release Via The BV-2<br>SLCRS Unfiltered Pathway (VV-2)                    | 2HVS-<br>RQ101B | 8260        | 3.01E-4         | ≤ 1.81E-4         | ≤ 9.04E-5        |
| •   | Batch Release Of Containment<br>Purge Via The BV-2 SLCRS<br>Unfiltered Pathway (VV-2) | 2HVS-RQ101B     | 2020        | 7.39E-5         | ≤ 4.43E-5         | ≤ 2.22E-5        |
| •   | Continuous Release Via The BV-2<br>SLCRS Filtered Pathway (CV-2)                      | 2HVS-RQ109E     | 4320        | 2940<br>μCi/sec | ≤ 1770<br>μCi/sec | ≤ 883<br>μCi/sec |
| •   | Batch Release Of Containment<br>Purge Via The BV-2 SLCRS<br>Filtered Pathway (CV-2)   | 2HVS-RQ109E     | 16,400      | 1130<br>μCi/sec | ≤ 676<br>μCi/sec  | ≤ 338<br>µCi/sec |
| •   | Continuous Release Via The BV-2<br>Condensate Polishing Building<br>Vent (CB-2)       | 2HVL-RQ112B     | 28,900      | 1.61E-3         | ≤ 9.63E-4         | ≤ 4.82E-4        |
| • . | Continuous Release Via The BV-2<br>Decontamination Building Vent<br>(DV-2)            | 2RMQ-RQ301B     | 56,600      | 3.15E-3         | ≤ 1.89E-3         | ≤ 9.44E-4        |
| •   | Continuous Release Via The BV-2<br>Waste Gas Storage Vault Vent<br>(WV-2)             | 2RMQ-RQ303B     | 912,000     | 2.58E-2         | ≤ 1.55E-2         | ≤ 7.74E-3        |

| Beaver Valley Power Station |             | Procedure Number: 1/2-ODC-2.02      |  |  |
|-----------------------------|-------------|-------------------------------------|--|--|
| Title:                      | Unit: 1/2   | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: 2 | Page Number:<br>19 of 128           |  |  |

The setpoints were determined using the following conditions and information:

- Source terms given in ATTACHMENT A Table 2.1-1b. These gaseous source terms were derived from Stone & Webster computer code GAS1BB (similar to NUREG-0017)<sup>(3.1.3.4)</sup> and computer code DRAGON 4 (for the containment vacuum pump sources). ATTACHMENT A Table 2.1-1b does not include particulates and iodines, which are not used in site noble gas dose rate calculations.
- The Containment Building Purge radionuclide mix was utilized for the purposes of determining an alarm setpoint for the SLCRS Unfiltered Pathway on the basis of the proximity of the contiguous areas.
- The Decontamination Building and Condensate Polishing Building ventilation exhaust are not expected to be radioactive. However, for purposes of determining an alarm setpoint, it is conservatively assumed that Xe-133 is in the ventilation exhaust at concentrations that would result in the appropriate dose rate limits.
- The Waste Gas Storage Vault ventilation exhaust is also not normally radioactive. However, the monitor alarm setpoint is based on the assumption that the ventilation exhaust radionuclide spectrum is similar to the gaseous inventory in the system housed by the waste gas storage vault. This spectrum is listed in ATTACHMENT A Table 2.1-1b under Gaseous Waste System.
- Onsite meteorological data for the period January 1, 1976 through December 31, 1980.
- Discharge flow rate of 23,700 cfm for a VV-2 Continuous Release.
- Discharge flow rate of 53,700 cfm for a VV-2 Batch Release of Containment Purge. This is comprised of 30,000 cfm from the containment purge plus 23,700 cfm from the CV-2.
- Discharge flow rate of 59,000 cfm for a CV-2 Continuous Release.
- Discharge flow rate of 59,000 cfm for a CV-2 Batch Release of Containment Purge. This is comprised of 7,500 cfm from the containment purge plus 51,500 cfm from CV-2.
- Discharge flow rate of 30,556 cfm for a CB-2 Continuous Release.
- Discharge flow rate of 12,400 cfm for DV-2 Continuous Release.
- Discharge flow rate of 2,000 cfm for WV-2 Continuous Release.

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |
|-----------------------------|-----------------------------------|-------------------------------------|
| Title:                      | Unit: 1/2                         | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                    | Page Number: _20 of 128             |

 Information listed under References for BV-2 Gaseous Effluent Monitor Setpoints.

The calculation method given in Sections 8.1.2.1.1 through 8.1.2.1.7 was used to derive the alarm setpoints for the following operational conditions:

- Continuous release via VV-2.
- Continuous release via CV-2.
- Batch release of BV-2 Containment Purge via VV-2.
- Batch release of BV-2 Containment Purge via CV-2.
- Continuous release via CB-2.
- Continuous release via DV-2,
- Continuous release via WV-2.

# 8.1.2.1.1 **BV-2 Mix Radionuclides**

The "mix" (noble gas radionuclides and composition) of the gaseous effluent was determined as follows:

- The gaseous source terms that are representative of the "mix" of the gaseous effluent were selected based on the relative stream composition and volumetric flowrate. Gaseous source terms are the radioactivity of the noble gas radionuclides in the effluent. Gaseous source terms can be obtained from ATTACHMENT A Table 2.1-1b.
- The fraction of the total radioactivity in the gaseous effluent comprised of noble gas radionuclide "i" (Si) for each individual noble gas radionuclide in the gaseous effluent was determined by:

$$S_i = \frac{A_i}{\sum A_i}$$
 [2.1(2)-1]

where:

A<sub>i</sub> = The radioactivity concentration of noble gas radionuclide "i" in the gaseous effluent (for VV-2, CV-2 and WV-2) is from ATTACHMENT A Table 2.1-1b. However, <u>SINCE</u> releases via CB-2 and DV-2 do not have a valid source term mix, <u>THEN</u> the noble gas radioactivity concentration is assumed to be Xe-133.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>21 of 128           |

# 8.1.2.1.2 BV-2 Maximum Acceptable Release Rate (Whole Body Exposure)

The maximum acceptable total release rate (uCi/sec) of all noble gas radionuclides in the gaseous effluent  $(Q_t)$  based upon the whole body exposure limit was calculated by:

$$Q_{t} = \frac{500}{(X/Q) \sum K_{i} S_{i}}$$
 [2.1(2)-2]

where:

- (X/Q)<sub>vv</sub> = The highest calculated annual average relative concentration of effluents released via VV-2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT F Table 2.2-5.
  - = 1.03E-4 sec/m<sup>3</sup> for continuous releases.
- (X/q)<sub>vv</sub> = The short term relative concentration of effluents released via VV-2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT M Table 2.3-36.
  - = 3.32E-4 sec/m<sup>3</sup> for batch release of containment purge.
- (X/Q)<sub>cv</sub> = The highest calculated annual average relative concentration of effluents released via CV-2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT F Table 2.2-4.
  - = 9.24E-5 sec/m<sup>3</sup> for continuous releases.
- (X/q)<sub>cv</sub> = The short term relative concentration of effluents released via CV-2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT M Table 2.3-35.
  - = 3.08E-4 sec/m³ for batch release of containment purge.
- (X/Q)<sub>cp</sub> = The highest calculated annual average relative concentration of effluents released via CB-2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT F Table 2.2-10.
  - = 7.35E-5 sec/m<sup>3</sup> for continuous releases.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>22 of 128           |

- (X/Q)<sub>dv</sub> = The highest calculated annual average relative concentration of effluents released via DV-2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT F Table 2.2-8.
  - = 9.24E-5 sec/m<sup>3</sup> for continuous releases.
- (X/Q)<sub>wv</sub> = The highest calculated annual average relative concentration of effluents released via WV-2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT F Table 2.2-9.
  - = 9.24E-5 sec/m<sup>3</sup> for continuous releases.
- K<sub>i</sub> = The total whole body dose factor due to gamma emissions from noble gas radionuclide "i" (mrem/year/uCi/m<sup>3</sup>)from ATTACHMENT G Table 2.2-11.
- $S_i$  = From equation [2.1(2)-1].

# 8.1.2.1.3 BV-2 Maximum Acceptable Release Rate (Skin Exposure)

Qt was also determined based upon the skin exposure limit by:

$$Q_{t} = \frac{3000}{(X/Q) \sum_{i} (L_{i} + 1.1M_{i}) S_{i}}$$
 [2.1(2)-3]

where:

- L<sub>i</sub> = The skin dose factor due to beta emissions from noble gas radionuclide "i"(mrem/year/uCi/m<sup>3</sup>) from ATTACHMENT G Table 2.2-11.
- M<sub>i</sub> = The air dose factor due to gamma emissions from noble gas radionuclide "i"(mrad/year/uCi/m<sup>3</sup>) from ATTACHMENT G Table 2.2-11.
- 1.1 = The ratio of the tissue to air absorption coefficients over the energy range of the photons of interest, (mrem/mrad).
- (X/Q) = Same as in Section 8.1.2.1.2.

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |
|-----------------------------|-----------------------------------|-------------------------------------|
| Title:                      | Unit:                             | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                         | Page Number:<br>23 of 128           |

# 8.1.2.1.4 BV-2 Maximum Acceptable Release Rate (Individual Radionuclide)

The maximum acceptable release rate (uCi/sec) of noble gas radionuclide "i" in the gaseous effluent (Qi) for each noble gas radionuclide in the gaseous effluent was determined by:

$$Q_i = S_i Q_t$$
 [2.1(2)-4]

NOTE: Use the lower of the Q<sub>t</sub> values obtained in Section 8.1.2.1.2 and 8.1.2.1.3.

# 8.1.2.1.5 BV-2 Maximum Acceptable Concentrations (Individual Radionuclide)

The maximum acceptable radioactivity concentration (uCi/cc) of noble gas radionuclide "i" in the gaseous effluent (Ci) for each individual noble gas radionuclide in the gaseous effluent was determined by:

$$C_{i} = \frac{2.12E - 3 Q_{i}}{F}$$
 [2.1(2)-5]

where:

F = The maximum acceptable effluent flow rate at the point of release (cfm) as listed in Section 8.1.2.1.

2.12E-3 = Unit conversion factor (60 sec/min x 3.53E-5  $ft^3/cc$ ).

# 8.1.2.1.6 **BV-2 Monitor Count Rate**

The calculated monitor count rate (ncpm) above background attributed to the noble gas radionuclide (CR) was determined by:

$$CR = \sum_{i} C_i E_i$$
 [2.1(2)-6)]

where:

Ei = The detection efficiency of the monitor for noble gas radionuclide "i" (cpm/uCi/cc) from ATTACHMENT B Table 2.1-2b.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |
|-----------------------------|--------------------------------|----------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>24 of 128        |

#### 8.1.2.1.7 **BV-2 Monitor Setpoints**

The monitor alarm setpoints above background were determined as follows:

• The monitor HIGH Alarm Setpoint above background (uCi/cc) was determined by:

$$HSP = \frac{0.60 \text{ x CR}}{E_{i \text{ ave}}}$$
 [2.1(2)-7]

where;

 $E_{i \text{ ave}}$  = The CR of equation [2.1(2)-6] divided by the sum of the  $C_i$  for the respective mix.

 The monitor ALERT Alarm Setpoint above background (uCi/cc) was determined by:

$$ASP = \frac{0.30 \text{ x CR}}{E_{i,ave}}$$
 [2.1(2)-8]

# 8.1.2.2 <u>BV-2 Setpoint Determination Based On Analysis Prior To Release for VV-2</u> and CV-2 Ground Releases

When the setpoints established using "the calculated mix" do not provide adequate flexibility for operational needs, the method described below may be used in lieu of that set forth in Section 8.1.2.1. In this case, the results of sample analysis are used to determine the appropriate nuclide mix. This calculational method applies when determining the setpoint for the maximum acceptable discharge flow rate and the associated HIGH Alarm Setpoint based on respective vent flow rate during the following operational conditions:

- Batch release of Containment Purge via VV-2.
- Batch release of Containment Purge via CV-2.

## 8.1.2.2.1 **BV-2 Maximum Acceptable Release Rate**

The maximum acceptable discharge flow rate from VV-2 or CV-2 during purging is determined as follows:

 The maximum acceptable gaseous discharge flow rate (f) from VV-2 or CV-2 (cfm) during purging based upon the whole body exposure limit is calculated by:

$$f = \frac{1.06 \text{ S T}}{(X/q) \sum_{i} K_{i} C_{i}}$$
 [2.1(2)-17]

where:

1.06 = 500 mrem/yr x 2.12E-3

500 mrem/yr = dose rate limit, whole body exposure

2.12E-3 = unit conversion factor =  $(60 \text{ sec/min } \times 3.53\text{E-5 ft}^3/\text{cc})$ 

Percent of site dose rate released via this pathway. Up to 60% of the site dose rate is permissible for one release point under the alarm setpoint rules of Section 8.1.2.

T = Maximum value for T is 16 based on the limiting restriction in ODCM CONTROL 3.11.2.1 where the dose rate for a containment purge may be averaged over a time period not to exceed 960 minutes. (As containment air volume change time period is 60 minutes; T = 960/60 = 16). (3.1.2.4)

(X/q)<sub>vv</sub> = The highest calculated short term relative concentration of effluents released via VV-2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT M Table 2.3-36.

 $= 3.32E-4 \text{ sec/m}^3$ 

(X/q)<sub>cv</sub> = The highest calculated short term relative concentration of effluents released via CV-2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT M Table 2.3-37.

 $= 3.08E-4 \text{ sec/m}^3$ 

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>26 of 128           |

- K<sub>i</sub> = The total whole body dose factor due to gamma emissions from noble gas radionuclide "i" (mrem/year/uCi/m<sup>3</sup>) from ATTACHMENT G Table 2.2-11.
- C<sub>i</sub> = The undiluted radioactivity concentration of noble gas radionuclide "i" in the gaseous source (uCi/cc) as determined by analysis of the gas to be released.
- The flow rate (f) is also determined based upon the skin exposure limit as follows:

$$f = \frac{6.36 \text{ S T}}{(X/q) \sum (L_i + 1.1 M_i) C_i}$$
 [2.1(2)-18]

where:

6.36 = 3000 mrem/yr x 2.12E-3

3000 mrem/yr = dose rate limit, skin exposure

2.12E-3 = unit conversion factor =  $(60 \text{ sec/min } \times 3.53\text{E-5 ft}^3/\text{cc})$ 

- L<sub>i</sub> = The skin dose factor due to beta emissions from noble gas radionuclide "i" (mrem/year/uCi/m<sup>3</sup>) from ATTACHMENT G Table 2.2-11.
- M<sub>i</sub> = The air dose factor due to gamma emissions from noble gas radionuclide "i" (mrad/year/uCi/m³) from ATTACHMENT G Table 2.2-11.

(X/q) =Same as above.

The flow rate (f) is determined by selecting the smaller of the calculated (f) values based on the whole body exposure limit, or the skin exposure limit shown above. The actual purge flow rate (cfm) must be maintained at or below this calculated (f) value or the discharge cannot be made from the vent.

#### 8.1.2.2.2 **BV-2 Monitor Setpoints**

The monitor alarm setpoints above background are determined as follows:

• The calculated monitor HIGH Alarm Setpoint above background (net uCi/cc) attributed to the noble gas radionuclides is determined by:

$$HSP = \frac{f \sum_{i} C_{i} E_{i}}{F' E}$$
 [2.1(2)-19]

where:

f = The maximum acceptable containment purge flow rate (cfm) determined in Section 8.1.2.2.1.

F' = The maximum actual or design effluent flow rate (cfm) at the point of release.

= .53,700 cfm for VV-2

= 59,000 cfm for CV-2

C<sub>i</sub> = The undiluted radioactivity concentration of noble gas radionuclide "i" in the gaseous source (uCi/cc) as determined by analysis of the gas to be released.

E<sub>i</sub> = The detection efficiency of the monitor for noble gas radionuclide "i" (cpm/uCi/cc) from ATTACHMENT B
Table 2.1-2b.

 $E_{i \text{ ave}}$  = The CR of equation [2.1(2)-6] divided by the sum of the Ci for the respective mix.

NOTE: To enable maintaining a constant conversion factor from cpm to uCi/cc in the Digital Radiation Monitoring System software, the "calculated mix" is used rather than the analysis mix to calculate E<sub>i</sub> ave above. This does not cause any change in the function of the monitor setpoint to properly control dose rate. However, the monitor indicated uCi/cc value may differ from the actual value.

• When a HIGH Alarm Setpoint has been calculated according to this section, the monitor ALERT Alarm Setpoint above background (net uCi/cc) is determined as follows:

$$ASP = HSP \times 0.5$$

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |
|-----------------------------|-----------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                      | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                    | Page Number:<br>28 of 128           |

#### 8.1.3 **BV-1/2 Monitor Alarm Setpoint Determination**

See Section 8.1.1 for a description of Monitor Alarm Setpoint Determination.

# 8.1.3.1 <u>BV-1/2 Setpoint Determination Based On A Calculated Mix For PV-1/2 Elevated Releases</u>

The calculated monitor count rate above background (CR), in ncpm, the monitor HIGH-HIGH alarm setpoint above background (HHSP), and the monitor HIGH alarm setpoint above background (HSP) for each operational condition are shown in the following Table:

| BV-1/2 ALAR                                                                         | M SETPOINTS FOR E                                      |                  | RELEASES<br>ABOVE BACK              |                                        |
|-------------------------------------------------------------------------------------|--------------------------------------------------------|------------------|-------------------------------------|----------------------------------------|
|                                                                                     | (P)PRIMARY* <u>MONITOR</u> (A)ALTERNATE <u>MONITOR</u> | <u>CR</u>        | 60% SITE<br>LIMIT<br>UPPER<br>ALARM | 30%<br>SITE<br>LIMIT<br>LOWER<br>ALARM |
| • Continuous Release                                                                | (P)RM-1GW-108B<br>(A)RM-1GW-109(5)                     | 3.49E7<br>2.61E7 | ≤ 3.60E5<br>≤ 3.60E5                | ≤ 1.20E5<br>≤ 1.20E5                   |
| <ul> <li>Batch Release Of<br/>BV-1 Decay Tanks or<br/>BV-2 Storage Tanks</li> </ul> | (P)RM-1GW-108B<br>(A)RM-1GW-109(5)                     | 3.93E5<br>7.87E6 | ≤ 2.36E5<br>≤ 3.60E5                | ≤ 1.18E5<br>≤ 1.20E5                   |
| *IF the primary monitor is for the respective alternation                           |                                                        |                  |                                     |                                        |

The setpoints were determined using a calculated mix from the FSAR and discharge flow rate of 1450 cfm for PV-1/2.

The calculational method below was used to derive the monitor setpoints for the following operational conditions:

- Continuous release via PV-1/2.
- Batch release of BV-1 or BV-2 Waste Gas Decay Tank via PV-1/2.
- Batch release of BV-1 or BV-2 Containment Purge via PV-1/2 is not shown in the above table. However, if it is necessary to perform a BV-1 or BV-2 Containment Purge via this release point, the alarm setpoint shall be calculated in accordance with Section 8.1.3.2.

#### 8.1.3.1.1 BV-1/2 Mix Radionuclides

The "mix" (noble gas radionuclides and composition) of the gaseous effluent was determined as follows:

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>29 of 128           |

- The gaseous source terms that are representative of the "mix" of the gaseous effluent were evaluated. Gaseous source terms are the radioactivity of the noble gas radionuclides in the effluent. The gaseous source terms can be obtained from ATTACHMENT A Tables 2.1-1a. and 2.1-1b.
- The fraction of the total radioactivity in the gaseous effluent comprised by noble gas radionuclide "i" (Si) for each individual noble gas radionuclide in the gaseous effluent was calculated by:

$$S_{i} = \frac{A_{i}}{\sum A_{i}}$$
 [2.1-9]

where:

A<sub>i</sub> = The total radioactivity or radioactivity concentration of noble gas radionuclide "i" in the gaseous effluent from ATTACHMENT A Table 2.1-1a and 2.1.1b.

# 8.1.3.1.2 BV-1/2 Maximum Acceptable Release Rate (Whole Body Exposure)

The maximum acceptable total release rate (uCi/sec) of all noble gas radionuclides in the gaseous effluent  $(Q_t)$  based upon the whole body exposure limit was determined by:

$$Q_{t} = \frac{500}{\sum V_{i} S_{i}}$$
 [2.1.10]

where:

V<sub>i</sub> = The constant for noble gas radionuclide "i" accounting for the gamma radiation from the elevated finite plume (mrem/year/uCi/sec) from ATTACHMENT G Table 2.2-12.

 $S_i = From equation [2.1-9]$ 

#### 8.1.3.1.3 BV-1/2 Maximum Acceptable Release Rate (Skin Exposure)

Q<sub>t</sub> was also determined based upon the skin exposure limit as follows:

$$Q_{t} = \frac{3000}{\sum_{i} [L_{i}(X/Q)_{pv} + 1.1B_{i}]S_{i}}$$
 [2.1-11]

where:

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number: 30 of 128              |

- L<sub>i</sub> = The skin dose factor due to beta emissions from noble gas radionuclide "i"(mrem/year/uCi/m<sup>3</sup>) from ATTACHMENT G
  Table 2.2-11.
- (X/Q)<sub>pv</sub> = The highest calculated annual average relative concentration of effluents releases via PV-1/2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT F Table 2.2-6.
  - $= 2.31E-6 \text{ sec/m}^3 (0.5 1.0 \text{ miles})$
- (X/q)<sub>pv</sub> = The highest calculated short term relative concentration of effluents released via PV-1/2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT N Table 2.3-38.
  - $= 1.07E-5 \text{ sec/m}^3 (0.5-1.0 \text{ miles})$
- B<sub>i</sub> = The constant for long term releases (greater than 500 hrs/year) for noble gas radionuclide "i" accounting for the gamma radiation dose from the elevated finite plume (mrad/year/uCi/sec) from ATTACHMENT G Table 2.2-12.

# 8.1.3.1.4 BV-1/2 Maximum Acceptable Release Rate (Individual Radionuclide)

The maximum acceptable release rate (uCi/sec) of noble gas radionuclide "i" in the gaseous effluent (Q<sub>i</sub>) for each individual noble gas radionuclide in the gaseous effluent was determined by:

$$Q_i = S_i Q_t$$
 [2.1-12]

NOTE: Use the lower of the  $Q_t$  values obtained in Section 8.1.3.1.2 and 8.1.3.1.3.

#### 8.1.3.1.5 BV-1/2 Maximum Acceptable Concentrations (Individual Radionuclide)

The maximum acceptable radioactivity concentration (uCi/cc) of noble gas radionuclide "i" in the gaseous effluent (C<sub>i</sub>) for each individual noble gas radionuclide in the gaseous effluent was determined by:

$$C_{i} = \frac{2.12E - 3 Q_{i}}{F}$$
 [2.1-13]

where:

2.12E-3 = Unit conversion factor (60 sec/min x 3.53E-5  $ft^3/cc$ ).

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |
|-----------------------------|-----------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                      | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                    | Page Number:<br>31 of 128           |

The maximum acceptable effluent flow rate at the point of release (cfm) as listed in Section 8.1.3.1.

#### 8.1.3.1.6 BV-1/2 Monitor Count Rate

The calculated monitor count rate (ncpm) above background attributed to the noble gas radionuclide. (CR) was determined by:

$$CR = \sum_{i} C_{i} E_{i}$$

[2.1-14]

where:

E<sub>i</sub> = The detection efficiency of the monitor for noble gas radionuclide "i" (cpm/uCi/cc) from ATTACHMENT B Table 2.1-2a and 2.1-2b.

## 8.1.3.1.7 **BV-1/2 Monitor Setpoints**

The monitor alarm setpoints above background were determined as follows:

• The monitor HIGH-HIGH Alarm Setpoint above background (ncpm) was determined by:

$$HHSP = 0.60 \times CR$$

[2.1-15]

 The monitor HIGH Alarm Setpoint above background (ncpm) was determined by:

$$HSP = 0.30 \times CR$$

[2.1-16]

# 8.1.3.2 <u>BV-1/2 Setpoint Determination Based On Analysis Prior To Release For PV-1/2 Elevated Releases</u>

The following calculation method applies to gaseous releases via the PV-1/2 Gaseous Waste/Process Vent when the "calculated mix" does not provide adequate operational flexibility. This method is used to determine the setpoint for the maximum acceptable discharge flow rate and the associated HIGH-HIGH Alarm Setpoint based on this flow rate for the BV-1/2 Gaseous Waste Gas Monitor (RM-GW-108B) or alternate (RM-1GW-109 CH 5) during the following operational conditions:

- Continuous release via PV-1/2.
- Batch release of BV-1 or BV-2 Waste Gas Decay Tank via PV-1/2.
- Batch release of BV-1 or BV-2 Containment Purge via PV-1/2.

#### 8.1.3.2.1 BV-1/2 Maximum Acceptable Release Rate

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |
|-----------------------------|--------------------------------|----------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>32 of 128        |

Determine the maximum acceptable discharge flow rate for the release from the Process Vent for the analyzed mix.

• The maximum acceptable gaseous discharge flow rate (f) from the Process Vent (cfm) based upon the whole body exposure limit is determined by:

$$f = \frac{1.06 \,\mathrm{S}}{\sum \,\mathrm{V_i} \,\,\mathrm{C_i}} \tag{2.1-21}$$

where:

1.06 = 500 mrem/yr x 2.12E-3

500 mrem/yr = dose rate limit, whole body exposure

2.12E-3 = unit conversion factor =  $(60 \text{ sec/min } \times 3.53\text{E-5 } \text{ft}^3/\text{cc})$ 

S = Percent of site dose rate released via this pathway. Up to 60% of the site dose rate is permissible for one release point under the alarm setpoint rules of Section 8.1.3.

V<sub>i</sub> = The constant for noble gas radionuclide "i" accounting for the gamma radiation from the elevated plume (mrem/year/uCi/sec) from ATTACHMENT G Table 2.2-12.

C<sub>i</sub> = The undiluted radioactivity concentration of noble gas radionuclide "i" in the gaseous source (uCi/cc) as determined by analysis of the gas to be released.

• Based upon the skin exposure limit, (f) is calculated by:

$$f = \frac{6.36 \text{ S}}{\sum [L_i (X/Q)_{pv} + 1.1B_i] C_i}$$
 [2.1-22]

where:

6.36 = 3000 mrem/yr x 2.12E-3

3000 mrem/yr = dose rate limit, skin exposure

2.12E-3 = unit conversion factor =  $(60 \text{ sec/min } \times 3.53\text{E-5 ft}^3/\text{cc})$ 

The skin dose factor due to beta emissions from noble gas radionuclide "i" (mrem/year/uCi/m³) from ATTACHMENT G Table 2.2-11.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |
|-----------------------------|--------------------------------|----------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>33 of 128        |

(X/Q)<sub>pv</sub> = The highest calculated annual average relative concentration of effluents released via PV-1/2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT F Table 2.2-6.

 $= 2.31E-6 \text{ sec/m}^3$ 

(X/q)<sub>pv</sub> = The highest calculated short term relative concentration of effluents released via PV-1/2 for any area at or beyond the unrestricted area boundary for all sectors (sec/m³) from ATTACHMENT N Table 2.3-38.

 $= 1.07E-5 \text{ sec/m}^3$ 

B<sub>i</sub> = The constant for long-term releases (greater than 500 hrs/year) for noble gas radionuclide "i" accounting for the gamma radiation from the elevated finite plume (mrad/year/uCi/sec) from ATTACHMENT G Table 2.2-12.

Select the smaller of the calculated f values based on the whole body exposure limit
and based on the skin exposure limit shown above. The actual discharge flow rate
(cfm) must be maintained at or below this (f) value.

# 8.1.3.2.2 **BV-1/2 Monitor Setpoints**

The monitor alarm setpoints above background are determined as follows:

• The calculated monitor HIGH-HIGH Alarm Setpoint above background (ncpm) attributed to the noble gas radionuclides is determined by:

$$HHSP = \frac{f \sum_{i} C_{i} E_{i}}{F'}$$
 [2.1-23]

where:

f = The maximum acceptable gaseous discharge flow rate (cfm) determined in Section 8.1.3.2.1.

F' = The maximum actual or design effluent flow rate (cfm) at the point of release.

= 1450 cfm for PV-1/2

C<sub>i</sub> = The undiluted radioactivity of noble gas radionuclide "i" in the gaseous source (uCi/cc) as determined by analysis of the gas to be released.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit:                          | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>34 of 128           |

E<sub>i</sub> = The detection efficiency of the respective monitor (RM-1GW-108B) or (RM-1GW-109 CH 5) for noble gas radionuclide "i" (cpm/uCi/cc) from ATTACHMENT B Table 2.1-2a and 2.1-2b.

When a HIGH-HIGH Alarm Setpoint has been calculated according to this section the monitor HIGH Alarm setpoint above background (ncpm) is determined by:

$$HSP = HHSP \times 0.5$$

[2.1-24]

# 8.2 Compliance With 10 CFR 20 Dose Rate Limits (ODCM CONTROL 3.11.21)

## 8.2.1 **Dose Rate Due To Noble Gases**

The dose rate in unrestricted areas resulting from noble gas effluents from the site is limited to 500 mrem/yr to the total body and 3,000 mrem/yr to the skin. Site gaseous effluents are the total of BV-1 and BV-2 specific ground releases and a shared elevated release, the PV-1/2 Gaseous Waste/Process Vent. Based upon NUREG-0133 (3.1.3.1) the following equations are used to show compliance with ODCM CONTROL 3.11.2.1.a.

$$\sum \left[ V_i Q_{is} + K_i (\overline{X/Q})_v Q_{iv} \right] < 500 \text{ mrem/yr}$$
 [2.2-1]

$$\sum_{i} \left[ \left[ L(\overline{X/Q})_{s} + 1.1B_{i} \right] Q_{is} + \left[ L_{i} + 1.1M_{i} \right] (\overline{X/Q})_{v} Q_{iv} \right] \le 3000 \text{ mrem/yr}$$
 [2.2-2]

where:

- K<sub>i</sub> = The total body dose factor due to gamma emissions for each identified noble gas radionuclide "i", mrem/year/uCi/m<sup>3</sup>.
- L<sub>i</sub> = The skin dose factor due to beta emissions for each identified noble gas radionuclide "i", mrem/year/uCi/m<sup>3</sup>.
- M<sub>i</sub> = The air dose factor due to gamma emissions for each identified noble gas radionuclide "i", mrad/year/uCi/m<sup>3</sup>.
- V<sub>i</sub> = The constant for each identified noble gas radionuclide "i" accounting for the gamma radiation from the elevated finite plume, mrem/year/uCi/sec.
- B<sub>i</sub> = The constant for long-term releases (greater than 500 hrs/year) for each identified noble gas radionuclide "i" accounting for the gamma radiation from the elevated finite plume, mrad/year/uCi/sec.
- 1.1 = The ratio of the tissue to air absorption coefficients over the energy range of the photon of interest, mrem/mrad.
- Q<sub>is</sub> = The release rate of noble gas radionuclide "i" in gaseous effluents from free-standing stack, uCi/sec.

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |
|-----------------------------|-----------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                      | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                    | Page Number:<br>35 of 128           |

- Q<sub>iv</sub> = The release rate of noble gas radionuclide "i" in gaseous effluents from all vent releases, uCi/sec.
- $(\overline{X/Q})_s$  = The highest calculated annual average relative concentration for any area at or beyond the unrestricted area boundary for elevated releases (sec/m<sup>3</sup>).
- $(\overline{X/Q})_v$  = The highest calculated annual average relative concentration for any area at or beyond the unrestricted area boundary for elevated releases (sec/m<sup>3</sup>).

At the Beaver Valley site gaseous releases may occur from the following Release Points (RP's) as shown in ATTACHMENT P Figure 2.4.2:

- RP 1 & 4. The BV-1 Auxiliary Building Vent and the BV-2 SLCRS Unfiltered Pathway atop the Auxiliary Buildings (VV-1 and VV-2)
- RP 2 & 5. The BV-1 Rx Containment/SLCRS Vent and the BV-2 SLCRS Filtered Pathway atop the Containment Domes (CV-1 and CV-2)
- RP 3. The BV-1/2 Gaseous Waste/Process Vent atop the BV-1 Cooling Tower (PV-1/2)
- RP 6. The BV-2 Condensate Polishing Building Vent (CB-2)
- RP 7. The BV-2 Waste Gas Storage Vault Vent (WV-2)
- RP 8. The BV-2 Decontamination Building Vent (DV-2)
- RP 9. The BV-2 Turbine Building Vent (TV-2)
- The effluents from Release Point 1 & 4 are ground level in nature. At BV-1 the sources of these releases are Containment Purges and normal Auxiliary Building Ventilation. At BV-2 the sources of these releases are Containment Purges and Contiguous Area ventilation.
- Effluent from the Release Point 2 & 5 are assumed ground level in nature. At BV-1 the source of these releases is the Supplementary Leak Collection and Release System (SLCRS). At BV-2 the source of these releases is normal Auxiliary Building Ventilation. It is also possible to release Containment Purges from these vents.
- Release Points 6, 7, 8 and 9 are not normally radioactive release points.
- The effluent from Release Point 3 are elevated, and the sources of these releases are the Main Condenser Air Ejectors, the Waste Gas Decay Tanks and the Containment Vacuum Pumps.

Noble gas releases may normally occur from Release Points 1 through 5 above. To show compliance with the site limits of ODCM CONTROL 3.11.2.1.a, Equations [2.2-1] and [2.2-2] are expressed in terms of the actual release points for the site. Note that the expressions

| Beaver Valley Power Station | 1              | Procedure Number: 1/2-ODC-2.02      |  |
|-----------------------------|----------------|-------------------------------------|--|
| Title:                      | Unit: -<br>1/2 | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:      | Page Number:<br>36 of 128           |  |

for release points 6, 7, 8 and 9 are included for use if radioactive releases via these release points are identified in the future.

# 8.2.1.1 Total Body Dose Rate (All Release Points)

$$\begin{split} & \sum_{i} V_{i} Q_{i}_{pv} + \sum_{i} K_{i} \left[ \left( \overline{X/Q} \right)_{cv} Q_{i}_{cvl} + \left( \overline{X/Q} \right)_{vv} Q_{i}_{vvl} + \left( \overline{X/Q} \right)_{cv} Q_{i}_{cv2} + \left( \overline{X/Q} \right)_{vv} \\ & Q_{i}_{vv2} + \left( \overline{X/Q} \right)_{tv} Q_{i}_{tv2} + \left( \overline{X/Q} \right)_{cb} Q_{i}_{cb2} + \left( \overline{X/Q} \right)_{dv} Q_{i}_{dv2} + \left( \overline{X/Q} \right)_{wv} Q_{i}_{wv2} \right] \\ & \leq 500 \text{ mrem/yr} \end{split}$$

$$[2.2-3]$$

## 8.2.1.2 Skin Dose Rate (All Release Points)

$$\begin{split} &\sum_{i} \left[ L_{i} \left( \overline{X/Q} \right)_{pv} + 1.1 B_{i} \right] Q_{i}_{pv} + \sum_{i} \left[ L_{i} + 1.1 M_{i} \right] \left[ \left( \overline{X/Q} \right)_{cv} Q_{i}_{cv2} + \left( \overline{X/Q} \right)_{vv} Q_{i}_{vv1} + \left( \overline{X/Q} \right)_{cv} Q_{i}_{cv2} + \left( \overline{X/Q} \right)_{cv} Q_{i}_{cv2} + \left( \overline{X/Q} \right)_{dv} Q_{i}_{vv2} + \left( \overline{X/Q} \right)_{dv} Q_{i}_{cv2} + \left( \overline{X/Q} \right)_{cb} Q_{i}_{cb2} + \left( \overline{X/Q} \right)_{dv} \\ &Q_{i}_{dv2} + \left( \overline{X/Q} \right)_{wv} Q_{i}_{wv2} \right] \leq 3000 \text{ mrem/yr} \end{split}$$

$$[2.2-4]$$

where:

Q<sub>1</sub> = Release rate of radionuclide "i" from the PV-1/2, uCi/sec.

Q<sub>i<sub>cu1</sub></sub> = Release rate of radionuclide "i" from CV-1, uCi/sec.

Q = Release rate of radionuclide "i" from CV-2, uCi/sec.

Q<sub>i</sub> = Release rate of radionuclide "i" from VV-1 Auxiliary Building, uCi/sec.

Q<sub>i</sub> = Release rate of radionuclide "i" from VV-2, uCi/sec.

Q<sub>i</sub> = Release rate of radionuclide "i" from TV-2, uCi/sec.

Q<sub>i cb</sub> = Release rate of radionuclide "i" from CB-2, uCi/sec.

Q<sub>i</sub> = Release rate of radionuclide "i" from DV-2, uCi/sec.

Q<sub>i</sub> = Release rate of radionuclide "i" from WV-2, uCi/sec.

 $(\overline{X/Q})_{pv}$  = Highest calculated annual average relative concentration for releases from the PV-1/2, sec/m<sup>3</sup>.

 $(\overline{X/Q})_{cv}$  = Highest calculated annual average relative concentration for releases from CV-1 and CV-2, sec/m<sup>3</sup>.

 $(\overline{X/Q})_{vv}$  = Highest calculated annual average relative concentration for releases from VV-1 and VV-2,  $sec/m^3$ .

 $(\overline{X/Q})_{tv}$  = Highest calculated annual average relative concentration for releases for TV-2, sec/m<sup>3</sup>.

 $(\overline{X/Q})_{cb}$  = Highest calculated annual average relative concentration for releases for CB-2, sec/m<sup>3</sup>.

 $(\overline{X/Q})_{dv_i}$  = Highest calculated annual average relative concentration for releases for DV-2, sec/m<sup>3</sup>.

 $(\overline{X/Q})_{wv}$  = Highest calculated annual average relative concentration for releases for WV-2, sec/m<sup>3</sup>.

The release rate for a containment purge is based on an averaged release rate in uCi/sec for the entire purge (not to exceed 960 min in accordance with ODCM CONTROL 3.11.2.1).

All other terms remain the same as those defined previously.

For the site, 4 potential modes of release are possible. The release modes identify the various combinations of sources of radioactivity and their release points which are used to determine the controlling locations. They are presented in ATTACHMENT C Table 2.2-1. For Release Modes 1, 2, and 3, the controlling location for implementation of ODCM CONTROL 3.11.2.1.a is 0.35 miles NW. Inserting the appropriate X/Q's from ATTACHMENT F Tables 2.2-4 through 2.2-10 for this location, Equations [2.2-3] and [2.2-4] become:

| Beaver Valley Power Station |           | Procedure Number:<br>1/2-ODC-2.02   |  |
|-----------------------------|-----------|-------------------------------------|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>38 of 128           |  |

# 8.2.1.3 Total Body Dose Rate (at 0.35 Miles NW)

$$\sum_{i} V_{i} Q_{i}_{pv} + \sum_{i} K_{i} [9.24E - 5Q_{i}_{cv^{1}} + 1.03E - 4Q_{i}_{w^{1}} + 9.24E - 5Q_{i}_{cv^{2}} + 1.03E - 4Q_{i}_{w^{2}} + 7.35E - 5Q_{i}_{tv^{2}} + 9.24E - 5Q_{i}_{dv^{2}} + 9.24E - 5Q_{i}_{wv^{2}} + 9.24E - 5Q_{i}_{wv^{2}} + 9.24E - 5Q_{i}_{wv^{2}} + 1.03E - 5Q_{i}_{cb^{2}} + 9.24E - 5Q_{i}_{cb^{2}} + 9.24E$$

# 8.2.1.4 Skin Dose Rate (at 0.35 Miles NW)

$$\sum_{i} [7.0E - 10L_{i} + 1.1B_{i}] Q_{i} \sum_{pv} \sum_{i} [L_{i} + 1.1M_{i}] + 9.24E - 5Q_{i} + 1.03E - 4$$

$$Q_{i} + 9.24E - 5Q_{i} + 1.03E - 4Q_{i} + 7.35E - 5Q_{i} + 9.24E - 5Q_{$$

For Release Mode 4, the controlling location is 0.75 miles N. Inserting the appropriate X/Q's from ATTACHMENT F Tables 2.2-4 through 2.2-10 for this location, Equations [2.2-3 and 2.2-4] become:

# 8.2.1.5 Total Body Dose Rate (at 0.75 Miles N)

$$\sum_{i} V_{i} Q_{i} Q_{i} + \sum_{i} K_{i} [3.95E - 6Q_{i} Q_{i} + 4.99E - 6Q_{i} Q_{i} + 3.95E - 6Q_{i} Q_{i} + 4.99E - 6Q_{i} Q_{i} + 4.26E - 6Q_{i} Q_{i} + 3.95E - 6Q_{i} Q_{i} + 4.26E - 6Q_{i} Q_{i} Q_{i} + 4.26E - 6Q_{i} Q_{i} Q_{i}$$

$$\leq 500 \text{ mrem/yr}$$

$$[2.2-7]$$

#### 8.2.1.6 Skin Dose Rate (at 0.75 Miles N)

$$\sum_{i} \left[ 2.31E - 6L_{i} + 1.1B_{i} \right] Q_{i}_{pv} + \sum_{i} \left[ L_{i} + 1.1M_{i} \right] \left[ 3.95E - 6Q_{i}_{cv^{1}} + 4.99E - 6Q_{i}_{vv^{1}} + 4.99E - 6Q_{i}_{vv^{1}} + 4.99E - 6Q_{i}_{vv^{2}} + 4.26E - 6Q_{i}_{tv^{2}} + 3.95E - 6Q_{i}_{dv} + 3.95E - 6Q_{i}_{dv} + 3.95E - 6Q_{i}_{dv} + 4.26E - 6Q_{i}_{dv} + 4.26E - 6Q_{i}_{dv} + 3.95E - 6Q_{i}_{dv} + 4.26E - 6Q_{i}_{dv} + 4.26E$$

#### 8.2.1.7 Determination of Controlling Location

The determination of controlling location for implementation of ODCM CONTROL 3.11.2.1.a for noble gases is a function of the following parameters:

- Radionuclide mix and their isotopic release rate
- Release Mode
- Meteorology

The incorporation of these 3 parameters into Equations [2.2-3] and [2.2-4] resulted in the equations for the controlling locations as presented in Equations [2.2-5 through 2.2-8].

The radionuclide mix used to determine controlling locations was based on source terms calculated with the Stone and Webster Engineering Corporation computer code GAS1BB (similar to NUREG-0017. Inputs were based on operating modes of the respective plants. The code inputs utilized are presented in 1/2-ODC-3.01. The source term is presented in ATTACHMENT D Tables 2.2-2a and 2.2-2b as a function of release type and Release Point.

The X/Q values utilized in the equations for implementation of ODCM CONTROL 3.11.2.1 a are based upon the maximum long-term annual average X/Q in the unrestricted area. ATTACHMENT E Table 2.2-3 presents the distances from the Release Points to the nearest unrestricted area for each of the 16 sectors as well as to the nearest vegetable garden, cow, goat, and beef animal. ATTACHMENT F Tables 2.2-4 through 2.2-10 present the long-term annual average (X/Q) values for all Release Points to the special locations presented in ATTACHMENT E Table 2.2-3. A description of their derivation is provided in 1/2-ODC-3.01.

For Release Modes 1, 2, and 3, dose calculations were performed using the highest calculated site boundary X/Q values applicable to the release points involved and the projected radionuclide mix applicable to the release source. In that a simultaneous, continuous elevated release could contribute to the dose at a given location, the selection of the two highest sector X/Q values at the site boundary considered this contribution. From these results, the distance and sector associated with the highest calculated site boundary dose were selected as the controlling location.

For Release Modes 1, 2, and 3 the controlling location is 0.35 miles NW. In Release Mode 1, the dominant release is via VV-1 and CV-2. In Release Modes 2 and 3, the dominant release is a Containment Purge from the VV-1 or VV-2.

| Beaver Valley Power Station |                | Procedure Number: 1/2-ODC-2.02      |  |
|-----------------------------|----------------|-------------------------------------|--|
| Title:                      | Unit: 1/2      | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2 | Page Number:<br>40 of 128           |  |

For Release Mode 4, a similar evaluation was performed. Long-term annual average X/Q values were calculated at the mid-point of the 10 standard distances listed in ATTACHMENT F Table 2.2-4 through 2.2-10. In that a simultaneous, ground level release could contribute to the dose at a given location, the selection of the two highest X/Q values at the controlling distance considered this contribution. Since the two maximum X/Q values occurred in the 0.5 - 1.0 mile radial band, the controlling distance was selected at 0.75 miles. From the calculated dose results, the controlling sector was shown to be North. In this Release Mode, the dominant release is a Containment Purge via the PV-1/2 Gaseous Waste/Process Vent. Neither of the controlling receptor locations are presently inhabited.

Values for K<sub>i</sub>, L<sub>i</sub>, and M<sub>i</sub>, which were used in the determination of the controlling receptor location and which are to be used in Equations [2.2-5] through [2.2-8] to show compliance with ODCM CONTROL 3.11.2.1.2, are presented in Table 2.2-11. Values taken from Table B-1 of NRC Regulatory Guide 1.109, Revision 1, (3.1.3.5) were multiplied by 1E6 to convert picocuries to microcuries for use in ATTACHMENT G Table 2.2-11.

Values for V<sub>i</sub> and B<sub>i</sub> for the finite plume model can be expressed as shown in Equation [2.2-9] and [2.2-10]. Values were calculated using the NRC code RABFIN at the site boundary location which would receive the highest total dose from all Release Points. These values are presented in ATTACHMENT G Table 2.2-12 and calculated from the following equation:

$$B_{i} = \frac{K}{r_{d}} \sum_{j} \sum_{k} \sum_{l} \frac{f_{jk} A_{li} u_{a} E_{l} I}{u_{j}}$$
 [2.2-9]

where:

- I = The results of numerical integration over the plume spatial distribution of the airborne activity as defined by the meteorological condition of wind speed (u<sub>j</sub>) and atmospheric stability class "k" for a particular wind direction.
- K = A numerical constant representing unit conversions.

$$= \frac{(260 \text{ mrad})(\text{radians}) \text{ (m}^3) \text{ (transformation)}}{(\text{sec})(\text{Mev})(\text{Ci})} \left[ \frac{16 \text{ sectors}}{2\pi \text{ radians}} \right]$$

$$\left[1E - 6 \frac{Ci}{uCi}\right] \left[3.15E7 \frac{sec}{yr}\right]$$

- = 2.1E4 mrad (m<sup>3</sup>) (transformation)/yr(Mev)(uCi).
- r<sub>d</sub> = The distance from the release point to the receptor location, meters.
- u<sub>j</sub> = The mean wind speed assigned to the "j" th wind speed class, meters/sec.

 $f_{jk}$  = The joint frequency of occurrence of the "j" th wind speed class and kth stability class (dimensionless).

A<sub>li</sub> = The number of photons of energy corresponding to the "l" th energy group emitted per transformation of the "i" th radionuclide, number/transformation.

 $E_1$  = The energy assigned to the "l" th energy group, Mev.

 $u_a$  = The energy absorption coefficient in air for photon energy  $H_l$ , meters  $^{-1}$ .

The V<sub>i</sub> factor is computed with conversion from air dose to tissue depth dose, thus:

$$V_{i} = 1.1 \frac{K}{r_{d}} \sum_{j} \sum_{k} \sum_{l} \frac{f_{jk} A_{li} u_{a} E_{l} I_{e} - u_{T} T_{d}}{u_{i}}$$
[2.2-10]

where:

 $u_T$  = The tissue energy absorption coefficient for photons of energy  $E_l$ ,  $cm^2/gm$ .

 $T_d$  = The tissue density thickness taken to represent the total body dose  $(5gm/cm^2)$ .

1.1 = The ratio of the tissue to air absorption coefficients over the energy range of photons of interest, mrem/mrad.

#### 8.2.2 Dose Rate Due To Radioiodines And Particulates

The dose rate in unrestricted areas resulting from the of inhalation of I-131, tritium, and all radionuclides in particulate form (excluding C-14) with half lives greater than 8 days released in gaseous effluents from the site shall be limited to 1,500 mrem/yr to any organ. Based upon NUREG-0133, (3.1.3.1) the following basic equation is used to show compliance with ODCM CONTROL 3.11.2.1.b:

$$\sum_{i} P_{ir} \left[ (\overline{X/Q})_{s} Q_{is} + (\overline{X/Q})_{v} Q_{iv} \right] \le 1,500 \text{ mrem/yr}$$
 [2.2-11]

where:

 $P_{i\tau}$  = Dose parameter for any organ  $\tau$  for each identified radionuclide "i", mrem/yr per uCi/m3.

Q<sub>is</sub> = The release rate of radionuclide "i", in gaseous effluents from elevated releases, uCi/sec.

Q<sub>iv</sub> = The release rate of radionuclide "i", in gaseous effluents from ground level releases, uCi/sec.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>42 of 128           |

- (X/Q)<sub>s</sub> = The highest calculated annual average relative concentration at the unrestricted area boundary for elevated releases, sec/m<sup>3</sup>.
- $(\overline{X/Q})_v$  = The highest calculated annual average relative concentration at the unrestricted area boundary for ground level releases, sec/m<sup>3</sup>.
- NOTE: The dispersion parameters specified in Section 8.2.2 are limited to the site boundary as defined above.

Releases may occur from any Release Point in the Release Modes listed in ATTACHMENT C Table 2.2-1. To show compliance with ODCM CONTROL 3.11.2.1.b, Equation [2.2-11] is now expressed in terms of the actual Release Points for the site.

$$\sum_{i} P_{i\tau} \left[ \left( \overline{X/Q} \right)_{pv} Q_{i}_{pv} + \left( \overline{X/Q} \right)_{cv} Q_{i}_{cv^{1}} + \left( \overline{X/Q} \right)_{vv} Q_{i}_{vv^{1}} + \left( \overline{X/Q} \right)_{cv} Q_{i}_{cv^{2}} + \left( \overline{X/Q} \right)_{vv} \right]$$

$$(\overline{X/Q})_{tv} Q_{i_{tv^2}} + (\overline{X/Q})_{cb} Q_{i_{cb^2}} + (\overline{X/Q})_{dv} Q_{i_{dv^2}} + (\overline{X/Q})_{wv} Q_{i_{wv^2}}] \le 1500 \text{ mrem/yr}$$

[2.2-12]

where:

- $(\overline{X/Q})_{pv}$  = Highest calculated annual average relative concentration for releases from PV-1/2, sec/m<sup>3</sup>.
- $(\overline{X/Q})_{cv}$  = Highest calculated annual average relative concentration for releases from CV-1 and CV-2, sec/m<sup>3</sup>.
- $(\overline{X/Q})_{vv}$  = Highest calculated annual average relative concentration for releases from VV-1 and VV-2, sec/m<sup>3</sup>.
- $(\overline{X/Q})_{tv}$  = Highest calculated annual average relative concentration for releases from TV-2,  $sec/m^3$ .
- $(\overline{X/Q})_{cb}$  = Highest calculated annual average relative concentration for releases from CB-2, sec/m<sup>3</sup>.
- (X/Q)<sub>dv</sub> = Highest calculated annual average relative concentration for releases from DV-2, sec/m<sup>3</sup>.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>43 of 128           |

 $(\overline{X/Q})_{wv}$  = Highest calculated annual average relative concentration for release from WV-2, sec/m<sup>3</sup>.

Q<sub>i</sub> = Long-term release rate of radionuclide "i" from PV-1/2, uCi/sec.

Q<sub>i</sub> = Long-term release rate of radionuclide "i" from CV-1, uCi/sec.

Q<sub>i</sub> = Long-term release rate of radionuclide "i" from CV-2, uCi/sec.

Q = Long-term release rate of radionuclide "i" from VV-1, uCi/sec.

Q<sub>1</sub> = Long-term release rate of radionuclide "i" from VV-2, uCi/sec.

Q<sub>i</sub> = Long-term release rate of radionuclide "i" from TV-2, uCi/sec.

Q<sub>i</sub> = Long-term release rate of radionuclide "i" from CB-2, uCi/sec.

Q<sub>i</sub> = Long-term release rate of radionuclide "i" from DV-2, uCi/sec.

Q<sub>i</sub> = Long-term release rate of radionuclide "i" from WV-2, uCi/sec.

All other terms are the same as those defined previously.

TV-2, CB-2, DV-2 and WV-2 are not normal radioactive Release Points. These Release Points are included only for use if radioactive releases via these vents are identified in the future. In the calculation to show compliance with ODCM CONTROL 3.11.2.1 b only the inhalation pathway is considered.

Values of the organ dose parameters,  $P_{i\tau}$ , were calculated using methodology given in NUREG-0133. For the child age group, the following equation was used for all nuclides. The  $P_{i\tau}$ , values are presented in ATTACHMENT H Table 2.2-13.

$$P_{it} = 3.79E9 \, DFA_{it}$$
 [2.2-13]

where:

3.7E9 = Breathing rate of child (3,700 m<sup>3</sup>/yr) x unit conversion factor (1E6 pCi/uCi).

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |
|-----------------------------|-----------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                      | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                         | Page Number:<br>44 of 128           |

DFA<sub>iτ</sub> = The organ inhalation dose factor for a child from Table 6 of NUREG-0172,  $^{(3.1.3.6)}$  for organ  $\tau$ , nuclide "i", in units of mrem/pCi.

For Release Modes 1 through 4, the controlling location is the site boundary, 0.35 miles NW.

Equation [2.2-12] becomes:

$$\sum_{i} P_{i\tau} \left[ 7.00E - 10 Q_{i} + 9.24E - 5 Q_{i} + 1.03E - 4 Q_{i} + 7.35E - 5 Q_{i} + 1.03E - 4 Q_{i} + 7.35E - 5 Q_{i} + 1.03E - 4 Q_{i} + 7.35E - 5 Q_{i} + 7.35E - 5 Q_{i} + 1.03E - 4 Q_{i} + 7.35E - 5 Q_{i} + 7.35E - 5 Q_{i} + 9.24E - 5 Q$$

#### 8.2.2.1 <u>Determination of Controlling Location</u>

The determination of the controlling location for implementation of ODCM CONTROL 3.11.2.1.b for radioiodines and particulates is a function of the same 3 parameters as for noble gases plus a fourth, the actual receptor pathways. The incorporation of these parameters into Equation [2.2-12] results in the respective equations for each Release Mode at the site boundary controlling locations. The radionuclide mix was again based upon the source terms presented in ATTACHMENT D Tables 2.2-2a and 2.2-2b as a function of release type and Release Point.

In the determination of the controlling site boundary for each Release Mode, the highest 2 site boundary X/Q values for each Release Point were utilized in conjunction with the radionuclide mix and the release rate for each Release Point to determine the controlling location.

The P<sub>iτ</sub> values are presented in ATTACHMENT H Table 2.2-13.

The X/Q values in Equation [2.2-14] were obtained from ATTACHMENT F Tables 2.2-4 through 2.2-10.

A description of the derivation of the X/Q values is provided in 1/2-ODC-3.01.

# 8.3 <u>Compliance With 10 CFR 50 Dose Limits (ODCM CONTROLS 3.11.2.2 And 3.11.2.3)</u> (Gaseous)

At the Beaver Valley site all elevated gaseous releases are considered to originate from a shared radwaste system. The effluent from both units are mixed and discharged from a common Release Point, the PV-1/2 Gaseous Waste/Process Vent, at the top of the Unit 1 Cooling Tower. The resulting dose for the purpose of implementing 10 CFR 50 is normally apportioned equally to each unit. The only exception would be a Containment Purge via the

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>45 of 128           |

Process Vent. The resulting dose shall be attributed to the contributing reactor unit. Since this operation is expected to be rare, equations are shown throughout this section with the apportionment set at 0.5.

## 8.3.1 **Dose Due To Noble Gases**

#### 8.3.1.1 **Cumulation Of Doses**

Section II.B.1 of Appendix I of 10 CFR 50 (ODCM CONTROL 3.11.2.2) limits the releases of gaseous effluents from each reactor such that the estimated annual gamma air dose is limited to 10 millirad and the beta air dose is limited to 20 millirad. In addition, ODCM CONTROL 3.11.2.4 requires use of radwaste system if air doses when averaged over 31 days exceed 0.2 mrad for gamma and 0.4 mrad for beta. Based upon NUREG-0133, (3.1.3.1) the air dose limits in the unrestricted area due to noble gases released in gaseous effluents are defined by the following equations:

## 8.3.1.1.1 Gamma Radiation Quarter Limit

$$3.17E - 8\sum_{i} \left[ M_{i} \left[ \left( \overline{X/Q} \right)_{V} Q_{iV} + \left( \overline{X/q} \right)_{V} q_{iV} \right] + \left[ B_{i} Q_{iS} + b_{i} q_{iS} \right] \right] \le 5 \text{ mrad} \qquad [2.3-1]$$

#### 8.3.1.1.2 Beta Radiation Quarter Limit

$$3.17E - 8\sum_{i} N_{i} \left[ (\overline{X/Q})_{v} Q_{iv} + (\overline{X/q})_{v} q_{iv} + (\overline{X/Q})_{s} Q_{is} + (\overline{X/q})_{s} q_{i} s \right] \leq 10 \text{ mrad } [2.3-2]$$

#### 8.3.1.1.3 Gamma Radiation Year Limit

$$3.17E - 8 \sum_{i} [M_{i}[(\overline{X/Q})_{v} Q_{iv} + (\overline{X/q})_{v} q_{iv}] + [B_{i}Q_{is} + b_{i}q_{is}]] \le 10 \text{ mrad}$$

# 8.3.1.1.4 Beta Radiation Year Limit

$$3.17E - 8 \sum_{i} N_{i} \left[ (\overline{X/Q})_{v} Q_{iv} + (\overline{X/q})_{v} q_{iv} + (\overline{X/Q})_{s} Q_{is} + (\overline{X/q})_{s} q_{i} s \right] \leq 20 \text{ mrad}$$

$$[2.3-4]$$

# 8.3.1.1.5 <u>Gamma Radiation Projection Averaged Over 31 Days</u>

$$3.17E - 8\sum_{i} \left[ M_{i} \left[ (\overline{X/Q})_{v} Q_{iv} + (\overline{X/q})_{v} q_{iv} \right] + \left[ B_{i} Q_{is} + b_{i} q_{is} \right] \right] \le 0.2 \text{ mrad} \qquad [2.3-5]$$

| Beaver Valley Power Station |              | Procedure Number:<br>1/2-ODC-2.02 |  |
|-----------------------------|--------------|-----------------------------------|--|
| Title:                      | Unit:<br>1/2 | Level Of Use: In-Field Reference  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:    | Page Number:<br>46 of 128         |  |

## 8.3.1.1.6 Beta Radiation Projection Averaged Over 31 Days

$$3.17E - 8\sum_{i} N_{i} \left[ \left( \overline{X/Q} \right)_{V} Q_{iV} + \left( \overline{X/q} \right)_{V} q_{iV} + \left( \overline{X/Q} \right)_{S} Q_{iS} + \left( \overline{X/q} \right)_{S} q_{iS} \right] \le 0.4 \text{ mrad } [2.3-6]$$

where:

M<sub>i</sub> = The air dose factor due to gamma emissions for each identified noble gas radionuclide "i" (mrad/yr per uCi/m<sup>3</sup>).

N<sub>i</sub> = The air dose factor due to beta emissions for each identified noble gas radionuclide "i" (mrad/yr per uCi/m<sup>3</sup>).

 $(\overline{X/Q})_v$  = The annual average relative concentration for areas at or beyond the unrestricted area boundary for long-term vent releases greater than 500 hrs/year (sec/m<sup>3</sup>).

 $(\overline{X/q})_v$  = The relative concentration for areas at or beyond the unrestricted area boundary for short-term vent releases equal to or less than 500 hrs/year (sec/m<sup>3</sup>).

 $(\overline{X/Q})_s$  = The annual average relative concentration for areas at or beyond the unrestricted area boundary for long-term free standing stack releases greater than 500 hrs/year (sec/m<sup>3</sup>).

 $(\overline{X/q})_s$  = The relative concentration for areas at or beyond the unrestricted area boundary for short-term free standing stack releases equal to or less than 500 hrs/year (sec/m<sup>3</sup>).

q<sub>is</sub> = Release of noble gas radionuclide "i" in gaseous effluents for short-term stack releases equal to or less than 500 hrs/year (uCi).

q<sub>iv</sub> = Release of noble gas radionuclide "i" in gaseous effluents for short-term vent releases equal to or less than 500 hrs/year (uCi).

Q<sub>is</sub> = Release of noble gas radionuclide "i" in gaseous effluents for long-term free standing stack releases greater than 500 hrs/year (uCi).

Q<sub>iv</sub> = Release of noble gas radionuclide "i" in gaseous effluents for long-term vent releases greater than 500 hrs/year (uCi).

B<sub>i</sub> = The constant for long-term releases (greater than 500 hrs/year) for each identified noble gas radionuclide "i" accounting for the gamma radiation from the elevated finite plume (mrad/yr per uCi/sec).

| Beaver Valley Power Station | 1         | Procedure Number: 1/2-ODC-2.02      |  |
|-----------------------------|-----------|-------------------------------------|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>47 of 128           |  |

b<sub>i</sub> = The constant for short-term releases (equal to or less than 500 hrs/year) for each identified noble gas radionuclide "i" accounting for the gamma radiation from the elevated finite plume (mrad/yr per uCi/sec).

3.17E-8 = The inverse of the number of seconds in a year.

NUREG 0133<sup>(3.1.3.1)</sup> permits eliminating the short-term release term and short-term meteorological terms in the determination of doses when short-term releases are sufficiently random in both time of day and duration to be represented by annual average dispersion conditions. This special consideration is applied in Equations [2.3-1] through [2.3-6], however, a summary of the "real time" meteorological data coupled with the corresponding releases shall be included in the Annual Radioactive Effluent Release Report.

Short-term releases are also evaluated annually in computer codes technically consistent with XOQDOQ and GASPAR for inclusion in the Annual Radiological Environmental Report.

The incorporation of this option and the Release Modes of ATTACHMENT I Table 2.3-1 results in the following equations to show compliance with 10 CFR 50 for the calendar quarter or year.

#### 8.3.1.1.7 Gamma Radiation Dose Equation

$$3.17E - 8 \sum_{i} [M_{i} [(\overline{X/Q})_{cv} Q_{i}_{cv} + (\overline{X/Q})_{vv} Q_{i}_{vv} + (\overline{X/Q})_{cb} Q_{i}_{cb} + (\overline{X/Q})_{dv} Q_{i}_{dv} + (\overline{X/Q})_{wv} Q_{i}_{wv}] + 0.5 B_{i} Q_{i}_{pv}]$$

$$[2.3-7]$$

 $\leq$  0.2 mrad (per 31 days), or

< 5.0 mrad (per quarter), or

< 10.0 mrad (per year)

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02   |  |
|-----------------------------|-----------|----------------------------------|--|
| Title:                      | Unit: 1/2 | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>48 of 128        |  |

## 8.3.1.1.8 **Beta Radiation Dose Equation**

$$3.17E - 8 \sum_{i} N_{i} \left[ (\overline{X/Q})_{cv} Q_{i} + (\overline{X/Q})_{vv} Q_{i} + (\overline{X/Q})_{cb} Q_{i} + (\overline{X/Q})_{dv} Q_{i} + (\overline{X/Q})_{dv} Q_{i} + (\overline{X/Q})_{wv} Q_{i} + 0.5 (\overline{X/Q})_{pv} Q_{i} \right]$$

$$[2.3-8]$$

 $\leq$  0.4 mrad (per 31 days), or

 $\leq$  10.0 mrad (per quarter), or

 $\leq$  20.0 mrad (per year)

#### where:

 $(\overline{X/Q})_{cv}$  = Annual average relative concentration for releases from CV-1 and CV-2 (sec/m<sup>3</sup>).

 $(\overline{X/Q})_{vv}$  = Annual average relative concentration for releases from VV-1 and VV-2 (sec/m<sup>3</sup>).

 $(\overline{X/Q})_{pv}$  = Annual average relative concentration for releases from PV-1/2 (sec/m<sup>3</sup>).

 $(\overline{X/Q})_{tv}$  = Annual average relative concentration for releases from TV-2 (sec/m<sup>3</sup>).

Q<sub>i</sub> = Release of radionuclide "i" from CV-1 and CV-2 (uCi).

Q<sub>i</sub> = Release or radionuclide "i" from VV-1 and VV-2 (uCi).

Q<sub>i</sub> = Release of radionuclide "i" from PV-1/2 (uCi).

Q<sub>i</sub> = Release of radionuclide "i" from TV-2 (uCi).

Q<sub>i</sub> = Release of radionuclide "i" from the CB-2 (uCi).

Q = Release of radionuclide "i" from DV-2 (uCi).

Q<sub>i</sub> = Release of radionuclide "i" from WV-2 (uCi).

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                  |
|-----------------------------|-----------------------------------|----------------------------------|
| Title:                      | Unit:<br>1/2                      | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                    | Page Number:<br>49 of 128        |

For Release Modes 1, 2, 3, and 4 the controlling location is 0.35 miles NW. Substitution of the appropriate X/Q values into Equations [2.3-7] and [2.3-8] results in the following:

# 8.3.1.1.9 **Gamma Radiation Dose Determination**

$$3.17E - 8 \sum_{i} [M_{i}[9.24E - 5 Q_{i}]_{cv} + 1.03E - 4 Q_{i}]_{vv} + 7.35E - 5 Q_{i}]_{tv} + 7.35E - 5 Q_{i}]_{cb}$$

$$9.24E - 5 Q_{i}]_{dv} + 9.24E - 5 Q_{i}]_{wv}] + 0.5 B_{i}Q_{i}]_{pv}$$
[2.3-9]

- $\leq$  0.2 mrad (per 31 days), or
- $\leq$  5.0 mrad (per quarter), or
- $\leq$  10.0 mrad (per year)

# 8.3.1.1.10 **Beta Radiation Dose Determination**

$$3.17E - 8 \sum_{i} N_{i} [9.24E - 5 Q_{i}_{cv} + 1.03E - 4 Q_{i}_{vv} + 7.35E - 5 Q_{i}_{tv} + 7.35E - 5 Q_{i}_{cb} + 9.24E - 5 Q_{i}_{dv} + 9.24E - 5 Q_{i}_{wv} + (0.5) 7.0E - 10 Q_{i}_{pv}]$$
 [2.3-10]

- $\leq$  0.4 mrad (per 31 days), or
- $\leq$  10.0 mrad (per quarter), or
- $\leq$  20.0 mrad (per year)

# 8.3.1.1.11 <u>Determination of Controlling Location</u>

The determination of the controlling locations for implementation of 10 CFR 50 is a function of the following parameters:

- Radionuclide mix and their isotopic release
- Release Mode
- Meteorology

The incorporation of these parameters into Equations [2.3-7] and [2.3-8] resulted in the equations for the controlling locations as presented in Equations [2.3-9] and [2.3-10]. The radionuclide mix was based upon source terms calculated using the NRC GALE Code (see 1/2-ODC-3.01 for inputs) and are shown in ATTACHMENT D Tables 2.2-2a and 2.2-2b as a function of release type and Release Point.

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                  |
|-----------------------------|-----------------------------------|----------------------------------|
| Title:                      | Unit:<br>1/2                      | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                    | Page Number:<br>50 of 128        |

As in Section 8.2.1, for each Release Mode, the two highest boundary X/Q values for each release point and release duration were utilized in conjunction with the radionuclide mix and release for each release point to determine the controlling site boundary location. Since elevated releases occur from the BVPS site and their maximum X/Q values may not decrease with distance (i.e., the site boundary may not have highest X/Q values), the two highest X/Q values for those distances, greater than the site boundary, were also considered in conjunction with the radionuclide mix to determine the controlling location. These values of X/Q were obtained for the midpoint of the 10 standard distance intervals previously presented in ATTACHMENT F Tables 2.2-4 through 2.2-10.

For each Release Mode, a particular combination of Release Point mix and meteorology dominates in the determination of the controlling location. For Release Modes 1, 2, 3, and 4 the controlling release is VV-1 and VV-2. For Release Mode 3, the controlling release is CV-1 and CV-2.

Values for M<sub>i</sub> and N<sub>i</sub>, which were used in the determination of the controlling location and which are to be used by BV-1 and BV-2 in Equations [2.3-9] and [2.3-10] to show compliance with 10 CFR 50 were presented in ATTACHMENT G Table 2.2-11. Values taken from Table B-1 of Regulatory Guide 1.109, Revision 1<sup>(3.1.3.5)</sup> were multiplied by 1E6 to convert from picocuries to microcuries for use in ATTACHMENT G Table 2.2-11.

In determination of the controlling location for Release Modes 1, 2, 3, and 4, ATTACHMENT F Tables 2.2-4 through 2.2-7 are utilized for X/Q values. The B<sub>i</sub> values to be utilized are the same values which were presented in ATTACHMENT G Table 2.2-12. A description of the derivation of the various X/Q values is presented in 1/2-ODC-3.01.

The following relationship must hold for BV-1 or BV-2 to show compliance with ODCM CONTROL 3.11.2.2:

#### For The Calendar Quarter

| $D_{\gamma} \le 5.0 \text{ mrad}$                        | [2.3-11] |  |
|----------------------------------------------------------|----------|--|
| $D_{\beta} \leq 10 \text{ mrad}$                         | [2.3-12] |  |
| For The Calendar Year                                    | •        |  |
| $D_{\gamma} \leq 10 \text{ mrad}$                        | [2.3-13] |  |
| $D_{\beta} \leq 20 \text{ mrad}$                         | [2.3-14] |  |
| where:                                                   |          |  |
| $D_{\gamma}$ = The air dose from gamma radiation (mrad). |          |  |

| Beaver Valley Power Station |              | Procedure Number: 1/2-ODC-2.02   |  |
|-----------------------------|--------------|----------------------------------|--|
| Title:                      | Unit:<br>1/2 | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: 2  | Page Number:<br>51 of 128        |  |

 $D_{\beta}$  = The air dose from beta radiation (mrad).

The quarterly limits given above represent one-half the annual design objective of Section II.B.1 of Appendix I of 10 CFR 50. If any of the limits of Equations [2.3-11] through [2.3-14] are exceeded, a special report pursuant to both Section IV.A of Appendix I of 10 CFR 50 and ODCM CONTROL 3.11.2.2.a must be filed with the NRC at the identified locations.

In addition, ODCM CONTROL 3.1.2.4 requires that the gaseous radwaste system must be used to reduce radioactive materials in that waste when projected doses from each reactor unit when averaged over 31 days exceed any of the following:

$$D_{y} \le 0.2 \text{ mrad}$$
 [2.3-15]

$$D_{\beta} \le 0.4 \text{ mrad}$$
 [2.3-16]

# 8.3.1.2 **Projection Of Doses (Noble Gas)**

Doses due to gaseous releases from BV-1 and BV-2 shall be projected at least once per 31 days in accordance with ODCM CONTROL 4.11.2.4 and this section. (Also see Section 8.3.2.2 <u>Projection Of Doses</u> for additional specifications). The Gaseous Radwaste Treatment System and the Ventilation Exhaust Treatment System shall be used to reduce radioactive materials in gaseous waste prior to their discharge in accordance with ODCM CONTROL 3.11.2.4 when the projected gaseous effluent air dose due to gaseous effluent releases from each reactor unit, when averaged over 31 days, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. (Also see Section 8.3.2.2 <u>Projection Of Doses</u> for additional specifications). The doses used in the 31-day dose projection will be calculated using Equations [2.3-9] and [2.3-10] as appropriate. The 31-day dose projection shall be performed according to the following equations:

# 8.3.1.2.1 When Including Pre-Release Data,

$$\mathbf{D}_{31} = \left[ \frac{\mathbf{A} + \mathbf{B}}{\mathbf{T}} \right] (31) + \mathbf{C}$$
 [2.3-17]

# 8.3.1.2.2 When Not Including Pre-Release Data,

$$D_{31} = \left[\frac{A}{T}\right](31) + C$$
 [2.3-18]

where:

 $D_{31}$  = Projected 31 day dose (mrad).

A = Cumulative dose for quarter (mrad).

| Beaver Valley Power Station |              | Procedure Number: 1/2-ODC-2.02   |  |
|-----------------------------|--------------|----------------------------------|--|
| Title:                      | Unit:<br>1/2 | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:    | Page Number:<br>52 of 128        |  |

B = Projected dose from this release (mrad).

T = Current days into quarter.

C = Value which may be used to anticipate plant trends (mrad).

## 8.3.2 Dose Due To Radioiodines And Particulates

#### 8.3.2.1 Cumulation Of Doses

Section II.C of Appendix I of 10 CFR 50 (ODCM CONTROLS 3.11.2.3 and 3.11.2.4) limits the release of radioiodines and radioactive material in particulate form from each reactor unit such that estimated dose or dose commitment to an individual in an unrestricted area from all pathways of exposure is not in excess of 15 mrem to any organ. In addition, ODCM CONTROL 3.11.2.4 requires the use of gaseous radwaste treatment system when the projected dose due to gaseous effluent releases from each reactor unit, when averaged over 31 days, would exceed 0.3 mrem to any organ. Based upon NUREG-0133, (3.1.3.1) the dose to an organ of an individual from radioiodines and particulates, and radionuclides other than noble gases with half-lives greater than 8 days in gaseous effluents released to unrestricted areas, can be determined by the following equation:

# 8.3.2.1.1 Radioiodines and Particulates Month, Quarter, and Year Limits

$$3.17E - 8 \sum_{i} R_{i\tau} [W_{s}Q_{is} + w_{s}q_{is} + W_{v}Q_{iv} + w_{v}q_{iv}]$$

 $\leq$  0.3 mrem (per 31 days), or

[2.3-19]

 $\leq$  7.5 mrem (per quarter), or

 $\leq 15.0$  mrem (per calendar year)

where:

Q<sub>is</sub> = Release of radionuclide "i" for long-term free standing stack releases greater than 500 hrs/yr (uCi).

Q<sub>iv</sub> = Release of radionuclide "i" for long-term vent releases greater than 500 hrs/yr (uCi).

q<sub>is</sub> = Release of radionuclide "i" for short-term free standing stack releases equal to or less than 500 hrs/yr (uCi).

q<sub>iv</sub> = Release of radionuclide "i" for short-term vent releases equal to or less than 500 hrs/yr (uCi).

w<sub>s</sub> = Dispersion parameter for estimating dose to an individual at the controlling location for long-term free standing stack releases greater than 500 hrs/yr.

- =  $sec/m^3$  for the inhalation pathway, ( $\overline{W/Q}$ )s.
- = meters<sup>-2</sup> for the food and ground plane pathway,  $(\overline{D/Q})$ s.
- W<sub>v</sub> = The dispersion parameter for estimating the dose to an individual at the controlling location for long-term vent releases greater than 500 hrs/yr.
  - =  $sec/m^3$  for the inhalation pathway,  $(\overline{X/Q})_v$ .
  - = meters<sup>-2</sup> for the food and ground plane pathway,  $(\overline{D/Q})_v$ .
- w<sub>s</sub> = Dispersion parameter for estimating the dose to an individual at the controlling location for short-term stack releases equal to or less than 500 hrs/yr.
  - =  $sec/m^3$  for the inhalation pathway,  $(\overline{W/q})_s$ .
  - = meters<sup>-2</sup> for the food and ground plane pathway,  $(\overline{D/q})_s$ .
- w<sub>v</sub> = The dispersion parameter for estimating the dose to an individual at the controlling location for short-term vent releases equal to or less than 500 hrs/yr.
  - =  $sec/m^3$  for the inhalation pathway,  $(\overline{X/q})_v$ .
  - = meters<sup>-2</sup> for the food and ground plane pathway,  $(\overline{D/q})_v$ .
- 3.17E-8 = The inverse of the number of seconds in a year.
- R<sub>iτ</sub> = The dose factor for each identified radionuclide "i" for the organ "τ" of interest (mrem/yr per uCi/sec per m<sup>-2</sup> or mrem/yr per uCi/m<sup>3</sup>).

Radionuclides and particulates may be released from any of the BV-1 and BV-2 Release Points in the Release Modes identified in ATTACHMENT I Table 2.3-1. As described previously in Section 8.3.1.1, NUREG 0133<sup>(3.1.3.1)</sup> permits use of long-term annual average dispersion calculations (which with the release modes of Table 2.3-1 results in the following equations) to show compliance with ODCM CONTROLS 3.11.2.3 and 3.11.2.4. For a particular organ, Equation [2.3-19] becomes:

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |
|-----------------------------|--------------------------------|----------------------------------|
| Title:                      | Unit: 1/2                      | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>54 of 128        |

# 8.3.2.1.2 <u>Radioiodines and Particulates Dose Equation</u>

$$3.17E - 8 \sum_{i} R_{i\tau} [0.5 W_{pv} Q_{i_{pv}} + W_{cv} Q_{i_{cv}} + W_{vv} Q_{i_{vv}} + W_{tv} Q_{i_{tv}} + W_{cb} Q_{i_{cb}} + W_{dv} Q_{i_{dv}} + W_{wv} Q_{i_{wv}}]$$
[2.3-20]

 $\leq$  0.3 mrem (per 31 days), or

 $\leq$  7.5 mrem (per quarter), or

≤ 15.0 mrem (per calendar year)

# where:

0.5 W<sub>pv</sub> = Dispersion parameter for releases from PV-1/2. The value of 0.5 represents the portion of dose assigned to each Unit due to this being a shared Release Point

 $W_{cv}$  = Dispersion parameter for releases from CV-1 and CV-2.

 $W_{vv}$  = Dispersion parameter for releases from VV-1 and VV-2.

 $W_{tv}$  = Dispersion parameter for releases from TV-2.

 $W_{cb}$  = Dispersion parameter for releases from CB-2.

 $W_{dv}$  = Dispersion parameter for releases from DV-2.

 $W_{wv}$  = Dispersion parameter for releases from WV-2.

Q<sub>i</sub> = Release of radionuclide "i" from PV-1/2 (uCi).

Q<sub>i</sub> = Release of radionuclide "i" from CV-1 and CV-2 (uCi).

Q<sub>i</sub> = Release of radionuclide "i" from VV-1 and VV-2 (uCi).

 $Q_{i}$  = Release of radionuclide "i" from TV-2 (uCi).

Q<sub>i</sub> = Release of radionuclide "i" from CB-2 (uCi).

 $Q_{i_{dv}}$  = Release of radionuclide "i" from DV-2 (uCi).

| Beaver Valley Power Station |                | Procedure Number: 1/2-ODC-2.02      |  |
|-----------------------------|----------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2 | Page Number:<br>55 of 128           |  |

Q<sub>1</sub> = Release of radionuclide "i" from WV-2 (uCi).

TV-2, CB-2, DV-2 and WV-2 are not normally radioactive Release Points. These are included only for use if a radioactive release is identified in the future.

In determining the dose at a particular location, dispersion parameter W is a function of the pathway. For the food and ground plane pathway, W is in terms of D/Q. If the inhalation pathway is considered, W is in terms of X/Q. Incorporation of the various pathways into Equation [2.3-20] results in the following equation for a particular organ:

# 8.3.2.1.2.1 Radioiodines and Particulates Dose Determination

$$3.17E - 8 \sum_{i} [[R_{i\tau_{G}} + R_{i\tau_{M}} + R_{i\tau_{V}} + R_{i\tau_{B}}][0.5 W_{pv} Q_{i_{pv}} + W_{cv} Q_{i_{cv}} + W_{vv} Q_{i_{vv}} + W_{tv} Q_{i_{tv}} + W_{cb} Q_{i_{cb}} + W_{dv} Q_{i_{dv}} + W_{wv} Q_{i_{wv}}]$$

$$+ R_{i\tau_{I}} [0.5 (X/Q)_{pv} Q_{i_{pv}} + (X/Q)_{cv} Q_{i_{cv}} + (X/Q)_{vv} Q_{i_{vv}} + (X/Q)_{vv} Q_{i_{vv}} + (X/Q)_{vv} Q_{i_{vv}}]$$

$$(X/Q)_{tv} Q_{i_{tv}} + (X/Q)_{cb} Q_{i_{cb}} + (X/Q)_{dv} Q_{i_{dv}} + (X/Q)_{wv}]$$

$$Q_{i_{wv}}$$
[2.3-21]

- $\leq$  0.3 mrem (per 31 days), or
- $\leq$  7.5 mrem (per quarter), or
- $\leq$  15.0 mrem (per year)

## where:

- $R_{i\tau_G}$  = Dose factor for an organ " $\tau$ " for radionuclide "i" for the ground plane exposure pathway (mrem/yr per uCi/sec per m<sup>-2</sup>).
- $R_{i\tau_M}$  = Dose factor for an organ " $\tau$ " for radionuclide "i" for either the cow milk or goat milk pathway (mrem/yr per uCi/sec per m<sup>-2</sup>).
- $R_{i\tau_V}$  = Dose factor for an organ " $\tau$ " for radionuclide "i" for the vegetable pathway (mrem/yr per uCi/sec per m<sup>-2</sup>).

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2,02 |                                     |
|-----------------------------|-----------------------------------|-------------------------------------|
| Title:                      | Unit: 1/2                         | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                         | Page Number: 56 of 128              |

 $R_{i\tau_B}$  = Dose factor for an organ " $\tau$ " for radionuclide "i" for the meat pathway (mrem/yr per uCi/sec per m<sup>-2</sup>).

 $R_{i\tau_1}$  = Dose factor for an organ " $\tau$ " for radionuclide "i" for the inhalation pathway (mrem/yr per uCi/m<sup>3</sup>).

It should be noted that  $W_{pv}$ ,  $W_{cv}$ ,  $W_{vv}$ ,  $W_{tv}$ ,  $W_{cp}$ ,  $W_{dv}$ , and  $W_{wv}$  in Equation [2.3-21] are in terms of  $D/Q(m^{-2})$ .

Values of the dose factor,  $R_{i\tau}$ , were calculated using the methodology of NUREG-0133  $^{(3.1.3.1)}$  The following equations were used for all nuclides except tritium:

### 8.3.2.1.2.2 **Dose Factors For Inhalation Pathway**

$$R_{i\tau_{I}} = K'(BR)_{a}(DFA_{i\tau})_{a}$$

[2.3-22]

where:

K' = A constant of unit conversion (1E6 pCi/uCi).

 $(BR)_a$  = The breathing rate of the receptor of age group "a"  $(m^3/yr)$ .

(DFA<sub>iτ</sub>)<sub>a</sub> = Each organ inhalation dose factor for the receptor of age group "a" for the "i" th radionuclide (mrem/pCi). Inhalation dose factors (DFA<sub>iτ</sub>) by organ for the various age groups are given in Table E-7 through E-10 of Regulatory Guide 1.109, Rev. 1<sup>(3.1.3.5)</sup> or Tables 5 through 8 of NUREG-0172. (3.1.3.6)

The breathing rates (BR)a used for the various age groups are tabulated below, as given in Table E-5 of the Regulatory Guide 1.109. (3.1.3.5)

# Age Group(a) Breathing Rate (m³/yr) Infant 1400 Child 3700 Teen 8000

Adult 8000

8.3.2.1.2.3 <u>Dose Factors For Ground Plane Pathway</u>

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                  |
|-----------------------------|-----------------------------------|----------------------------------|
| Title:                      | Unit: 1/2                         | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                    | Page Number:<br>57 of 128        |

$$R_{i\tau_G} = K'K'' \text{ (SF)DFG}_{i\tau}[(1 - e^{-\lambda}i^t)/\lambda_i]$$

$$= m^2 \text{-mrem/yr per uCi/sec}$$
 [2.3-23]

where:

K' = A constant of unit conversion (1E6 pCi/uCi).

K" = A constant of unit conversion (8760 hr/year).

 $\lambda i$  = The decay constant for the "i" th radionuclide (sec<sup>-1</sup>).

= The exposure time (4.73E8 sec or 15 years).

DFG<sub>iτ</sub> = The groundplane dose conversion factor for organ "τ" for the "i" th radionuclide (mrem/hr per pCi/m<sup>2</sup>). A tabulation of DFG<sub>iτ</sub> values is presented in Table E-6 of Regulatory Guide 1.109. (3.1.3.5)

SF = The shielding factor (dimensionless). A shielding factor of 0.7 as suggested in Table E-15 of Regulatory Guide 1.109 is used. (3.1.3.5)

### 8.3.2.1.2.4 **Dose Factors For Cow Milk or Goat Milk Pathway**

$$R_{ir_{M}} = K' \frac{Q_{F}(U_{ap})}{\lambda_{i} + \lambda_{w}} F_{m}(r) (DFL_{ir})_{a} \left[ \frac{f_{p}f_{s}}{Y_{p}} + \frac{(1 - f_{p}f_{s})e^{-\lambda}i^{t}h}{Y_{s}} \right] e^{-\lambda}i^{t}f$$

$$= m^2$$
 -mrem/yr per uCi/sec [2.3-24]

where:

K' = A constant of unit conversion (1E6 pCi/uCi).

QF = The animal's consumption rate, wet weight (kg/day).

U<sub>ap</sub> = The receptor's milk consumption rate, for age "a" (liters/yr).

Y<sub>p</sub> = The agricultural productivity by unit area of pasture feed grass (kg/m2).

Y<sub>s</sub> = The agricultural productivity by unit area of stored feed (kg/m2).

 $F_m$  = The stable element transfer coefficients (days/liter).

| Beaver Vall          | ey Pow                             | er Station                                                                                                              | Procedure Nu                                                   | mber:<br>1/2-ODC-2.02                                              |
|----------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
| Title:               |                                    | · · · · · · · · · · · · · · · · · · ·                                                                                   | Unit: 1/2                                                      | Level Of Use: In-Field Reference                                   |
| ODCM: GASEOUS EFFLUE | NTS                                |                                                                                                                         | Revision:                                                      | Page Number:<br>58 of 128                                          |
| Г                    | =                                  | Fraction of deposited grass.                                                                                            | activity retained                                              | on animals feed                                                    |
| <b>(</b> E           | OFL <sub>it</sub> ) <sub>a</sub> = | The maximum organ radionuclide for the religious dose factors are given in Table E-1.109 <sup>(3.1.3.5)</sup> or Tables | eceptor in age grows $(DFL_{i\tau})_a$ for the 11 through E-14 | oup "a" (mrem/pCi).<br>e various age groups<br>of Regulatory Guide |
| $\lambda_{i}$        |                                    | The decay constant for                                                                                                  | or the "i" th radio                                            | onuclide (sec-1).                                                  |
| $\lambda_{v}$        | , =                                | The decay constant for plant surfaces by weat to a 14 day half-life).                                                   |                                                                |                                                                    |
| $t_{ m f}$           | =                                  | The transport time from receptor (sec).                                                                                 | om pasture, to an                                              | imal, to milk, to                                                  |
| t <sub>h</sub>       | =                                  | The transport time from milk, to receptor (sec)                                                                         | •                                                              | rvest, to animal, to                                               |
| $\mathbf{f_p}$       | =                                  | Fraction of the year th (dimensionless).                                                                                | nat the animal is                                              | on pasture                                                         |
| $\mathbf{f_s}$       | · =                                | Fraction of the animal animal is on pasture (                                                                           | ' •                                                            | ure grass while the                                                |

Tabulated below are the parameter values used for cow's milk and their reference to Regulatory Guide 1.109. (3.1.3.5)

| Parameter                                    | Value                | RG. 1.109 Table                   |
|----------------------------------------------|----------------------|-----------------------------------|
| r (dimensionless)                            | 1.0 for radioiodine  | E-15                              |
|                                              | 0.2 for particulates | E-15                              |
| F <sub>m</sub> (days/liter)                  | each stable element  | E-1 (cow milk)<br>E-2 (goat milk) |
| U <sub>ap</sub> (liters/yr) - infant         | 330                  | E-5                               |
| child                                        | 330                  | E-5                               |
| t <del>ee</del> n                            | 400                  | E-5                               |
| adult                                        | 310                  | E-5                               |
| (DLF <sub>iτ</sub> ) <sub>a</sub> (mrem/pCi) | each radionuclide    | E-11 to E-14                      |
| $Y_p (kg/m^2)$                               | 0.7                  | E-15                              |
| $Y_s (kg/m^2)$                               | 2.0                  | E-15                              |
| t <sub>f</sub> (seconds)                     | 1.73E5 (2 days)      | E-15                              |
| th (seconds)                                 | 7.78E6 (90 days)     | E-15                              |
| Q <sub>F</sub> (kg/day)                      | 50                   | E-3                               |
| $\mathbf{f_p}$                               | 0.5                  | <del></del> :                     |
| $\mathbf{f_s}$                               | 1.0                  | <b></b>                           |

For goat's milk, all values remain the same except for Q<sub>F</sub>, which is 6 kg/day.

### 8.3.2.1.2.5 <u>Dose Factors For Meat Pathway</u>

$$R_{i\tau_{B}} = K' \frac{Q_{F}(U_{ap})}{\lambda_{i} + \lambda_{w}} F_{f}(r) (DFL_{i\tau})_{a} \left[ \frac{f_{p}f_{s}}{Y_{p}} + \frac{\left(1 - f_{p}f_{s}\right)e^{-\lambda_{i}t}h}{Y_{S}} \right] e^{-\lambda_{i}t} f$$

[2.3-25]

where:

F<sub>f</sub> = The stable element transfer coefficients (days/kg).

 $U_{ap}$  = The receptor's meat consumption rate for age "a" (kg/yr).

t<sub>f</sub> = The average time from slaughter of meat animal to consumption (sec).

| Beaver Valley Power Station Procedu |           | rocedure Number:<br>1/2-ODC-2.02 |  |
|-------------------------------------|-----------|----------------------------------|--|
| Title:                              | Unit: 1/2 | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS             | Revision: | Page Number:<br>60 of 128        |  |

t<sub>h</sub> = The transport time from crop field to receptor (sec).

All parameter values are the same as the milk pathway parameter values except  $F_f$  which is obtained from Table E-1. Parameter  $t_f$  is obtained from Table E-15, and  $U_{ap}$  is obtained from Table E-5. These values, as obtained from Regulatory Guide 1.109,  $^{(3.1.3.5)}$  are as follows:

| Parameter                                                  | Value                | RG-1.109 Table           |
|------------------------------------------------------------|----------------------|--------------------------|
| F <sub>f</sub> (days/kg)                                   | each stable element  | E-1                      |
| t <sub>f</sub> (seconds)                                   | 1.73E6 (20 days)     | E-15                     |
| U <sub>ap</sub> (kg/yr) - infant<br>Child<br>Teen<br>Adult | 0<br>41<br>65<br>110 | E-5<br>E-5<br>E-5<br>E-5 |

Man is considered to consume 2 types of vegetation (fresh and stored) that differ only in the time period between harvest and consumption; therefore:

### 8.3.2.1.2.6 **Dose Factors For Vegetation Pathway**

$$R_{i\tau_{V}} = K' \left[ \frac{(r)}{Y_{V}(\lambda_{i} + \lambda_{w})} \right] (DFL_{i\tau})_{a} \left[ U_{a}^{L} f_{L} e^{-\lambda_{i} t} L + U_{a}^{S} f_{g} e^{-\lambda_{i} t} h \right]$$

$$= m^{2} - \text{mrem/yr per uCi/sec}$$
 [2.3-26]

where:

K' = A constant of unit conversion (1E6 pCi/uCi).

U<sub>a</sub><sup>L</sup> = The consumption rate of fresh leafy vegetation by the receptor in age group "a" (kg/yr).

 $U_a^S$  = The consumption rate of stored vegetation by the receptor in age group "a" (kg/yr).

 $f_L$  = The fraction of the annual intake of fresh leafy vegetation grown locally.

 $f_g$  = The fraction of the annual intake of stored vegetation grown locally.

t<sub>L</sub> = The average time between harvest of leafy vegetation and its consumption (seconds).

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>61 of 128           |

t<sub>h</sub> = The average time between harvest of stored vegetation and its consumption (seconds).

 $Y_v$  = The vegetation area density (kg/m<sup>2</sup>).

all other factors are defined previously.

Tabulated below are the appropriate parameter values and their reference to Regulatory Guide 1.109. (3.1.3.5)

| Parameter r (dimensionless)                  | Value 1.0 for radioiodines 0.2 for particulates | adioiodines E-15  |  |
|----------------------------------------------|-------------------------------------------------|-------------------|--|
| (DFL <sub>iτ</sub> ) <sub>a</sub> (mrem/pCi) | each stable element                             | E-11 to E-14      |  |
| U <sup>L</sup> (kg/yr) -infant               | 0                                               | E-5               |  |
| Child<br>teen<br>adult                       | 26<br>42<br>64                                  | E-5<br>E-5<br>E-5 |  |
| U <sup>S</sup> <sub>a</sub> (kg/yr) - infant | 0                                               | E-5               |  |
| a<br>child<br>teen<br>adult                  | 520<br>630<br>520                               | E-5<br>E-5<br>E-5 |  |
| f <sub>L</sub> (dimensionless)               | 1.0                                             | E-15              |  |
| Fg (dimensionless)                           | 0.76                                            | E-15              |  |
| $t_L$ (seconds)                              | 8.6E4 (1 day)                                   | E-15              |  |
| th (seconds)                                 | 5.18E6 (60 days)                                | E-15              |  |
| $Y_{V}(kg/m^{2})$                            | 2.0                                             | E-15              |  |

As discussed in Section 8.2.2 for tritium, the parameter W for the food pathway is based upon X/Q. The ground plane pathway is not appropriate for tritium. Therefore, the left-hand portion of Equation [2.3-20] may be expressed for purposes of implementation of 40 CFR 190, discussed in 1/2-ODC-2.04, as follows:

| Beaver Valley Power Station | er Valley Power Station  Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|---------------------------------------------------------|-------------------------------------|
| Title:                      | Unit: 1/2                                               | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                                               | Page Number:<br>62 of 128           |

### 8.3.2.1.2.7 <u>Tritium Dose Equation</u>

$$3.17E - 8(R_{T\tau_{M}} + R_{T\tau_{V}} + R_{T\tau_{B}} + R_{T\tau_{I}}) [0.5(X/Q)_{pv}Q_{T_{pv}} + (X/Q)_{cv}Q_{T_{cv}} + (X/Q)_{cv}Q_{T_{cv}} + (X/Q)_{tv}Q_{T_{vv}} + (X/Q)_{tv}Q_{T_{tv}} + (X/Q)_{cb}Q_{\tau_{cb}} + (X/Q)_{dv}Q_{\tau_{dv}} + (X/Q)_{wv}Q_{\tau_{wv}}]$$

[2.3-27]

where:

 $R_{T\tau_M}$  = Dose factor for organ " $\tau$ " for tritium for the milk pathway (mrem/yr per uCi/m<sup>3</sup>).

 $RT\tau_V = Dose$  factor for organ " $\tau$ " for tritium for the vegetable pathway (mrem/yr per uCi/m<sup>3</sup>).

 $R_{T\tau_B}$  = Dose factor for organ "\tau" for tritium for the beef pathway (mrem/yr per uCi/m<sup>3</sup>).

 $RT\tau_I$  = Dose factor for organ " $\tau$ " for tritium for the inhalation pathway (mrem/yr per uCi/m<sup>3</sup>).

Equation [2.3-27] is used to show compliance with 40 CFR 190, as discussed in 1/2-ODC-2.04.

The concentration of tritium in milk is based on the airborne concentration rather than the deposition. Therefore, the  $RT\tau_M$  is based on [X/Q]:

### 8.3.2.1.2.8 <u>Tritium Dose Factors For Milk Pathway</u>

$$R_{T\tau_{M}} = K'K'' F_{m}Q_{F}U_{ap}(DLF_{i\tau})_{a}[0.75(0.5/H)]$$

$$= mrem/yr per uCi/m^{3}$$
[2.3-28]

where:

K" = A constant of unit conversion (1000 gm/kg).

H = Absolute humidity of the atmosphere (8 gm/m $^3$ ).

0.75 = The fraction of total feed that is water.

0.5 = The ratio of the specific activity of the feed grass water to the atmospheric water.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |
|-----------------------------|--------------------------------|----------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>63 of 128        |

and other parameters and values are the same as for  $R_{i\tau_M}$ .

The concentration of tritium in vegetation is based on the airborne concentration rather than the deposition. Therefore, the  $R_{t\tau_v}$  is based on [X/Q]:

### 8.3.2.1.2.9 <u>Tritium Dose Factors For Vegetation Pathway</u>

$$R_{T\tau_{V}} = K'K'' \left[ U_{a}^{L} f_{L} + U_{a}^{S} f_{g} \right] \left( DFL_{i\tau} \right)_{a} \left[ 0.75(0.5/H) \right]$$

$$= \text{mrem/yr per uCi/m}^{3}$$
[2.3-29]

where all terms have been defined above.

The concentration of tritium in meat is based on its airborne concentration rather than the deposition. Therefore, the  $RT_{\tau_B}$  is based on [X/Q]:

### 8.3.2.1.2.10 <u>Tritium Dose Factors For Beef Pathway</u>

$$R_{T\tau_{B}} = K'K''F_{f}Q_{F}U_{ap}(DFL_{i\tau})_{a} [0.75(0.5/H)]$$

$$= mrem/yr per uCi/m^{3}$$
[2.3-30]

where all terms have been defined above.

To show compliance with ODCM CONTROLS 3.11.2.3 and 3.11.2.4, Equation [2.3-21] is evaluated at the controlling pathway location. For Release Modes 1 through 4, the controlling location is a residence 0.89 miles in the NW sector. Inserting appropriate X/Q values from ATTACHMENT F Tables 2.2-4 to 2.2-10 and D/Q values from ATTACHMENT L Tables 2.3-28 to 2.3-34, Equation [2.3-21] becomes:

### 8.3.2.1.3 Radioiodines and Particulates Dose Determination

$$\begin{split} &3.17\mathrm{E} - 8\, \Sigma_{\mathrm{i}} \, [[\mathrm{R}_{\mathrm{i}\tau_{\mathrm{G}}} + \mathrm{R}_{\mathrm{i}\tau_{\mathrm{V}}}][(0.5)4.22\mathrm{E} - 10\, \mathrm{Q}_{\mathrm{i}_{\mathrm{pv}}} + 1.56\mathrm{E} - 8\, \mathrm{Q}_{\mathrm{cv}} + 1.56\mathrm{E} - 8\, \mathrm{Q}_{\mathrm{cv}} + 1.56\mathrm{E} - 8\, \mathrm{Q}_{\mathrm{i}_{\mathrm{vv}}} + 1.55\mathrm{E} - 8\, \mathrm{Q}_{\mathrm{i}_{\mathrm{cb}}} + 1.56\mathrm{E} - 8\, \mathrm{Q}_{\mathrm{i}_{\mathrm{dv}}} +$$

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |
|-----------------------------|--------------------------------|----------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>64 of 128        |

 $\leq$  0.3 mrem (per 31 days), or

[2.3-31]

≤ 7.5 mrem (per quarter), or

 $\leq$ 15.0 mrem (per year)

For tritium, for purposes of implementation of 40 CFR 190, as discussed in 1/2-ODC-2.04, Equation [2.3-28] reduces to:

$$3.17E - 8 [R_{T\tau_{v}} + R_{T\tau_{1}}] [(0.5)7.30E - 9 Q_{i_{pv}} + 2.00E - 5 Q_{i_{cv}} + 2.71E - 5 Q_{i_{vv}} + 2.22E - 5 Q_{i_{tv}} + 2.22E - 5 Q_{i_{cb}} + 2.00E - 5 Q_{i_{dv}} + 2.00E - 5 Q_{i_{dv}}]$$

$$2.00E - 5 Q_{i_{wv}}]$$

$$[2.3-32]$$

### 8.3.2.1.4 **Determination of Controlling Location**

The determination of a controlling locating for implementation of ODCM CONTROLS 3.11.2.3 and 3.11.2.4 for radioiodines and particulates is a function of:

- Radionuclide mix and their isotopic release
- Release Mode
- Meteorology
- Exposure pathway
- Receptor's age

The incorporation of these parameters into Equation [2.3-19] results in the respective equations for each Release Mode at the controlling location.

In determination of the controlling location for each Release Mode, the radionuclide mix of radioiodines and particulates was based upon the source terms calculated using the GALE code. This mix was presented in ATTACHMENT D Tables 2.2-2a and 2.2-2b as a function of Release Mode and Release Point. For the ground plane exposure pathway, all radionculides (excluding H-3 and C-14) were considered in determination of the controlling location. For the inhalation and food pathways H-3 and C-14 were also considered in determination of the controlling location.

In determination of the controlling location for each Release Mode, all of the exposure pathways, as presented in ATTACHMENT E Table 2.2-3, were evaluated. These include cow milk, goat milk, beef and vegetable ingestion and inhalation and ground plane exposure. An infant was assumed to be present at all milk pathway locations. A child was assumed to be present at all vegetable garden and beef animal locations. The ground plane and inhalation exposure pathways were considered to be present at all locations.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |
|-----------------------------|--------------------------------|-------------------------------------|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>65 of 128           |

For determination of the controlling location, the highest D/Q and X/Q values for each Release Point and Release Mode for the vegetable garden, cow milk, and goat milk pathways were selected. The organ dose was calculated at each of these locations using the radionuclide mix and Release Points of ATTACHMENT D Tables 2.2-2a and 2.2-2b Based upon these calculations, it was determined that the controlling location for Release Modes 1 through 4 is the residence (vegetable garden)/child pathway.

For Release Modes 1 through 4, the controlling Release Point and mix is VV-1 and VV-2.

ATTACHMENT J Tables 2.3-2 through 2.3-20 present Ri values for the total body, GI-LLI, bone, liver, kidney, thyroid, and lung organs for the ground plane, inhalation, cow milk, goat milk, vegetable, and meat ingestion pathways for the infant, child, teen, and adult age groups as appropriate to the pathways. These values were calculated using the methodology described in NUREG-0133<sup>(3.1.3.1)</sup> using a grazing period of 6 months.

In determination of the controlling location for Release Modes 1-4, ATTACHMENT F Tables 2.2-4 through 2.2-10 are utilized for X/Q's, and ATTACHMENT L Tables 2.3-28 through 2.3-34 are utilized for long term D/Q values. A description of the derivation of the various X/Q and D/Q values is presented in 1/2-ODC-3.01.

Long-term D/Q values for PV-1/2, CV-1, CV-2, VV-1, VV-2, TV-2, CB-2, DV-2 AND WV-2 are provided for the midpoints of the following distances:

0.0-0.5 mi., 0.5-1.0 mi., 1.0-1.5 mi., 1.5-2.0 mi., 2.0-2.5 mi., 2.5-3.0 mi., 3.0-3.5 mi., 3.5-4.0 mi., 4.0-4.5 mi., 4.5-5.0 mi.

The values appear in ATTACHMENT K Tables 2.3-21 through 2.3-27. These values may be utilized if an additional special location arises different from those presented in the special locations of ATTACHMENT E Table 2.2-3.

The following relationship must hold for BV-1 or BV-2 to show compliance with ODCM CONTROL 3.11.2.3.

For The Calendar Quarter:

 $D_{\tau} \le 7.5$  mrem to any organ

[2.3-33]

For The Calendar Year:

 $D_{\tau} \le 15$  mrem to any organ

[2.3-34]

where:

 $D_{\tau}$  = The dose to any organ from radioiodines and particulates (mrem).

| Beaver Valley Power Station | Beaver Valley Power Station  Procedure Number: 1/2-ODC-2.02 |                           |  |
|-----------------------------|-------------------------------------------------------------|---------------------------|--|
| Title:                      | Unit: Level Of Use: 1/2 In-Field Refere                     |                           |  |
| ODCM: GASEOUS EFFLUENTS     |                                                             | Page Number:<br>66 of 128 |  |

The quarterly limits given above represent one-half the annual design objective of Section II.C of Appendix I of 10 CFR 50. If any of the limits of Equations [2.3-33] and [2.3-34] are exceeded, a Special Report pursuant to both Section IV.A of Appendix I of 10 CFR 50 and ODCM CONTROL 3.11.2.3 a must be filed with the NRC at the identified locations.

#### 8.3.2.2 Projection Of Doses (Radioiodines And Particulates)

Doses due to gaseous releases from BV-1 or BV-2 shall be projected at least once per 31 days in accordance with ODCM CONTROL 4.11.2.4 and this section. (Also see Section 8.3.1.2, <u>Projection Of Doses</u> for additional specifications). The appropriate portions of the Ventilation Exhaust Treatment System shall be used to reduce radioactive materials in gaseous waste prior to their discharge in accordance with ODCM CONTROL 3.11.2.4 when the projected doses due to gaseous effluent releases from each reactor unit, when averaged over 31 days, would exceed 0.3 mrem to any organ. (Also see Section 8.3.1.2, <u>Projection Of Doses</u> for additional specifications). Doses resulting from the gaseous effluent release of radioiodines and particulates will be calculated for use in the 31-day dose projection using Equation [2.3-31]. The 31-day dose projection shall be performed according to the following equations:

### 8.3.2.2.1 When Including Pre-Release Data,

$$D_{31} = \left[ \frac{A+B}{T} \right] (31) + C$$
 [2.3-35]

#### 8.3.2.2.2 When Not Including Pre-Release Data,

$$D_{31} = \left[\frac{A}{T}\right](31) + C$$
 [2.3-36]

where:

 $D_{31}$  = Projected 31 day dose (mrem).

A = Cumulative dose for quarter (mrem).

B = Projected dose for this release (mrem).

T = Current days into quarter.

C = Value which may be used to anticipate plant trends (mrem).

| Beaver Valley Power Station | 1         | Procedure Number: 1/2-ODC-2.02   |  |
|-----------------------------|-----------|----------------------------------|--|
| Title:                      | Unit: 1/2 | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>67 of 128        |  |

### 8.4 Gaseous Radwaste System

The gaseous radwaste system has the capability to control, collect, process, store, recycle, and dispose of gaseous radioactive waste generated as a result of plant operations, including anticipated operational occurrences.

A simplified flow diagram of the gaseous radwaste system for BV-1 and BV-2 is provided as ATTACHMENT N Figure 2.4-1. A diagram showing the gaseous effluent Release Points is provided as ATTACHMENT P Figure 2.4-2. Since the concept of a shared gaseous radwaste system is used, then gaseous waste generated can be stored, processed, and discharged from either BV-1 or BV-2.

### 8.4.1 BV-1 Gaseous Radwaste System Components

### 8.4.1.1 BR-1EV-2A/2B: Degasifiers

There are two Degasifiers. They are designed to continuously process reactor coolant letdown for reducing entrained noble gases in the liquid.

### 8.4.1.2 **GW-1E-1A/1B: Waste Gas Chillers**

There are two Chillers. Non-condensable gases from the degasifiers are directed by system pressure to the Waste Gas Chillers.

#### 8.4.1.3 GW-1TK-3A thru 3D: Gaseous Waste Charcoal Delay Beds

There are four Charcoal Beds. The dry effluent from the Chillers is directed to the Waste Gas Charcoal Delay Beds for holdup of xenon and krypton and adsorption of radioiodines. When four beds are operated in series, they provide a holdup of xenon isotopes for about 30 days.

#### 8.4.1.4 GW-1FL-5A/5B: Overhead Gas Compressor Prefilters

There are two Prefilters. The gaseous effluent (primarily hydrogen) is directed from the Gaseous Waste Charcoal Delay Beds to one of the Overhead Gas Compressor Prefilters. The filters remove carbon solids from the gas stream.

#### 8.4.1.5 **GW-1C-1A/1B:** Gas Compressors

There are two Compressors. The waste gas enters one of the compressors after passing through the Prefilters.

### 8.4.1.6 GW-1TK-2: Gaseous Waste Surge Tank

There is one Surge Tank. It has a capacity of 52 cuft. After compression to about 65 psig, the waste gas is sent to the Surge Tank. This can be done automatically or manually.

### 8.4.1.7 GW-1TK-1A thru 1C: Waste Gas Decay Tanks

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02      |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>68 of 128           |  |  |

There are three Decay Tanks. Each has a capacity of 132 cuft. The contents of the Surge Tank is transferred to the Decay Tanks for storage and decay. After 30 days of storage, all xenon and iodine should have decayed, and the resulting predominant nuclide should be krypton 85.

### 8.4.1.8 RM-1GW-108 And RM-1GW-109: Gaseous Effluent Radiation Monitors

There are redundant Radiation Monitors on the combined PV-1/2 Gaseous Waste/Process Vent release path. These Radiation Monitors continuously analyze gaseous waste as it is being discharged. Gaseous Monitor RM-1GW-108B is an off-line gamma scintillator, while RM-1GW-109 Channel 5 is an off-line beta scintillator. The upper activity alarm on the gaseous Channels of these Radiation Monitors have setpoints that would indicate we are approaching the Total Body Dose Rate or Skin Dose Rate limits for radioactive gas leaving the site. If an upper activity alarm on RM-1GW-108B is received, it automatically terminates the discharge by closing an isolation valve downstream of the Decay Tanks.

### 8.4.2 **BV-2 Gaseous Radwaste System Components**

### 8.4.2.1 2BRS-EV21A/21B: Degasifiers

There are four Degasifiers (two at Unit 1 and two at Unit 2). They are designed to continuously process reactor coolant letdown for reducing entrained noble gases in the liquid.

### 8.4.2.2 **2GWS-E21A/21B: Waste Gas Chillers**

There are four Chillers (two at Unit 1 and two at Unit 2). Non-condensable gases from the degasifiers are directed by system pressure to the Waste Gas Chillers.

### 8.4.2.3 2GWS-TK22A thru 22D: Waste Gas Charcoal Delay Beds

There are four Charcoal Beds (four at Unit 1 and four at Unit 2). The dry effluent from the Chillers is directed to the Waste Gas Charcoal Delay Beds for holdup of xenon and krypton and adsorption of radioiodines. When four beds are operated in series, they provide a holdup of xenon isotopes for about 30 days.

### 8.4.2.4 2GWS-FLT24A/24B: Overhead Gas Compressor Prefilters

There are two Prefilters. The gaseous effluent (primarily hydrogen) is directed from the Waste Gas Charcoal Delay Beds to one of the Overhead Gas Compressor Prefilters. The filters remove carbon solids from the gas stream.

### 8.4.2.5 **2GWS-C21A/21B:** Gas Compressors

There are two Compressors. The waste gas enters one of the compressors after passing through the Prefilters.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |  |
|-----------------------------|--------------------------------|----------------------------------|--|
| Title:                      | Unit: 1/2                      | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>69 of 128        |  |

### 8.4.2.6 2GWS-TK21: Gaseous Waste Surge Tank

There is one Surge Tank. It has a capacity of 52 cuft. After compression to about 65 psig, the waste gas is sent to the Surge Tank. This can be done automatically or manually.

### 8.4.2.7 2GWS-TK25A thru 25G: Gaseous Waste Storage Tanks

There are seven Storage Tanks. Each has a capacity of 132 cuft. The contents of the Surge Tank is transferred to the Storage Tanks for storage and decay. After 30 days of storage, all xenon and iodine should have decayed, and the resulting predominant nuclide should be krypton 85.

### 8.4.2.8 RM-1GW-108 And RM-1GW-109: Gaseous Effluent Radiation Monitors

Previously described in Section 8.4.1.

- END -

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02   |  |  |
|-----------------------------|-----------|----------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use: In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>70 of 128        |  |  |

### ATTACHMENT A Page 1 of 2 GASEOUS SOURCE TERM

### **TABLE 2.1-1a**

### BV-1 RADIONUCLIDE MIX FOR GASEOUS EFFLUENTS (Ci/yr)

|                        | RX CONTAINMENT/ SLCRS VENT Long Term, And | AUXILIARY<br>BUILDING<br>VENT        | GASEOUS                           | WASTE/PROCESS                                 | VENT                       |
|------------------------|-------------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------------------|----------------------------|
| NUCLIDE <sup>(2)</sup> | CONTAINMENT<br>BUILDING(1)                | AUXILIARY<br>BUILDING<br>VENTILATION | MAIN<br>CONDENSER/<br>AIR EJECTOR | CONTAINMENT<br>VACUUM<br>PUMPS <sup>(3)</sup> | GASEOUS<br>WASTE<br>SYSTEM |
|                        | Short Term                                | Long Term                            | Long Term                         | Long Term                                     | Short Term                 |
| Kr-83m                 | 2.2E-02                                   | 4.2E-01                              | 2.7E-01                           | 5.2E-03                                       | 0.0                        |
| Kr-85m                 | 1.5E-01                                   | 1.9E+00                              | 1.2E+00                           | 5.5E-02                                       | 7.3E-02                    |
| Kr-85                  | 6.1E+01                                   | 2.5E+00                              | 1.6E+00                           | 1.0E+01                                       | 2:3E+02                    |
| Kr-87                  | 5.4E-02                                   | 1.3E+00                              | 8.2E-01                           | 1.1E-02                                       | 0.0                        |
| Kr-88                  | 2.4E-01                                   | 3.8E+00                              | 2.4E+00                           | 7.0E-02                                       | 0.0                        |
| Kr-89                  | 4.7E-04                                   | 1.2E-01                              | 7.7E-02                           | 4.3E-05                                       | 0.0                        |
| Xe-131m                | 7.4E-01                                   | 1.3E-01                              | 8.0E-02                           | 1.8E-01                                       | 1.3E+00                    |
| Xe-133m                | 8.9E-01                                   | 8.9E-01                              | 5.6E-01                           | 3.1E-01                                       | 0.0                        |
| Xe-133                 | 8.9E+01                                   | 3.6E+01                              | 2.3E+01                           | 2.7E+01                                       | 2.3E+01                    |
| Xe-135m                | 4.5E-03                                   | 3.2E-0.1                             | 2.0E-01                           | 6.2E-04                                       | 0.0                        |
| Xe-135                 | 7.0E-01                                   | 4.5E+00                              | 2.8E+00                           | 2.7E-01                                       | 0.0                        |
| Xe-137                 | 1.0E-03                                   | 2.1E-01                              | 1.3E-01                           | 8.8E-05                                       | 0.0                        |
| Xe-138                 | 1.5E-02                                   | 1.1E+00                              | 6.6E-01                           | 1.7E-03                                       | 0.0                        |
| Ar-41                  | 2.5E+01                                   | 0.0                                  | 0.0                               | 0.0                                           | 0.0                        |

<sup>(1)</sup> Containment can be purged via VV-1 (Auxiliary Building Vent), CV-1 (Rx Containment/SLCRS Vent), or PV-1/2 (Gaseous Waste/Process Vent)

Source Term from BVPS-2 UFSAR Table 11.3.1<sup>(3.1.1.2)</sup>

Original Source Term from Calculation No. UR(B)-262 was adjusted for a factor of 14 increase in pump flowrate due to installation of high capacity pumps during 1R15. This change in Source Term is documented in Condition Report CR03-04830 and Calculation No. ERS-HHM-87-014. (3.1.1.5) (3.1.1.8) (3.1.3.10)

| Beaver Valley Power Station | aver Valley Power Station  Procedure Number: 1/2-ODC-2.02 |                           |
|-----------------------------|-----------------------------------------------------------|---------------------------|
| Title:                      | Unit: Level Of Use: 1/2 In-Field Reference                |                           |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                                            | Page Number:<br>71 of 128 |

### ATTACHMENT A Page 2 of 2 GASEOUS SOURCE TERM

### **TABLE 2.1-1b BV-2 RADIONUCLIDE MIX FOR GASEOUS EFFLUENTS** (Ci/yr)

|                                                                                                 | •                                                                                                             |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                                                       |                                                                                    |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                 | SLCRS UNFILTERED PATHWAY Long Term, And                                                                       | SLCRS<br>FILTERED<br>PATHWAY                                                                                          | TURBINE<br>BUILDING<br>VENT                                                                                           | GASEOUS                                                                                                               | S WASTE/PROCESS                                                                                                       | S VENT                                                                             |
| NUCLIDE <sup>(2</sup>                                                                           | CONTAINMENT<br>BUILDING <sup>(1)</sup>                                                                        | AUXILIARY<br>BUILDING<br>VENTILATION                                                                                  | TURBINE<br>BUILDING<br><u>VENTILATION</u>                                                                             | MAIN<br>CONDENSER/<br>AIR EJECTOR                                                                                     | CONTAINMENT<br>VACUUM<br>PUMPS <sup>(3)</sup>                                                                         | GASEOUS<br>WASTE<br>SYSTEM                                                         |
|                                                                                                 | Short Term                                                                                                    | Long Term                                                                                                             | Long Term                                                                                                             | Long Term                                                                                                             | Long Term                                                                                                             | Short Term                                                                         |
| Kr-83m<br>Kr-85m<br>Kr-85<br>Kr-87<br>Kr-88<br>Kr-89<br>Xe-131m<br>Xe-133m<br>Xe-135m<br>Xe-135 | 4.0E-05<br>1.4E-02<br>6.1E+01<br>5.3E-06<br>4.1E-03<br>0.0<br>7.2E-01<br>7.6E-01<br>8.4E+01<br>0.0<br>2.4E-01 | 4.2E-01<br>1.9E+00<br>2.5E+00<br>1.3E+00<br>3.8E+00<br>1.2E-01<br>1.3E-01<br>8.9E-01<br>3.6E+01<br>3.2E-01<br>4.5E+00 | 3.9E-05<br>1.7E-04<br>2.3E-04<br>1.1E-04<br>3.5E-04<br>1.1E-05<br>1.2E-05<br>8.1E-05<br>3.4E-03<br>2.9E-05<br>4.2E-04 | 2.7E-01<br>1.2E+00<br>1.6E+00<br>8.2E-01<br>2.4E+00<br>7.7E-02<br>8.0E-02<br>5.6E-01<br>2.3E+01<br>2.0E-01<br>2.8E+00 | 3.7E-04<br>3.9E-03<br>7.2E-01<br>7.8E-04<br>5.0E-03<br>3.1E-06<br>1.3E-02<br>2.2E-02<br>1.9E-00<br>4.4E-05<br>1.9E-02 | 0.0<br>1.2E-02<br>2.3E+02<br>0.0<br>0.0<br>0.0<br>8.3E-01<br>0.0<br>8.2E+00<br>0.0 |
| Xe-137                                                                                          | 0.0                                                                                                           | 2.1E-01                                                                                                               | 2.1E-05                                                                                                               | 1.3E-01                                                                                                               | 6.3E-06                                                                                                               | 0.0                                                                                |
| Xe-138<br>Ar-41                                                                                 | 0.0<br>2.5E+01                                                                                                | 1.1E+00<br>0.0                                                                                                        | 9.7E-05<br>0.0                                                                                                        | 6.6E-01<br>0.0                                                                                                        | 1.2E-04<br>0.0                                                                                                        | 0.0                                                                                |

Containment can be purged via VV-2 (SLCRS Unfiltered Pathway), CV-2 (SLCRS Filtered Pathway), or PV-1/2 (Gaseous Waste/Process Vent)
 Source Term from BVPS-2 UFSAR Table 11.3 2<sup>(3.1.2.3)</sup>
 Source Term from Calculation No. UR(B)-262<sup>(3.1.2.5)</sup>

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |  |
|-----------------------------|-----------------------------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2                      | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                         | Page Number:<br>72 of 128           |  |

### ATTACHMENT B Page 1 of 2 GASEOUS EFFLUENT MONITOR DETECTION EFFICIENCIES

#### **TABLE 2.1-2a**

### BV-1 MONITOR DETECTOR EFFICIENCIES (cpm/uCi/cc)

| NUCLIDE | UCLIDE AUXILIARY BUILDING VENT    |                                     | GASEOUS WASTE/ PROCESS VENT       |                                     | Rx CONTAINMENT/<br>SLCRS VENT     |                                     |
|---------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|
|         | PRIMARY<br>MONITOR <sup>(1)</sup> | ALTERNATE<br>MONITOR <sup>(2)</sup> | PRIMARY<br>MONITOR <sup>(1)</sup> | ALTERNATE<br>MONITOR <sup>(2)</sup> | PRIMARY<br>MONITOR <sup>(1)</sup> | ALTERNATE<br>MONITOR <sup>(2)</sup> |
|         | RM-VS-101B                        | RM-VS-109<br>Channel 5              | RM-GW-108B                        | RM-GW-109<br>Channel 5              | RM-VS-107B                        | RM-VS-110<br>Channel 5              |
| Kr-83m  | · ,                               | ·                                   |                                   |                                     |                                   |                                     |
| Kr-85m  | 9.80 E7                           | 2.39 E7                             | 9.00 E7                           | 2.43 E7                             | 5.16 E7                           | 2.57 E7                             |
| Kr-85   | 3.88 E5                           | 2.47 E7                             | 3.56 E5                           | 2.51 E7                             | 5.04 E7                           | 2.67 E7                             |
| Kr-87   | 7.38 E7                           | 2.95 E7                             | 6.78 E7                           | 3.00 E7                             | 9.60 E7                           | 3.19 E7                             |
| Kr-88   | 1.14 E8                           | 2.11 E7                             | 1.05 E8                           | 2.14 E7                             | 5.16 E7                           | 2.28 E7                             |
| Kr-89   | 1.39 E8                           | 2.93 E7                             | 1.28 E8                           | 2.98 E7                             | 9.59 E7                           | 3.16 E7                             |
| Kr-90   | 1.34 E8                           | 3.05 E7                             | 1.23 E8                           | 3.10 E7                             | 9.87 E7                           | 3.29 E7                             |
| Xe-131m | 2.25 E6                           | 1:56 E7                             | 2.07 E6                           | 1.59 E7                             | 2.94 E7                           | 1.68 E7                             |
| Xe-133m | 1.26 E7                           | 1.94 E7                             | 1.16 E7                           | 1.97 E7                             | 4.17 E7                           | 2.09 E7                             |
| Xe-133  | 1.01 E7                           | 1.24 E7                             | 9.24 E6                           | 1.26 E7                             | 2.28 E7                           | 1.33 E7                             |
| Xe-135m | 7.15 E7                           | 5.70 E6                             | 6.58 E7                           | 5.80 E6                             | 1.51 E7                           | 6.15 E6                             |
| Xe-135  | 1.12 E8                           | 2.91 E7                             | 1.03 E8                           | 2.96 E7                             | 6.42 E7                           | 3.14 E7                             |
| Xe-137  | 3.16 E7                           | 2.96 E7                             | 2.91 E7                           | 3.01 E7                             | 1.05 E8                           | 3.19 E7                             |
| Xe-138  | 1.15 E8                           | 2.66 E7                             | 1.06 E8                           | 2.70 E7                             | 7.35 E7                           | 2.87 E7                             |
| Ar-41   | 7.17 E7                           | 3.00 E7                             | 6.59 E7                           | 3.05 E7                             | 7.19 E7                           | 3.23 E7                             |

<sup>(1)</sup> The listed detector efficiencies for the respective primary monitors (Victoreen) are corrected for the reduced pressures observed and documented during operation.

The alternate monitors (Eberline SPING Channel 5) efficiencies are corrected for detector unique installation factors. (Pressure corrections are not required for the SPING Monitors.) See Calculation Package ERS-SFL-85-031 for additional information. (3.1.1.4)

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02   |  |  |
|-----------------------------|-----------|----------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use: In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>73 of 128        |  |  |

# ATTACHMENT B Page 2 of 2 GASEOUS EFFLUENT MONITOR DETECTION EFFICIENCIES

## TABLE 2.1-2b BV-2 MONITOR DETECTOR EFFICIENCIES (cpm/uCi/cc)

|                        | and the second second |                | •                 |               |                      |
|------------------------|-----------------------|----------------|-------------------|---------------|----------------------|
|                        | SLCRS                 | SLCRS          | WASTE GAS         | ,             | CONDENSATE           |
| -717                   | UNFILTERED            | FILTERED       | STORAGE           | DECON         | POLISHING            |
| NUCLIDE <sup>(1)</sup> | <u>PATHWAY</u>        | <u>PATHWAY</u> | <u>VAULT VENT</u> | BUILDING VENT | <b>BUILDING VENT</b> |
|                        | 2HVS-RQ101B           | 2HVS-RQ109B    | 2RMQ-RQ303B       | 2RMQ-RQ301B   | 2HVL-RQ112B          |
| Kr-83m                 | •                     |                |                   |               | . <del>-</del>       |
| Kr-85m                 | 3.20E7                | 5.83E7         | 3.20E7            | 3.20E7        | 3.20E7               |
| Kr-85                  | 3.60E7                | 7.19E7         | 3.60E7            | 3.60E7        | 3.60E7               |
| Kr-87                  | 3.73E7                | 8.85E7         | 3.73E7            | 3.73E7        | 3.73E7               |
| Kr-88                  | 3.05E7                | 6.80E7         | 3.05E7            | 3.05E7        | 3.05E7               |
| Kr-89                  | 3.72E7                | 8.73E7         | 3.72E7            | 3.72E7        | 3.72E7               |
| Kr-90                  | 3.86E7                | 8.80E7         | 3.86E7            | 3.86E7        | 3.86E7               |
| Xe-131m                | 2.44E7                | 4.61E4         | 2.44E7            | 2.44E7        | 2.44E7               |
| Xe-133m                | 2.86E7                | 6.06E4         | 2.86E7            | 2.86E7        | 2.86E7               |
| Xe-133                 | 1.80E7                | 2.94E7         | 1.80E7            | 1.80E7        | 1.80E7               |
| Xe-135m                | 7.22E6                | 1.55E4         | 7.22E6            | 7.22E6        | 7.22E6               |
| Xe-135                 | 3.86E7                | 7.48E7         | 3.86E7            | 3.86E7        | 3.86E7               |
| Xe-137                 | 3.78E7                | 9.07E7         | 3.78E7            | 3.78E7        | 3.78E7               |
| Xe-138                 | 3.52E7                | 7.74E7         | 3.52E7            | 3.52E7        | 3.52E7               |
| Ar-41                  | 3.79E7                | 7.90E7         | 3.79E7            | 3.79E7        | 3.79E7               |
|                        |                       |                |                   |               |                      |

<sup>(1)</sup> Efficiencies from Calculation Package ERS-SFL-86-026. (3.1.2.1)

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                  |  |  |  |  |  |  |
|-----------------------------|-----------------------------------|----------------------------------|--|--|--|--|--|--|
| Title:                      | Unit: 1/2                         | Level Of Use: In-Field Reference |  |  |  |  |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                         | Page Number:<br>74 of 128        |  |  |  |  |  |  |

### ATTACHMENT C Page 1 of 1 MODES OF GASEOUS RELEASE

### Table 2.2-1 MODES OF GASEOUS RELEASE FROM BEAVER VALLEY SITE VENTS FOR IIMPLEMENTATION OF 10 CFR 20 AND 10 CFR 50

| RELEASE POINT                                                                                               | RELEASE<br>MODE 1                                              | RELEASE<br>MODE 2                   | RELEASE<br>MODE 3                                         | RELEASE<br>MODE 4                          |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|--------------------------------------------|
| RP 1, VV-1, Auxiliary<br>Building Vent <sup>(1)</sup>                                                       | Aux. Bldg.<br>Ventilation                                      | Containment<br>Purge <sup>(3)</sup> | Same As Mode 1                                            | Same As Mode 1                             |
| RP 2; CV-1, Rx<br>Containment/SLCRS Vent <sup>(1)</sup>                                                     | Leakage Collection<br>Exhaust                                  | Same As Mode 1                      | Same As Mode 1<br>and Containment<br>Purge <sup>(3)</sup> | Same As Mode 1                             |
| RP 3; PV-1/2, Gaseous<br>Waste/Process Vent <sup>(2)</sup>                                                  | Main Cond. Air<br>Ejector, Waste Gas,<br>Containment<br>Vacuum | Same As Mode 1                      | Same As Mode 1                                            | Same As Mode 1<br>and Containment<br>Purge |
| RP 4; VV-2 SLCRS<br>Unfiltered Pathway <sup>(1)</sup>                                                       | Contiguous Areas                                               | Containment<br>Purge <sup>(3)</sup> | Same As Mode 1                                            | Same As Mode 1                             |
|                                                                                                             |                                                                |                                     | •                                                         |                                            |
| RP 5, CV-2, SLCRS Filtered<br>Pathway Vent <sup>(1)</sup>                                                   | Aux. Bldg.<br>Ventilation                                      | Same As Mode 1                      | Same As Mode 1<br>and Containment<br>Purge <sup>(3)</sup> | Same As Mode 1                             |
|                                                                                                             |                                                                | Same As Mode 1                      | and Containment                                           | Same As Mode 1                             |
| Pathway Vent <sup>(1)</sup> RP 6, CB-2, Condensate                                                          | Ventilation                                                    |                                     | and Containment<br>Purge <sup>(3)</sup>                   |                                            |
| Pathway Vent <sup>(1)</sup> RP 6; CB-2, Condensate Polishing Bldg Vent <sup>(1)</sup> RP 7; WV-2, Waste Gas | Ventilation (4)                                                | (4)                                 | and Containment<br>Purge <sup>(3)</sup> (4)               | (4)                                        |

NOTE: For the purpose of implementing 10 CFR 50, batch discharges may use continuous meteorology since short term meteorology is used at the time of the annual report.

- (1) Continuous ground level meteorology is applicable
- (2) Continuous elevated meteorology is applicable
- Mode established by purge from one unit, all other release points remain same as Mode 1
- (4) Not normally a radioactive release point

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02              |      |
|-----------------------------|---------------------------------------------|------|
| Title:                      | Unit: Level Of Use:  1/2 In-Field Reference | ce c |
| ODCM: GASEOUS EFFLUENTS     | Revision: Page Number: 75 of 128            |      |

### ATTACHMENT D Page 1 of 2 RADIONUCLIDE MIX

### TABLE 2.2-2a BV-1 RADIONUCLIDE MIX FOR GASEOUS EFFLUENTS (Ci/yr)

CONTAINMENT/ AUXILIARY **BUILDING VENT** GASEOUS WASTE/PROCESS VENT SLCRS VENT Long Term, And **AUXILIARY MAIN** CONTAINMENT NUCLIDE(2 CONTAINMENT **BUILDING** CONDENSER/ **VACUUMM GASEOUS** BUILDING(1) PUMPS(3) VENTILATION AIR EJECTOR **WASTE SYSTEM** Long Term **Short Term** Long Term Long Term Short Term 2.2E-02 4.2E-01 2.7E-01 5.2E-03 0.0 Kr-83m 1.2E-02 Kr-85m 1.5E-01 1.9E+00 1.2E+00 5.5E-02 Kr-85 6.1E+01 2.5E+00 1.6E+00 1.0E+01 2.3E+02 Kr-87. 5.4E-02 1.3E+00 8.2E-01 1.1E-02 0.0 Kr-88 2.4E-01 3.8E+00 2.4E+00 7.0E-02 0.0 Kr-89 0.0 4.7E-04 1,2E-01 7.7E-02 4.3E-05 8.3E-01 Xe-131m 7.4E-01 1.3E-01 8.0E-02 1.8E-01 Xe-133m 8.9E-01 8.9E-01 5.6E-01 3.1E-01 0.0 8.9E+01 3.6E+01 8.2E+00 Xe-133 2.3E+01 2.7E+01 Xe-135m 0.0 4.5E-03 3.2E-01 2.0E-01 6.2E-04 Xe-135 7.0E-01 4.5E+00 0.02.8E+00 2.7E-01 Xe-137 1.0E-03 2.1E-01 0.0 1.3E-01 8.8E-05 Xe-138 1.5E-02 1.1E+00 6.6E-01 1.7E-03 0.0 2.1E-02 I-131 1.2E-03 4.6E-02 6.6E-03 0.0 I-132 0.0 0.0 0.0 0.0 3.5E-05 3.0E-02 2.0E-04 I-133 6.7E-02 1.2E-03 0,0 I-134 0.0 0.0 0.0 6.6E-06 0.0 I-135 0.0 0.0 0.0 2.0E-04 0.0 Co-58 7.5E-04 6.0E-02 0.0 0.0 2.2E-04 0.0 Co-60 3.4E-04 2.7E-02 1.0E-04 0.0 Mn-54 2.2E-04 1.8E-02 0.0 6.9E-05 0.0 Fe-59 7.5E-05 6.0E-03 0.0 2.2E-05 0.0 Sr-89 1.7E-05 1.3E-03 0.0 5.2E-06 0.0 Sr-90 0.0 0.0 3.0E-06 2.0E-04 9.2E-07 2.2E-04 1.8E-02 0.0 6.9E-05 0.0 Cs-134 1.2E-04 Cs-137 3.8E-04 3.0E-02 0.0 0.0 C-14 1.0E+00 0.0 0.0 0.0 7.0E+00 Ar-41 2.5E+01 0.0 0.0 0.0 0.0

RX

<sup>(1)</sup> Containment can be purged via VV-1 (Auxiliary Building Vent), CV-1 (Rx Containment/SLCRS Vent), or PV-1/2 (Gaseous Waste/Process Vent)

Source Term from BVPS-2UFSAR Table 11.3-1<sup>(3.1.1.2)</sup>

<sup>(3)</sup> See Note (3) from ATTACHMENT A Table 2.1-1a (3.1.1.5) (3.1.1.8) (3.1.3.10)

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |  |  |  |  |
|-----------------------------|-----------------------------------|-------------------------------------|--|--|--|--|
| Title:                      | Unit:<br>1/2                      | Level Of Use:<br>In-Field Reference |  |  |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                         | Page Number:<br>76 of 128           |  |  |  |  |

### ATTACHMENT D Page 2 of 2 RADIONUCLIDE MIX

### **TABLE 2.2-2b BV-2 RADIONUCLIDE MIX FOR GASEOUS EFFLUENTS** (Ci/yr)

|                        | SLCRS UNFILTERED PATHWAY Long Term, And | SLCRS<br>FILTERED<br>PATHWAY | TURBINE<br>BUILDING VENT | <u>GASEOUS</u> | WASTE/PROCESS        | S VENT        |
|------------------------|-----------------------------------------|------------------------------|--------------------------|----------------|----------------------|---------------|
|                        |                                         | AUXILIARY                    | TURBINE                  | MAIN           | CONTAINMENT          |               |
| NUCLIDE <sup>(2)</sup> | CONTAINMENT                             | BUILDING                     | BUILDING                 | CONDENSER/     |                      | WASTE         |
| 1                      | BUILDING <sup>(1)</sup>                 | VENTILATION                  | VENTILATION              | AIR EJECTOR    | PUMPS <sup>(3)</sup> | <u>SYSTEM</u> |
|                        | Short Term                              | Long Term                    | Long Term                | Long Term      | Long Term            | Short Term    |
| Kr-83m                 | 4.0E-05                                 | 4.2E-01                      | 3.9E-05                  | 2.7E-01        | 3.7E-04              | 0.0           |
| Kr-85m                 | 1.4E-02                                 | 1.9E+00                      | 1.7E-04                  | 1.2E+00        | 3.9E-03              | 1.2E-02       |
| Kr-85                  | 6.1E+01                                 | 2.5E+00                      | 2.3E-04                  | 1.6E+00        | 7.2E-01              | 2.3E+02       |
| Kr-87                  | 5.3E-06                                 | 1.3E+00                      | 1.1E-04                  | 8.2E-01        | 7.8E-04              | 0.0           |
| Kr-88                  | 4.1E-03                                 | 3.8E+00                      | 3.5E-04                  | 2.4E+00        | 5.0E-03              | 0.0           |
| Kr-89                  | 0.0                                     | 1.2E-01                      | 1.1E-05                  | 7.7E-02        | 3.1E-06              | 0.0           |
| Xe-131m                | 7.2E-01                                 | 1.3E-01                      | 1.2E-05                  | 8.0E-02        | 1.3E-02              | 8.3E-01       |
| Xe-133m                | 7.6E-01                                 | 8.9E-01                      | 8.1E-05                  | 5.6E-01        | 2.2E-02              | 0.0           |
| Xe-133                 | 8.4E+01                                 | 3.6E+01                      | 3.4E-03                  | 2.3E+01        | 1.9E-00              | 8.2E+00       |
| Xe-135m                | 0.0                                     | 3.2E-01                      | 2.9E-05                  | 2.0E-01        | 4.4E-05              | 0.0           |
| Xe-135                 | 2.4E-01                                 | 4.5E+00                      | 4.2E-04                  | 2.8E+00        | 1.9E-02              | 0.0           |
| Xe-137                 | 0.0                                     | 2.1E-01                      | 2.1E-05                  | 1.3E-01        | 6.3E-06              | 0.0           |
| Xe-138                 | 0.0                                     | 1.1E+00                      | 9.7E-05                  | 6.6E-01        | 1.2E-04              | 0.0           |
| I-131                  | 2.7E-05                                 | 4.6E-03                      | 6.5E-04                  | 2.1E-02        | 4.7E-04              | 0.0           |
| I-132                  | 0.0                                     | 0.0                          | 0.0                      | 0.0            | 2.5E-06              | 0.0           |
| I-133                  | 2.6E-06                                 | 6.7E-03                      | 8.7E-04                  | 3.0E-02        | 8.4E-05              | 0.0           |
| I-134                  | 0.0                                     | 0.0                          | 0.0                      | 0.0            | 4.7E-07              | 0.0           |
| I-135                  | 0.0                                     | 0.0                          | 0.0                      | 0.0            | 1.4E-05              | 0.0           |
| Co-58                  | 7.5E-02                                 | 6.0E-04                      | 0.0                      | 0.0            | 1.6E-05              | 0.0           |
| Co-60                  | 3.4E-02                                 | 2.7E-04                      | 0.0                      | 0.0            | 7.4E-06              | 0.0           |
| Mn-54                  | 2.2E-02                                 | 1.8E-04                      | 0.0                      | 0.0            | 4.9E-06              | 0.0           |
| Fe-59                  | 7.5E-03                                 | 6.0E-05                      | 0.0                      | 0.0            | 1.6E-06              | 0.0           |
| Sr-89                  | 1.7E-03                                 | 1.3E-05                      | 0.0                      | 0.0            | 3.7E-07              | 0.0           |
| Sr-90                  | 3.0E-04                                 | 2.0E-06                      | 0.0                      | 0.0            | 6.6E-08              | 0.0           |
| Cs-134                 | 2.2E-02                                 | 1.8E-04                      | 0.0                      | 0.0            | 4.9E-06              | 0.0           |
| Cs-137                 | 3.8E-02                                 | 3.0E-04                      | 0.0                      | 0.0            | 8.4E-06              | 0.0           |
| C-14                   | 1.0E+00                                 | 0.0                          | 0.0                      | 0.0            | 0.0                  | 7.0E+00       |
| Ar-41                  | 2.5E+01                                 | 0.0                          | 0.0                      | 0.0            | 0.0                  | 0.0           |

Containment can be purged via VV-2 (SLCRS Unfiltered Pathway), CV-2 (SLCRS Filtered Pathway), or PV-1/2 (Gaseous Waste/Process Vent)
 Source Term from BVPS-2UFSAR Table 11.3-2<sup>(3.1.1.3)</sup>

<sup>(3)</sup> See Section 8.1.1.1

ODCM: GASEOUS EFFLUENTS

Page 1 of 1
DISTANCES TO RELEASE POINTS

Beaver

Valley Power Station

# TABLE 2.2-3 DISTANCES OF LIMITING MAXIMUM INDIVIDUAL RECEPTORS TO RELEASE POINTS FOR ANNUAL X/Q VALUES (meters)

| DOWN                      | IWIND | SITE                       | BOUNI                        | DARY*                          | VEGETA<br>GARD                   |                                  | MILK (                      | cow                         | MILK C                            | ОАТ                               | MEAT A                           | NIMAL                            | RESIDI                           | ENT                              |
|---------------------------|-------|----------------------------|------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------------|-----------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| SEC                       | TOR   | GRO                        | OUND                         | ELEV                           | GROUND                           | ELEV                             | GROUND                      | ELEV                        | GROUND                            | ELEV                              | GROUND                           | ELEV                             | GROUND                           | ELEV                             |
|                           |       | (1)                        | (2)                          |                                |                                  |                                  |                             |                             |                                   |                                   |                                  |                                  |                                  |                                  |
| N<br>NNE<br>NE<br>ENE     |       | 670<br>535<br>490<br>490   | 579<br>792<br>442<br>448     | 413<br>632<br>327<br>394       | 2,623<br>2,740<br>724<br>1,674   | 2,423<br>2,461<br>901<br>1,658   | 7,741                       | 7,526                       | 4,651<br>6,276<br>20,760<br>6,824 | 4,418<br>6,033<br>20,545<br>6,671 | 4,152<br>2,848<br>7,741          | 3,919<br>2,605<br>7,526          | 2,527<br>2,639<br>708<br>708     | 2,295<br>2,461<br>790<br>1,562   |
| E<br>ESE<br>SE<br>SSE     |       | 545<br>575<br>575<br>655   | 546<br>607<br>701<br>762     | 551<br>672<br>815<br>912       | 1,979<br>1,577<br>1,835<br>1,738 | 1,922<br>1,619<br>1,961<br>1,933 | 7,065<br><br>5,729<br>5,053 | 6,998<br><br>5,848<br>5,244 | 4,265<br>2,865<br>5,729<br>9,977  | 4,200<br>2,899<br>5,848<br>10,166 | 4,265<br>1,577<br>3,299<br>1,770 | 4,200<br>1,619<br>3,420<br>1,964 | 756<br>1,577<br>1,835<br>1,432   | 1,922<br>1,650<br>1,961<br>1,628 |
| <br>S<br>SSW<br>SW<br>WSW |       | 850<br>975<br>1,435<br>595 | 887<br>1,064<br>1,439<br>561 | 1,054<br>1,226<br>1,574<br>660 | 3,138<br>2,317<br>2,221<br>2,301 | 3,372<br>2,560<br>2,439<br>2,463 | 3,347<br>3,347<br><br>5,182 | 3,539<br>3,590<br><br>5,341 | 5,616<br>2,993                    | 5,859<br>3,210                    | 2,253<br>2,317<br>2,414<br>2,446 | 2,487<br>2,560<br>2,632<br>2,608 | 2,189<br>1,223<br>2,221<br>2,301 | 2,423<br>1,466<br>2,439<br>2,463 |
| W<br>WNW<br>NW<br>NNW     |       | 685<br>810<br>655<br>645   | 640<br>701<br>567<br>558     | 681<br>676<br>482<br>420       | 3,556<br>3,605<br>1,464<br>1,464 | 3,635<br>3,590<br>1,415<br>1,285 | 5,118<br>4,538<br>          | 5,195<br>4,521<br>          | 22,529<br>10,944<br>15,450        | 22,507<br>10,832<br>15,262        | 4,088<br>3,605<br>4,570<br>3,959 | 4,166<br>3,590<br>4,461<br>3,774 | 3,556<br>3,605<br>1,432<br>1,143 | 3,635<br>3,590<br>1,383<br>1,253 |

<sup>\*</sup>Distances for ground releases are measured from the center point between the BV-1 and BV-2 Containment Buildings. Distances for elevated release are measured from the BV-1 Cooling Tower. Elevated release is applicable to PV-1/2. Ground release is applicable to all other release points.

<sup>(1)</sup> TV-2 and CB-2

<sup>(2)</sup> VV-1, CV-1, VV-2, CV-2, DV-2, WV-2

ODCM: GA

### TABLE 2.2-4

### CV-1 AND CV-2 ANNUAL AVERAGE, GROUND LEVEL, X/Q VALUES FOR CONTINUOUS RELEASES, SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E, TABLE 2.2-3), AND SELECTED CONTROL LOCATIONS (1E-7 sec/m<sup>3</sup>)

| ١ |                         |                                  |                                   |                             |                                  |                                  | (                                 | 1E-7 sec                           | c/m )                        | ٠                                 |                               |                                  |                                  |                                     |                                  |                                  |                                  |                                                | SE                        |                                     | B                       |
|---|-------------------------|----------------------------------|-----------------------------------|-----------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------|-----------------------------------|-------------------------------|----------------------------------|----------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------------|---------------------------|-------------------------------------|-------------------------|
| l |                         |                                  | ÍND                               | IVIDU                       | AL REC                           | EPTORS                           |                                   |                                    | D                            | ISTAN                             | CES TO                        | THE (                            | CONTR                            | OL LOC                              | CATION                           | I, IN MI                         | LES                              | ٠                                              | SEOUS                     |                                     | Beaver                  |
|   | DOWN-<br>WIND<br>SECTOR | SITE<br>BOUND<br>-ARY            | VEGE-<br>TABLE<br>GARDEN          | -                           | MILK<br>GOAT                     | MEAT<br>ANIMAL                   | RESI-<br>DENCE                    | 0-<br>0.5                          | 0. <b>5-</b><br>1.0          | 1.0-<br>1.5                       | 1.5-<br>2.0                   | 2.0-<br>2.5                      | 2.5-<br>3.0                      | 3.0-<br>3.5                         | 3.5-<br>4.0                      | 4.0-<br>4.5                      | 4.5-<br>5.0                      |                                                | EFFLUENTS                 |                                     | er Valley               |
|   | N<br>NNE<br>NE<br>ENE   | 125.0<br>50.2<br>102.0<br>85.8   | 12.80<br>6.92<br>47.40<br>12.50   | 1.200                       | 5.360<br>2.040<br>0.265<br>0.124 | 6.27<br>6.42<br>1.20             | 13.50<br>7.16<br>49.10<br>42.20   | 233.0<br>148.0<br>120.0<br>103.0   | 39.5<br>26.8<br>21.6<br>18.4 | 18.70<br>10.80<br>11.60<br>9.55   | 11.80<br>6.62<br>6.99<br>5.70 | 7.68<br>4.60<br>4.81<br>4.14     | 5.82<br>3.44<br>3.55<br>3.04     | 4.240<br>2.690<br>2.370<br>2.340    | 3.480<br>2.190<br>1.910<br>1.880 | 2.660<br>1.830<br>1.450<br>1.260 | 2.280<br>1.560<br>1.230<br>1.060 | AT<br>0-5 MILE DIS                             | TS                        |                                     | ey Power                |
|   | E<br>ESE<br>SE<br>SSE   | 54.5<br>31.1<br>27.8<br>24.1     | 6.16<br>6.92<br>6.70<br>6.68      | 0.807<br><br>0.994<br>1.030 | 1.910<br>3.010<br>0.994<br>0.372 | 1.91<br>6.92<br>2.74<br>6.50     | 32.60<br>6.92<br>6.70<br>9.01     | 89.5<br>59.1<br>65.9<br>67.2       | 15.7<br>10.5<br>12.0<br>12.0 | 6.08<br>5.16<br>5.89<br>5.46      | 3.65<br>3.10<br>3.54<br>3.30  | 2.49<br>1.95<br>2.41<br>1.91     | 1.83<br>1.43<br>1.77<br>1.41     | 1.300<br>1.020<br>1.160<br>0.997    | 1.040<br>0.815<br>0.931<br>0.803 | 0.859<br>0.612<br>0.768<br>0.665 | 0.726<br>0.517<br>0.649<br>0.563 | ATTACHMENT F Page 1 of 7 DISPERSION PARAMETERS |                           |                                     | r Station               |
|   | S<br>SSW<br>SW<br>WSW   | 27.5<br>23.8<br>22.3<br>163.0    | 3.40<br>6.31<br>13.90<br>19.30    | 3.090<br>3.700<br><br>5.720 | 1.740<br>9.050                   | 5.57<br>6.31<br>12.30<br>17.70   | 5.81<br>19.30<br>13.90<br>19.30   | 99.9<br>110.0<br>160.0<br>283.0    | 17.5<br>19.9<br>29.2<br>49.8 | 6.77<br>7.83<br>16.10<br>23.50    | 4.11<br>4.80<br>9.94<br>14.60 | 2.84<br>3.33<br>5.85<br>10.30    | 2.10<br>2.48<br>4.37<br>7.72     | 1.490<br>1.940<br>3.430<br>5.690    | 1.200<br>1.580<br>2.790<br>4.650 | 0.999<br>1.190<br>2.110<br>3.620 | 0.848<br>1.020<br>1.800<br>3.090 | I F<br>ARAMETER                                |                           | -                                   | -                       |
|   | W<br>WNW<br>NW<br>NNW   | 278.0<br>487.0<br>924.0<br>302.0 | 15.70<br>40.70<br>194.00<br>63.00 |                             | 1.810<br>8.660<br>1.720          | 13.00<br>40.70<br>40.50<br>15.40 | 15.70<br>40.70<br>200.00<br>92.30 | 615.0<br>1290.0<br>1710.0<br>547.0 |                              | 49.00<br>92.10<br>123.00<br>40.80 |                               | 15.40<br>40.60<br>55.00<br>17.60 | 11.70<br>31.20<br>42.30<br>13.50 | 9.320<br>25.000<br>34.000<br>10.100 |                                  | 19.400                           |                                  | <b>.</b>                                       | Revision:                 | Unit:<br>1/2                        | Procedure Num           |
|   |                         | 302.0                            | 03.00                             |                             | 1.720                            | 13.40                            | 72.30                             | 34 1.U                             | 60.4                         | 40.00                             | . 20.20                       | 17.00                            | 13.50                            | 10.100                              | 6.50                             | 0.500                            | 3.000                            |                                                | Page Number:<br>78 of 128 | Level Of Use:<br>In-Field Reference | Number:<br>1/2-ODC-2.02 |

|                         |                                 | (IDENT                          |                             | Q VALI                           | 1 AND VV<br>JES FOR (<br>ACHMEN | CONTIN                          | UOUS RE                          | ERAGE,<br>LEASE<br>), AND    | S, SPE                           | CIAL D                         | ISTAN                         |                              | ATION                        | s                                |                                  |                                  |                                                     | ODCM: GA:                 | Title: |                       |
|-------------------------|---------------------------------|---------------------------------|-----------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|------------------------------|----------------------------------|--------------------------------|-------------------------------|------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------|---------------------------|--------|-----------------------|
|                         |                                 | IND                             | IVIDU                       | AL RÉC                           | EPTORS                          |                                 | F                                |                              | STANC                            | ES TO                          | THE C                         | ONTRO                        | LLOC                         | ATION,                           | IN MII                           | ,<br>JES                         |                                                     | GASEOUS                   |        | Beaver                |
|                         |                                 |                                 | 11100                       |                                  | 211010                          | <del> </del>                    |                                  |                              |                                  | 20 10                          | 1120                          | <u> </u>                     | 2200                         | 1111011,                         |                                  |                                  |                                                     |                           |        | ver                   |
| DOWN-<br>WIND<br>SECTOR | SITE<br>BOUND<br>-ARY           | VEGE-<br>TABLE<br>GARDEN        |                             | MILK<br>GOAT                     | MEAT<br>ANIMAL                  | RESI-<br>DENCE                  | 0-<br>0.5                        | 0. <b>5-</b>                 | 1.0-<br>1.5                      | 1.5-<br>2.0                    | 2.0-<br>2.5                   | 2.5-<br>3.0                  | 3.0 <b>-</b><br>3.5          | 3.5-<br>4.0                      | 4.0-<br>4.5                      | 4.5 <b>-</b><br>5.0              |                                                     | EFFLUENTS                 |        | Valley                |
| N<br>NNE<br>NE<br>ENE   | 152.0<br>62.3<br>132.0<br>110.0 | 15.00<br>7.66<br>57.90<br>13.60 | <br>1.240                   | 5.980<br>2.150<br>0.269<br>1.270 | 7.06<br>7.08<br>1.24            | 15.90<br>7.95<br>60.20<br>50.40 | 276.0<br>189.0<br>156.0<br>135.0 | 49.9<br>32.0<br>24.8<br>20.6 | 22.70<br>12.20<br>12.70<br>10.20 | 13.70<br>7.31<br>7.51<br>6.01  | 8.75<br>4.99<br>5.09<br>4.31  | 6.52<br>3.69<br>3.73<br>3.14 | 4.69<br>2.87<br>2.47<br>2.41 | 3.810<br>2.320<br>1.980<br>1.930 | 1.500                            | 2.470<br>1.630<br>1.270<br>1.080 | A<br>0-5 MILE DI                                    | NTS                       |        | ey Power              |
| E<br>ESE<br>SE<br>SSE   | 67.8<br>38.0<br>33.3<br>29.1    | 6.66<br>7.64<br>7.27<br>7.41    | 0.828<br><br>1.030<br>1.080 | 1.990<br>3.200<br>1.030<br>0.382 | 1.99<br>7.64<br>2.88<br>7.19    | 38.80<br>7.64<br>7.27<br>10.10  | 116.0<br>76.7<br>86.2<br>87.0    | 17.7<br>11.9<br>13.5<br>13.7 | 6.57<br>5.59<br>6.37<br>5.98     | 3.86<br>3.29<br>3.75<br>3.53   | 2.61<br>2.05<br>2.53<br>2.02  | 1.90<br>1.49<br>1.84<br>1.48 | 1.34<br>1.05<br>1.20<br>1.04 | 1.070<br>0.842<br>0.960<br>0.833 | 0.883<br>0.630<br>0.790<br>0.688 | 0.774<br>0.531<br>0.666<br>0.531 | ATTACHMENT F Page 2 of 7 MILE DISPERSION PARAMETERS |                           |        | r Station             |
| S<br>SSW<br>SW<br>WSW   | 32.8<br>28.7<br>26.2<br>201.0   | 3.65<br>7.08<br>15.70<br>22.40  | 3.300<br>4.040<br><br>6.230 | 1.850<br>9.980                   | 6.10<br>7.08<br>13.80<br>20.40  | 6.38<br>22.90<br>15.70<br>22.40 | 127.0<br>140.0<br>204.0<br>347.0 | 20.3<br>23.6<br>34.8<br>61.3 | 7.56<br>8.87<br>18.40<br>27.70   | 4.48<br>5.28<br>11.40<br>16.60 | 3.04<br>3.60<br>6.38<br>11.40 | 2.23<br>2.66<br>4.71<br>8.49 | 1.57<br>2.07<br>3.66<br>6.19 | 1.260<br>1.670<br>2.960<br>5.020 | 1.050<br>1.260<br>2.230<br>3.880 | 0.885<br>1.070<br>1.900<br>3.300 | IT F<br>PARAMETER                                   |                           |        |                       |
| W<br>WNW<br>NW          | 345.0<br>598.0<br>1030.0        | 18.00<br>48.60<br>262.00        | 10.600<br>35.000            | 1.920<br>9.520                   | 14.70<br>48.60<br>47.80         | 18.00<br>48.60<br>271.00        | 715.0<br>1410.0<br>1820.0        | 132.0<br>269.0<br>350.0      | 60.30<br>120.00<br>164.00        | 100.00                         |                               | 13.20<br>36.40<br>50.10      | 10.40<br>28.70<br>39.50      |                                  | 21.900                           | 18.800                           | <b>⊗</b>                                            | Revision:                 | Unit:  | Procedure Number:     |
| NNW                     | 345.0                           | 83.40                           |                             | 1.840                            | 18.10                           | 121.00                          | 601.0                            | 114.0                        | 52.80                            | 32.20                          | 21.00                         | 15.80                        | 11.60                        | 9.460                            | 7.360                            | 6.310                            |                                                     | Page Number:<br>79 of 128 | 든 kili | mber:<br>1/2-ODC-2.02 |

# TABLE 2.2-6 PV-1/2 ANNUAL AVERAGE, ELEVATED LEVEL, X/Q VALUES FOR CONTINUOUS RELEASES, SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E, TABLE 2.2-3), AND SELECTED CONTROL LOCATIONS (1E-7 sec/m³)

| TABLE 2.2-6  PV-1/2 ANNUAL AVERAGE, ELEVATED LEVEL, X/Q VALUES FOR CONTINUOUS RELEASES, SPECIAL DISTANCES  TIFIED IN ATTACHMENT E, TABLE 2.2-3), AND SELECTED CONTROL LOCATIONS  (1E-7 sec/m³)  DISTANCES TO THE CONTROL LOCATION, IN MILES | •             |                          | 1.430 6.14 6.890 0.0175 14.5000 6.9800 5.47 3.27 2.69 1.770 1.430 1.290 1.100<br>1.610 0.350 1.61 0.055 0.0069 0.1160 .2300 7.10 5.38 3.68 2.880 2.090 1.880 1.570<br>1.770 0.525 0.0135 0.3310 7.2800 6.02 4.75 3.22 2.620 2.030 1.710 1.100 | 1.240 2.870 2.87 8.300 0.0124 17.1000 7.8600 6.20 3.67 2.83 2.190 1.730 1.280 1.200 | 1.240 2.870 2.87 8.300 0.0124 17.1000 7.8600 6.20 3.67 2.83 2.190 1.730 1.280 1.200 4.570 11.60 11.200 0.0208 12.7000 8.1400 4.78 3.00 2.20 1.360 1.160 0.830 0.737 1.230 1.230 3.05 7.890 0.4770 7.4000 7.5700 4.45 2.79 2.05 1.460 1.180 0.811 0.686 1.160 0.357 7.20 9.770 0.3030 9.4400 6.9300 4.06 2.58 1.89 1.170 0.937 0.646 0.546  PAR A CHARLET STAN STAN STAN STAN STAN STAN STAN STA |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S                                                                                                                                                                                                                                           | IE CONTROL LO |                          | 3.27 2.69 1.77<br>5.38 3.68 2.88                                                                                                                                                                                                              | 3.00 2.20 1.36<br>2.79 2.05 1.46                                                    | 2.11 1.56 1.03<br>1.77 1.57 1.20                                                                                                                                                                                                                                                                                                                                                                |
| TANCE                                                                                                                                                                                                                                       | ES TO TI      |                          | 5.47<br>7.10                                                                                                                                                                                                                                  | 4.78<br>4.45                                                                        | 3.11<br>3.12                                                                                                                                                                                                                                                                                                                                                                                    |
| IAL DIS                                                                                                                                                                                                                                     | STANCI        |                          | 6.9800<br>.2300                                                                                                                                                                                                                               | 8.1400<br>7.5700                                                                    | 4.0300<br>4.9300                                                                                                                                                                                                                                                                                                                                                                                |
| VATED I<br>ES, SPEC<br>3), AND S                                                                                                                                                                                                            | DI            |                          | 14.5000<br>0.1160                                                                                                                                                                                                                             | 12.7000<br>7.4000                                                                   | 9.1000<br>15.9000                                                                                                                                                                                                                                                                                                                                                                               |
| GE, ELE<br>XELEAS<br>BLE 2.2-                                                                                                                                                                                                               |               |                          | 0.0175                                                                                                                                                                                                                                        | 0.0208<br>0.4770                                                                    | 26.1000<br>36.1000                                                                                                                                                                                                                                                                                                                                                                              |
| AVERA<br>NUOUS P<br>T E, TAE                                                                                                                                                                                                                |               |                          | 6.890<br>0.055                                                                                                                                                                                                                                | 11.200<br>7.890                                                                     | 5.820<br>3.900                                                                                                                                                                                                                                                                                                                                                                                  |
| R CONTIN                                                                                                                                                                                                                                    | CEPTORS       |                          | 6.14<br>1.61                                                                                                                                                                                                                                  | 11.60<br>3.05                                                                       | 3.61<br>3.47                                                                                                                                                                                                                                                                                                                                                                                    |
| FO                                                                                                                                                                                                                                          | AL REC        |                          | 1.430<br>0.350                                                                                                                                                                                                                                | 4.570<br>1.230                                                                      | 0.872<br>2.560                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                             | IVIDU         |                          | <br>1.610                                                                                                                                                                                                                                     | <br>1.230                                                                           | 2.140                                                                                                                                                                                                                                                                                                                                                                                           |
| (IDENT                                                                                                                                                                                                                                      | IND           | VEGE-<br>TABLE<br>GARDEN | 6.720<br>6.690<br>.074<br>9.090                                                                                                                                                                                                               | 8.300<br>11.600<br>7.890<br>7.390                                                   | 3.760<br>3.610<br>3.900<br>4.350                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                             |               | SITE<br>BOUND<br>-ARY    | 0.0082<br>0.0280<br>0.0110<br>0.0110                                                                                                                                                                                                          | 0.0360<br>0.0420<br>0.0750<br>0.2060                                                | 5.740<br>7.640<br>6.500<br>0.126                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                             | , -           | DOWN-<br>WIND<br>SECTOR  | N<br>NNE<br>NE<br>ENE                                                                                                                                                                                                                         | E<br>ESE<br>SE<br>SSE                                                               | S<br>SSW<br>SW<br>WSW                                                                                                                                                                                                                                                                                                                                                                           |

### TABLE 2.2-7 TV-2 ANNUAL AVERAGE, GROUND LEVEL, X/Q VALUES FOR CONTINUOUS RELEASES, SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E, TABLE 2.2-3), AND SELECTED CONTROL LOCATIONS (1E-7 sec/m<sup>3</sup>)

|                         |                                  | `                                 |                             | FOI<br>IN ATT.                   | ANNUAL R CONTIN ACHMEN EPTORS    | NUOUS                             | RELEASI                            | OUND L<br>ES, SPE<br>3), AND<br>c/m³) | CIAL D<br>SELEC                    | ISTAN<br>TED C                   | CES<br>ONTRO                     |                                  | •                               | S<br>ATION,                        | IN MII                             | ES                               | ·                                              | ODCM: GASEOUS             | Tide:                               | Beaver           |
|-------------------------|----------------------------------|-----------------------------------|-----------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|---------------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|------------------------------------|------------------------------------|----------------------------------|------------------------------------------------|---------------------------|-------------------------------------|------------------|
| DOWN-<br>WIND<br>SECTOR | SITE<br>BOUND<br>-ARY            | VEGE-<br>TABLE<br>GARDEN          | MILK                        | MILK                             | MEAT<br>ANIMAL                   | RESI-<br>DENCE                    | 0-<br>0.5                          | 0.5 <b>-</b><br>1.0                   | 1.0-<br>1.5                        | 1.5-<br>2.0                      | 2.0-2.5                          | 2.5-<br>3.0                      | 3.0-<br>3.5                     | 3.5-<br>4.0                        | 4.0-<br>4.5                        | 4.5-<br>5.0                      | Q.                                             | S EFFLUENTS               |                                     | ver Valley       |
| N<br>NNE<br>NE<br>ENE   | 105.0<br>102.0<br>96.6<br>84.1   | 14.00<br>7.37<br>51.90<br>13.20   | <br>1.230<br>               | 5.740<br>2.130<br>0.268<br>1.280 | 6.74<br>6.83<br>1.23             | 14.80<br>7.64<br>53.80<br>46.30   | 244.0<br>161.0<br>132.0<br>115.0   | 42.6<br>28.8<br>23.0<br>19.4          | 20.50<br>11.40<br>12.10<br>9.89    | 12.70<br>6.94<br>7.24<br>5.85    | 8.18<br>4.79<br>4.95<br>4.23     | 6.15<br>3.56<br>3.64<br>3.09     | 4.45<br>2.78<br>2.42<br>2.38    | 3.640<br>2.250<br>1.950<br>1.900   | 2.770<br>1.870<br>1.480<br>1.270   | 2.380<br>1.590<br>1.250<br>1.070 | AT<br>0-5 MILE DIS                             | TS                        |                                     | y Power          |
| E<br>ESE<br>SE<br>SSE   | 60.7<br>37.1<br>41.8<br>34.0     | 6.49<br>7.25<br>7.06<br>7.16      | .829<br>1.020<br>1.070      | 3.100<br>1.020                   | 1.98<br>7.25<br>2.85<br>6.96     | 35:70<br>7.25<br>7.06<br>9.69     | 99.2<br>65.8<br>73.5<br>74.2       | 16.6<br>11.1<br>12.6<br>12.7          | 6.32<br>5.36<br>6.12<br>5.71       | 3.75<br>3.19<br>3.64<br>3.41     | 2.55<br>2.00<br>2.47<br>1.97     | 1.87<br>1.46<br>1.81<br>1.45     | 1.32<br>1.03<br>1.18<br>1.02    | 1.060<br>0.829<br>0.945<br>0.818   | 0.871<br>0.621<br>0.779<br>0.676   | 0.735<br>0.524<br>0.658<br>0.572 | ATTACHMENT F Page 4 of 7 DISPERSION PARAMETERS |                           |                                     | Station          |
| S<br>SSW<br>SW<br>WSW   | 32.7<br>29.7<br>24.1<br>159.0    | 3.64<br>6.73<br>14.80<br>20.80    | 3.310<br>3.890<br><br>6.010 | 1.800<br>9.550                   | 6.00<br>6.73<br>13.10<br>19.10   | 6.27<br>20.90<br>14.80<br>20.80   | 109.0<br>120.0<br>174.0<br>301.0   | 18.6<br>21.3<br>31.2<br>53.6          | 7.13<br>8.31<br>17.20<br>25.30     | 4.29<br>5.03<br>10.40<br>15.60   | 2.94<br>3.46<br>6.10<br>10.80    | 2.17<br>2.57<br>4.54<br>8.09     | 1.53<br>2.00<br>3.54<br>5.93    | 1.230<br>1.620<br>2.870<br>4.830   | 1.020<br>1.230<br>2.170<br>3.750   | 0.866<br>1.040<br>1.850<br>3.200 | RAMETERS                                       |                           |                                     |                  |
| W<br>WNW<br>NW<br>NNW   | 264.0<br>404.0<br>735.0<br>247.0 | 16.90<br>44.50<br>216.00<br>71.00 | 10.100<br>32.500<br>        |                                  | 13.90<br>44.50<br>43.90<br>17.00 | 16.90<br>44.50<br>222.00<br>99.40 | 636.0<br>1310.0<br>1720.0<br>557.0 | 111.0<br>218.0<br>279.0<br>924.0      | 53.90<br>104.00<br>140.00<br>45.90 | 33.50<br>65.40<br>88.80<br>28.90 | 16.50<br>44.20<br>60.30<br>19.20 | 12.40<br>33.60<br>45.90<br>14.60 | 9.82<br>26.70<br>36.60<br>10.80 | 8.040<br>22.000<br>30.100<br>8.880 | 6.760<br>15.000<br>20.600<br>6.950 |                                  |                                                |                           | Unit:<br>1/2                        | Procedure Number |
|                         |                                  | 71.00                             |                             |                                  |                                  | 22.10                             | 337.3                              |                                       | ,5.50                              |                                  | 17.20                            | 11.00                            |                                 |                                    |                                    | 2.700                            |                                                | Page Number:<br>81 of 128 | Level Of Use:<br>In-Field Reference | 10 "             |

| Beaver Valley Power Station | Procedure Nu | mber:<br>1/2-ODC-2.02               |
|-----------------------------|--------------|-------------------------------------|
| Title:                      | Unit: 1/2    | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:    | Page Number:<br>82 of 128           |

ATTACHMENT F
Page 5 of 7
0-5 MILE DISPERSION PARAMETERS

**TABLE 2.2-8** 

DV-2 ANNUAL AVERAGE, GROUND LEVEL, X/Q VALUES FOR CONTINUOUS RELEASES, SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E, TABLE 2.2-3), AND SELECTED CONTROL LOCATIONS (1E-7 sec/m³)

Same as Table 2.2-4

| Beaver Valley Power Station | Procedure Nur | nber:<br>/2-ODC-2.02                |
|-----------------------------|---------------|-------------------------------------|
| Title:                      | Unit: 1/2     | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:     | Page Number:<br>83 of 128           |

ATTACHMENT F
Page 6 of 7
0-5 MILE DISPERSION PARAMETERS

**TABLE 2.2-9** 

WV-2 ANNUAL AVERAGE, GROUND LEVEL, X/Q VALUES
FOR CONTINUOUS RELEASES, SPECIAL DISTANCES
(IDENTIFIED IN ATTACHMENT E, TABLE 2.2-3), AND SELECTED CONTROL LOCATIONS
(1E-7 sec/m³)

Same as Table 2.2-4

| Beaver Valley Power Station | iver Valley Power Station  Procedure Number: 1/2-ODC-2.02 |                                  |  |
|-----------------------------|-----------------------------------------------------------|----------------------------------|--|
| Title:                      | Unit: 1/2                                                 | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                                                 | Page Number:<br>84 of 128        |  |

ATTACHMENT F
Page 7 of 7
0-5 MILE DISPERSION PARAMETERS

**TABLE 2.2-10** 

CB-2 ANNUAL AVERAGE, GROUND LEVEL, X/Q VALUES FOR CONTINUOUS RELEASES, SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E, TABLE 2.2-3), AND SELECTED CONTROL LOCATIONS

Same as Table 2.2-7

| Beaver Valley Power Station  Procedure Number: 1/2-ODC-2.02 |                |                                     |
|-------------------------------------------------------------|----------------|-------------------------------------|
| Title:                                                      | Unit:<br>1/2   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS                                     | Revision:<br>2 | Page Number:<br>85 of 128           |

## ATTACHMENT G Page 1 of 2 NOBLE GAS DOSE FACTORS AND DOSE PARAMETERS

TABLE 2.2-11

DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS

|                        |                           |                          | •                        |                                      |
|------------------------|---------------------------|--------------------------|--------------------------|--------------------------------------|
|                        | $K_i$                     | $L_{i}$                  | $M_i$                    | $N_i$                                |
| NUCLIDE <sup>(1)</sup> | TOTAL BODY<br>DOSE FACTOR | SKIN DOSE<br>FACTOR      | GAMMA AIR<br>DOSE FACTOR | BETA AIR DOSE<br>FACTOR              |
|                        | mrem/yr<br>Per<br>uCi/m³  | mrem/yr<br>Per<br>uCi/m³ | mrad/yr<br>Per<br>uCi/m³ | mrad/yr<br>Per<br>uCi/m <sup>3</sup> |
| Kr-83m                 | 7.56E-02                  |                          | 1.93E+01                 | 2.88E+02                             |
| Kr-85m                 | 1.17E+03                  | 1.46E+03                 | 1.23E+03                 | 1.97E+03                             |
| Kr-85                  | 1.61E+01                  | 1.34E+03                 | 1.72E+01                 | 1.95E+03                             |
| Kr-87                  | 5.92E+03                  | 9.73E+03                 | 6.17E+03                 | 1.03E+04                             |
| Kr-88                  | 1.47E+04                  | 2.37E+03                 | 1.52E+04                 | 2.93E+03                             |
| Kr-89                  | 1.66E+04                  | 1.01E+04                 | 1.73E+04                 | 1.06E+04                             |
| Kr-90                  | 1.56E+04                  | 7.29E+03                 | 1.63E+04                 | 7.83E+03                             |
| Xe-131m                | 9.15E+01                  | 4.76E+02                 | 1.56E+02                 | 1.11E+03                             |
| Xe-133m                | 2.51E+02                  | 9.94E+02                 | 3.27E+02                 | 1.48E+03                             |
| Xe-133                 | 2.94E+02                  | 3:06E+02                 | 3.53E+02                 | 1.05E+03                             |
| Xe-135m                | 3.12E+03                  | 7.11E+02                 | 3.36E+03                 | 7.39E+02                             |
| Xe-135                 | 1.81E+03                  | 1.86E+03                 | 1.92E+03                 | 2.46E+03                             |
| Xe-137                 | 1.42E+03                  | 1.22E+04                 | 1.51E+03                 | 1.27E+04                             |
| Xe-138                 | 8.83E+03                  | 4.13E+03                 | 9.21E+03                 | 4.75E+03                             |
| Ar-41                  | 8.84E+03                  | 2.69E+03                 | 9.30E+03                 | 3.28E+03                             |

<sup>(1)</sup> The listed dose factors are for radionuclides that may be detected in gaseous effluents.

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|--------------------------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>86 of 128           |  |

### ATTACHMENT G Page 2 of 2 NOBLE GAS DOSE FACTORS AND DOSE PARAMETERS

#### **TABLE 2.2-12**

### DOSE PARAMETERS FOR FINITE ELEVATED PLUMES

|                        |                        |                                    | *                         |                          |
|------------------------|------------------------|------------------------------------|---------------------------|--------------------------|
|                        | $V_i^{(1)}$            | B <sub>i</sub> <sup>(1), (2)</sup> | $M_i^{(3)}$               | $\mathrm{B_{i}^{(3)}}$   |
| NUCLIDE <sup>(4)</sup> | TOTAL BODY DOSE FACTOR | GAMMA AIR<br>DOSE FACTOR           | TOTAL BODY<br>DOSE FACTOR | GAMMA AIR<br>DOSE FACTOR |
|                        | mrem/yr                | mrad/yr                            | mrem/yr                   | mrad/yr                  |
| •                      | Per                    | Per                                | Per                       | Per                      |
|                        | uCi/sec                | uCi/sec                            | uCi/sec                   | uCi/sec                  |
| Kr-83m                 | 3.19E-10               | 1.75E-8                            | 4.58E-8                   | 3.96E-5                  |
| Kr-85m                 | 7.81E-5                | 1.16E-4                            | 4.70E-4                   | 7.06E-4                  |
| Kr-85                  | 1.55E-6                | 2.35E-6                            | 5.54E-6                   | 8.40E-6                  |
| Kr-87                  | 5.13E-4                | 7.74E-4                            | 1.45E-3                   | 2.19E-3                  |
| Kr-88                  | 1.39E-3                | 2.09E-3                            | 4.09E-3                   | 6.16E-3                  |
| Kr-89                  | 7.99E-4                | 1.20E-3                            | 1.25E-3                   | 1.88E-3                  |
| Xe-131m                | 1.64E-5                | 2.47E-5                            | 1.67E-4                   | 3.09E-4                  |
| Xe-133m                | 1.38E-5                | 2.11E-5                            | 1.32E-4                   | 2.61E-4                  |
| Xe-133                 | 1.05E-5                | 1.56E-4                            | 1.54E-4                   | 2.76E-4                  |
| Xe-135m                | 2.41E-4                | 3.66E-4                            | 6.21E-4                   | 9.50E-4                  |
| Xe-135                 | 1.41E-4                | 2.12E-4                            | 6.96E-4                   | 1.05E-3                  |
| Xe-137                 | 6.00E-5                | 9.05E-5                            | 9.66E-5                   | 1.46E-4                  |
| Xe-138                 | 8.11E-4                | 1.22E-3                            | 2.22E-3                   | 3.34E-3                  |
| Ar-41                  | 1.02E-3                | 1.53E-3                            | 2.68E-3                   | 4.02E-3                  |

V<sub>i</sub> and B<sub>i</sub> values used to implement Modes 1, 2, and 3 of Section 2.2.1 (10CFR20)

B<sub>i</sub> values used to implement Modes 1, 2, 3, and 4 of Section 2.3.1 (10CFR50)

V<sub>i</sub> and B<sub>i</sub> values to implement Mode 4 of Section 2.2.1 (10CFR20) and to implement monitor setpoint determinations of Section 2.1.2 and 2.1.4

<sup>(4)</sup> The listed dose parameters are for radionuclides that may be detected in gaseous effluents.

| Beaver Valley Power Station | ley Power Station  Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|---------------------------------------------------|-------------------------------------|--|
| Title:                      | Unit: 1/2                                         | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     |                                                   | Page Number:<br>87 of 128           |  |

# ATTACHMENT H Page 1 of 1 ORGAN DOSE PARAMETERS

#### 7abla 2 2-1

### P VALUES FOR A CHILD FOR THE BRAVER VALLEY SITE iT

(mrem/yr per mCi/cu meter)

| Maclide              | Bone             | Liver             | T. Body          | Thyroid           | Kidney            | Lang       | GI-FTI     |
|----------------------|------------------|-------------------|------------------|-------------------|-------------------|------------|------------|
| 1 H-3                | 0_00E+00         | 1.122+03          | 1.12E+03         | 1.128+03          | 1.12E+03          | 1.12E+03   | 1.12E+03   |
| 2 P-32               | 2.60E+06         | 1.148+05          | 9.88E+04         | 0.00E+00          | 0.00E+00          | 0.00E+00   | 4.228+04   |
| 3 Cr-51              | 0.00E+00         | 0.008+00          | 1.54E+02         | 8.55E+01          | 2.43E+01          | 1.70E+04   | 1.08E+03   |
| 4 Mn-54              | 0.00E+00         | 4.291+04          | 9.51E+03         | 0.00E+00          | 1.00E+04          | 1.582+06   | 2.29B+04   |
| 5 Fe-59              | 2.07E+04         | 3.341+04          | 1.678+04         | 0.00 <b>E</b> +00 | 0.00E+00          | 1.272+06   | 7.07E+04   |
| 6 Co-57              | 0.00E+00         | 9.038+02          | 1.07E+03         | 0.00R+00          | 0.001100          | 5.07E+05   | 1.321+04   |
| 7 Co-58              | 0.001+00         | 1.77E+03          | 3_16E+03         | 0.001+00          | 0.00E+00          | 1.118+06   | 3.44B+04   |
| 8 Co-50              | 0.00E+00         | 1.31E+04          | 2.26E+04         | 0.00K+00          | 0.00E+00          | 7.07E+06   | 9.62E+04   |
| 9 %n-65              | 4.25E+04         | 1.138+05          | 7.03E+04         | 0.00E+00          | 7.14E+04          | 9.95E+05   | 1.63E+04   |
| 10 Rb-86             | 0.00E+00         | 1.98E+05          | 1.14%+05         | 0.002+00          | 0.00E+00          | 0.002+00   | 7.99E+03   |
| 11 Sr-89             | 5.99E+05         | 0.00 <b>R+0</b> 0 | 1.721+04         | 0.00E+00          | 0.00E+00          | 2.16R+06   | 1.67E+05   |
| 11 ar-03<br>12 Sr-90 | 1.01R+08         | 0.00E+00          | 6.44R+06         | 0.008+00          | 0.00E+00          | 1.488+07   | 3.43E+05   |
| 12 37-30<br>13 Y-91  | 9.14E+05         | 0.00E+00          | 2.44E+04         | 0.002100          | 0.00E+00          | 2.63E+06   | 1.848+05   |
| 13 1-31<br>14 2r-95  | 1.90E+05         | 4.188+04          | 3.70E+04         | 0.00E+00          | 5.968+04          | 2.238+06   | 6.11R+04   |
| 15 Wb-95             | 2.35B+04         | 9.188+03          | 6.55E+03         | 0.002+00          | 8_62E+03          | 6.14B+05   | 3.70E+04   |
| 10 80 30             | 8.000/01         | 0.105.00          | 0.002100         | 0.001.00          | 0.000.00          | 4.110.40   | 4.774.71   |
| 16 Nb-97             | 4.29E-01         | 7.70E-02          | 3.60E-02         | 0.00E+00          | 8.55E-02          | 3.42E+03   | 2.78E+04   |
| 17 Ho-99             | 0.00E+00         | 1.728+02          | 4.268+01         | 0.00E+00          | 3.922+02          | 1.35E+05   | 1.271+05   |
| 18 Tc-99m            | 1.781-03         | 3.48E-03          | 5.77 <b>R-02</b> | 0.00E+00          | 5.07 <b>E-</b> 02 | 9.51B+02   | 4.81E+03   |
| 19 Ru-103            | 2.79 <b>X+03</b> | 0.00E+00          | 1.07E+03         | 0.00E+00          | 7.03E+03          | 6.62E+05   | 4.488+04   |
| 20 Ru-108            | 1.36E+05         | 0.00E+00          | 1.698+04         | 0.002+00          | 1.848+05          | 1.43E+07   | 4.291+05   |
| 21 Ag-110m           | 1_698+04         | 1.148+04          | 9.148+03         | 0.00E+00          | 2_12R+04          | 5.48E+06   | 1.008+05   |
| 22 Sb-124            | 5.748+04         | 7.40E+02          | 2.00E+04         | 1.268+02          | 0_00E+00          | 3.24E+06   | 1.64E+05   |
| 23 Sb-125            | 9.848+04         | 7.59R+02          | 2.07K+04         | 9.10R+01          | 0.00E+00          | 2.32E+06   | 4.03R+04   |
| 24 Te-127m           | 2_49E+04         | 8.558+03          | 3.02E+03         | 6.07E+03          | 6_368+04          | · 1.48E+08 | 7.148+04   |
| 25 Te-129a           | 1.92E+04         | 6.85E+03          | 3.04E+03         | 6.33E+03          | 5.038+04          | 1.76E+06   | 1.828+05   |
| 26 [-13]             | 4.818+04         | 4.81E+04          | 2_738+04         | 1.628+07          | 7.881+04          | 0.008+00   | 2.848+03   |
| 27 I-133             | 1.868+04         | 2.03H+04          | 7.70E+03         | 3.85E+06          | 3_381+04          | 0.00E+00   | 5. 48R+03  |
| 28 Ca-134            | 6.51E+05         | 1.018+06          | 2.258+05         | 0.00E+00          | 3.301+05          | 1.21E+05   | 3.85I+03   |
| 29 Ca-136            | 6.51E+04         | 1.718+05          | 1.168+05         | 0.00E+00          | 9.558+04          | 1.458+04   | 4.18E+03   |
| 30 Ca-137            | 9.078+05         | 8.25R+05          | 1.28E+05         | 0.00E+00          | 2.82E+05          | 1.048+05   | 3.62E+03   |
|                      | 3.7.0.00         |                   |                  |                   | 3.222.70          |            | 3.122.70   |
| 31 Ba-140            | 7.40E+04         | 6.48E+01          | 4.338+03         | 0.00E+00          | 2.11E+01          | 1.748+08   | 1.028+05   |
| 32 La-140            | 6.44B+02         | 2.25E+02          | 7.558+01         | 0.00E+00          | 0.00 <b>E+00</b>  | 1.83E+05   | 2.26E+05   |
| 33 Ce-141            | 3.92E+04         | 1.95E+04          | 2.90E+03         | 0.00E+00          | 8.55E+03          | 5.44E+05   | 5.66E+04   |
| 34 Ce-144            | 6.77E+06         | 2.128+06          | 3.61E+05         | 0.00 <b>k</b> +00 | 1.17E+06          | 1.20E+07   | , 3.89E+05 |
|                      |                  |                   |                  |                   |                   |            |            |

Calculated per ODCH equation 2.2-13

| Beaver Valley Power Station | aver Valley Power Station  Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|-----------------------------------------------------------|-------------------------------------|--|
| Title:                      | Unit: 1/2                                                 | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                                                 | Page Number:<br>88 of 128           |  |

### ATTACHMENT I Page 1 of 1 MODES OF GASEOUS RELEASE

#### **TABLE 2.3-1**

### MODES OF GASEOUS RELEASE FROM BEAVER VALLEY SITE VENTS FOR IMPLEMENTATION OF 10 CFR 20 AND 10 CFR 50

|                                                            | RELEASE                                                        | RELEASE                                             | RELEASE                                                   | RELEASE                                    |
|------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|
| RELEASE POINT                                              | MODE 1                                                         | MODE 2                                              | MODE 3                                                    | MODE 4                                     |
| RP 1; VV-1, Auxiliary<br>Building Vent <sup>(1)</sup>      | Aux. Bldg.<br>Ventilation                                      | Containment<br>Purge <sup>(3)</sup>                 | Same As Mode 1                                            | Same As Mode 1                             |
| RP 2; CV-1, Rx<br>Containment/SLCRS Vent <sup>(1)</sup>    | Leakage Collection<br>Exhaust                                  | Same As Mode 1 and Containment Purge <sup>(3)</sup> |                                                           | Same As Mode 1                             |
| RP 3; PV-1/2, Gaseous<br>Waste/Process Vent <sup>(2)</sup> | Main Cond. Air<br>Ejector, Waste Gas,<br>Containment<br>Vacuum | Same As Mode 1                                      | Same As Mode 1                                            | Same As Mode 1<br>and Containment<br>Purge |
| RP 4, VV-2 SLCRS<br>Unfiltered Pathway <sup>(1)</sup>      | Contiguous Areas                                               | Containment<br>Purge <sup>(3)</sup>                 | Same As Mode 1                                            | Same As Mode 1                             |
| RP 5; CV-2, SLCRS Filtered Pathway <sup>(1)</sup>          | Aux. Bldg.<br>Ventilation                                      | Same As Mode 1                                      | Same As Mode 1<br>and Containment<br>Purge <sup>(3)</sup> | Same As Mode 1                             |
| RP 6; CB-2, Condensate Polishing Bldg Vent <sup>(1)</sup>  | (4)                                                            | (4)                                                 | (4)                                                       | (4)                                        |
| RP 7; WV-2, Waste Gas<br>Storage Vault Vent <sup>(1)</sup> | <b>(4)</b> ·                                                   | (4)                                                 | (4)                                                       | (4)                                        |
| RP 8; DV-2,<br>Decontamination Bldg<br>Vent <sup>(1)</sup> | (4)                                                            | (4)                                                 | (4)                                                       | (4)                                        |
| RP 9; TV-2, Turbine Bldg<br>Vent <sup>(1)</sup>            | (4)                                                            | (4)                                                 | (4)                                                       | ·· <b>(4)</b>                              |

NOTE: For the purpose of implementing 10 CFR 50, batch discharges may use continuous meteorology since short term meteorology is used at the time of the annual report.

- (1) Continuous ground level meteorology is applicable
- (2) Continuous elevated meteorology is applicable
- (3) Mode established by purge from one unit, all other release points remain same as Mode 1
- (4) Not normally a radioactive release point

| Beaver Valley Power Station  Procedure Number: 1/2-ODC-2.02 |                |                                     |
|-------------------------------------------------------------|----------------|-------------------------------------|
| Title:                                                      | Unit:<br>1/2   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS                                     | Revision:<br>2 | Page Number:<br>89 of 128           |

ATTACHMENT J
Page 1 of 19
P&I ORGAN DOSE FACTORS

### Table 2.3-2:

#### R VALUES FOR BEAVER VALLEY SITE

(mrem/yr per uCi/cu meter)

Pathway = Inhalation Age Group = Adult

|     | Buclide | Bone             | Liver             | T. Body           | Thyroid           | Kidney            | Long              | GI-LLI            |
|-----|---------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| . 1 | H-3     | 0.00E+00         | 1.281+03          | 1.262+03          | 1.26E+03          | 1.268+03          | 1.26E+03          | 1.26E+03          |
| 2   | P-32    | 1.32E+06         | 7.71E+04          | 5.01E+04          | 0.00E+00          | 0.00X+00          | 0.002+00          | 8.64E+04          |
| . 3 | Cr-51   | 0.00E+00         | 0_00X+00          | 1.001+02          | 5.958+01          | 2.28K+01          | 1.448+04          | 3.32E+03          |
| 4   | Mn-54   | 0.00E+00         | 3.98X+04          | 6.30E+03          | 0.00E+00          | 9.84 <b>X</b> +03 | 1.40E+06          | 7.74E+04          |
| 5   | Fe-59   | 1.18E+04         | 2.78E+04          | 1.062+04          | .O.00E+00         | 0.00E+00          | 1.028+06          | 1.88E+05          |
| 6   | Co-57   | 0.00E+00         | 6.92X+02          | 6.712+02          | 0.00E+00          | 0.00E+00          | 3.708+05          | 3.14E+04          |
| 7   | Co-58   | 0.00 <b>E+00</b> | 1.58 <b>E</b> +03 | 2.071+03          | 0.00E+00          | 0.00E+00          | 9.28 <b>E+0</b> 5 | 1.06E+05          |
| 8   | Co-60   | 0.002+00         | 1.152+04          | 1.488+04          | 0.00E+00          | 0.00 <b>E+</b> 00 | 5. <b>978+0</b> 6 | 2.85E+05          |
| , 9 | In-65   | 3.248+04         | 1.03E+05          | 4.662+04          | 0.00E+00          | 6.90E+04          | 8.64X+05          | 5.34E+04          |
| 10  | Rb-86   | 0.002+00         | 1.35 <b>X+0</b> 5 | 5.901+04          | 0.00E+00          | 0.00 <b>E+0</b> 0 | 0.00 <b>E+0</b> 0 | 1.66E+04          |
|     | Sr-89   | 3.04E+05         | 0.00R+00          | 8.72E+03          | 0.008+00          | 0.00E+00          | 1.403+06          | 3.50E+05          |
|     | Sr-90   | 9.922+07         | 0.00E+00          | 6.10E+08          | 0.00E+00          | 0.00E+00          | 9.60 <b>X</b> +06 | 7.225+05          |
|     | 7-91 ·  | 4.62E+05         | 0.00E+00          | 1.248+04          | 0.00E+00 ·        | 0.00E+00          | 1.708+06          | 3.85E+05          |
|     | Zr-95   | 1.07E+05         | 3.44B+04          | 2.33E+04          | 0.00E+00          | 5.42B+04          | 1.77B+08          | 1.50B+05          |
| 15  | Nb-95 . | 1.418+04         | 7.82E+03          | 4.218+03          | 0.008+00          | 7.74E+03          | 5.052+05          | 1.04E+05          |
|     | Nb-97   | 2.22E-01         | 5.628-02          | 2.058-02          | 0.00E+00          | 6.54X-02          | 2.40E+03          | 2.42E+02          |
|     | Ho-99   | 0.00E+00         | 1.21E+02          | 2.308+01          | 0.00E+00          | 2.91E+02          | 9.12E+04          | 2.48E+05          |
|     | Tc-99m  | 1.032-03         | 2.91E-03          | 3.701-02          | 0.00E+00          | 4.42 <b>H</b> -02 | 7.64E+02          | 4.16E+03          |
|     | Ru-103  | 1.53E+03         | 0.00 <b>X+0</b> 0 | 8.58 <b>1</b> +02 | 4.002.00          | 5.83 <b>I</b> +03 | 5.05E+05          | 1.10E+05          |
| 20  | Ru-106  | 6.912+04         | 0.002+00          | 8.721+03          | 0.00E+00          | · 1.34X+05        | 9.361+06          | 9.128+05          |
|     | Ag-110m | 1.08E+04         | 1.002+04          | 5.941+03          | 0.008+00          | 1.97E+04          | 4.63E+06          | 3.028+05          |
|     | 8b-124  | 3.12B+04         | 5.89 <b>X+</b> 02 | 1.241+04          | 7.558+01          | 0.001+00          | 2.48E+08          | 4.06E+05          |
|     | Sb-125  | 5.34B+04         | 5.95 <b>X</b> +02 | 1.268+04          | 5.40 <b>8</b> +01 | 0.00 <b>I</b> +00 | 1.74E+08          | 1.01E+05          |
|     | Te-127m | 1.26E+04         | 5.77 <b>3</b> +03 | 1.571+03          | 3.29E+03          | 4.582+04          | 9.60E+05          | 1.50R+05          |
| 25  | Te-129m | 9.768+03         | 4.67X+03          | 1.581+03          | 3.44E+03          | 3.66X+04          | 1.16E+06          | 3.832+05          |
|     | 1-131   | 2.52E+04         | 3.58X+04          |                   | 1.198+07          | 6.13E+04          | 0.008+00          | 8.288+03          |
|     | I-133   | 8.64E+03         | 1.48 <b>X</b> +04 | 4.528+03          | 2.15B+0B          | 2.588+04          | 0.008+00          | 8.88E+03          |
|     | Cs-134  | 3.738+05         | 8.483+05          | 7.282+05          | 0.00E+00          | 2.871+05          | 9.788+04          | 1.048+04          |
|     | Ca-136  | 3.90E+04         | 1.48%+05          | 1.108+05          | 0.00E+00          | 8.58X+04          | 1.20E+04          | 1.178+04          |
| 30  | Ca-137  | 4.78B+05         | 6.21E+05          | 4.281+05          | 0.00E+00          | 2.228+05          | 7.52B+04          | 8.40E+03          |
|     | Ba-140  | 3.908+04         | 4.90 <b>2</b> +01 | 2.571+03          | 0.00E+00          | 1.672+01          | 1.27B+08          | 2.182+05          |
| -   | La-140  | 3.44E+02         | 1.742+02          | 4.581+01          | 0.00E+00          | 0_00K+00          | 1.368+05          | 4.582+05          |
| 33  | Ce-141  | 1.99E+04.        | 1.352+04          | 1.531+03          | 0.00E+00          | 6.26 <b>X+</b> 03 | 3.621+05          | 1.20 <b>2+0</b> 5 |
| 34  | Ce-144  | 3.43E+06         | 1.43E+06          | 1.84E+05          | 6_00E+00          | 8_48R+05          | 7.788+06          | 8.168+05          |

Calculated per OBCH equation 2.3-22

| Beaver Valley Power Station | ey Power Station  Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|--------------------------------------------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2                                     | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                                   | Page Number:<br>90 of 128           |  |

### ATTACHMENT J Page 2 of 19 P&I ORGAN DOSE FACTORS

### R VALUES FOR BEAVER VALLEY SITE

(mrem/yr per uCi/cu meter)

Pathway = Inhalation Age Group = Teen

|    | Muclide | Bone              | Liver             | T. Body           | Thyroid            | Lidney            | Lung              | GI-FTI            |
|----|---------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|
| 1  | H-3     | 0.00E+00          | 1.271+03          | 1.27E+03          | 1.278+03           | 1.27 <b>E</b> +03 | 1.27E+03          | 1.27E+03          |
| 2  | P-32    | 1.89E+06          | 1.10 <b>X</b> +05 | 7.16E+04          | 0.00E+00           | 0:00E+00          | 0.00E+00          | 9.28E+04          |
| 3  | Ce-51   | 0.00E+00          | 0.00 <b>3</b> +00 | 1.35E+02          | 7.50E+01           | 3.072+01          | 2.108+04          | 3.00E+03          |
| 4  | Hn-54   | 0.008+00          | 5.118+04          | 8.40E+03          | 0.00E+00           | 1.272+04          | 1.98E+06          | 6.68B+04          |
| 5  | Pe-59   | 1.598+04          | 3.781+04          | 1.43E+04          | 0.00E+00           | 0.00E+00          | 1.53E+08          | 1.78E+05          |
| -  | Co-57   | 0.00E+00          | 9.448+02          | 9.208+02          | 0.00E+00           | 0.00 <b>2</b> +00 | 5.86E+05          | 3.14B+04          |
| 7  | Co-58   | 0.00E+00          | 2.07E+03          | 2.78E+03          | 0.00E+00           | 0.00E+00          | 1.34E+06          | 9.528+04          |
| 8  | Co-60   | 0.00 <b>E+0</b> 0 | 1.51B+04          | 1.98E+04          | 0.00E+00           | 0.00 <b>E+0</b> 0 | 8.72E+06          | 2.59B+05          |
|    | Zn-65   | 3.86E+04          | 1.348+05          | 6.2 <b>4B</b> +04 | 0.00E+80           | 8.64E+04          | 1.248+06          | 4.86B+04          |
| 10 | Rb-88   | 0.00E+00          | 1.90I+05          | 8.40E+04          | 0.00E+00           | 0.001+00          | 0.002+00          | 1.77E+04          |
| 11 | Sr-89   | 4.34E+05          | 0.00E+00          | 1.258+04          | 0.008+00           | 0.00E+00          | 2.428+06          | 3.71B+05          |
| 12 | Sr-90   | 1.08E+08          | 0.00E+00          | 6.682+06          | 0.00E+00           | 0.001+00          | 1.65E+07          | 7.658+05          |
| 13 | Y-91    | 6.61E+05          | 0.002+00          | 1.77E+04          | ·0.00 <b>1</b> +00 | 0.00E+00          | 2.94E+06          | 4.098+05          |
| 14 | Zr-95   | 1.46E+05          | 4.58E+04          | 3.15E+04          | 0.00E+00           | 8.74E+04          | 2.69E+08          | 1.49B+05          |
| 15 | NB-95   | 1.86E+04          | 1.032+04          | 5.66 <b>E+03</b>  | 0.00E+00           | 1.00E+04          | 7.51 <b>E+</b> 05 | 9.68 <b>E</b> +04 |
| 16 | Bb-97   | 3.14E-01          | 7.78E-02          | 2.84E-02          | 0.00 <b>E</b> +00  | 9.12 <b>E</b> -02 | 3.932+03          | 2.178+03          |
| 17 | Ho-99   | 0.00E+00          | 1.691+02          | 3.22E+01          | 0.00E+00           | 4.118+02          | 1.548+05          | 2.698+05          |
| 18 | Tc-99m  | 1. <b>38E-03</b>  | 3.86B-03          | 4.99E-02          | 0.00E+00           | 5.76E-02          | 1.158+03          | 6.13E+03          |
| 19 | Ru-103  | 2.10E+03          | 0.00E+00          | 8.96X+02          | 0.00E+00           | 7.438+03          | 7.83B+05          | 1.098+05          |
| 20 | Bu-106  | 9.84E+04          | 0.001+00          | 1.248+04          | 0.00E+00           | 1.902+05          | 1.61E+07          | 9.608+05          |
| 21 | Ag-110a | 1.38E+04          | 1.312+04          | 7.99E+03          | 0.00E+00           | 2.508+04          | 6.75 <b>E</b> +06 | 2.738+05          |
| 22 | Sb-124  | 4.30E+04          | 7.94E+02          | 1.68E+04          | 9.768+01           | 0.00X+00          | 3.34E+08          | 3.982+05          |
| 23 | Sb-125  | 7.38E+04          | 8.08X+02          | 1.72B+04          | 7.04E+01           | 0.002+00          | 2.74E+06          | 9.928+04          |
| 24 | Te-127m | 1.80E+04          | 8.16 <b>E</b> +03 | 2.18E+03          | 4.36E+03           | 6.548+04          | 1.66E+06          | 1.591+05          |
| 25 | Te-129m | 1.392+04          | 6.581+03          | 2.258+03          | 4.588+03           | 5.198+04          | 1.98E+06          | 4.05E+05          |
|    | I-131   | 3.54E+04          | 4.91E+04          | 2.648+04          | 1.468+07           | 8.40E+04          | 0.00E+00          | 6.492+03          |
|    | I-133   | 1.22E+04          | 2.058+04          | 6.22 <b>E</b> +03 | 2.92E+06           | 3.59 <b>E</b> +04 | 0. <b>00E+</b> 00 | 1.03 <b>E+84</b>  |
| 28 | Cs-134  | 5.02B+05          | 1.13E+06          | 5.49E+05          | 0.008+00           | 3.752+05          | 1.46E+05          | 9.762+03          |
|    | Ce-136  | 5.15E+04          | 1.94E+05          | 1.37E+05          | 0.00E+00           | 1.10 <b>E+0</b> 5 | 1.78E+04          | 1.09E+04          |
| 30 | Ca-137  | 6.70E+05          | 8.48E+05          | 3.11E+05          | 0.00E+00           | 3.04E+05          | 1.212+05          | 8.482+03          |
| 31 | Ba-140  | 5.47B+04          | 6.70E+01          | 3.528+03          | 0.00E+00           | 2.288+01          | 2.03E+06          | 2.298+05          |
| 32 | La-140  | 4.798+02          | 2.36E+02          | 6.26 <b>X+</b> 01 | 0.00 <b>E</b> +00  | 0.00E+00          | 2.14E+05          | 4.87E+05          |
| 33 | Ce-141  | 2.84E+04          | 1.90E+04          | 2.17E+03          | 0.00E+00           | 8.88E+03          | 6.14E+05          | 1.268+05          |
| 34 | Ce-144  | 4.89E+06          | 2.021+06          | 2.62E+05          | 0.00E+00           | 1.211+06          | 1.34E+07          | 8.64E+05          |

Calculated per ODCH equation 2.3-22

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |  |
|-----------------------------|--------------------------------|----------------------------------|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number: 91 of 128           |  |

ATTACHMENT J
Page 3 of 19
P&I ORGAN DOSE FACTORS

Table 2.3-4

### R VALUES FOR EXAVER VALLEY SITE

(area/yr per uCi/cu meter)

Pathway = Inhalation Age Group = Child

| Baclide    | Bone     | Liver    | T. Body  | Thyroid  | Lidney            | Lung     | GI-ITI   |
|------------|----------|----------|----------|----------|-------------------|----------|----------|
| 1 H-3      | 0.602+00 | 1.12B+03 | 1.128+03 | 1.128+03 | 1.12E+03          | 1.12E+03 | 1.12E+03 |
| 2 P-32     | 2.608+06 | 1.14B+05 | 9.88E+04 | 0.00E+00 | 0.00E+00          | 0.00E+00 | 4.22B+04 |
| 3 Cr-51    | 0.00E+00 | 0.00E+00 | 1.54E+02 | 8.55E+01 | 2.43R+01          | 1.70E+04 | 1.08E+03 |
| 4 Ma-54    | 0.002+00 | 4.29B+04 | 9.51E+03 | 0.00E+00 | 1.00E+04          | 1.58E+06 | 2.29E+04 |
| 5 Pe-59    | 2.07E+04 | 3.34E+04 | 1.678+04 | 0.00E+00 | 0.00 <b>E</b> +00 | 1.27E+08 | 7.07E+04 |
| 6 Co-57    | 0.002+00 | 9.038+02 | 1.078+03 | 0_00E+00 | 0.00E+00          | 5.07E+05 | 1.328+04 |
| 7 Co-58    | 0.00E+00 | 1.778+03 | 3.16E+03 | 0.00E+00 | 0.002+00          | 1.11E+06 | 3.44E+04 |
| 8 Co-60    | 0.002+00 | 1.31E+04 | 2.26E+04 | 0.00E+00 | 0.00E+00          | 7.07E+06 | 9.62E+04 |
| 9 Zn-65    | 4.258+04 | 1.13E+05 | 7.038+04 | 0.00E+00 | 7.14E+04          | 9.95E+05 | 1.63E+04 |
| 10 Rb-86   | 0.00X+00 | 1.98E+05 | 1.14E+05 | 0.00E+00 | 0.00E+00          | 0.002+00 | 7.99E+03 |
| 11 Sr-89   | 5.991+05 | 0.002+00 | 1.728+04 | 0.00E+00 | 0.00 <b>E+0</b> 0 | 2.16R+06 | 1.67E+05 |
| 12 Sr-90   | 1.018+08 | 0.008+00 | 6.448+06 | 0.00E+00 | 0.00E+00          | 1.48E+07 | 3.43E+05 |
| -13 T-91   | 9.148+05 | 0.00E+00 | 2.44E+04 | 0.00E+00 | 0.002+00          | 2.63E+06 | 1.84E+05 |
| 14 Zr-95   | 1.908+05 | 4.188+04 | 3.70E+04 | 0.00E+00 | 5.96E+04          | 2.23E+06 | 8.11E+04 |
| 15 Wb-95   | 2.35E+04 | 9.182+03 | 6.551+03 | 0.00E+00 | 8.62 <b>T+</b> 03 | 8.14E+05 | 3.70E+04 |
| 16 Nb-97   | 4.29E-01 | 7.70E-02 | 3.60E-02 | 0.00E+00 | 8.55 <b>I-</b> 02 | 3.42E+03 | 2.78E+04 |
| 17 Ho-99   | 0.001+00 | 1.728+02 | 4.26B+01 | 0.00E+00 | 3.92 <b>1</b> +02 | 1.358+05 | 1.27E+05 |
| 18 Tc-99m  | 1.78E-03 | 3.48E-03 | 5.77E-02 | 0.00E+00 | 5.07 <b>L-0</b> 2 | 9.518+02 | 4.81E+03 |
| 19 Ru-103  | 2.79E+03 | 0.00E+00 | 1.07E+03 | 0.008+00 | 7.03E+03          | 6.628+05 | 4.488+04 |
| 20 Ru-106  | 1.36E+05 | 0.00E+00 | 1.691+04 | 0.00H+00 | 1.848+05          | 1.438+07 | 4.29X+05 |
| 21 Ag-110m | 1.698+04 | 1.14E+04 | 9.14E+03 | 0.00E+00 | 2.12E+04          | 5.48K+06 | 1.00E+05 |
| 22 Sb-124  | 5.748+04 | 7.40E+02 | 2.00E+04 | 1.26E+02 | 0.00E+00          | 3.241+06 | 1.64E+05 |
| 23 Sb-125  | 9.84E+04 | 7.59E+02 | 2.07E+04 | 9.108+01 | 0.00K+00          | 2.328+06 | 4.03R+04 |
| 24 Te-127m | 2.49E+04 | 8.55E+03 | 3.02E+03 | 6.07E+03 | 6.36K+04          | 1.488+06 | 7.14E+04 |
| 25 Te-129m | 1.92E+04 | 6.85E+03 | 3.041+03 | 6.33E+03 | 5.03E+04          | 1.762+06 | 1.822+05 |
| 26 I-131   | 4.812+04 | 4.81E+04 | 2.73E+04 | 1.62E+07 | 7.88E+04          | 0.008+00 | 2.84E+03 |
| 27 [-133   | 1.668+04 | 2.03B+04 | 7.70E+03 | 3.85E+06 | 3.38E+04          | 0.00E+00 | 5.48E+03 |
| 28 Cs-134  | 6.518+05 | 1.01B+08 |          | 0.008+00 | 3.30K+05          | 1.218+05 | 3.85E+03 |
| 29 Cs-136  | 6.51E+04 | 1.718+05 | 1.16E+05 | 0.00E+00 | 9.55E+04          | 1.458+04 | 4.18E+03 |
| 30 Ca-137  | 9.071+05 | 8.251+05 | 1.288+05 | 0.008+00 | 2.828+05          | 1.048+05 | 3.62E+03 |
| 31 Ba-140  | 7.403+04 | 6.48E+01 | 4.332+03 | 0.00E+00 | 2.11E+01          | 1.748+06 | 1.025+05 |
| 32 La-140  | 6.448+02 | 2.25E+02 | 7.55E+01 | 0.00E+00 | 0.00E+00          | 1.83E+05 | 2.26E+05 |
| 33 Ce-141  | 3.928+04 | 1.95B+04 | 2.90E+03 |          | 8.55E+03          | 5.44E+05 | 5.66E+04 |
| 34 Ce-144  | 6.778+06 | 2.12R+06 | 3.61E+05 | 0.00R+00 | 1.17E+06          | 1.20E+07 | 3.89E+05 |

Calculated per ODCH equation 2.3-22

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |  |
|-----------------------------|--------------------------------|----------------------------------|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>92 of 128        |  |

ATTACHMENT J
Page 4 of 19
P&I ORGAN DOSE FACTORS

Table 2.3-5

#### R VALUES FOR BRAVER VALLEY SITE

(mrem/yr per uCi/cu meter)

Pathway = Inhalation Age Group = Infant

| Buclide          | Bone                           | Liver             | T. Body           | Thyroid           | Lidney            | Lung              | GI-LLI   |
|------------------|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------|
| 1 H-3            | 0.002+00                       | 6.47E+02          | 6.471+02          | 6.47E+02          | 6.47E+02          | 6.47E+02          | 6.47E+02 |
| 2 P-32           | 2.03E+08                       | 1.12E+05          | 7.742+04          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 1.61E+04 |
| 3 Cr-51          | 0.00E+00                       | 0.002+00          | 8.95X+01          | 5.75R+01          | 1.32E+01          | 1.28E+04          | 3.57E+02 |
| 4 Mn-54          | 0.00E+00                       | 2.53R+04          | 4.98E+03          | 0.00E+00          | 4.982+03          | 1.00E+06          | 7.06E+03 |
| 5 Ye-59          | 1.36E+04                       | 2.358+04          | 9.48 <b>X</b> +03 | 0.002+00          | 0.002+00          | 1.01E+06          | 2.48E+04 |
| 6 Co-57          | 0.00E+00                       | 6.51E+02          | 6.41B+02          | 0.00 <b>E+0</b> 0 | 0.002+00          | 3.79E+05          | 4.86E+03 |
| 7 Co-58          | 0.00E+00                       | 1.228+03          | 1.828+03          | 0.00 <b>E+0</b> 0 | 0.00 <b>E</b> +00 | 7.772+05          | 1.11B+04 |
| 8 Ca-60          | 0.00E+00                       | 8.02 <b>E+0</b> 3 | 1.188+04          | 0.00E+00          | 0.002+08          | 4.51X+08          | 3.19B+04 |
| 9 Zn-65          | 1.93E+04                       | 6.26 <b>E+0</b> 4 | 3.11 <b>X+</b> 04 | 0.00E+00          | 3.25E+04          | 6.478+05          | 5.14E+04 |
| 10 Rb-86         | 0.00E+00                       | 1.90E+05          | 8.82E+04          | 0.00E+00          | 0.00 <b>I+0</b> 0 | 0.00E+00          | 3.041+03 |
| 11 Sr-69         | 3.98E+05                       | 0.00E+00          | 1.14E+04          | 0.00 <b>E</b> +00 | 0.00E+00          | 2.03E+06          | 6.40E+04 |
| 12 Sr-90         | 4.098+07                       | 0.008+00          | 2.59E+08          | 0:00 <b>E+0</b> 0 | 0. <b>00E</b> +00 | 1.122+07          | 1.312+05 |
| 13 T-91          | 5.88 <b>I</b> +05              | 0.00B+00          | 1.578+04          | 0.00E+00          | 0.00 <b>X+00</b>  | 2.45E+08          | 7.03E+04 |
| 14 Zr-95         | 1.15 <b>K</b> +05              | 2.798+04          | 2.03 <b>E</b> +04 | 0.001+00          | 3.11 <b>X</b> +04 | 1.752+06          | 2.17E+04 |
| 15 Мъ-95         | 1.578+04                       | 6.438+03          | 3.788+03          | 0.002+00          | 4.72B+03          | 4.798+05          | 1.278+04 |
| 16 Wb-97         | 3.42E-01                       | 7.298-02          | 2.638-02          | 0.00E+00          | 5.70 <b>E-0</b> 2 | 3.322+03          | 2.69E+04 |
| 17 <b>H</b> o-99 | 0.00E+00                       | 1.65E+02          | 3.23E+01          | 0.002+00          | 2.65 <b>X</b> +02 | 1.352+05          | 4.872+04 |
| 18 Tc-99m        | 1.40E-03                       | 2.88E-03          | 3.72 <b>E-0</b> 2 | 0.00E+00          | 3.113-02          | 8.11E+02          | 2.03X+03 |
| 19 Ru-103        | 2.02E+03                       | 0.002+00          | 8.798+02          | 0.002+00          | 4.24 <b>X</b> +03 | 5.52 <b>E</b> +05 | 1.61E+04 |
| 20 Ru-108        | 8.68E+04                       | 0.00E+00          | 1.09E+04          | 0.00E+00          | 1.07E+05          | 1.16E+07          | 1,648+05 |
| 21 Ag-110m       | 9.98E+03                       | 7.22E+03          | 5.00E+03          | 0.008+00          | 1.09R+04          | 3.67E+08          | 3.30E+04 |
| 22 Sb-124        | 3.79B+04                       | 5.56E+02          | 1.208+04          | 1.01E+02          | 0.00 <b>R</b> +00 | 2.65E+06          | 5.91B+04 |
| 23 Sb-125        | 5.17B+04                       | 4.77E+02          | 1.09E+04          | 6.232+01          | 0.00E+00          | 1.64E+08          | 1.47E+04 |
| 24 Te-127m       | 1.67E+04                       | 6.90 <b>X</b> +03 | 2.078+03          | 4.87E+03          | 3.75 <b>E+04</b>  | 1.31E+06          | 2.73E+04 |
| 25 Te-129m       | L.41B+04                       | 6.09K+03          | 2.238+03          | 4.21E+03          | 3.18 <b>E+04</b>  | 1.682+06          | 6.90E+04 |
| 26 I-131         | 3.79E+04                       | 4.448+04          | 1.968+04          | 1.48E+07          | 5.18 <b>E+</b> 04 | 0.008+00          | 1.06E+03 |
| 27 I-133         | 1.32E+04                       | 1.92E+04          | 5.602+03          | 3.56E+06          | 2.24E+04          | 0.00B+00          | 2.16E+03 |
| 28 Ca-134        | 3.982+05                       | 7.032+05          | 7.45B+04          | 0.00 <b>2+00</b>  | 1.90 <b>R</b> +05 | 7.97E+04          | 1.332+03 |
| 29 Cs-136        | 4.83E+04                       | 1.35E+05          | 5.29B+04          | 0.00E+00          | 5.64 <b>E</b> +04 | 1.18 <b>R</b> +04 | 1.43E+03 |
| 30 Ca-137        | 5. <del>1</del> 9 <b>1</b> +05 | 6.12E+05          | 4.558+04          | 0.00E+00          | 1.728+05          | 7.13E+04          | 1.33E+03 |
| 31 Ba-140        | 5.60B+04                       | 5.60E+01          | 2.908+03          | 0.00E+00          | 1.348+01          | 1.60E+08          | 3.84E+04 |
| 32 La-140        | 5.05B+02                       | 2.00E+02          | 5.158+01          | 0,00E+00          | 0.00 <b>B</b> +00 | 1.682+05          | 8.48E+04 |
| 33 Ce-141        | 2.77E+04                       | 1.678+04          | 1.998+03          | 0.00E+00          | 5.25 <b>R</b> +03 | 5.17 <b>x</b> +05 | 2.16E+04 |
| 34 Ce-144        | 3.19E+06                       | 1.211+06          | 1.768+05          | 0.008+00          | 5.38 <b>E</b> +05 | 9.84R+06          | 1.482+05 |

Calculated per ODCH equation 2.3-22

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02      |  |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>93 of 128           |  |  |  |

### ATTACHMENT J Page 5 of 19 P&I ORGAN DOSE FACTORS

#### Table 2.3-6

#### R VALUES FOR BEAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Ground

| Nuclide                | Bone                 | Liver             | T. Body           | Thyroid           | Lidney            | Lung      | ei-lti            |
|------------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-----------|-------------------|
| 1 H-3                  | 0.00E+00             | 0_00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.002+00  | 0.00E+00          |
| 2 P-32                 | 0.00E+00             | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00R+00          | 0.00E+00  | 0.00E+00          |
| 3 Cr-51                | 4.66E+06             | 4.66 <b>E</b> +06 | 4.66E+06          | 4.66K+06          | 4.66E+06          | 4.66E+06  | 4.66E+06          |
| 4 Mn-54                | 1.398+09             | 1.398+09          | 1.39K+09          | 1.39E+09          | 1.39E+09          | 1.398+09  | 1.39K+09          |
| 5 Fe-59                | 2.73E+08             | 2.73E+08          | 2.73E+08          | 2.73E+08          | 2.73K+08          | 2.73B+08  | 2.738+08          |
|                        |                      | <b>,</b>          | 2002-00           | 21.102.10         |                   |           |                   |
| 6 Co-57                | 0.00E+00             | 0.008+00          | 0.00H+00          | 0.00E+00          | 0.00X+00          | 0.00E+00  | 0.00K+00          |
| 7 Co-58                | 3.792+08             | 3.798+08          | 3.798+08          | 3.79K+08          | 3.791+08          | 3.798+08  | 3.79E+08          |
| 8 Co-60                | 2.15E+10             | 2.158+10          | 2.15B+10          | 2.15X+10          | 2.15E+10          | 2.158+10  | 2.15K+10          |
| 9 Zn-65                | 7.47E+08             | 7.478+08          | 7.478+08          | 7.471+08          | 7.478+08          | 7.47E+08  | 7.47E+08          |
| 10 Rb-86               | 8.99E+06             | 8.99E+06          | 8.99E+06          | 8.99E+06          | 8.99E+06          | 8.998+08  | 8.99K+06          |
|                        |                      |                   |                   |                   |                   |           |                   |
| 11 Sr-89               | 2.16E+04             | 2.16E+04          | 2.16E+04          | 2.16E+04          | 2.16E+04          | 2.16E+04  | 2.16E+04          |
| 12 Sr-90               | 0.00 <b>E</b> +00    | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00B+00  | 0.00K+00          |
| 13 Y-91                | 1.07E+06             | 1.071+06          | 1.07E+06          | 1.07E+06          | 1.07E+08          | 1.07B+08  | 1.07E+06          |
| 14 Zr-95               | 2.45K+08             | 2.452+08          | 2.45B+08          | 2.45E+08          | 2.45E+08          | 2.45E+08  | 2.45 <b>X+</b> 08 |
| 15 Nb-95               | 1.375+08             | 1.371+08          | 1.378+08          | 1.37 <b>E+0</b> 8 | 1.37E+08          | 1.378+08  | 1.371408          |
| 16 Hb-97               | 0.00E+00             | 0_00E+00          | 0.00E+00          | 0.008+00          | 0.00E+00          | 0.00R+00  | 0.00R+00          |
| 17 No-99               | 4.00E+06             | 4.00E+06          | 4.00E+06          | 4.00E+06          | 4.00E+06          | 4.00E+06  | 4.00E+06          |
| 18 Tc-99m              | 1.84E+05             | 1.842+05          | 1.848+05          | 1.648+05          | 1.848+05          | 1.848+05  | 1.84K+05          |
| 19 Ru-103              | 1.088+08             | 1.081+08          | 1.081+08          | 1.08#+08          | 1.08E+08          | 1.08E+06  | 1.08E+08          |
| 20 Ru-106              | 4.228+08             | 4.221+08          | 4.228+08          | 4.228+08          | 4.22B+08          | 4.22E+08  | 4.228+08          |
| 24 25 244              | 1.255.00             | 1.404.40          | 1.525.00          | 1.450.40          |                   | 11.020.70 |                   |
| 21 Ag-110m             | 3.44E+09             | 3.44E+09          | 3.44E+09          | 3.44R+09          | 3.44 <b>X</b> +09 | 3.448+09  | 3.44E+09          |
| 22 Sb-124              | 0.00E+00             | 0.00E+00          | 0.00E+00          | 0.002+00          | 0.00E+08          | 0.008+00  | 0.00K+00          |
| 23 Sb-125              | 0.00E+00             | 0.00E+00          | 0.00E+00          | 0.008+00          | 0.002+00          | 0.00E+00  | 0.00E+00          |
| 24 Te-127m             | 9.17E+04             | 9.17E+04          | 9.17B+04          | 9.17E+04          | 9.17E+04          | 9.178+04  | 9.178+04          |
| 25 Te-129m             | 1.98 <b>E</b> +07    | 1.988+07          | 1.988+07          | 1.968+07          | 1.98E+07          | 1.96R+07. | 1.98E+07          |
| 26 I-131               | 1 900.07             | 1.72E+07          | 1.72E+07          | 1.728+07          | 1.72E+07          | 1.728+07  | 1.72R+07          |
| 26 1-131<br>27 I-133   | 1.72E+07<br>2.45E+06 | 2.45E+06          | 2.458+06          | 2.45E+08          | 2.45E+06          | 2.45R+08  | 2.45E+06          |
| 27 1-133<br>28 Ca-134  | 6.86E+09             | 6.86E+09          | 6.86E+09          | 6.86E+09          | 6.86E+09          | 6.86E+09  | 6.86E+09          |
| 20 Ca-134<br>29 Ca-136 | 1.518+08             | 1.51K+08          | 1.518+08          | 1.518+08          | 1.51E+08          | 1.518+08  | 1.51E+08          |
|                        |                      |                   |                   |                   |                   |           | 1.038+10          |
| 30 Cs-137              | 1.03E+10             | 1.032+10          | 1.032+10          | 1.038+10          | 1.03E+10          | 1.03E+10  | 1.038710          |
| 31 Ba-140              | 2.058+07             | 2.05X+07          | 2.05 <b>E</b> +07 | 2.05E+07          | 2.05E+07          | 2.05E+07  | 2.051+07          |
| 32 La-140              | 1.928+07             | 1.92E+07          | 1.928+07          | 1.928+07          | 1.928+07          | 1.928+07  | 1.92E+07          |
| 33 Ce-141              | 1.378+07             | 1.378+07          | 1.378+07          | 1.37E+07          | 1.371+07          | 1.378+07  | 1.37E+07          |
| 34 Ce-144              | 6.962+07             | 6.96E+07          | 6.96E+07          | 6.96E+07          | 6.96E+07          | 6.96E+07  | 6.968+07          |
|                        |                      |                   |                   |                   |                   |           |                   |

Calculated per ODCM equation 2.3-23

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |  |
|-----------------------------|-----------------------------------|-------------------------------------|--|
| Title:                      | Unit: 1/2                         | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                         | Page Number:<br>94 of 128           |  |

### ATTACHMENT J Page 6 of 19 P&I ORGAN DOSE FACTORS

Table 2.3-7

#### R VALUES FOR BEAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Vegetation Age Group = Adult

| Nuclide    | Bone              | Liver              | 1. Body           | Thyroid           | Lidney            | Lung              | GI-LLI            |
|------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 1 H-3      | 0.00E+00          | 2.26K+03           | 2.26E+03          | 2.26E+03          | 2.26E+03          | 2.26E+03          | 2.26E+03          |
| 2 P-32     | 1.40E+09          | 8.748+07           | 5.43K+07          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 1.588+08          |
| 3 Cr-51    | 0.00E+00          | 0.00E+00           | 4.641+04          | 2.788+04          | 1.028+04          | 6.16E+04          | 1.171+07          |
| 4 Mm-54    | 0.00E+00          | 3.132+08           | 5.97E+07          | 0.00E+00          | 9.31E+07          | 0.00E+00          | 9.59E+08          |
| 5 Fe-59    | 1.26E+08          | 2.96E+08           | 1.14E+08          | 0.002+00          | 0.00E+00          | 8.288+07          | 9.685+08          |
| 6 Co-57    | 0.00R+00          | 1.17E+07           | 1.95K+07          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 2.97 <b>X</b> +08 |
| 7 Co-58    | 0.00E+00          | 3.07E+07           | 6.89R+07          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 6.23R+08          |
| 8 Co-60    | 0.00E+00          | 1.67E+08           | 3.69R+08          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 3.14R+09          |
| 9 Zn-65    | 3.17E+08          | 1.01E+09           | 4.562+08          | 0.008+00          | 6.75E+08          | 0.008+00          | 6.36K+08          |
| 10 Rb-86   | 0.00E+00          | 2.19E+08           | 1.02E+08          | 0.00E+00          | 0.00B+00          | 0.008+00          | 4.33B+07          |
| 11 Sr-89   | 9.97 <b>E+</b> 09 | 0.00E+00           | 2.86R+08          | 0_008+00          | 0.00R+00          | 0.00K+00          | 1.608+09          |
| 12 Sr-90   | 6.05E+11          | 0.00E+00           | 1.488+11          | 0.008+00          | 0.00E+00          | 0.00B+00          | 1.758+10          |
| 13 Y-91    | 5.11E+06          | 0.00E+00           | 1.378+05          | 0.002+00          | 0.00E+00          | 0.00E+00          | 2.81E+09          |
| 14 Zr-95   | 1.17E+06          | 3.77E+05           | 2.55E+05          | 0.00E+00          | 5.91R+05          | 0.00E+00          | 1_198+09          |
| 15 Mb-95   | 1.42B+05          | 7.928+04           | 4.26E+04          | 0.00R+00          | 7.83E+04          | 0.00E+00          | 4.81E+08          |
|            |                   |                    |                   |                   |                   |                   |                   |
| 16 Wb-97   | 2.16B-06          | 5.468-07           | 1.991-07          | 0.00B+00          | 6.37B-07          | 0.00 <b>B</b> +00 | 2.02 <b>E</b> -03 |
| 17 Mo-99   | 0.00 <b>B+0</b> 0 | 6.158+06           | 1.171+06          | 0.00E+00          | 1.398+07          | 0.00E+00          | 1.43E+07          |
| 18 Tc-99m  | 3.10E+00          | 8.77E+00           | 1.12E+02          | 0.00 <b>R</b> +00 | 1.33E+02          | 4.30E+00          | 5.19 <b>x+0</b> 3 |
| 19 Ru-103  | 4.77E+06          | 0.00E+00           | 2.063+06          | 0.008+00          | 1.82E+07          | 0.00E+00          | 5.578+08          |
| 20 Ru-108  | 1.93E+08          | 0.00 <b>2</b> +00. | 2.441+07          | 0.00E+00          | 3.728+08          | 0.008+00          | 1.25K+10          |
| 21 Ag-110m | 1.05B+07          | 9.752+06           | 5.791+06          | 0.00E+00          | 1.925+07          | 0.008+00          | 3.98E+09          |
| 22 Sb-124  | 1.84E+08          | 1.96 <b>R</b> +06  | 4.11E+07          | 2.51E+05          | 0.00E+00          | 8.07B+07          | 2.94E+09          |
| 23 Sb-125  | 1.37E+08          | 1.53E+06           | 3.25K+07          | 1.39E+05          | 0.00E+00          | 1.058+08          | 1.50E+09          |
| 24 Te-127m | 3.43 <b>E+</b> 08 | 1.252+08           | 4.261+07          | 8.92 <b>E+07</b>  | 1.428+09          | 0.00B+00          | 1.17E+09          |
| 25 Te-129m | 2.51E+08          | 9.38E+07           | 3.981+07          | 8.642+07          | 1.05 <b>E</b> +09 | 0.00 <b>E</b> +00 | 1.271+09          |
| 26 1-131   | 8.08E+07          | 1.16H+08           | 6.621+07          | 3.79K+10          | 1.98E+08          | 0.00R+00          | 3.058+07          |
| 27 I-133   | 2.09E+06          | 3.63E+06           | 1.11E+06          | 5.338+08          | 6.33E+06          | 0.00E+00          | 3.26E+08          |
| 28 Cs-134  | 4.678+09          | 1.118+10           | 9.088+09          | 0.00E+00          | 3.59E+09          | 1.198+09          | 1.94E+08          |
| 29 Cs-136  | 4.27E+07          | 1.69E+08           | 1.21E+08          | 0.00E+00          | 9.388+07          | 1.298+07          | 1.91E+07          |
| 30 Cs-137  | 6.36E+09          | 8.708+09           | 5.701+09          | 0.008+00          | 2.95E+09          | 9.818+08          | 1.68E+08          |
| 31 Ba-140  | 1.29E+08          | 1.612+05           | 8.42 <b>X</b> +08 | 0.001+00          | 5.49E+04          | 9.24B+04          | 2.65E+08          |
| 32 La-140  | 1.98E+03          | 9.978+02           | 2.63E+02          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 7.32E+07          |
| 33 Ce-141  | 1.97E+05          | 1.33E+05           | 1.513+04          | 0.00E+00          | 6.19 <b>X</b> +04 | 0.00E+00          | 5.10E+08          |
| 34 Ce-144  | 3.29E+07          | 1.38E+07           | 1.778+06          | 0.00E+00          | 8.16E+06          | 0.00E+00          | 1.11E+10          |
|            |                   |                    |                   |                   |                   |                   |                   |

All nuclides (except H-3) calculated per ODCH equation 2.3-26 H-3 calculated per ODCH equation 2.3-29

| Beaver Valley Power Station |           | Procedure Number:<br>1/2-ODC-2.02   |  |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number: 95 of 128              |  |  |  |

### ATTACHMENT J Page 7 of 19 P&I ORGAN DOSE FACTORS

### Table 2.3-8 R VALUES FOR BEAVER VALLET SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Vegetation Age Group = Teen

|    | Muclide | Bone              | Liver             | T. Body           | Thyroid           | Kidney            | Lung             | GI-LLI            |
|----|---------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|
| 1  | H-3     | 0.008+00          | 2.59E+03          | 2.59E+03          | 2.59E+03          | 2.591+03          | 2.59B+03         | 2.59E+03          |
| 2  | P-32    | 1.61B+09          | 9.981+07          | 6.24E+07          | 0.00K+00          | 00+E00.0          | 0.00E+00         | 1.35 <b>X+0</b> 8 |
| 3  | Cr-51   | 0.00E+00          | 0.00E+00          | 6.17E+04          | 3.43E+04          | 1.351+04          | 8.818+04         | 1.04E+07          |
| 4  | Un-54   | 0.00E+00          | 4.54X+08          | 9.01E+07          | 0.00E+00          | 1.36%+06          | 0.00E+00         | 9.32K+08          |
| 5  | Fe-59   | 1.798+08          | 4.19E+08          | 1.62E+08          | 0.00 <b>X+</b> 00 | 0.001+00          | 1.328+08         | 9.90E+08          |
| 6  | Co-57   | 0.00E+00          | 1.792+07          | 3.00E+07          | 0.0011+00         | 0.00E+00          | 0.00E+00         | 3.33R+08          |
|    | Co-58   | 0.00 <b>2+6</b> 0 | 4.368+07          | 1.00 <b>E</b> +08 | 0.00E+00          | 0.00 <b>E+00</b>  | 0.00E+00         | 6.01 <b>E+0</b> 8 |
| 8  | Co-60   | 0.00E+00          | 2.49 <b>E+</b> 08 | 5.60 <b>E</b> +08 | 0.00 <b>K+</b> 00 | 0.00E+00          | 0.00X+00         | 3.24 <b>E</b> +09 |
|    | Zn-65   | 4.24B+08          | 1.472+09          | 6.872+08          | 0.00 <b>K</b> +00 | 9. <b>42E</b> +08 | 0.00 <b>E+00</b> | 6.23 <b>X+</b> 08 |
| 10 | Rb-86   | 0.00E+00          | 2.748+08          | 1.292+08          | 0.00E+00          | 0.00X+00          | 0.00E+00         | 4.05I+07          |
| 11 | Sr-89   | 1.51E+10          | 0.00E+00          | 4.34E+08          | 0.001+00          | ·0.00E+00         | 0.008+00         | 1.60X+09          |
| 12 | Sr-90   | 7.51E+11          | 0.00 <b>2+0</b> 0 | 1.85K+11          | 0.00E+00          | 0.00X+00          | 0.00E+00         | 2.118+10          |
|    | Y-91    | 7.84E+06          | 0.00E+00          | 2.10E+05          | 0.002+00          | 0.00 <b>E+</b> 00 | 0.00E+00         | 3.21E+09          |
| 14 | Zr-95   | 1.72E+06          | 5.43 <b>E</b> +05 | 3.74E+05          | 0.00E+00          | 7.98 <b>X</b> +05 | 0.00E+00         | 1.251+09          |
| 15 | Пъ-95   | 1.92E+05          | 1.072+05          | 5.87E+04          | 0.00E+00          | 1.031+05          | 0.00E+00         | 4.56E+08          |
|    | Иь-97   | 2.00E-06          | 4.97E-07          | 1.81E-07          | 0.002+00          | 5.81E-07          | 0.00E+00         | 1.192-02          |
|    | No-99   | 0.00E+00          | 5. <b>65E</b> +06 | 1.08 <b>R+</b> 06 | 0.00E+00          | 1.291+07          | 0.00 <b>E+00</b> | 1.013+07          |
| 18 | Tc-99a  | 2.74E+00          | 7.64E+00          | 9.90%+01          | 0.00E+00          | 1.14B+02          | 4.24B+00         | 5.028+03          |
|    | Ru-103  | 6.82E+08          | 0.00E+00          | 2.92E+06          | 0.00 <b>E+</b> 00 | 2.41E+07          | 0.008+00         | 5.70 <b>1</b> +08 |
| 20 | Ru-106  | 2.38%+08          | 0.00X+00          | 3.90E+07          | 0.00 <b>E</b> +00 | 5.97 <b>R</b> +08 | 0.00E+00         | 1.482+10          |
|    | Ag-110a | 1.52E+07          | 1.438+07          | 8.728+06          | 0.00R+00          | 2.748+07          | 0.00E+00         | 4.03E+09          |
|    | Sb-124  | 1.54E+08          | 2.842+06          | 6.02 <b>E+</b> 07 | 3.50 <b>E</b> +05 | 0.00K+00          | 1.35E+08         | 3.118+09          |
|    | Sb-125  | 2.14E+08          | 2.34B+06          | 5.01E+07          | 2.05 <b>X+</b> 05 | 0.008+00          | 1.88E+08         | 1.67E+09          |
|    | Te-127a | 5.52B+08          | 1.968+08          | 6.56E+07          | 1.315+08          | 2.24E+09          | 0.00E+00         | 1.37E+09          |
| 25 | Te-129m | 3.62E+08          | 1.348+08          | 5.738+07          | 1.178+08          | 1.518+09          | 0.00E+00         | 1.36E+09          |
| 26 | I-131   | 7_69R+07          | 1.08R+08          | 5.78R+07          | 3.14K+10          | 1.858+08          | 0.008+00         | 2.13E+07          |
| 27 | I-133   | 1.948+08          | 3.29E+06          | 1.00H+06          | 4.59K+08          | 5.77E+06          | 0.00E+00         | 2.49R+06          |
|    | Ca-134  | 7.10E+09          | 1.67B+10          | 7.75R+09          | 0.008+00          | 5.31E+09          | 2.03E+09         | 2.08K+08          |
|    | Ca-136  | 4.38E+07          | 1.72E+08          | 1.16E+08          | 0.00E+00          | 9.378+07          | 1.488+07         | 1.398+07          |
|    | Cs-137  | 1_01E+10          | 1.35E+10          | 4.69E+09          | 0.00E+00          | 4.598+09          | 1.781+09         | 1.92K+08          |
|    |         |                   |                   |                   |                   |                   |                  |                   |
|    | Ba-140  | 1.38E+08          | 1.698+05          | 8.90E+06          | 0.00E+00          | 5.748+04          | 1.148+05         | 2.13E+08          |
|    | La-140  | 1.818+03          | 8.86E+02          | 2.368+02          | 0.00E+00          | 0.00X+00          | 0.00E+00         | 5.10E+07          |
|    | Co-141  | 2.83E+05          | 1.89E+05          | 2.17B+04          | 0.00E+00          | 8.908+04          | 0.00E+00         | 5.412+08          |
| 34 | Ce-144  | 5.27E+07          | 2.18E+07          | 2.83E+06          | 0.00E+00          | 1.302+07          | 0.001+00         | 1.33E+10          |

All nuclides (except H-3) calculated per ODCM equation 2.3-26 H-3 calculated per ODCM equation 2.3-29

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|--------------------------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>96 of 128           |  |

### ATTACHMENT J Page 8 of 19 P&I ORGAN DOSE FACTORS

### Table 2.3-9 B VALUES FOR BEAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Vegetation Age Group = Child

| Buclide    | Bone              | Liver             | T. Body           | Thyroid           | Lidney            | Lung              | GI-FFI   |
|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------|
| 1 H-3      | 0.00 <b>E</b> +00 | 4.01E+03          | 4.01R+03          | 4.01E+03          | 4.01E+03          | 4.01E+03          | 4.01E+03 |
| 2 P-32     | 3.37E+09          | 1.58E+08          | 1.30E+08          | 0.00E+00          | 0.008+00          | 0.00E+00          | 9.32E+07 |
| 3 Cr-51    | 0.002+00          | 0.00E+00          | 1.17E+05          | 6.50E+04          | 1.788+04          | 1.19R+05          | 6.21E+06 |
| 4 Mn-54    | 0.001+00          | 6.65E+08          | 1.77E+08          | 0.00E+00          | 1.861+08          | 0.00E+00          | 5.58E+08 |
| 5 Fe-59    | 3.98E+08          | 6.43E+08          | 3.20E+08          | 0.00X+00          | 0.00E+00          | 1.87E+08          | 8.70E+08 |
| 6 Co-57    | 0.00E+00          | 2.99 <b>E</b> +07 | 6.04E+07          | 0.00E+00          | 0.00E+00          | 0.001+00          | 2.45E+08 |
| 7 Co-58    | 0.00E+00          | 6.44E+07          | 1.97E+08          | 0.00E+00          | 0.008+00          | 0.002+60          | 3.76E+08 |
| 8 Co-60    | 0.00 <b>E+00</b>  | 3.78 <b>1</b> +08 | 1.12E+09          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 2.10E+09 |
| 9 Zn-65    | 8.13 <b>E+08</b>  | 2.17 <b>E+09</b>  | 1.35E+09          | 0.00E+00          | 1.362+09          | 0.00E+00          | 3.80E+08 |
| 10 Rb-86   | 0.00E+00          | 4.528+08          | 2.78E+0B          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 2.91E+07 |
| 11 Sr-89   | 3.60E+10          | 0.00 <b>X+0</b> 0 | 1.032+09          | 0.00E+00          | 0.00 <b>X+</b> 00 | 0.00E+00          | 1.398+09 |
| 12 Sr-90   | 1.24E+12          | 0.002+00          | 3.158+11          | 0.00 <b>5</b> +00 | 0.00E+00          | 0.00E+00          | 1.67E+10 |
| 13 Y-91    | 1.86E+07          | 0.00 <b>E+0</b> 0 | 4.99E+05          | 0.002+00          | 0.005+00          | 0.00E+00          | 2.48E+09 |
| 14 Zr-95   | 3.86 <b>K+0</b> 6 | 8.48 <b>X+</b> 05 | 7.558+05          | 0.00E+00          | 1.21E+06          | 0.00E+00          | 8.85K+08 |
| 15 Nb-95   | 4.11E+05          | 1.60E+05          | 1.14E+05          | 0.00E+00          | 1.508+05          | 0.00E+00          | 2.96E+08 |
| 16 Nb-97   | 3.65%-06          | 6.59K-07          | 3.08E-07          | 0.00E+00          | 7:31B-07          | 0.00B+00          | 2.03E-01 |
| 17 No-99   | 0.00 <b>E+0</b> 0 | 7.71 <b>E+</b> 06 | 1.91 <b>E+</b> 06 | 0.00E+00          | 1.65E+07          | 0.00E+00          | 6.382+06 |
| 18 Tc-99m  | 4.718+00          | 9.248+00          | 1.53B+02          | 0.00 <b>E</b> +00 | 1.34E+02          | 4.69B+00          | 5.26E+03 |
| 19 Bu-103  | 1.53 <b>E</b> +07 | 0.00 <b>E+</b> 00 | 5.90 <b>E+06</b>  | 0.002+00          | 3.86 <b>E</b> +07 | 0.00E+00          | 3.97E+08 |
| 20 Ru-106  | 7.45E+08          | 0.002+00          | 9.302+07          | 0.00E+00          | 1.01E+09          | 0.00E+00          | 1.16E+10 |
| 21 Ag-110m | 3.212+07          | 2.17R+07          | 1.738+07          | 0.00E+00          | 4.04E+07          | 0.00E+00          | 2.58E+09 |
| 22 Sb-124  | 3.52 <b>K+0</b> 8 | 4.57E+08          | 1.23E+08          | 7.772+05          | 0.00E+00          | 1.95E+08          | 2.20E+09 |
| 23 Sb-125  | 4.99 <b>K</b> +08 | 3.85E+06          | 1.05E+08          | 4.63 <b>X</b> +05 | 0.00E+00          | 2.78E+08          | 1.198+09 |
| 24 Te-127m | 1.32E+09          | 3.56E+08          | 1.57E+08          | 3.16E+08          | 3.778+09          | 0.002+00          | 1.07E+09 |
| 25 Te-129m | 8.418+08          | 2.35E+08          | 1.312+08          | 2.718+08          | - 2.478+09        | 0.002+00          | 1.03E+09 |
| 26 I-131   | 1.438+08          | 1.44E+08          | 8.178+07          | 4.76E+10          | 2.368+08          | 0.00E+00          | 1.28E+07 |
| 27 I-133   | 3. <b>53E+06</b>  | 4.378+05          | 1.65E+06          | 8.12E+08          | 7.288+06          | 0.00E+00          | 1.78E+06 |
| 28 Ca-134  | 1.60 <b>R</b> +10 | 2.63E+10          | 5.55 <b>R+09</b>  | 0.00E+00          | 8.15E+09          | 2.93E+09          | 1.428+08 |
| 29 Ca-136  | 8.24E+07          | 2.27K+08          | 1.47E+08          | 0.00 <b>5</b> +00 | 1.21E+08          | 1.80E+07          | 7.968+06 |
| 30 Ca-137  | 2.39E+10          | 2.29 <b>X</b> +10 | 3.388+09          | 0.002+00          | 7.46E+09          | 2.68E+09          | 1.43E+08 |
| 31 Ba-140  | 2.77 <b>E+0</b> 8 | 2.421+07          | 1.628+07          | 0.00E+09          | 7.89B+04          | 1.452+05          | 1.408+08 |
| 32 La-140  | 3.25 <b>E+</b> 03 | 1.13 <b>E+</b> 03 | 3.83 <b>R</b> +02 | 0.00E+00          | 0.00E+00          | 0.00E+00          | 3.162+07 |
| 33 Ce-141  | 8.56 <b>E+0</b> 5 | 3.27E+05          | 4.868+05          | 9.00E+00          | 1.43B+05          | 0.002+00          | 4.08E+08 |
| 34 Ce-144  | 1.272+08          | 3.98 <b>I+</b> 07 | 6.78 <b>I+</b> 06 | 0.00E+00          | 2.218+07          | 0.00 <b>2</b> +00 | 1.04E+10 |

All nuclides (except H-3) calculated per ODCH equation 2.3-26 H-3 calculated per ODCH equation 2.3-29

| Beaver Valley Power Station | 1         | Procedure Number: 1/2-ODC-2.02      |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>97 of 128           |  |  |

### ATTACHMENT J Page 9 of 19 P&I ORGAN DOSE FACTORS

#### Table 2.3-10

#### R VALUES FOR BRAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Meat Age Group = Adult

|    | Nuclide | Bone             | Liver             | 1. Body           | Thyroid           | Eidney               | Lung              | GI-TFI            |
|----|---------|------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|
| 1  | H-3     | 0.00E+00         | 3.25E+02          | 3.258+02          | 3.25E+02          | 3.251+02             | 3.251+02          | 3.25 <b>1</b> +02 |
| 2  | P-32    | 3.958+09         | 2.46B+08          | 1.53E+08          | 0.00E+00          | 0.00 <b>x+</b> 00    | 0.00E+00          | 4.44X+08          |
| 3  | Cr-51   | 0.00E+00         | 0.00E+00          | 5.86E+03          | 3.50E+03          | 1.298+03             | 7.78E+03          | 1.471+06          |
| 4  | Hn-54   | 0.00E+00         | 6.49 <b>E+06</b>  | 1.24E+06          | 0.00E+00          | 1.932+06             | 0.00E+00          | 1.992+07          |
| 5  | Te-59   | 2.14B+08         | 5.04E+08          | 1.9 <b>3E</b> +08 | 0.00E+00          | 0.00E+00             | 1.418+08          | 1.681+09          |
| 8  | Co-57   | 0.00E+00         | 4.01E+08          | 6.66 <b>E</b> +06 | 0.00E+00          | 0.00 <b>X</b> +00    | 0.00 <b>E+0</b> 0 | 1.028+08          |
| 7  | Co-58   | 0.008+00         | 1.42E+07          | 3.18B+07          | 0.00E+00          | 0.00 <b>E</b> +00    | 0.00E+00          | 2.87X+08          |
| 8  | Co-60   | 0.00E+00         | 5.12E+07          | 1.13E+08          | 0.00B+00          | 0.00E+00             | 0.00E+00          | 9.61 <b>E</b> +08 |
|    | Zn-65   | 2.548+08         | 8.09 <b>E+08</b>  | 3.66B+08          | 0.00E+00          | 5.41B+08             | 0.00K+00          | 5.10 <b>1</b> +08 |
| 10 | Rb-86   | 0.00E+00         | 4.118+08          | 1.92 <b>E+06</b>  | 0.00E+00          | 0.00 <b>E+0</b> 0    | 0.00E+00          | 8.11 <b>X+</b> 07 |
|    | Sr-89   | 2.41E+08         | 0.00 <b>X+</b> 00 | 6.928+06          | 0.00E+00          | 0.00E+00             | 0.002+00          | 3.878+07          |
| 12 | Sr-90   | 8.418+09         | 0.00E+00          | 2.06E+09          | 0.00E+00          | 0.00E+00             | 0.002+00          | 2.43 <b>E+0</b> 8 |
|    | Y-91    | 8.94E+05         | 0.00X+00          | 2.39X+04          | 0.00 <b>E</b> +00 | 0.008+00             | 0.00 <b>E</b> +00 | 4.92X+08          |
| 14 | Zr-95   | 1.478+08         | 4.71E+05          | 9.19 <b>R</b> +05 | 0.00 <b>E+0</b> 0 | 7.39E+05             | 0.00E+00          | 1.49E+09          |
| 15 | .₩ъ-95  | 1.89E+06         | 1.05E+06          | 5.64E+05          | 0.00E+00          | 1.048+06             | 0.00E+00          | 6.37E+09          |
|    | Nb-97   | ******           |                   |                   |                   | *********            |                   | ***********       |
|    | No-99   | 0.00E+00         | 8.51 <b>E</b> +04 | 1.628+04          | 0.00 <b>E</b> +00 | 1.938+05             | 0.00 <b>E+</b> 00 | 1.97E+05          |
|    | Tc-99a  | 3.83E-21         | 1.08E-20          | 1.362-19          | 0.00E+00          | 1.64B-19             | 5.30B-21          | 6.40E-18          |
|    | Ru-103  | 8.57E+07         | 0.00 <b>B</b> +00 | 3.69B+07          | 0.00E+00          | 3.278+08             | 0.00E+00          | 1.00R+10          |
| 20 | Ru-106  | 1.978+09         | 0.008+00          | 2. <b>492</b> +08 | 0.00E+00          | 3.80E+09             | 0.00E+00          | 1.27E+11          |
|    | Ag-110m | 4.778+06         | 4.41E+06          | 2.62E+06          | 0.00E+00          | 8.67E+06             | 0.002+00          | 1.808+09          |
|    | Sb-124  | 0.00 <b>K+00</b> | 0.00E+00          | 0.002+00          | 0.00E+00          | 0.00E+00             | 0.00E+00          | 0.00E+00          |
|    | Sb-125  | 0.00E+00         | 0.00E+00          | 0.00E+00          | 0.008+00          | 0.00E+00             | 0.00B+00          | 0.002+00          |
|    | Te-127m |                  | 3.00E+08          | 1.028+08          | 2.142+08          | 3. <del>408+09</del> | 0.00E+00          | 2.818+09          |
| 25 | Te-129m | 9.338+08         | 3.48E+08          | 1.482+08          | 3.21K+08          | 3.892+09             | 0.002+00          | 4.70K+09          |
| 26 | I-131   | 9.138+08         | 1.31E+07          | 7.48E+06          | 4.28E+09          | 2:248+07             | 0.008+00          | 3.45R+06          |
|    | I-133   | 3.128-01         | 5.42E-01          | 1.65R-01          | 7.968+01          | 9.468-01             | 0.00E+00          | 4.678-01          |
|    | Cs-134  | 4.53E+08         | 1.088+09          | 8.618+08          | 0.00E+00          | 3.498+06             | 1.16E+08          | 1.898+07          |
| 29 | Cs-136  | 1.02E+07         | 4.04R+07          | 2.91R+07          | 0.00E+00          | 2.258+07             | 3.08E+06          | 4.598+06          |
|    | Cs-137  | 5.90E+08         | 8.06E+08          | 5.28E+08          | 0.00E+00          | 2.748+08             | 9.108+07          | 1.568+07          |
| 31 | Ba-140  | 2.44K+07         | 3.06R+04          | 1.60E+06          | 0.00R+00          | 1.04R+04             | 1.75R+04          | 5.02R+07          |
|    | La-140  | 3.16B-02         | 1.59E-02          | 4.21E-03          | 0.00E+00          | 0.00E+00             | 0.00E+00          | 1.17E+03          |
|    | Ce-141  | 1.18E+04         | 7.83E+03          | 8.682+02          | 0.00E+00          | 3.84E+03             | 0.00E+00          | 2.99E+07          |
|    | Ce-144  | 1.03E+06         | 4.328+05          | 5.55E+04          | 0.00E+00          | 2.56E+05             | 0.001+00          | 3.50E+08          |
|    |         |                  |                   |                   |                   |                      |                   |                   |

All nuclides (except H-3) calculated per ODCM equation 2.3-25 H-3 calculated per ODCM equation 2.3-30

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                     |  |
|-----------------------------|-----------------------------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2                      | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                    | Page Number:<br>98 of 128           |  |

### ATTACHMENT J Page 10 of 19 P&I ORGAN DOSE FACTORS

## Table 2.3-11 R VALUES FOR BEAVER VALLEY SITE (sq meter-mrem/yr per uCi/sec)

Pathway = Heat Age Group = Teen

| Nuclide    | Bone              | Liver             | T. Body           | Thyroid           | Lidney            | Long              | GI-FFI            |
|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 1 H-3      | 0.00E+00          | 1.94E+02          | 1.94E+02          | 1.94E+02          | 1.941+02          | 1.945+02          | 1.948+02          |
| 2 P-32     | 3.34E+09          | 2.07 <b>E+08</b>  | 1:29E+08          | 0.00E+00          | 0.002+00          | 0.00E+00          | 2.60E+08          |
| 3 Cr-51    | 0.002+00          | 0.00E+00          | 4.69E+03          | 2.60E+03          | 1.032+03          | 6.691+03          | 7.88E+05          |
| 4 Mn-54    | 0.00E+00          | 4.95 <b>8+0</b> 6 | 9.818+05          | 0.00E+00          | 1.48B+06          | 0.00E+00          | 1.01E+07          |
| 5 Te-59    | 1.718+08          | 4.00 <b>2+0</b> 8 | 1.548+08          | 0.00E+00          |                   | 1.268+08          | 9.451+08          |
| 6 Co-57    | 0.00E+00          | 3.22 <b>E+0</b> 8 | 5.40E+06          | 0.00E+00          |                   | 0.00X+00          | 6.01E+07          |
| 7 Co-58    | 0.00E+00          | 1.09E+07          | 2.52E+07          | 0.00E+00          | 0.002+00          | 0.00E+00          | 1.51E+08          |
| 8 Co-60    | 0.00E+00          | 3.971+07          | 8.95E+07          | 0.00E+00          | 0. <b>00x+0</b> 0 | 0.00E+00          | 5.178+08          |
| 9 Zn-65    | 1.79E+08          | 6.21 <b>E+0</b> 6 | 2.90R+08          | 0.00K+00          | 3.97K+0B          | 0.00E+00          | 2.63E+00          |
| 10 Rb-86   | 0.00E+00          | 3.43E+0B          | 1.612+08          | 0.00E+00          | 0.001+00          | 0.008+00          | 5.08E+07          |
| 11 Sr-89   | 2.03E+08          | 0.002+00          | 5.83 <b>R+0</b> 6 | 0.00B+00          | 0.00R+00          | 0.00B+00          | 2.42B+07          |
| 12 Sr-90   | 5.448+09          | 0.00 <b>1+0</b> 0 | 1.34E+09          | 0.00E+00          | 0.001+00          | 0.00E+00          | 1.53E+08          |
| 13 Y-91    | 7.538+05          | 0.00E+00          | 2.02E+04          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 3.098+08          |
| 14 Zr-95   | 1.18E+06          | 3.71 <b>E+0</b> 5 | 2.55E+05          | 0.00E+00          | 5.458+05          | 0.00E+00          | 8.56 <b>E</b> +08 |
| 15 Mb-95   | 1.47B+06          | 8.178+05          | 4.50E+05          | 0.00 <b>E</b> +00 | 7.928+05          | 0.00E+00          | 3.498+09          |
| 16 Wb-97   | *******           |                   |                   |                   | *********         |                   | ********          |
| 17 Mo-99   | 0.00E+00          | 7.03 <b>E</b> +04 | 1.34E+04          | 9.00 <b>E+</b> 00 |                   | 0.00E+00          | 1.26E+05          |
| 18 Tc-99m  | 3.04B-21          | 8.48 <b>1-</b> 21 | 1.10K-19          | 0.00E+00          |                   | 4.71B-21          | 5.578-16          |
| 19 Ru-103  | 6.985+07          | 0.00 <b>E+0</b> 0 | 2.98E+07          | 0.00E+00          |                   | 0.00E+00          | 5.63E+09          |
| 20 Rn-106  | 1.281+09          | 0.00E+00          | 2.09E+08          | 0.00E+00          | 3.19 <b>E+</b> 09 | 0.00E+00          | 7.948+10          |
| 21 Ag-110s |                   | 3.42E+06          | 2.08E+06          | 0.00E+00          |                   | 0.00E+00          | 9.602+08          |
| 22 Sb-124  | 0.00E+00          | 0.00B+00          | 0.00E+00          | 0.00E+00          |                   | 0.00E+00          | 0.00E+00          |
| 23 Sb-125  | 0.00E+00          | 0.00E+00          | 0.00 <b>E+0</b> 0 | 0.00E+00          |                   | 0.00E+00          | 0.00E+00          |
| 24 Te-127s |                   | 2.518+08          | 8.41R+07          | 1.68%+08          |                   | 0.00E+00          | 1.76E+09          |
| 25 Te-129  | 7.828+08          | 2.90 <b>E+0</b> 8 | 1.248+08          | 2.52R+08          | 3.27E+09          | 0.008+00          | 2.93E+09          |
| 26 I-131   | 7.59R+06          | 1.05E+07          | 5.71 <b>R+0</b> 6 | 3.10E+09          |                   | 0.00E+00          | 2.102+06          |
| 27 I-133   | 2.61E-01          | 4.42B-01          | 1.35 <b>E-</b> 01 | 8.175+01          | 7.75 <b>B-0</b> 1 | 0.00 <b>R</b> +00 | 3.34 <b>R-0</b> 1 |
| 28 Cs-134  | 80+\$08.E         | 8.48 <b>E+0</b> 8 | 3.93 <b>E+0</b> 8 | 0.008+00          |                   | 1.03E+08          | 1.058+07          |
| 29 Ca-136  | 7.98 <b>E+0</b> 6 | 3.14 <b>E+0</b> 7 | 2.118+07          | 0.00E+00          |                   | 2.69K+06          | 2.53K+06          |
| 30 Cs-137  | 4.90E+08          | 6.51E+0B          | 2.278+08          | 0.00B+00          | 2.228+08          | 8.818+07          | 9.27 <b>R+</b> 06 |
| 31 Ba-140  | 2.02E+07          | 2.478+04          | 1.30E+06          | 0.008+00          |                   | 1.668+04          | 3.118+07          |
| 32 La-140  | 2.60E-02          | 1.28 <b>E-0</b> 2 | 3.40E-03          | 0.008+00          | 0.00E+00          | 0.008+00          | 7.338+02          |
| 33 Ce-141  | 9.72B+03          | 6.49 <b>2+0</b> 3 | 7.46E+02          | 0.008+00          |                   | 0.00E+00          | 1.868+07          |
| 34 Ce-144  | 6.72B+05          | 3.61B+05          | 4.68E+04          | 0.008+00          | 2.158+05          | 0.008+00          | 2.192+08          |

All nuclides (except H-3) calculated per ODCM equation 2.3-25 H-3 calculated per ODCM equation 2.3-30

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02   |  |  |
|-----------------------------|-----------|----------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use: In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>99 of 128        |  |  |

### ATTACHMENT J Page 11 of 19 P&I ORGAN DOSE FACTORS

Table 2.3-12

#### R VALUES FOR BEAVER VALLEY SITE

(sq meter-mrem/yr per mCi/sec)

Pathway = Heat Age Group = Child

| Muclide    | Bone     | Liver       | T. Body           | Thyroid           | Lidney            | Long              | GI-TTI    |
|------------|----------|-------------|-------------------|-------------------|-------------------|-------------------|-----------|
| 1 H-3      | 0.00E+00 | 2.348+02    | 2.34E+02          | 2.34E+02          | 2.348+02          | 2.34E+02          | 2.348+02  |
| 2 P-32     | 6.298+09 | 2.94E+08    | 2.43E+08          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 1.748+08  |
| 3 Cr-51    | 0.008+00 | 0.002+00    | 7.31E+03          | 4.06E+03          | 1.112+03          | 7.41E+03          | 3.882+05  |
| 4 Kp-54    | 0.00E+00 | 5.66E+06    | 1.51 <b>E+0</b> 6 | 0.00E+00          | 1.591+06          | 0.00E+00          | 4.758+06  |
| 5 Fe-59    | 3.04E+0B | 4.912+08    | 2.45 <b>E+0</b> 8 | 0.00E+00          | 0.002+00          | 1.42E+08          | 5.128+08  |
| 6 Co-57    | 0.008+00 | 4.21E+06    | 8.52 <b>X+0</b> 8 | 0.00K+00          | 0.00E+00          | 0.00E+00          | 3.458+07  |
| 7 Co-58    | 0.008+00 | 1.288+07    | 3.91R+07          | 0.00E+00          | 0.008+00          | 0.00E+00          | 7.458+07  |
| 8 Co-60    | 0.00E+00 | 4.728+07    | 1 391+08          | 0.008+00          | 0.008+00          | 0.00R+00          | 2.61E+08  |
| 9 Zn-65    | 2.68E+08 | 7.158+08    | 4.448+08          | 0.00E+00          | 4.50X+08          | 0.008+00          | 1.258+08  |
| 10 Rb-86   | 0.00E+00 | 4.678+06    | 2.998+08          | 0.002+00          | 0.00E+00          | 0.00B+00          | 3.13B+07  |
| 11 Sr-89   | 3.858+08 | 0.00K+00    | 1.10K+07          | 0.00X+00          | 0.001+00          | 0.00K+00          | 1.49E+07  |
| 12 Sr-90   | 7.03E+09 | 0.00E+00    | 1.78E+09          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 9.47E+07  |
| 13 Y-91    | 1.42R+08 | 0.008+00    | 3.81E+04          | 0.00K+00          | 0.00E+00          | 0.00E+00          | 1.908+08  |
| 14 Zr-95   | 2.09R+08 | 4.59E+05    | 4.09E+05          | 0.00E+60          | 6.57 <b>X</b> +05 | 0.00H00           | 4.798+08  |
| 15 Mb-95   | 2.54B+06 | 9.90E+05    | 7.078+05          | 0.00E+00          | 9.30E+05          | 0.00E+00          | 1.838+09  |
|            |          |             |                   |                   |                   |                   |           |
| 16 Mb-97   | *******  |             |                   |                   | ********          |                   | ********* |
| 17 Mo-99   | 0.00E+00 | 9.79E+04    | 2.42 <b>E+0</b> 4 | 0.00E+00          | 2.09E+05          | 0.00E+00          | 8.09B+04  |
| 18 Tc-99m  | 5.33B-21 | 1.05E-20    | 1.73 <b>K</b> -19 | 0.00 <b>E+00</b>  | 1.52E-19          | 5.318-21          | 5.95B-16  |
| 19 Ru-103  | 1.26E+08 | 0.00E+00    | 4.85 <b>E+0</b> 7 | 0.00 <b>E+00</b>  | 3.18 <b>k</b> +08 | 0.00 <b>X</b> +00 | 3.26E+09  |
| 20 Ru-106  | 3.12E+09 | 0.00E+00    | 3.89K+08          | 0.00K+00          | 4.21E+09          | 0.00E+00          | 4.85E+10  |
| 21 Ag-110m | 5.99E+06 | 4.048+06    | 3.23E+08          | 0.00E+00          | 7.53E+06          | 0.00E+00          | 4.81E+08  |
| 22 Sb-124  | 0.00E+00 | 0.00E+00    | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00  |
| 23 Sb-125  | 0.00E+00 | 0.00E+60    | 0.00B+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00  |
| 24 Te-127s | 1.338+09 | 3.59E+08    | 1.58E+08          | 3.19R+08          | 3.80E+09          | 0.00E+00          | 1.08E+09  |
| 25 Te-129m | 1.478+09 | 4.11E+08    | 2.29E+08          | 4.75 <b>E+0</b> 8 | 4.331+09          | 0.00E+00          | 1.802+09  |
| 26 I-131   | 1.41E+07 | 1.428+07    | 8.04E+06          | 4.681+09          | 2.32E+07          | 0.00E+00          | 1.26E+08  |
| 27 I-193   | 4.84R-01 | 5.998-01    | 2.27R-01          | 1.112+02          | 9.98K-01          | 0.00R+00          | 2.41R-01  |
| 28 Ca-134  | 6.35E+08 | 1.04E+09    | 2.208+08          | 0.008+00          | 3.23R+08          | 1.16X+08          | 5.62E+06  |
| 29 Ce-136  | 1.38E+07 | 3.78E+07    | 2.45R+07          | 0.002+00          | 2_01R+07          | 3.00E+06          | 1.33E+06  |
| 30 Ca-137  | 9.028+08 | 6.638+08    | 1.278+08          | 0.00E+00          | 2.81E+08          | 1.018+08          | 5.40E+06  |
| 31 Ba-140  | 3_72R+07 | 3.26E+06    | 2.178+06          | 0.00R+00          | 1.06E+04          | 1.941+04          | 1.89K+07  |
| 32 La-140  | 4.76E-02 | 1.66K-02    | 5.61E-03          | 0.00E+00          | 0.008+00          | 0.00E+00          | 4_63B+02  |
| 33 Ce-141  | 1.838+04 | 9.13E+03    | 1.36R+04          | 0.00R+00          | 4_00E+03          | 0.00E+00          | 1.148+07  |
| 34 Ce-144  | 1.648+06 | 5.15E+05    | B.77E+04          | 0.002+00          | 2.85X+05          | 0.002+00          | 1.348+08  |
| 21 OC 148  | 1.048.00 | e. 100 · 00 | U. 118147         | V. WO. W          | 4.000,40          | VUB. 00           | 4.010.00  |

All nuclides (except H-3) calculated per ODCM equation 2.3-25 H-3 calculated per ODCM equation 2.3-30

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02 |                                  |  |
|-----------------------------|-----------------------------------|----------------------------------|--|
| Title:                      | Unit: 1/2                         | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                         | Page Number:<br>100 of 128       |  |

### ATTACHMENT J Page 12 of 19 P&I ORGAN DOSE FACTORS

#### Table 2.3-13

#### R VALUES FOR BRAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Cow Milk Age Group = Adult

|       | Muclide       | Bone              | Liver             | T. Body           | Thyroid                    | Kidney            | Lung              | GI-LLI            |
|-------|---------------|-------------------|-------------------|-------------------|----------------------------|-------------------|-------------------|-------------------|
| 1     | H-3           | 0.00E+00          | 7.63E+02          | 7.63E+02          | 7.63E+02                   | 7.83E+02          | 7.63E+02          | 7.63E+02          |
| 2     | P-32          | 1.458+10          | 9.01E+08          | 5.60E+08          | 0.00E+00                   | 0.00E+00          | 0.00E+00          | 1.63E+09          |
| 3     | Cr-51         | 0.002+00          | 0.00E+00          | 2.388+04          | 1.428+04                   | 5.24B+03          | 3.15E+04          | 5.98X+06          |
| 4     | Mn-54         | 0.00E+00          | 5.95X+08          | 1.13E+06          | 0.00E+00                   | 1.778+06          | 0.00E+00          | 1.828+07          |
| 5     | Fe-59         | 2.408+07          | 5.638+07          | 2.16E+07          | 0.00E+00                   | 0.008+00          | 1.57E+07          | 1.68E+08          |
| _     | Co-57         | 0.002+00          | 9.102+05          | 1.512+06          | 0.002+00                   | 0.008+00          | 0.002+00          | 2.31E+07          |
| 7     | Co-58         | 0.002+00          | 3.675+06          | 8.22 <b>X+</b> 08 | 0.00E+00                   | 0.00E+00          | 0.00 <b>E+</b> 00 | 7.43B+07          |
| 8     | Co-60         | 0.00E+00          | 1.128+07          | 2.46 <b>3</b> +07 | 0.00E+00                   | 0.00E+00          | 0.00E+00          | 2.10E+08          |
| 9     | Za-65         | 9.80E+08          | 3.128+09          | 1.41E+09          | 0.00E+00                   | 2.09 <b>1</b> +09 | 0.00E+00          | 1.968+09          |
| 10    | Rb-86         | 0.00E+00          | 2.19E+09          | 1.028+09          | 0.00X+00                   | 0.00E+00          | 0.00 <b>E+0</b> 0 | 4.32E+08          |
| 11    | Sr-89         | 1.168+09          | 0.00E+00          | 3.338+07          | 0.008+00                   | 0.00E+00          | 0.00E+00          | 1.86%+08          |
| 12    | Sr-90         | 3.168+10          | 0.00E+00          | 7.762+09          | 0.00E+00                   | 0.001+00          | 0.00E+00          | 9.14 <b>K</b> +08 |
| 13    | Y-91          | 6.788+03          | 0.00X+00          | 1.81E+02          | 0.00E+00                   | 0.00E+00          | 0.00E+00          | 3.73E+06          |
| 14    | Zr-95         | 7.40B+02          | 2.378+02          | 1.61E+02          | 0.00 <b>E+</b> 00          | 3.728+02          | 0.00E+00          | 7.52 <b>X</b> +05 |
| 15    | <b>IIb-95</b> | 6.77E+04          | 3.778+04          | 2.03B+04          | 0.002+60                   | 3.72E+04          | 0.002+00          | 2.298+08          |
| 16    | <b>К</b> Ъ-97 | 2.81E-12          | 7.11E-13          | 2.608-13          | 0.00E+00                   | 8.30E-13          | 0.00E+00          | 2.62K-09          |
| 17    | No-99         | 0.00 <b>E+00</b>  | 2.118+07          | 4.01E+06          | 0.00 <b>E+0</b> 0          | 4.771+07          | 0.00E+00          | 4.88 <b>X</b> +07 |
| 18    | Tc-99m        | 2.83R+00          | 7.991+00          | 1.02E+02          | 0. <b>0</b> 0 <b>E+0</b> 0 | 1.218+02          | 3.91E+00          | 4.73E+03          |
| 19    | Ru-103        | 8.29X+02          | 0.002+00          | 3.578+02          | 0. <b>001</b> +00          | 3.16E+03          | 0.00E+00          | 9.68 <b>E+</b> 04 |
| 20    | Ru-106        | 1.43E+04          | 0.00E+00 .        | 1.818+03          | 0.00 <b>E+</b> 00          | 2.778+04          | 0.002+00          | 9.27 <b>X+0</b> 5 |
|       | Ag-110s       | 4.16E+07          | 3_848+07          | 2.268+07          | 0.00E+00                   | 7.56E+07          | 0.00E+60          | 1.57 <b>E</b> +10 |
| 22    | 5b-124        | 0.00 <b>E+0</b> 0 | 0.00E+00          | 0.00E+00          | 0.008+00                   | 0.00E+00          | 0.00E+00          | 0.00E+00          |
| 23    | Sb-125        | 0.005+00          | 0.00E+00          | 0.00E+00          | 0.00E+00                   | 0.00E+00          | 0.00E+00          | 0.00E+00          |
| 24    | Te-127m       | 3.44B+07          | 1.23E+07          | 4.198+06          | 8.79 <b>E</b> +06          | 1.405+08          | 0.00E+00          | 1.15 <b>K+0</b> B |
| 25    | Te-129m       | 4.958+07          | 1.858+07          | 7.848+06          | 1.708+07                   | 2.072+08          | 0.00E+00          | 2.49X+08          |
| 26    | I-131         | 2.528+08          | 3.60E+08          | 2.062+08          | 1.188+11                   | 8.17 <b>E</b> +08 | 0.00E+00          | 9.50E+07          |
| 27    | I-133         | 3.291+06          | 5.72E+06          | 1.75E+06          | 8.41 <b>E</b> +08          | 9.99E+06          | 0.00E+00          | 5.148+06          |
| 28    | Ca-134        | 3.892+09          | 9.27E+09          | 7.582+09          | 0.00E+00                   | 3.00E+09          | 9.96E+08          | 1.622+08          |
| 29    | Ca-136        | 2.238+08          | 8.82 <b>1</b> +08 | 6.358+08          | 0.00E+00                   | 4.915+08          | 6.73E+07          | 1.00E+08          |
| 30    | Cs-137        | 4.998+09          | 6.821+09          | 4.478+09          | 0.002+00                   | 2.32X+09          | 7.70E+08          | 1.328+08          |
|       | Ba-140        | 2.288+07          | 2.878+04          | 1.498+06          | 0.002+00                   | 9.742+03          | 1.648+04          | 4.70B+07          |
|       | La-140        | 3.84E+00          | 1.93E+00          | 5.11 <b>E-</b> 01 | 0.00E+00                   | 0.00X+00          | 0.00 <b>B</b> +00 | 1.42B+05          |
| • • • | Ce-141        | 3.99 <b>E+03</b>  | 2.70 <b>R</b> +03 | 3.06E+02          | 0.00E+00                   | 1.25E+03          | 0.00 <b>1</b> +00 | 1.03B+07          |
| 34    | Ce-144        | 2.54E+05          | 1.08E+05          | 1.368+04          | 0.00E+00                   | 6.29B+04          | 0.00E+00          | 8.58E+07          |

All nuclides (except H-3) calculated per ODCH equation 2.3-24 H-3 calculated per ODCH equation 2.3-28

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |  |
|-----------------------------|--------------------------------|----------------------------------|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>101 of 128       |  |

### ATTACHMENT J Page 13 of 19 P&I ORGAN DOSE FACTORS

### Table 2.3-14 R VALUES FOR BRAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Cow Hilk Age Group = Teen

|     | Huclide       | Bone              | Liver             | T. Body           | Thyroid           | Lidney            | Lung     | GI-LLI            |
|-----|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------|-------------------|
| 1   | H-3           | 0.00E+00          | 9.94E+02          | 9.941+02          | 9.948+02          | 9.948+02          | 9.94E+02 | 9.942+02          |
| 2   | P-32          | 2_67E+10          | 1.86%+09          | 1.04 <b>X</b> +09 | 0.00E+00          | 0.00E+00          | 0.00E+00 | 2.25 <b>1+0</b> 9 |
| 3   | Cr-51         | 0.00E+00          | 0.00E+00          | 4.15X+04          | 2.31E+04          | 9.10 <b>5</b> +03 | 5.93E+04 | 6.97 <b>E</b> +06 |
| 4   | Hn-54         | 0.00E+00          | 9.912+06          | 1.963+06          | 0.00R+00          | 2.95E+06          | 0.002+00 | 2.03K+07          |
| 5   | Pe-59         | 4.18E+07          | 9.762+07          | 3.771+07          | 0.00E+00          | 0.008+00          | 3.08E+07 | 2.31 <b>X</b> +08 |
| 6   | Co-57         | 0.008+00          | 1.60E+06          | 2.68E+06          | 0.002+00          | 0.00E+00          | 0.00E+00 | 2.981+07          |
|     | Co-58         | 0.002+00          | 6.17 <b>E</b> +06 | 1.428+07          | 0.00E+00          | 0.00E+00          | 0.90E+00 | 8.51K+07          |
| 8   | Co-60         | 0.00E+00          | 1.89E+07          | 4.26B+07          | 0.00K+00          | 0.00E+00          | 0.008+00 | 2.463+08          |
| . 9 | Zn-85         | 1.51 <b>E+09</b>  | 5.23E+09          | 2.448+09          | 0.00E+00          | 3.3411+09         | 0.008+00 | 2.21 <b>I+0</b> 9 |
| 10  | Rb-86         | 0.00E+00          | 3.992+09          | 1.87 <b>R+09</b>  | 0.00 <b>E+00</b>  | 0.00B+00          | 0.001+00 | 5.91 <b>E+0</b> 8 |
| 11  | Sr-89         | 2.14B+09          | 0.002+00          | 6.12E+07          | 0.00 <b>E+00</b>  | 0.00E+00          | 0.001+00 | 2.55E+08          |
| 12  | Sr-90         | 4.47E+10          | 0.008+00          | 1.10E+10          | 0.00 <b>E+0</b> 0 | 0.00E+00          | 0.002+00 | 1.25E+09          |
| 13  | Y-91          | 1.258+04          | 0.00E+00          | 3.35K+02          | 0.00 <b>X+0</b> 0 | 0.00E+00          | 0.00E+00 | 5.11 <b>E</b> +08 |
| 14  | Zr-95         | 1.29E+03          | 4.08E+02          | 2.81E+02          | 0.00E+00          | 6.00B+02          | 0.00E+00 | 9.42B+05          |
| 15  | Ш-95          | 1.162+05          | 6.41 <b>E+0</b> 4 | 3.53E+04          | 0.00 <b>E+0</b> 0 | 6.218+04          | 0.002+00 | 2.74E+08          |
|     | Mb-97         | 5.13E-12          | 1.278-12          | 4.65K-13          | 0.00E+00          | 1.498-12          | 0.00X+00 | 3.04E-08          |
|     | Mo-99         | 0.00E+00          | 3.802+07          | 7.25E+06          | 0.00E+00          | 8.70 <b>3</b> +07 | 0.00E+00 | 6.81E+07          |
| -   | Tc-99s        | 4.90E+00          | 1.37E+01          | 1.77E+02          | 0.00E+00          | 2.04E+02          | 7.59K+00 | 8.98 <b>x</b> +03 |
| 19  | Ra-103        | 1.47B+03          | -0.00E+00         | 6.30 <b>Z+</b> 02 | 0.00E+00          | 5.20 <b>5</b> +03 | 0.00X+00 | 1.232+05          |
| 20  | <b>Ru-108</b> | 2.03E+04          | 0.00E+00          | 3.328+03          | 0.00E+00          | 5.08E+04          | 0.008+00 | 1.26R+06          |
|     | Ag-110m       | 8.878+07          | 6.50E+07          | 3.95E+07          | 0.00E+00          | 1.248+08          | 0.002+00 | 1.83E+10          |
|     | Sb-124        | 0.00E+00          | 0.00 <b>E</b> +00 | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00 | 0.00E+00          |
|     | Sb-125        | 0.00E+00          | 0.00E+00          | 0.00K+00          | 0.00E+00          | 0.001+00          | 0.00E+00 | 0.001+00          |
|     | Te-127m       | 6.94E+07          | 2.25E+07          | 7.54 <b>K</b> +06 | 1.518+07          | 2.57E+08          | 0.00R+00 | 1.58%+08          |
| 25  | Te-129m       | 9.08E+07          | 3.368+07          | 1.43E+07          | 2.921+07          | 3.79E+08          | 0.00E+00 | 3.40R+08          |
|     | I-131         | 4.57B+08          | 8.39E+08          | 3.432+08          | 1.878+11          | 1.10E+09          | 0.00E+00 | 1.263+08          |
|     | I-133         | 6.01E+06          | 1.02B+07          | 3.11 <b>8+0</b> 6 | 1.421+09          | 1.798+07          | 0.00E+00 | 7.718+06          |
| 28  | Ca-134        | 6.76E+09          | 1.59B+10          | 1.38E+09          | 0.00 <b>%+0</b> 0 | 5.06E+09          | 1.931+09 | 1.98X+08          |
| 29  | Ce-136        | 3.80 <b>E+</b> 08 | 1.50B+09          | 1.018+09          | 0,00 <b>E+0</b> 0 | 8.15R+08          | 1.288+08 | 1.20E+08          |
| 30  | Ce-137        | 9.05E+09          | 1.208+10          | 4.198+09          | 0.00E+00          | 4.10E+09          | 1.59K+09 | 1.71E+08          |
|     | Ba-140        | 4.12B+07          | 5.058+04          | 2.65X+06          | 0.00E+00          | 1.718+04          | 3.39X+04 | 6.35E+07          |
|     | La-140        | 6.89E+00          | 3.39E+00          | 9.01 <b>E</b> -01 | 0.00E+00          | 0.00E+00          | 0.00E+00 | 1.94E+05          |
|     | Ce-141        | 7.32E+03          | 4.892+03          | 5.62B+02          | 0.00 <b>E+00</b>  | 2.30E+03          | 0.00X+00 | 1.40B+07          |
| 34  | Ce-144        | 4.67E+05          | ·1.93E+05         | 2.518+04          | 0.00 <b>E+0</b> 6 | 1.15 <b>E</b> +05 | 0.00E+00 | 1.17E+08          |

All nuclides (except B-3) calculated per ODCM equation 2.3-24 B-3 calculated per ODCM equation 2.3-28

| Beaver Valley Power Station | 1         | Procedure Number: 1/2-ODC-2.02      |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>102 of 128          |  |  |

### ATTACHMENT J Page 14 of 19 P&I ORGAN DOSE FACTORS

Table 2.3-15
R VALUES FOR BEAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

| Pati | way  | z | C | W | Hi | 11 |
|------|------|---|---|---|----|----|
| Age  | Grou | P | = | a | 11 | đ  |

| 1    | Tuclide            | Bone                 | Liver             | T. Body           | Thyroid  | Kidney   | Lang              | GI-TTI            |  |
|------|--------------------|----------------------|-------------------|-------------------|----------|----------|-------------------|-------------------|--|
| 1 1  | H-3                | 0.002+00             | 1.572+03          | 1.57 <b>E+</b> 03 | 1.578+03 | 1.578+03 | 1.571+03          | 1.57E+03          |  |
| 2 1  | P- <b>3</b> 2      | 6.59B+10             | 3.09E+09          | 2.54E+09          | 0.002+00 | 0.008+00 | 0.00I+00          | 1:828+09          |  |
| 3 (  | Cr-51              | 0.00E+00             | 0.00E+00          | 8.46 <b>E+</b> 04 | 4.70E+04 | 1.288+04 | 8.58 <b>X</b> +04 | 4.49E+06          |  |
| 4 (  | Mn-54              | 0.00E+00             | 1.48E+07          | 3.95 <b>E+</b> 06 | 0.00E+00 | 4.168+06 | 0.001+00          | 1,248+07          |  |
| 5 1  | Te-59              | 9.70E+07             | 1.57E+08          | 7.82 <b>E</b> +07 | 0.008+00 | 0.00E+00 | 4.551+07          | 1.63E+08          |  |
|      | Co-57              | 0.008+00             | 2.73E+06          | 5.52 <b>X+</b> 08 | 0.008+00 | 0.008+00 | 0.002+09          | 2.248+07          |  |
|      | Co-58              | 0.00E+00             | 9.43 <b>E</b> +06 | 2.89E+07          | 0.00E+00 | 0.002+00 | 0.00E+00          | 5.502+07          |  |
|      | Co-60              | 0.00 <b>E+0</b> 0    | 2.94E+07          | 8.67E+07          | 0.00E+00 | 0.00K+00 | 0.00E+00          | 1.63E+08          |  |
|      | Za-65              | 2.95£+0 <del>9</del> | 7.87E+09          | 4.898+09          | 0.00E+00 | 4.988+09 | 0.00E+00          | 1.388+09          |  |
| 10   | Rb-86              | 0.00 <b>R</b> +00    | 7.40E+09          | 4.55E+09          | 6.00E+00 | 0.002+00 | 0.00E+00          | 4.76E+08          |  |
| 11 1 | Sr-89              | 5.29E+09             | 0.00E+00          | 1.51E+08          | 0.00E+00 | 0.008+00 | 0.00E+00          | 2.05E+08          |  |
| 12 3 | Sr-90              | 7.55E+10             | 0.00E+00          | 1.91E+10          | 0.00E+00 | 0.00X+00 | 0.00E+00          | 1.02E+09          |  |
| 13   | Y-91               | 3.08E+04             | 0.00E+00          | 8.24B+02          | 0.00E+00 | 0.00E+00 | 0.00E+00          | 4.11E+06          |  |
| 14 7 | Z <del>r</del> -95 | 3.00E+03             | 6. <b>601</b> +02 | 5.88E+02          | 0.00E+00 | 9.458+02 | 0.008+00          | 6.89E+05          |  |
| 15 1 | 16-95              | 2.618+05             | 1.02B+05          | 7.26E+04          | 0.002+00 | 9.548+04 | 0.00E+00          | 1.88E+08          |  |
| 16 ( | Bb-97              | 1.258-11             | 2.258-12          | 1.05E-12          | 0.00E+00 | 2.508-12 | 0.001+00          | 6.94E-07          |  |
| 17 1 | Mo-99              | 0.00 <b>R+00</b>     | 6.92E+07          | 1.71E+07          | 0.00E+00 | 1.488+08 | 0.008+00          | 5.72 <b>E</b> +07 |  |
|      | Tc-99m             | 1.128+01             | 2.20E+01          | 3.658+02          | 0.002+00 | 3.20B+02 | 1.128+01          | 1.258+04          |  |
|      | Ro-103             | 3.49 <b>E</b> +03    | 0.00E+00          | 1.342+03          | 0.008+00 | 8.788+03 | 0.001+00          | 9.01E+04          |  |
| 20 1 | Ru-106             | 6.49 <b>8</b> +04    | 0.002+00          | 8.10E+03          | 0.005+00 | 8.76E+04 | 0.001100          | 1.01E+06          |  |
|      | Ag-110m            | 1.492+08             | 1.01E+08          | 8.05E+07          | 0.00E+00 | 1.878+08 | 0.00 <b>R+0</b> 0 | 1.20E+10          |  |
|      | Sb-124             | 0.00E+00             | 0.00 <b>2</b> +00 | 0.00 <b>E</b> +00 | 0.00E+00 | 0.00E+00 | 0.00E+00          | 0.00E+00          |  |
|      | Sb-125             | 0.00E+00             | 0.00E+00          | 0.00E+00          | 0.00E+00 | 0.00E+00 | 0.00X+00          | 0.00E+00          |  |
|      | Te-127m            | 1.56E+08             | 4.21E+07          | 1.86E+07          | 3.74E+07 | 4.468+08 | 0.00E+00          | 1.278+08          |  |
| 25   | Te-129n            | 2.23 <b>E+0</b> 8    | 6.248+07          | 3.47E+07          | 7.202+07 | 6.58¥+08 | 0.002+00          | 2.72B+08          |  |
| 26   | I- <b>1</b> 31     | 1.118+09             | 1.11E+09          | 6.332+08          | 3.68E+11 | 1.838+09 | 0.00R+00          | 9.928+07          |  |
|      | 1-133              | 1.46R+07             | 1.813+07          | 6.832+08          | 3.368+09 | 3.01E+07 | 0.001+00          | 7.28E+08          |  |
|      | Ce-134             | 1.56R+10             | 2.56E+10          | 5.40 <b>E</b> +09 | 0.00E+00 | 7.93E+09 | 2.851+09          | 1.38E+08          |  |
|      | Co-136             | 8.58 <b>K</b> +08    | 2.362+09          | 1.53 <b>K+</b> 09 | 0.00E+00 | 1.262+09 | 1.871+08          | 8.29E+07          |  |
| 30 ( | Ca-137             | 2.182+10             | 2.092+10          | 3.082+09          | 0.008+00 | 6.80E+09 | 2.451+09          | 1.318+08          |  |
|      | Ba-140             | 9.948+07             | 8.71E+06          | 5.80E+06          | 0.002+00 | 2.84E+04 | 5.19 <b>R+04</b>  | 5.04E+07          |  |
|      | La-140             | 1.65E+01             | 5.77 <b>E+</b> 00 | 1.94E+00          | 0.00E+00 | 0.00E+00 |                   | 1.618+05          |  |
|      | Co-141             | 1.80E+04             | 8.998+03          | 1.342+04          | 0.00E+00 | 3.94E+03 | 0.00E+00          | 1.128+07          |  |
| 34 ( | Ce-144             | 1.15 <b>E+0</b> 6    | 3.612+05          | 6.15 <b>E+</b> 04 | 0.00E+00 | 2.00E+05 | 0.001+00          | 9.41B+07          |  |

All nuclides (except E-3) calculated per ODCM equation 2.3-24 E-3 calculated per ODCM equation 2.3-28

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02      |  |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>103 of 128          |  |  |  |

### ATTACHMENT J Page 15 of 19 P&I ORGAN DOSE FACTORS

### Table 2.3-16 R VALUES FOR BEAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Cow Milk Age Group = Infant

| Buclide    | Bone              | Liver             | T. Body           | Thyroid           | Lidney            | Lang     | ei-fri            |
|------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------|-------------------|
| 1 H-3      | 0.00 <b>E+0</b> 0 | 2.38E+03          | 2.38 <b>E+0</b> 3 | 2.38E+03          | 2.38E+03          | 2.38E+03 | 2.388+03          |
| 2 P-32     | 1.36E+11          | 7.99E+09          | 5,27 <b>E+</b> 09 | 0.00E+00          | 0.008+00          | 0.008+00 | 1.848+09          |
| 3 Cr-51    | 0.002+00          | 0.00E+00          | 1.34E+05          | 8.75E+04          | 1.91E+04          | 1.70E+05 | 3.918+06          |
| 4 Kn-54    | 0.00E+00          | 2.768+07          | 6.25R+08          | 0.00%+00          | 6.11E+06          | 0.00E+00 | 1.012+07          |
| 5 Pe-59    | 1.81E+08          | 3.168+00          | 1.25E+08          | 0.002+00          | 0.002+00          | 9.352+07 | 1.518+08          |
| 6 Co-57    | 0.00E+00          | 6.36E+06          | 1.038+07          | 0.002+00          | 0.00E+00          | 0.00E+00 | 2.17E+07          |
| 7 Co-58    | 0.00 <b>E+0</b> 0 | 1.89B+07          | 4.70E+07          | 0.00E+00          | 0.002+00          | 0.00E+00 | 4.70E+07          |
| 8 Co-60    | 0.00K+00          | 6.00 <b>1</b> +07 | 1.42E+08          | 0.00E+00          | 0.002+00          | 0.00E+00 | 1.438+08          |
| 9 Zn-65    | 3.97 <b>E+0</b> 9 | 1.36E+10          | 6.27E+09          | 0.00E+00          | 6.60 <b>X</b> +09 | 0.008+00 | 1.158+10          |
| 10 Rb-86   | 0.00E+00          | 1.88E+10          | 9.28 <b>K+0</b> 9 | 0.00E+00          | 0.00E+00          | 0.00E+00 | 4.818+08          |
| 11 Sr-89   | 1.01E+10          | 0.00 <b>E+0</b> 0 | 2.89K+08          | 0.00 <b>%+0</b> 0 | 0.00 <b>E</b> +00 | 0.00E+00 | 2.07E+08          |
| .12 Sr-90  | 8.228+10          | 0. <b>00E+0</b> 0 | 2.09E+10          | 0.00E+00          | 0.002+00          | 0.00B+00 | 1.03E+09          |
| 13 Y-91    | 5.79E+04          | 0.00E+00          | 1.54E+03          | 0.00E+00          | 0.002+00          | 0.00E+00 | 4.15E+06          |
| 14 Zr-95   | 5.33E+03          | 1.30B+03          | 9.22 <b>8+0</b> 2 | 0.00E+00          | 1.408+03          | 0.00E+00 | 6.47E+05          |
| 15 Nb-95   | 4.87E+05          | 2.01B+05          | 1.16 <b>E+0</b> 5 | 0.00E+00          | 1.44E+05          | 0.00E+00 | 1.69E+08          |
| 16 Wb-97   | 2.63E-11          | 5.62E-12          | 2.03E-12          | 0.00K+00          | 4.398-12          | 0.00E+00 | 1.77E-06          |
| 17 No-99   | 0.00E+00          | 1.77E+08          | 3.45E+07          | 0.00E+00          | 2.64E+0B          | 0.00E+00 | 5.83E+07          |
| 16.7c-99m  | 2.348+01          | 4.82E+01          | 6.21 <b>E+02</b>  | 0.00E+00          | 5.19 <b>E</b> +02 | 2.52R+01 | 1.40E+04          |
| 19 Ru-103  | 7.06E+03          | 0.00E+00          | 2.38K+03          | 0.00E+00          | 1.478+04          | 0.00E+00 | 8.59E+04          |
| 20 Ru-106  | 1.348+05          | 0.008+00          | 1.678+04          | 0.008+00          | 1.588+05          | 0.008+00 | 1.01E+06          |
| 21 Ag-110m | 2.758+08          | 2.01E+08          | 1.332+08          | 0.002+00          | 2.688+08          | 0.00E+00 | 1.04B+10          |
| 22 Sb-124  | 0.00E+00          | 0.00E+00          | 0.00K+00          | 0.00E+00          | 0.00E+00          | 0.00E+00 | 0.00E+00          |
| 23 Sb-125  | 0.002+00          | 0.00E+00          | 0.00X+00          | 0.00E+00          | 0.00E+00          | 0.00E+00 | 0.00E+00          |
| 24 Te-127m | 3.16E+08          | 1.05E+08          | 3.83E+07          | 9.14E+07          | 7.792+06          | 0.00E+00 | 1.268+08          |
| 25 Te-129m | 4.588+08          | 1.57E+08          | 7.06E+07          | 1.762+08          | 1.15E+09          | 0.00E+00 | 2.74E+08          |
| 26 I-131   | 2.31E+09          | 2.72 <b>E+0</b> 9 | 1.20K+09          | 8.95X+11          | 3.18K+09          | 0.00E+00 | 9.72E+07          |
| 27 I-133   | 3.08 <b>E+0</b> 7 | 4.49E+07          | 1.31E+07          | 8.17 <b>8</b> +09 | 5.28E+07          | 0.00E+00 | 7.60E+06          |
| 28 Ca-134  | 2.51E+10          | 4.69E+10          | 4.73E+09          | 0.06 <b>E+</b> 00 | 1.21E+10          | 4.95E+09 | 1.27E+08          |
| 29 Cs-136  | 1.68 <b>E</b> +09 | 4.938+09          | 1.84 <b>E</b> +09 | 0.00 <b>x+</b> 60 | 1.97 <b>E</b> +09 | 4.02E+08 | 7.49 <b>2</b> +07 |
| 30 Ca-137  | 3.48E+10          | 4.07E+10          | 2.89 <b>E+09</b>  | 0.00E+00          | 1.09E+10          | 4.43E+09 | 1.278+08          |
| 31 Ba-140  | 2.05E+08          | 2.058+05          | 1.058+07          |                   | 4.868+04          |          | 5.02E+07          |
| 32 La-140  | 3.45R+01          | 1.368+01          | 3.50E+00          | 0.00 <b>X</b> +00 | 0.002+00          | 0.008+00 | 1.60E+05          |
| 33 Ce-141  | 3.57E+04          | 2.18 <b>E+04</b>  | 2.57 <b>B+0</b> 3 | 0.00 <b>K</b> +00 | 6.72E+03          | 0.00E+00 | 1.13E+07          |
| 34 Ce-144  | 1.65E+06          | 6.75E+05          | 9.25 <b>E+04</b>  | 0.00E+00          | 2.731+05          | 0.00E+00 | 9.478+07          |

All nuclides (except H-3) calculated per ODCM equation 2.3-24 H-3 calculated per ODCM equation 2.3-28

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|--------------------------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>104 of 128          |  |

### ATTACHMENT J Page 16 of 19 P&I ORGAN DOSE FACTORS

### Table 2.3-17 R VALUES FOR BRAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Goat Hilk Age Group = Adult

| Muclide    | Bone              | Liver             | T. Body             | Thyroid           | Lidney            | Long              | GI-LLI            |
|------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|
| 1 H-3      | 0.00E+00          | 1.56E+03          | 1.56E+03            | 1.56E+03          | 1.56E+03          | 1.56E+03          | 1.58 <b>K+0</b> 3 |
| 2 P-32     | 1.748+10          | 1.082+09          | 6.72E+08            | 0.00E+00          | 0.001+00          | 0.00E+00          | 1.961+09          |
| 3 Cr-51    | 0.00E+00          | 0.00E+00          | 2.85E+03            | 1.70E+03          | 6.281+02          | 3.78E+03          | 7.178+05          |
| 4 Mn-54    | 0.002+00          | 7.14E+05          | 1.36E+05            | 0.00E+00          | 2.128+05          | 0.00E+00          | 2.19E+06          |
| 5 Fa-59    | 3.128+05          | 7.322+05          | 2.812+05            | 0.00E+00          | 0.00X+00          | 2.058+05          | 2.442+06          |
| 6 Ca-5?    | 0.00E+00          | 1.092+05          | 1.828+05            | 0.00E+00          | 00+H00.0          | 0.00E+00          | 2.778+06          |
| 7 Co-58    | 0.00E+00          | 4.40T+05          | 9.86 <b>k</b> +05   | 0.00K+00          | · 0.001+00        | 0.00E+00          | 8.91E+06          |
| 6 Co-60    | 0.00 <b>E+00</b>  | 1.348+06          | 2.96 <b>E</b> +06   | 0.00 <b>E+0</b> 0 | 0.00E+00          | 0.00E+00          | 2.528+07          |
| 9 Zn-65    | 1.10E+08          | 3.748+08          | 1.69E+08            | 0.00E+00          | 2.50E+08          | 0.00E+00          | 2.36 <b>x+0</b> 8 |
| 10 Rb-88   | 0.00E+00          | 2.638+08          | 1.228+08            | 0.00E+00          | 0.00E+00          | 0.001100          | 5.18 <b>E+07</b>  |
| 11 Sr-89   | 2.43E+09          | 0.00E+00          | 6.99 <b>E</b> +07   | 0.00K+00          | 0.00E+00          | 0.00R+00          | 3.912+08          |
| 12 Sr-90   | 6.64 <b>E</b> +10 | 0.00E+00          | 1.63 <b>E</b> +10   | 0.00E+00          | 0.00E+00          | 0.002+00          | 1.925+09          |
| 13 T-91    | 8.148+02          | 0.00E+00          | 2.18K+01            | 0.00X+00          | 0.002+00          | 0.002+06          | 4.48 <b>B+0</b> 5 |
| 14 Zr-95   | 8.87 <b>8</b> +01 | 2.85 <b>K</b> +01 | 1.93 <b>E</b> +01   | 0.00 <b>E+00</b>  | 4.478+01          | 0.00E+00          | 9.02 <b>E</b> +04 |
| 15 Wb-95   | 8.138+03          | 4.528+03          | 2.438+03            | 0.00E+00          | 4.47E+03          | 0.002+00          | 2.748+07          |
| 16 Mb-97   | 3.38E-13          | 8.54B-14          | . 3.12 <b>E</b> -14 | 0.00E+00          | 9.96B-14          | 0.00E+00          | 3.15B-10          |
| 17 No-99   | 0.00E+00          | 2.53E+06          | 4.818+05            | 0.00E+00          | 5.72E+06          | 0. <b>00X+0</b> 0 | 5.86E+06          |
| 18 Tc-99m  | 3.39E-01          | 9.59 <b>E</b> -01 | 1.228+01            | 0.00E+00          | 1.46E+01          | 4.70E-01          | 5.67 <b>E</b> +02 |
| 19 Ru-103  | . 9.95E+01        | 0.00E+00          | 4.29 <b>%</b> +01   | 0.00E+00          | 3.802+02          | 0.00E+00          | 1.162+04          |
| 20 Ru-106  | 1.728+03          | 0.00H+00          | 2.18 <b>I</b> +02   | 0.00E+00          | 3.32E+03          | 0.00E+00          | 1.11E+05          |
| 21 Ag-110m | 4.998+06          | 4.618+06          | 2.74R+06            | 0.00E+00          | 9.078+06          | 0.00B+00          | 1.882+09          |
| 22 Sb-124  | 0.00E+00          | 0.00H+00          | 0.00E+00            | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          |
| 23 Sb-125  | 0.00E+00          | 0.00E+00          | 0.00E+00            | 0.00E+00          | 0.002+00          | 0.00E+00          | 0.00E+00          |
| 24 Te-127s | 4.13E+06          | 1.48 <b>I</b> +06 | 5.03 <b>8</b> +05   | 1.05 <b>E+06</b>  | 1.68X+07          | 0.00E+00          | 1.38E+07          |
| 25 Te-129# | 5.94B+06          | 2.228+06          | 9.418+05            | 2.042+06          | 2.48E+07          | 0.00X+00          | 2.998+07          |
| 26 I-131   | 3.02E+08          | 4.32E+08          | 2.46E+06            | 1.42E+11          | 7.40I+08          | 0.00E+00          | 1.142+08          |
| 27 I-133   | 3.95E+06          | 6.87 <b>B</b> +06 | 2.09B+06            | 1.01 <b>E+0</b> 9 | 1.208+07          | 0.00E+00          | 6.17E+06          |
| 28 Cs-134  | 4.678+08          | 1.118+09          | 9.09 <b>E</b> +08   | 0.00E+00          | 3.60 <b>1</b> +08 | 1.198+08          | 1.951+07          |
| 29 Cs-136  | 6.70 <b>8</b> +08 | 2.65E+09          | 1.90E+09            | 0.00 <b>E+0</b> 0 | 1.478+09          | 2.02E+08          | 3.012+08          |
| 30 Ca-137  | 1.50E+10          | 2.05E+10          | 1.348+10            | 0.00E+00          | 6.951+09          | 2.31E+09          | 3.961+08          |
| 31 Ba-140  | 2.74E+06          | 3.44E+03          | 1.798+05            | 0.00E+00          | 1.178+03          | 1.972+03          | 5.64E+06          |
| 32 la-140  | 4.60B-01          | 2.32B-01          | 6.138-02            | 0.00 <b>E+</b> 00 | 0.00 <b>1</b> +00 | 0.00E+00          | 1.701+04          |
| 33 Ce-141  | 4.79E+02          | 3.24E+02          | 3.88E+01            | 0.001100          | 1.51E+02          | 0.00E+00          | 1.24E+06          |
| 34 Ce-144  | 3.058+04          | 1.27E+04          | 1.64E+03            | 0.00 <b>X+00</b>  | 7.55E+03          | 0.00E+00          | 1.038+07          |

All nuclides (except N-3) calculated per ODCM equation 2.3-24 N-3 calculated per ODCM equation 2.3-28

| Beaver Valley Power Station |                | Procedure Number:<br>1/2-ODC-2.02   |  |  |
|-----------------------------|----------------|-------------------------------------|--|--|
| Title:                      | Unit: 1/2      | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2 | Page Number:<br>105 of 128          |  |  |

### ATTACHMENT J Page 17 of 19 P&I ORGAN DOSE FACTORS

### Table 2.3-18 R VALUES FOR BEAVER VALLEY SITE

(sq meter-mram/yr per uCi/sec)

Pathway = Goat Hilk Age Group = Teen

| Muclio    | le Bone           | Liver             | T. Body           | Thyroid           | Lidney            | Long     | GI-LLI            |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|----------|-------------------|
| 1 H-3     | 0.00E+00          | 2.03E+03          | 2.03E+03          | 2.03K+03          | 2.03E+03          | 2.03E+03 | 2.032+03          |
| 2 P-32    | 3.218+10          | 1.991+09          | 1.241+09          | 0.00E+00          | 0.00E+00          | 0.008+00 | 2.708+09          |
| 3 Cr-51   | 0.00E+00          | 0.00E+00          | 4.98E+03          | 2.778+03          | 1.09E+03          | 7.11E+03 | 8.37E+05          |
| 4 Ma-54   | 0.00E+00          | 1.19E+06          | 2.38E+05          | 0.00E+00          | 3.55E+05          | 0.00E+00 | 2.44E+06          |
| 5 Te-59   | 5.44E+05          | 1.278+06          | 4.90X+05          | 0.002+00          | 0.00E+00          | 4.00E+05 | 3.001+06          |
| 6 Co-57   | 0.00 <b>E+</b> 00 | 1.928+05          | 3.21E+05          | 0.00E+00          | 0.00 <b>2</b> +00 | 0.008+00 | 3.57E+06          |
| 7 Co-58   | 0.00E+00          | 7.40E+05          | 1.71E+08          | 0.60E+00          | 0.00E+00          | 0.00E+00 | 1.021+07          |
| 8 Co-60   | 0.008+00          | 2.278+06          | 5.11 <b>X+0</b> 8 | 0.00E+00          | 0.00E+00          | 0.00E+00 | 2.968+07          |
| 9 Za-65   | 1.81E+08          | 6.27E+08          | 2.93E+08          | 0.602+00          | 4.01E+08          | 0.00E+00 | 2.66E+08          |
| 10 Rb-86  | 0.002+00          | 4.798+08          | 2.25E+08          | 0.002+00          | 0.00E+00          | 0.00E+00 | 7.09E+07          |
| 11 Sr-89  | 4.49E+09          | 0.00 <b>1+0</b> 0 | 1.29E+08          | 0.00E+00          | 0.00 <b>1</b> +00 | 0.00E+00 | 5.35 <b>E</b> +08 |
| 12 Sr-90  | 9.398+10          | 0.00 <b>E+0</b> 0 | 2.32E+10          | 0.00E+00          | 0.00E+00          | 0.00E+00 | 2.64E+09          |
| 13 Y-91   | 1.502+03          | G.00E+00          | 4.01E+01          | 0.00E+00          | 0.00X+00          | 0.00E+00 | 6.14E+05          |
| 14 Zr-95  | 1.552+02          | 4.90E+01          | 3.37E+01          | 0.008+00          | 7.19E+01          | 0.008+00 | 1.13E+05          |
| 15 Wb-95  | 1.398+04          | 7.69X+03          | 4.23E+03          | 0.00E+00          | 7.45 <b>R</b> +03 | 0.00E+00 | 3.29E+07          |
| 16 Wb-97  | 6.1 <b>5E-1</b> 3 | 1.538-13          | 5.57 <b>E</b> -14 | 0.00E+00          | 1.79E-13          | 0.00E+00 | 3.65E-09          |
| 17 Ho-99  | 0.002+00          | 4.56E+08          | 8.70 <b>x+0</b> 5 | 0.00 <b>E+0</b> 0 | 1.04E+07          | 0.00E+00 | 8.17E+06          |
| 18 Tc-99  | 5.888-01          | 1.64 <b>K</b> +00 | 2.138+01          | 0.00K+00          | 2.45E+01          | 9.11B-01 | 1.088+03          |
| 19 Ru-103 | 1.778+02          | 0.00R+00          | 7.56E+01          | 0.008+00          | 6.24E+02          | 0.002+00 | 1.488+04          |
| 20 Ru-108 | 2.44B+03          | 0.00E+00          | 3.98 <b>K+</b> 02 | 0_60E+00          | 6.10 <b>1</b> +03 | 0.00E+00 | 1.52E+05          |
| 21 Ag-110 |                   | 7.80 <b>E+0</b> 6 | 4.758+06          | 0.00E+00          | 1.492+07          | 0.00E+00 | 2.198+09          |
| 22 Sb-12  |                   | 0.0 <b>0X+</b> 00 | 0.00 <b>E+0</b> 0 | 0.002+00          | 0.00E+00          | 0.00E+00 | 0.00E+00          |
| 23 ЅЪ-129 |                   | 0.0 <b>0R+0</b> 0 | 0.00 <b>E+0</b> 0 | 0.00E+00          | 0.00E+00          | 0.00E+00 | 0.00E+00          |
| 24 Te-127 |                   | 2.70E+08          | 9.058+05          | 1.81E+06          | 3.082+07          | 0.00E+00 | 1.902+07          |
| 25 Te-129 | la 1.09E+07       | 4.03E+06          | 1.721+06          | 3.51E+08          | 4.55R+07          | 0.00E+00 | 4.082+07          |
| 26 I-131  | 5.488+08          | 7.678+08          | 4.122+08          | 2.24E+11          | 1.32E+09          | 0.00E+00 | 1.528+08          |
| 27 I-133  | 7.21 <b>E</b> +06 | 1.22E+07          | 3.7 <b>31+0</b> 6 | 1.71E+09          | 2.15B+07          | 0.00E+00 | 9.268+06          |
| 28 Ca-134 |                   | 1.918+09          | 8.86 <b>K+0</b> 8 | 0.00K+00          | 6.07E+08          | 2.32E+08 | 2.388+07          |
| 29 Ca-136 |                   | 4.49E+09          | 3.02 <b>E+0</b> 9 | 0.00E+00          | 2.44B+09          | 3.85E+08 | 3.61E+08          |
| 30 CB-137 | 2.718+10          | 3.81E+10          | 1.261+10          | 0.002+00          | 1.23E+10          | 4_77E+09 | 5.14E+08          |
| 31 Ba-140 |                   | 6.068+03          | 3.182+05          | 0.00 <b>E+0</b> 0 | 2.05E+03          | 4.07E+03 | 7.628+06          |
| 32 La-140 |                   | 4.06E-01          | 1.08 <b>T</b> -01 | 0.00 <b>x+</b> 00 | 0.00E+00          | 0.00E+00 | 2.338+04          |
| 33 Ce-143 |                   | 5.87B+02          | 6.74E+01          | 0.00K+00          | 2.76E+02          | 0.00E+00 | 1.68E+06          |
| 34 Ce-144 | 5.60E+04          | 2.32B+04          | 3.01 <b>E+0</b> 3 | 0.00E+00          | 1.39E+04          | 0.00E+00 | 1.41E+07          |

All nuclides (except B-3) calculated per ODCM equation 2.3-24 H-3 calculated per ODCM equation 2.3-28

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02      |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>106 of 128          |  |  |

### ATTACHMENT J Page 18 of 19 P&I ORGAN DOSE FACTORS

#### Table 2.3-19

#### R VALUES FOR BEAVER VALLEY SITE

(sq meter-mrem/yr per uCi/sec)

Pathway = Goat Milk Age Group = Child

| Nuclide           | Bone              | Liver             | T. Body           | Thyroid           | Kidney            | Lung     | ei-ffi           |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------|------------------|
| 1 B-3             | 0.00 <b>X</b> +00 | 3.20E+03          | 3,202+03          | 3.20E+03          | 3.20E+03          | 3.20E+63 | 3.208+03         |
| 2 P-32            | 7.91E+10          | 3.70E+09          | 3.05E+09          | 0.00E+00          | 0.00E+00          | 0.00E+00 | 2.19E+09         |
| 3 Cr-51           | 0.00E+00          | 0.00K+00          | 1.02E+04          | 5.64E+03          | 1.54E+03          | 1.03E+04 | 5.39E+05         |
| 4 Mn-54           | 0.00E+00          | 1.788+06          | 4.74E+05          | 0.008+00          | 4.991+05          | 0.00E+00 | 1.49E+06         |
| 5 Fe-59           | 1.26K+06          | 2.04E+06          | 1.02B+06          | 0.00E+00          | 0.00E+00          | 5.915+05 | 2.125+06         |
| 6 Co-57           | 0.00E+00          | 3.27E+05          | 6.63E+05          | 0.002+00          | 0.00E+00          | 0.00E+00 | 2.68E+06         |
| 7 Co-58           | 0.00E+00          | 1.13E+06          | 3.46E+06          | 0.002+00          | 0.00E+00          | 0.00E+00 | 6.60E+06         |
| 8 Co-60           | 0.00E+00          | 3.53B+06          | 1.04E+07          | 0.00E+00          | 0.008+00          | 0.00E+00 | 1.958+07         |
| 9 Zn-65           | 3.54E+08          | 9.44B+08          | 5.87E+08          | 0.00E+00          | 5.95E+08          | 0.00E+00 | 1.66E+08         |
| 10 Rb-86          | 0.00E+00          | 8.882+08          | 5.46E+08          | 0.008+00          | 0.00E+00          | 0.00X+00 | 5.71E+07         |
| 11 Sr-89          | 1.118+10          | 0.00E+00          | 3.172+08          | 0.00E+00          | 0.008+00          | 0.00E+00 | 4.30E+08         |
| 12 Sr-90          | 1.598+11          | 0.00E+00          | 4.02E+10          | 0.00E+00          | 0.00E+00          | 0.00E+00 | 2.14E+09         |
| 13 Y-91           | 3.70E+03          | 0.00E+00          | 9.89E+01          | 0.00K+00          | 0.00I+00          | 0.00E+00 | 4.938+05         |
| 14 Zr-95          | 3.60E+02          | 7.92E+01          | 7.05E+01          | 0.00E+00          | 1.138+02          | 0.00E+00 | 8.278+04         |
| 15 Nb-95          | 3.13E+04          | 1.22E+04          | 8.71E+03          | 0.00E+00          | 1.148+04          | 0.00E+00 | 2.25E+07         |
| 16 Mb-97          | 1.498-12          | 2.70E-13          | 1.268-13          | 0.00E+00          | 2.99R-13          | 0.00E+00 | 8.33E-08         |
| 17 Ho-99          | 0.00 <b>K+0</b> 0 | 8.30E+06          | 2.05E+06          | 0.00E+00          | 1.77E+07          | 0.00E+00 | 6.87E+06         |
| 18 Tc-99m         | 1.352+00          | 2.658+00          | 4.39E+01          | 0.00 <b>X</b> +00 | 3.84E+01          | 1.348+00 | 1.51E+03         |
| 19 Ru-103         | 4.18E+02          | 0.00E+00          | 1.61E+02          | 0.00E+00          | 1.05E+03          | 0.00E+00 | 1.082+04         |
| 20 Ru-106         | 7.79E+03          | 0.00E+00          | 9.728+02          | 0_00 <b>E</b> +00 | 1.058+04          | 0.008+00 | 1.21E+05         |
| 21 Ag-110m        | 1.792+07          | 1.21E+07          | 9.65E+06          | 0.00E+00          | 2.25E+07          | 0.00E+00 | 1.44E+09         |
| 22 Sb-124         | 0.00E+00          | 0.00E+00          | 0.00 <b>E+0</b> 0 | 0.00E+00          | 0.00E+00          | 0.00E+00 | 0.00 <b>B+00</b> |
| 23 86-125         | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00 | 0.00E+00         |
| 24 Te-127m        | 1.885+07          | 5.05 <b>E+0</b> 6 | 2.23E+06          | 4.465+06          | 5.358+07          | 0.008+00 | 1.52E+07         |
| 25 Te-129m        | 2.66E+07          | 7.488+06          | 4.16E+08          | 8.64 <b>I</b> +06 | 1.87E+07          | 0.002+00 | 3.27E+07         |
| 26 I-13i          | 1.338+09          | 1.34E+09          | 7.60E+08          | 4.42E+11          | 2.191+09          | 0.00E+00 | 1.198+08         |
| 27 I-133          | 1.75E+07          | 2.17E+07          | 8.20E+06          | 4.038+09          | 3.61 <b>8</b> +07 | 0.00E+00 | 8.73E+06         |
| 28 Cs-134         | 1.878+09          | 3.07 <b>2+0</b> 9 | 6.48E+08          | 0.00E+00          | 9.52 <b>X+</b> 08 | 3.428+08 | 1.66E+07         |
| <b>2</b> 9 Ca-136 | 2.58E+09          | 7.08E+09          | 4.588+09          | 0.00B+00          | 3.771+09          | 5.628+08 | 2.49B+08         |
| 30 Ca-137         | 6.54E+10          | 6.28E+10          | 9.24E+09          | 0.00E+00          | 2.04E+10          | 7.34E+09 | 3.922+08         |
| 31 Ba-140         | 1.198+07          | 1.052+06          | 6.96X+05          | 0.008+00          | 3.402+03          | 6.23E+03 | 6.04E+06         |
| 32 La-140         | 1.98E+00          | 6.92X-01          | 2.33E-01          | 0.00E+00          | 0.00E+00          | 0.00E+00 | 1.93E+04         |
| 33 Ce-141         | 2.162+03          | 1.08E+03          | 1.60E+03          | 0.00E+00          | 4.73E+02          | 0.002+00 | 1.35E+06         |
| 34 Ce-144         | 1.382+05          | 4.338+04          | 7.37E+03          | 0.00E+00          | 2.40E+04          | 0.008+00 | 1.138+07         |

All nuclides (except H-3) calculated per ODCH equation 2.3-24 H-3 calculated per ODCH equation 2.3-28

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |  |  |
|-----------------------------|--------------------------------|-------------------------------------|--|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2                 | Page Number:<br>107 of 128          |  |  |

## ATTACHMENT J Page 19 of 19 P&I ORGAN DOSE FACTORS

#### Table 2.3-20

#### R VALUES FOR BEAVER VALLEY SITE

(sq meter-arem/yr per uCi/sec)

| Pati | way  | = | G | at | MIII |
|------|------|---|---|----|------|
| Age  | Grou | g | = | In | ant  |

| Huclide    | Bone              | Liver             | T. Body           | Thyroid           | Kidney            | Lung              | GI-LLI            |
|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 1 H-3      | 0.002+00          | 4.862+03          | 4.862+03          | 4.86E+03          | 4.86E+03          | 4.862+03          | 4.862+03          |
| 2 P-32     | 1.638+11          | 9.598+09          | 6.32E+09          | 0.00K+00          | 0.00E+00          | 0.00E+00          | 2.21E+09          |
| 3 Cr-51    | 0.00E+00          | 0.00E+00          | 1.61E+04          | 1.05E+04          | 2.291+03          | 2.04E+04          | 4.69E+05          |
| 4 Ma-54    | 0.00E+00          | 3.31 <b>E+06</b>  | 7.50E+05          | 0.00E+00          | 7.33E+05          | 0.008+00          | 1.21E+06          |
| 5 Fe-59    | 2.35E+06          | 4.11E+06          | 1.62E+06          | 0.00 <b>E+0</b> 0 | 0.00E+00          | 1.21E+06          | 1.961+06          |
| 6 Ce-57    | 0.008+00          | 7.64E+05          | 1.24E+08          | 0.00E+00          | 0.002+00          | 0.002+00          | 2.60 <b>1+0</b> 8 |
| 7 Co-58    | 0.008+00          | 2.26 <b>K</b> +06 | 5.64 <b>X</b> +06 | 0.00E+00          | 0.002+00          | 0.00E+00          | 5.64K+06          |
| 8 Co-60    | 0.00E+00          | 7.20 <b>X</b> +06 | 1.70E+07          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 1.718+07          |
| 9 Zn-65    | 4.76B+08          | 1.63K+09          | 7.53 <b>E</b> +08 | 0.00E+00          | 7.92E+08          | 0.00E+00          | 1.38E+09          |
| 10 Rb-86   | 0.00E+00          | ,2.2511-09        | 1.11E+09          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 5.77E+07          |
| 11 Sr-89   | 2.118+10          | 0.00E+00          | 6.06E+08          | 0.001100.0        | 0.00E+00          | 0.00H+00          | 4.34R+08          |
| 12 Sr-90   | 1.738+11          | 0.00E+00          | 4.39E+10          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 2.16E+09          |
| 13 Y-91    | 6.948+03          | 0.00E+00          | 1.85E+02          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 4.98K+05          |
| 14 Zr-95   | 6.40E+02          | 1.56E+02          | 1.11E+02          | 0.00E+00          | 1.681+02          | 0.00E+00          | 7.778+04          |
| 15 ИЪ-95   | 5.848+04          | 2.41E+04          | 1.39E+04          | 0.008+00          | 1.728+04          | 0.00E+00          | 2.03E+07          |
| 16 Wb-97   | 3.16E-12          | 6.74E-13          | 2.43 <b>I</b> -13 | 0.008+00          | 5.27 <b>E</b> -13 | 0.00E+00          | 2.138-07          |
| 17 No-99   | 0.00E+00          | 2.12 <b>E</b> +07 | 4.141+06          | 0.00E+00          | 3.17E+07          | 0.00E+00          | 6.99 <b>I</b> +06 |
| 18 Tc-99m  | 2.81E+00          | 5. <b>79E+00</b>  | 7. <b>451</b> +01 | 0.00E+00          | 6.238+01          | 3.03E+00          | 1.68E+03          |
| 19 Ra-103  | 8.47E+02          | 0.00E+00          | 2.83E+02          | 0.00E+00          | 1.768+03          | 0.00E+00          | 1.03E+04          |
| 20 Ru-106  | 1.608+04          | 0.00 <b>I</b> +00 | 2.001+03          | 0.00E+00          | 1.90E+04          | 0.00E+00          | 1.222+05          |
| 21 Ag-110m | 3.30E+07          | 2.41E+07          | 1.601+07          | 0.00E+00          | 3.45E+07          | 0.001+00          | 1.252+09          |
| 22 Sb-124  | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0-008+00          |
| 23 Sb-125  | 0-00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 0.00E+00          |
| 24 Te-127s | 3.80E+07          | 1.26E+07          | 4.592+06          | 1.102+07          | 9.35B+07          | 0.00 <b>E+0</b> 0 | 1.53E+07          |
| 25 Te-129m | 5.50E+07          | 1.89E+07          | 8.47 <b>B</b> +06 | 2.11E+07          | 1.382+08          | 0.002+00          | 3.28E+07          |
| 26 I-131   | 2.77E+09          | 3.27E+09          | 1.44E+09          | 1.07E+12          | 3.82E+09          | 0.002+00          | 1.17E+08          |
| 27 I-133   | 3.70E+07          | 5.39K+07          | 1.58E+07          | 9.80 <b>1</b> +09 | 6.34E+07          | 0.00E+00          | 9.12E+06          |
| 28 Cs-134  | 3.02 <b>R</b> +09 | 5.62K+09          | 5.68E+08          | 0.00E+00          | 1.45E+09          | 5.93E+08          | 1.53E+07          |
| 29 Cs-136  | 5.03E+09          | 1.48E+10          | 5.52E+09          | 0.00E+00          | 5.90E+09          | 1.21 <b>E+0</b> 9 | 2.25E+08          |
| 30 Cs-137  | 1.04E+11          | 1.221+11          | 8.66E+09          | 0.00E+00          | 3.28E+10          | 1.33E+10          | 3.82 <b>E</b> +08 |
| 31 Ba-140  | 2.45E+07          | 2.453+04          | 1.26E+06          | 0.00E+00          | 5.83E+03          | 1.51E+04          | 6.03E+06          |
| 32 La-140  | 4.14E+00          | 1.632+00          | 4.19B-01          | 0.00E+00          | 0.00E+00          | 0.00E+00          | 1.92E+04          |
| 33 Ce-141  | 4.29K+03          | 2.62E+03          | 3.08E+02          | 0.002+00          | 8.07E+02          | 0.00E+00          | 1.358+06          |
| 34 Ce-144  | 1.9811+05         | 8.118+04          | 1.11E+04          | 0.00E+00          | 3.28E+04          | 0.00E+00          | 1.14E+07          |

All nuclides (except H-3) calculated per ODCM equation 2.3-24 H-3 calculated per ODCM equation 2.3-28

| TA | DI  | $\mathbf{r}$ | $\mathbf{a}$ | 2          | ^  | 1 |
|----|-----|--------------|--------------|------------|----|---|
| JΑ | .HI | ъ.           | 7.           | . <b>5</b> | -2 | 1 |

## PV-1/2 DEPOSITION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR (meters<sup>-2</sup>)

#### DISTANCES TO THE CONTROL LOCATIONS, IN MILES

| SECTOR | 0.0 - 0.5 | 0.5 - 1.0 | 1.0 - 1.5 | 1.5 - 2.0 | 2.0 - 2.5 | 2.5 - 3.0         | 3.0 - 3.5 | 3.5 - 4.0 | 4.0 - 4.5  | 4.5 - 5.0 |
|--------|-----------|-----------|-----------|-----------|-----------|-------------------|-----------|-----------|------------|-----------|
| N      | 6.00E-10  | 8.60E-09  | 3.14E-09  | 1.76E-09  | 8.12E-10  | 5.70E-10          | 4.24E-10  | 3.29E-10  | 2.63E-10   | 2.15E-10  |
| NNE    | 6.66E-10  | 5.64E-09  | 1.98E-09  | 2.55E-09  | 1.33E-09  | 1.07E-09          | 6.75E-10  | 5.23E-10  | 4.56E-10   | 3.74E-10  |
| NE     | 1.03E-09  | 1.57E-09  | 1.32E-09  | 3.62E-09  | 2.63E-09  | 1.64E-09          | 1.23E-09  | 6.13E-10  | 7.85E-10   | 6.42E-10  |
| · ·    |           |           |           |           |           |                   |           |           |            |           |
| ENE    | 1.13E-09  | 1.55E-09  | 3.69E-09  | 3.27E-09  | 2.31E-09  | 1.29E-09          | 1.21E-09  | 6.78E-10  | 6.72E-10   | 3.89E-10  |
| E      | 1.35E-09  | 1.28E-08  | 4.09E-09  | 3.12E-09  | 1.91E-09  | 1.36E <b>-</b> 09 | 1.01E-09  | 7.83E-10  | 4.15E-10   | 5.10E-10  |
| ESE    | 9.82E-10  | 7.85E-09  | 4.40E-09  | 2.46E-09  | 1.47E-09  | 1.03E-09          | 5.65E-10  | 5.05E-10  | 3.25E-10 a | 3.00E-10  |
|        |           |           |           |           |           |                   |           |           | 4 2        |           |
| SE     | 2.76E-09  | 6.41E-09  | 3.52E-09  | 1.97E-09  | 1.18E-09  | 8.27E-10          | 5.68E-10  | 4.40E-10  | 2.93E-10   | 2.43E-10  |
| SSE    | 2.22E-09  | 4.66E-09  | 3.01E-09  | 1.68E-09  | 1.02E-09  | 7.14E-10          | 4.25E-10  | 3.29E-10  | 2.19E-10   | 1.80E-10  |
| S      | 3.00E-09  | 4.81E-09  | 3.76E-09  | 2.10E-09  | 1.36E-09  | 9.52E-10          | 5.12E-10  | 3.96E-10  | 2.68E-10   | 2.20E-10  |
| SSW    | 1.44E-08  | 2.89E-09  | 7.83E-10  | 8.84E-10  | 5,70E-10  | 4.00E-10          | 2.55E-10  | 1.98E-10  | 1.84E-10   | 1.51E-10  |
| SW     | 1.89E-08  | 5.55E-09  | 1.55E-09  | 8.71E-10  | 2.61E-10  | 3.94E-10          | 1.57E-10  | 2.50E-10  | 2.54E-10   | 2.08E-10  |
|        |           |           |           |           |           |                   |           |           |            |           |
| wsw    | 1.57E-09  | 6.63E-09  | 1.36E-09  | 1.04E-09  | 5.44E-10  | 2.39E-10          | 3.84E-10  | 2.98E-10  | 2.17E-10   | 1.78E-10  |
| W      | 3.78E-10  | 2.95E-09  | 1.84E-09  | 1.03E-09  | 6.63E-10  | 4.66E-10          | 1.37E-10  | 2.68E-10  | 1.12E-10   | 1.75E-10  |
| WNW    | 4.54E-10  | 4.13E-10  | 3.09E-10  | 4.71E-10  | 7.35E-10  | 5.16E-10          | 1.93E-10  | 1.10E-10  | 1.12E-10   | 1.80E-10  |
| NW     | 4.52E-10  | 4.09E-10  | 2.86E-10  | 1.18E-09  | 7.04E-10  | 4.94E-10          | 3.37E-10  | 2.10E-10  | 2.09E-10   | 1.71E-10  |
| NNW    | 3.40E-10  | 2.05E-09  | 1.63E-09  | 9.12E-10  | 5.86E-10  | 4.13E-10          | 2.79E-10  | 2.16E-10  | 1.73E-10   | 1.42E-10  |
|        | 22        |           |           |           |           |                   |           |           |            |           |

ODCM: GASEOUS EFFLUENTS

| Valley Power Station | Procedure Number: 1/2-C Unit: Leve | 1/2-ODC-2.02  Level Of Use:  In-Field Ref |
|----------------------|------------------------------------|-------------------------------------------|
|                      | Unit:<br>1/2                       | Level Of Use:<br>In-Field Reference       |
| FILENTS              | Revision:                          | Page Number:                              |
|                      | 2                                  | 108 of 128                                |

| TA | ۱BI | F | 2 | 3.  | -22 |
|----|-----|---|---|-----|-----|
| 1. | וער |   | _ | ٠., | -22 |

### CV-1 AND CV-2 DEPOSITION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR (meters<sup>-2</sup>)

### DISTANCES TO THE CONTROL LOCATIONS, IN MILES

| SECTO | OR 0.0, - 0.5 | 0.5 - 1.0 | 1.0 - 1.5 | 1.5 - 2.0 | 2.0 - 2.5 | 2.5 - 3.0 | 3.0 - 3.5 | 3.5 - 4.0 | 4.0 - 4.5 | 4.5 - 5.0  |
|-------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| N     | 4.46E-08      | 7.73E-09  | 3.24E-09  | 1.81E-09  | 1.08E-09  | 7.57E-10  | 5.16E-10  | 4.00E-10  | 2.91E-10  | 2.38E-10   |
| NNE   | 5.42E-08      | 9.39E-09  | 3.37E-09  | 1.89E-09  | 1.22E-09  | 8.54E-10  | 6.35E-10  | 4.92E-10  | 3.94E-10  | 3.22E-10   |
| NE    | 7.32E-08      | 1.27E-08  | 6.21E-09  | 3.47E-09  | 2.24E-09  | 1.57E-09  | 1.00E-09  | 7.77E-10  | 5.69E-10  | 4.66E-10   |
| ENE   | 7.77E-08      | 1.35E-08  | 6.51E-09  | 3.64E-09  | 2.50E-09  | 1.76E-09  | 1.31E-09  | 1.01E-09  | 6.58E-10  | 5.39E-10   |
| E     | 6.08E-08      | 1.05E-08  | 3.79E-09  | 2.12E-09  | 1.37E-09  | 9.59E-10  | 6.54E-10  | 5.06E-10  | 4.05E-10  | 3.32E-10   |
| ESE   | 3.23E-08      | 5.60E-09  | 2.54E-09  | 1.42E-09  | 8.46E-10  | 5.94E-10  | 4.05E-10  | 3.14E-10  | 2.28E-10  | 1.87E-10   |
| SE    | 3.29E-08      | 5.70E-09  | 2.59E-09  | 1.45E-09  | 9.32E-10  | 6.55E-10  | 4.12E-10  | 3.19E-10  | 2.55E-10  | 2.09E-10   |
| SSE   | 2.84E-08      | 4.92E-09  | 2.06E-09  | 1.15E-09  | 6.29E-10  | 4.42E-10  | 2.99E-10  | 2.32E-10  | 1.85E-10  | - 1.52E-10 |
| S     | 3.67E-08      | 6.37E-09  | 2.26E-09  | 1.26E-09  | 8.14E-10  | 5.71E-10  | 3.86E-10  | 2.99E-10  | 2.39E-10  | 1.96E-10   |
| SSW   | 2.61E-08      | 4.52E-09  | 1.60E-09  | 8.97E-10  | 5.78E-10  | 4.06E-10  | 3.02E-10  | 2.34E-10  | 1.70E-10  | 1.39E-10   |
| SW    | 3.06E-08      | 5.30E-09  | 2.62E-09  | 1.47E-09  | 8.01E-10  | 5.62E-10  | 4.18E-10  | 3.24E-10  | 2.35E-10  | 1.93E-10   |
| WSW   | 4.60Ē:00      | 7.0717.00 | 2 24E 00  | 1 975 00  | 1.205.00  | 9 450 10  | 5.87E-10  | 4.55E-10  | 3.38E-10  | 2.77E-10   |
| WSW   | 4.60E-08      | 7.97E-09  | 3.34E-09  | 1.87E-09  | 1.20E-09  | 8.45E-10  |           |           |           | 3.15E-10   |
|       | 6.49E-08      | 1.13E-08  | 4.72E-09  | 2.64E-09  | 1.19E-09  | 8.36E-10  | 6.22E-10  | 4.82E-10  | 3.85E-10  | 4.75E-10   |
| WNW   | 9.25E-08      | 1.60E-08  | 6.43E-09  | 3.60E-09  | 2.21E-09  | 1.55E-09  | 1.16E-09  | 8.96E-10  | 5.79E-10  |            |
| NW    | 1.19E-07      | 2.07E-08  | 8.68E-09  | 4.86E-09  | 2.99E-09  | 2.10E-09  | 1.56E-09  | 1.21E-09  | 7.83E-10  | 6.41E-10   |
| NNW   | 5.22E-08      | 9.04E-09  | 3.79E-09  | 2.12E-09  | 1.28E-09  | 9.00E-10  | 6.25E-10  | 4.84E-10  | 3.59E-10  | 2.94E-10   |
|       |               |           |           |           |           |           |           |           |           |            |

ATTACHMENT K
Page 2 of 7
CONTINUOUS RELEASE DEPOSITION PARAMETERS (0-5 MILES)

ODCM: GASEOUS EFFLU

Beaver

| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |           |                    |
|-----------------------------------------|-----------|--------------------|
| alley Fower Station                     | 1.        | 1/2-ODC-2.02       |
|                                         | Unit:     | Level Of Use:      |
|                                         | 1/2       | In-Field Reference |
| CIENTS                                  | Revision: | Page Number:       |
|                                         | 2         | 109 of 128         |

| Beaver Valley Power Station | Procedure Nur | nber:<br>/2-ODC-2.02                |
|-----------------------------|---------------|-------------------------------------|
| Title:                      | Unit:<br>1/2  | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:     | Page Number:<br>110 of 128          |

ATTACHMENT K
Page 3 of 7
CONTINUOUS RELEASE DEPOSITION PARAMETERS (0-5 MILES)

**TABLE 2.3-23** 

VV-1 AND VV-2 DEPOSITION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR (meters<sup>-2</sup>)

| Beaver Valley Power Station | Procedure Nun | nber:<br>/2-ODC-2.02                |
|-----------------------------|---------------|-------------------------------------|
| Title:                      | Unit:<br>1/2  | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:     | Page Number: 111 of 128             |

Page 4 of 7 CONTINUOUS RELEASE DEPOSITION PARAMETERS (0-5 MILES)

**TABLE 2.3-24** 

TV-2 DEPOSITION PARAMETERS ( $\overline{D/Q}$ ) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR (meters<sup>-2</sup>)

| Beaver Valley Power Station | 172 ODC 2.02 |                                     |  |
|-----------------------------|--------------|-------------------------------------|--|
| Title:                      | Unit: 1/2    | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:    | Page Number:<br>112 of 128          |  |

ATTACHMENT K
Page 5 of 7
CONTINUOUS RELEASE DEPOSITION PARAMETERS (0-5 MILES)

**TABLE 2.3-25** 

CB-2 DEPOSITION PARAMETERS ( $\overline{D/Q}$ ) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR (meters<sup>-2</sup>)

| Beaver Valley Power Station | Procedure Nur  | nber:<br>/2-ODC-2.02                |
|-----------------------------|----------------|-------------------------------------|
| Title:                      | Unit:<br>1/2   | Level Of Use:<br>In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:<br>2 | Page Number: 113 of 128             |

ATTACHMENT K
Page 6 of 7
CONTINUOUS RELEASE DEPOSITION PARAMETERS (0-5 MILES)

**TABLE 2.3-26** 

DV-2 DEPOSITION PARAMETERS ( $\overline{D/Q}$ ) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR (meters<sup>-2</sup>)

| Beaver Valley Power Station | Procedure Num | nber:<br>/2-ODC-2.02             |
|-----------------------------|---------------|----------------------------------|
| Title:                      | Unit:         | Level Of Use: In-Field Reference |
| ODCM: GASEOUS EFFLUENTS     | Revision:     | Page Number:<br>114 of 128       |

ATTACHMENT K
Page 7 of 7
CONTINUOUS RELEASE DEPOSITION PARAMETERS (0-5 MILES)

**TABLE 2.3-27** 

WV-2 DEPOSITION PARAMETERS (\overline{D/Q}) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR (meters<sup>-2</sup>)

| Beaver Valley Power Station | 112-010-2.02 |                                  |  |
|-----------------------------|--------------|----------------------------------|--|
| Title:                      | Unit: 1/2    | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:    | Page Number:<br>115 of 128       |  |

### ATTACHMENT L Page 1 of 7 CONTINUOUS RELEASE DEPOSITION PARAMETERS (SPECIAL DISTANCES)

#### **TABLE 2.3-28**

## PV-1/2 DEPOSTION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (1E-9 meters<sup>-2</sup>)

### **INDIVIDUAL RECEPTORS**

| DOWNWIND<br>SECTOR | SITE<br>BOUNDARY | VEGETABLE<br>GARDEN | MILK<br>COW | MILK<br>GOAT | MEAT<br>ANIMAL | RESIDENCE |
|--------------------|------------------|---------------------|-------------|--------------|----------------|-----------|
| N                  | 600              | 2.340               |             | .572         | .707           | 2.510     |
| NNE                | .673             | 3.220               |             | .524         | 2.920          | 3.220     |
| NE                 | .766             | 1.280               | .660        | .111         | .660           | 1.200     |
| ENE                | 1.010            | 5.080               |             | .702         |                | 1.760     |
| E                  | 1.370            | 4.420               | .401        | 1.290        | 1.290          | 4.420     |
| ESE                | .984             | 6.390               |             | 2.340        | 6.390          | 6.180     |
| SE                 | 11.000           | 3.680               | .466        | .466         | 1.300          | 3.680     |
| SSE                | 7.060            | 3.220               | .423        | .105         | 3.140          | 4.320     |
| S                  | 5.780            | 1.540               | 1.410       |              | 2.610          | 2.730     |
| SSW                | 2.040            | 1.040               | .578        | .208         | 1.040          | 1.460     |
| SW                 | 1.610            | 1.120               |             | .693         | .979           | 1.120     |
| WSW                | 1.710            | 1.310               | .370        |              | 1.190          | 1.310     |
| • <b>w</b>         | .377             | .659                | .138        | /            | .518           | .659      |
| WNW                | .424             | 746                 | .497        | .029         | .746           | .746      |
| NW                 | .447             | .425                |             | .070         | .488           | .422      |
| NNW                | .340             | 1.840               |             | .043         | .545           | 1.92      |

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                  |  |
|-----------------------------|--------------------------------|----------------------------------|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use: In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number: 116 of 128          |  |

Page 2 of 7

CONTINUOUS RELEASE DEPOSITION PARAMETERS (SPECIAL DISTANCES)

### **TABLE 2.3-29**

CV-1 AND CV-2 DEPOSTION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (1E-9 meters<sup>-2</sup>)

#### INDIVIDUAL RECEPTORS

| DOWNWIND<br>SECTOR | SITE<br>BOUNDARY | VEGETABLE<br>GARDEN | MILK<br>COW | MILK<br>GOAT | MEAT<br>ANIMAL | RESIDENCE |
|--------------------|------------------|---------------------|-------------|--------------|----------------|-----------|
| N                  | 25.40            | 2.05                |             | .693         | .847           | 2.19      |
| NNE                | 18.80            | 2.02                |             | .459         | 1.850          | 2.11      |
| NE                 | 63.40            | 29.30               | .455        | .078         | .455           | 30.40     |
| ENE                | 65.90            | 8.92                |             | .661         | <b></b>        | 32.20     |
| E                  | 38.00            | 3.90                | .382        | 1.020        | 1.020          | 22.70     |
| ESE                | 17.10            | 3.56                |             | 1.380        | 3.560          | 3.56      |
| SE                 | - 13.80          | 3.03                | .350        | .350         | 1.100          | 3.03      |
| SSE                | 10.50            | 2.65                | .317        | .094         | 2.570          | 3.68      |
| S                  | 10.60            | 1.05                | .934        |              | 1.860          | 1.95      |
| SSW                | 5.59             | 1.26                | .663        | .266         | 1.260          | 4.42      |
| SW                 | 3.94             | 2.21                |             | 1.320        | 1.920          | 2.21      |
| wsw                | 27.50            | 2.65                | .596        |              | 2.380          | 2.65      |
| w                  | 31.60            | 1:23                | .645        |              | .960           | 1.23      |
| WNW                | 39.10            | 2.23                | 1.490       | .045         | 2.230          | 2.23      |
| NW                 | 70.60            | 15.00               |             | .276         | 1.990          | 15.60     |
| NNW                | 31.50            | 6.52                |             | .068         | 1.090          | 9.91      |
|                    |                  | · ·                 |             |              |                |           |

| Beaver Valley Power Station |              | Procedure Number: 1/2-ODC-2.02   |  |  |
|-----------------------------|--------------|----------------------------------|--|--|
| Title:                      | Unit:<br>1/2 | Level Of Use: In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:    | Page Number:<br>117 of 128       |  |  |

Page 3 of 7

CONTINUOUS RELEASE DEPOSITION PARAMETERS (SPECIAL DISTANCES)

**TABLE 2.3-30** 

VV-1 AND VV-2 DEPOSTION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (1E-9 meters<sup>-2</sup>)

| Beaver Valley Power Station | Beaver Valley Power Station  Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|-------------------------------------------------------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2                                                | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                                                   | Page Number:<br>118 of 128          |  |

### ATTACHMENT L Page 4 of 7

### CONTINUOUS RELEASE DEPOSITION PARAMETERS (SPECIAL DISTANCES)

### **TABLE 2.3-31**

# TV-2 DEPOSTION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (1E-9 meters<sup>-2</sup>)

#### INDIVIDUAL RECEPTORS

| DOWNWIND<br>SECTOR | SITE<br>BOUNDARY | VEGETABLE<br>GARDEN | MILK<br>COW | MILK<br>GOAT | MEAT<br>ANIMAL | RESIDENCE |
|--------------------|------------------|---------------------|-------------|--------------|----------------|-----------|
| N                  | 20,20            | 2.05                |             | .693         | .847           | 2.190     |
| NNE                | 34.90            | 2.02                |             | .459         | 1.850          | 2.110     |
| NE                 | 54.20            | 29.30               | .455        | .078         | .455           | 30.400    |
| ENE                | 57.50            | 8.92                |             | .661         |                | 32.200    |
| E                  | 38.10            | 3.90                | .382        | 1.020        | 1.020          | 22.700    |
| ESE                | 18.60            | 3.56                |             | 1.380        | 3.560          | 3.560     |
| SE                 | 19.00            | 3.03                | .351        | .351         | 1.100          | 3.030     |
| SSE                | 13.30            | 2.65                | .318        | .094         | 2.570          | 3.690     |
| S                  | 11.30            | 10.40               | .934        |              | 1.860          | 1.950     |
| SSW                | 6.44             | 1.26                | .664        | .266         | 1.260          | 4.430     |
| SW                 | 3.95             | 2.21                | ·           | 1.320        | 1.920          | 2.210     |
| wsw                | 25.10            | 2.65                | .597        |              | 2.380          | 2.650     |
| w                  | 28.40            | 1,23                | .646        |              | .961           | 1.230     |
| WNW                | 30.90            | 2.23                | 1.490       | .045         | 2.230          | 2.230     |
| · NW               | 56.10            | 14.90               |             | .276         | 1.980          | 15.500    |
| NNW                | 25.10            | 6.53                |             | .068         | 1.100          | 9.920     |

| Beaver Valley Power Station |              | Procedure Number: 1/2-ODC-2.02   |  |  |
|-----------------------------|--------------|----------------------------------|--|--|
| Title:                      | Unit:<br>1/2 | Level Of Use: In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: 2  | Page Number:<br>119 of 128       |  |  |

Page 5 of 7 CONTINUOUS RELEASE DEPOSITION PARAMETERS (SPECIAL DISTANCES)

**TABLE 2.3-32** 

CB-2 DEPOSTION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (1E-9 meters<sup>-2</sup>)

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02      |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>120 of 128          |  |  |

Page 6 of 7

CONTINUOUS RELEASE DEPOSITION PARAMETERS (SPECIAL DISTANCES)

**TABLE 2.3-33** 

DV-2 DEPOSTION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (1E-9 meters<sup>-2</sup>)

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02   |  |  |
|-----------------------------|-----------|----------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use: In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>121 of 128       |  |  |

Page 7 of 7

CONTINUOUS RELEASE DEPOSITION PARAMETERS (SPECIAL DISTANCES)

**TABLE 2.3-34** 

WV-2 DEPOSTION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES >500 HRS/YR OR >150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (1E-9 meters<sup>-2</sup>)

| Beaver Valley Power Station | Procedure Number: 1/2-ODC-2.02 |                                     |  |
|-----------------------------|--------------------------------|-------------------------------------|--|
| Title:                      | Unit:<br>1/2                   | Level Of Use:<br>In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:                      | Page Number:<br>122 of 128          |  |

### ATTACHMENT M Page 1 of 3 BATCH RELEASE DISPERSION PARAMETERS (SPECIAL DISTANCES)

### TABLE 2.3-35

### CV-1 AND CV-2 DISPERSION PARAMETERS (X/Q) FOR BATCH RELEASES ≥500 HRS/YR OR ≥150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (sec/m³)

#### **INDIVIDUAL RECEPTORS**

|                     |                  | II (DI VID C1)      | B REOLI I   | OIKD .       |                |           |
|---------------------|------------------|---------------------|-------------|--------------|----------------|-----------|
| DOWNWIND<br>SECTOR* | SITE<br>BOUNDARY | VEGETABLE<br>GARDEN | MILK<br>COW | MILK<br>GOAT | MEAT<br>ANIMAL | RESIDENCE |
| N                   | 8.21E-5          | 8.38E-6             |             | 3.72E-6      | 4.34E-6        | 8.82E-6   |
| NNE                 | 3.04E-5          | 4.71E-6             |             | 1.40E-6      | 4.38E-6        | 4.87E-6   |
| NE                  | 4.59E-5          | 2.21E-5             | 6.05E-7     | 1.38E-7      | 6.05E-7        | 2.28E-5   |
| ENE                 | 3.72E-5          | 5.25E-6             | <del></del> | 5.66E-7      |                | 1.88E-5   |
| E                   | 2.93E-5          | 3.79E-6             | 5.15E-7     | 1.17E-6      | 1.17E-6        | 1.78E-5   |
| ESE                 | 2.47E-5          | 5.61E-6             |             | 2.34E-6      | 5.61E-6        | 5.61E-6   |
| SE                  | 2.14E-5          | 5.00E-6             | 8.13E-7     | 8.13E-7      | 2.03E-6        | 5.00E-6   |
| SSE                 | 2.21E-5          | 6.31E-6             | 1.11E-6     | 3.92E-7      | 6.13E-6        | 8.49E-6   |
| S                   | 2.15E-5          | 3.03E-6             | 2.76E-6     |              | 4.93E-6        | 5.14E-6   |
| SSW                 | 2.18E-5          | 6.58E-6             | 3.81E-6     | 1.82E-6      | 6.58E-6        | 1.78E-5   |
| SW                  | 1.82E-5          | 1.03E-5             |             | 6.67E-6      | 9.12E-6        | 1.03E-5   |
| wsw                 | 1.09E-4          | 1.29E-5             | 4.10E-6     | ·            | 1.19E-5        | 1.29E-5   |
| w                   | 1.49E-4          | 1.05E-5             | 6.55E-6     | <del></del>  | 8.77E-6        | 1.05E-5   |
| WNW                 | 1.91E-4          | 1.72E-5             | 1.28E-5     | 1.23E-6      | 1.72E-5        | 1.72E-5   |
| NW                  | 3.08E-4          | 6.13E-5             |             | 3.80E-6      | 1.36E-5        | 6.36E-5   |
| NNW                 | 1.80E-4          | 3.54E-5             |             | 1.35E-6      | 9.27E-6        | 5.29E-5   |
|                     |                  |                     |             |              |                |           |

<sup>\*</sup>Measured relevant to center point between BV-1 and BV-2 Containment Buildings

Period of Record: 1976 - 1980

| Beaver Valley Power Station | Procedure Number:<br>1/2-ODC-2.02          |  |
|-----------------------------|--------------------------------------------|--|
| Title:                      | Unit: Level Of Use: 1/2 In-Field Reference |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: Page Number: 123 of 128          |  |

### ATTACHMENT M Page 2 of 3 BATCH RELEASE DISPERSION PARAMETERS (SPECIAL DISTANCES)

#### **TABLE 2.3-36**

## VV-1 AND VV-2 DISPERSION PARAMETERS (X/Q) FOR BATCH RELEASES ≥500 HRS/YR OR ≥150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (sec/m³)

#### INDIVIDUAL RECEPTORS

|                     |                  | 11.01.12.0.         |                   | <del></del>  |                | <del></del> |
|---------------------|------------------|---------------------|-------------------|--------------|----------------|-------------|
| DOWNWIND<br>SECTOR* | SITE<br>BOUNDARY | VEGETABLE<br>GARDEN | MILK<br>COW       | MILK<br>GOAT | MEAT<br>ANIMAL | RESIDENCE   |
| N                   | 9.75E-5          | 1.00E-5             |                   | 4.21E-6      | 4.95E-6        | 1.06E-5     |
| NNE                 | 3.78E-5          | 5.11E-6             |                   | 1.43E-6      | 4.72E-6        | 5.30E-6     |
| NE                  | 6.13E-5          | 2.70E-5             | 6.20E-7           | 1.40E-7      | 6.20E-7        | 2.81E-5     |
| ENE                 | 4.83E-5          | 5.58E-6             | <del></del>       | 5.71E-7      |                | 2.24E-5     |
| E                   | 3.66E-5          | 3.99E-6             | 5.25E-7           | 1.19E-6      | 1.19E-6        | 2.10E-5     |
| ESE                 | 2.99E-5          | 6.13E-6             | J.2J <u>.</u> 2-1 | 2.43E-6      | 6.13E-6        | 6.13E-6     |
| SE                  | 2.55E-5          | 5.29E-6             | 8.24E-7           | 8.24E-7      | 2.13E-6        | 5.29E-6     |
| SSE                 | 2.65E-5          | 6.72E-6             | 1.12E-6           | 3.95E-7      | 6.53E-6        | 9.22E-6     |
| S                   | 2.52E-5          | 3.14E-6             | 2.83E-6           |              | 5.29E-6        | 5.53E-6     |
| SSW                 | 2.60E-5          | 7.34E-6             | 4.15E-6           | 1.92E-6      | 7.34E-6        | 2.09E-5     |
| sw                  | 2.13E-5          | 1.18E-5             | 1.15E 0           | 7.41E-6      | 1.04E-5        | 1.18E-5     |
| wsw                 | 1.34E-4          | 1.51E-5             | 4.46E-6           |              | 1.38E-5        | 1.51E-5     |
| w                   | 1.77E-4          | 1.25E-5             | 7.40E-6           |              | 1.02E-5        | 1.25E-5     |
| WNW                 | 2.33E-4          | 2.07E-5             | 1.49E-5           | 1.30E-6      | 2.07E-5        | 2.07E-5     |
| NW                  | 3.32E-4          | 8.57E-5             | 1.TZU-Z           | 4.24E-6      | 1.64E-5        | 8.85E-5     |
| NNW                 | 1.90E-4          | 4.69E-5             |                   | 1.45E-6      | 1.04E-5        | 6.75E-5     |
| .= .2               | ·                |                     |                   |              |                |             |

<sup>\*</sup>Measured relevant to center point between BV-1 and BV-2 Containment Buildings

Period of Record: 1976 - 1980

| Beaver Valley Power Station |           | Procedure Number: 1/2-ODC-2.02      |  |  |
|-----------------------------|-----------|-------------------------------------|--|--|
| Title:                      | Unit:     | Level Of Use:<br>In-Field Reference |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>124 of 128          |  |  |

### ATTACHMENT M Page 3 of 3 BATCH RELEASE DISPERSION PARAMETERS (SPECIAL DISTANCES)

#### **TABLE 2.3-37**

### PV-1/2 DISPERSION PARAMETERS (X/Q) FOR BATCH RELEASES ≥500 HRS/YR OR ≥150 HRS/QTR FOR SPECIAL DISTANCES (IDENTIFIED IN ATTACHMENT E TABLE 2.2-3) (sec/m³)

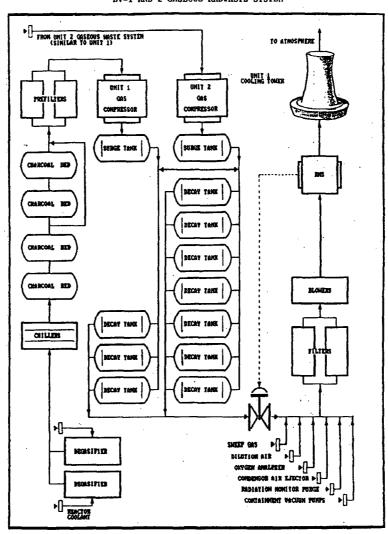
### INDIVIDUAL RECEPTORS

| DOWNWIND<br>SECTOR* | SITE<br>BOUNDARY | VEGETABLE<br>GARDEN | MILK<br>COW     | MILK<br>GOAT     | MEAT<br>ANIMAL | RESIDENCE        |
|---------------------|------------------|---------------------|-----------------|------------------|----------------|------------------|
| N                   | 3.09E-9          | 3.30E-6             |                 | 1.13E-6          | 1.34E-6        | 3.36E-6          |
| NNE                 | 2.85E-9          | 2.68E-6             |                 | 6.52E-7          | 2.47E-6        | 2.68E-6          |
| NE                  | 2.02E-10         | 7.42E-9             | 5.44E-7         | 1.24E-7          | 5.44E-7        | 5.51E-9          |
| ENE                 | 1.02E-9          | 3.21E-6             | . <del></del> . | 6.29E-7          |                | 1.67E-9          |
| E                   | 2.15E-9          | 2.91E-6             | 4.96E-7         | 1.14 <b>E-</b> 6 | 1.14E-6        | 2.91E-6          |
| ESE                 | 6.90E-9          | 4.97E-6             |                 | 1.95E-6          | 4.97E-6        | 4.81E-6          |
| SE                  | 2.91E-6          | 3.52E-6             | 6.02E-7         | 6.02E-7          | 1.43E-6        | 3.52E-6          |
| SSE                 | 4.91E-6          | 3.56E-6             | 6.53E-7         | 2.18E-7          | 3.47E-6        | 4.71E-6          |
| S                   | 2.41E-6          | 1.78E-6             | 1.65E-6         |                  | 2.84E-6        | 2.96E-6          |
| SSW                 | 4.83E-6          | 2.52E-6             | 1.50E-6         | 6.60E-7          | 2.52E-6        | 3.96E-6          |
| SW                  | 4.82E-6          | 2.75E-6             |                 | 1.78E-6          | 2.44E-6        | 2.75E-6          |
| WSW                 | 5.77E-7          | 2.81E-6             | 8.79E-7         |                  | 2.57E-6        | 2.81E-6          |
| W                   | 2.88E-9          | 1.68E-6             | 4.89E-7         |                  | 1.37E-6        | 1.68E-6          |
| WNW                 | 3.40E-9          | 1.61E-6             | 1.13E-6         | 1.10E-7          | 1.61E-6        | 1.61 <b>E-</b> 6 |
| NW                  | 1.34E-9          | 3.31E-8             |                 | 2.03E-7          | 1.07E-6        | 3.10E-8          |
| NNW                 | 1.52E-9          | 3.73E-6             |                 | 1.73E-7          | 1.31E-6        | 3.81E-6          |

<sup>\*</sup>Measured relevant to BV-1 natural draft cooling tower

Period of Record: 1976 - 1980

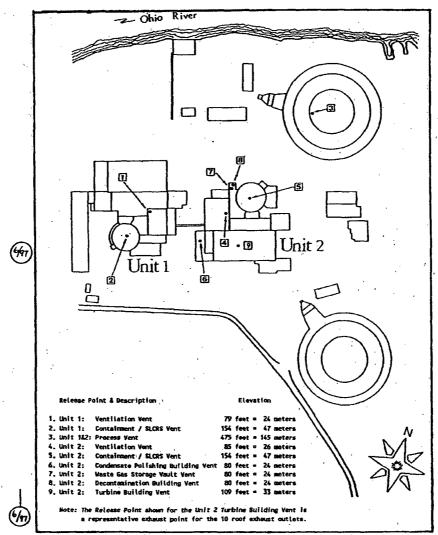
| TA | BI | E | 2. | 3 | -3 | ۶ |
|----|----|---|----|---|----|---|
|    |    |   |    |   |    |   |

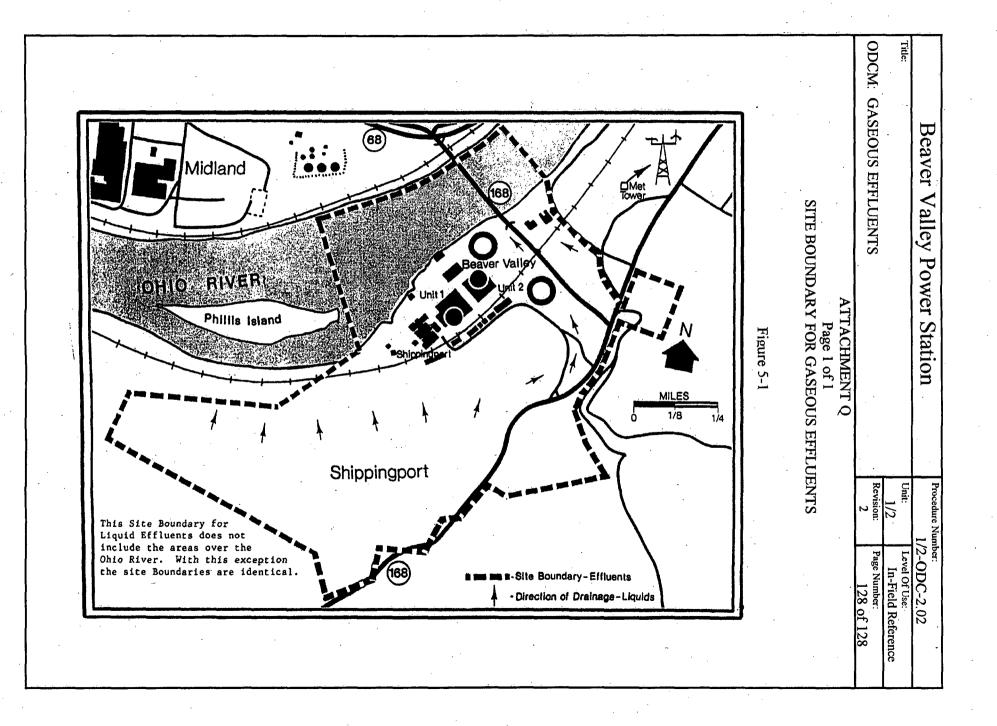

### PV-1/2 DISPERSION PARAMETERS (D/Q) FOR CONTINUOUS RELEASES ≥500 HRS/YR OR ≥150 HRS/QTR (sec/m³)

| •.      |                      | • .                |                    |                    | ΓABLE 2.3-            | 38                 |                    |                    |           | · · · · · |                                                              | орсм:                                      | Title:                             |
|---------|----------------------|--------------------|--------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|-----------|-----------|--------------------------------------------------------------|--------------------------------------------|------------------------------------|
|         |                      |                    | PV-1/2             | 2 DISPERSI         | ON PARAM              | ETERS (D/          | Q) FOR             | •                  |           |           |                                                              | Χ                                          |                                    |
| •       |                      | (                  | CONTINUO           |                    |                       |                    |                    | R                  |           |           |                                                              | Ì                                          |                                    |
|         |                      |                    |                    |                    | (sec/m <sup>3</sup> ) |                    |                    |                    |           | •         | ,                                                            | i 5                                        |                                    |
|         |                      | ·                  |                    |                    |                       | •                  |                    |                    |           |           |                                                              | SE                                         |                                    |
| 7.      |                      | •                  |                    |                    |                       |                    |                    |                    |           |           | <u></u>                                                      | GASEOUS                                    | ea                                 |
| •       |                      |                    | DIST               | ANCES TO           | THE CONT              | ROL LOCA           | TIONS, IN N        | MILES              |           | •         | ВАТ                                                          |                                            | Beaver                             |
| SECTOR  | 0.0 - 0.5            | 0.5 - 1.0          | 1.0 - 1.5          | 1.5 - 2.0          | 2.0 - 2.5             | 2.5 - 3.0          | 3.0 - 3.5          | 3.5 - 4.0          | 4.0 - 4.5 | 4.5 - 5.0 | ATTACHMENT N Page 1 of 1 BATCH RELEASE DISPERSION PARAMETERS | EFFLUENTS                                  | Valley                             |
| N       | 2.75E-15             | 1.07E-5            | 4.10E-6            | 2.61E-6            | 1.51E-6               | 1.13E-6            | 8.84E-7            | 7.13E-7            | 5.93E-7   | 5.06E-7   | Œ                                                            | EZ                                         |                                    |
| NNE     | 5.90E-17             | 5.39E-6            | 2.83E-6            | 2.19E-6            | 1.36E-6               | 1.13E-6            | 8.05E-7            | 6.51E-7            | 5.64E-7   | 4.81E-7   | E/                                                           | T;                                         | 13                                 |
| NE      | 4.45E-16             | 1.67E-8            | 7.39E-8            | 2.28E-6            | 1.72E-6               | 1.19E-6            | 9.28E-7            | 6.76E-7            | 7.34E-7   | 5.32E-7   | S                                                            |                                            |                                    |
| ENE     | 1.92E-15             | 8.87E-8            | 2.60E-6            | 2.21E-6            | 1.66E-6               | 1.13E-6            | 9.25E-7            | 7.23E-7            | 6.06E-7   | 3.82E-7   | <u> </u>                                                     |                                            | ၂၀၂                                |
|         |                      |                    |                    |                    | •                     |                    | • ,                |                    |           |           | SIC                                                          |                                            | Power                              |
| E       | 1.84E-15             | 5.10E-6            | 2.77E-6            | 2.23E-6            | 1.44E-6               | 1.12E-6            | 8.74E-7            | 6.92E-7            | 5.11E-7   | 4.82E-7   | ATTACHMENT Page 1 of 1 SPERSION PAR                          |                                            |                                    |
| ESE     | 2.96E-13             | 5.26E-6            | 3.48E-6            | 2.04E-6            | 1.34E-6               | 9.93E-7            | 6.70E-7            | 5.76E-7            | 4.37E-7   | 3.83E-7   | TACH<br>Page<br>RSIO                                         |                                            | $ \Sigma $                         |
| SE      | 9.16E-8              | 3.13E-6            | 3.38E-6            | 1.99E-6            | 1.31E-6               | 9.58E-7            | 7.14E-7            | 5.74E-7            | 4.32E-7   | 3.68E-7   | io de Ch                                                     |                                            | 122                                |
| SSE     | 3.50E-8              | 4.86E-6            | 3.33E-6            | 1.95E-6            | 1.29E-6               | 9.42E-7            | 6.55E-7            | 5.24E-7            | 3.95E-7   | 3.32E-7   | Ž 1 MH                                                       |                                            | Station                            |
|         |                      |                    | ٠.,                | • * •              |                       |                    |                    |                    | *         | •         | A D B                                                        |                                            | Ď                                  |
| S       | 1.22E-7              | 4.12E-6            | 3.97E-6            | 2.34E-6            | 1.59E-6               | 1.17E-6            | 7.75E-7            | 6.24E-7            | 4.74E-7   | 4.00E-7   | ₹ 7                                                          |                                            |                                    |
| SSW     | 1.75E-5              | 6.22E-6            | 2.84E-6            | 2.18E-6            | 1.48E-6               | 1.08E-6            | 7.83E-7            | 6.31E-7            | 5.62E-7   | 4.77E-7   | ž z                                                          |                                            | 1 1                                |
| SW      | 2.08E-5              | 9.11E-6            | 3.47E-6            | 2.19E-6            | 1.25E-6               | 1.11E-6            | 8.19E-7            | 7.17E-7            | 6.89E-7   | 5.85E-7   | 団                                                            |                                            |                                    |
| WSW     | 8.56E-8              | 9.35E-6            | 3.16E-6            | 2.29E-6            | 1.46E-6               | 1.01E-6            | 9.06E-7            | 7.52E-7            | 5.99E-7   | 5.07E-7   | Œ                                                            |                                            | - ( (                              |
| •       |                      |                    |                    |                    |                       |                    |                    |                    | _         |           | RS                                                           |                                            | 1 1                                |
|         |                      |                    |                    |                    |                       |                    |                    | -                  |           |           | (0 -                                                         | æ                                          |                                    |
| W       | 5.44E-17             | 4 5017 (           | 4.01E.6            | 0.400.4            | 1.600.6               | 1.055.6            | 4.0ZE @            | 7. COT 7           | 5 00E 5   | 5 40TO 5  |                                                              | 1/2<br>Revision:<br>2                      | Procedure<br>Unit:                 |
| WNW     | 9.25E-18             | 4.52E-6            | 4.21E-6            | 2.49E-6            | 1.69E-6               | 1.25E-6            | 4.86E-7            | 7.68E-7            | 5.80E-7   | 5.48E-7   | 5 MILES)                                                     | /2<br>ion:<br>2                            | l g                                |
| NW      | 9.23E-18<br>2.61E-16 | 1.44E-8<br>1.98E-8 | 5.66E-8<br>8.37E-8 | 1.92E-6<br>2.24E-6 | 1.59E-6<br>1.46E-6    | 1.17E-6<br>1.08E-6 | 7.75E-7<br>8.09E-7 | 4.61E-7<br>6.12E-7 | 5.28E-7   | 4.89E-7   | Ħ                                                            |                                            | z                                  |
| NNW     | 1.91E-15             | 3.91E-6            | 3.66E-6            | 2.24E-6<br>2.15E-6 | 1.40E-6               | 1.08E-6            | 8.09E-7<br>8.03E-7 | 6.12E-7<br>6.48E-7 | 5.42E-7   | 4.60E-7   | ES                                                           |                                            | 1/2                                |
| TATA AA | 1.710-13             | J.71E-0            | 3,0012-0           | 2.13E-0            | 1.40£-0               | 1.00E-0            | 8.U3E-7            | 0.48E-7            | 5.37E-7   | 4.56E-7   | <b>9</b>                                                     | Page                                       | F ( )                              |
|         |                      |                    |                    |                    |                       |                    |                    |                    |           |           |                                                              | In-Field Reference Page Number: 125 of 128 | mber:<br>1/2-ODC-2<br>Level of Use |
| • •     | **                   |                    |                    |                    |                       |                    |                    |                    | •         |           |                                                              | Field Referenumber: 125 of 128             |                                    |
|         |                      |                    |                    |                    |                       |                    |                    |                    |           |           |                                                              | ᄗᆲ                                         | .02                                |
|         | ,                    | •                  |                    |                    |                       |                    |                    |                    |           |           |                                                              | 1. lefe                                    | 2                                  |
|         |                      |                    |                    |                    |                       |                    |                    |                    |           | ,         |                                                              | ren<br>28                                  |                                    |
| •       |                      |                    |                    |                    |                       |                    |                    |                    |           | -         |                                                              | ୍ମିଟି                                      | 1.1                                |

| Beaver Valley Power Station |           | Procedure Number:<br>1/2-ODC-2.02 |  |  |
|-----------------------------|-----------|-----------------------------------|--|--|
| Title:                      | Unit: 1/2 | Level Of Use: In-Field Reference  |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision: | Page Number:<br>126 of 128        |  |  |

ATTACHMENT O
Page 1 of 1
GASEOUS RADWASTE SYSTEM


FIGURE 2.4-1
BV-1 AND 2 GASEOUS RADVASTE SYSTEM




| Beaver Valley Power Station |              | Procedure Number:<br>1/2-ODC-2.02 |  |  |
|-----------------------------|--------------|-----------------------------------|--|--|
| Title:                      | Unit:<br>1/2 | Level Of Use: In-Field Reference  |  |  |
| ODCM: GASEOUS EFFLUENTS     | Revision:    | Page Number:<br>127 of 128        |  |  |

ATTACHMENT P
Page 1 of 1
BV-1 AND BV-2 GASEOUS EFFLUENT RELEASE POINTS

FIGURE 2.4-2
BV-1 AND 2 GASEOUS EFFLUENT RELEASE POINTS





### **Beaver Valley Power Station**

**Unit 1/2** 

1/2-ODC-2.03

**ODCM: Radiological Environmental Monitoring Program** 

### <u>Document Owner</u> Manager, Nuclear Environmental and Chemistry

| Revision Number          | 1                       |
|--------------------------|-------------------------|
| Level Of Use             | General Skill Reference |
| Safety Related Procedure | Yes                     |
| Effective Date           | 12/29/06                |

| Beaver Valley Power Station                                | Procedure Number: 1/2-ODC-2.03 |                                          |  |
|------------------------------------------------------------|--------------------------------|------------------------------------------|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |  |
|                                                            | Revision:                      | Page Number:<br>2 of 23                  |  |

### TABLE OF CONTENTS

| 1.0 | PURPOSE                                               | 3 |
|-----|-------------------------------------------------------|---|
| 2.0 | SCOPE                                                 | 3 |
| 3.0 | REFERENCES AND COMMITMENTS                            | 3 |
|     | 3.1 References                                        |   |
|     | 3.3 Commitments                                       | 4 |
| 4.0 | RECORDS AND FORMS                                     | 4 |
|     | 4.1 Records                                           |   |
|     | 4.2 Forms                                             |   |
| 5.0 | PRECAUTIONS AND LIMITATIONS                           |   |
| 6.0 | ACCEPTANCE CRITERIA                                   |   |
| 7.0 | PREREQUISITES                                         |   |
| 8.0 | PROCEDURE                                             |   |
|     | 8.1 REMP Overview                                     |   |
|     | 8.2 Sampling and Analysis Program                     |   |
|     | 8.3 Crosscheck Program                                |   |
|     | 8.4 Land Use Census Program                           | 6 |
|     | 8.5 Direct Radiation Monitoring Program.              | 7 |
| ATT | FACHMENT A EXPOSURE PATHWAY AND SAMPLING REQUIREMENTS | 8 |
|     | FACHMENT B LOCATION OF SAMPLING SITES                 |   |
|     |                                                       |   |

| Beaver Valley Power Station                                | Procedure Number: 1/2-ODC-2.03 |                                          |  |
|------------------------------------------------------------|--------------------------------|------------------------------------------|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |  |
|                                                            | Revision:                      | Page Number:                             |  |
|                                                            | 1                              | 3 of 23                                  |  |

### 1.0 PURPOSE

- 1.1 This procedure provides the Radiological Environmental Monitoring Program (REMP) requirements from the Radiological Branch Technical Position. (3.1.1)
  - 1.1.1 Prior to issuance of this procedure, these items were located in Section 3 of the old ODCM.

#### 2.0 SCOPE

2.1 This procedure is applicable to all station personnel that are qualified to perform activities as described and referenced in this procedure.

### 3.0 REFERENCES AND COMMITMENTS

#### 3.1 References

- 3.1.1 Radiological Branch Technical Position, Revision 1, 1979.
- 3.1.2 Regulatory Guide 1.109, Calculation of Annual Dose to Man From Routine Releases of Reactor Effluents For the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, Revision 1, 1977.
- 3.1.3 NUREG-1301, Offsite Dose Calculation Manual Guidance; Standard Radiological Effluent Controls for Pressurized Water Reactors (Generic Letter 89-01, Supplement No. 1).
- 3.1.4 Regulatory Guide 1.111, Methods For Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases From Light-Water-Cooled Reactors, Revision 1, July 1977.
- 3.1.5 1/2-ADM-1640, Control of the Offsite Dose Calculation Manual
- 3.1.6 1/2-ADM-0100, Procedure Writers Guide
- 3.1.7 1/2-ADM-0101, Review and Approval of Documents
- 3.1.8 CR04-00149, Radiation Protection Performance Committee Actions Items. CA-12 required obtaining GPS satellite data for use in the REMP.
- 3.1.9 CR05-01169, Chemistry Action Plan for transition of RETS, REMP and ODCM. CA-17, revise procedure 1/2-ODC-2.03 to convert Radiation Protection responsibilities to Nuclear Environmental and Chemistry.
- 3.1.10 CR05-01390, Include GPS data in 2004 REMP Report and related 1/2-ODC and 1/2-ENV procedures. CA-02, revise ODCM procedure 1/2-ODC-2.03 to include an update of REMP sample locations (using the GPS Satellite data).

| Beaver Valley Power Station                                | •         | Procedure Number: 1/2-ODC-2.03           |  |  |  |
|------------------------------------------------------------|-----------|------------------------------------------|--|--|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |  |
|                                                            | Revision: | Page Number:                             |  |  |  |
|                                                            | 1 . 1     | 4 of 23                                  |  |  |  |

### 3.2 Commitments

3.2.1 10 CFR 50 Appendix I

### 4.0 RECORDS AND FORMS

### 4.1 Records

4.1.1 Any calculation supporting ODCM changes shall be documented, as appropriate, by a retrievable document (e.g., letter or calculation package) with an appropriate RTL number.

### 4.2 <u>Forms</u>

4.2.1 None.

### 5.0 PRECAUTIONS AND LIMITATIONS

5.1 The specified detection capabilities are state-of-the-art for routine environmental measurements in industrial laboratories.

#### 6.0 ACCEPTANCE CRITERIA

- Any change to this procedure shall contain sufficient justification that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50, and not adversely impact the accuracy or reliability of effluent dose or setpoint calculation.
  - 6.1.1 All changes to this procedure shall be prepared in accordance with 1/2-ADM-0100<sup>(3.1.6)</sup> and 1/2-ADM-1640<sup>(3.1.5)</sup>.
  - All changes to this procedure shall be reviewed and approved in accordance with 1/2-ADM-0101<sup>(3.1.7)</sup> and 1/2-ADM-1640<sup>(3.1.5)</sup>.

#### 7.0 PREREQUISITES

7.1 The user of this procedure shall be familiar with ODCM structure and format.

### 8.0 PROCEDURE

### 8.1 **REMP Overview**

8.1.1 Attachment A, Table 3.0-1 contains the site number, sector, distance, sample point description, sampling and collection frequency, analysis, and analysis frequency for various exposure pathways in the vicinity of the Beaver Valley Power Station for the REMP. Attachment B, Figures 3.0-1 through 3.0-6 show the location of the various sampling points.

| Beaver Valley Power Station                                |             | Procedure Number: 1/2-ODC-2.03           |  |  |
|------------------------------------------------------------|-------------|------------------------------------------|--|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: . 1/2 | Level Of Use:<br>General Skill Reference |  |  |
|                                                            | Revision:   | Page Number:<br>5 of 23                  |  |  |

### 8.2 Sampling and Analysis Program

- 8.2.1 Environmental samples shall be collected and analyzed according to Attachment A, Table 3.0-1. Analytical techniques used shall be such that the detection capabilities in 1/2-ODC-3.03, Table 4.12-1 are achieved.
- 8.2.2 The results of the radiological environmental monitoring are intended to supplement the results of the radiological effluent monitoring by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and modeling of the environmental exposure pathways.
  - 8.2.2.1 The specified environmental monitoring program provides measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures of individuals resulting from the station operation.
  - 8.2.2.2 The initial radiological environmental monitoring program should be conducted for the first 3 years of commercial operation (or other period corresponding to a maximum burnup in the initial core cycle). Following this period, program changes may be proposed based on operational experience.
- 8.2.3 Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other legitimate reasons.
  - 8.2.3.1 <u>IF</u> specimens are unobtainable due to sampling equipment malfunction, <u>THEN</u> every effort shall be made to complete corrective action prior to the end of the next sampling period.
  - 8.2.3.2 All deviations from the sampling schedule shall be documented in the annual REMP report.

### 8.3 Crosscheck Program

- 8.3.1 The laboratories of the licensee and licensee's contractors which perform analyses shall participate in the Environmental Protection Agency's (EPA's) Environmental Radioactivity Laboratory Intercomparisons Studies (Crosscheck) Program or equivalent program.
  - 8.3.1.1 This participation shall include all of the determinations (sample medium-radionuclide combination) that are offered by EPA and that also are included in the monitoring program.
  - 8.3.1.2 The results of analysis of these crosscheck samples shall be included in the annual REMP report. The participants in the crosscheck program may provide their program code so that the NRC can review the participant data directly in lieu of submission in the annual REMP report.

| Beaver Valley Power Station                                | Procedure Number: 1/2-ODC-2.03 |                                          |  |
|------------------------------------------------------------|--------------------------------|------------------------------------------|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |  |
|                                                            | Revision:                      | Page Number:<br>6 of 23                  |  |

- 8.3.1.3 <u>IF</u> the results of a determination in the crosscheck program are outside the specified control limits, <u>THEN</u> the laboratory shall investigate the cause of the problem and take steps to correct it. The results of this investigation and corrective action shall be included in the annual REMP report.
- 8.3.2 The requirement for the participation in the crosscheck program, is based on the need for independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices as part of the quality assurance program for environmental monitoring in order to demonstrate the results are reasonably valid.

#### 8.4 Land Use Census Program

- 8.4.1 A census shall be conducted annually during the growing season to determine the location of the nearest milk animal, and nearest garden greater than 50 square meters (500 sq. ft.) producing broad leaf vegetation in each of the 16 meteorological sectors within a distance of 8 km (5 miles).
  - 8.4.1.1 For elevated releases as defined in Regulatory Guide 1.111<sup>(3.1.4)</sup>, the census shall also identify the locations of <u>all</u> milk animals, and gardens greater than 50 square meters producing broad leaf vegetation out to a distance of 5 km (3 miles) for each radial sector.
  - 8.4.1.2 IF it is learned from this census that the milk animals or gardens are present at a location which yields a calculated thyroid dose greater than those previously sampled, or if the census results in changes in the location used in ODCM dose calculations, THEN a written report shall be submitted to the Director of Operating Reactors, NRR (with a copy to the Director of the NRC Regional Office) within 30 days identifying the new location (distance and direction).
    - 8.4.1.2.1 Milk animal or garden locations resulting in higher calculated doses shall be added to the surveillance program as soon as practicable.
  - 8.4.1.3 The sampling location (excluding the control sample location) having the lowest calculated dose may then be dropped from the surveillance program at the end of the grazing or growing season during which the census was conducted. Any location from which milk can no longer be obtained may be dropped from the surveillance program after notifying the NRC in writing that they are no longer obtainable at that location.
  - 8.4.1.4 The results of the land-use census shall be reported in the annual REMP report.

| Beaver Valley Power Station                                | Procedure Number: 1/2-ODC-2.03 |                                          |  |
|------------------------------------------------------------|--------------------------------|------------------------------------------|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |  |
|                                                            | Revision:                      | Page Number: 7 of 23                     |  |

- 8.4.1.5 The census of milk animals and gardens producing broad leaf vegetation is based on the requirement in Appendix I of 10 CFR Part 50<sup>(3.2.1)</sup> to "Identify changes in the use of unrestricted areas (e.g., for agricultural purposes) to permit modifications in monitoring programs for evaluating doses to individuals from principal pathways of exposure." The consumption of milk from animals grazing on contaminated pasture and of leafy vegetation contaminated by airborne radioiodine is a major potential source of exposure. Samples from milk animals are considered a better indicator of radioiodine in the environment than vegetation.
  - 8.4.1.5.1 <u>IF</u> the census reveals milk animals are not present or are unavailable for sampling, THEN vegetation must be sampled.
- 8.4.1.6 The 50 square meter garden, considering 20% used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and a vegetation yield of 2 kg/m², will produce the 26 kg/yr assumed in Regulatory Guide 1.109<sup>(3.1.2)</sup>, for child consumption of leafy vegetation.

### 8.5 Direct Radiation Monitoring Program

8.5.1 The increase in the number of direct radiation stations is to better characterize the individual exposure (mrem) and population exposure (man-rem) in accordance with Criterion 64 - monitoring radioactivity releases, of 10 CFR Part 50, Appendix A. The NRC will place a similar amount of stations in the area between the two rings designated in 1/2-ODC-3.03, Table 3.12-1.

|    | EXPOSURE<br>PATHWAY AND/O<br>SAMPLE   | NO.                                                               | SECTOR<br>1                                                    | MILES <sup>2</sup>                                                                           | TABLE 3.0-1 PROGRAM DETAILS  SAMPLE POINT DESCRIPTION <sup>3</sup>                                                                                                                                                                                                          | SAMPLING AND<br>COLLECTION<br>FREQUENCY                               | FREQUENCY OF<br>ANALYSES                                                                                                                                                                            |                                                                           | ODCM: Radiologi                                                | Beaver           |
|----|---------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|------------------|
| 1. | AIRBORNE Radioiodine and Particulates | 13<br>30<br>32<br>46.1<br>48                                      | 11<br>4<br>15<br>2/3<br>10                                     | 1.49<br>0.43<br>0.75<br>2.28<br>16.40                                                        | Old Meyer Farm Shippingport (Cook's Ferry S.S.) Midland (North S.S.) Industry, McKeel's Service - Rt. 68 Weirton Water Tower, Collier Way                                                                                                                                   | Continuous<br>sampler operation<br>with collection at<br>least weekly | Radioiodine Cartridge:<br>I-131 analysis weekly.  Particulate Sampler:<br>Gross beta analysis<br>following filter<br>change <sup>5</sup> ; Gamma<br>isotopic analysis on<br>composite (by location) | EXPOSURE PATHWA                                                           | Radiological Environmental Monitoring Program                  | ver Valley Power |
| 2. | DIRECT<br>RADIATION                   | 10<br>13<br>14<br>15<br>27<br>28<br>29B<br>30<br>32<br>45<br>45,1 | 3/4<br>11<br>11<br>14<br>7<br>1<br>3<br>4<br>15<br>5<br>6<br>3 | 0.94<br>1.49<br>2.53<br>3.75<br>6.14<br>8.60<br>7.97<br>0.43<br>0.75<br>2.19<br>1.92<br>2.49 | Shippingport Post Office Old Meyer Farm Hookstown Boro Georgetown Post Office Brunton Farm Sherman Farm Friendship Ridge Shippingport (Cook's Ferry S.S.) Midland (North S.S.) Christian House Baptist Chapel - Rt. 18 Racoon Twp., Kennedy's Corner Industry, Midway Drive | Continuous<br>measurement with<br>quarterly<br>collection.            | Gamma dose quarterly.                                                                                                                                                                               | ATTACHMENT A<br>Page 1 of 4<br>EXPOSURE PATHWAY AND SAMPLING REQUIREMENTS | itoring Program                                                | er Station       |
|    | · · ·                                 | 46.1<br>47<br>48<br>51<br>59<br>60<br>70                          | 2/3<br>14<br>10<br>5<br>6<br>13                                | 2.28<br>4.88<br>16.40<br>8.00<br>0.99<br>2.51<br>3.36                                        | Industry - McKeel's Service - Rt. 68 East Liverpool Water Dept. Weirton Water Tower, Collier Way Aliquippa (Sheffield S.S.) 236 Green Hill Rd. 444 Hill Rd. 236 Engle Rd.                                                                                                   |                                                                       |                                                                                                                                                                                                     |                                                                           | Unit: Level Of Use  1/2 General SI  Revision: Page Number  1 8 | dure Numb        |
|    |                                       | 71                                                                | 2                                                              | 6.01                                                                                         | Brighton Twp., First Western Bank                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                     |                                                                           | Level Of Use: General Skill Reference Page Number: 8 of 23     | -2.03            |

| EXPOSURE                     |                      |                      |                              | TABLE 3.0-1 PROGRAM DETAILS                                                                                           | SAMPLING AND                          |                                   | <u></u>                                                             | ODCM: Radiological Environmental Monitoring Program | Title:              |
|------------------------------|----------------------|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|---------------------|
| PATHWAY AND/OR<br>SAMPLE     | SITE<br>NO.          | SECTOR1              | MILES <sup>2</sup>           | SAMPLE POINT<br>DESCRIPTION <sup>3</sup>                                                                              | COLLECTION<br>FREQUENCY               | TYPE AND FREQUENCY<br>OF ANALYSES |                                                                     | Radiol                                              | В                   |
| DIRECT RADIATION (continued) | 72<br>73<br>74       | 3<br>4<br>4          | 3.25<br>2.48<br>6.92         | Ohioview Luthern Church - Rear<br>618 Squirrel Run Road<br>137 Poplar Ave CCBC                                        | Continuous measurement with quarterly | Gamma dose quarterly              | EXPO                                                                | ogical Er                                           | Beaver              |
|                              | 75<br>76<br>77<br>78 | 5<br>6<br>6<br>7     | 4.08<br>3.80<br>5.52<br>2.72 | 117 Holt Road Raccoon Elementary School 3614 Green Garden Road Raccoon Municipal Building                             | collection.                           |                                   | OSURE P                                                             | ıvironme                                            | Valley              |
|                              | 79<br>80             | 8<br>9               | 4.46<br>8.27                 | 106 Rt. 151 - Ted McWilliams<br>Auto Body<br>Raccoon Park Office, Rt. 18                                              |                                       |                                   | ATTACHMENT A Page 2 of 4 EXPOSURE PATHWAY AND SAMPLING REQUIREMENTS | ntal Mon                                            | / Power             |
|                              | 81<br>82<br>83<br>84 | 9<br>9<br>10<br>11   | 3.69<br>6.99<br>4.26<br>8.35 | Millcreek United Presby. Church<br>2697 Rt. 18<br>735 Mill Creek Road<br>Hancock Co. Senior Center                    |                                       |                                   | ATTACHMENT Page 2 of 4 AY AND SAMPI                                 | itoring P                                           | er Station          |
|                              | 85<br>86<br>87<br>88 | 12<br>13<br>14<br>15 | 5.73<br>6.18<br>7.04<br>2.74 | 2048 Rt. 30<br>1090 Ohio Ave., E. Liverpool<br>50103 Calcutta Smith's Ferry Rd.                                       | · · · · · · · · · · · · · · · · · · · |                                   | IMENT<br>2 of 4<br>SAMPL                                            | rogram                                              | ion                 |
| y                            | 89<br>90<br>91       | 15<br>16<br>2        | 4.72<br>5.20<br>3.89         | 110 Summit Rd., Midland Heights<br>488 Smith Ferry Rd., Ohioville<br>6286 Tuscarawras Rd.<br>Pine Grove & Doyle Roads |                                       |                                   | A<br>ING RE                                                         |                                                     |                     |
|                              | 92<br>93             | 12<br>16             | 2.81                         | Georgetown Rd. (Georgetown S.S.)<br>104 Linden - Sunrise Hills                                                        |                                       |                                   | QUIRËN                                                              | L Court                                             | Procec              |
|                              | 94<br>95             | 8                    | 2.25                         | 832 McCleary Road<br>McCleary Road & Pole Cat<br>Hollow Rd.                                                           |                                       |                                   | ÆNTS                                                                | /2 C                                                | Procedure Number    |
|                              |                      |                      | .•                           |                                                                                                                       |                                       |                                   |                                                                     | General Ski Page Number: 9 0                        | nber:<br>/2-ODC-2.( |
|                              |                      |                      |                              |                                                                                                                       |                                       |                                   |                                                                     | General Skill Reference Page Number: 9 of 23        | .03                 |

|                                        | <del></del> | · · · · · · · · · · · · · · · · · · · |                    |                                                                                                  | <del></del>                                      | <u> </u>                                                                           | ·····                                                                 |                                                             | Τ                 |
|----------------------------------------|-------------|---------------------------------------|--------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|-------------------|
|                                        |             |                                       |                    | TABLE 3.0-1 (continued)                                                                          |                                                  |                                                                                    |                                                                       | Title:<br>ODCM:                                             |                   |
|                                        |             |                                       | •                  | PROGRAM DETAILS                                                                                  | •                                                |                                                                                    |                                                                       |                                                             |                   |
| EXPOSURE<br>PATHWAY AND/OR<br>SAMPLE   | SITE<br>NO. | SECTOR <sup>1</sup>                   | MILES <sup>2</sup> | SAMPLE POINT DESCRIPTION <sup>3</sup>                                                            | SAMPLING AND COLLECTION FREQUENCY                | TYPE AND FREQUENCY<br>OF ANALYSES                                                  |                                                                       | ł .                                                         | Be                |
| WATERBORNE     a) Surface (River)      | 49          | 3                                     | 4.92               | Upstream of Montgomery Dam <sup>4</sup>                                                          | Composite sample with sample                     | Gamma isotopic analysis monthly; tritium analysis on                               | E                                                                     | gical                                                       | Beaver            |
| a) Surface (River)                     | 2.1         | 14                                    | 1.43               | Midland – ATI Allegheny<br>Ludlam                                                                | collection at least monthly <sup>6</sup> .       | composite (by location) quarterly                                                  | KPOSUI                                                                | l Enviro                                                    | er Valley         |
| b) Drinking Water                      | 4<br>5      | 15<br>14                              | 1.26<br>4.90       | Midland Water Dept.<br>East Liverpool Water Dept.                                                | Composite sample with sample collection at least | I-131 analysis bi-weekly;<br>gamma isotopic analysis on<br>composite (by location) | ATTACHMENT A  Page 3 of 4  EXPOSURE PATHWAY AND SAMPLING REQUIREMENTS | Radiological Environmental Monitoring Program               |                   |
|                                        |             |                                       |                    |                                                                                                  | bi-weekly <sup>6</sup> .                         | monthly; tritium analysis on composite (by location) quarterly.                    | ATTACHMENT Page 3 of 4 WAY AND SAMPI                                  | fonitorin <sub>i</sub>                                      | Power St          |
| c) Ground Water                        |             |                                       | •                  | None required <sup>7</sup>                                                                       | •                                                |                                                                                    | TACHN<br>Page 3<br>AND S                                              | g Pro                                                       | Station           |
| d) Shoreline Sediment                  | 2A          | 12                                    | 0.31               | BVPS Outfall Vicinity                                                                            | Semi-annually.                                   | Gamma isotopic analysis semi-annually.                                             | MENT A<br>of 4<br>SAMPLII                                             | gram .                                                      | on                |
| 4. INGESTION a) Milk                   | 25<br>*8    | 10                                    | 2.10               | Searight Farm                                                                                    | At least bi-weekly when animals are              | Gamma isotopic and I-131 analysis on each sample.                                  | NG RE                                                                 |                                                             |                   |
|                                        | *8          | <b>-</b> .                            |                    |                                                                                                  | on pasture; at least<br>monthly at other         |                                                                                    | QUII                                                                  |                                                             |                   |
| :                                      | 96          | 10                                    | 10.48              | Windsheimer Farm                                                                                 | times.                                           |                                                                                    | REM                                                                   | Unit: 1/2 Revision:                                         | Procedure         |
| b) Fish                                | 2A          | 12                                    | 0.31               | BVPS Outfall Vicinity                                                                            | Semi-annually one sample of                      | Gamma isotopic analysis. On edible portion                                         | ENT                                                                   | , ( <b>)</b>                                                | re Number<br>1/2- |
|                                        | 49          | 3                                     | 4.92               | Upstream of Montgomery<br>Dam                                                                    | available species.                               |                                                                                    | S                                                                     | Level Of Use:<br>General SI<br>Page Number                  | ber:<br>/2-ODC-2  |
| c) Food Products<br>(Leafy Vegetables) |             | <br>                                  | <br>               | Three (3) locations within 5 miles of BVPS (Shippingport, Industry, and Georgetown) <sup>9</sup> | Annually at harvest time.                        | Gamma isotopic and I-131 analysis on edible portion.                               |                                                                       | Level Of Use: General Skill Reference Page Number: 10 of 23 | -2.03             |
|                                        |             | <b></b>                               |                    | One (1) control location (Weirton, W. Va. area) <sup>9</sup>                                     |                                                  |                                                                                    |                                                                       | ence                                                        |                   |

#### TABLE 3.0-1 (continued)

#### PROGRAM DETAILS

**EXPOSURE** PATHWAY AND/OR SAMPLE

MILES<sup>2</sup> SAMPLE POINT DESCRIPTION3

**FREOUENCY** 

SAMPLING AND TYPE AND FREOUENCY OF ANALYSES

# EXPOSURE PATHWAY AND SAMPLING REQUIREMENTS TACHMENT Page 4 of 4

| Revision:    | 1/2                     | Unit:         | ***          |  |
|--------------|-------------------------|---------------|--------------|--|
| Page Number: | General Skill Reference | Level Of Use: | 1/2-ODC-2.03 |  |

Title: ODCM:

Radiological Environmental Monitoring Program

Power

Station

Sector numbers 1-16 correspond to the 16 compass direction sectors N - NNW.

<sup>&</sup>lt;sup>2</sup>Distance (in miles) is as measured from the midpoint between Unit 1 and Unit 2 Containment Buildings.

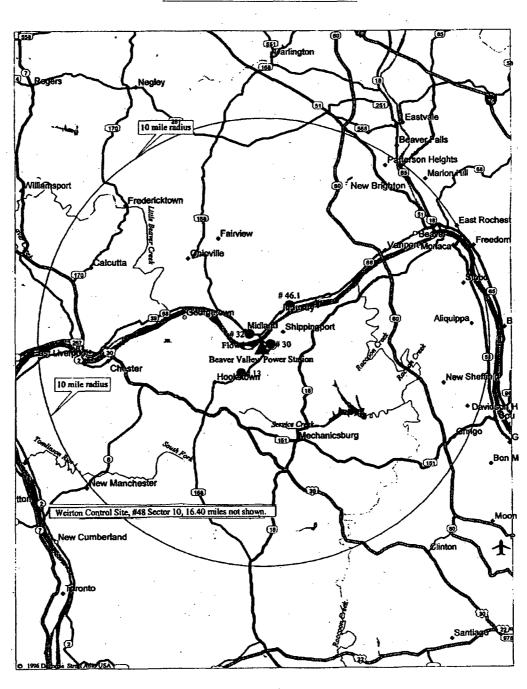
<sup>&</sup>lt;sup>3</sup>All Sample Points are in the Commonwealth of Pennsylvania and the states of Ohio and West Virginia. Maps showing the approximate locations of the Sample Points are provided as Attachment B, Figures 3.0-1 through 3.0-6 and Attachment C.

<sup>&</sup>lt;sup>4</sup>This is a Control Station and is presumed to be outside the influence of BVPS effluents.

<sup>&</sup>lt;sup>5</sup>A gamma isotopic analysis is to be performed on each sample when the gross beta activity is found to be greater than 10 times the mean of the Control Station sample.

<sup>&</sup>lt;sup>6</sup>Composite samples are obtained by collecting an aliquot at intervals not exceeding 2 hours. For the upstream surface water location site 49, a weekly grab sample, composited each month is also acceptable.

<sup>&</sup>lt;sup>7</sup> Collection of Ground Water samples is not required as the hydraulic gradient or recharge properties are directed toward the river because of the high terrain in the river valley at the BVPS; thus, station effluents do not affect local wells and ground water sources in the area.


<sup>&</sup>lt;sup>8</sup> These Sample Points will vary and are chosen based upon calculated annual deposition factors (highest).

<sup>&</sup>lt;sup>9</sup>Exact location may vary due to availability of food products.

| Beaver Valley Power Station                                |           | Procedure Number: 1/2-ODC-2.03           |  |  |  |
|------------------------------------------------------------|-----------|------------------------------------------|--|--|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |  |
|                                                            | Revision: | Page Number:                             |  |  |  |
|                                                            | 1         | 12 of 23                                 |  |  |  |

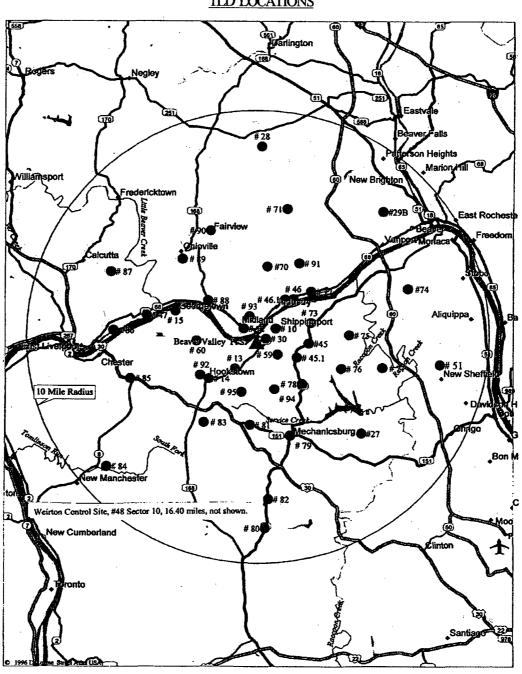
# ATTACHMENT B Page 1 of 12 LOCATION OF SAMPLING SITES

### FIGURE 3.0-1 AIR SAMPLING LOCATIONS



| Beaver Valley Power Station                                |              | Procedure Number:<br>1/2-ODC-2.03        |  |  |
|------------------------------------------------------------|--------------|------------------------------------------|--|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |  |
|                                                            | Revision:    | Page Number:<br>13 of 23                 |  |  |

# ATTACHMENT B Page 2 of 12 LOCATION OF SAMPLING SITES


### FIGURE 3.0-1 (Continued) AIR SAMPLING LOCATIONS

| L | Sector | Site #  | Distance (miles) | Location                             |
|---|--------|---------|------------------|--------------------------------------|
|   | 11     | 13 1.49 |                  | Old Meyer Farm                       |
|   | 4 .    | 30      | 0.43             | Shippingport (Cook's Ferry S.S.)     |
|   | 15     | 32      | 0.75             | Midland (North S.S.)                 |
|   | 2/3    | 46.1    | 2.28             | Industry - McKeel's Service - Rt. 68 |
|   | 10     | 48      | 16.40            | Weirton Water Tower, Collier Way     |

| Beaver Valley Power Station                                |           | Procedure Number: 1/2-ODC-2.03           |  |  |
|------------------------------------------------------------|-----------|------------------------------------------|--|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
|                                                            | Revision: | Page Number:                             |  |  |
|                                                            | 1 1       | 14 of 23                                 |  |  |

### ATTACHMENT B Page 3 of 12 LOCATION OF SAMPLING SITES

### FIGURE 3.0-2 TLD LOCATIONS



| Beaver Valley Power Station                                |           | Procedure Number:<br>1/2-ODC-2.03        |  |  |  |
|------------------------------------------------------------|-----------|------------------------------------------|--|--|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |  |
|                                                            | Revision: | Page Number:<br>15 of 23                 |  |  |  |

# ATTACHMENT B Page 4 of 12 LOCATION OF SAMPLING SITES

### FIGURE 3.0-2 (continued) TLD LOCATIONS

### Southeast

| Sector | Site# | Distance<br>(miles) | Location                      |   | Sector | Site# | Distance (miles) | Location                                 |
|--------|-------|---------------------|-------------------------------|---|--------|-------|------------------|------------------------------------------|
| 7      | 27    |                     | Brunton Farm                  |   | 7      | 78    | 2.72             | Raccoon Municipal Bldg.                  |
| 6      | 45.1  | 1.92                | Raccoon Twp., Kennedy Corners |   | 8      | 79    | 4.46             | 106 Rt. 151- Ted McWilliams Auto<br>Body |
| 5      | 51    | 8.00                | Aliquippa (Sheffield S.S.)    | 腦 | 9      | 80    | 8.27             | Raccoon Park Office, Rt. 18              |
| 6      | 59    | 0.99                | 236 Green Hill Road           |   |        | 82    | 6.99             | 2697 Rt. 18                              |
| 6      | 76    | 3.80                | Raccoon Elementary School     | 聯 |        | 94    |                  | McCleary & Pole Cat Hollow Roads         |
| 6      | 77    | 5.52                | 3614 Green Garden Road        |   |        |       | 448.383.883      |                                          |

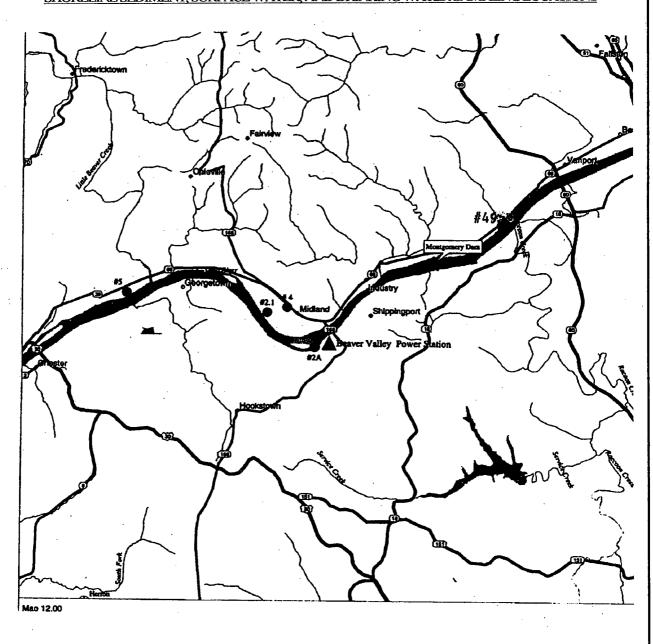
### Northwest

| Sector | Site# | Distance | Location                       |   |    | Site# | Distance | Location                         |
|--------|-------|----------|--------------------------------|---|----|-------|----------|----------------------------------|
|        | ·     | (miles)  |                                |   |    |       | (miles)  |                                  |
| 14     | 15    | 3.75     | Georgetown Post Office         |   | 14 | 87    | 7.04     | 50103 Calcutta Smith's Ferry Rd. |
| 15     | 32    | 0.75     | Midland (North S.S.)           |   | 15 | 88    | 2.74     | 110 Summit Rd., Midland          |
|        |       |          |                                |   |    |       | ٠,       | Heights                          |
| 14     | 47    | 4.88     | E. Liverpool Water Dept.       |   | 15 | 89    | 4.72     | 488 Smith Ferry Rd., Ohioville   |
| 13     | 60    | 2.51     | 444 Hill Road                  | 1 |    | 90    | 5.20     | 6286 Tuscarawras Rd.             |
| 13     | 86    | 6.18     | 1090 Ohio Avenue, E. Liverpool |   | 16 | 93    | 1.10     | 104 Linden - Sunrise Hills       |

### Northeast

| Sector | Site# | Distance | Location                         |   | Sector | Site# | Distance<br>(miles) | Location                          |
|--------|-------|----------|----------------------------------|---|--------|-------|---------------------|-----------------------------------|
|        |       | (miles)  |                                  |   |        |       | (miles)             | <u>\</u>                          |
| 3/4    | 10    | 0.94     |                                  |   |        | 70    | 3.36                | 236 Engle Rd.                     |
| 1      | 28    | 8.60     |                                  |   |        | 71    | 6.01                | Brighton Twp., First Western Bank |
| 3      | 29B   | 7.97     |                                  | # |        | 72    | 3.25                | Ohioview Luthern Church - Rear    |
| 4      | 30    | 0.43     | Shippingport (Cook's Ferry S.S.) |   | ··4    | 73    | 2.48                | 618 Squirrel Run Rd.              |
| 5      | 45    | 2.19     | Christian House Baptist          |   | 4      | 74    | 6.92                | 137 Poplar Ave CCBC               |
|        |       |          | Chapel - Rt 18                   | 闕 |        |       |                     |                                   |
| 3      | 46    | 2.49     |                                  |   |        | 75    | 4.08                | 117 Holt Rd.                      |
| 2/3    | 46.1  | 2.28     | Industry - McKeel's Service -    |   | 2      | 91    | 3.89                | Pine Grove Rd. & Doyle Rd.        |
|        |       |          | Rt 68                            |   |        | ı     | <u></u>             |                                   |

### Southwest


| Sector | Site# | Distance (miles) | Location                            |   | Sector | Site#                                  | Distance (miles) | Location                        |
|--------|-------|------------------|-------------------------------------|---|--------|----------------------------------------|------------------|---------------------------------|
| 11     | 13    | 1.49             | Old Meyer Farm                      |   | 11     | 84                                     | 8.35             | Hancock Co. Senior Center       |
| 11     | 14    | 2.53             | Hookstown Boro                      |   | 12     | ·85                                    | 5.73             | 2048 Rt. 30                     |
| 10     | 48    | 16.40            | Weirton Water Tower, Collier<br>Way | 4 | 12     | 92                                     | 2.81             | Georgetown Rd. (Georgetown S.S. |
| 9      | 81    | 3.69             | Millcreek United Presby. Church     |   |        | 95                                     | 2.37             | 832 McCleary Rd.                |
| 10     | 83    | 4.26             | 735 Mill Creek Rd.                  |   |        | ************************************** | 46.000           |                                 |

| Beaver Valley Power Station                                |           | Procedure Number: 1/2-ODC-2.03           |  |  |
|------------------------------------------------------------|-----------|------------------------------------------|--|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
|                                                            | Revision: | Page Number:<br>16 of 23                 |  |  |

# ATTACHMENT B Page 5 of 12 LOCATION OF SAMPLING SITES

### FIGURE 3.0-3

### SHORELINE SEDIMENT, SURFACE WATER, AND DRINKING WATER SAMPLING LOCATIONS

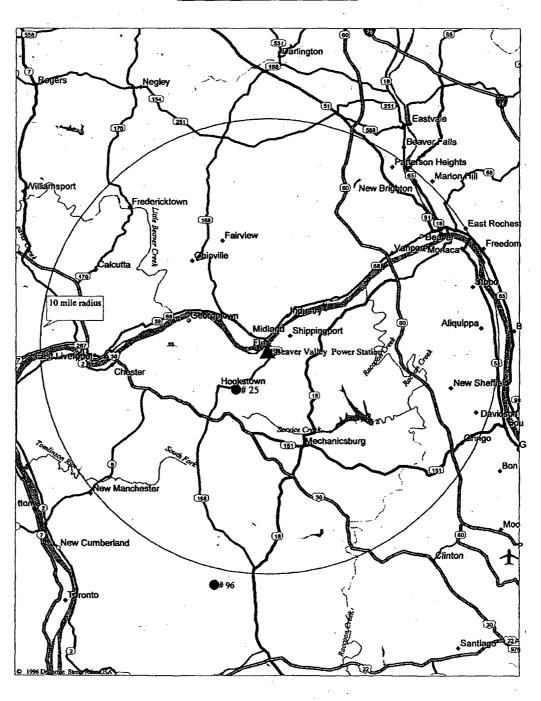


| Beaver Valley Power Station                                |           | Procedure Number: 1/2-ODC-2.03           |  |  |
|------------------------------------------------------------|-----------|------------------------------------------|--|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
|                                                            | Revision: | Page Number:                             |  |  |
|                                                            | 1         | 17 of 23                                 |  |  |

# ATTACHMENT B Page 6 of 12 LOCATION OF SAMPLING SITES

### FIGURE 3.0-3 (Continued)

### SHORELINE SEDIMENT, SURFACE WATER, AND DRINKING WATER SAMPLING LOCATIONS


| Sample Type    | Sector | Site # | Distance (miles) | Location                       |
|----------------|--------|--------|------------------|--------------------------------|
| Surface Water  | 14     | 2.1    | 1.43             | Midland - ATI Allegheny Ludlam |
| Surface Water  | 3      | 49     | 4.92             | Upstream of Montgomery Dam     |
| Sediment       | 12     | 2A     | 0.31             | BVPS Outfall Vicinity          |
| Sediment*      | 3      | 49a    | 4.93             | Upstream of Montgomery Dam     |
| Drinking Water | 15     | 4      | 1.26             | Midland Water Dept.            |
| Drinking Water | 14     | 5      | 4.90             | East Liverpool Water Dept.     |

<sup>\*</sup> Site #49a added - control site.

| Beaver Valley Power Station                         |           | Procedure Number: 1/2-ODC-2.03           |  |
|-----------------------------------------------------|-----------|------------------------------------------|--|
| ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
|                                                     | Revision: | Page Number:<br>18 of 23                 |  |

# ATTACHMENT B Page 7 of 12 LOCATION OF SAMPLING SITES

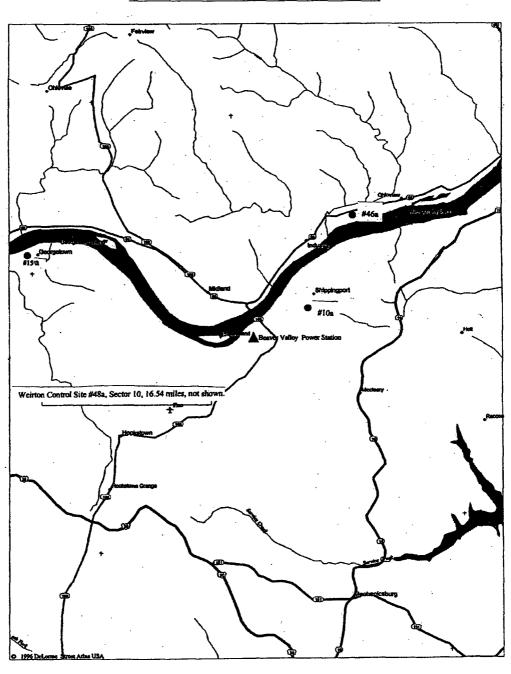
### FIGURE 3.0-4 MILK SAMPLING LOCATIONS



| Beaver Valley Power Station                                |           | Procedure Number: 1/2-ODC-2.03           |  |
|------------------------------------------------------------|-----------|------------------------------------------|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
|                                                            | Revision: | Page Number:                             |  |
|                                                            | 11        | 19 of 23                                 |  |

# ATTACHMENT B Page 8 of 12 LOCATION OF SAMPLING SITES

### FIGURE 3.0-4 (Continued) MILK SAMPLING LOCATIONS


| Sector | Site# | Distance (miles) | Location                                |
|--------|-------|------------------|-----------------------------------------|
| 10     | 25    | 2.10             | Searight Farm                           |
| 10     | 96    | 10.48            | Windsheimer Farm                        |
|        | *     |                  |                                         |
|        | *     |                  |                                         |
|        | *     |                  | † · · · · · · · · · · · · · · · · · · · |

<sup>\*</sup>Three dairies based on highest deposition factors.

| Beaver Valley Power Station                                |           | Procedure Number:<br>1/2-ODC-2.03        |  |
|------------------------------------------------------------|-----------|------------------------------------------|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
|                                                            | Revision: | Page Number:                             |  |
|                                                            | 1         | 20 of 23                                 |  |

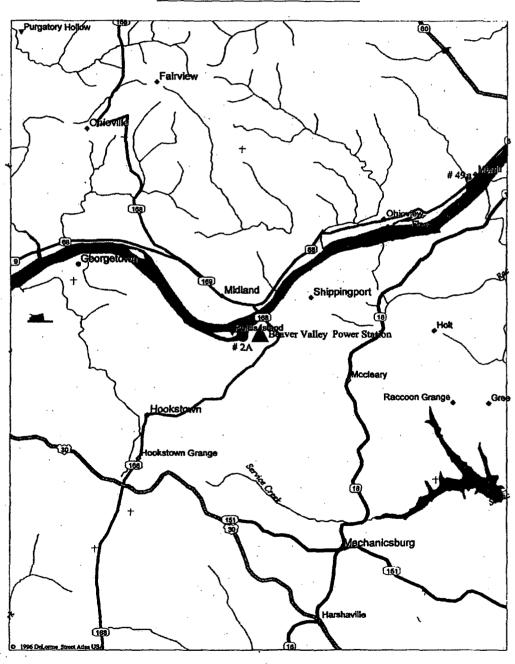
# ATTACHMENT B Page 9 of 12 LOCATION OF SAMPLING SITES

### FIGURE 3.0-5 FOODCROP SAMPLING LOCATIONS



| Beaver Valley Power Station  Procedure Number: 1/2-ODC-    |           | nber:<br>/2-ODC-2.03                     |
|------------------------------------------------------------|-----------|------------------------------------------|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |
|                                                            | Revision: | Page Number:                             |
|                                                            | 1         | 21 of 23                                 |

ATTACHMENT B
Page 10 of 12
LOCATION OF SAMPLING SITES


### FIGURE 3.0-5 (Continued) FOODCROP SAMPLING LOCATIONS

| Site# | Description       |
|-------|-------------------|
| 10a   | Shippingport Boro |
| 15a   | Georgetown Boro   |
| 46a   | Industry Boro     |
| 48a   | Weirton Area      |

| Beaver Valley Power Station                                |           | Procedure Number: 1/2-ODC-2.03           |  |
|------------------------------------------------------------|-----------|------------------------------------------|--|
| Title: ODCM: Radiological Environmental Monitoring Program | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
|                                                            | Revision: | Page Number: 22 of 23                    |  |

# ATTACHMENT B Page 11 of 12 LOCATION OF SAMPLING SITES

### FIGURE 3.0-6 FISH SAMPLING LOCATIONS



| Level Of Use:<br>General Sk | ill Reference |
|-----------------------------|---------------|
|                             | 502           |
| 2                           | <del></del>   |

# ATTACHMENT B Page 12 of 12 LOCATION OF SAMPLING SITES

### FIGURE 3.0-6 (Continued) FISH SAMPLING LOCATIONS

| Sector | Site# | Distance (miles) | Location                   |
|--------|-------|------------------|----------------------------|
| 12     | 2A    | 0.31             | BVPS Outfall Vicinity      |
| 3      | 49a   | 4.93             | Upstream of Montgomery Dam |

### **Beaver Valley Power Station**

**Unit 1/2** 

1/2-ODC-2.04

**ODCM: Information Related to 40 CFR 190** 

### <u>Document Owner</u> Manager, Nuclear Environmental & Chemistry

| Revision Number          | 1                       |
|--------------------------|-------------------------|
| Level Of Use             | General Skill Reference |
| Safety Related Procedure | Yes                     |
| Effective Date           | 12/29/06                |

| Beaver Valley Power Station             |              | Procedure Number: 1/2-ODC-2.04           |  |
|-----------------------------------------|--------------|------------------------------------------|--|
| Title:                                  | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Information Related to 40 CFR 190 | Revision:    | Page Number:<br>2 of 6                   |  |

### TABLE OF CONTENTS

|     | · · · · · · · · · · · · · · · · · · ·         |   |
|-----|-----------------------------------------------|---|
| 1.0 | PURPOSE                                       | 3 |
| 2.0 | SCOPE                                         | 3 |
| 3.0 | REFERENCES AND COMMITMENTS                    | 3 |
|     | 3.1 References                                | 3 |
|     | 3.2 Commitments                               |   |
| 4.0 | RECORDS AND FORMS                             | 3 |
|     | 4.1 Records                                   | 3 |
|     | 4.2 Forms                                     |   |
| 5.0 | PRECAUTIONS AND LIMITATIONS                   | 4 |
| 6.0 | ACCEPTANCE CRITERIA                           | 4 |
| 7.0 | PREREQUISITES                                 | 4 |
| 8.0 | PROCEDURE                                     | 5 |
|     | 8.1 Information Related To 40 CFR 190         | 5 |
|     | 8.2 Inside The Site Boundary Radiation Doses. |   |

| Beaver Valley Power Station             | Procedure Number:<br>1/2-ODC-2.04 |                                          |
|-----------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                  | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Information Related to 40 CFR 190 | Revision:                         | Page Number: 3 of 6                      |

### 1.0 PURPOSE

- 1.1 This procedure provides the steps to be taken when the Total Dose of ODCM Control 4.11.4.1 exceeds twice the limit of any of the ODCM Controls specifying an Offsite Dose Limit. (3.1.2)
  - 1.1.1 Prior to issuance of this procedure, these items were located in Section 4 of the old ODCM.

### 2.0 SCOPE

2.1 This procedure is applicable to all station personnel that are qualified to perform activities as described and referenced in this procedure.

### 3.0 REFERENCES AND COMMITMENTS

#### 3.1 References

- 3.1.1 40 CFR Part 190
- 3.1.2 1/2-ODC-3.03, ODCM: Controls for RETS and REMP Programs
- 3.1.3 1/2-ADM-1640, Control of the Offsite Dose Calculation Manual
- 3.1.4 1/2-ADM-0100, Procedure Writer's Guide
- 3.1.5 1/2-ADM-0101, Review and Approval of Documents
- 3.1.6 CR 05-01169, Chemistry Action Plan for Transition of RETS, REMP and ODCM. CA-18, Revise procedure 1/2-ODC-2.04 to change document owner from Manager, Radiation Protection to Manager, Nuclear Environmental & Chemistry.

#### 3.2 **Commitments**

- 3.2.1 10 CFR 20.405(c), Special Reports
- 3.2.2 NUREG-1301, Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactors (Generic Letter 89-01, Supplement No. 1)

#### 4.0 RECORDS AND FORMS

#### 4.1 Records

4.1.1 Any calculation supporting ODCM changes shall be documented, as appropriate, by a retrievable document (e.g., letter or calculation package) with an appropriate RTL number.

| Beaver Valley Power Station             |           | Procedure Number: 1/2-ODC-2.04           |  |
|-----------------------------------------|-----------|------------------------------------------|--|
| Title:                                  | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Information Related to 40 CFR 190 | Revision: | Page Number:<br>4 of 6                   |  |

### 4.2 Forms

4.2.1 None

### 5.0 PRECAUTIONS AND LIMITATIONS

- 5.1 The Offsite Dose Limits used to show compliance to this procedure are as follows:
  - 5.1.1 ODCM Control 3.11.2.a; Liquid Effluents: ≤ 1.5 mrem/quarter Total Body or ≤ 5 mrem/quarter any Organ.
  - 5.1.2 ODCM Control 3.11.2.b; Liquid Effluents: ≤3 mrem/year Total Body or ≤10 mrem/year any Organ.
  - 5.1.3 ODCM Control 3.11.2.2.a; Gas Effluent-Noble Gas: ≤5 mrad/quarter Gamma, or ≤ 10 mrad/quarter Beta
  - 5.1.4 ODCM Control 3.11.2.2.b; Gas Effluents-Noble Gas: ≤ 10 mrad/year Gamma ≤ 20 mrad/year Beta
  - 5.1.5 ODCM Control 3.11.2.3.a; Gas Effluents-Particulates & Iodines: ≤ 7.5 mrem/quarter any organ
  - 5.1.6 ODCM Control 3.11.2.3.b; Gas Effluents-Particulates & Iodines: ≤ 15 mrem/year any organ
  - 5.1.7 ODCM Control 3.11.4.1; All Fuel Cycle Sources: ≤ 25 mrem/year Total Body or any Organ, except the thyroid, which is limited to ≤ 75 mrem/year

### 6.0 ACCEPTANCE CRITERIA

- Any changes to this procedure shall contain sufficient justification that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50, and not adversely impact the accuracy or reliability of effluent dose or setpoint calculation. (3.2.2)
  - 6.1.1 All changes to this procedure shall be prepared in accordance with 1/2-ADM-0100<sup>(3.1.4)</sup> and 1/2-ADM-1640.<sup>(3.1.3)</sup>
  - All changes to this procedure shall be reviewed and approved in accordance with 1/2-ADM-0101<sup>(3.1.5)</sup> and 1/2-ADM-1640.<sup>(3.1.3)</sup>

### 7.0 PREREQUISITES

7.1 The user of this procedure shall be familiar with ODCM structure and content.

| Beaver Valley Power Station             | Procedure Number: 1/2-ODC-2.04 |                                       |
|-----------------------------------------|--------------------------------|---------------------------------------|
| Title:                                  | Unit: 1/2                      | Level Of Use: General Skill Reference |
| ODCM: Information Related to 40 CFR 190 | Revision:                      | Page Number:<br>5 of 6                |

### 8.0 PROCEDURE

### 8.1 Information Related To 40 CFR 190

- 8.1.1 CONTROL 3.11.4.1 requires that when the calculated doses associated with the effluent releases exceed twice the limits of ODCM CONTROL 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a, or 3.11.2.3.b, the following shall be performed:
  - 8.1.1.1 Calculations shall be made including direct radiation contributions from the units (including outside storage tanks, etc.) to determine whether the dose or dose commitment to any MEMBER OF THE PUBLIC from all facility releases of radioactivity and to radiation from uranium fuel cycle sources exceeds the limits of ≤ 25 mrem to the total body or any organ, except the thyroid, which is limited to ≤ 75 mrem for a calendar year.
    - 8.1.1.1 If any of these limits are exceeded, prepare and submit to the Commission within 30 days a Special Report pursuant to 10 CFR 20.405(c). The following shall be included in the Special Report:
      - 8.1.1.1.1 Define the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the limits of ODCM CONTROL 3.11.4.1.
      - 8.1.1.1.2 Include the schedule for achieving conformance within the limits of ODCM CONTROL 3.11.4.1.
      - 8.1.1.1.3 Include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report.
      - 8.1.1.1.1.4 Describe levels of radiation and concentrations of radioactive material involved, and the cause of exposure levels or concentrations.
      - 8.1.1.1.5 If the estimated dose(s) exceeds the limits of ODCM

        CONTROL 3.11.4.1, and if the release condition resulting in violation
        of 40 CFR Part 190 has not already been corrected, include a request
        for a variance in accordance with the provisions of 40 CFR Part 190.
        Submittal of the report is considered a timely request, and a variance is
        granted until staff action on the request is complete.

| Beaver Valley Power Station             | Procedure Number: 1/2-ODC-2.04 |                                          |
|-----------------------------------------|--------------------------------|------------------------------------------|
| Title:                                  | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Information Related to 40 CFR 190 | Revision:                      | Page Number:<br>6 of 6                   |

### 8.2 Inside The Site Boundary Radiation Doses

- 8.2.1 In regards to assessment of radiation doses (from Radioactive Effluents) to MEMBERS OF THE PUBLIC due to their activities inside the site boundary, the following is provided:
  - 8.2.1.1 A separate assessment of radiation doses from radioactive effluents to MEMBERS OF THE PUBLIC due to their activities inside the site boundary is generally not necessary because the exposure time for individuals not occupationally associated with the plant site is minimal in comparison to the exposure time considered for the dose calculation at or beyond the site boundary.
  - 8.2.1.2 For reporting purposes, separate guidance for calculating radiation doses to a MEMBER OF THE PUBLIC inside the site boundary is not needed because the dose assessments for an offsite MEMBER OF THE PUBLIC is also assumed to be for a MEMBER OF THE PUBLIC conducting activities onsite.
    - 8.2.1.2.1 This is verified by showing that the ground release  $\chi/Q$  dispersion parameter used for dose calculation at the site boundary (0.352 miles NW) is greater than the  $\chi/Q$  dispersion parameter at the location where a MEMBER OF THE PUBLIC would most likely have the maximum exposure time (0-0.5 miles N and 0-0.5 miles NNW). A comparison of these  $\chi/Q$  dispersion parameters is as follows:

| χ/Q Used for Dose<br>Calculation | χ/Q Where a                |                            | χ/Q References<br>from |
|----------------------------------|----------------------------|----------------------------|------------------------|
|                                  | Would Most Likely I        |                            | 1/2-ODC-2.02           |
|                                  | Exposur                    | e Time                     |                        |
| Site Boundary                    | Inside the Site            | Inside the Site            | See Attachment F       |
| 0.352 miles NW                   | Boundary                   | Boundary                   |                        |
|                                  | 0-0.5 miles N              | 0-0.5 miles NNW            |                        |
| 9.24E-5 sec/m <sup>3</sup>       | 2.33E-5 sec/m <sup>3</sup> | 5.47E-5 sec/m <sup>3</sup> | Table 2.2-4            |
| 1.03E-4 sec/m <sup>3</sup>       | 2.76E-5 sec/m <sup>3</sup> | 6.01E-5 sec/m <sup>3</sup> | Table 2.2-5            |
| 7.35E-5 sec/m <sup>3</sup>       | 2.44E-5 sec/m <sup>3</sup> | 5.57E-5 sec/m <sup>3</sup> | Table 2.2-7            |
| 9.24E-5 sec/m <sup>3</sup>       | $2.33E-5 \text{ sec/m}^3$  | 5.47E-5 sec/m <sup>3</sup> | Table 2.2-8            |
| 9.24E-5 sec/m³                   | 2.33E-5 sec/m <sup>3</sup> | 5.47E-5 sec/m <sup>3</sup> | Table 2.2-9            |
| 7.35E-5 sec/m <sup>3</sup>       | 2.44E-5 sec/m <sup>3</sup> | 5.57E-5 sec/m <sup>3</sup> | Table 2.2-10           |

### **Beaver Valley Power Station**

### **Unit 1/2**

### 1/2-ODC-3.01

**ODCM:** Dispersion Calculation Procedure and Source Term Inputs

### <u>Document Owner</u> Manager, Nuclear Environmental & Chemistry

| Revision Number          | 1                       |
|--------------------------|-------------------------|
| Level Of Use             | General Skill Reference |
| Safety Related Procedure | Yes                     |
| Effective Date           | 12/29/06                |

| Beaver Valley Power Station                                   | Procedure Number: 1/2-ODC-3.01 |                                          |
|---------------------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                                        | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision:                      | Page Number:<br>2 of 12                  |

### TABLE OF CONTENTS

| 1.0 | PURPOSE                                              | 3   |
|-----|------------------------------------------------------|-----|
| 2.0 | SCOPE                                                | 3   |
| 3.0 | REFEFERENCES AND COMMITMENTS                         | 3   |
|     | 3.1 References                                       |     |
|     | 3.2 Commitments                                      | 4   |
| 4.0 | RECORDS AND FORMS                                    | 4   |
|     | 4.1 Records                                          | 4   |
|     | 4.2 Forms                                            | 4   |
| 5.0 | PRECAUTIONS AND LIMITATIONS                          | 4   |
| 6.0 | ACCEPTANCE CRITERIA                                  | 4   |
| 7.0 | PREREQUISITES                                        | 4   |
| 8.0 | PROCEDURE                                            | 5   |
|     | 8.1 Summary of Dispersion and Deposition Methodology | 5   |
|     | 8.2 Summary of Source Term Inputs                    | 7   |
|     | 8.2.1 Liquid Source Term Inputs                      |     |
|     | 8.2.2 Gaseous Source Term Inputs                     | 7   |
| ATT | ACHMENT A BV-1 AND 2 RELEASE CONDITIONS              | 8   |
| ATT | ACHMENT B LIQUID SOURCE TERM INPUTS                  | 9   |
| ATT | ACHMENT C GASEOUS SOURCE TERM INPUTS                 | .11 |

| Beaver Valley Power Station                                   | Procedure Number: 1/2-ODC-3.01 |                                          |
|---------------------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                                        | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision:                      | Page Number:<br>3 of 12                  |

#### 1.0 PURPOSE

- 1.1 This procedure contains the basic methodology that was used for calculating dispersion  $(\chi/Q)$  and deposition (D/Q).
  - 1.1.1 Prior to issuance of this procedure, these items were located in Appendix A of the old ODCM.
- 1.2 This procedure also contains the input parameters to the various computer codes used by the Licensee and its subcontractors for determination of the liquid and gaseous source term mixes.
  - 1.2.1 Prior to issuance of this procedure, these items were located in Appendix B of the old ODCM.

#### 2.0 SCOPE

2.1 This procedure is applicable to all station personnel (including subcontractors) that are qualified to perform activities as described and referenced in this procedure.

### 3.0 REFEFERENCES AND COMMITMENTS

### 3.1 References

- 3.1.1 NUS-2173, Development Of Terrain Adjustment Factors For Use At the Beaver Valley Power Station, For the Straight-Line Atmospheric Dispersion Model, NUS Corporation, June 1978
- 3.1.2 NUREG/CR-2919, XOQDOQ: Computer Program For The Meteorological Evaluation Of Routine Effluent Releases At Nuclear Power Stations, September, 1982
- 3.1.3 Regulatory Guide 1.23, Meteorological Measurement Program for Nuclear Power Plants
- 3.1.4 Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents In Routine Releases From Light-Water-Coded Reactors, Revision 1, July 1977
- 3.1.5 NRC Gale Code,
- 3.1.6 SWEC LIQ1BB Code,
- 3.1.7 SWEC GAS1BB Code.
- 3.1.8 NUREG-1301, Offsite Dose Calculation Manual Guidance, Standard Radiological Effluent Controls for Pressurized Water Reactors (Generic Letter 89-01, Supplement No. 1)
- 3.1.9 1/2-ADM-1640, Control of the Offsite Dose Calculation Manual

| Beaver Valley Power Station                                   | Procedure Number: 1/2-ODC-3.01 |                                          |
|---------------------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                                        | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision:                      | Page Number:<br>4 of 12                  |

- 3.1.10 1/2-ADM-0100, Procedure Writer's Guide
- 3.1.11 1/2-ADM-0101, Review and Approval of Documents
- 3.1.12 CR 05-01169, Chemistry Action Plan for Transition of RETS, REMP and ODCM. CA-19, Revise procedure 1/2-ODC-3.01 to change document owner from Manager, Radiation Protection to Manager, Nuclear Environmental & Chemistry.
- 3.2 Commitments
  - 3.2.1 None

### 4.0 RECORDS AND FORMS

- 4.1 Records
  - 4.1.1 Any calculation supporting generation of dispersion, deposition, or source term mixes shall be documented, as appropriate, by a retrievable document (e.g.; letter or calculation package) with an appropriate RTL number.
- 4.2 Forms
  - 4.2.1 None

### 5.0 PRECAUTIONS AND LIMITATIONS

- 5.1 This procedure contains the information that was previously contained in Appendix A and Appendix B of the previous BV-1 and 2 Offsite Dose Calculation Manual.
  - 5.1.1 In regards to this, the Tables that were transferred from Appendix A and Appendix B to the appropriate ATTACHMENTS of this procedure will still contain a prefix denoting an "A" or "B".

### 6.0 ACCEPTANCE CRITERIA

- Any change to this procedure shall contain sufficient justification that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a and Appendix I to 10 CFR 50, and not adversely impact the accuracy or reliability of effluent dose or setpoint calculation.
  - 6.1.1 All changes to this procedure shall be prepared in accordance with 1/2-ADM-0100<sup>(3.1.10)</sup> and 1/2-ADM-1640.<sup>(3.1.9)</sup>
  - 6.1.2 All changes to this procedure shall be reviewed and approved in accordance with 1/2 ADM-0101<sup>(3.1.11)</sup> and 1/2-ADM-1640.<sup>(3.1.9)</sup>

#### 7.0 PREREQUISITES

7.1 The user of this procedure shall be familiar with ODCM structure and content.

| Beaver Valley Power Station                                   | Procedure Number: 1/2-ODC-3.01 |                                          |
|---------------------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                                        | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision:                      | Page Number: 5 of 12                     |

### 8.0 PROCEDURE

- 8.1 Summary of Dispersion and Deposition Methodology
  - 8.1.1 Annual average and grazing season average values of relative concentration (χ/Q) and deposition (D/Q) were calculated for continuous and intermittent gaseous releases of activity from the site according to the straight-line airflow (Gaussian) model described in RG-1.111. (3.1.4)
    - 8.1.1.1 Undecayed and undepleted sector average χ/Q and D/Q values were obtained for each of sixteen 22.5-degree sectors at the site boundary and maximum individual receptors.
    - 8.1.1.2 For an elevated release, (i.e.; occurring at a height that is twice the height or more of a nearby structure) credit was taken for the effective release height which is comprised of the physical release height plus momentum plume rise minus the terrain height at a given receptor.
    - 8.1.1.3 A building wake correction factor was used to adjust calculations for ground-level releases.
    - 8.1.1.4 Airflow reversals were also accounted for by applying site-specific terrain recirculation factors for both ground and elevated releases at the site. (3.1.1)
    - 8.1.1.5 The methodology employed in the calculation of intermittent release χ/Q and D/Q values is that described in NUREG/CR-2919. (3.1.2)
  - 8.1.2 The site continuous gaseous release points that have been evaluated include the following:
    - 8.1.2.1 PV-1/2: The Unit 1/2 Gaseous Waste/Process Vent attached to the Unit 1 natural draft cooling tower
    - 8.1.2.2 CV-1 and CV-2: The Unit 1 Rx Containment/SLCRS Vented the Unit 2 SLCRS Filtered Pathway
    - 8.1.2.3 VV-1 and VV-2: The Unit 1 Ventilation Vent and the Unit 2 SLCRS Unfiltered Pathway
    - 8.1.2.4 TV-2: The Unit 2 Turbine Building Vent
    - 8.1.2.5 CB-2: The Unit 2 Condensate Polishing Building Vent
    - 8.1.2.6 DV-2: The Unit 2 Decontamination Building Vent
    - 8.1.2.7 WV-2: The Unit 2 Gaseous Waste Storage Tank Vault Vent
  - 8.1.3 The intermittent releases are from PV-1/2, VV-1, VV-2, CV-1 and CV-2.

| Beaver Valley Power Station                                   | Procedure Number: 1/2-ODC-3.01 |                                          |
|---------------------------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                                        | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision:                      | Page Number:<br>6 of 12                  |

- 8.1.4 Only PV-1/2 was considered to be an elevated release with all other release points being treated as ground level releases. A summary of the release characteristics and their locations is given in ATTACHMENT A.
- 8.1.5 Onsite meteorological data for the period January 1, 1976 through December 31, 1980 were used as input for the annual-average calculations.
  - 8.1.5.1 The grazing season was represented by a six-month period from May 1 through October 31 for each year of the 5-year meteorological data base. This grazing season corresponds reasonably well with the growing season.
  - 8.1.5.2 The data were collected according to guidance in NRC RG-1.23<sup>(3.1.3)</sup> as described in Section 2.3 of the BVPS-2 FSAR.
  - 8.1.5.3 The parameters used in the  $\chi/Q$  and D/Q calculations consist of wind speed, wind direction, and  $\Delta T$  as an indicator of atmospheric stability. The lower level winds (35 ft) and  $\Delta T$  (150-35 ft) were used for all release points except the Process Vent which required the use of 500 ft winds and  $\Delta T$  (500-35 ft) which are representative of the release height (510 ft).
- 8.1.6 The annual average and grazing season χ/Q and D/Q values for the continuous and intermittent radioactive releases were calculated at the site boundary, nearest resident, nearest vegetable garden, nearest milk cow, nearest milk goat, and nearest meat animal.
  - 8.1.6.1 In the case of the Process Vent releases, several of each receptor type were evaluated in each downwind sector to determine the maximum  $\chi/Q$  and D/Q values.
  - 8.1.6.2 The distances of the limiting maximum individual receptors from the radioactive release points are given in ATTACHMENT E (Table 2.2-3) of 1/2-ODC-2.02.
  - The continuous release annual average χ/Q values at the special locations for the Containment Vents, Ventilation Vents, Process Vent, Turbine Building Vents, Decontamination Building Vent, Waste Gas Storage Vault Vent, and Condensate Polishing Building Vent are given in ATTACHMENT F (Tables 2.2-4 through 2.2-10) of 1/2-ODC-2.02. Continuous release annual average χ/Q's for these same release points are also given at ten incremental downwind distances of 0-5 miles.
  - 8.1.6.4 Continuous release D/Q values for these same release points are given in ATTACHMENT K (Tables 2.3-21 through 2.3-27) of 1/2-ODC-2.02 for the same 0-5 mile incremental distances, and in ATTACHMENT L (Tables 2.3-28 through 2.3-34) of 1/2-ODC-2.02 for the special locations.
  - 8.1.6.5 Due to their location adjacent to the Containment Building, the Decontamination Building and Gaseous Waste Storage Tank Vault  $\chi$ /Q's and D/Q's are the same as the Containment Vent  $\chi$ /Q's and D/Q's.

- 8.1.6.6 Likewise, the Turbine Building Vent  $\chi/Q$ 's and D/Q's apply to the Condensate Polishing Building as well due to its location adjacent to the Turbine Building.
- 8.1.7 ATTACHMENT M (Tables 2.3-35 through 2.3-38) of 1/2-ODC-2.02 contain short term χ/Q values for batch releases originating from the Containment Vent, Ventilation Vent, and Process Vent releases respectively.
  - The values in these tables are based on 32 hours per year of Containment and Ventilation Vent purges and 74 hours per year of Process Vent purges.
- 8.2 <u>Summary of Source Term Inputs</u>
  - 8.2.1 <u>Liquid Source Term Inputs</u>
    - 8.2.1.1 Inputs to the NRC Gale Code used for generation of BV-1 Liquid Source Term Mixes are shown in ATTACHMENT B (Table B:1a).
    - 8.2.1.2 Inputs to the SWEC LIQ1BB Code used for generation of BV-2 Liquid Source Term Mixes are shown in ATTACHMENT B (Table B:1b)
  - 8.2.2 Gaseous Source Term Inputs
    - 8.2.2.1 Inputs to the SWEC GAS1BB Code for generation of BV-1 Gaseous Source Term Mixes are shown in ATTACHMENT C (Table B:2a)
    - 8.2.2.2 Inputs to the SWEC GAS1BB Code for generation of BV-2 Gaseous Source Term Mixes are shown in ATTACHMENT C (Table B:2b)

| Beaver Valley Power Station                                   | Procedure Number: 1/2-ODC-3.01 |                                          |  |
|---------------------------------------------------------------|--------------------------------|------------------------------------------|--|
| Title:                                                        | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |  |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision:                      | Page Number:<br>8 of 12                  |  |

# ATTACHMENT A Page 1 of 1 BV-1 AND 2 RELEASE CONDITIONS

# TABLE A:1

CONTAINMENT/ SLCRS VENT

PV-1/2 GASEOUS

WASTE/PROCESS

**TV-2 TURBINE** 

**BUILDING VENT** 

CV-1 RX

VV-1

VENTILATION

|                                             | VENT (PAB<br>EXHAUST)                | SLCRS VENT                                           | VENT                        | BUILDING VENT               |
|---------------------------------------------|--------------------------------------|------------------------------------------------------|-----------------------------|-----------------------------|
|                                             | VV-2 SLCRS<br>UNFILTERED<br>PATHWAY  | CV-2 RX<br>CONTAINMENT/<br>SLCRS FILTERED<br>PATHWAY |                             |                             |
| TYPE OF RELEASE                             | GROUND LEVEL                         | GROUND LEVEL                                         | ELEVATED                    | GROUND LEVEL                |
|                                             | Long Term And<br>Short Term          | Long Term And Short Term                             | Long Term And<br>Short Term | Long Term And<br>Short Term |
| Release Point Height<br>(m)                 | 26                                   | 47                                                   | 155                         | 33                          |
| Adjacent Building<br>Height (m)             | 19                                   | 44                                                   | 155                         | 33                          |
| Relative Location To<br>Adjacent Structures | E. Side Of Primary<br>Auxiliary Bldg | Top Center Of<br>Containment Dome                    | Atop Cooling Tower          | Turbine Building            |
| Exit Velocity(m/sec)                        | NA                                   | NA                                                   | 9.4                         | NA                          |
| Internal Stack<br>Diameter (m)              | NA                                   | NA                                                   | 0.25                        | NA                          |
| Building Cross-<br>Sectional Area (m²)      | 1600                                 | 1600                                                 | NA                          | NA                          |
| Purge Frequency*<br>(hours/year)            | 32                                   | 32                                                   | 74                          | NA                          |
| Purge Duration<br>(hrs/release)             | 8                                    | 8                                                    | NA                          | NA                          |
| *Applied to Short Term                      | calculations only                    |                                                      |                             |                             |

| Beaver Valley Power Station                                   | Procedure Number:<br>1/2-ODC-3.01 |                                          |  |  |
|---------------------------------------------------------------|-----------------------------------|------------------------------------------|--|--|
| Title:                                                        | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision:                         | Page Number: 9 of 12                     |  |  |

# ATTACHMENT B Page 1 of 2 LIQUID SOURCE TERM INPUTS

# TABLE B:1a INPUTS TO GALE CODE FOR GENERATION OF BV-1 LIQUID SOURCE TERM MIXES

| BV-1 PWR INPUTS                                       | VALUE    |
|-------------------------------------------------------|----------|
| Thermal Power Level (megawatts)                       | 2766.000 |
| Plant Capacity Factor                                 | .800     |
| Mass Of Primary Coolant (thousand lbs)                | 345.000  |
| Percent Fuel With Cladding Defects                    | .120     |
| Primary System Letdown Rate (gpm)                     | 60.000   |
| Letdown Cation Demineralizer Flow                     | 6.000    |
| Number Of Steam Generators                            | 3.000    |
| Total Steam Flow (million lbs/hr)                     | 11.620   |
| Mass Of Steam In Each Steam Generator (thousand lbs)  | 6.772    |
| Mass Of Liquid In Each Steam Generator (thousand lbs) | 97.000   |
| Total Mass Of Secondary Coolant (thousand lbs)        | 1296.000 |
| Mass Of Water In Steam Generator (thousand lbs)       | 291.000  |
| Blowdown Rate (thousand lbs/hr)                       | 33.900   |
| Primary To Secondary Leak Rate (lbs/day)              | 100.000  |
| Fission Product Carry-Over Fraction                   | .001     |
| Halogen Carry-Over Fraction                           | .010     |
| Condensate Demineralizer Flow Fraction                | 0.000    |
| Radwaste Dilution Flow (thousand gpm)                 | 22.500   |

| R۱ | <b>/-1</b> | Ŧ. | IOI. | m | WA | STE | INP | UTS |
|----|------------|----|------|---|----|-----|-----|-----|
|    |            |    |      |   |    |     |     |     |

|                       | FLOW RATE | FRACTION | FRACTION  | COLLECTION<br>TIME | DELAY<br>TIME |     | NTAM<br>FACTO | INATION<br>ORS |
|-----------------------|-----------|----------|-----------|--------------------|---------------|-----|---------------|----------------|
| STREAM                | (gal/day) | OF PCA   | DISCHARGE | (days)             | (days)        | I   | Cs            | OTHERS         |
| Shim Bleed<br>Rate    | 1.32E4    | 1.000    | 0.000     | 11.260             | 7.220         | 1E7 | 1E7           | lE7            |
| Equipment Drains      | 6.00E2    | 1.000    | 0.000     | 11.260             | 7.220         | 1E7 | lE7           | 1E7            |
| Clean Waste<br>Input  | 7.50E1    | 1.000    | 1.000     | 0.071              | 0.648         | 1E5 | 2E4           | 1E5            |
| Dirty Waste Input     | 1.35E3    | 0.035    | 1.000     | 0.071              | 0.648         | 1E5 | 2E4           | 1E5            |
| Blowdown              | 9.75E4    | ·        | 1.000     | 0.071              | 0.648         | lE5 | 2E4           | 1E5            |
| Untreated<br>Blowdown | 0.0       |          | ·         | <del></del>        | <del></del>   |     | <b></b>       | 7              |

| Beaver Valley Power Station  Procedure Number: 1/2-ODC-3.01   |           |                                          |  |
|---------------------------------------------------------------|-----------|------------------------------------------|--|
| Title:                                                        | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision: | Page Number:<br>10 of 12                 |  |

# ATTACHMENT B Page 2 of 2 LIQUID SOURCE TERM INPUTS

# TABLE B:1b INPUTS TO SWEC LIQ1BB CODE FOR GENERATION OF BV-2 LIQUID SOURCE TERM MIXES BV-2 PWR INPUTS VALUE

| DV-21 WK IIVI O15                                     | VALUE    |
|-------------------------------------------------------|----------|
| Thermal Power Level (megawatts)                       | 2766.000 |
| Plant Capacity Factor                                 | .800     |
| Mass Of Primary Coolant (thousand lbs)                | 385.000  |
| Percent Fuel With Cladding Defects                    | .120     |
| Primary System Letdown Rate (gpm)                     | 57.000   |
| Letdown Cation Demineralizer Flow                     | 5.700    |
| Number Of Steam Generators                            | 3.000    |
| Total Steam Flow (million lbs/hr)                     | 11.600   |
| Mass Of Steam In Each Steam Generator (thousand lbs)  | 8.700    |
| Mass Of Liquid In Each Steam Generator (thousand lbs) | 100.000  |
| Total Mass Of Secondary Coolant (thousand lbs)        | 2000,000 |
| Mass Of Water In Steam Generator (thousand lbs)       | 298.000  |
| Blowdown Rate (thousand lbs/hr)                       | 22,300   |
| Primary To Secondary Leak Rate (lbs/day)              | 100.000  |
| Fission Product Carry-Over Fraction                   | .001     |
| Halogen Carry-Over Fraction                           | .010     |
| Condensate Demineralizer Flow Fraction                | .700     |
| Radwaste Dilution Flow (thousand gpm)                 | 7.800    |

**BV-2 LIQUID WASTE INPUTS** 

| · · · · · · · · · · · · · · · · · · · |           |          | V Z LIQUID II | COLLECTIO |       | DE          | CONTAN       | MINATION      |
|---------------------------------------|-----------|----------|---------------|-----------|-------|-------------|--------------|---------------|
|                                       | FLOW RATE | FRACTION | FRACTION      | TIME      | TIME  |             | FACTO        |               |
| STREAM                                | (gal/day) | OF PCA   | DISCHARGE     | (hrs)     | (hrs) | I           | CsRb         | OTHERS        |
| Containment<br>Sump                   | 40        | 1.000    | 1.0           | 35.5      | 6.2   | 1E3         | 1E4          | 1E4           |
| Auxiliary<br>Building Sump            | 200       | 0.100    | 1.0           | 35.5      | 6.2   | 1E3         | 1E4          | 1E4           |
| Miscellaneous<br>Sources              | 700       | 0.010    | 1.0           | 35.5      | 6.2   | 1E3         | 1 <b>E</b> 4 | 1E4           |
| Rx Plant<br>Samples                   | 35        | 1.000    | 1.0           | 35.5      | 6.2   | 1E3         | 1 <b>E4</b>  | 1E4           |
| Lab Drains                            | 400       | 0.002    | 1.0           | 35.5      | 6.2   | 1E3         | 1E4          | 1E4 .         |
| Cond. Demin.<br>Rinse Water           | 2685      | 1.1E-4   | 1.0           | 35.5      | 6.2   | 1E3         | 1E4          | 1E4           |
| CVCS                                  | 60        |          | 1.0           | 1300      | 173   | ,1E4        | 4E3          | 1E5           |
| Turbine<br>Bldg.Drains                | 7200      |          | 1,0           |           |       | <del></del> | <u>.</u> .   | . <del></del> |
|                                       |           |          |               |           |       |             |              |               |

| Beaver Valley Power Station  Procedure Number: 1/2-ODC-3.01   |              |                                          |  |
|---------------------------------------------------------------|--------------|------------------------------------------|--|
| Title:                                                        | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision:    | Page Number:<br>11 of 12                 |  |

# ATTACHMENT C Page 1 of 2 GASEOUS SOURCE TERM INPUTS

# TABLE B:2a INPUTS TO SWEC GAS1BB CODE FOR GENERATION OF BV-1 GASEOUS SOURCE TERM MIXES

| BV-1 PWR INPUTS                                                                                                                                                                                                                                                                                                                                                                         |                                          | VA      | LUE                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|-------------------------------------------------------|
| Thermal Power Level (megawatts)                                                                                                                                                                                                                                                                                                                                                         |                                          |         | 2766.000                                              |
| Plant Capacity Factor                                                                                                                                                                                                                                                                                                                                                                   |                                          |         | .800                                                  |
| Mass Of Primary Coolant (thousand lbs)                                                                                                                                                                                                                                                                                                                                                  |                                          |         | 385.000                                               |
| Percent Fuel With Cladding Defects                                                                                                                                                                                                                                                                                                                                                      |                                          |         | .120                                                  |
| Primary System Letdown Rate (gpm)                                                                                                                                                                                                                                                                                                                                                       |                                          |         | 57.000                                                |
| etdown Cation Demineralizer Flow                                                                                                                                                                                                                                                                                                                                                        |                                          |         | 5.700                                                 |
| Number Of Steam Generators                                                                                                                                                                                                                                                                                                                                                              | 13                                       |         | 3.000                                                 |
| Total Steam Flow (million lbs/hr)                                                                                                                                                                                                                                                                                                                                                       |                                          |         | 11.600                                                |
| Mass Of Steam In Each Steam Generator (thousand lbs)                                                                                                                                                                                                                                                                                                                                    |                                          | 1       | 8.700                                                 |
| Mass Of Liquid In Each Steam Generator (thousand lbs)                                                                                                                                                                                                                                                                                                                                   |                                          |         | 100.000                                               |
| Total Mass Of Secondary Coolant (thousand lbs)                                                                                                                                                                                                                                                                                                                                          |                                          |         | 2000.000                                              |
| Mass Of Water In Steam Generator (thousand lbs)                                                                                                                                                                                                                                                                                                                                         |                                          | •       | 298.000                                               |
| Blowdown Rate (thousand lbs/hr)                                                                                                                                                                                                                                                                                                                                                         | ,                                        | • .     | 52.000                                                |
| Primary To Secondary Leak Rate (lbs/day)                                                                                                                                                                                                                                                                                                                                                |                                          |         | 100.000                                               |
| Fission Product Carry-Over Fraction                                                                                                                                                                                                                                                                                                                                                     |                                          | •       | .001                                                  |
| Halogen Carry-Over Fraction                                                                                                                                                                                                                                                                                                                                                             |                                          |         | .010                                                  |
| Condensate Demineralizer Flow Fraction                                                                                                                                                                                                                                                                                                                                                  |                                          |         | 0.000                                                 |
| Radwaste Dilution Flow (thousand gpm)                                                                                                                                                                                                                                                                                                                                                   | * •                                      |         | 15.000                                                |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                          |         |                                                       |
| BV-1 GASEOUS WASTE INPUTS                                                                                                                                                                                                                                                                                                                                                               |                                          |         | VALUE                                                 |
| here Is Not Continuous Stripping Of Full Letdown Flow                                                                                                                                                                                                                                                                                                                                   |                                          | , , , , |                                                       |
| old Up Time For Xenon (days)                                                                                                                                                                                                                                                                                                                                                            |                                          |         | 39.000                                                |
| old Up Time For Krypton (days)                                                                                                                                                                                                                                                                                                                                                          |                                          |         | 2.000                                                 |
| rimary Coolant Leak To Auxiliary Building (lb/day)                                                                                                                                                                                                                                                                                                                                      | ,* · · · · · · · · · · · · · · · · · · · |         | 160.000                                               |
| uxiliary Building Leak Iodine Partition Factor                                                                                                                                                                                                                                                                                                                                          | · ·, '                                   |         | 7.5E-3                                                |
| as Waste System Particulate Release Fraction                                                                                                                                                                                                                                                                                                                                            |                                          |         | 0.000                                                 |
| uxiliary Building Charcoiodine Release Fraction                                                                                                                                                                                                                                                                                                                                         |                                          | N 196   | 1.000                                                 |
| uxiliary Building Particulate Release Fraction                                                                                                                                                                                                                                                                                                                                          |                                          |         | 1.000                                                 |
| ontainment Volume (million cu-ft)                                                                                                                                                                                                                                                                                                                                                       | • *,                                     |         | 1.800                                                 |
| requency Of Primary Coolant Degassing (times/yr)                                                                                                                                                                                                                                                                                                                                        |                                          |         | 2.000                                                 |
| rimary To Secondary Leak Rate (lb/day)                                                                                                                                                                                                                                                                                                                                                  |                                          |         | 100.000                                               |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                          | •       |                                                       |
| There Is A Kidney Filter                                                                                                                                                                                                                                                                                                                                                                |                                          |         | 2.000                                                 |
| There Is A Kidney Filter ontainment Atmosphere Cleanup Rate (thousand cfm)                                                                                                                                                                                                                                                                                                              |                                          |         |                                                       |
| ontainment Atmosphere Cleanup Rate (thousand cfm)                                                                                                                                                                                                                                                                                                                                       |                                          | •       | 8.000                                                 |
| ontainment Atmosphere Cleanup Rate (thousand cfm) urge Time Of Containment (hours)                                                                                                                                                                                                                                                                                                      |                                          | •       |                                                       |
| ontainment Atmosphere Cleanup Rate (thousand cfm) urge Time Of Containment (hours)  There Is Not A Condensate Demineralizer                                                                                                                                                                                                                                                             |                                          |         |                                                       |
| ontainment Atmosphere Cleanup Rate (thousand cfm) urge Time Of Containment (hours) <u>There Is Not A Condensate Demineralizer</u> odine Partition Factor (gas/liq) In Steam Generator                                                                                                                                                                                                   |                                          |         | 8.000<br>0.010                                        |
| ontainment Atmosphere Cleanup Rate (thousand cfm) urge Time Of Containment (hours)  There Is Not A Condensate Demineralizer odine Partition Factor (gas/liq) In Steam Generator requency Of Containment Building High Vol Purge (times/yr)*                                                                                                                                             |                                          |         | 8.000<br>0.010<br>4.000                               |
| ontainment Atmosphere Cleanup Rate (thousand cfm) urge Time Of Containment (hours)  There Is Not A Condensate Demineralizer odine Partition Factor (gas/liq) In Steam Generator requency Of Containment Building High Vol Purge (times/yr)* containment Volume Purge Iodine Release Fraction                                                                                            |                                          |         | 8.000<br>0.010                                        |
| ontainment Atmosphere Cleanup Rate (thousand cfm) urge Time Of Containment (hours)  There Is Not A Condensate Demineralizer odine Partition Factor (gas/liq) In Steam Generator requency Of Containment Building High Vol Purge (times/yr)* ontainment Volume Purge Iodine Release Fraction ontainment Volume Purge Particulate Release Fraction                                        |                                          |         | 8.000<br>0.010<br>4.000<br>1.000                      |
| ontainment Atmosphere Cleanup Rate (thousand cfm) urge Time Of Containment (hours)  There Is Not A Condensate Demineralizer odine Partition Factor (gas/liq) In Steam Generator requency Of Containment Building High Vol Purge (times/yr)* ontainment Volume Purge Iodine Release Fraction ontainment Volume Purge Particulate Release Fraction team Leak To Turbine Building (lbs/hr) |                                          |         | 8.000<br>0.010<br>4.000<br>1.000<br>1.000<br>1700.000 |
| ontainment Atmosphere Cleanup Rate (thousand cfm) urge Time Of Containment (hours)  There Is Not A Condensate Demineralizer odine Partition Factor (gas/liq) In Steam Generator requency Of Containment Building High Vol Purge (times/yr)* ontainment Volume Purge Iodine Release Fraction ontainment Volume Purge Particulate Release Fraction                                        |                                          |         | 0.010<br>4.000<br>1.000<br>1.000                      |

| Beaver Valley Power Station                                   | Procedure Number:<br>1/2-ODC-3.01 |                                          |  |
|---------------------------------------------------------------|-----------------------------------|------------------------------------------|--|
| Title:                                                        | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |  |
| ODCM: Dispersion Calculation Procedure and Source Term Inputs | Revision:                         | Page Number:<br>12 of 12                 |  |

# ATTACHMENT C Page 2 of 2 GASEOUS SOURCE TERM INPUTS

# TABLE B:2b INPUTS TO SWEC GAS1BB CODE FOR GENERATION OF BV-2 GASEOUS SOURCE TERM MIXES

|                                                         |                                       | VALUE    |
|---------------------------------------------------------|---------------------------------------|----------|
| Thermal Power Level (megawatts)                         |                                       | 2766.000 |
| Plant Capacity Factor                                   |                                       | .800     |
| Mass Of Primary Coolant (thousand lbs)                  | •                                     | 385.000  |
| Percent Fuel With Cladding Defects                      |                                       | .120     |
| Primary System Letdown Rate (gpm)                       |                                       | 57.000   |
| Letdown Cation Demineralizer Flow                       |                                       | 5.700    |
| Number Of Steam Generators                              |                                       | 3.000    |
| Total Steam Flow (million lbs/hr)                       |                                       | 11.600   |
| Mass Of Steam In Each Steam Generator (thousand lbs)    |                                       | 8.700    |
| Mass Of Liquid In Each Steam Generator (thousand lbs)   |                                       | 100.000  |
| Total Mass Of Secondary Coolant (thousand lbs)          |                                       | 2000.000 |
| Mass Of Water In Steam Generator (thousand lbs)         |                                       | 298.000  |
| Blowdown Rate (thousand lbs/hr)                         |                                       | 22.300   |
| Primary To Secondary Leak Rate (lbs/day)                |                                       | 100.000  |
| Fission Product Carry-Over Fraction                     |                                       | .001     |
| Halogen Carry-Over Fraction                             |                                       | .010     |
| Condensate Demineralizer Flow Fraction                  |                                       | .700     |
| Radwaste Dilution Flow (thousand gpm)                   |                                       | 7.800    |
| radwasie Difution i fow (mousand gpm)                   | · · · · · · · · · · · · · · · · · · · | 7,800    |
|                                                         |                                       |          |
| BV-2 GASEOUS WASTE INPU                                 | JTS                                   | VALUE    |
| There Is Not Continuous Stripping Of Full Letdown Flow  |                                       |          |
| Hold Up Time For Xenon (days)                           |                                       | 45.800   |
| fold Up Time For Krypton (days)                         |                                       | 2.570    |
| Primary Coolant Leak To Auxiliary Building (lb/day)     |                                       | 160.000  |
| Auxiliary Building Leak Iodine Partition Factor         |                                       | 7.5E-3   |
| Gas Waste System Particulate Release Fraction           |                                       | 0.000    |
| Auxiliary Building Charcoiodine Release Fraction        |                                       | 0.100    |
| Auxiliary Building Particulate Release Fraction         |                                       | 0.010    |
| Containment Volume (million cu-ft)                      |                                       | 1.800    |
| requency Of Primary Coolant Degassing (times/yr)        |                                       | 2,000    |
| Primary To Secondary Leak Rate (lb/day)                 | :                                     | 100.000  |
| There Is A Kidney Filter                                |                                       | 100.000  |
| Containment Atmosphere Cleanup Rate (thousand cfm)      |                                       | 20.000   |
| Purge Time Of Containment (hours)                       |                                       |          |
|                                                         | 1:                                    | 8.000    |
| There Is Not A Condensate Demine                        | eranzer                               | . 0.010  |
| odine Partition Factor (gas/liq) In Steam Generator     | - 6 1*                                | 0.010    |
| requency Of Containment Building High Vol Purge (times  | S/YT) <sup>+</sup>                    | 4.000    |
| Containment Volume Purge Iodine Release Fraction        |                                       | 1.000    |
| Containment Volume Purge Particulate Release Fraction   |                                       | 1.000    |
| steam Leak To Turbine Building (lbs/hr)                 |                                       | 1700.000 |
| Fraction Iodine Released From Blowdown Tank Vent        |                                       | 0.000    |
| raction Iodine Released From Main Condensate Air Ejecto | or                                    | 0.270    |
| There Is Not A Cryogenic Off Gas                        |                                       |          |

# **Beaver Valley Power Station**

**Unit 1/2** 

1/2-ODC-3.02

**ODCM: Bases For ODCM Controls** 

# <u>Document Owner</u> Manager, Nuclear Environmental and Chemistry

| Revision Number          | 2                       |
|--------------------------|-------------------------|
| Level Of Use             | General Skill Reference |
| Safety Related Procedure | Yes                     |
| Effective Date           | 12/29/06                |

| Beaver Valley Power Station          |           | Procedure Number: 1/2-ODC-3.02           |  |
|--------------------------------------|-----------|------------------------------------------|--|
| Title: ODCM: Bases For ODCM Controls | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
|                                      | Revision: | Page Number:<br>2 of 14                  |  |

# TABLE OF CONTENTS

| 1.0 | PURPOSE                                                        | 3  |
|-----|----------------------------------------------------------------|----|
| 2.0 | SCOPE                                                          |    |
| 3.0 | REFERENCES AND COMMITMENTS                                     |    |
|     | 3.1 References                                                 | .3 |
|     | 3.2 Commitments                                                | .4 |
| 4.0 | RECORDS AND FORMS                                              | .4 |
|     | 4.1 Records                                                    | .4 |
|     | 4.2 Forms                                                      | .5 |
| 5.0 | PRECAUTIONS AND LIMITATIONS                                    | .5 |
| 6.0 | ACCEPTANCE CRITERIA                                            | .5 |
| 7.0 | PREREQUISITES                                                  | .5 |
| 8.0 | PROCEDURE                                                      | .5 |
| ATT | FACHMENT A BASES FOR ODCM CONTROLS: INSTRUMENTATION            | .7 |
| ATT | FACHMENT B BASES FOR ODCM CONTROLS: LIQUID EFFLUENTS           | 8. |
| ATT | FACHMENT C BASES FOR ODCM CONTROLS: GASEOUS EFFLUENTS          | 10 |
| AT7 | FACHMENT D BASES FOR ODCM CONTROLS: TOTAL DOSE                 | 13 |
| ATT | FACHMENT E BASES FOR ODCM CONTROLS: RADIOLOGICAL ENVIRONMENTAL |    |
|     | MONITORING PROGRAM (REMP)                                      | 14 |

| Beaver Valley Power Station          | Procedure | Procedure Number:<br>1/2-ODC-3.02     |  |
|--------------------------------------|-----------|---------------------------------------|--|
| Title: ODCM: Bases For ODCM Controls | Unit: 1/2 | Level Of Use: General Skill Reference |  |
|                                      | Revision: | Page Number:<br>3 of 14               |  |

# 1.0 PURPOSE

- 1.1 This procedure contains the Bases for the ODCM Controls that were transferred from the Bases Section of the Technical Specification per Unit 1/2 Amendments 1A-188/2A-70, and in accordance with Generic Letter 89-01 and NUREG-1301 (Generic Letter 89-01, Supplement No. 1) [ITS] and T.S. 5.5.2. (3.1.5, 3.2.10)
  - 1.1.1 Prior to issuance of this procedure, these items were located in Appendix D of the old ODCM.
- 1.2 This procedure also contains the Bases for the ODCM Controls (for Radiation Monitoring Instrumentation) that were duplicated from the Bases Section of the Technical Specification per Unit 1/2 Amendments 1A-246/2A-124, and in accordance with NUREG-1431. (3.1.6, 3.2.11)
- 1.3 This procedure also contains the Bases for the ODCM Controls (for Liquid Holdup Tank Activity Limits and for Gas Decay/Storage Tank Activity Limits) that were transferred from the Bases Section of the Technical Specification per Unit 1/2 Amendments 1A-250/2A-130, and in accordance with NUREG-1431. (3.1.7, 3.2.11)

# 2.0 SCOPE

2.1 This procedure is applicable to all station personnel that are qualified to perform activities as described and referenced in this procedure.

### 3.0 REFERENCES AND COMMITMENTS

### 3.1 References

- 3.1.1 1/2-ODC-2.01, ODCM: Liquid Effluents
- 3.1.2 1/2-ODC-2.02, ODCM: Gaseous Effluents
- 3.1.3 1/2-ODC-3.03, ODCM: Controls for RETS and REMP Programs
- 3.1.4 1/2-ADM-1640, Control of the Offsite Dose Calculation Manual
- 3.1.5 Unit 1/2 Technical Specification 6.8.6, including Amendments 1A-188/2A-70 (LAR 1A-175/2A-37), Implemented August 7, 1995
- 3.1.6 Unit 1/2 Technical Specification 3.3.3.1, including Amendments 1A-246/2A-124 (LAR 1A-287/2A-159), Implemented April 11, 2002
- 3.1.7 Unit 1/2 Technical Specifications 3.11.1.4, 3.11.2.5 and 6.8.6, including Amendments 1A-250/2A-130 (LAR 1A-291/2A-163), Implemented August 7, 2002
- 3.1.8 1/2-ADM-0100, Procedure Writer's Guide
- 3.1.9 1/2-ADM-0101, Review and Approval of Documents

| Beaver Valley Power Station          |           | Procedure Number: 1/2-ODC-3.02           |  |
|--------------------------------------|-----------|------------------------------------------|--|
| Title: ODCM: Bases For ODCM Controls | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ·                                    | Revision: | Page Number:<br>4 of 14                  |  |

- 3.1.10 CR 05-01169, Chemistry Action Plan for Transition of RETS, REMP and ODCM. CA-20, Revise procedure 1/2-ODC-3 02 to change document owner from Manager, Radiation Protection to Manager, Nuclear Environmental and Chemistry. CR 05-03306, Incorporated Improved Technical Specifications (ITS).
- 3.1.11 **[ITS]** T.S. 5.5.2

### 3.2 Commitments

- 3.2.1 10 CFR Part 20
- 3.2.2 10 CFR Part 50
- 3.2.3 40 CFR Part 141
- 3.2.4 40 CFR Part 190
- 3.2.5 Regulatory Guide 1.109, Calculation Of Annual Doses To Man From Routine Releases Of Reactor Effluents For The Purpose Of Evaluating Compliance With 10 CFR Part 50, Appendix I, Revision 1, October, 1977
- 3.2.6 Regulatory Guide 1.111, Methods For Estimating Atmospheric Transport And Dispersion of Gaseous Effluents In Routine Releases From Light-Water-Cooled Reactors, Revision 1, July, 1977
- 3.2.7 Regulatory Guide 1.113, Estimating Aquatic Dispersion Of Effluents From Accidental And Routine Reactor Releases For The Purpose Of Implementing Appendix I, April, 1977
- 3.2.8 NUREG-0133, Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants, October 1978
- 3.2.9 NUREG-0737, Clarification of TMI Action Plan Requirements, October, 1980
- 3.2.10 NUREG-1301, Offsite Dose Calculation Manual Guidance. Standard Radiological Effluent Controls For Pressurized Water Reactors (Generic Letter 89-01, Supplement No. 1)
- 3.2.11 NUREG-1431, Standard Technical Specifications Westinghouse Plants Specifications

### 4.0 RECORDS AND FORMS

#### 4.1 Records

4.1.1 Any calculation supporting ODCM changes shall be documented, as appropriate, by a retrievable document (eg; letter or calculation package) with an appropriate RTL number.

| Beaver Valley Power Station          | Procedure Number:<br>1/2-ODC-3.02 |                                          |
|--------------------------------------|-----------------------------------|------------------------------------------|
| Title: ODCM: Bases For ODCM Controls | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |
|                                      | Revision:                         | Page Number:                             |
|                                      | 2                                 | 5 of 14                                  |

### 4.2 Forms

#### 4.2.1 None

## 5.0 PRECAUTIONS AND LIMITATIONS

- 5.1 The numbering of each specific ODCM Bases contained in this procedure does not appear to be sequential. This is intentional, as all ODCM Bases numbers remained the same when they were transferred from the Technical Specifications. This was done in an effort to minimize the amount of plant procedure changes and to eliminate any confusion associated with numbering changes.
- This procedure includes Improved Technical Specifications ([ITS]) information that is NOT applicable to current Technical Specifications ([CTS]) and [CTS] information that is NOT applicable in [ITS]. The [CTS] information shall be used prior to the [ITS] effective date. The [ITS] information shall be used on or after the [ITS] effective date.

## 6.0 ACCEPTANCE CRITERIA

- Any change to this procedure shall contain sufficient justification that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appenidx I to 10 CFR 50, and not adversely impact the accuracy or reliability of effluent dose or setpoint calculation. (3.2.10)
  - 6.1.1 All changes to this procedure shall be prepared in accordance with 1/2-ADM-0100<sup>(3.1.8)</sup> and 1/2-ADM-1640.<sup>(3.1.4)</sup>
  - 6.1.2 All changes to this procedure shall be reviewed and approved in accordance with 1/2-ADM-0101<sup>(3.1.9)</sup> and 1/2-ADM-1640.<sup>(3.1.4)</sup>

### 7.0 PREREQUISITES

7.1 The user of this procedure shall be familiar with ODCM structure and content.

### 8.0 PROCEDURE

- 8.1 See ATTACHMENT A for a complete description of Bases for ODCM Controls associated with Instrumentation.
- 8.2 See ATTACHMENT B for a complete description of Bases for ODCM Controls associated with Liquid Effluents.
- 8.3 See ATTACHMENT C for a complete description of Bases for ODCM Controls associated with Gaseous Effluents.
- 8.4 See ATTACHMENT D for a complete description of Bases for ODCM Controls associated with Total Dose.

| Beaver Valley Power Station          | Procedure Number: 1/2-ODC-3.02 |                                          |
|--------------------------------------|--------------------------------|------------------------------------------|
| Title: ODCM: Bases For ODCM Controls | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
|                                      | Revision:                      | Page Number:<br>6 of 14                  |

8.5 See ATTACHMENT E for a complete description of Bases for ODCM Controls associated with the Radiological Environmental Monitoring Program (REMP).

-END-

| Beaver Valley Power Station          |           | Procedure Number: 1/2-ODC-3.02           |  |
|--------------------------------------|-----------|------------------------------------------|--|
| Title: ODCM: Bases For ODCM Controls | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
|                                      | Revision: | Page Number: 7 of 14                     |  |

# ATTACHMENT A Page 1 of 1 BASES FOR ODCM CONTROLS: INSTRUMENTATION

# 3/4.3.3.1 <u>RADIATION MONITORING INSTRUMENTATION</u>

The OPERABILITY of the radiation monitoring channels ensures that: 1) the radiation levels are continually measured in the areas served by the individual channels, 2) the alarm or automatic action is initiated when the radiation level trip setpoint is exceeded; and 3) sufficient information is available on selected plant parameters to monitor and assess these variables following an accident. This capability is consistent with the recommendations of NUREG-0737. (3.2.9)

# 3/4.3.3.9 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential releases of liquid effluents. The alarm/trip setpoints for these instruments shall be calculated in accordance with Section 1 of this manual to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50. (3.2.1, 3.2.2)

# 3/4.3.3.10 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The alarm/trip setpoints for these instruments shall be calculated in accordance with Section 2 of this manual to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. This instrumentation also includes provisions for monitoring (and controlling) the concentrations of potentially explosive gas mixtures in the waste gas holdup system. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50. (3.2.1, 3.2.2)

| Beaver Valley Power Station          | Procedure Number: 1/2-ODC-3.02 |                                          |
|--------------------------------------|--------------------------------|------------------------------------------|
| Title: ODCM: Bases For ODCM Controls | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
|                                      | Revision:                      | Page Number:<br>8 of 14                  |

# ATTACHMENT B Page 1 of 2 BASES FOR ODCM CONTROLS: LIQUID EFFLUENTS

# 3/4.11.1.1 LIQUID EFFLUENT CONCENTRATION

This CONTROL is provided to ensure that the concentration of radioactive materials released in Liquid waste effluents from the site to unrestricted areas will be less than 10 times the EC's specified in 10 CFR Part 20, Appendix B (20.1001-20-2402), Table 2, Column 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water outside the site will result in exposure within (1) the Section II.A design objectives of Appendix I, 10 CFR Part 50, to an individual and (2) the limits of 10 CFR Part 20.1302 to the population. The concentration limit for dissolved or entrained noble gases is based upon the assumption that Xe-135 is the controlling radioisotope and its MPC in air (submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP) Publication 2. (3.2.1, 3.2.2)

# 3/4.11.1.2 LIQUID EFFLUENT DOSE

This CONTROL is provided to implement the requirements of Sections II.A, III.A, and IV. A of Appendix I, 10 CFR Part 50. The Limiting Condition for Operation implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents will be kept "as low as is reasonably achievable." Also, for fresh water sites with drinking water supplies which can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR 141. The dose calculations in the procedure 1/2-ODC-2.01 implement the requirements in Section III. A of Appendix I that conformance with the guides of Appendix I is to be shown by calculational procedures based on models and data such that the actual exposure of an individual through appropriate pathways is unlikely to be substantially underestimated. The equations specified in procedure 1/2-ODC-2.01 for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, and Regulatory Guide 1.113. NUREG-0133 provides methods for dose calculations consistent with Regulatory Guides 1.109 and 1.113. (3.1.1, 3.2.2, 3.2.3, 3.2.5, 3.2.7,

This CONTROL applies to the release of liquid effluents for Beaver Valley Power Station, Unit No. 1 or Unit No. 2. These units have shared radwaste treatment systems, the liquid effluents from the shared system are proportioned among the units sharing that system.

| Beaver Valley Power Station          | I         | Procedure Number:<br>1/2-ODC-3.02        |  |
|--------------------------------------|-----------|------------------------------------------|--|
| Title: ODCM: Bases For ODCM Controls | Unit:     | Level Of Use:<br>General Skill Reference |  |
|                                      | Revision: | Page Number:                             |  |
|                                      | 2         | 9 of 14                                  |  |

# ATTACHMENT B Page 2 of 2 BASES FOR ODCM CONTROLS: LIQUID EFFLUENTS

### 3/4.11.1.3 LIQUID WASTE TREATMENT SYSTEM

The CONTROL that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept "as low as is reasonably achievable." This specification implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the liquid radwaste treatment system were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50, for liquid effluents. This specification applies to Beaver Valley Power Station, Unit No. 1 or Unit No. 2.<sup>(3.2.2)</sup>

## 3/4.11.1.4 LIQUID HOLDUP TANKS

Restricting the quantity of radioactive material contained in the specified tanks provides assurance that in the event of an uncontrolled release of the tanks' contents, the resulting concentrations would be less than the limits of 10 CFR Part 20, Appendix B, Table 2, Column 2, at the nearest potable water supply and the nearest surface water supply in an unrestricted area.

| Beaver Valley Power Station          |           | Procedure Number:<br>1/2-ODC-3.02        |  |
|--------------------------------------|-----------|------------------------------------------|--|
| Title: ODCM: Bases For ODCM Controls | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ,                                    | Revision: | Page Number:                             |  |
|                                      | 2         | 10 of 14                                 |  |

# ATTACHMENT C Page 1 of 3 BASES FOR ODCM CONTROLS: GASEOUS EFFLUENTS

### 3/4.11.2.1 GASEOUS EFFLUENT DOSE RATE

This CONTROL is provided to ensure that the dose at anytime at the site boundary from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR Part 20 for unrestricted areas. The annual dose limits are the doses associated with the concentrations of 10 CFR Part 20, Appendix B, Table II, Column 1. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of an individual in an unrestricted area, either within or outside the site boundary, to annual average concentrations exceeding the limits specified in Appendix B. Table II of 10 CFR Part 20 (10 CFR Part 20.106(b)). For individuals who may at times be within the site boundary, the occupancy of the individual will be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the site boundary. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to an individual at or beyond the site boundary to  $\leq 500$  mrem/year to the total body or to  $\leq$  3,000 mrem/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background of a child via the inhalation pathway to  $\leq 1,500 \text{ mrem/year.}^{(3.2.1)}$ 

### 3/4.11.2.2 DOSE, NOBLE GASES

This CONTROL is provided to implement the requirements of Sections II.B, III.A, and IV.A of Appendix I, 10 CFR Part 50. The CONTROL implements the guides set forth in Section II.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the release of radioactive material in gaseous effluents will be kept "as low as is reasonably achievable." The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of an individual through the appropriate pathways is unlikely to be substantially underestimated. The dose calculations established in procedure 1/2-ODC-2.02 for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, and Regulatory Guide 1.111. The equations in procedure 1/2-ODC-2.02 are provided for determining the air doses at the exclusion area boundary, and are based upon the historical average atmospheric conditions. NUREG-0133 provides methods for dose calculations consistent with Regulatory Guides 1.109 and 1.111. This specifications applies to the release of gaseous effluents from Beaver Valley Power Station, Unit No. 1 or Unit No. 2. (3.1.2, 3.2.2, 3.2.5, 3.2.6, 3.2.8)

# 3/4.11.2.3 <u>DOSE, RADIOIODINES, RADIOACTIVE MATERIAL IN PARTICULATE FORM</u> AND RADIONUCLIDES OTHER THAN NOBLE GASES

| Beaver Valley Power Station          | Procedure Number: 1/2-ODC-3.02 |                                          |
|--------------------------------------|--------------------------------|------------------------------------------|
| Title: ODCM: Bases For ODCM Controls | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
|                                      | Revision:                      | Page Number:<br>11 of 14                 |

# ATTACHMENT C Page 2 of 3 BASES FOR ODCM CONTROLS: GASEOUS EFFLUENTS

This CONTROL is provided to implement the requirements of Sections II.C, III.A, and IV.A of Appendix I, 10 CFR Part 50. The CONTROLS are the guides set forth in Section II.C of Appendix I. (3.2.2)

The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." The calculational methods specified in the surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of an individual through appropriate pathways is unlikely to be substantially underestimated. The calculational methods in procedure 1/2-ODC-2.02 are for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, and Regulatory Guide 1.111. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate specifications for radioiodines, radioactive material in particulate form, and radionuclides other than noble gases are dependent on the existing radionuclide pathways to man, in the unrestricted area. The pathways which are examined in the development of these calculations are: 1) individual inhalation of airborne radionuclides, 2) deposition of radionuclides onto vegetation with subsequent consumption by man, 3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man, and 4) deposition on the ground with subsequent exposure of man. This CONTROL applies to radioactive material in particulate form and radionuclides other than noble gases released from Beaver Valley Power Station, Unit No. 1 or Unit No.2. (3.1.2, 3.2.2, 3.2.6, 3.2.7)

| Beaver Valley Power Station   |           | Procedure Number: 1/2-ODC-3.02           |  |
|-------------------------------|-----------|------------------------------------------|--|
| ODCM: Bases For ODCM Controls | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ·                             | Revision: | Page Number:                             |  |

# ATTACHMENT C

Page 3 of 3

BASES FOR ODCM CONTROLS: GASEOUS EFFLUENTS

# 3/4.11.2.4 GASEOUS RADWASTE TREATMENT SYSTEM

The CONTROL that the appropriate portions of these systems be used when specified provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." This specification implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and design objective Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents. This specification applies to gaseous radwaste from Beaver Valley Power Station, Unit No. 1 or Unit No. 2. (3.1.2, 3.2.2)

# 3/4.11.2.5 BV-1 GASEOUS WASTE STORAGE TANKS

Restricting the quantity of radioactivity contained in each gas storage tank provides assurance that in the event of an uncontrolled release of the tanks' contents, the resulting total body exposure to an individual located at the nearest exclusion area boundary for two hours immediately following the onset of the release will not exceed 0.5 rem. The specified limit restricting the quantity of radioactivity contained in each gas storage tank was specified to ensure that the total body exposure resulting from the postulated release remained a suitable fraction of the reference value set forth in 10 CFR 100.11 (a)(1).

#### 3/4.11.2.5 BV-2 GASEOUS WASTE STORAGE TANKS

Restricting the quantity of radioactivity contained in any connected group of gaseous waste storage tanks provides assurance that in the event of an uncontrolled release of the tanks' contents, the resulting total body exposure to an individual located at the nearest exclusion area boundary for two hours immediately following the onset of the release will not exceed 0.5 rem. The specified limit restricting the quantity of radioactivity contained in any connected group of gaseous waste storage tanks was specified to ensure that the total body exposure resulting from the postulated release remained a suitable fraction of the reference value set forth in 10 CFR 100.11(a)(1). The curie content limit is applied individually to each gaseous waste storage tank and collectively to the number of unisolated gaseous waste storage tanks.

| Beaver Valley Power Station          | Procedure Number: 1/2-ODC-3.02 |                                          |
|--------------------------------------|--------------------------------|------------------------------------------|
| Title: ODCM: Bases For ODCM Controls | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
|                                      | Revision:                      | Page Number:                             |
|                                      | 2                              | 13 of 14                                 |

# ATTACHMENT D Page 1 of 1 BASES FOR ODCM CONTROLS: TOTAL DOSE

## 3/4.11.4 <u>TOTAL DOSE</u>

This CONTROL is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR Part 20 by 46 FR 18525. The CONTROL requires the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. For sites containing up to 4 reactors, it is highly unlikley that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the units (including outside storages tanks, etc.) are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 5 miles must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11 and 10 CFR 20.405c, is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190, and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in ODCM CONTROL 3.11.1.1 and 3.11.2.1. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle. (3.1.3, 3.2.1, 3.2.2, 3.2.4)

| Beaver Valley Power Station          |           | Procedure Number: 1/2-ODC-3.02           |  |
|--------------------------------------|-----------|------------------------------------------|--|
| Title: ODCM: Bases For ODCM Controls | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
|                                      | Revision: | Page Number:<br>14 of 14                 |  |

ATTACHMENT E

Page 1 of 1

BASES FOR ODCM CONTROLS: RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

### 3/4.12.1 MONITORING PROGRAM

The radiological monitoring program required by this CONTROL provides measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures of MEMBER(S) OF THE PUBLIC resulting from the station operation. This monitoring program thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and modeling of the environmental exposure pathways. The initially specified monitoring program will be effective for at least the first 3 years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The detection capabilities required by ODCM Control 3.12.1, Table 4.12-1 are state-of-the-art for routine environmental measurements in industrial laboratories. The LLD's for drinking water meet the requirements of 40 CFR 141. (3.1.3, 3.2.3)

#### 3/4.12.2 LAND USE CENSUS

ODCM CONTROL 3.12.2 is provided to ensure that changes in the use of unrestricted areas are identified and that modifications to the monitoring programs are made if required by the results of this census. The best survey information from the door-to-door survey, aerial survey, or by consulting with local agriculture authorities shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 500 square feet provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were used: 1) that 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and 2) a vegetation yield of 2 kg/square meter (3.1.3, 3.2.2)

### 3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

The ODCM CONTROL 3.12.3 for participation in an Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of a quality assurance program for environmental monitoring in order to demonstrate that the results are reasonably valid. (3.1.3)

# **Beaver Valley Power Station**

**Unit 1/2** 

1/2-ODC-3.03

**ODCM: Controls for RETS and REMP Programs** 

# <u>Document Owner</u> Manager, Nuclear Environmental and Chemistry

| Revision Number          | 6                       |
|--------------------------|-------------------------|
| Level Of Use             | General Skill Reference |
| Safety Related Procedure | Yes                     |
| Effective Date           | 06/23/07                |

| Beaver Valley Power Station               |           | Procedure Number:<br>1/2-ODC-3.03        |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>2 of 82                  |  |

# TABLE OF CONTENTS

|        |                 | ******           | 2 01 001(121(10                      |      |
|--------|-----------------|------------------|--------------------------------------|------|
| 1.0    | PURPOSE         | ····             |                                      | 3    |
| 2.0    | SCOPE           |                  |                                      | 3    |
| 3.0    | REFERENCES      | AND COMMITMENT   | <b></b>                              | 3    |
|        |                 |                  |                                      |      |
|        |                 |                  | ·                                    |      |
| 4.0    |                 |                  |                                      |      |
|        | •               |                  |                                      |      |
|        |                 |                  |                                      |      |
| 5.0    |                 |                  | 3                                    |      |
| 6.0    |                 |                  |                                      |      |
| 7.0    |                 |                  |                                      |      |
| 8.0    |                 | OD OM COMED OF C | ODED ATTOMAL MODES AND EDGOVERNOV    | 8    |
| AII    | ACHMENT A       |                  | OPERATIONAL MODES AND FREQUENCY      | 10   |
| A TTT  | ACHMENT B       |                  | DEFINITIONS                          |      |
|        | ACHMENT C       |                  | APPLICABILITY AND SURVEILLANCE       | . 12 |
| AII    | ·               | REQUIREMENTS     |                                      | 15   |
| ATT    | ACHMENT D       | ODCM CONTROLS:   | RADIATION MONITORING INSTRUMENTATION | 119  |
|        | ACHMENT E       |                  | RETS INSTRUMENTATION FOR LIQUID      |      |
|        |                 |                  |                                      | .27  |
| ATT    | ACHMENT F       |                  | RETS INSTRUMENT FOR GASEOUS RELEASES |      |
| ATT    | ACHMENT G       | ODCM CONTROLS:   | LIQUID EFFLUENT CONCENTRATION        | .50  |
| ATT    | ACHMENT H       |                  | LIQUID EFFLUENT DOSE                 |      |
| ATT    | ACHMENT I       | ODCM CONTROLS:   | LIQUID RADWASTE TREATMENT SYSTEM     | .56  |
| ATT    | ACHMENT J       |                  | LIQUID HOLDUP TANKS                  |      |
|        | ACHMENT K       |                  | GASEOUS EFFLUENT DOSE RATE           |      |
|        | ACHMENT L       |                  | DOSE- NOBLE GASES                    |      |
|        | ACHMENT M       |                  | DOSE - RADIOIODINES AND PARTICULATES |      |
|        | ACHMENT N       |                  | GASEOUS RADWASTE TREATMENT SYSTEM    |      |
|        | ACHMENT O       |                  | GAS STORAGE TANKS                    |      |
|        | ACHMENT P       |                  | TOTAL DOSE                           |      |
|        | ACHMENT Q       |                  | REMP-PROGRAM REQUIREMENTS            |      |
|        | ACHMENT R       |                  | REMP - LAND USE CENSUS               | .77  |
| AΤΤ    | ACHMENT S       |                  | REMP - INTERLABORATORY COMPARISON    | ae.  |
| A TECT | A C'UD (ENTE TE |                  | ANNITAL DEAD DEDODE                  |      |
|        | ACHMENT T       |                  | ANNUAL REMP REPORTS                  |      |
| AII    | ACHMENT U       | ODCM CONTROLS:   | ANNUAL RETS REPORTS                  | .81  |

| Beaver Valley Power Station               | 1            | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|--------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>3 of 82                  |  |

### 1.0 PURPOSE

- 1.1 This procedure includes selected Definitions and Tables as delineated in Section 1 of the Technical Specifications and selected Applicability and Surveillance Requirement statements as delineated in T.S. 3.0.
  - 1.1.1 Prior to issuance of this procedure, these items were located in Appendix C of the old ODCM, and were added to this procedure for reference purposes, even though they are currently described in the Technical Specifications.
- 1.2 This procedure contains the controls for the Radiological Effluent Technical Specification (RETS) that were transferred from the Technical Specifications per Unit 1/2 Amendments 1A-188/2A-70, and in accordance with Generic Letter 89-01 and NUREG-1301. (3.2.10)
  - 1.2.1 Prior to issuance of this procedure, these items were located in Appendix C of the old ODCM.
- 1.3 This procedure contains the reporting requirements for the Radioactive Effluent Release Report and the Annual Radiological Environmental Operating Report that were transferred from the Technical Specifications per Unit 1/2 Amendments 1A-188/2A-70 and in accordance with Generic Letter 89-01 and NUREG-1301. (3.2.10)
  - 1.3.1 Prior to issuance of this procedure, these items were located in Appendix E of the old ODCM.
- 1.4 This procedure contains the controls for Radiation Monitoring Instrumentation that were transferred from the Technical Specification per Unit 1/2 Amendments 246/124, and in accordance with NUREG-1431. (3.2.11)
- 1.5 This procedure contains the controls for Liquid Holdup Tank Activity Limits and for Gas Decay/Storage Tank Activity Limits that were transferred from the Technical Specification per Unit 1/2 Amendment 250/130, and in accordance with NUREG-1431. (3.1.6, 3.2.11)
- 1.6 This procedure provides the Radiological Effluent Controls and Reporting Requirements required for T.S. 5.5.1, T.S. 5.5.2, T.S. 5.5.8, T.S. 5.6.1, and T.S. 5.6.2.

# 2.0 SCOPE

2.1 This procedure is applicable to all station personnel that are qualified to perform activities as described and referenced in this procedure.

#### 3.0 REFERENCES AND COMMITMENTS

### 3.1 References

- 3.1.1 1/2-ODC-2.01, ODCM: Liquid Effluents
- 3.1.2 1/2-ODC-2.02, ODCM: Gaseous Effluents

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>4 of 82                  |

- 3.1.3 1/2-ODC-3.02, ODCM: Bases for ODCM Controls
- 3.1.4 Unit 1/2 Technical Specification 6.8.6, including Amendments 188/70 (LAR 1A-175/2A-137) Implemented August 7, 1995.
- 3.1.5 Unit 1/2 Technical Specification 3.3.3.1, including Amendments 246/124 (LAR 1A-287/2A-159) Implemented April 11, 2002
- 3.1.6 Unit 1/2 Technical Specification 3.11.1.4, 3.11.2.5, 6.8.6 and 6.9.3, including Amendments 250/130 (LAR 1A-291/2A-163) Implemented August 7, 2002
- 3.1.7 1/2-ADM-1640, Control of the Offsite Dose Calculation Manual
- 3.1.8 1/2-ADM-0100, Procedure Writer's Guide
- 3.1.9 NOP-SS-3001, Procedure Review and Approval
- 3.1.10 CR 981489, ODCM Table 4.11-2 Row A (Waste Gas Storage Tank Discharge). CA-01, Revise Appendix C of the ODCM (Table 4.11-2) to add clarification as to where and when tritium samples are to be obtained for GWST discharges.
- 3.1.11 CR 981490, ODCM Table 4.11-2 Note e, and Related Chemistry Department Procedures. CA-01, Revise Appendix C of the ODCM (Table 4.11-2, note e) to specify the proper tritium sample point.
- 3.1.12 CR 993021, Apparent failure to test RM-1DA-100 trip function as required by ODCM. No ODCM changes are required for this CR.
- 3.1.13 CR 001682, ODCM Action 28 Guidance. CA-02, Revise Appendix C of the ODCM (Table 3.3-13, Action 28) to differentiate actions associated with Inoperable Process Flow Rate Monitors vs. Sample Flow Rate Monitors.
- 3.1.14 CR02-05711, TS and ODCM changes not reflected in 10M.54.3.L5 Surveillance Log. CA-01, Revise 1/2-ODC-3.03 to add a requirement for applicable station groups notification of pending ODCM changes.
- 3.1.15 CR03-06123, Enhance Table 3.3-6 of 1/2-ODC-3.03 to Add More Preplanned Method of Monitoring. CA-01, Revise Table 3.3-6 and Table 4.3-3 to allow use of Eberline SPING Channel 5 as an additional 2<sup>nd</sup> PMM when the Unit 1 Mid or High Range Noble Gas Effluent Monitors are Inoperable.
- 3.1.16 CR03-06281, Gaseous Tritium Sampling Required by ODCM (1/2-ODC-3.03) Unclear for Chemistry. CA-01, Revise procedure Attachment K Table 4.11-2 for RP & Chemistry sampling of Gaseous Effluent Pathways to show which effluent pathways need sampled for compliance to ODCM Control 3.11.2.1 requirements.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                 | Page Number:<br>5 of 82                  |

- 3.1.17 CR03-07487, Results of NQA Assessment of the Radiological Effluents Program. CA-01, Revise Calculation Package No. ERS-ATL-95-007 to clarify the term "Surface Water Supply" per guidance presented in NUREG-0800 SRP 15.7.3. CA-05, Revise 1/2-ODC3.03 Control 3.11.1.4 to update the activity limits for the outside storage tanks.
- 3.1.18 CR03-07668, Benchmark Effluent & Environmental Programs VS Papers Presented at 13<sup>th</sup> REMP/RETS Workshop. CA-01, Evaluate procedure Attachment K Table 4.11-2 to reduce the amount of Effluent Samples obtained during a power transient.
- 3.1.19 CR03-09288, LAR 1A-321 & 2A-193, Increased Flexibility in Mode Restraints. CA-19, Review LAR 1A-321/2A-193 to identify the affected Rad Effluent procedures, programs, manuals, and applicable plant modification documents that will need to be revised to support implementing the LAR.
- 3.1.20 CR03-09959, RFA-Rad Protection Provide Clarification to ODCM 1/Day Air Tritium Sample. CA-01, Revise ODCM procedure 1/2-ODC-3.03 Attachment K (Table 4.11-2 note c & note e) to allow sampling of the appropriate building atmosphere.
- 3.1.21 CR03-11726, Typographical Error Found in ODCM 3.11.2.5. CA-01, Revise ODCM procedure 1/2-ODC-3.03, Attachment O, Control 3.11.2.5 to correct a typographical error. Specifically, the final word in Action (a) needs changed from "nad" to "and".
- 3.1.22 CR04-01643, Procedure Correction Typographical Error in the ODCM. CA-01, Revise ODCM procedure 1/2-ODC-3.03, Attachment F, (Table 3.3-13 and 4.3-13) to correct a typographical error. Specifically, the Asset Number for the Vacuum Gauge used for measurement of sample flow (from the Alternate Sampling Device) needs changed from [PI-1GW-13] to [PI-1GW-135].
- 3.1.23 CR04-02275, Discrepancies in Table 3.3-13 of the ODCM. CA-01, Revise ODCM procedure 1/2-ODC-3.03, Attachment F, (Table 3.3-13 and 4.3-13) to add clarification that the "Sampler Flow Rate Monitors are the devices used for "Particulate and Iodine Sampling".
- 3.1.24 Unit 1 Technical Specification Amendment No. 275 (LAR 1A-302) to License No. DPR-66. This amendment to the Unit 1 license was approved by the NRC on July 19, 2006.
- 3.1.25 Vendor Calculation Package No. 8700-UR(B)-223, Impact of Atmospheric Containment Conversion, Power Uprate, and Alternative Source Terms on the Alarm Setpoints for the Radiation Monitors at Unit 1.
- 3.1.26 Engineering Change Package No. ECP-04-0440, Extended Power Uprate.
- 3.1.27 CR 06-04908, Radiation Monitor Alarm Setpoint Discrepancies. CA-03; revise ODCM procedure 1/2-ODC-3.03 to update the alarm setpoints of [RM-1VS-110] and [RM-1GW-109] for incorporation of the Extended Power Uprate per Unit 1 TS Amendment No. 275.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>6 of 82                  |

- 3.1.28 Calculation Package No. ERS-MPD-93-007, BVPS-1 Gaseous Radioactivity Monitor Emergency Action Levels.
- 3.1.29 SAP Order 200197646-0110: Revise ODCM procedure 1/2ODC-3.03, 1/2-HPP-3.06.001, 1/2-ENV-05-01, Form 1/2-HPP-3.06.001.F05 and Form 1/2-ENV-05.1.F05 to incorporate revised outside liquid storage tank activity limits via Calculation Package No. ERS-ATL-95-007, R2.
- 3.1.30 CR06-04944: ODCM 3.03 Attachment E conflict between Applicability and Action Statement. CA-01; revise ODCM procedure 1/2-ODC-3.03, Attachment E to clarify Applicability for tank level indicating devices is during additions to the tank.
- 3.1.31 CR05-03306: Incorporated Improved Technical Specifications. This includes transfer of programmatic controls for BV-2 Noble Gas Effluent Steam Monitors [2MSS-RQ101A], [2MSS-RQ101B] and [2MSS-RQ101C] from the Technical Specifications to ODCM procedure 1/2-ODC-3.03 (Attachment D Tables 3.3-6 and 4.3-3). This was permitted via Unit 1/2 Technical Specification Amendments No. 278/161.
- 3,1.32 T.S. 5,5.1
- 3.1.33 T.S. 5.5.2
- 3.1.34 T.S. 5.5.8
- 3.1.35 T.S. 5.6.1
- 3.1.36 T.S. 5.6.2
- 3.1.37 SAP Order 200240681: Revise ODCM procedure 1/2-ODC-3.03 (Attachment E Table 3.3-12) to add an alternate Action when the primary Flow Rate Measurement Device [FT-1CW-101-1] is not OPERABLE. The alternate Action (25A) uses local measurements (as described in 1MSP-31.06-I) to determine a total dilution flow rate during liquid effluent releases.
- 3.1.38 CR07-12924 and SAP Order 200247228-0410: Revise ODCM procedure 1/2-ODC-3.03 (Attachment F Tables 3.3-13 and 4.3-13) to clarify the Functional Location of the Sampler Flow Rate Monitors for the BV-2 gaseous effluent release pathways. Specifically, the procedure was changed to refer to Functional Location [2HVS-FIT101-1] instead of [2HVS-FIT101], [2RMQ-FIT301-1] instead of [2RMQ-FIT303-1] instead of [2RMQ-FIT303].

#### 3.2 Commitments

- 3.2.1 10 CFR Part 20, Standards for Protection Against Radiation
- 3.2.2 10 CFR Part 50, Domestic Licensing of Production and Utilization Facilities

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>7 of 82                  |

- 3.2.3 40 CFR Part 141
- 3.2.4 40 CFR Part 190, Environmental Radiation Protection Standards For Nuclear Power Operations.
- 3.2.5 Regulatory Guide 1.109, Calculation Of Annual Doses To Man From Routine Releases Of Reactor Effluents For The Purpose Of Evaluating Compliance With 10 CFR Part 50, Appendix I, Revision 1, October 1977
- 3.2.6 Regulatory Guide 1.111, Methods For Estimating Atmospheric Transport And Dispersion Of Gaseous Effluents In Routine Releases From Light-Water-Cooled Reactors, Revision 1, July 1977
- 3.2.7 Regulatory Guide 1.113, Estimating Aquatic Dispersion Of Effluents From Accidental And Routine Reactor Releases For The Purpose Of Implementing Appendix I, April 1977
- 3.2.8 NUREG-0133, Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants, October 1978
- 3.2.9 NUREG-0737, Clarification of TMI Action Plan Requirements, October 1980
- 3.2.10 NUREG-1301, Offsite Dose Calculation Manual Guidance; Standard Radiological Effluent Controls For Pressurized Water Reactors (Generic Letter 89-01, Supplement No. 1)
- 3.2.11 NUREG-1431, Standard Technical Specifications Westinghouse Plants Specifications
- 3.2.12 NUREG-0800, Standard Review Plan, Postulated Radioactive Releases Due to Liquid-Containing Tank Failures, July 1981
- 3.2.13 Licensee Response to NRC Unresolved Item 50-334/83-30-05. The Radiation Monitor Particle Distribution Evaluation showed that the Licensee must continue to use correction factors to determine particulate activity in samples obtained from the effluent release pathways.

### 4.0 RECORDS AND FORMS

## 4.1 Records

4.1.1 Any calculation supporting ODCM changes shall be documented, as appropriate, by a retrievable document (e.g.; letter or calculation package) with an appropriate RTL number.

#### 4.2 Forms

4.2.1 None

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>8 of 82                  |

# 5.0 PRECAUTIONS AND LIMITATIONS

- 5.1 The numbering of each specific ODCM Control, ODCM Surveillance Requirement and ODCM Table contained in this procedure does not appear to be sequential. This is intentional, as all ODCM Control, ODCM Surveillance Requirement and ODCM Table numbers remained the same when they were transferred from the Technical Specifications. This was done in an effort to minimize the amount of plant procedure changes and to eliminate any confusion associated with numbering changes.
- 5.2 The numbering of each specific ODCM Report contained in this procedure does not appear to be sequential. This is intentional, as all ODCM Report numbers remained the same when they were transferred from the Technical Specifications. This was done in an effort to minimize the amount of plant procedure changes and to eliminate any confusion associated with numbering changes.

# 6.0 ACCEPTANCE CRITERIA

- Any change to this procedure shall contain sufficient justification that the change will maintain the level of radioactive effluent control required by 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR 50, and not adversely impact the accuracy or reliability of effluent dose or setpoint calculation. (3.2.10)
  - 6.1.1 All changes to this procedure shall be prepared in accordance with 1/2-ADM-0100<sup>(3.1.8)</sup> and 1/2-ADM-1640.<sup>(3.1.7)</sup>
  - 6.1.2 Pending changes to this procedure shall be provided to applicable station groups. For example, <u>IF</u> Control 3.11.1.1 is being changed, <u>THEN</u> the proposed changes shall be provided to the applicable station groups (i.e., owner of the procedures), identified in the MATRIX of ODCM procedure 1/2-ODC-1.01. This will allow the station groups to revise any affected procedures concurrent with the ODCM change. (3.1.14)
  - 6.1.3 All changes to this procedure shall be reviewed and approved in accordance with NOP-SS-3001 (3.1.9) and 1/2-ADM-1640. (3.1.7)

# 7.0 PREREQUISITES

7.1 The user of this procedure shall be familiar with ODCM structure and content.

### 8.0 PROCEDURE

- 8.1 See ATTACHMENT A for a Table of Operational Modes and a Table of Frequency Notation.
- 8.2 See ATTACHMENT B for a list of defined terms used throughout the ODCM.
- 8.3 See ATTACHMENT C thru ATTACHMENT S for a complete description of all ODCM Controls.
- 8.4 See ATTACHMENT T for a description of the Annual Report required by the REMP Controls.

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number:<br>9 of 82                  |

8.5 See ATTACHMENT U for a description of the Annual Report required by the RETS Controls.

- END -

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>10 of 82                 |

# ATTACHMENT A Page 1 of 2 ODCM CONTROLS: OPERATIONAL MODES AND FREQUENCY NOTATION

# TABLE 1.1 MODES

| MODE | TITLE                           | REACTIVITY CONDITION (k <sub>eff</sub> ) | % RATED<br>THERMAL<br>POWER <sup>(a)</sup> | AVERAGE<br>REACTOR<br>COOLANT<br>TEMPERATURE<br>(°F) |
|------|---------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------------------|
| 1    | Power<br>Operation              | ≥ 0.99                                   | > 5                                        | NA                                                   |
| 2    | Startup                         | ≥ 0.99                                   | ≤ 5                                        | NA                                                   |
| 3    | Hot Standby                     | < 0.99                                   | NA                                         | ≥ 350                                                |
| 4    | Hot<br>Shutdown <sup>(b)</sup>  | < 0.99                                   | NA                                         | $350 > T_{avg} > 200$                                |
| 5    | Cold<br>Shutdown <sup>(b)</sup> | < 0.99                                   | NA                                         | ≤ 200                                                |
| 6    | Refueling <sup>(c)</sup>        | NA                                       | . NA                                       | NA                                                   |

- (a) Excluding decay heat.
- (b) All reactor vessel head closure bolts fully tensioned.
- (c) One or more reactor vessel head closure bolts less than fully tensioned.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                 | Page Number:<br>11 of 82                 |

# ATTACHMENT A

# Page 2 of 2 ODCM CONTROLS: OPERATIONAL MODES AND FREQUENCY NOTATION

# **TABLE 1.2**

# FREQUENCY NOTATION

| <b>NOTATION</b> | FREQUENCY                       |
|-----------------|---------------------------------|
| S               | At least once per 12 hours      |
| D               | At least once per 24 hours      |
| W               | At least once per 7 days        |
| M               | At least once per 31 days       |
| Q               | At least once per 92 days       |
| SA              | At least once per 184 days      |
| R               | At least once per 18 months     |
| S/U             | Prior to each reactor startup   |
| P               | Completed prior to each release |
| N.A.            | Not applicable                  |

| Beaver Valley Power Station               |           | Procedure Number:<br>1/2-ODC-3.03        |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>12 of 82                 |  |

# ATTACHMENT B Page 1 of 3 ODCM CONTROLS: DEFINITIONS

The defined terms of this section appear in capitalized type and are applicable throughout these CONTROLS.

<u>ACTION</u> shall be those additional requirements specified as corollary statements to each principal CONTROL and shall be part of the CONTROLS.

CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter which the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions, and shall include the CHANNEL OPERATIONAL TEST. The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping, or total channel steps such that the entire channel is calibrated.

<u>CHANNEL CHECK</u> shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

<u>CHANNEL OPERATIONAL TEST</u> shall be the injection of a simulated signal into the channel as close to the primary sensor as practicable to verify OPERABILITY including alarm and/or trip functions.

<u>FREQUENCY NOTATION</u> specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table 1.2.

GASEOUS RADWASTE TREATMENT SYSTEM is any system designed and installed to reduce radioactive gaseous effluents by collecting primary coolant system offgases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.

MEMBER(S) OF THE PUBLIC (10 CFR 20 and/or 10 CFR 50) means any individual except when that individual is receiving an occupational dose. This definition is used to show compliance to ODCM CONTROL 3.11.1.1, 3.11.1.4, 3.11.2.1 and 3.11.2.5 that are based on 10 CFR Part 20. This definition is also used to show compliance to ODCM Controls 3.11.1.2, 3.11.1.3, 3.11.2.2, 3.11.2.3 and 3.11.2.4 that are based on 10 CFR Part 50.

MEMBER(S) OF THE PUBLIC (40 CFR 190) means any individual that can receive a radiation dose in the general environment, whether he may or may not also be exposed to radiation in an occupation associated with a nuclear fuel cycle. However, an individual is not considered a MEMBER OF THE PUBLIC during any period in which he is engaged in carrying out any operation which is part of the nuclear fuel cycle. This definition is used to show compliance to an ODCM CONTROL 3.11.4.1 that is based on 40 CFR Part 190.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:                          | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision: 6                    | Page Number:<br>13 of 82                 |

# ATTACHMENT B Page 2 of 3 ODCM CONTROLS: DEFINITIONS

OFFSITE DOSE CALCULATION MANUAL (ODCM) shall contain the methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring Alarm/Trip Setpoints, and in the conduct of the Environmental Radiological Monitoring Program. The ODCM shall also contain (1) the Radioactive Effluent Controls and Radiological Environmental Monitoring Programs required by T.S. 5.5.2 and (2) descriptions of the information that should be included in the Radiological Environmental Operating and Annual Radioactive Effluent Release Reports that are also required by T.S. 5.6.1 and T.S. 5.6.2.

OPERABLE/OPERABILITY A system, subsystem, train, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s). Implicit in this definition shall be the assumption that all necessary attendant instrumentation, controls, normal and emergency electric power sources, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its function(s) are also capable of performing their related safety function(s).

MODE shall correspond to any one inclusive combination of core reactivity condition, power level, and average reactor coolant temperature specified in ATTACHMENT A Table 1.1.

<u>PURGE</u> or <u>PURGING</u> is the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating conditions, in such a manner that replacement air or gas is required to purify the confinement.

<u>RATED THERMAL POWER</u> shall be a total reactor core heat transfer rate to the reactor coolant of 2900 MWt.

REPORTABLE EVENT shall be any of those conditions specified in Section 50.73 to 10 CFR Part 50.

SHUTDOWN means reactor power change to 0% power.

<u>SITE BOUNDARY</u> shall be that line beyond which the land is neither owned, nor leased, nor otherwise controlled by the licensee. The Figure for Liquid Effluent Site Boundary is contained in 1/2-ODC-2.01. The Figure for Gaseous Effluent Site Boundary is contained in 1/2-ODC-2.02.

STARTUP means reactor power change from 0% power.

<u>SOURCE CHECK</u> shall be the qualitative assessment of channel response when the channel sensor is exposed to a radioactive source.

THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.

<u>UNRESTRICTED AREA</u> means any area access to which is neither limited nor controlled by the licensee.

<u>VENTILATION EXHAUST TREATMENT SYSTEM</u> is any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>14 of 82                 |

# ATTACHMENT B Page 3 of 3 ODCM CONTROLS: DEFINITIONS

exhaust gases through charcoal absorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment (such a system is not considered to have any effect on noble gas effluents). Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.

<u>VENTING</u> is the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating conditions, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|--------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>15 of 82                 |  |

# ATTACHMENT C

Page 1 of 4

ODCM CONTROLS: APPLICABILITY AND SURVEILLANCE REQUIREMENTS

CONTROLS: APPLICABILITY

- 3.0.1 ODCM CONTROLS shall be met during the MODES or other conditions specified in the Applicability; except as provided in ODCM CONTROL 3.0.2
- 3.0.2 Upon discovery of a failure to meet the ODCM CONTROL, the associated ODCM ACTION requirements shall be met, except as provided in ODCM CONTROL 3.0.5. If the ODCM CONTROL is met or no longer applicable prior to expiration of the specified time intervals, completion of the ODCM ACTION requirements is not required unless otherwise stated.
- 3.0.3 When an ODCM CONTROL is not met and the associated ODCM ACTIONS are not met, an associated ACTION is not provided, or if directed by the associated ACTIONS, the unit shall be placed in a MODE or other specified condition in which the ODCM CONTROL is not applicable. Action shall be initiated within 1 hour to place the unit, as applicable, in:
  - 1. MODE 3 within 7 hours,
  - 2. MODE 4 within 13 hours, and
  - MODE 5 within 37 hours.

Where corrective measures are completed that permit operation in accordance with the ODCM CONTROL or ACTIONS, completion of the actions required by ODCM CONTROL 3.0.3 is not required.

Exceptions to these requirements are stated in the individual ODCM CONTROLS.

- 3.0.4 When an ODCM CONTROL is not met, entry into an MODE or specified condition in the Applicability shall only be made:
  - a. When the associated ODCM ACTIONS to be entered permit continued operation in the MODE or other specified condition in the Applicability for an unlimited period of time, or
  - b. After performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering the MODE or other specified condition in the Applicability, and establishment of risk management actions, if appropriate; exceptions to this ODCM CONTROL are stated in the individual ODCM CONTROLS, or
  - c. When an allowance is stated in the individual value, parameter, or other ODCM CONTROL.

This ODCM CONTROL shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ODCM ACTIONS or that are part of a shutdown of the unit.

| Beaver Valley Power Station               |           | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>16 of 82                 |  |

# ATTACHMENT C

Page 2 of 4

ODCM CONTROLS: APPLICABILITY AND SURVEILLANCE REQUIREMENTS

3.0.5 Equipment removed from service or declared inoperable to comply with ODCM ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate its OPERABILITY or the OPERABILITY of other equipment. This is an exception to ODCM CONTROL 3.0.1 for the system returned to service under administrative control to perform the testing required to demonstrate OPERABILITY.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>17 of 82                 |

Page 3 of 4

ODCM CONTROLS: APPLICABILITY AND SURVEILLANCE REQUIREMENTS

#### CONTROLS: SURVEILLANCE REQUIREMENTS

- 4.0.1 Surveillance Requirements shall be met during the MODES or other conditions specified for individual ODCM CONTROLS unless otherwise stated in the ODCM Surveillance Requirement. Failure to meet an ODCM Surveillance, whether such failure is experienced during the performance of the Surveillance or between performance of the Surveillance, shall be failure to meet the ODCM CONTROL. Failure to perform a Surveillance within the specified Frequency, shall be failure to meet the ODCM CONTROL except as provided in ODCM Surveillance Requirement 4.0.3. Surveillances do not have to be performed on inoperable equipment or variables outside specified limits.
- 4.0.2 The specified Frequency for each ODCM Surveillance Requirement is met if the Surveillance is performed within ±1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.

For Frequencies specified as "once," the above interval extension does not apply.

If a Completion Time requires periodic performance or "once per..." basis, the above Frequency extension applies to each performance after the initial performance.

Exceptions to this Specification are stated in the individual Specifications.

4.0.3 If it is discovered that an ODCM Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the ODCM CONTROL not met may be delayed, from the time of discovery, up to 24 hours or up to the limit of the specified surveillance interval, whichever is greater. This delay period is permitted to allow performance of the ODCM Surveillance. A risk evaluation shall be performed for any ODCM Surveillance delayed greater than 24 hours and the risk impact shall be managed.

If the ODCM Surveillance is not performed within the delay period, the ODCM CONTROL must immediately be declared not met, and the applicable ODCM ACTION(s) must be entered.

When the ODCM Surveillance is performed within the delay period and the ODCM Surveillance is not met, the ODCM CONTROL must immediately be declared not met, and the applicable ODCM ACTION(s) must be entered.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |  |
|-------------------------------------------|--------------------------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>18 of 82                 |  |

Page 4 of 4

ODCM CONTROLS: APPLICABILITY AND SURVEILLANCE REQUIREMENTS

4.0.4 Entry into a MODE or other specified condition in the Applicability of a ODCM CONTROL shall only be made when the ODCM Surveillances have been met within their allowed surveillance interval, except as provided by ODCM Surveillance Requirement 4.0.3. When an ODCM CONTROL is not met due to Surveillances not having been met, entry into a MODE or other specified condition in the Applicability shall only be made in accordance with ODCM CONTROL 3.0.4. This provision shall not prevent entry into MODES or other specified conditions in the Applicability, that are required to comply with ODCM ACTION requirements or that are part of a shutdown of the unit.

| Beaver Valley Power Station               | mber:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------|------------------------------------------|
| Title:                                    | Unit: 1/2             | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:             | Page Number:<br>19 of 82                 |

Page 1 of 8
ODCM CONTROLS: RADIATION MONITORING INSTRUMENTATION

#### CONTROLS: RADIATION MONITORING (HIGH RANGE INSTRUMENTATION)

3.3.3.1 The radiation monitoring instrumentation channels shown in Table 3.3-6 shall be OPERABLE with their alarm/trip setpoints within the specified limits.

APPLICABILITY: As shown in Table 3.3-6.

#### **ACTION:**

- a. With a radiation monitoring channel alarm/trip setpoint exceeding the value shown in ODCM Control 3.3.3.1, Table 3.3-6, adjust the setpoint to within the limit within 4 hours or declare the channel inoperable.
- b. With one or more radiation monitoring channels inoperable, take the ACTION shown in ODCM Control 3.3.3.1, Table 3.3-6.
- c. The provisions of ODCM Control 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

4.3.3.1 Each radiation monitoring instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION and CHANNEL OPERATIONAL TEST operations during the modes and at the frequencies shown in ODCM Control 3.3.3.1, Table 4.3-3.

| D X7.1                                                        | 1 D                | . C               | <u></u>           | Procedure Nu | nber:                            |           |
|---------------------------------------------------------------|--------------------|-------------------|-------------------|--------------|----------------------------------|-----------|
| Beaver Valley Power Station                                   |                    |                   | 1/2-ODC-3.03      |              |                                  |           |
| Title:                                                        |                    |                   |                   | Unit:<br>1/2 | Level Of Use:<br>General Skill I | Reference |
| ODCM: Controls for RETS and REMP Programs                     |                    |                   |                   | Revision:    | Page Number: 20 of               | <br>82    |
| ATTACHMENT D                                                  |                    |                   |                   |              | 02                               |           |
|                                                               |                    | Page 2 of 8       |                   |              | •                                |           |
| ODCM CONTRO                                                   | DLS: RADIA         | TION MONIT        | ORING INST        | RUMEN        | <b>FATION</b>                    |           |
| •                                                             |                    | TABLE 3.3         | -6                |              |                                  |           |
| BV-1 R                                                        | ADIATION I         |                   | <u> </u>          | NTATIO       | N · ·                            |           |
| Pri = Primary                                                 |                    |                   | olanned Metho     |              | <del></del>                      |           |
| •                                                             | MINIMUM            | •                 |                   |              | OMINAL                           |           |
| •                                                             | ,                  | APPLICABLE        | <i>a</i> >        |              | SUREMENT                         |           |
| INSTRUMENT                                                    | <u>OPERABLE</u>    | <u>MODES</u>      | SETPOINT(1)       |              | RANGE                            | ACTION    |
| 1. Noble Gas Effluent Monitors -                              | ·                  |                   |                   |              |                                  |           |
| a. Reactor Building/SLCRS (C                                  |                    |                   | e)                |              |                                  |           |
| Mid Range Noble Gas Pri: (RM-1VS-110 Ch 7)                    | (1)                | 1, 2, 3, & 4      | . 1660            | 1E 2 **      | 1E+3 uCi/cc <sup>(2)</sup>       | 35        |
| 1st PMM: (RM-1VS-112 SA-                                      | 10)                |                   | ≤ 1660 cpm        | 1E-3 W       | TE+3 uCl/cc.                     |           |
| 2nd PMM: (RM-1VS-107B, or                                     | r 110 Ch 5)        |                   | ,                 |              |                                  |           |
| 3rd PMM: Grab Sampling eve                                    |                    |                   |                   |              |                                  |           |
| High Range Noble Gas                                          | (1)                | 1, 2, 3, & 4      | ~~.               | 4            | 17 7 611 (2)                     | 35        |
| Pri: (RM-1VS-110 Ch 9) 1st PMM: (RM-1VS-112 SA-               | <b>o</b> .         | •                 | NA                | IE-I to      | 1E+5 uCi/cc <sup>(2)</sup>       | 35        |
| 2nd PMM: (RM-1VS-107B, or                                     |                    |                   |                   |              |                                  |           |
| 3rd PMM: Grab Sampling even                                   | ry 12 hours        |                   |                   |              |                                  |           |
| b. Auxiliary Building Ventilation                             | on System (VV-1    | ; Also called Ve  | ntilation Vent)   |              |                                  |           |
| Mid Range Noble Gas                                           | (1)                | 1, 2, 3, & 4      |                   |              | (2)                              | 35        |
| Pri: (RM-1VS-109 Ch 7) 1st PMM: (RM-1VS-111 SA-               | 10)                |                   | ≤ 1390 cpm        | 1E-3 to      | 1E+3 uCi/cc <sup>(2)</sup>       |           |
| 2nd PMM: (RM-1VS-111 SA-                                      |                    | 4                 |                   |              |                                  |           |
| 3rd PMM: Grab Sampling eve                                    |                    |                   |                   |              |                                  |           |
| <b>High Range Noble Gas</b>                                   | (1)                | 1, 2, 3, & 4      |                   | •            |                                  | 35        |
| Pri: (RM-1VS-109 Ch 9)                                        | 0.                 |                   | NA                | 1E-1 to      | 1E+5 uCi/cc <sup>(2)</sup>       |           |
| 1st PMM: (RM-1VS-111 SA-<br>2nd PMM: (RM-1VS-101B, or         |                    |                   | *.                |              |                                  |           |
| 3rd PMM: Grab Sampling eve                                    |                    |                   |                   |              |                                  |           |
| c. Gaseous Waste/Process Vent                                 | System (PV-1/2     |                   |                   |              |                                  |           |
| Mid Range Noble Gas                                           | (1)                | 1, 2, 3, & 4      |                   |              |                                  | 35        |
| Pri: (RM-1GW-109 Ch 7)                                        |                    | , , , , .         | NA                | 1E-3 to      | 1E+3 uCi/cc <sup>(3)</sup>       | •         |
| 1st PMM: (RM-1GW-110 SA<br>2nd PMM: (RM-1GW-108B, o           |                    |                   |                   | ,            |                                  |           |
| 3rd PMM: Grab Sampling eve                                    |                    | 4                 |                   |              |                                  |           |
|                                                               | •                  | 12284             |                   |              |                                  | 35        |
| High Range Noble Gas Pri: (RM-1GW-109 Ch 9)                   | (1)                | 1, 2, 3, & 4      | < 1.76E±5 cpm     | 1F-1 to      | 1E+5 uCi/cc <sup>(3)</sup>       | 33        |
| 1st PMM: (RM-1GW-110 SA                                       |                    |                   | ≤ 1.70E (5 Cpf)   | i ib-i w     | IL S uchec                       |           |
| 2nd PMM: (RM-1GW-108B, c                                      |                    |                   | i                 |              |                                  |           |
| 3rd PMM: Grab Sampling eve                                    | ry 12 nours        |                   |                   |              |                                  |           |
| (a) Instruments or actions shown a                            | s PMM are the r    | replanned metho   | ds to be used whe | n the prima  | ry instrument is                 |           |
| inoperable. SINCE the PMM                                     | instruments show   | n are not conside | red comparable a  | lternate mo  | nitoring channels                |           |
| the ODCM Surveillance Requi<br>would still apply when inopera |                    |                   |                   | eporting rea | quirement of Acti                | on 35b    |
| would still apply when hopera                                 | omity of the billi | m y mounitem ex   | accus 30 days.    |              |                                  |           |

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |  |
|-------------------------------------------|--------------------------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                 | Page Number:<br>21 of 82                 |  |

Page 3 of 8

#### ODCM CONTROLS: RADIATION MONITORING INSTRUMENTATION

#### TABLE 3.3-6 (Continued)

#### **BV-1 RADIATION MONITORING INSTRUMENTATION**

Pri = Primary Instruments, PMM = Preplanned Method of Monitoring<sup>(a)</sup>

| <u> </u>                                                                      |                                 | -                   |             | •                                      |               |
|-------------------------------------------------------------------------------|---------------------------------|---------------------|-------------|----------------------------------------|---------------|
|                                                                               | MINIMUM<br>CHANNELS<br>OPERABLE | APPLICABLE<br>MODES | SETPOINT(1) | NOMINAL<br>MEASUREMENT<br><u>RANGE</u> | <u>ACTION</u> |
| 2. Noble Gas Effluent Steam Moni                                              | tors                            |                     | . ,         |                                        |               |
| a. Atmospheric Steam Dump Val-                                                | ve and Code                     | Safety Relief Valve | e Discharge | •                                      |               |
| Pri: (RM-1MS-100A)<br>PMM: (Form 1/2-HPP-4.02.009.F<br>or (1/2-ENV-05.14.F01) | (1)                             | 1, 2, 3, & 4        | ≤ 50 cpm    | 1E-1 to 1E+3 uCi/cc                    | 35            |
| Pri: (RM-1MS-100B)<br>PMM: (Form 1/2-HPP-4.02.009.F<br>or (1/2-ENV-05.14.F01) | (1)                             | 1, 2, 3, & 4        | ≤ 50 cpm    | 1E-1 to 1E+3 uCi/cc                    | 35            |
| Pri: (RM-1MS-100C)<br>PMM: (Form 1/2-HPP-4.02.009.F<br>or (1/2-ENV-05.14.F01) | (1)                             | 1, 2, 3, & 4        | ≤ 50 cpm    | 1E-1 to 1E+3 uCi/cc                    | 35            |
| b. Auxiliary Feedwater Pump Turk                                              | bine Exhaust                    |                     |             |                                        |               |
| Pri: (RM-1MS-101)<br>PMM: (Form 1/2-HPP-4.02.009.F<br>or (1/2-ENV-05.14.F01)  | (1)                             | 1, 2, 3, & 4        | ≤ 170 cpm   | 1E-1 to 1E+3 uCi/cc                    | 35            |

Instruments or actions shown as PMM are the preplanned methods to be used when the primary instrument is inoperable.

<u>SINCE</u> the PMM instruments shown are not considered comparable alternate monitoring channels, <u>THEN</u> the ODCM Surveillance Requirements do not apply to the PMM. Therefore, the reporting requirement of Action 35b would still apply when inoperability of the primary instrument exceeds 30 days.

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|--------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>22 of 82                 |  |

Page 4 of 8

#### ODCM CONTROLS: RADIATION MONITORING INSTRUMENTATION

#### TABLE 3.3-6 (Continued)

#### **BV-2 RADIATION MONITORING INSTRUMENTATION**

Pri = Primary Instruments, PMM = Preplanned Method of Monitoring<sup>(a)</sup>

**NOMINAL** 

**MINIMUM** 

|                                                                                                        | CHANNELS<br>OPERABLE | APPLICABLE<br>MODES | SETPOINT(1)               | MEASUREMENT<br>RANGE | <u>ACTION</u> |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------|---------------------|---------------------------|----------------------|---------------|--|--|
| 1. Noble Gas Effluent Monitors                                                                         |                      |                     |                           |                      |               |  |  |
| a. SLCRS Filtered Pathway (CV-                                                                         | 2; Also called       | Elevated Release    | e)                        |                      |               |  |  |
| Midrange Noble Gas (Xe-133)                                                                            |                      |                     |                           |                      | :             |  |  |
| Pri: (2HVS-RQ109C)<br>1st PMM: (2HVS-RQ109D)<br>2nd PMM: (2HVS-RQ109B)<br>3rd PMM: Grab Sampling every | (1)<br>12 hours      | 1, 2, 3, & 4        | NA                        | 1E-4 to 1E+2 μCi/cc  | 35            |  |  |
| High Range Noble Gas (Xe-133                                                                           |                      |                     |                           |                      | ,             |  |  |
| Pri: (2HVS-RQ109D)                                                                                     | (1)                  | 1, 2, 3, & 4        | NA                        | 1E-1 to 1E+5 μCi/cc  | 35            |  |  |
| 1st PMM: (2HVS-RQ109C)<br>2nd PMM: (2HVS-RQ109B)<br>3rd PMM: Grab Sampling every                       | 12 hours             |                     | •                         | ·<br>·               |               |  |  |
| 2. Noble Gas Effluent Steam Monitors                                                                   |                      |                     |                           |                      |               |  |  |
| a. Main Steam Discharge (Kr-88)                                                                        |                      |                     |                           |                      |               |  |  |
| Pri: (2MSS-RQ101A) PMM: Form 1/2-HPP-4.02.009.For 1/2-ENV-05.14.F01                                    | 1/SG<br>01           | 1, 2, 3, & 4        | $\leq$ 3.9E-2 $\mu$ Ci/cc | 1E-2 to 1E+3 μCi/cc  | 35            |  |  |
| Pri: (2MSS-RQ101B)                                                                                     | 1/SG                 | 1, 2, 3, & 4        | < 2 0E 2 uCilos           | 1E-2 to 1E+3 μCi/cc  | 35            |  |  |
| PMM: Form 1/2-HPP-4.02.009.F<br>or 1/2-ENV-05.14.F01                                                   |                      | 1, 2, 3, 00 4       | <u>&gt; 3.9Ε-2</u> μενές  | 1Ε-2 to 1Ε+3 με/ες   | ,             |  |  |
| Pri: (2MSS-RQ101C)<br>PMM: Form 1/2-HPP-4.02.009.For 1/2-ENV-05.14.F01                                 | 1/SG<br>01           | 1, 2, 3, & 4        | ≤ 3.9E-2 μCi/cc           | 1E-2 to 1E+3 μCi/cc  | 35            |  |  |

<sup>(</sup>a) Instruments or actions shown as PMM are the preplanned methods to be used when the primary instrument is inoperable.

SINCE the PMM instruments shown are not considered comparable alternate monitoring channels, THEN the ODCM Surveillance Requirements do not apply to the PMM. Therefore, the reporting requirement of Action 35b would still apply when inoperability of the primary instrument exceeds 30 days.

| Beaver Valley Power Station               | Valley Power Station  Procedure Number: 1/2-ODC-3.03 |                                          |  |
|-------------------------------------------|------------------------------------------------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2                                         | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                                       | Page Number:<br>23 of 82                 |  |

# ATTACHMENT D Page 5 of 8 ODCM CONTROLS: RADIATION MONITORING INSTRUMENTATION

#### TABLE 3.3-6 (Continued)

#### **TABLE NOTATIONS**

- (1) Above background
- Nominal range for Ch 7 and Ch 9. The Alarm is set on Ch 7.
- Nominal range for Ch 7 and Ch 9. The Alarm is set on Ch 9.
- Other SPING-4 channels are not applicable to this ODCM Control.

#### **ACTION STATEMENTS**

- ACTION 35 With the number of OPÉRABLE channels less than required by the Minimum Channels OPERABLE requirement, either restore the inoperable Channel(s) to OPERABLE status within 72 hours, or:
  - a) Initiate the preplanned alternate method of monitoring the appropriate parameter(s), and
  - b) Return the channel to OPERABLE status within 30 days, or, explain in the next Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number:<br>24 of 82                 |

Page 6 of 8

#### ODCM CONTROLS: RADIATION MONITORING INSTRUMENTATION

#### TABLE 4.3-3 (Continued)

#### **BV-1 RADIATION MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS**

Pri = Primary Instruments,

PMM = Preplanned Method of Monitoring<sup>(a)</sup>

|    | INSTRUMENT Noble Gas Effluent Monitors - SPINGS a. Reactor Building/SLCRS (CV-1; Also of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHANNE<br>L CHECK | CHANNEL CALIBRATION       | CHANNEL<br>OPERATIONAL<br><u>TEST</u> | MODES IN WHICH<br>SURVEILLANCE<br>REQUIRED |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|---------------------------------------|--------------------------------------------|
|    | Mid Range Noble Gas Pri: (RM-1VS-110 Ch 7) 1st PMM: (RM-1VS-112 SA-10) 2nd PMM: (RM-1VS-107B, or VS-110 C 3rd PMM: Grab Sampling every 12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S (h 5)           | R R                       | М                                     | 1, 2, 3, & 4                               |
|    | High Range Noble Gas Pri: (RM-1VS-110 Ch 9) 1st PMM: (RM-1VS-112 SA-9) 2nd PMM: (RM-1VS-107B, or VS-110 C 3rd PMM: Grab Sampling every 12 hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | R                         | М                                     | 1, 2, 3, & 4                               |
| b. | Auxiliary Building Ventilation System of Mid Range Noble Gas Pri: (RM-1VS-109 Ch 7) 1st PMM: (RM-1VS-111 SA-10) 2nd PMM: (RM-1VS-101B, or VS-109 Charles of State of | S<br>h 5)         | called Ventilation V<br>R | /ent)<br>M                            | 1, 2, 3, & 4                               |
|    | High Range Noble Gas Pri: (RM-1VS-109 Ch 9) 1st PMM: (RM-1VS-111 SA-9) 2nd PMM: (RM-1VS-101B, or VS-109 C 3rd PMM: Grab Sampling every 12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S<br>h 5)         | R                         | М                                     | 1, 2, 3, & 4                               |
| c. | Gaseous Waste Process Vent System (P<br>Mid Range Noble Gas<br>Pri: (RM-1GW-109 Ch 7)<br>1st PMM: (RM-1GW-110 SA-10)<br>2nd PMM: (RM-1GW-108B, or GW-109<br>3rd PMM: Grab Sampling every 12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S<br>Ch 5)        | R                         | M                                     | 1, 2, 3, & 4                               |
|    | High Range Noble Gas Pri: RM-1GW-109 Ch 9) 1st PMM: (RM-1GW-110 SA-9) 2nd PMM: (RM-1GW-108B, or GW-109 3rd PMM: Grab Sampling every 12 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S<br>Ch5)         | R                         | M                                     | 1, 2, 3, & 4                               |

<sup>(</sup>a) Instruments or actions shown as PMM are the preplanned methods to be used when the primary instrument is inoperable. <u>SINCE</u> the PMM instruments shown are not considered comparable alternate monitoring channels, <u>THEN</u> the ODCM Surveillance Requirements do not apply to the PMM. Therefore, the reporting requirement of Action 35b would still apply when inoperability of the primary instrument exceeds 30 days.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |  |
|-------------------------------------------|--------------------------------|------------------------------------------|--|
| Title:                                    | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                 | Page Number:<br>25 of 82                 |  |

Page 7 of 8

#### ODCM CONTROLS: RADIATION MONITORING INSTRUMENTATION

#### TABLE 4.3-3 (Continued)

#### **BV-1 RADIATION MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS**

Pri = Primary Instruments, PMM = Preplanned Method of Monitoring<sup>(a)</sup>

|       | INSTRUMENT                                                                     | CHANNE<br>L <u>CHECK</u> | CHANNEL<br>CALIBRATION | CHANNEL<br>OPERATIONAL<br><u>TEST</u> | MODES IN WHICH<br>SURVEILLANCE<br><u>REQUIRED</u> |  |
|-------|--------------------------------------------------------------------------------|--------------------------|------------------------|---------------------------------------|---------------------------------------------------|--|
| 2. No | ble Gas Effluent Steam Monitors                                                | ÷                        | ,                      |                                       |                                                   |  |
| a.    | Atmospheric Steam Dump Valve and                                               | Code Safety F            | Relief Valve Dischar   | rge                                   |                                                   |  |
|       | Pri: (RM-1MS-100A)<br>PMM: (Form 1/2-HPP-4.02.009.F01<br>or 1/2-ENV-05.14.F01) | S                        | . <b>R</b>             | M                                     | 1, 2, 3, & 4                                      |  |
|       | Pri: (RM-1MS-100B)<br>PMM: (Form 1/2-HPP-4.02.009.F01<br>or 1/2-ENV-05.14.F01) | S                        | R                      | M                                     | 1, 2, 3, & 4                                      |  |
|       | Pri: (RM-1MS-100C)<br>PMM: (Form 1/2-HPP-4.02.009.F01<br>or 1/2-ENV-05.14.F01) | S                        | , · · · R              | M                                     | 1, 2, 3, & 4                                      |  |
| b.    | Auxiliary Feedwater Pump Turbine E                                             | xhaust                   |                        |                                       |                                                   |  |
| ,     | Pri: (RM-1MS-101)<br>PMM: (Form 1/2-HPP-4.02.009.F01<br>or 1/2-ENV-05.14.F01)  | S                        | R                      | <b>Μ</b>                              | 1, 2, 3, & 4                                      |  |

<sup>(</sup>a) Instruments or actions shown as PMM are the preplanned methods to be used when the primary instrument is inoperable. SINCE the PMM instruments shown are not considered comparable alternate monitoring channels, THEN the ODCM Surveillance Requirements do not apply to the PMM. Therefore, the reporting requirement of Action 35b would still apply when inoperability of the primary instrument exceeds 30 days.

| Beaver Valley Power Station               |                | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|----------------|------------------------------------------|--|
| Title:                                    | Unit:<br>_ 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:      | Page Number:<br>26 of 82                 |  |

#### Page 8 of 8

#### ODCM CONTROLS: RADIATION MONITORING INSTRUMENTATION

#### TABLE 4.3-3 (Continued)

#### **BV-2 RADIATION MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS**

Pri = Primary Instruments, PMM = Preplanned Method of Monitoring<sup>(a)</sup>

| <u>INST</u> 1. a. | RUMENT<br>Noble Gas Effluent Monitors<br>SLCRS Unfiltered Pathway (C                                                                            | CHANNEL CHECK V-2; Also called Eleva | CHANNEL CALIBRATION ted Release) | CHANNEL<br>OPERATIONAL<br>TEST | MODES IN WHICH<br>SURVEILLANCE<br>REQUIRED |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|--------------------------------|--------------------------------------------|
|                   | Mid Range Noble Gas Pri: (2HVS-RQ109C) 1st PMM: (2HVS-RQ109D) 2nd PMM: (2HVS-RQ109B) 3rd PMM: Grab Sampling every                               | S<br>12 hours                        | R                                | М                              | 1, 2, 3, & 4                               |
|                   | High Range Noble Gas Pri: (2HVS-RQ109D) 1st PMM: (2HVS-RQ109C) 2nd PMM: (2HVS-RQ109B) 3rd PMM: Grab Sampling every                              |                                      | R                                | М                              | 1, 2, 3, & 4                               |
| z. No<br>a.       | ble Gas Effluent Steam Monitors<br>Main Steam Discharge (Kr-88)<br>Pri: (2MSS-RQ101A)<br>PMM: (Form 1/2-HPP-4.02.009.I<br>or 1/2-ENV-05.14.F01) | S                                    | R                                | М                              | 1, 2, 3, & 4                               |
|                   | Pri: (2MSS-RQ101B)<br>PMM: (Form 1/2-HPP-4.02.009.I<br>or 1/2-ENV-05.14.F01)                                                                    | S<br>F01                             | R                                | М                              | 1, 2, 3, & 4                               |
|                   | Pri: (2MSS-RQ101C)<br>PMM: (Form 1/2-HPP-4.02.009.I<br>or 1/2-ENV-05.14.F01)                                                                    | S<br>F01                             | R                                | М                              | 1, 2, 3, & 4                               |

Instruments or actions shown as PMM are the preplanned methods to be used when the primary instrument is inoperable. SINCE the PMM instruments shown are not considered comparable alternate monitoring channels, THEN the ODCM Surveillance Requirements do not apply to the PMM. Therefore, the reporting requirement of Action 35b would still apply when inoperability of the primary instrument exceeds 30 days.

| Beaver Valley Power Station               |           | Procedure Number:<br>1/2-ODC-3.03        |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>27 of 82                 |  |

### ATTACHMENT E Page 1 of 10

ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

#### CONTROLS: RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

In accordance with T.S. 5.5.2.a, the radioactive liquid effluent monitoring instrumentation channels shown in ODCM Control 3.3.3.9, Table 3.3-12 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of ODCM CONTROL 3.11.1.1 are not exceeded. The alarm/trip setpoints of the radiation monitoring channels shall be determined in accordance with 1/2-ODC-2.01.

#### Applicability - During Releases Through the Flow Path:

- a. For all Gross Activity (e.g., Beta or Gamma) Radioactivity Monitors
- b. For all Flow Rate Measurement Devices

#### Applicability - During Liquid Additions to the Tank:

a. For all Tank Level Indicating Devices

#### Action:

- a. With a radioactive liquid effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above specification, immediately suspend the release of radioactive liquid effluents monitored by the affected channel or correct the alarm/trip setpoint.
- b. With one or more radioactive liquid effluent monitoring instrumentation channels inoperable, take the ACTION shown in ODCM Control 3.3.3.9, Table 3.3-12 or conservatively reduce the alarm setpoint. Exert a best effort to return the channel to operable status within 30 days, and if unsuccessful, explain in the next Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.
- c. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

4.3.3.9 Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated operable by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL OPERATIONAL TEST operations at the frequencies shown in ODCM Control 3.3.3.9, Table 4.3-12.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03          |           |
|-------------------------------------------|-----------------------------------------|-----------|
| Title:                                    | Unit: Level Of Use: 1/2 General Skill F | Reference |
| ODCM: Controls for RETS and REMP Programs | Revision: Page Number: 6 28 of 8        | 32        |

Page 2 of 10 ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

#### TABLE 3.3-12

#### **BV-1 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION**

| · . | INSTRUMENT                                                                                           | MINIMUM<br>CHANNELS<br><u>OPERABLE</u> | <u>ACTION</u> |
|-----|------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|
| 1.  | Gross Activity Monitors Providing Automatic Tern                                                     | nination Of Release                    |               |
|     | a. Liquid Waste Effluents Monitor Pri: (RM-1LW-104)                                                  | (1)                                    | 23            |
|     | b. Liquid Waste Contaminated Drain Monitor<br>Pri: (RM-1LW-116)                                      | (1)                                    | 23            |
|     | c. Auxiliary Feed Pump Bay Drain Monitor Pri: (RM-1DA-100)                                           | (1)                                    | 24            |
| 2.  | Gross Activity Monitors Not Providing Termination                                                    | n Of Release                           | •             |
|     | a. Component Cooling-Recirculation Spray Heat<br>Exchangers River Water Monitor<br>Pri: (RM-1RW-100) | (1)                                    | 24            |
| •   |                                                                                                      | ·                                      |               |
| 3.  | Flow Rate Measurement Devices                                                                        |                                        |               |
|     | a. Liquid Radwaste Effluent Line<br>Pri: (FR-1LW-104) for (RM-1LW-104)                               | (1)                                    | 25            |
|     | b. Liquid Waste Contaminated Drain Line<br>Pri: (FR-1LW-103) for (RM-1LW-116)                        | (1)                                    | 25            |
|     | c. Cooling Tower Blowdown Line Pri: (FT-1CW-101-1) or Alt: (FT-1CW-101) and (2CWS-FT101)             | (1)                                    | 25A           |
| 4.  | Tank Level Indicating Devices (for tanks outside pl                                                  | ant building)                          |               |
|     | a. Primary Water Storage Tank<br>Pri: (LI-1PG-115A) for (1BR-TK-6A)                                  | (1)                                    | 26            |
|     | b. Primary Water Storage Tank<br>Pri: (LI-1PG-115B) for (1BR-TK-6B)                                  | (1)                                    | 26            |
|     | c. Steam Generator Drain Tank<br>Pri: (LI-1LW-110) for (1LW-TK-7A)                                   | (1)                                    | 26            |
|     | d. Steam Generator Drain Tank Pri: (LI-1LW-111) for (1LW-TK-7B)                                      | (1)                                    | 26            |
|     |                                                                                                      |                                        |               |

a. None Required

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |  |  |  |
|-------------------------------------------|--------------------------------|------------------------------------------|--|--|--|
| Title:                                    | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |  |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>29 of 82                 |  |  |  |
| A TO A OLD OTHER                          |                                |                                          |  |  |  |

#### ATTACHMENT E

Page 3 of 10

ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

TABLE 3.3-12 (continued)

#### BV-2 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

Pri = Primary Instruments, Alt = Alternate Instruments

**MINIMUM CHANNELS INSTRUMENT OPERABLE ACTION** 1. Gross Radioactivity Monitor Providing Alarm, And Automatic Termination Of Release a. Liquid Waste Process Effluent Monitor 23 Pri: (2SGC-RQ100) 2. Gross Radioactivity Monitors Providing Alarm, But Not Providing Termination Of Release a. None Required 3. Flow Rate Measurement Devices a. Liquid Radwaste Effluent 25 (1) Pri: (2SGC-FS100) b. Cooling Tower Blowdown Line 25A Pri: (FT-1CW-101-1) or Alt: (FT-1CW-101) and (2CWS-FT101) 4. Tank Level Indicating Devices (for tanks outside plant buildings)

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|--------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>30 of 82                 |  |

Page 4 of 10

ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

#### TABLE 3.3-12 (continued)

#### **ACTION STATEMENTS**

- Action 23 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases may be initiated (or resumed) provided that prior to release:
  - 1. At least two independent samples are analyzed in accordance with ODCM SURVEILLANCE REQUIREMENT 4.11.1.1, and at least two technically qualified members of the Facility Staff independently verify the release rate calculations<sup>(1)</sup> and discharge valving, or

Otherwise, suspend release of radioactive effluents via this pathway.

- Action 24 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided:
  - 1. That at least once per 12 hours grab samples are analyzed for gross radioactivity (beta or gamma) at a Lower Limit of Detection (LLD) of at least 1E-7 uCi/ml, or
  - 2. Initiate monitoring with the comparable alternate monitoring channel. ODCM Surveillance requirements applicable to the inoperable channel shall apply to the comparable alternate monitoring channel when used to satisfy this ODCM CONTROL requirement.

Since the computer software used for discharge permit generation automatically performs the release rate calculations, then the independent signatures on the discharge permit for "preparer" and "reviewer" satisfy the requirement for "...two technically qualified members of the Facility Staff independently verify the release rate calculations..."

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|--------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>31 of 82                 |  |

Page 5 of 10

ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

Table 3.3-12 (continued)

#### **ACTION STATEMENTS**

- Action 25 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided:
  - 1. The flow rate is estimated at least once per 4 hours during actual releases. (Pump curves may be used to estimate flow), or
  - 2. Initiate monitoring with the comparable alternate monitoring channel. ODCM Surveillance requirements applicable to the inoperable channel shall apply to the comparable alternate monitoring channel when used to satisfy this ODCM CONTROL requirement.
- Action 25A With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided:
  - 1. The dilution flow rate is calculated at least once per 4 hours during actual releases using the methods described in procedure (1MSP-31.06-I), or
  - 2. Initiate monitoring with the comparable alternate monitoring channel. ODCM Surveillance requirements applicable to the inoperable channel shall apply to the comparable alternate monitoring channel when used to satisfy this ODCM CONTROL requirement.
- Action 26 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, liquid additions to this tank may continue provided:
  - 1. The tank liquid level is estimated during all liquid additions to the tank, or
  - 2. Initiate monitoring with the comparable alternate monitoring channel. ODCM Surveillance requirements applicable to the inoperable channel shall apply to the comparable alternate monitoring channel when used to satisfy this ODCM CONTROL requirement.

| Beaver Valley Power Station               |           | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>32 of 82                 |  |

Page 6 of 10 ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

#### **TABLE 4.3-12**

## **BV-1 RADIOACTIVE LIQUID EFFLUENT MONITORING**

|              |                                                                                                     |                         | ,                      |                     | CHANNEL                    |
|--------------|-----------------------------------------------------------------------------------------------------|-------------------------|------------------------|---------------------|----------------------------|
|              | INSTRUMENT                                                                                          | CHANNEL<br><u>CHECK</u> | SOURCE<br><u>CHECK</u> | CHANNEL CALIBRATION | OPERATIONAL<br><u>TEST</u> |
| 1. Gr        | oss Beta or Gamma Radioactivity Monitor                                                             | s Providing Aları       | n And Automat          | tic Termination Of  | Release                    |
| <b>a.</b>    | Liquid Radwaste Effluent Line<br>Pri: (RM-1LW-104)                                                  | D                       | P <sup>(5)</sup>       | R <sup>(3)</sup>    | $Q_{(1)}$                  |
| b.           | Liquid Waste Contaminated<br>Drain Line<br>Pri: (RM-1LW-116)                                        | D .                     | P <sup>(5)</sup>       | R <sup>(3)</sup>    | Q <sup>(1)</sup>           |
| C.           | Auxiliary Feed Pump Bay<br>Drain Monitor<br>Pri: (RM-1DA-100)                                       | D                       | D                      | R <sup>(3)</sup>    | Q <sup>(1)</sup>           |
|              | oss Beta Or Gamma Radioactivity Monito<br>lease                                                     | rs Providing Alar       | m But Not Prov         | viding Automatic To | ermination Of              |
| a.           | Component Cooling - Recirculation Spray<br>Heat Exchangers River Water Monitor<br>Pri: (RM-1RW-100) | D                       | M <sup>(5)</sup>       | R <sup>(3)</sup>    | $Q^{(2)}$                  |
| 3. Flo       | ow Rate Monitors                                                                                    |                         |                        |                     |                            |
| , <b>a</b> . | Liquid Radwaste Effluent Lines Pri: (FR-1LW-104) for (RM-1LW-104)                                   | D <sup>(4)</sup>        | NA                     | R                   | Q                          |
| b.           | Liquid Waste Contaminated Drain Line<br>Pri: (FR-1LW-103) for (RM-1LW-116)                          | D <sup>(4)</sup>        | NA                     | R                   | Q                          |
| C.           | Cooling Tower Blowdown Line Pri: (FT-1CW-101-1) or Alt: (FT-1CW-101) and (2CWS-FT101                | D <sup>(4)</sup>        | NA                     | R                   | Q                          |

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                 | Page Number:<br>33 of 82                 |

## Page 7 of 10 ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

#### TABLE 4.3-12 (continued)

### **BV-1 RADIOACTIVE LIQUID EFFLUENT MONITORING**

|              | INSTRUMENT                                                        | CHANNEL<br>CHECK   | SOURCE<br>CHECK | CHANNEL<br>CALIBRATION | CHANNEL<br>OPERATIONAL<br><u>TEST</u> |
|--------------|-------------------------------------------------------------------|--------------------|-----------------|------------------------|---------------------------------------|
| 4.           | Tank Level Indicating Devices (for tanks o                        | utside plant build | ings)           | •                      | •                                     |
| <b>a.</b>    | Primary Water Storage Tank Pri: (LI-1PG-115A) for (1BR-TK-6A)     | D*                 | NA              | R                      | <b>,</b> · <b>Q</b>                   |
| b.           | Primary Water Storage Tank<br>Pri: (LI -1PG-115B) for (1BR-TK-6B) | D*                 | NA              | R                      | Q                                     |
| . <b>c</b> . | Steam Generator Drain Tank<br>Pri: (LI-1LW-110) for (1LW-TK-7A)   | D*                 | NA              | R                      | Q                                     |
| d.           | Steam Generator Drain Tank Pri: (LI-1LW-111) for (1LW-TK-7B)      | D*                 | NA              | R                      | Q                                     |

<sup>\*</sup>During liquid additions to the tank.

| Beaver Valley Power Station               |           | Procedure Number:<br>1/2-ODC-3.03        |  |  |
|-------------------------------------------|-----------|------------------------------------------|--|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>34 of 82                 |  |  |

Page 8 of 10

ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

TABLE 4.3-12 (continued)

## BV-2 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

Pri = Primary Instruments, Alt = Alternate Instruments

|        | INSTRUMENT                                                                            | CHANNEL<br><u>CHECK</u> | SOURCE<br>CHECK  | CHANNEL<br>CALIBRATION | CHANNEL<br>OPERATIONAL<br><u>TEST</u> |
|--------|---------------------------------------------------------------------------------------|-------------------------|------------------|------------------------|---------------------------------------|
| 1. Gr  | oss Radioactivity Monitor Providing Alarr                                             | n And Automati          | c Termination C  | of Release             | •                                     |
| a.     | Liquid Waste Process Effluent<br>Pri: (2SGC-RQ100)                                    | D                       | P <sup>(5)</sup> | $R^{(7)(3)}$           | Q <sup>(6)</sup>                      |
| 2. Flo | ow Rate Measurement Devices                                                           |                         |                  | 1                      |                                       |
| a.     | Liquid Radwaste Effluent<br>Pri: (2SGC-FS100)                                         | D <sup>(4)</sup>        | NA .             | <b>R</b>               | Q                                     |
| b.     | Cooling Tower Blowdown Line Pri: (FT-1CW-101-1) or Alt: (FT-1CW-101) and (2CWS-FT101) | D <sup>(4)</sup>        | NA               | R                      | Q                                     |

#### 3. Tank Level Indicating Devices (for tanks outside plant buildings)

a. None Required

| Beaver Valley Power Station               |                | Procedure Number:<br>1/2-ODC-3.03        |  |  |
|-------------------------------------------|----------------|------------------------------------------|--|--|
| Title:                                    | Unit: 1/2      | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6 | Page Number:<br>35 of 82                 |  |  |

Page 9 of 10

ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

#### TABLE 4.3-12 (continued)

#### TABLE NOTATION

- The CHANNEL OPERATIONAL TEST shall also demonstrate that automatic isolation of this pathway and Control Room Alarm Annunciation occurs if any of the following conditions exist:
  - 1. Instrument indicates measured levels above the alarm/trip setpoint.
  - 2. Downscale failure.
  - 3. Instrument controls not set in operate mode.
- The CHANNEL OPERATIONAL TEST shall also demonstrate that Control Room Alarm Annunciation occurs if any of the following conditions exist:
  - 1. Instrument indicates measured levels above the alarm/trip setpoint.
  - 2. Downscale failure.
  - 3. Instrument controls are not set in operate mode.
- The initial CHANNEL CALIBRATION for radioactivity measurement instrumentation shall be performed using one or more of the reference standards certified by the National Bureau of (Standards/NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NBS/NIST. These standards should permit calibrating the system over its intended range of energy and rate capabilities. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration should be used, at intervals of at least once per 18 months. This can normally be accomplished during refueling outages. (Existing plants may substitute previously established calibration procedures for this requirement).
- CHANNEL CHECK shall consist of verifying indication of flow during periods of release. CHANNEL CHECK shall be made at least once daily on any day on which continuous, periodic, or batch releases are made.
- A SOURCE CHECK may be performed utilizing the installed means or flashing the detector with a portable source to obtain an upscale increase in the existing count rate to verify channel response.

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |  |
|-------------------------------------------|--------------|------------------------------------------|--|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>36 of 82                 |  |  |

# ATTACHMENT E Page 10 of 10 ODCM CONTROLS: RETS INSTRUMENTATION FOR LIQUID EFFLUENTS

TABLE 4.3-12 (continued)

#### TABLE NOTATION

- The CHANNEL CALIBRATION shall also demonstrate that automatic isolation of this pathway and Control Room Alarm Annunciation occurs if the instrument indicates measured levels above the alarm/trip setpoint.
- The CHANNEL CALIBRATION shall also demonstrate that Control Room Alarm Annunciation occurs if either of the following conditions exist:
  - 1. Downscale failure.
  - 2. Instrument controls are not set in operate mode.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>37 of 82                 |

Page 1 of 13

ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### CONTROLS: RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

3.3.3.10 In accordance with T.S. 5.5.2.a, the radioactive gaseous effluent monitoring instrumentation channels shown in ODCM Control 3.3.3.10, Table 3.3-13 shall be operable with their alarm/trip setpoints set to ensure that the limits of ODCM CONTROL 3.11.2.1 are not exceeded. The alarm/trip setpoints of the radiation monitoring channels shall be determined in accordance with 1/2-ODC-2.02.

Applicability: During releases through the flow path.

#### Action:

- a. With a radioactive gaseous process or effluent monitoring instrumentation channel alarm/trip setpoint less conservative than a value which will ensure that the limits of ODCM CONTROL 3.11.2.1 are met, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel or correct the alarm/trip setpoint.
- With one or more radioactive gaseous effluent monitoring instrumentation channels inoperable, take the ACTION shown in ODCM Control 3.3.3.10, Table 3.3-13 or conservatively reduce the alarm setpoint. Exert a best effort to return the channel to operable status within 30 days, and if unsuccessful, explain in the next Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.
- c. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

4.3.3.10 Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated operable by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL OPERATIONAL TEST operations at the frequencies shown in ODCM Control 3.3.3.10, Table 4.3-13.

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number:<br>38 of 82                 |

## Page 2 of 13 ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### **TABLE 3.3-13**

#### **BV-1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION**

| 1. Gaseous Waste/Process Vent System (PV-1/2) a. Noble Gas Activity Monitor Pri: (RM-1GW-108B) or Alt For Continuous Release: (RM-1GW-109 Ch 5) may only be used as the comparable alternate monitoring channel for continuous releases via this pathway. NO Alt For Batch Releases: for information, (RM-1GW-109 Ch 5) SHALL NOT be used as the comparable alternate monitoring channel for batch releases of the BV-1 GWDT's or the BV-2 GWST's. Specifically, SINCE this channel does not perform the same automatic isolation function as the primary channel, THEN ACTION 27 shall be followed for batch releases of the BV-1 GWDT's or the BV-2 GWST's via this pathway.  b. Particulate and Iodine Sampler (1) * 32  Pri: (Filter Paper & Charcoal Cartridge for RM-1GW-109) or 1st Alt: (Gilter Paper & Charcoal Cartridge for RM-1GW-109) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Gonts samples every 12 hours)  C. System Effluent Flow Rate Measuring Device (1) * 28A  Pri: (FR-1GW-108) or Alt: (RM-1GW-109 Ch 15) or Alt: (RM-1VS-101B) or Alt: (RM-1VS-10B) or Alt: (RM-1VS-10B Ch 15)  D. Particulate and Iodine Sampler (1) * 32  Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Grab samples covery 12 hours)  c. System Effluent Flow Rate Measuring Device (1) * 28A  Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for Pri: (FR-1VS-101) or Alt: (RM-1VS-109 Ch 15) or Alt: (RM- |               |                                                                                                                                                                                                                               | MINIMUM<br>CHANNELS<br>OPERABLE                          | APPLICABILITY                                            | <u>ACTION</u>                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------|
| a. Noble Gas Activity Monitor Pri: (RM-1GW-108B) or Alt For Continuous Release: (RM-1GW-109 Ch 5) may only be used as the comparable alternate monitoring channel for continuous releases via this pathway.  NO Alt For Batch Releases: For information, (RM-1GW-109 Ch 5) SHALL NOT be used as the comparable alternate monitoring channel for batch releases of the BV-1 GWDT's or the BV-2 GWST's. Specifically, SINCE this channel does not perform the same automatic isolation function as the primary channel, THEN ACTION 27 shall be followed for batch releases of the BV-1 GWDT's or the BV-2 GWST's via this pathway.  b. Particulate and Iodine Sampler (1) * 32  Pri: (Filter Paper & Charcoal Cartridge for RM-1GW-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1GW-109) or 2nd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device (1) * 28A  Pri: (FR-1GW-108) or Alt: (RM-1GW-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for Particulate and Iodine Sample Collection (see 1.b) Pri: (RM-1GW-109 Ch 15) or Alt: (Rotometer: FM-1GW-101, and Vacuum Gauge: Pl-1GW-135)  2. Auxiliary Building Ventilation System (VV-1; Also called Ventilation Vent)  a. Noble Gas Activity Monitor Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-111) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-111) or 2nd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device Pri: (FR-1VS-101) or Alt: (RM-1VS-109 Ch 15) or Alt: (RM-1VS-109 Ch 15) or                                                                                                                                                                       | 1. <b>G</b> a | seous Waste/Process Vent System (PV-1/2)                                                                                                                                                                                      | •                                                        |                                                          |                                          |
| channel for continuous releases via this pathway.  NO Alt For Batch Releases: For information, (RM-1GW-109 Ch 5) SHALL NOT be used as the comparable alternate monitoring channel for batch releases of the BV-1 GWDT's or the BV-2 GWST's. Specifically, SINCE this channel does not perform the same automatic isolation function as the primary channel, THEN ACTION 27 shall be followed for batch releases of the BV-1 GWDT's or the BV-2 GWST's via this pathway.  b. Particulate and Iodine Sampler (1) * 32  Pri: (Filter Paper & Charcoal Cartridge for RM-1GW-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1GW-109) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device (1) * 28A  Pri: (FR-1GW-108) or Alt: (RM-1GW-109 Ch 15) or Alt: (RM-1VS-109 Ch 15) or Alt: (RM-1VS- |               | Noble Gas Activity Monitor                                                                                                                                                                                                    | (1)                                                      | *                                                        | 27,29,30A,30B                            |
| Pri: (Filter Paper & Charcoal Cartridge for RM-1GW-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1GW-110) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device (1) * 28A Pri: (FR-1GW-108) or Alt: (RM-1GW-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for (1) * 28B Particulate and Iodine Sample Collection (see 1.b) Pri: (RM-1GW-109 Ch 15) or Alt: (Rotometer: FM-1GW-101, and Vacuum Gauge: PI-1GW-135)  2. Auxiliary Building Ventilation System (VV-1; Also called Ventilation Vent) a. Noble Gas Activity Monitor (1) * 29,30A Pri: (RM-1VS-101B) or Alt: (RM-1VS-109 Ch 5)  b. Particulate and Iodine Sampler (1) * 32 Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-111) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device (1) * 28A Pri: (FR-1VS-101) or Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for (1) * 28B Particulate and Iodine Sample Collection (see 2.b) Pri: (RM-1VS-109 Ch 15) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | channel for continuous releases via this pathway.  NO Alt For Batch Releases: For information, (RM-1GW-alternate monitoring channel for batch releases of the BV-1 channel does not perform the same automatic isolation func | 109 Ch 5) SHALI<br>GWDT's or the E<br>tion as the primar | NOT be used as the IV-2 GWST's. Specify channel, THEN AC | comparable<br>fically, <u>SINCE</u> this |
| 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1GW-110) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device (1)  * 28A Pri: (FR-1GW-108) or Alt: (RM-1GW-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for (1)  * 28B Particulate and Iodine Sample Collection (see 1.b) Pri: (RM-1GW-109 Ch 15) or Alt: (Rotometer: FM-1GW-101, and Vacuum Gauge: Pl-1GW-135)  2. Auxiliary Building Ventilation System (VV-1; Also called Ventilation Vent) a. Noble Gas Activity Monitor (1)  * 29,30A Pri: (RM-1VS-101B) or Alt: (RM-1VS-109 Ch 5)  b. Particulate and Iodine Sampler (1)  * 32 Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-111) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device (1)  * 28A Pri: (FR-1VS-101) or Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for (1)  * 28B Particulate and Iodine Sample Collection (see 2.b) Pri: (RM-1VS-109 Ch 15) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b.            | Particulate and Iodine Sampler                                                                                                                                                                                                | (1)                                                      | *                                                        | 32                                       |
| Pri: (FR-1GW-108) or Alt: (RM-1GW-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for Particulate and Iodine Sample Collection (see 1.b) Pri: (RM-1GW-109 Ch 15) or Alt: (Rotometer: FM-1GW-101, and Vacuum Gauge: Pl-1GW-135)  2. Auxiliary Building Ventilation System (VV-1; Also called Ventilation Vent) a. Noble Gas Activity Monitor (1) * 29,30A Pri: (RM-1VS-101B) or Alt: (RM-1VS-109 Ch 5)  b. Particulate and Iodine Sampler (1) * 32 Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-111) or 2nd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device (1) * 28A Pri: (FR-1VS-101) or Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for (1) * 28B Particulate and Iodine Sample Collection (see 2.b) Pri: (RM-1VS-109 Ch 15) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1GW-11<br>2nd Alt: (Continuous collection via RASP Pump) or                                                                                                                |                                                          |                                                          |                                          |
| Particulate and Iodine Sample Collection (see 1.b) Pri: (RM-1GW-109 Ch 15) or Alt: (Rotometer: FM-1GW-101, and Vacuum Gauge: PI-1GW-135)  2. Auxiliary Building Ventilation System (VV-1; Also called Ventilation Vent)  a. Noble Gas Activity Monitor Pri: (RM-1VS-101B) or Alt: (RM-1VS-109 Ch 5)  b. Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-111) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device Pri: (FR-1VS-101) or Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for Particulate and Iodine Sample Collection (see 2.b) Pri: (RM-1VS-109 Ch 15) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c.            | Pri: (FR-1GW-108) or                                                                                                                                                                                                          | (1)                                                      | *                                                        | 28A                                      |
| <ul> <li>2. Auxiliary Building Ventilation System (VV-1; Also called Ventilation Vent)</li> <li>a. Noble Gas Activity Monitor  Pri: (RM-1VS-101B) or  Alt: (RM-1VS-109 Ch 5)</li> <li>b. Particulate and Iodine Sampler  Pri: (Filter Paper &amp; Charcoal Cartridge for RM-1VS-109) or  1st Alt: (Filter Paper &amp; Charcoal Cartridge for RM-1VS-111) or  2nd Alt: (Continuous collection via RASP Pump) or  3rd Alt: (Grab samples every 12 hours)</li> <li>c. System Effluent Flow Rate Measuring Device  Pri: (FR-1VS-101) or  Alt: (RM-1VS-109 Ch 10)</li> <li>d. Sampler Flow Rate Measuring Device Used for  Particulate and Iodine Sample Collection (see 2.b)  Pri: (RM-1VS-109 Ch 15) or</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d.            | Particulate and Iodine Sample Collection (see 1.b) Pri: (RM-1GW-109 Ch 15) or                                                                                                                                                 |                                                          | * * * * * * * * * * * * * * * * * * *                    | 28B                                      |
| a. Noble Gas Activity Monitor Pri: (RM-1VS-101B) or Alt: (RM-1VS-109 Ch 5)  b. Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-111) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device Pri: (FR-1VS-101) or Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for Particulate and Iodine Sample Collection (see 2.b) Pri: (RM-1VS-109 Ch 15) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.            |                                                                                                                                                                                                                               | •                                                        |                                                          |                                          |
| Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-111) or 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours)  c. System Effluent Flow Rate Measuring Device (1) * 28A Pri: (FR-1VS-101) or Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for (1) * 28B Particulate and Iodine Sample Collection (see 2.b) Pri: (RM-1VS-109 Ch 15) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Noble Gas Activity Monitor Pri: (RM-1VS-101B) or                                                                                                                                                                              |                                                          | *                                                        | 29,30A                                   |
| Pri: (FR-1VS-101) or Alt: (RM-1VS-109 Ch 10)  d. Sampler Flow Rate Measuring Device Used for (1) * 28B  Particulate and Iodine Sample Collection (see 2.b)  Pri: (RM-1VS-109 Ch 15) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · b.          | Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-109) or 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-11) 2nd Alt: (Continuous collection via RASP Pump) or                                                       | 1                                                        |                                                          | 32                                       |
| Particulate and Iodine Sample Collection (see 2.b) Pri: (RM-1VS-109 Ch 15) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c.            | Pri: (FR-1VS-101) or                                                                                                                                                                                                          | (1)                                                      | • • • • • • • • • • • • • • • • • • •                    | 28A                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d.            | Particulate and Iodine Sample Collection (see 2.b) Pri: (RM-1VS-109 Ch 15) or                                                                                                                                                 |                                                          | *                                                        | 28B                                      |

<sup>\*</sup>During Releases via this pathway.

| Beaver Valley Power Station               |           | Procedure Number:<br>1/2-ODC-3.03        |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>39 of 82                 |  |

## Page 3 of 13 ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### TABLE 3.3-13 (continued)

#### **BV-1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION**

Pri = Primary Instruments, Alt = Alternate Instruments

**MINIMUM** 

|       |                                                            | CHANNELS |               |               |  |
|-------|------------------------------------------------------------|----------|---------------|---------------|--|
|       | <u>INSTRUMENT</u>                                          | OPERABLE | APPLICABILITY | <u>ACTION</u> |  |
| 3. Re | actor Building/SLCRS (CV-1; Also called Elevated Relea     | se)      | .;            |               |  |
| a.    | Noble Gas Activity Monitor                                 | (1)      | *             | 29,30A        |  |
|       | Pri: (RM-1VS-107B) or                                      |          |               |               |  |
|       | Alt: (RM-1VS-110 Ch 5)                                     |          |               |               |  |
| b.    | Particulate and Iodine Sampler                             | (1)      | *             | 32            |  |
|       | Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-110) of |          |               |               |  |
|       | 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1VS-11  |          |               |               |  |
|       | 2nd Alt: (Continuous collection via RASP Pump) or          | •        |               |               |  |
|       | 3rd Alt: (Grab samples every 12 hours)                     |          |               |               |  |
| c.    | System Effluent Flow Rate Measuring Device                 | (1)      | *             | 28A           |  |
| •     | Pri: (FR-1VS-112) or                                       | (1)      |               | 2011          |  |
|       | Alt: (RM-1VS-110 Ch 10)                                    |          | •             |               |  |
|       |                                                            | (1)      |               | 200           |  |
| d.    | Sampler Flow Rate Measuring Device Used for                | (1)      | •             | 28B           |  |
|       | Particulate and Iodine Sample Collection (see 3.b)         |          |               |               |  |
|       | Pri: (RM-1VS-110 Ch 15) or                                 | 0.660    |               |               |  |
|       | Alt: (Rotometer: FM-1VS-103, and Vacuum Gauge: PI-1V       | S-00U)   |               | •             |  |

<sup>\*</sup>During Releases via this pathway.

| Beaver Valley Power Station  Procedure Number: 1/2-ODC-3.03 |           |                                          |
|-------------------------------------------------------------|-----------|------------------------------------------|
| Title:                                                      | Unit: 1/2 | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs                   | Revision: | Page Number:<br>40 of 82                 |

## Page 4 of 13 ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### TABLE 3.3-13 (continued)

#### **BV-2 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION**

|           | Pri = Primary Instruments,                                                                                                                                                    | Alt = Alternate                 | Instruments                                                 |         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------|---------|
|           | INSTRUMENT                                                                                                                                                                    | MINIMUM<br>CHANNELS<br>OPERABLE | APPLICABILITY                                               | ACTION  |
| .1.SL     | CRS Unfiltered Pathway (VV-2; Also called Ventilation                                                                                                                         |                                 |                                                             |         |
|           | Noble Gas Activity Monitor<br>Pri: (2HVS-RQ101B)                                                                                                                              | (1)                             | *                                                           | 29, 30B |
| <b>b.</b> | Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for 2HVS-RQ10 1st Alt: (Continuous collection via RASP Pump) or 2nd Alt: (Grab samples every 12 hours) | (1)<br>(1) or                   | *<br>*                                                      | 32      |
| c.        | Process Flow Rate Monitor Pri: (Monitor Item 29 for 2HVS-VP101)                                                                                                               | (1)                             | *                                                           | 28A     |
| d.        | Sampler Flow Rate Monitor Used for Particulate<br>and Iodine Sample Collection (see 1.b)<br>Pri: (2HVS-FIT101-1)                                                              | (1)                             | •                                                           | 28B     |
| 2. SL     | CRS Filtered Pathway (CV-2; Also called Elevated Re                                                                                                                           | elease)                         |                                                             |         |
| a.        | Noble Gas Activity Monitor<br>Pri: (2HVS-RQ109B)                                                                                                                              | (1)                             | *                                                           | 29, 30B |
| b.        | Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for 2HVS-RQ10 1st Alt: (Continuous collection via RASP Pump) or 2nd Alt: (Grab samples every 12 hours) | (1)<br>9 High Flow Path) o      | *<br>or                                                     | 32      |
| <b>c.</b> | Process Flow Rate Monitor Pri: (Monitor Item 29 for 2HVS-FR22) or 1st Alt: (2HVS-FI22A and FI22C) or 2nd Alt: (2HVS-FI22B and FI22D)                                          | (1)                             | <b>★</b> (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | 28A     |
| d.        | Sampler Flow Rate Monitor Used for Particulate<br>and Iodine Sample Collection (see 2.b)<br>Pri: (Monitor Items 28 and 72 for 2HVS-DAU109B)                                   | (1)                             | *                                                           | 28B     |
| 3. De     | contamination Building Vent (DV-2)                                                                                                                                            |                                 |                                                             |         |
| a.        | Noble Gas Activity Monitor<br>Pri: (2RMQ-RQ301B)                                                                                                                              | (1)                             | *                                                           | 29      |
| b.        | Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for 2RMQ-RQ30 1st Alt: (Continuous collection via RASP Pump) 2nd Alt: (Grab samples every 12 hours)    | (1)<br>01) or                   | *                                                           | 32      |
| c.        | Process Flow Rate Monitor                                                                                                                                                     | None                            | None                                                        | None    |
| d.        | Sampler Flow Rate Monitor Used for Particulate<br>and Iodine Sample Collection (see 3.b)<br>Pri: (2RMQ-FIT301-1)                                                              | (1)                             | <b>*</b>                                                    | 28B     |

<sup>\*</sup>During Releases via this pathway.

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                    | Page Number:<br>41 of 82                 |

## Page 5 of 13 ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### TABLE 3.3-13 (continued)

#### **BV-2 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION**

|                        | Pri = Primary Instruments,                                                                                                                                                   | Alt = Alternate                 | e Instruments |               |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|---------------|
|                        | INSTRUMENT                                                                                                                                                                   | MINIMUM<br>CHANNELS<br>OPERABLE | APPLICABILITY | <u>ACTION</u> |
| 4. Co                  | ndensate Polishing Building Vent (CB-2)                                                                                                                                      |                                 |               |               |
| a.                     | Noble Gas Activity Monitor Pri: (2HVL-RQ112B)                                                                                                                                | (1)                             | * .           | 29            |
| <sup>;</sup> <b>b.</b> | Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for 2HVL-RQ112) 1st Alt: (Continuous collection via RASP Pump) 2nd Alt: (Grab samples every 12 hours) | (1)                             | *             | 32            |
| c.                     | Process Flow Rate Monitor                                                                                                                                                    | None                            | None          | None          |
| d.                     | Sampler Flow Rate Monitor Used for Particulate<br>and Iodine Sample Collection (see 4.b)<br>Pri: (2HVL-FIT112-1)                                                             | (1)                             | *             | 28B           |
| 5. Wa                  | aste Gas Storage Vault Vent (WV-2)                                                                                                                                           |                                 |               |               |
| a.                     | Noble Gas Activity Monitor Pri: (2RMQ-RQ303B)                                                                                                                                | (1)                             | *             | 29            |
| .b.                    | Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for 2RMQ-RQ303)                                                                                       | (1)                             | *             | , 32          |
|                        | 1st Alt: (Continuous collection via RASP Pump) 2nd Alt: (Grab samples every 12 hours)                                                                                        |                                 | •             | •             |
| c.                     | Process Flow Rate Monitor                                                                                                                                                    | None                            | None          | None          |
| <b>d.</b>              | Sampler Flow Rate Monitor Used for Particulate<br>and Iodine Sample Collection (see 5.b)<br>Pri: (2RMQ-FIT303-1)                                                             | (1)                             | *             | 28B           |

<sup>\*</sup>During Releases via this pathway.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                 | Page Number:<br>42 of 82                 |

Page 6 of 13

ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

TABLE 3.3-13 (continued)

#### **ACTION STATEMENTS**

### Action 27 <u>APPLICABLE FOR BATCH RELEASES OF BV-1 GASEOUS WASTE DECAY</u> TANKS OR BV-2 GASEOUS WASTE STORAGE TANKS

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the Unit 1 Gaseous Waste Decay Tanks (GWDT's) or the Unit 2 Gaseous Waste Storage Tanks (GWST's) may be released to the environment provided that prior to initiating (or resuming) the release:

- 1. At least two independent samples of the tank's content are analyzed and at least two technically qualified members of the Facility Staff independently verify the release rate calculations and discharge valve lineup, or
- Initiate continuous monitoring with the comparable alternate monitoring channel.
   ODCM Surveillance requirements applicable to the inoperable channel shall apply to the comparable alternate monitoring channel when used to satisfy this ODCM Control requirement.

Otherwise, suspend releases of radioactive effluents via this pathway.

### Action 28A <u>APPLICABLE FOR BV-1 SYSTEM EFFLUENT FLOW RATE MEASURING DEVICES OR BV-2 PROCESS FLOWRATE MONITORS</u>

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided:

- 1. The system/process flow rate is estimated at least once per 4 hours (or assumed to be at the ODCM design value<sup>(1)</sup>), or
- Initiate continuous monitoring with the comparable alternate monitoring channel. ODCM Surveillance requirements applicable to the inoperable channel shall apply to the comparable alternate monitoring channel when used to satisfy this ODCM Control requirement.
- In lieu of estimating the system/process flow rate at least once per 4 hours, the system/process flow rate can be assumed to be at the following ODCM design values:

1,450 cfm = BV-1 Gaseous Waste/Process Vent System (PV-1,2)

62,000 cfm = BV-1 Auxiliary Building Ventilation System (VV-1)

49,300 cfm = BV-1 Reactor Building/SLCRS (CV-1)

23,700 cfm = BV-2 SLCRS Unfiltered Pathway (VV-2)

59,000 cfm = BV-2 SLCRS Filtered Pathway (CV-2)

| Beaver Valley Power Station               | 1         | Procedure Number:<br>1/2-ODC-3.03        |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>43 of 82                 |  |

Page 7 of 13

ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### TABLE 3.3-13 (continued)

#### **ACTION STATEMENTS**

### Action 28B <u>APPLICABLE FOR BV-1 SAMPLER FLOW RATE MEASURING DEVICES OR BV-2 SAMPLER FLOWRATE MONITORS</u>

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided:

- 1. The sampler flow rate is estimated at least once per 4 hours, or
- 2. Initiate continuous monitoring with the comparable alternate monitoring channel. ODCM Surveillance requirements applicable to the inoperable channel shall apply to the comparable alternate monitoring channel when used to satisfy this ODCM Control requirement.

#### Action 29 APPLICABLE FOR CONTINUOUS RELEASES

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided:

- 1. Grab samples (or local monitor readings)<sup>(1)</sup> are taken at least once per 12 hours. If grab samples are taken, these samples are to be analyzed for gross activity within 24 hours, or
- 2. Initiate continuous monitoring with the comparable alternate monitoring channel. ODCM Surveillance requirements applicable to the inoperable channel shall apply to the comparable alternate monitoring channel when used to satisfy this ODCM CONTROL requirement.
- For BV-2, there are situations where the local monitor (e.g., the RM-80) is capable of performing the intended monitoring function, but the communications are lost to the Control Room. In this case, the local monitor can be read at least once per 12 hours in-lieu of obtaining grab samples at least once per 12 hours.

| Beaver Valley Power Station               |           | Procedure Number:<br>1/2-ODC-3.03        |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>44 of 82                 |  |

### ATTACHMENT F Page 8 of 13

ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### TABLE 3.3-13 (continued)

#### **ACTION STATEMENTS**

### Action 30A APPLICABLE FOR THE INITIAL BATCH PURGE OF THE BV-1 REACTOR CONTAINMENT

With the number of channels <u>OPERABLE</u> less than required by minimum Channels OPERABLE requirement, immediately suspend PURGING of Reactor Containment via this pathway if both RM-1VS-104A and B are not OPERABLE with the purge/exhaust system in service. The following should also be noted:

- 1. As stated, this Action is applicable for INOPERABLE monitors only when performing the initial batch purge of the reactor containment atmosphere (i.e., immediately after reactor containment atmosphere equalization).
- 2. Since all other releases of reactor containment atmosphere (i.e.; after the initial batch purge) are considered continuous releases, then this Action is not applicable. Therefore, Action 29 is applicable for INOPERABLE monitors when performing a continuous release of the reactor containment atmosphere.

## Action 30B APPLICABLE FOR THE INITIAL BATCH PURGE OF THE BV-2 REACTOR CONTAINMENT

With the number of channels OPERABLE less than required by Minimum Channels OPERABLE requirement, immediately suspend PURGING of Reactor Containment via this pathway if both 2HVR-RQ104A and 104B are not OPERABLE with the purge/exhaust system in service. The following should also be noted:

- 1. As stated, this Action is applicable for INOPERABLE monitors only when performing the initial batch purge of the reactor containment atmosphere (i.e.; immediately after reactor containment atmosphere equalization).
- 2. Since all other releases of reactor containment atmosphere (i.e.; after the initial batch purge) are considered continuous releases, then this Action is not applicable. Therefore, Action 29 is applicable for INOPERABLE monitors when performing a continuous release of the reactor containment atmosphere.

#### Action 32 APPLICABLE FOR CONTINUOUS RELEASES

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided samples are continuously collected with auxiliary sampling equipment as required in ODCM Control 3.11.2.1, Table 4.11-2, or sampled and analyzed once every 12 hours.

| Beaver Valley Power Station               |           | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>45 of 82                 |  |

Page 9 of 13

#### ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### **TABLE 4.3-13**

## BV-1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHANNE                                  | COLIDCE                                            | CHANNEL                                      | CHANNEL OPERATIONAL |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------------------|---------------------|
|               | INSTRUMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L <u>CHECK</u>                          | SOURCE<br><u>CHECK</u>                             | CALIBRATION                                  | TEST                |
| 1. <b>G</b> a | seous Waste/Process Vent System (PV-1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                    |                                              |                     |
| a.            | Noble Gas Activity Monitor Pri: (RM-1GW-108B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P                                       | P <sup>(4)</sup>                                   | R <sup>(3)</sup>                             | Q <sup>(1)</sup>    |
|               | Alt For Continuous Release: (RM-1GW-109 Channel for continuous releases via this pathway.  Alt For Batch Releases: (See Action 27): RM-10 channel for batch releases of the BV-1 GWDT's or same automatic isolation function as the primary cl GWDT's or the BV-2 GWST's via this pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GW-109 Ch 5 SHALI<br>the BV-2 GWST's. S | NOT be used Specifically, <u>SI</u> DN 27 shall be | as the comparable alto NCE this channel does | ernate monitoring   |
| b.            | Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for RM-1G 1st Alt: (Filter Paper & Charcoal Cartridge for RM 2nd Alt: (Continuous collection via RASP Pu- 3rd Alt: (Grab samples every 12 hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I-1GW-110) or                           | ΝA                                                 | <b>NA</b>                                    | NA                  |
| <b>c.</b>     | System Effluent Flow Rate Measuring Device<br>Pri: (FR-1GW-108) or<br>Alt: (RM-1GW-109 Ch 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>P</b> .                              | NA                                                 | R                                            | Q                   |
| d.            | Sampler Flow Rate Measuring Device Used for Particulate and Iodine Sample Collection (see 1. Pri: (RM-1GW-109 Ch 15) or Alt: (Rotometer: FM-1GW-101, and Vacuum Gaug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | NA                                                 | R                                            | Q                   |
| 2. Au         | xiliary Building Ventilation System (VV-1; Also c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | alled Ventilation Ve                    |                                                    |                                              |                     |
| <b>a.</b>     | Noble Gas Activity Monitor Pri: (RM-1VS-101B) or Alt: (RM-1VS-109 Ch 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D                                       | M <sup>(4)</sup> ,<br>P <sup>(4)</sup> ***         | R <sup>(3)</sup>                             | Q <sup>(2)</sup>    |
| b.            | Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for RM-1V 1st Alt: (Filter Paper & Charcoal Cartridge for RM 2nd Alt: (Continuous collection via RASP Pu 3rd Alt: (Grab samples every 12 hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I-1VS-111) or                           | NA                                                 | NA                                           | NA ·                |
| c.            | System Effluent Flow Rate Measurement Device<br>Pri: (FR-1VS-101) or<br>Alt: (RM-1VS-109 Ch 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e D                                     | NA                                                 | <b>R</b>                                     | Q                   |
| d.            | Sampler Flow Rate Measuring Device Used for Particulate and Iodine Sample Collection (see 2. Pri: (RM-1VS-109 Ch 15) or Alt: (Rotometer: FM-1VS-102, and Vacuum Gauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | NA                                                 | R                                            | Q                   |
| ٠             | The Committee of the Co |                                         |                                                    |                                              |                     |

<sup>\*</sup> During Releases via this pathway.

<sup>\*\*\*</sup> During purging of Reactor Containment via this pathway.

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|--------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>46 of 82                 |  |

Page 10 of 13

#### ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### **TABLE 4.3-13**

## BV-1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

|       | INSTRUMENT                                                                                                                                                                                                                          | CHANNE<br>L CHECK | SOURCE<br>CHECK                            | CHANNEL<br>CALIBRATION | CHANNEL<br>OPERATIONAL<br><u>TEST</u> |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|------------------------|---------------------------------------|
| 3. Re | actor Building/SLCRS (CV-1; Also called Elevated Ro                                                                                                                                                                                 | elease)           |                                            |                        |                                       |
| a.    | Noble Gas Activity Monitor Pri: (RM-1VS-107B)or Alt: (RM-1VS-110 Ch 5)                                                                                                                                                              | D                 | M <sup>(4)</sup> ,<br>P <sup>(4)</sup> *** | R <sup>(3)</sup>       | Q <sup>(2)</sup>                      |
| b.    | Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for RM-1VS-11 1st Alt: (Filter Paper & Charcoal Cartridge for RM-1V 2nd Alt: (Continuous collection via RASP Pump) or 3rd Alt: (Grab samples every 12 hours) | •                 | NA                                         | NA                     | NA                                    |
| c.    | System Effluent Flow Rate<br>Measuring Device<br>Pri: (FR-1VS-112) or<br>Alt: (RM-1VS-110 Ch 10)                                                                                                                                    | D                 | NA                                         | R                      | Q                                     |
| d.    | Sampler Flow Rate Measuring Device Used for Particulate and Iodine Sample Collection (see 3.b) Pri: (RM-1VS-110 Ch 15) or Alt: (Rotometer: FM-1VS-103, and Vacuum Gauge: PI-                                                        | D<br>-1VS-660)    | NA                                         | R                      | Q                                     |
|       |                                                                                                                                                                                                                                     |                   |                                            |                        |                                       |

<sup>\*</sup>During releases via this pathway.

<sup>\*\*\*</sup>During purging of Reactor Containment via this pathway.

| Beaver Valley Power Station               |           | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>47 of 82                 |  |

## Page 11 of 13 ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### TABLE 4.3-13 (continued)

## BV-2 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

| INSTRUMENT                                                                                                                                                                                                                     | CHANNEL<br>CHECK  | SOURCE<br>CHECK                            | CHANNEL<br>CALIBRATION | CHANNEL<br>OPERATIONAL<br>TEST |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|------------------------|--------------------------------|
| 1. SLCRS Unfiltered Pathway (VV-2; Also called Ventila                                                                                                                                                                         | tion Vent)        |                                            | <u></u>                | · <del></del>                  |
| a. Noble Gas Activity Monitor Pri: (2HVS-RQ101B)                                                                                                                                                                               | D                 | M <sup>(4)</sup> ,<br>P <sup>(4)</sup> *** | R <sup>(3)(6)</sup>    | Q(5)                           |
| <ul> <li>Particulate and Iodine Sampler</li> <li>Pri: (Filter Paper &amp; Charcoal Cartridge for 2HVS-RQ</li> <li>1st Alt: (Continuous collection via RASP Pump) or</li> <li>2nd Alt: (Grab samples every 12 hours)</li> </ul> | W<br>(101) or     | NA                                         | NA                     | NA                             |
| c. Process Flow Rate Monitor Pri: (Monitor Item 29 for 2HVS-VP101)                                                                                                                                                             | D                 | NA                                         | <b>R</b> .             | Q                              |
| d. Sampler Flow Rate Monitor Used for Particulate and Iodine Sample Collection (see 1.b) Pri: (2HVS-FIT101-1)                                                                                                                  | D                 | NA                                         | R                      | Q                              |
| 2. SLCRS Filtered Pathway (CV-2; Also called Elevated<br>a. Noble Gas Activity Monitor<br>Pri. (2HVS-RQ109B)                                                                                                                   | Release)<br>D     | M <sup>(4)</sup> ,<br>P <sup>(4)</sup> *** | R <sup>(3)(6)</sup>    | Q <sup>(5)</sup>               |
| <ul> <li>Particulate and Iodine Sampler</li> <li>Pri: (Filter Paper &amp; Charcoal Cartridge for 2HVS-RQ</li> <li>1st Alt: (Continuous collection via RASP Pump) or</li> <li>2nd Alt: (Grab samples every 12 hours)</li> </ul> | W<br>109 High Flo | NA<br>w Path) or                           | NA                     | NA<br>                         |
| c. Process Flow Rate Monitor Pri: (Monitor Item 29 for 2HVS-FR22) or 1st Alt: (2HVS-FI22A and FI22C) or 2nd Alt: (2HVS-FI22B and FI22D)                                                                                        | D                 | NA                                         | R                      | Q                              |
| d. Sampler Flow Rate Monitor Used for Particulate and Iodine Sample Collection (see 2.b) Pri: (Monitor Items 28 and 72 for 2HVS-DAU109B)                                                                                       | D                 | NA                                         | <b>R</b>               | Q                              |
| 3. Decontamination Building Vent (DV-2) a. Noble Gas Activity Monitor Pri: (2RMQ-RQ301B)                                                                                                                                       | D                 | M <sup>(4)</sup>                           | R <sup>(3)(6)</sup>    | Q <sup>(5)</sup>               |
| <ul> <li>Particulate and Iodine Sampler</li> <li>Pri: (Filter Paper &amp; Charcoal Cartridge for 2RMQ-RO 1st Alt: (Continuous collection via RASP Pump) or 2nd Alt: (Grab samples every 12 hours)</li> </ul>                   | W<br>Q301) or     | NA                                         | NA                     | NA                             |
| c. Process Flow Rate Monitor                                                                                                                                                                                                   | NA                | NA                                         | NA                     | . NA                           |
| d. Sampler Flow Rate Monitor Used for Particulate and Iodine Sample Collection (see 3.b) Pri: (2RMQ-FIT301-1)                                                                                                                  | <b>D</b>          | , NA                                       | R                      | Q                              |

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |  |
|-------------------------------------------|--------------|------------------------------------------|--|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>48 of 82                 |  |  |

Page 12 of 13

ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### TABLE 4.3-13 (continued)

## BV-2 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

|       | INSTRUMENT                                                                                                                                                                  | CHANNEL<br>CHECK | SOURCE<br>CHECK  | CHANNEL<br>CALIBRATION | CHANNEL<br>OPERATIONAL<br><u>TEST</u> |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------------|---------------------------------------|
| 4. Co | ndensate Polishing Building Vent (CB-2)                                                                                                                                     |                  |                  |                        |                                       |
| a.    | Noble Gas Activity Monitor<br>Pri: (2HVL-RQ112B)                                                                                                                            | D                | M <sup>(4)</sup> | R <sup>(3)(6)</sup>    | Q <sup>(5)</sup>                      |
| b.    | Particulate and Iodine Sampler Pri: (Filter Paper & Charcoal Cartridge for 2HVL-RQ 1st Alt: (Continuous collection via RASP Pump) or 2nd Alt: (Grab samples every 12 hours) | W<br>112) or     | NA               | NA                     | NA                                    |
| c.    | <b>Process Flow Rate Monitor</b>                                                                                                                                            | NA               | NA               | NA                     | NA                                    |
| d.    | Sampler Flow Rate Monitor Used for Particulate and Iodine Sample Collection (see 4.b) Pri: (2HVL-FIT112-1)                                                                  | D                | NA               | R                      | Q                                     |
| 5. Wa | aste Gas Storage Vault Vent (WV-2)                                                                                                                                          |                  |                  |                        |                                       |
| a.    | Noble Gas Activity Monitor<br>Pri: (2RMQ-RQ303B)                                                                                                                            | D                | M <sup>(4)</sup> | R <sup>(3)(6)</sup>    | Q <sup>(5)</sup>                      |
| b.    | Particulate and Iodine Samples Pri: (Filter Paper & Charcoal Cartridge for 2RMQ-RQ 1st Alt: (Continuous collection via RASP Pump) or 2nd Alt: (Grab samples every 12 hours) | W<br>303) or     | NA               | NA                     | NA                                    |
| c.    | Process Flow Rate Monitor                                                                                                                                                   | NA               | NA               | NA                     | NA                                    |
| d.    | Sampler Flow Rate Monitor Used for Particulate and Iodine Sample Collection (see 5.b) Pri: (2RMQ-FIT303-1)                                                                  | D                | NA               | , R                    | Q                                     |

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>49 of 82                 |

#### Page 13 of 13

#### ODCM CONTROLS: RETS INSTRUMENT FOR GASEOUS RELEASES

#### TABLE 4.3-13 (continued)

#### **TABLE NOTATION**

- The CHANNEL OPERATIONAL TEST shall also demonstrate that automatic isolation of this pathway and Control Room Alarm Annunciation occurs if any of the following conditions exist:
  - a. Instrument indicates measured levels above the alarm/trip setpoint.
  - b. Downscale failure.
  - c. Instrument controls not set in operate mode.
- The CHANNEL OPERATIONAL TEST shall also demonstrate that Control Room Alarm Annunciation occurs if any of the following conditions exist:
  - a. Instrument indicates measured levels above the alarm/trip setpoint.
  - b. Downscale failure.
  - c. Instrument controls not set in operate mode.
- The initial CHANNEL CALIBRATION for radioactivity measurement instrumentation shall be performed using one or more of the reference standards certified be National Bureau of Standards or using standards that have been obtained from suppliers that participate in measurement assurance activities with NBS. These standards should permit calibrating the system over its intended range of energy and rate capabilities. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration should be used, at intervals of at least once per 18 months. This can normally be accomplished during refueling outages.
- A SOURCE CHECK may be performed utilizing the installed means or flashing the detector with a portable source to obtain an upscale increase in the existing count rate to verify channel response.
- The CHANNEL OPERATIONAL TEST shall also demonstrate that Control Room Alarm Annunciation occurs if the instrument indicates measured levels above the alarm/trip setpoint.
- The CHANNEL CALIBRATION shall also demonstrate that Control Room Alarm Annunciation occurs if either of the following conditions exist:
  - 1. Downscale failure.
  - 2. Instrument controls are not set in operate mode.

| Beaver Valley Power Station               |           | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number: 50 of 82                    |  |

# ATTACHMENT G Page 1 of 5 ODCM CONTROLS: LIQUID EFFLUENT CONCENTRATION

#### CONTROLS: LIQUID EFFLUENT CONCENTRATION

In accordance with T.S. 5.5.2.b and T.S. 5.5.2.c, the concentration of radioactive material released at any time from the site (see 1/2-ODC-2.01, Figure 5-1) shall be limited to 10 times the EC's specified in 10 CFR Part 20, Appendix B (20.1001-20.2402), Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. This is referred to as the ODCM Effluent Concentration Limit (OEC). For dissolved or entrained noble gases, the concentration shall be limited to 2E-4 uCi/ml total activity.

Applicability: At all times.

#### Action:

- a. With the concentration of radioactive material released from the site to unrestricted areas exceeding the above limits; immediately restore the concentration within the above limits, and
- b. Submit a Special Report to the Commission within 30 days in accordance with 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1).
- c. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

- 4.11.1.1.1 Radioactive liquid wastes shall be sampled and analyzed according to the sampling and analysis program of ODCM Control 3.11.1.1, Table 4.11-1\*.
- 4.11.1.1.2 The results of radioactive analysis shall be used in accordance with 1/2-ODC-2.01 to assure that the concentration at the point of release are maintained within the limits of ODCM CONTROL 3.11.1.1.
- 4.11.1.3 When BV-1 primary to secondary leakage exceeds 0.1 gpm (142 gpd), samples of the Turbine Building Sump shall be obtained every 8 hours to ensure that the Turbine Building Sump concentration does not exceed 1 OEC. Once it is determined that an OEC is reached, the Turbine Building Sump shall be routed to the Chemical Waste Sump.

| Beaver Valley Power Station               |           | Procedure Number: 1/2-ODC-3.03           |  |  |
|-------------------------------------------|-----------|------------------------------------------|--|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number: 51 of 82                    |  |  |

# ATTACHMENT G Page 2 of 5 ODCM CONTROLS: LIQUID EFFLUENT CONCENTRATION

SURVEILLANCE REQUIREMENTS (continued)

- 4.11.1.4 When BV-2 primary to secondary leakage exceeds 0.1 gpm (142 gpd), samples of the Turbine Building Sump shall be obtained every 8 hours to ensure that the Turbine Building Sump concentration does not exceed 1 OEC. Once it is determined that an OEC is reached, the Turbine Building Sump shall be routed to Steam Generator blowdown hold tank (2SGC-TK21A or 2SGC-TK21B).
- 4.11.1.5 Prior to the BV-2 Recirculation Drain Pump(s) (2DAS-P215A/215B) discharging to catch basin 16, a grab sample will be taken. The samples will be analyzed for gross activity at a sensitivity of at least 1E-7 uCi/ml. Water volume discharged shall be estimated from the number of pump operations unless alternate flow or volume instrumentation is provided.

\* Radioactive liquid discharges are normally via batch modes. BV-1 and BV-2 Turbine Building Drains shall be monitored as specified in ODCM SURVEILLANCE REQUIREMENT 4.11.1.1.3 and 4.11.1.1.4. The BV-2 Recirculation drain pump discharge shall be monitored as specified in ODCM SURVEILLANCE REQUIREMENT 4.11.1.1.5, respectively.

| Beaver Valley Power Station               |           | Procedure Number:<br>-1/2-ODC-3.03       |  |  |
|-------------------------------------------|-----------|------------------------------------------|--|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>52 of 82                 |  |  |

Page 3 of 5
ODCM CONTROLS: LIQUID EFFLUENT CONCENTRATION

#### **TABLE 4.11-1**

#### RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

| ·                                           | ,                          |                               | · · · · · · · · · · · · · · · · · · ·      |                         |
|---------------------------------------------|----------------------------|-------------------------------|--------------------------------------------|-------------------------|
|                                             |                            |                               |                                            | LOWER                   |
| ·                                           |                            | MINIMUM                       | TYPE OF                                    | LIMIT OF                |
| LIQUID                                      | SAMPLING                   | ANALYSIS .                    | ACTIVITY                                   | DETECTION               |
| RELEASE TYPE                                | FREQUENCY                  | FREQUENCY                     | ANALYSIS                                   | (LLD)                   |
|                                             |                            |                               | i                                          | (uCi/ml) <sup>(a)</sup> |
| A. Batch Waste                              | P                          | P                             | Principal Gamma                            | 5E-7                    |
| Release                                     | Each Batch <sup>(h)</sup>  | Each Batch <sup>(h)</sup>     | Emitters <sup>(f)</sup>                    |                         |
| Tanks <sup>(d)</sup>                        |                            |                               | I-131                                      | 1E-6                    |
|                                             | P                          | M                             | Dissolved And                              | 1E-5                    |
|                                             | One                        |                               | Entrained Gases                            | ·                       |
| ·                                           | Batch/M <sup>(h)</sup>     |                               | (Gamma Emitters)                           |                         |
| ·                                           | P                          | M                             | H-3                                        | 1E-5                    |
|                                             | Each Batch <sup>(h)</sup>  | Composite <sup>(b)</sup>      | Gross Alpha                                | 1E-7                    |
|                                             | P                          | Q                             | Sr-89, Sr-90                               | 5E-8                    |
|                                             | Each Batch <sup>(h)</sup>  | Composite <sup>(b)</sup>      | Fe-55                                      | 1E-6                    |
| B. Continuous<br>Releases <sup>(e)(g)</sup> | Grab Sample <sup>(g)</sup> | W<br>Composite <sup>(c)</sup> | Principal Gamma<br>Emitters <sup>(f)</sup> | 5E-7                    |
|                                             |                            | •                             | I-131                                      | 1E-6                    |
|                                             | Grab Sample <sup>(g)</sup> | M                             | Dissolved And                              | 1E-5                    |
|                                             |                            | i                             | Entrained Gases                            | ·                       |
|                                             |                            |                               | (Gamma Emitters)                           |                         |
| ,                                           | Grab Sample (g)            | M                             | H-3                                        | 1E-5                    |
|                                             | 3                          | Composite <sup>(c)</sup>      | Gross Alpha                                | 1E-7                    |
| ·                                           | Grab Sample <sup>(g)</sup> | Q                             | Sr-89, Sr-90                               | 5E-8                    |
|                                             |                            | Composite <sup>(c)</sup>      | Fe-55                                      | 1E-6                    |

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>53 of 82                 |

# ATTACHMENT G Page 4 of 5 ODCM CONTROLS: LIQUID EFFLUENT CONCENTRATION

#### TABLE 4.11-1 (continued)

#### TABLE NOTATION

The LLD is the smallest concentration of radioactive material in a sample that will be detected with 95% probability with 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

LLD = 
$$\frac{4.66 \text{ Sb}}{(E)(V)(2.22)(Y) \exp(-\lambda \Delta T)}$$

where:

LLD is the lower limit of detection as defined above (as pCi per unit mass or volume);

S<sub>b</sub> is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute);

E is the counting efficiency (as counts per transformation),

V is the sample size (in units of mass or volume).

2.22 is the number of transformations per minute per picocurie;

Y is the fractional radiochemical yield (when applicable);

 $\lambda$  is the radioactive decay constant for the particular radionuclide;

 $\Delta T$  is the elapsed time between sample collection (or end of the sample collection period) and time of counting (for environmental samples, not plant effluent samples).

The value of  $S_b$  used in the calculation of the LLD for a detection system shall be based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted variance. Typical values of E, V, Y and  $\Delta T$  should be used in the calculations.

The LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as <u>a posteriori</u> (after the fact) limit for a particular measurement.

| Beaver Valley Power Station               |           | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number: 54 of 82                    |  |

# ATTACHMENT G Page 5 of 5 ODCM CONTROLS: LIQUID EFFLUENT CONCENTRATION

#### TABLE 4.11-1 (continued)

#### **TABLE NOTATION**

- A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen which is representative of the liquids released.
- To be representative of the quantities and concentrations of radioactive materials in liquid effluents, samples shall be collected continuously in proportion to the rate of flow of the effluent stream. Prior to analyses, all samples taken for the composite shall be thoroughly mixed in order for the composite sample to be representative of the effluent release.
- A batch release exists when the discharge of liquid wastes is from a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed to assure representative sampling.
- A continuous release exists when the discharge of liquid wastes is from a non-discrete volume; e.g., from a volume of a system having an input flow during the continuous release. Releases from the Turbine Building Drains and the AFW Pump Bay Drain System and Chemical Waste Sump are considered continuous when the primary to secondary leak rate exceeds 0.1 gpm (142 gpd).
- The principal gamma emitters for which the LLD specification will apply are exclusively the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides, shall also be identified and reported. Nuclides which are below the LLD for the analyses should be reported as "less than" the nuclide's LLD, and should not be reported as being present at the LLD level for that nuclide. The "less than" values should not be used in the required dose calculations. When unusual circumstances result in LLD's higher than required, the reasons shall be documented in the Radioactive Effluent Release Report.
- When radioactivity is identified in the secondary system, a RWDA-L should be prepared on a monthly basis to account for the radioactivity that will eventually be discharged to the Ohio River.
- Whenever the BV-2 Recirculation Drain Pump(s) are discharging to catch basin 16, sampling will be performed by means of a grab sample taken every 4 hours during pump operation.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number: 55 of 82                    |

# ATTACHMENT H Page 1 of 1 ODCM CONTROLS: LIQUID EFFLUENT DOSE

#### CONTROLS: LIQUID EFFLUENT DOSE

- 3.11.1.2 In accordance with T.S. 5.5.2.d and T.S. 5.5.2.c, the dose or dose commitment to MEMBER(S) OF THE PUBLIC from radioactive materials in liquid effluents released from the reactor unit (see 1/2-ODC-2.01 Figure 5-1) shall be limited:
  - a. During any calendar quarter to less than or equal to 1.5 mrem to the total body and to less than or equal to 5 mrem to any organ, and
  - b. During any calendar year to less than or equal to 3 mrem to the total body and to less than or equal to 10 mrem to any organ.

Applicability: At all times.

#### Action:

- a. With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1), a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce the releases, and the proposed corrective actions to be taken to assure the subsequent releases will be within the above limits. (This Special Report shall also include (1) the results of radiological analyses of the drinking water source and (2) the radiological impact on finished drinking water supplies with regard to the requirements of 40 CFR 141, Safe Drinking Water Act).\*
- b. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

- 4.11.1.2.1 <u>Dose Calculations</u>. Cumulative dose contributions from liquid effluents shall be determined in accordance with 1/2-ODC-2.01 at least once per 31 days.
- \* Applicable only if drinking water supply is taken from the receiving water body within three miles of the plant discharge (three miles downstream only).

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number:<br>56 of 82                 |

# ATTACHMENT I Page 1 of 1 ODCM CONTROLS: LIQUID RADWASTE TREATMENT SYSTEM

#### CONTROLS: LIQUID RADWASTE TREATMENT SYSTEM

3.11.1.3 In accordance with T.S.5.5.2.f, the Liquid Radwaste Treatment System shall be used to reduce the radioactive materials in each liquid waste batch prior to its discharge when the projected doses due to liquid effluent releases from the reactor unit (see 1/2-ODC-2.01 Figure 5-1) when averaged over 31 days would exceed 0.06 mrem to the total body or 0.2 mrem to any organ.

Applicability: At all times.

#### Action:

- a. With liquid waste being discharged without treatment and exceeding the limits specified, prepare and submit to the Commission within 30 days pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1) a Special Report which includes the following information:
  - 1. Identification of the inoperable equipment or subsystems and the reason for inoperability.
  - 2. Action(s) taken to restore the inoperable equipment to operational status, and
  - 3. Summary description of action(s) taken to prevent a recurrence.
- b. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

4.11.1.3.1 Doses due to liquid releases shall be projected at least once per 31 days, in accordance with 1/2-ODC-2.01.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number: 57 of 82                    |

# ATTACHMENT J Page 1 of 1 ODCM CONTROLS: LIQUID HOLDUP TANKS

#### CONTROLS: LIQUID HOLDUP TANKS

- 3.11.1.4 In accordance with T.S.5.5.8, the quantity of radioactive material contained in each of the following tanks shall be limited to the values listed below, excluding tritium and dissolved or entrained noble gases.
  - a: ≤ 18 Curies: 1BR-TK-6A (Unit 1 Primary Water Storage Tank)
  - b. < 18 Curies: 1BR-TK-6B (Unit 1 Primary Water Storage Tank)
  - c. ≤ 7 Curies: 1LW-TK-7A (Unit 1 Steam Generator Drain Tank)
  - d. <7 Curies: 1LW-TK-7B (Unit 1 Steam Generator Drain Tank)
  - e. ≤ 6 Curies: 1QS-TK-1 (Unit 1 Refueling Water Storage Tank-RWST)
  - f. < 62 Curies: 2QSS-TK21 (Unit 2 Refueling Water Storage Tank-RWST)
  - g.  $\leq$  10 Curies: Unit 1 and 2 miscellaneous temporary outside radioactive liquid storage tanks.

#### APPLICABILITY: At all times.

#### ACTION:

- a. With the quantity of radioactive material in the tank exceeding the limit, perform calculations to determine compliance to the limits of 10 CFR Part 20, Appendix B, Table 2, Column 2. These calculations shall be performed at the nearest potable water supply, and the nearest surface water supply in the unrestricted area (i.e.; at the entrance to the Midland Water Treatment Facility). IF the limits of 10 CFR Part 20 are determined to be exceeded, THEN immediately suspend all additions of radioactive material to the tank and within 48 hours reduce the tank contents to within the limits set forth in 10 CFR Part 20, and
- b. Submit a Special Report in accordance with 10 CFR 50.4 (b) (1) within 30 days and include a schedule and a description of activities planned and/or taken to reduce the contents to within the limits set forth in 10 CFR Part 20.
- c. The provisions ODCM Control 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

- 4.11.1.4.1 The quantity of radioactive material contained in each of the above listed tanks (except the Unit 1 and 2 RWST's) shall be determined to be within the above limit by analyzing a representative sample of the tank's contents at least once per 7 days when radioactive materials are being added to the tank.
- 4.11.1.4.2 <u>SINCE</u> additions of radioactive material to the Unit 1 and 2 RWST's are normally made at the end of a refueling outage (i.e.; drain down of the reactor cavity back to the RWST), <u>THEN</u> compliance to this limit shall be performed as follows:

The quantity of radioactive material contained in the Unit 1 and 2 RWST's shall be determined to be within the above limit by analyzing a representative sample of the tank's contents within 7 days after transfer of reactor cavity water to the respective Unit's RWST.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>58 of 82                 |

# ATTACHMENT K Page 1 of 5 ODCM CONTROLS: GASEOUS EFFLUENT DOSE RATE

#### CONTROLS: GASEOUS EFFLUENT DOSE RATE

- 3.11.2.1 In accordance with T.S.5.5.2.c and T.S. 5.5.2.g, the dose rate in the unrestricted areas (see 1/2-ODC-2.02 Figure 5-1) due to radioactive materials released in gaseous effluents from the site shall be limited to the following values:
  - a. The dose rate limit for noble gases shall be  $\leq$  500 mrem/yr to the total body and  $\leq$  3000 mrem/yr to the skin\*, and
  - b. The dose rate limit, inhalation pathway only, for I-131, tritium and all radionuclides in particulate form (excluding C-14) with half-lives greater than eight days shall be ≤ 1500 mrem/yr to any organ.

Applicability: At all times.

#### Action:

- a. With the dose rate(s) exceeding the above limits, immediately decrease the release rate to comply with the above limits(s), and
- b. Submit a Special Report to the Commission within 30 days pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1).
- c. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

- 4.11.2.1.1 The dose rate due to noble gaseous effluents shall be determined to be within the above limits in accordance with 1/2-ODC-2.02.
- 4.11.2.1.2 The dose rate, inhalation pathway only, for I-131, tritium and all radionuclides in particulate form (excluding C-14) with half-lives greater than eight days in gaseous effluents, shall be determined to be within the above limits in accordance with the methods and procedures of the ODCM by obtaining representative samples and performing analyses in accordance with the sampling and analysis program specified in ODCM Control 3.11.2.1, Table 4.11-2.

<sup>\*</sup>During containment purge the dose rate may be averaged over 960 minutes.

| Beaver Valley Power Station               |           | Procedure Number:<br>1/2-ODC-3.03        |  |
|-------------------------------------------|-----------|------------------------------------------|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>59 of 82                 |  |

### ATTACHMENT K

Page 2 of 5
ODCM CONTROLS: GASEOUS EFFLUENT DOSE RATE

### TABLE 4.11-2

### RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM

|                                                                |                           |                      | 4                       | · · · ·                 |
|----------------------------------------------------------------|---------------------------|----------------------|-------------------------|-------------------------|
|                                                                |                           | MINIMUM              | TYPE                    | LOWER LIMIT OF          |
| GASEOUS                                                        | SAMPLING                  | ANALYSIS             | OF                      | DETECTION               |
| RELEASE                                                        | FREQUENCY                 | FREQUENCY            | ACTIVITY                | (LLD)                   |
| TYPE                                                           |                           | -                    | ANALYSIS                | (uCi/ml) <sup>(a)</sup> |
| A. Waste Gas Storage                                           | P                         | P                    | Principal               | 1E-4                    |
| Tank                                                           | Each Tank                 | Each Tank            | Gamma                   |                         |
|                                                                | Grab Sample               |                      | Emitters <sup>(g)</sup> |                         |
| . :                                                            | Each Tank*                | Each Tank*           | H-3*                    | 1E-6                    |
|                                                                | Grab Sample               |                      |                         | :                       |
| B. Containment Purge                                           | P                         | P                    | Principal Gamma         | 1E-4                    |
|                                                                | Each Purge <sup>(b)</sup> | Each                 | Emitters <sup>(g)</sup> |                         |
|                                                                | Grab Sample               | Purge <sup>(b)</sup> | H-3                     | 1E-6                    |
|                                                                | i                         |                      |                         |                         |
| C. Ventilation                                                 | M <sup>(b)(c)(e)</sup>    | M <sup>(b)</sup>     | Principal Gamma         | 1E-4                    |
| Systems <sup>(h)</sup>                                         | Grab Sample               |                      | Emitters <sup>(g)</sup> |                         |
| VV-1 (U1 PAB/Ventilation Vent)<br>CV-1 (U1 Rx Cont/SLCRS Vent) |                           |                      | H-3                     | 1E-6                    |
| PV-1/2 (U1/2 GW/Process Vent)                                  | ·                         |                      |                         |                         |
| VV-2 (U2 SLCRS Unfiltered Path)                                |                           |                      |                         |                         |
| CV-2 (U2 SLCRS Filtered Path)<br>DV-2 (U2 Decon Bldg Vent)     |                           |                      | •                       |                         |
| WV-2 (U2 Waste Gas Vault Vent)                                 |                           |                      |                         | ,                       |
| CB-2 (U2 Cond Pol Bldg Vent)                                   |                           |                      |                         |                         |
|                                                                |                           |                      |                         |                         |
|                                                                |                           |                      |                         |                         |
| , , , , , , , , , , , , , , , , , , , ,                        |                           |                      |                         |                         |
|                                                                |                           |                      |                         |                         |

<sup>\*</sup> The H-3 concentration shall be estimated prior to release and followed up with an H-3 grab sample from the Ventilation System during release.

| Beaver Valley Power Station               | 1              | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|----------------|------------------------------------------|--|
| Title:                                    | Unit:1/2       | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6 | Page Number:<br>60 of 82                 |  |

### ATTACHMENT K

Page 3 of 5 ODCM CONTROLS: GASEOUS EFFLUENT DOSE RATE

### TABLE 4.11-2 (continued)

### RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM

|                    | <del>,</del>              | r                | <del></del>             |                         |
|--------------------|---------------------------|------------------|-------------------------|-------------------------|
|                    |                           | MINIMUM          | TYPE                    | LOWER LIMIT OF          |
| GASEOUS            | SAMPLING                  | ANALYSIS         | ·OF                     | DETECTION               |
| RELEASE            | FREQUENCY                 | FREQUENCY        | ACTIVITY                | (LLD)                   |
| TYPE               |                           |                  | ANALYSIS                | (uĈi/ml) <sup>(a)</sup> |
| D. All Ventilation | Continuous <sup>(t)</sup> | W <sup>(d)</sup> | I-131                   | 1E-12                   |
| Systems Listed     |                           | Charcoal         | I-133                   | 1E-10                   |
| Above (in C.)      |                           | Sample           |                         | , ,                     |
| Which Produce      |                           |                  |                         |                         |
| Continuous         | Continuous(f)             | W <sup>(d)</sup> | Principal Gamma         | 1E-11                   |
| Release            | •••                       | Particulate      | Emitters <sup>(g)</sup> |                         |
|                    |                           | Sample           | (I-131, Others)         |                         |
|                    | Continuous <sup>(f)</sup> | M                | Gross Alpha             | 1E-11                   |
|                    |                           | Composite        | ·                       | ,                       |
|                    |                           | Particulate      |                         |                         |
|                    |                           | Sample           | ·                       |                         |
|                    | Continuous <sup>(f)</sup> | Q                | Sr-89, Sr-90            | 1E-11                   |
|                    |                           | Composite        |                         |                         |
|                    | ,                         | Particulate      |                         |                         |
|                    |                           | Sample           |                         | •                       |
|                    | Continuous(t)             | Noble Gas        | Noble Gases             | 1E-6                    |
|                    |                           | Monitor          | Gross Beta And          | •                       |
|                    |                           |                  | Gamma                   | .                       |

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number:<br>61 of 82                 |

## ATTACHMENT K Page 4 of 5

### ODCM CONTROLS: GASEOUS EFFLUENT DOSE RATE

## TABLE 4.11-2 (continued) TABLE NOTATION

- (a) The Lower Limit of Detection (LLD) is defined in Table Notation (a) of ODCM Control 3.11.1.1, Table 4.11-1 for ODCM Surveillance Requirement 4.11.1.1.
- (b) Samples (grab particulate, iodine & noble gas) and analysis shall also be performed following SHUTDOWN, STARTUP, or a THERMAL POWER change exceeding 15% of RATED THERMAL POWER within a 1 hour period. This requirement does not apply if (1) analysis shows that the Dose Equivalent I-131 concentration in the primary coolant has not increased more than a factor of 3; and (2) the noble gas monitor shows that effluent activity has not increased more than a factor of 3.

<u>Clarification:</u> All samples shall be obtained within 24 hours of reaching the intended steady state power level, and analyzed within 48 hours of reaching the intended steady state power level.

<u>Applicability:</u> Unit 1 Ventilation Systems (VV-1, CV-1 and/or PV-1/2), or Unit 2 Ventilation Systems (VV-2, CV-2 and/or PV-1/2), as appropriate. Specifically, sample the ventilation release path(s) that show a factor of 3 increase on the noble gas effluent monitor. (3.1.16)(3.1.18)

- (c) Tritium grab samples shall be taken at least once per 24 hours (from the appropriate ventilation release path of the refueling canal area) when the containment refueling canal is flooded. Sampling may be terminated after completion of vessel defueling. Sampling shall resume upon commencement of vessel refueling.
  - Applicability (MODE 6): Unit 1 Ventilation System (VV-1 or CV-1), or Unit 2 Ventilation System (VV-2 or CV-2), that is aligned to the Reactor Containment Building atmosphere. In lieu of sampling the ventilation release path, samples may be obtained from the Reactor Containment Building atmosphere. (3.1.11)(3.1.19)
- (d) Part 1: Samples (continuous particulate & iodine) shall be changed at least once per 7 days and analyses shall be completed within 48 hours after changing, or after removal from sampler.

Applicability for Part 1: Unit 1 and Unit 2 Ventilation Systems (VV-1, CV-1, PV-1/2, VV-2, CV-2, DV-2, WV-2 & CB-2).

Part 2: Samples (continuous particulate & iodine) shall also be changed at least once per 24 hours for at least 7 days following each SHUTDOWN, STARTUP, or THERMAL POWER change exceeding 15% of RATED THERMAL POWER within a 1 hour period and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10. This requirement does not apply if: (1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the reactor coolant has not increased more than a factor of 3; and (2) the noble gas monitor shows that effluent activity has not increased more than a factor of 3.

<u>Clarification:</u> All samples shall be changed within 24 hours of reaching the intended steady state power level, and analyzed within 48 hours of reaching the intended steady state power level.

<u>Applicability for Part 2:</u> Unit 1 Ventilation Systems (VV-1, CV-1 and/or PV-1/2), or Unit 2 Ventilation Systems (VV-2, CV-2 and/or PV-1/2), as appropriate. Specifically, change out the continuous particulate, iodine samples for the ventilation release path(s) that show a factor of 3 increase on the noble gas effluent monitor. (3.1.16) (3.1.18)

| Beaver Valley Power Station               |                | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|----------------|------------------------------------------|--|
| Title:                                    | Unit: 1/2      | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6 | Page Number:<br>62 of 82                 |  |

## ATTACHMENT K Page 5 of 5

(e) Tritium grab samples shall be taken at least once per 7 days (from the appropriate ventilation release path of the spent fuel pool area) whenever spent fuel is in the spent fuel pool.

ODCM CONTROLS: GASEOUS EFFLUENT DOSE RATE

<u>Applicability:</u> Unit 1 Ventilation System (CV-1), or Unit 2 Ventilation System (CV-2) that is aligned to the Fuel Handling Building atmosphere. In lieu of sampling the ventilation release path, samples may be obtained from the Fuel Handling Building atmosphere. (3.1.11)(3.1.19)

(f) The average ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with ODCM CONTROLS 3.11.2.1, 3.11.2.2, and 3.11.2.3.

Clarification: The average ratio of the sample flow rate to the sampled stream flow rate can be determined, but it must not be used in dose and dose rate calculation. Specifically, use of this ratio would provide non-conservative dose calculations, and would compromise licensee response to NRC Unresolved Item 50-334/83-30-05. For information, a comprehensive three-year Radiation Monitor Particle Study was performed in response to the unresolved item's concern that the effluent monitors were not collecting representative samples per ANSI N13.1. The results of that study concluded that a correction factor (minimum CF of 2) must be applied to particulate sample volume calculations and subsequent dose and dose rate calculations. Specifically, the minimum CF of 2 must be utilized in-lieu of actual ratios of sample flow rate to the sampled stream flow rate. In summary, the minimum CF of 2 provides adequate compensation for any negative bias in particulate sample collection. (3.2.13)

Applicability: Unit 1 Ventilation Systems (VV-1, CV-1 & PV-1/2), and Unit 2 Ventilation Systems (VV-2 & CV-2).

- The principal gamma emitters for which the LLD specification will apply are exclusively the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 for gaseous emissions and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides, shall also be identified and reported. Nuclides which are below the LLD for the analyses should not be reported as being present at the LLD level for that nuclide. When unusual circumstances result in LLD's higher than required, the reasons shall be documented in the Annual Radioactive Effluent Release Report.
- (h) Only when this release path is in use.

Applicability: Unit 1 and Unit 2 Ventilation Systems (VV-1, CV-1, PV-1/2, VV-2, CV-2, DV-2, WV-2 & CB-2).

| Beaver Valley Power Station               |                | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|----------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2   | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6 | Page Number: 63 of 82                    |  |

# ATTACHMENT L Page 1 of 1 ODCM CONTROLS: DOSE- NOBLE GASES

**CONTROLS: DOSE-NOBLE GASES** 

- 3.11.2.2 In accordance with T.S. 5.5.2.e and T.S. 5.5.2.h,, the air dose from the reactor unit in unrestricted areas (see 1/2-ODC-2.02 Figure 5-1) due to noble gases released in gaseous effluents shall be limited to the following:
  - a. During any calendar quarter, to  $\leq 5$  mrad for gamma radiation and  $\leq 10$  mrad for beta radiation.
  - b. During any calendar year, to  $\leq 10$  mrad for gamma radiation and  $\leq 20$  mrad for beta radiation.

Applicability: At all times.

#### Action:

- a. With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission with in 30 days, pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1), a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions taken to reduce the releases and the proposed corrective actions to be taken to assure the subsequent releases will be within the above limits.
- b. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

4.11.2.2.1 <u>Dose Calculations</u>. Cumulative dose contributions shall be determined in accordance with 1/2-ODC-2.02 at least once every 31 days.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                      | Page Number:<br>64 of 82                 |

## ATTACHMENT M Page 1 of 1

ODCM CONTROLS: DOSE - RADIOIODINES AND PARTICULATES

CONTROLS: DOSE-RADIOIODINES, RADIOACTIVE MATERIAL IN PARTICULATE FORM, AND RADIONUCLIDES OTHER THAN NOBLE GASES

- In accordance with T.S. 5.5.2.e and T.S. 5.5.2.i, the dose to MEMBER(S) OF THE PUBLIC from radioiodines and radioactive materials in particular form (excluding C-14), and radionuclides (other than noble gases) with half-lives greater than eight days in gaseous effluents releases from the reactor unit (see 1/2-ODC-2.02 Figure 5-1) shall be limited to the following:
  - a. During any calendar quarter to  $\leq 7.5$  mrem to any organ, and
  - b. During any calendar year to  $\leq 15$  mrem to any organ.

Applicability: At all times.

#### Action:

- a. With the calculated dose from the release of radioiodines, radioactive materials in particulate form, (excluding C-14), and radionuclides (other than noble gases) with half-lives greater than eight days, in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1), a Special Report, which identifies the cause(s) for exceeding the limit and defines the corrective actions taken to reduce the releases and the proposed corrective actions to be taken to assure the subsequent releases will be within the above limits.
- b. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

4.11.2.3.1 <u>Dose Calculations</u>. Cumulative dose contributions shall be determined in accordance with 1/2-ODC-2.02 at least once every 31 days.

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number:<br>65 of 82                 |

## ATTACHMENT N Page 1 of 1

ODCM CONTROLS: GASEOUS RADWASTE TREATMENT SYSTEM

#### CONTROLS: GASEOUS RADWASTE TREATMENT SYSTEM

In accordance with T.S. 5.5.2.f, Item 6, the Gaseous Radwaste Treatment System and the Ventilation Exhaust Treatment System shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases from the reactor unit (see 1/2-ODC-2.02 Figure 5-1), when averaged over 31 days, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The appropriate portions of the Ventilation Exhaust Treatment System shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases from the reactor unit (see 1/2-ODC-2.02 Figure 5-1) when averaged over 31 days would exceed 0.3 mrem to any organ.

Applicability: At all times.

#### Action:

- a. With gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the Commission within 30 days, pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1), a Special Report which includes the following information.
  - 1. Identification of the inoperable equipment or subsystems and the reason for inoperability,
  - 2. Action(s) taken to restore the inoperable equipment to operational status, and
  - 3. Summary description of action(s) taken to prevent a recurrence.
- b. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

4.11.2.4.1 Doses due to gaseous releases from the site shall be projected at least once per 31 days, in accordance with 1/2-ODC-2.02.

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number:<br>66 of 82                 |

# ATTACHMENT O Page 1 of 1 ODCM CONTROLS: GAS STORAGE TANKS

#### CONTROLS: GAS STORAGE TANKS

- 3.11.2.5 In accordance with T.S. 5.5.8, the quantity of radioactivity contained in the following gas storage tanks(s) shall be limited to the noble gas values listed below (considered as Xe-133).
  - a. ≤52,000 Curies: Each BV-1 Waste Gas Decay Tank (1GW-TK-1A, or 1GW-TK-1B, or 1GW-TK-1C)
  - b. ≤19,000 Curies: Any connected group of BV-2 Gaseous Waste Storage Tanks (2GWS-TK25A thru 2GWS-TK25G)

#### APPLICABILITY: At all times.

#### **ACTION:**

- a. With the quantity of radioactive material in any gas storage tank exceeding the above limit, immediately suspend all additions of radioactive material to the tank and within 48 hours reduce the tank contents to within the limit, and
- b. Submit a Special Report in accordance with 10 CFR 50.4 (b)(1) within 30 days and include a schedule and a description of activities planned and/or taken to reduce the contents to within the specified limits.
- c. The provisions of ODCM Control 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

4.11.2.5.1 For BV-1 Waste Gas Decay Tanks: The quantity of radioactive material contained in each BV-1 Waste Gas Decay Tank shall be determined to be within the above limit at least once per 24 hours when radioactive materials are being added to the tank. Performance of this surveillance is required when the gross concentration of the primary coolant is greater than 100 uCi/ml.

For BV-2 Gaseous Waste Storage Tanks: The quantity of radioactive material contained in any connected group of BV-2 Gaseous Waste Storage Tanks shall be determined to be within the above limit at least once per 24 hours when radioactive materials are being added to the tanks.

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                      | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                    | Page Number:<br>67 of 82                 |

ATTACHMENT P
Page 1 of 1
ODCM CONTROLS: TOTAL DOSE

**CONTROLS: TOTAL DOSE** 

In accordance with T.S. 5.5.2.j, the annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to ≤ 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to ≤ 75 mrems.

Applicability: At all times.

#### Action:

- With the calculated doses from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of ODCM CONTROL 3.11.1.2a, 3.11.1.2b, 3.11.2.2a, 3.11.2.2b, 3.11.2.3a, or 3.11.2.3b, calculations shall be made including direct radiation contributions from the units (including outside storage tanks, etc.) to determine whether the above limits of ODCM CONTROL 3.11.4.1 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1), a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in 10 CFR 20.405(c), shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits, and if the release condition resulting in violation of 40 CFR Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete.
- b. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

- 4.11.4.1.1 Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with ODCM SURVEILLANCE REQUIREMENTS 4.11.1.2.1, 4.11.2.2.1, and 4.11.2.3.1.
- 4.11.4.1.2 Cumulative dose contributions from direct radiation from the units (including outside storage tanks, etc.) shall be determined in accordance with 1/2-ODC-2.04. This requirement is applicable only under conditions set forth in Action a. of ODCM CONTROL 3.11.4.1.

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|--------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>68 of 82                 |  |

# ATTACHMENT Q Page 1 of 9 ODCM CONTROLS: REMP-PROGRAM REQUIREMENTS

#### CONTROLS: RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

A program shall be provided to monitor the radiation and radionuclides in the environs of the plant. The program shall provide (1) representative measurements of radioactivity in the highest potential exposure pathways, and (2) verification of the accuracy of the effluent monitoring program and modeling of environmental exposure pathways. The program shall (1) be contained in the ODCM (2) conform to the guidance of the Appendix I to 10 CFR Part 50, and (3) include the following:

- 1. Monitoring, sampling, analysis, and reporting of radiation and radionuclides in the environment in accordance with the methodology and parameters in the ODCM,
- A Land Use Census to ensure that changes in the use of areas at and beyond the site boundary are identified and that modifications to the monitoring program are made if required by the results of the census, and
- 3. Participation in an Interlaboratory Comparison Program to ensure that independent checks on the precision and accuracy of the measurements of radioactive materials in the environmental sample matrices are performed as part of the quality assurance program for environmental monitoring.
- 3.12.1 The radiological environmental monitoring program shall be conducted as specified in ODCM Control 3.12.1, Table 3.12-1.

Applicability: At all times.

#### Action:

- a. With the radiological environmental monitoring program not being conducted as specified in ODCM Control 3.12.1, Table 3.12-1, prepare and submit to the Commission, in the Annual Radiological Environmental Report, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence. Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other legitimate reasons. If specimens are unobtainable due to sampling equipment malfunction, every effort shall be made to complete corrective action prior to the end of the next sampling period.
- b. With the level of radioactivity in an environmental sampling medium at one or more of the locations specified in ODCM Control 3.12.1, Table 3.12.1 exceeding the limits of ODCM Control 3.12.1, Table 3.12-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days from the end of affected calendar quarter a Special Report pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1) which includes an evaluation of any release conditions, environmental factors or other aspects which caused the limits of ODCM Control 3.12.1, Table 3.12-2 to be exceeded. This report is not required if the measured level of radioactive was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Report.

When more than one of the radionuclides in ODCM Control 3.12.1, Table 3.12-2 are detected in the sampling medium, this report shall be submitted if:

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number:<br>69 of 82                 |

### ATTACHMENT Q

Page 2 of 9

ODCM CONTROLS: REMP-PROGRAM REQUIREMENTS

Concentration (1) Concentration (2)

Limit Level (1) + Limit Level (2) + ...  $\ge 1.0$ 

- c. With milk or fresh leafy vegetable samples unavailable from the required number of locations selected in accordance with ODCM CONTROL 3.12.2 and listed in the ODCM, obtain replacement samples. The locations from which samples were unavailable may then be deleted from those required by ODCM Control 3.12.1, Table 3.12-1 and the ODCM provided the locations from which the replacement samples were obtained are added to the environmental monitoring program as replacement locations, if available.
- d. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### **SURVEILLANCE REQUIREMENTS**

4.12.1.1 The radiological environmental monitoring samples shall be collected pursuant to ODCM Control 3.12.1, Table 3.12-1 from the locations given in the ODCM and shall be analyzed pursuant to be requirements of ODCM Control 3.12.1, Tables 3.12-1 and 4.12-1.

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number: 70 of 82                    |

### ATTACHMENT Q

Page 3 of 9
ODCM CONTROLS: REMP-PROGRAM REQUIREMENTS

#### **TABLE 3.12-1**

#### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

| EXPOSURE<br>PATHWAY AND/OR<br>SAMPLE             | NUMBER OF<br>SAMPLES AND<br>LOCATIONS                                                                                                                                                                                     | SAMPLING AND<br>COLLECTION<br>FREQUENCY                                 | TYPE AND FREQUENCY <sup>(a)</sup><br>OF ANALYSIS                                                                                                                                                 |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AIRBORNE     a. Radioiodine     And Particulates | 5 locations  1. One sample from a control location 10-20 miles distant and in the least prevalent wind direction  2. One sample from vicinity of community having the highest calculated annual average ground level D/Q. | Continuous operation of sampler with sample collection at least weekly. | Each radioiodine canister.  Analyze for I-131;  Particulate sampler.  Analyze for gross beta weekly  (b);  Perform gamma isotopic analysis on composite (by location) sample at least quarterly. |
| 2. DIRECT<br>RADIATION                           | 40 locations  ≥ 2 TLDs or a pressurized ion chamber at each location.                                                                                                                                                     | Continuous<br>measurement with<br>collection at least<br>quarterly.     | Gamma dose, quarterly                                                                                                                                                                            |

<sup>(</sup>a) Analysis frequency same as sampling frequency unless otherwise specified.

<sup>(</sup>b) Particulate samples are not counted for ≥ 24 hours after filter change. Perform gamma isotopic analysis on each sample when gross beta is >10 times the yearly mean of control samples.

<sup>\*\*</sup>Sample locations are given on figures and tables in 1/2-ODC-2.03.

| Beaver Valley Power Station               |                | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|----------------|------------------------------------------|--|
| Title:                                    | Unit: 1/2      | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6 | Page Number: 71 of 82                    |  |

# ATTACHMENT Q Page 4 of 9 ODCM CONTROLS: REMP-PROGRAM REQUIREMENTS

TABLE 3.12-1 (continued)

#### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

| EXPOSURE<br>PATHWAY AND/OR<br>SAMPLE | NUMBER OF<br>SAMPLES AND<br>LOCATIONS** | SAMPLING AND<br>COLLECTION<br>FREQUENCY                          | TYPE AND FREQUENCY <sup>(a)</sup> OF ANALYSIS                                                                |
|--------------------------------------|-----------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 3. WATERBORNE<br>a. Surface          | 2 locations.  1. One sample upstream.   | Composite* sample collected over a period not to exceed 1 month. | Gamma isotopic analysis of composite sample by location monthly,                                             |
|                                      | 2. One sample downstream.               |                                                                  | Tritium analysis of composite sample at least quarterly.                                                     |
| b. Drinking                          | 2 locations.                            | Composite* sample collected over a period not to exceed 2 weeks. | I-131 analysis of each composite sample;  Gamma isotopic analysis of composite sample (by location) monthly; |
|                                      |                                         |                                                                  | Tritium analysis of composite sample quarterly.                                                              |
| c. Groundwater                       | N/A - No wells in lower plant and river | er elevations between                                            |                                                                                                              |
| d. Sediment From<br>Shoreline        | 1 location.                             | Semi-annually.                                                   | Gamma isotopic analysis semi-annually.                                                                       |

<sup>(</sup>a) Analysis frequency same as sampling frequency unless otherwise specified.

<sup>\*</sup>Composite samples shall be collected by collecting an aliquot at intervals not exceeding two hours. For the upstream surface water location, a weekly grab sample, composited each month based on river flow at time of sampling, is also acceptable.

<sup>\*\*</sup>Sample locations are given on figures and tables in 1/2-ODC-2.03.

| Beaver Valley Power Station               | Procedure Number:<br>1/2-ODC-3.03 |                                          |
|-------------------------------------------|-----------------------------------|------------------------------------------|
| Title:                                    | Unit: 1/2                         | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:                         | Page Number: 72 of 82                    |

### ATTACHMENT Q Page 5 of 9

ODCM CONTROLS: REMP-PROGRAM REQUIREMENTS

### TABLE 3.12-1 (continued)

### RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

| EXPOSURE                                  | NUMBER OF                              | SAMPLING AND                                   | TYPE AND FREQUENCY(a)                                         |
|-------------------------------------------|----------------------------------------|------------------------------------------------|---------------------------------------------------------------|
| PATHWAY AND/OR                            | SAMPLES AND                            | COLLECTION                                     | OF ANALYSIS                                                   |
| SAMPLE_                                   | LOCATIONS**                            | FREQUENCY                                      | •                                                             |
| 4. INGESTION                              | ·                                      |                                                |                                                               |
| a. Milk                                   | 4 locations. <sup>(b)</sup>            | Atleast bi-weekly when animals are on pasture; | Gamma isotopic and I-131 analysis of each sample.             |
| ·                                         | Three samples     selected on basis of | at least monthly at other times.               | _                                                             |
| •                                         | highest potential thyroid dose using   |                                                |                                                               |
|                                           | milch census data.                     |                                                |                                                               |
|                                           | 2. One local large dairy.              |                                                |                                                               |
| b. Fish                                   | 2 locations.                           | Semi-annual. One sample of available species.  | Gamma isotopic analysis on edible portions.                   |
| c. Food Products<br>(Leafy<br>Vegetables) | 4 locations.  1. Three locations       | Annually at time of harvest.                   | Gamma isotopic analysis and I-131 analysis on edible portion. |
| <b>3</b>                                  | within 5 miles.                        |                                                |                                                               |
|                                           | 2. One control location.               | • .                                            |                                                               |

<sup>(</sup>a) Analysis frequency same as sampling frequency unless otherwise specified.

<sup>(</sup>b) Other dairies may be included as control station or for historical continuity. These would not be modified on basis of milch animal census.

<sup>\*\*</sup>Sample locations are given on figures and tables in 1/2-ODC-2.03.

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |  |
|-------------------------------------------|--------------|------------------------------------------|--|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number:<br>73 of 82                 |  |  |

# ATTACHMENT Q Page 6 of 9 ODCM CONTROLS: REMP-PROGRAM REQUIREMENTS

### **TABLE 3.12-2**

### REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS

#### **IN ENVIRONMENTAL SAMPLES**

|           |                     | R                                            | EPORTING LEVI         | ELS            |                                           |
|-----------|---------------------|----------------------------------------------|-----------------------|----------------|-------------------------------------------|
| ANALYSIS  | WATER<br>(pCi/l)    | AIRBORNE<br>PARTICULATE OR<br>GASES (pCi/m³) | FISH<br>(pCi/kg, WET) | MILK<br>(pCi/l | BROAD LEAF<br>VEGETABLES<br>(pCi/kg, WET) |
| H-3       | 2E+4 <sup>(a)</sup> |                                              |                       |                | ,                                         |
| Mn-54     | 1E+3                |                                              | 3E+4                  | ,              |                                           |
| Fe-59     | 4E+2                |                                              | 1E+4                  |                |                                           |
| Co-58     | 1E+3                | •                                            | 3E+4                  |                |                                           |
| Co-60     | 3E+2                |                                              | 1E+4                  |                | . *                                       |
| Zn-65     | 3E+2                |                                              | 2E+4                  | • .            |                                           |
| Zr/Nb-95  | 4E+2                |                                              |                       |                |                                           |
| I-131     | 2 <sup>(b)</sup>    | 0.9                                          |                       | 3              | 1E+2                                      |
| Cs-134    | 30                  | 10                                           | 1E+3                  | - 60           | 1E+3                                      |
| Cs-137    | 50                  | 20                                           | 2E+3                  | 70             | 2E+3                                      |
| Ba/La-140 | 2E+2                |                                              |                       | 3E+2           |                                           |

<sup>(</sup>a) For drinking water samples. This is a 40 CFR Part 141 value. If no drinking water pathway exists, a value of 3E+4 pCi/l may be used.

<sup>(</sup>b) If no drinking water pathway exists, a value of 20 pCi/l may be used.

| Beaver Valley Power Station               |           | Procedure Number: 1/2-ODC-3.03           |  |  |
|-------------------------------------------|-----------|------------------------------------------|--|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number:<br>74 of 82                 |  |  |

# ATTACHMENT Q Page 7 of 9 ODCM CONTROLS: REMP-PROGRAM REQUIREMENTS

### **TABLE 4.12-1**

### MAXIMUM VALUES FOR THE LOWER LIMITS OF DETECTION (LLD)(a)(e)

| ANALYSIS   | WATER<br>(pCi/l)    | AIRBORNE<br>PARTICULATE<br>OR GAS<br>(pCi/m³) | FISH<br>(pCi/kg, WET) | MILK<br>(pCi/l) | FOOD<br>PRODUCTS<br>(pCi/kg, WET) | SEDIMENT<br>(pCi/kg, DRY) |
|------------|---------------------|-----------------------------------------------|-----------------------|-----------------|-----------------------------------|---------------------------|
| Gross Beta | 4                   | 1E-2                                          |                       |                 |                                   |                           |
| H-3        | 2000 <sup>(d)</sup> |                                               |                       |                 |                                   |                           |
| Mn-54      | 15                  |                                               | 130                   |                 |                                   |                           |
| Fe-59      | 30                  |                                               | 260                   |                 |                                   |                           |
| Co-58,60   | 15                  |                                               | 130                   |                 |                                   |                           |
| Zn-65      | 30                  |                                               | 260                   |                 | . ;                               |                           |
| Zr-95      | 30 <sup>(c)</sup>   |                                               |                       |                 |                                   |                           |
| Nb-95      | 15 <sup>(c)</sup>   |                                               | , :                   |                 | ÷                                 |                           |
| I-131      | 1 <sup>(b)</sup>    | : 7E-2                                        |                       | 1               | 60                                | ·                         |
| Cs-134     | 15                  | 5E-2                                          | 130                   | 15              | 60                                | 150                       |
| Cs-137     | 18                  | 6E-2                                          | 150                   | 18              | 80                                | 180                       |
| Ba-140     | 60 <sup>(c)</sup>   |                                               |                       | 60              |                                   |                           |
| La-140     | 15 <sup>(c)</sup>   |                                               |                       | 15              |                                   |                           |

| Beaver Valley Power Station               | i i       | Procedure Number: 1/2-ODC-3.03           |  |  |
|-------------------------------------------|-----------|------------------------------------------|--|--|
| Title:                                    | Unit: 1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision: | Page Number: 75 of 82                    |  |  |

# ATTACHMENT Q Page 8 of 9 ODCM CONTROLS: REMP-PROGRAM REQUIREMENTS

#### TABLE 4.12-1 (continued)

#### **TABLE NOTATION**

(a) The LLD is the smallest concentration of radioactive material in a sample that will be detected with 95% probability with 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

LLD = 
$$\frac{4.66 \text{ Sb}}{(E)(V)(2.22)(Y) \exp(-\lambda \Delta T)}$$

where:

LLD is the lower limit of detection as defined above (as pCi per unit mass or volume);

S<sub>b</sub> is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute);

E is the counting efficiency (as counts per transformation);

V is the sample size (in units of mass or volume);

2.22 is the number of transformations per minute per picocurie;

Y is the fractional radiochemical yield (when applicable);

 $\lambda$  is the radioactive decay constant for the particular radionuclide;

 $\Delta T$  is the elapsed time between sample collection (or end of the sample collection period) and time of counting (for environmental samples, not plant effluent samples).

The value of  $S_b$  used in the calculation of the LLD for a detection system shall be based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted variance. In calculating the LLD for a radionuclide determined by gamma-ray spectrometry, the background shall include the typical contributions of other radionuclides normally present in the samples (e.g., potassium-40 in milk samples). Typical values of E, V, Y and  $\Delta T$  should be used in the calculations.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |  |
|-------------------------------------------|--------------------------------|------------------------------------------|--|
| Title:                                    | Unit: 1/2                      | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                 | Page Number: 76 of 82                    |  |

ATTACHMENT Q
Page 9 of 9
ODCM CONTROLS: REMP-PROGRAM REQUIREMENTS

TABLE 4.12-1 (continued)

#### **TABLE NOTATION**

The LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as <u>a posteriori</u> (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLD's will be achieved under routine conditions. Occasionally, background fluctuations, unavoidable small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLD's unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Report.

- (b) If no drinking water pathway exists, a value of 15 pCi/l may be used.
- (c) If parent and daughter are totaled, the most restrictive LLD should be applied.
- (d) If no drinking water pathway exists, a value of 3000 pCi/l may be used.
- (e) This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides, shall be identified in the Annual Radiological Environmental Report.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |  |
|-------------------------------------------|--------------------------------|------------------------------------------|--|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                 | Page Number:<br>77 of 82                 |  |

# ATTACHMENT R Page 1 of 1 ODCM CONTROLS: REMP - LAND USE CENSUS

#### CONTROLS: RADIOLOGICAL ENVIRONMENTAL MONITORING - LAND USE CENSUS

A land use census shall be conducted and shall identify the location of the nearest milk animal, the nearest residence, and the nearest garden of greater than 500 square feet producing broad leaf vegetation in each of the 16 meteorological sectors within a distance of five miles. For elevated releases as defined in Regulatory Guide 1.111, (Rev. 1), July, 1977, the land use census shall also identify the locations of all milk animals and all gardens of greater than 500 square feet producing fresh leafy vegetables in each of the 16 meteorological sectors within a distance of three miles.

Applicability: At all times.

#### Action:

- a. With a land use census identifying a location(s) which yields a calculated dose or dose commitment greater than the values currently being calculated in ODCM SURVEILLANCE REQUIREMENT 4.11.2.3.1, prepare and submit to the Commission within 30 days, pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1), a Special Report, which identifies the new location(s).
- b. With a land use census identifying a milk animal location(s) which yields a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with ODCM CONTROL 3.12.1 prepare and submit to the Commission within 30 days, pursuant to 10 CFR 20.2203(a)(2)(v) and 10 CFR 50.4(b)(1), a Special Report, which identifies the new location. The new location shall be added to the radiological environmental monitoring program within 30 days, if possible. The milk sampling program shall include samples from the three active milk animal locations, having the highest calculated dose or dose commitment. Any replaced location may be deleted from this monitoring program after October 31 of the year in which this land use census was conducted
- c. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

- 4.12.2.1 The land use census shall be conducted at least once per 12 months between the dates of June 1 and October 1 using that information which will provide the best results, such as by a door-to-door survey\*, aerial survey, or by consulting local agriculture authorities.
- \* Confirmation by telephone is equivalent to door-to-door.

| Beaver Valley Power Station               |              | Procedure Number: 1/2-ODC-3.03           |  |  |
|-------------------------------------------|--------------|------------------------------------------|--|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number: 78 of 82                    |  |  |

## ATTACHMENT S Page 1 of 1

ODCM CONTROLS: REMP - INTERLABORATORY COMPARISON PROGRAM

## CONTROLS: RADIOLOGICAL ENVIRONMENTAL MONITORING - INTERLABORATORY COMPARISON PROGRAM

3.12.3 Analyses shall be performed on radioactive materials supplied as part of an Interlaboratory Comparison Program.

#### Applicability:

At all times.

#### Action:

- a. With analyses not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Report.
- b. The provisions of ODCM CONTROL 3.0.3 are not applicable.

#### SURVEILLANCE REQUIREMENTS

4.12.3.1 The results of analyses performed as part of the above required Interlaboratory Comparison Program shall be included in the Annual Radiological Environmental Report.

| $\sim$ |
|--------|
| ~      |
| 0      |
| Q      |
| ૂત     |
| 1      |
| J      |
| 0      |
|        |

| Beaver Valley Power Station               |              | Procedure Number:<br>1/2-ODC-3.03        |  |  |
|-------------------------------------------|--------------|------------------------------------------|--|--|
| Title:                                    | Unit:<br>1/2 | Level Of Use:<br>General Skill Reference |  |  |
| ODCM: Controls for RETS and REMP Programs | Revision:    | Page Number: 79 of 82                    |  |  |

# ATTACHMENT T Page 1 of 2 ODCM CONTROLS: ANNUAL REMP REPORT

CONTROLS: ANNUAL REMP REPORT

### ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT (3)

6.9.2 In accordance with T.S. 5.6.1, the Radiological Environmental Operating Report covering

the operation of the unit during the previous calendar year shall be submitted before May 15 of each year. The report shall include summaries, interpretations, and analyses of trends of the results of the Radiological Environmental Monitoring Program for the reporting period. The material provided shall be consistent with the objectives outlined in the Offsite Dose Calculation Manual (ODCM) and in 10 CFR Part 50 Appendix I Sections IV.B.2, IV.B.3, and IV.C.

The annual radiological environmental reports shall include:

- Summaries, interpretations, and statistical evaluation of the results of the radiological
  environmental surveillance activities for the report period, including a comparison
  with pre-operational studies, operational controls (as appropriate), and previous
  environmental surveillance reports, and an assessment of the observed impacts of the
  plant operation on the environment.
- The results of the land use censuses required by ODCM CONTROL 3.12.2.
- If harmful effects or evidence of irreversible damage are detected by the monitoring, the report shall provide an analysis of the problem and a planned course of action to alleviate the problem.
- Summarized and tabulated results in the format of ODCM Control 6.9.2, Table 6.9-1 of all radiological environmental samples taken during the report period. In the event that some results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.
- A summary description of the radiological environmental monitoring program.
- A map of all sampling locations keyed to a table giving distances and directions from one reactor.
- The results of licensee participation in the Interlaboratory Comparison Program required by ODCM CONTROL 3.12.3.
- (3) A single submittal may be made for a multiple unit site. The submittal should combine those sections that are common to all units at the station.

|                                                          | <u>ENVIR</u> (<br>Name Of F                          |                                              |                                                                 | E E:6.9-1<br>MONITORING PRO                                   |                                            | <b>MMARY</b>                                                    |                                        | 0                             | ODCM: Controls for RETS |                                                 | Beaver V             |
|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|----------------------------------------|-------------------------------|-------------------------|-------------------------------------------------|----------------------|
|                                                          | Location O                                           | of Facility(                                 | County, State)                                                  | Repor                                                         | ting Period                                |                                                                 |                                        | рсм со                        |                         | ally) i                                         | allev P              |
| MEDIUM OF<br>PATHWAY SAMPLED<br>(UNIT OF<br>MEASUREMENT) | TYPE AND<br>TOTAL NUMBER<br>OF ANALYSES<br>PERFORMED | LOWER LIMITS OF DETECTION <sup>a</sup> (LLD) | ALL INDICATOR LOCATIONS MEAN(F) <sup>b</sup> RANGE <sup>b</sup> | LOCATIONS WITH<br>ANNUAL ME<br>NAME DISTANCE<br>AND DIRECTION | MEAN(F) <sup>b</sup><br>RANGE <sup>b</sup> | CONTROL<br>LOCATIONS<br>MEAN(F) <sup>b</sup> RANGE <sup>b</sup> | NONROUTINE<br>REPORTED<br>MEASUREMENTS | ATTA<br>Pa<br>ODCM CONTROLS:  | and REMP Programs       | OWCI                                            | Valley Power Station |
|                                                          |                                                      |                                              |                                                                 |                                                               |                                            |                                                                 |                                        | CHMENT<br>ge 2 of 2<br>ANNUAL | 18                      | ιαιινιι                                         | tation               |
|                                                          |                                                      |                                              |                                                                 |                                                               |                                            |                                                                 |                                        | T<br>REMP RE                  |                         |                                                 |                      |
|                                                          |                                                      | ·                                            |                                                                 | 14.5                                                          |                                            |                                                                 |                                        | PORT                          | Revision:               | Unit:                                           | Lincedure M          |
| Nominal Lower limi Mean and range base                   | ts of Detection (LLD)<br>ed upon detectable mes      | as defined in Table asurement only. Fa       | Notation of Table action of detectable                          | 4.12-1 of ODCM CONTR<br>measurement at specified le           | OL 3.11.1.1.<br>ocations is indi           | cated in parenthesis (f).                                       |                                        |                               | Page Number: 80 of 82   | 1/2-ODC-3.03  Level Of Use:  General Skill Defe | Imoer:               |

| Beaver Valley Power Station               | l '         | Procedure Number: 1/2-ODC-3.03           |  |
|-------------------------------------------|-------------|------------------------------------------|--|
| Title:                                    | 1           | Level Of Use:<br>General Skill Reference |  |
| ODCM: Controls for RETS and REMP Programs | Revision: 1 | Page Number:<br>81 of 82                 |  |

# Page 1 of 2 ODCM CONTROLS: ANNUAL RETS REPORTS

CONTROLS: RETS REPORT

RADIOACTIVE EFFLUENT RELEASE REPORT (4)

6.9.3 In accordance with T.S. 5.6.2, the Radioactive Effluent Release Report (RERR) covering the operation of the unit during the previous year shall be submitted prior to May 1 of each year in accordance with 10 CFR 50.36a. The report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit. The material provided shall be consistent with the objectives outlined in the ODCM and Process Control Program (PCP) and in conformance with 10 CFR 50.36a and 10 CFR Part 50, Appendix I Section IV.B.1.

This report is prepared and submitted in accordance with 1/2-ENV-01.05, and at a minimum, shall contain the following:

- A summary of the quantities of radioactive liquid and gaseous effluent and solid
  waste released from the unit as outlined in Regulatory Guide 1.21, Revision 1, June,
  1974, "Measuring, Evaluating, And Reporting Radioactivity In Solid Wastes And
  Releases Of Radioactive Materials In Liquid And Gaseous Effluents From LightWater-Cooled Nuclear Power Plants," with data summarized on a quarterly basis
  following the format of Appendix B thereof.
- An assessment of radiation doses from the radioactive liquid and gaseous effluents
  released from the unit during each calendar quarter as outlined in Regulatory Guide
  1.21. In addition, the unrestricted area boundary maximum noble gas gamma air and
  beta air doses shall be evaluated. The assessment of radiation doses shall be
  performed in accordance with this manual.
- Any licensee initiated changes to the ODCM made during the 12 month period.
- Any radioactive liquid or gaseous effluent monitoring instrumentation channels not returned to OPERABLE status within 30 days, and why the inoperability was not corrected in a timely manner. This applies to the liquid or gaseous effluent monitoring instrumentation channels required to be OPERABLE per ODCM CONTROLS 3.3.3.9 and 3.3.3.10.
- Any ODCM SURVEILLANCE REQUIREMENT deficiencies. This applies to monitoring, sampling and analysis and dose projection.
- The reasons when unusual circumstances result in LLD's higher than required by ODCM CONTROL 3.11.1.1, Table 4.11-1 and ODCM CONTROL 3.11.2.1, Table 4.11-2.
- (4) A single submittal may be made for a multiple unit site. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit.

| Beaver Valley Power Station               | Procedure Number: 1/2-ODC-3.03 |                                          |
|-------------------------------------------|--------------------------------|------------------------------------------|
| Title:                                    | Unit:<br>1/2                   | Level Of Use:<br>General Skill Reference |
| ODCM: Controls for RETS and REMP Programs | Revision:<br>6                 | Page Number:<br>82 of 82                 |

# ATTACHMENT U Page 2 of 2 ODCM CONTROLS: ANNUAL RETS REPORTS

CONTROLS: ANNUAL RETS REPORT (continued)

- The following information for each type of solid waste shipped offsite during the report period:
  - container volume
  - total curie quantity (determined by measurement or estimate)
  - principal radionuclides (determined by measurement or estimate)
  - type of waste (e.g., spent resin, compacted dry waste, evaporator bottoms)
  - type of container (e.g., LSA, Type A, Type B, Large Quantity)
  - solidification agent (e.g., cement)
  - classification and other requirements specified by 10 CFR Part 61
- An annual summary of hourly meteorological data collected over the previous year.
   This annual summary may be either in the form of an hour-by-hour listing of wind speed, wind direction, atmospheric stability, and precipitation (if measured) on magnetic tape, or in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability.
- An assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year.
- An assessment of the radiation doses from radioactive effluents to MEMBER(S) OF THE PUBLIC due to their activities inside the site boundary see 1/2-ODC-2.01 Figure 5.1 and 1/2-ODC-2.02 Figure 5-1 during the report period. All assumptions used in making these assessments (e.g., specific activity, exposure time, and location) shall be included in these reports. The assessment of radiation doses shall be performed in accordance with 1/2-ODC-2.04.
- An assessment of radiation doses to the likely most exposed real individual from reactor releases for the previous calendar year to show conformance with 40 CFR 190, Environmental Radiation Protection Standards For Nuclear Power Operation. Acceptable methods for calculating the dose contribution from liquid and gaseous effluents are given in Regulatory Guide 1.109, Revision 1. The SKYSHINE Code (available from Radiation Shielding Information Center, (ORNL)) is acceptable for calculating the dose contribution from direct radiation due to N-16.
- If quantities of radioactive materials released during the reporting period are significantly above design objectives, the report must cover this specifically.