	ENTERGY NUCLE	AR MANAG NN-DC-149	EMENT MANUAL
VEN	NDOR DOCUMENT REV	IEW STATUS	
			□ VY
Document No.: IP-RPT-06-AMM20	Rev. No0		
Document Title: IP2 SBO and App	pendix R Diesel Genera	tor System	· · · · · · · · · · · · · · · · · · ·
ER No.:IP2-06-32959	Purchase Order No.		
 1. ACCEPTED 2. ACCEPTED AS NOTED RES 3. ACCEPTED AS NOTED RES 4. NOT ACCEPTED 5. FOR INFORMATION Acceptance does not constitute approvideveloped or selected by the supplier	UBMITTAL NOT REQUI UBMITTAL REQUIRED val of design details, calo and does not relieve the	RED ulations, analy supplier from f	rses, test methods, or materials full compliance with contractual
IPEC License Renewal Report Review	ver:		
Responsible Engineer Jim Tuohy/	J. Much	y 4	1-19-07 Date

ATTACHMENT 9.2

VENDOR DOCUMENT COMMENT RESOLUTION SHEET

Document No: IP-RPT-06-AMM20 Rev. No: 0 ER No: IP2-06-32959

Document Title: IP2 SBO and Appendix R Diesel Generator System

Reviewer: <u>Michael J. Vasely</u> Print Name/ Signature

Comment No:	Page No:	Section No:	Comment:	Disposition I/O*	Resolution:
			No Comments		

*I = Included, O = Omitted

Note: The reviewers' signature at the top of this page indicates concurrence with the resolution of their comments on the attached IPEC License Renewal Project Comment and Resolution Form.

<u>4-19-07</u> Date . Huotay RE: Jim Tuohy / Print/Náme/ Signature

- THIS IS NOT A QUALITY RECORD -

ATTACHMENT 9.2

VENDOR DOCUMENT COMMENT RESOLUTION

Document No: IP-RPT-06-AMM20 Rev. No: 0 ER No: IP2-06-32959

Document Title: IP2 SBO and Appendix R Diesel Generator System

Reviewer: John c WHITNEY John C Whitey. 4/12/07 Ext. 6885 Print Name/ Signature Date

Comment	Page	Section	Comment:	Disposition	Resolution:
NO:	INO:	INO:	1	1/0"	
			NO COMMENTS.		

*I = Included, O = Omitted

Note: The reviewers' signature at the top of this page indicates concurrence with the resolution of their comments on the attached IPEC License Renewal Project Comment and Resolution Form.

RE: Jim Tuohy / Print Name/ Signature / Date

- THIS IS NOT A QUALITY RECORD -

ATTACHMENT 9.2

Document	No IP-R	PT-06-AM	M20 Rev. No: 0 FB No:	IP2-	06-32959	
Document	Title:	IP2 S	BO and Appendix R Diesel Ge	enerat	or System	
	Ful	zion t	1 Antoing. M			7793
Reviewer:	<u>Print</u>	Name/ Sic	nature	Da	Ext ate	
Comment No:	Page No:	Section No:	Comment:		Disposition I/O*	Resolution:
/	All		Contingent on Appro	val		
<i>*</i>			JER-04-2-095 R	ev/		
2	No	oti	le comments.			
			·			
		<u> </u>				
*I = Includ	ed, O = Or	nitted				

VENDOR DOCUMENT COMMENT RESOLUTION

Note: The reviewers' signature at the top of this page indicates concurrence with the resolution of their comments on the attached IPEC License Renewal Project Comment and Resolution Form.

<u>4-19-07</u> Date uchy RE: Jim Tuohy / Print Name/ Signature

- THIS IS NOT A QUALITY RECORD -

Engineering Report No. <u>IP-RPT-06-AMM20</u> Rev. <u>0</u> Page 1 of 41
Entergy ENTERGY NUCLEAR Engineering Report Cover Sheet
Engineering Report Title: Aging Management Review of the IP2 SBO and Appendix R Diesel Generator System
Engineering Report Type:
New Revision Cancelled Superseded
Applicable Site(s)
IP1 IP2 IP3 JAF PNPS VY WPO ANO1 ANO2 ECH GGNS RBS WF3
DRN No. 🖾 N/A: 🗌
Report Origin: Entergy Vendor Vendor Document No.:
Quality-Related: Yes No
Prepared by: W. J. Russell Responsible Engineer (Print Name/Sign) Date: 03/09/07
Design Verified/ <u>N/A</u> Date: Design Verifier (if required) (Print Name/Sign)
Reviewed by: <u>R.S. Smith</u> Randall S. Smith Date: 3/9/07 Reviewer (Print Name/Sign)
Reviewed by*: Date:
ANII (if required) (Print Name/Sign) Approved by: <u>Michael Stroup</u> / <u>Hickee</u> / <u>Stroup</u> Date: <u>3/9/200</u> 7 Supervisor (Print Name/Sign)

*: For ASME Section XI Code Program plans per ENN-DC-120, if required

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 2 of 41

REVISION DESCRIPTION SHEET

Revision Number	Description	Pages and/or Sections Revised
0	Initial Draft	All new in accordance with ER No. 04-2-095 Revision 1

IPEC License Renewal Project

Aging Management Review of the IP2 SBO and Appendix R Diesel Generator System

TABLE OF CONTENTS

1.0 Introduction	4
1.1 Purpose	4
1.2 System Description	4
1.3 System and Component Intended Functions	4
2.0 Screening	6
3.0 Aging Effects Requiring Management	7
3.1 Internal Aging Effects Applicable to the ARDG System	9
3.1.1 Carbon Steel Internal Surfaces Exposed to Condensation	10
3.1.2 Carbon Steel Internal Surfaces Exposed to Air-Indoor	
3.1.3 Carbon Steel Internal Surfaces Exposed to Treated Water	
3.1.4 Carbon Steel Internal Surfaces Exposed to Exhaust Gas	
3.1.5 Carbon Steel Internal Surfaces Exposed to Lube Oil	
3.1.6 Stainless Steel Internal Surfaces Exposed to Exhaust Gas	
3.1.7 Copper Alloy Internal Surfaces Exposed to Treated Water	
3.1.8 Glass Internal Surfaces	
3.2 IP2 ARDG Jacket Water and Aftercooler Heat Exchangers Aging E	ffects14
3.3 IP2 ARDG Lube Oil Cooler Heat Exchanger Aging Effects	
3.4 Turbocharger Aftercooler Aging Effects	
3.5 External Aging Effects Applicable to ARDG System Components ar	nd Bolting20
3.5.1 Air – Indoor External Environment	
3.5.2 Air – Outdoor External Environment	
3.6 Operating Experience	
4.0 Demonstration That Aging Effects Will Be Managed	23
4.1 Bolting Integrity Program	
4.2 External Surfaces Monitoring Program	
4.3 Heat Exchanger Monitoring Program	
4.4 Oil Analysis Program	
4.5 Periodic Surveillance and Preventive Maintenance Program	
4.6 Selective Leaching Program	
4.7 Water Chemistry Control – Closed Cooling Water Program	
4.8 Time-Limited Aging Analyses	
5.0 Summary and Conclusions	
6.0 Reterences	
Attachments	
Attachment 1 Components Subject to AMR	
Attachment 2 Aging Management Review Results	

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 4 of 41

1.0 Introduction

1.1 Purpose

This report is part of the aging management review (AMR) of the integrated plant assessment (IPA) performed to extend the operating licenses of Indian Point Energy Center (IPEC), Units 2 and 3. This report demonstrates the effects of aging on IPEC Unit 2 SBO and Appendix R Diesel Generator (ARDG) system passive mechanical components will be adequately managed so that the intended functions will be maintained consistent with the current licensing basis as required by 10 CFR 54.21(a)(3). For additional information on the license renewal project and associated documentation, refer to the License Renewal Project Plan.

The purpose of this report is to demonstrate that aging effects for passive mechanical components will be adequately managed for the period of extended operation associated with license renewal. The approach for demonstrating management of aging effects is to first identify the components that are subject to aging management review in Section 2.0. The next step is to define the aging effects requiring management for the system components in Section 3.0. Section 4.0 then evaluates if existing programs and commitments adequately manage those effects.

Applicable aging effects are determined using EPRI reports 1010639 Non-Class 1 Mechanical Implementation Guideline and Mechanical Tools and 1002950 Aging Effects for Structures and Structural Components. The EPRI reports provide the bases for identification of aging effects based on specific materials and environments and document confirmation of the validity of the aging effects through review of industry experience. License renewal guideline IPEC-LRPG-04, Mechanical System Screening and Aging Management Reviews, identifies aging effects from the EPRI reports that are potentially applicable to IPEC. This aging management review report (AMRR), in conjunction with IPEC-LRPG-04 and the EPRI reports, documents the identification and evaluation of aging effects requiring management for mechanical components in the ARDG systems. (Ref. 1, 2, 3)

1.2 System Description

As described in ER Response No. 04-2-095, Rev. 1, the IP2 ARDG system consists of a single diesel generator set, Cummins Power Generation Model 2700DQLA. The generator set is located in the IP1 turbine generator building at elevation 33'-0", under a section of the IP1 turbine pedestal. (Ref. 18, 19)

The system is normally in standby and must be started manually.

For additional description of the system and its components, see the ER Response No.04-2-095. (Ref. 18)

1.3 System and Component Intended Functions

As described in IPEC Report IP-RPT-06-LRD01, System and Structure Scoping Results, the ARDG system performs the following intended functions for 10 CFR 54.4(a)(1). **(Ref. 6)**

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Die	sel Revision 0
Generator System	Page 5 of 41

• The SBO and Appendix R diesel generator for IP2 (ARDG) has no intended function for 10 CFR 54.4(a)(1).

The ARDG system has the following intended functions for 10 CFR 54.4(a)(2). (Ref. 6)

• The SBO and Appendix R diesel generator for IP2 (ARDG) has no intended functions for 10 CFR 54.4(a)(2).

The ARDG system performs the following intended functions for 10 CFR 54.4(a)(3). (Ref. 6)

• Provide electrical power to selected equipment and power supplies relied upon for Appendix R and station blackout events.

Unit 1 turbine building supports the intended functions of the Unit 2 ARDG system. (Ref. 6)

For license renewal, the primary intended function of the ARDG system components is to maintain system pressure boundary integrity. The cooling system tubes have the function of heat transfer. For additional information on system and component functions, see the ER Response No. 04-2-095. (**Ref. 18**)

Refer to IPEC Report IP-RPT-06-LRD01, System and Structure Scoping Results, for additional information on scoping and intended functions of systems and structures for license renewal. (**Ref. 6**)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 6 of 41

2.0 Screening

Passive, long-lived components that perform a license renewal component intended function are subject to aging management review. Bolting, filter housing, flexible connector, heat exchanger, heater housing, piping, pump casing, sight glass, silencer, tank, turbocharger and compressor casings, and valve body in the ARDG systems are passive, long-lived components.

The following major components of the ARDG systems are included in this AMR.

- 1. exhaust flexible connectors [(2)ARDG-EXH-FLEX CONN-SS]
- 2. heat exchangers [(2)ARDG-JWHX, (2)ARDG-ACHX, (2)ARDG-LOC, (2)ARDG-AC]
- 3. piping [(2)ARDG-PIPING-CS, (2)ARDG-PIPING-EXH-CS, (2)ARDG-PIPING-EXH-DRAIN-CS, (2)ARDG-PIPING-LO-CS]
- 4. pumps [(2)ARDG COOLING WATER PUMP CASING]
- 5. silencer [(2)ARDG-SILENCER]
- 6. tank [(2)ARDG-SURGE-TANKS-CS]

Components in the IP2 ARDG system that are included in this AMR are those that maintain the cooling water pressure boundary from the diesel to the jacket water and aftercooler heat exchangers and the return to the diesel, the lube oil system, and the air intake and exhaust piping from the diesel to the atmosphere outside the IP1 turbine building. The ARDG elastomer flex hoses, elastomer expansion joints, and disposable filters (oil and air) are periodically replaced. Therefore, the flex hoses, expansion joints and disposable filters are not subject to aging management review. The filter housings are subject to aging management review. **(Ref. 9, 12)**

The components included in this report have the ARDG system code in the component database. No components with any other system code are included in this report. Fuel oil system components associated with IP2 ARDG are evaluated in IP-RPT-06-AMM21, Fuel Oil Systems.

Some equipment in the ARDG system is insulated. For the evaluation of insulation, refer to IP-RPT-06-AMC04, Aging Management Review of Bulk Commodities. (Ref. 8)

A list of ARDG system mechanical components subject to aging management review is included in License Renewal Information System (LRIS) report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20. Flow diagrams associated with these systems, highlighted to identify components requiring aging management review, are available as drawings: (**Ref. 12**)

IPEC Unit 2

To be determined

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 7 of 41

3.0 Aging Effects Requiring Management

EPRI reports 1010639 and 1002950 are the basis for identifying and evaluating aging effects requiring management. License renewal guideline IPEC-LRPG-04, Mechanical System Screening and Aging Management Reviews, identifies aging effects from the EPRI reports that are potentially applicable to IPEC. For additional information on aging effects, refer to IPEC-LRPG-04 and the EPRI reports. **(Ref. 1, 2, 3)**

License Renewal Information System (LRIS) report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20 is a list of ARDG system components that form the system pressure boundary. These components, highlighted on the associated LRA drawings, require aging management review.

The following sections document the determination of aging effects requiring management for specific component materials and environments. Internal surfaces are reviewed first, followed by heat exchangers, and external surfaces. For aging mechanisms that are not always applicable, the following notes indicate why the mechanism is, or is not, applicable to the material and environment under evaluation.

Note	Aging mechanism applies when
1	temperature is >220degF.
2	material is in electrolytic contact with dissimilar metals higher in the galvanic series.
3	frequently (i.e., system normally operating) subject to high-velocity constricted flow, high-
	velocity fluid direction change or fluid contains high levels of particulates (river water).
4	system identified as susceptible in FAC program.
5	material is gray cast iron.
6	material is gray cast iron, environment is outdoor air or untreated air, and pooling is possible.
7	temperature is >140degF and significant moisture is present.
8	temperature is >270degF.
9	material is CASS and temperature is >482degF.
10	environment is outdoor air or untreated air and pooling is possible.
11	material is uninhibited and contains >15%Zn or is aluminum bronze with >8% Al and fluid
	contains ammonia or an ammonium compound.
12	material is uninhibited and contains >15%Zn or is aluminum bronze with >8% Al.
13	material is uninhibited and contains >15%Zn or is aluminum bronze with >8% Al, environment
	is outdoor air or untreated air, and pooling is possible.
14	aluminum alloy contains >12%Zn or >6% magnesium.
15	titanium alloy is not ASTM grade 1, 2, 7, 11, or 12 and contains >5% aluminum (AI), more
	than 0.2% Oxygen (O), or any tin (Sn).
16	temperature is >160degF.
17	temperature is <220degF.
18	glass is exposed to very hot water (>212degF), hydrofluoric acids, or caustics.
19	temperature is >95degF.
20	heat transfer is an intended function.
21	environment is outdoor air, condensation, or soil; or indoor air with component internal
	temperature <212degF.

Notes for Aging Effect Tables in Subsequent Subsections

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 8 of 41

Notes for Aging Effect Tables in Subsequent Subsections

Note	Aging mechanism applies when
22	environment is outdoor air, condensation, or soil and material is in electrolytic contact with dissimilar metals higher in the galvanic series.
23	environment is outdoor air, condensation, or soil.
24	environment is soil.
25	material is gray cast iron and environment is condensation, soil, or outdoor air with potential for pooling.
26	material is uninhibited, contains >15%Zn, or is aluminum bronze with >8%Al and environment is condensation, soil, or outdoor air with potential for pooling.
27	carbon steel is in a system containing boric acid.
28	environment is indoor air or outdoor air with exposure to sunlight, fluorescent lighting, ozone or ionizing radiation.

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 9 of 41

3.1 Internal Aging Effects Applicable to the ARDG System

The following table lists internal environments for ARDG system components. Subsequent subsections document the determination of aging effects requiring management for specific component materials in these environments. Internal environment descriptions are in IPEC-LRPG-04. (**Ref. 3**)

Internal Environment	Nominal Internal Temperature (°F)	Discussion	Major Components (see Section 2.0)
air – indoor	≤ 105°F (Ref. 4, 17) IP1 turbine building	air intake filter housing maximum temperatures assumed the same as shown in references for comparable buildings	
condensation	≤ 105°F (Ref. 4) IP1 turbine building	exhaust system drain piping and valve	
exhaust gas	Approximately 1000°F (Ref. 20)	engine exhaust subsystem	(2)ARDG-EXH-FLEX CONN-SS, (2)ARDG- PIPING-EXH-CS, and (2)ARDG-SILENCER
lube oil	≤ 200°F (Ref. 20)	lube oil pump casing, filter housing, and piping	(2)ARDG-PIPING-LO- CS, (2)ARDG-LO- PUMP CASING-CS
treated water	≤ 190°F (Ref. 19, 20, 21, 22)	carbon steel diesel cooling water subsystem	(2)ARDG-PIPING-CS, (2)ARDG COOLING WATER PUMP CASING

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 10 of 41

3.1.1 Carbon Steel Internal Surfaces Exposed to Condensation

Exhaust subsystem drain piping and drain valves are carbon steel. See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of carbon steel components. (**Ref. 18**)

AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
Cracking	Thermal fatigue	Y <u></u> /N⊠(1)
	General corrosion	Y
	Galvanic corrosion	Y∏/N⊠(2)
	Crevice corrosion	Y
	Erosion	Y∏/N⊠(3)
Loss of material	Flow-accelerated corrosion	Y∏/N⊠(4)
	Microbiologically influenced	
	corrosion (MIC)	
	Pitting corrosion	Y
	Selective leaching	Y∏/N⊠(5)

3.1.2 Carbon Steel Internal Surfaces Exposed to Air-Indoor

The intake air filter housing is carbon steel. See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of carbon steel components. (Ref. 18)

AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
Cracking	Thermal fatigue	Y∏/N⊠(1)
Loss of material	General corrosion	Y

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 11 of 41

3.1.3 Carbon Steel Internal Surfaces Exposed to Treated Water

System piping components with pipe code J-1 are carbon steel. The turbocharger housing is carbon steel and has treated cooling water flowing through it. The coolant heater housing and the surge tanks are carbon steel. Fouling is an aging effect for the turbocharger housing only. See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of carbon steel components. **(Ref. 18)**

AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
Cracking	Thermal fatigue	Y∏/N⊠(1)
	General corrosion	Y
	Galvanic corrosion	Y∏/N⊠(2)
	Crevice corrosion	Y
	Erosion	Y <u></u> /N⊠(3)
Loss of material	Flow-accelerated corrosion	Y∏/N⊠(4)
	Microbiologically influenced corrosion (MIC)	Y⊠/N□(17)
	Pitting corrosion	Y
	Selective leaching	Y∏/N⊠(5)
Fouling	n/a	Y⊠/N∏(20)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel Generator System	Revision 0

3.1.4 Carbon Steel Internal Surfaces Exposed to Exhaust Gas

System piping components with pipe code D-8 are carbon steel. The turbocharger and diesel exhaust silencer are carbon steel. See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of carbon steel components. **(Ref. 18)**

AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
Cracking	Thermal fatigue	Y⊠/N□(1)
	General corrosion	Y
	Galvanic corrosion	Y <u></u> /N⊠(2)
	Crevice corrosion	Y
LUSS OF Material	Erosion	Y□/N⊠(3)
	Pitting corrosion	Y
	Selective leaching	Y∏/N⊠(6)

3.1.5 Carbon Steel Internal Surfaces Exposed to Lube Oil

Lube oil filter housing, piping, pump casing, and valves are carbon steel. See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of carbon steel components. (**Ref. 18**)

AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
Cracking	Thermal fatigue	Y□/N⊠(1)
Loss of material	General corrosion	Y
	Galvanic corrosion	Y□/N⊠(2)
	Crevice corrosion	Y
	Microbiologically influenced corrosion (MIC)	Y
	Pitting corrosion	Y
	Selective leaching	Y□/N⊠(5)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 13 of 41

3.1.6 Stainless Steel Internal Surfaces Exposed to Exhaust Gas

Diesel engine exhaust flexible connectors are stainless steel. See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of stainless steel components. (Ref. 18)

AGING EFFECT	GING EFFECT AGING MECHANISM	
Cracking	Stress corrosion/IGA	Y□/N⊠ (7)
	Thermal fatigue	Y⊠/N□ (8)
	Crevice corrosion	Y⊠/N□(10)
LOSS OF Material	Pitting corrosion	Y⊠/N□(10)

3.1.7 Copper Alloy Internal Surfaces Exposed to Treated Water

Sight glass housings are copper alloy (>15% Zn assumed). See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of copper alloy components. (**Ref. 12**)

AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
Cracking	Stress corrosion/IGA	Y∐/N⊠(11)
Loss of material	Galvanic corrosion	Y□/N⊠ (2)
	Crevice corrosion	Y
	Erosion	Y∏/N⊠ (3)
	Microbiologically influenced corrosion (MIC)	Y⊠/N□(17)
	Pitting corrosion	Y
	Selective leaching	Y⊠/N□(12)

3.1.8 Glass Internal Surfaces

Sight glasses in this system are exposed to treated water. See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of glass components. (Ref. 12)

AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
Change in material properties	Hydrolytic attack	Y∐/N⊠(18)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 14 of 41

3.2 IP2 ARDG Jacket Water and Aftercooler Heat Exchangers Aging Effects

The IP2 ARDG jacket and aftercooler water heat exchangers are shell and tube heat exchangers. City water (< $95^{\circ}F$) flows through the stainless steel tubes and treated water (> $140^{\circ}F$) flows through the carbon steel shell. (Ref. 23)

The bonnet (end channel) is the same material as the shell [carbon steel].

The carbon steel bonnet (end channel) is exposed to the same internal environment as the tubes.

The tube sheet is the same material as the bonnet and shell [carbon steel] and is exposed to the same environments. Therefore, the tube sheet is not listed as a specific component type.

See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of heat exchanger components and materials.

COMPONENT TYPE	AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
	Creeking	Stress corrosion/IGA	Y□/N⊠ (7)
	Ordening	Thermal fatigue	Y∏/N⊠ (8)
		Crevice corrosion	Y
		Erosion	Y∏/N⊠ (3)
Heat exchanger tube internal surfaces	Loss of material	Microbiologically influenced corrosion (MIC)	Y⊠/N∏(17)
		Pitting corrosion	Y
	Reduction in fracture toughness	Thermal embrittlement	Y∏/N⊠ (9)
	Fouling	n/a	Y⊠/N□(20)
	Cracking	Stress corrosion/IGA	Y⊠/N□ (7)
		Thermal fatigue	Y□/N⊠ (8)
	Loss of material	Crevice corrosion	Y
		Erosion	Y□/N⊠ (3)
Heat exchanger tube external surfaces		Microbiologically influenced corrosion (MIC)	Y⊠/N□(17)
		Pitting corrosion	Y
		Wear	Y
	Reduction in fracture toughness	Thermal embrittlement	Y∏/N⊠ (9)
	Fouling	n/a	Y⊠/N□(20)

IPEC License Renewal Project

Aging Management Review of the IP2 SBO and Appendix R Diesel Generator System IP-RPT-06-AMM20 Revision 0 Page 15 of 41

COMPONENT TYPE	AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
	Cracking	Thermal fatigue	Y <u></u> /N⊠(1)
		General corrosion	Y
		Galvanic corrosion	Y□/N⊠(2)
		Crevice corrosion	Y
Heat exchanger		Erosion	Y∏/N⊠(3)
shell internal surfaces	Loss of material	Flow-accelerated corrosion	Y <u></u> /N⊠(4)
		Microbiologically influenced corrosion (MIC)	Y⊠/N∏(17)
		Pitting corrosion	Y
		Selective leaching	Y∏/N⊠(5)
	Cracking	Thermal fatigue	Y∏/N⊠(1)
	Loss of material	General corrosion	Y
		Galvanic corrosion	Y⊠/N□(2)
		Crevice corrosion	Y
Haat avabangar		Erosion	Y□/N⊠(3)
Heat exchanger bonnet internal surfaces		Flow-accelerated corrosion	Y∏/N⊠(4)
		Microbiologically influenced corrosion (MIC)	Y⊠/N□(17)
		Pitting corrosion	Y
		Selective leaching	Y∏/N⊠(5)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 16 of 41

3.3 IP2 ARDG Lube Oil Cooler Heat Exchanger Aging Effects

The lube oil cooler [(2)ARDG-LOC] heat exchanger is a small shell and tube heat exchanger. Treated water (< 190°F) flows through the copper alloy tubes and lube oil (< 200°F)] flows through the carbon steel shell. **(Ref. 18)** Since the cooler is small and does not have high flows, wear of the tubes is not a potential aging effect.

The bonnet (end channel) is the same material as the shell. The bonnet (end channel) is exposed to the same internal environment as the tubes.

The tube sheet is the same material as the tubes and is exposed to the same environments. Therefore, the tube sheet is not listed as a specific component type.

See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of heat exchanger components and materials.

COMPONENT TYPE	AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
	Cracking	Stress corrosion/IGA	Y <u></u> /N⊠(11)
		Galvanic corrosion	Y∏/N⊠(2)
		Crevice corrosion	Y
Heat exchanger		Erosion	Y∏/N⊠(3)
tube internal surfaces	Loss of material	Microbiologically influenced corrosion (MIC)	Y⊠/N□(17)
		Pitting corrosion	Y
		Selective leaching	Y∏/N⊠(12)
	Fouling	n/a	Y⊠/N□(20)
Heat exchanger tube external surfaces	Cracking	Stress corrosion/IGA	Y <u></u> /N⊠(11)
	Loss of material	Crevice corrosion	Υ
		Microbiologically influenced corrosion (MIC)	Y⊠/N□(17)
		Pitting corrosion	Y
		Selective leaching	Y∏/N⊠(12)
		Wear	N
	Fouling	n/a	Y⊠/N□(20)

IPEC License Renewal Project

Aging Management Review of the IP2 SBO and Appendix R Diesel Generator System

IP-RPT-06-AMM20 Revision 0 Page 17 of 41

COMPONENT TYPE	AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
	Cracking	Thermal fatigue	Y□/N⊠(1)
		General corrosion	Y
		Galvanic corrosion	Y⊠/N□(2)
Heat exchanger		Crevice corrosion	Y
shell internal surfaces	Loss of material	Microbiologically influenced corrosion (MIC)	Y
		Pitting corrosion	Y
		Selective leaching	Y□/N⊠(5)
	Cracking	Thermal fatigue	Y□/N⊠(1)
	Loss of material	General corrosion	Y
		Galvanic corrosion	Y⊠/N□(2)
		Crevice corrosion	ΥΥ
Heat exchanger		Erosion	Y□/N⊠(3)
bonnet internal		Flow-accelerated	$\sqrt{1}/N$
surfaces		corrosion	
		Microbiologically influenced corrosion (MIC)	Y⊠/N□(17)
		Pitting corrosion	<u> </u>
		Selective leaching	Y∏/N⊠(5)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 18 of 41

3.4 <u>Turbocharger Aftercooler Aging Effects</u>

The turbocharger aftercooler is an enclosed housing unit with copper alloy (>15% Zn assumed) cooling coils (tubes). The carbon steel housing (identified as component type shell) provides support for the cooling coils and pressure boundary for intake air. Treated water at <220°F flows through passageways in the housing (shell) and through the tubes. External surfaces of the tubes and internal surfaces of the housing are exposed to air – indoor. (**Ref. 20, 22**)

The aluminum fins are exposed to the same external environment as the tubes. The tubes are short spans of straight tubes with fins that are not subject to wear on their external surfaces due to the short periods of time the ARDG is in operation. See LRIS report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2) for a list of heat exchanger components and materials.

COMPONENT TYPE	AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
	Cracking	Stress corrosion/IGA	Y□/N⊠(11)
		Galvanic corrosion	Y□/N⊠ (2)
		Crevice corrosion	Y
Heat exchanger tube		Erosion	Y□/N⊠ (3)
internal surfaces	Loss of material	Microbiologically influenced corrosion (MIC)	Y⊠/N∏(17)
		Pitting corrosion	Y
		Selective leaching	Y⊠/N□(12)
	Fouling	n/a	Y⊠/N□(20)
	Cracking	Stress corrosion/IGA	Y∏/N⊠(11)
	Loss of material	Crevice corrosion	Y∏/N⊠(10)
Heat exchanger tube		Pitting corrosion	Y∏/N⊠(10)
external surfaces		Selective leaching	Y∏/N⊠(13)
	Fouling	n/a	Y⊠/N□(20)
	Loss of material	Wear	Y_/NX
Heat exchanger fins	Fouling	n/a	Y⊠/N□(20)
	Cracking	Thermal fatigue	Y∏/N⊠(1)
		General corrosion	Y
		Galvanic corrosion	Y□/N⊠(2)
Heat exchanger		Crevice corrosion	Y
housing internal surfaces with water		Erosion	Y□/N⊠(3)
	Loss of material	Flow-accelerated corrosion	Y□/N⊠(4)
		Microbiologically influenced corrosion (MIC)	Y
		Pitting corrosion	Y
		Selective leaching	Y∏/N⊠(5)

IPEC License Renewal Project Aging Management Review of the IP2 SBO and Appendix R Diesel Generator System			iesel	IP-RPT-06- AMM20 Revision 0 Page 19 of 41
COMPONENT TYPE	AGING EFFECT	AGING MECHANISM	Appl Syste	icable to ARDG em Components
Heat exchanger shell	Cracking	Thermal fatigue		Y⊠/N□(1)
(housing) internal surfaces exposed to indoor air	Loss of material	General corrosion	***	Y

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 20 of 41

3.5 External Aging Effects Applicable to ARDG System Components and Bolting

Insulation, if used on stainless steel components in this system is free of contaminants that could cause cracking of stainless steel. (Ref. 14)

The following table lists external environments for ARDG system components. External environment descriptions are in LRPG-04 (**Ref. 3**).

External Environment	Nominal External Temperature (°F)	Discussion	Major Components (see Section 2.0)
air – indoor	≤ 105°F (Ref. 4, 17) IP1	maximum temperatures assumed the same as shown in references for comparable buildings	(2)ARDG-EXH-FLEX CONN-SS, (2)ARDG- PIPING-CS, (2)ARDG- PIPING-EXH-CS, (2)ARDG-PIPING-EXH- DRAIN-CS, (2)ARDG- PIPING-LO-CS, (2)ARDG-COOLING WATER PUMP CASING, and (2)ARDG- SILENCER
air – outdoor	-15°F to 93°F (Ref. 4)	outside temperature range	(2)ARDG-PIPING-EXH- CS

Materials of components in the ARDG system are identified in the subsections of Section 3.1. The following sections document the determination of aging effects requiring management for specific component materials in external environments. Pressure retaining bolting in this system may be carbon steel or stainless steel and is exposed to the same external environments.

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 21 of 41

3.5.1 Air – Indoor External Environment

MATERIAL	AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
		General corrosion	Y⊠/N□(21)
		Galvanic corrosion	Y∏/N⊠(22)
		Crevice corrosion	Y∏/N⊠(23)
Carbon steel	Loss of material	Microbiologically influenced corrosion (MIC)	Y∏/N⊠(24)
		Pitting corrosion	Y∏/N⊠(23)
		Selective leaching	Y∏/N⊠(25)
		Boric acid corrosion	Y∏/N⊠(27)
		Crevice corrosion	Y∏/N⊠(23)
Stainless steel	Loss of material	Microbiologically influenced corrosion (MIC)	Y∐/N⊠(24)
		Pitting corrosion	Y□/N⊠(23)
		Galvanic corrosion	Y∏/N⊠(22)
Caspar		Crevice corrosion	Y□/N⊠ (23)
alloy >15% zn	Loss of material	Microbiologically influenced corrosion (MIC)	Y∏/N⊠ (24)
		Pitting corrosion	Y / N (23)
		Selective leaching	Y∏/N⊠ (26)
Glass	Change in material properties	Hydrolytic attack	Y∏/N⊠ (18)

3.5.2 Air – Outdoor External Environment

MATERIAL	AGING EFFECT	AGING MECHANISM	Applicable to ARDG System Components
		General corrosion	Y⊠/N□(21)
Carbon steel Loss of material		Galvanic corrosion	Y <u></u> /N⊠(22)
	Crevice corrosion	Y⊠/N□(23)	
	Loss of material	Microbiologically influenced corrosion (MIC)	Y∏/N⊠(24)
		Pitting corrosion	Y⊠/N∏(23)
		Selective leaching	Y <u></u> /N⊠(25)
		Boric acid corrosion	Y□/N⊠(27)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 22 of 41

3.6 Operating Experience

The review of site-specific operating experience and recent industry operating experience completed in IPEC Report IP-RPT-06-LRD05, Operating Experience Review Results, did not identify aging effects applicable to the ARDG system passive mechanical components not addressed in this aging management review report. (Ref. 11)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 23 of 41

4.0 Demonstration That Aging Effects Will Be Managed

Section 2.0 describes components of the ARDG systems that are subject to aging management review. For those components, Section 3.0 documents the determination of aging effects requiring management. The aging management review is completed by demonstrating that existing programs, when continued into the period of extended operation, can manage the aging effects identified in Section 3.0. No further action is required for license renewal when the evaluation of an existing program demonstrates that it is adequate to manage the aging effect such that corrective action may be taken prior to loss of the system intended functions. Alternately, if existing programs cannot be shown to manage the aging effects for the period of extended operation, then action will be proposed to augment existing or create new programs to manage the identified effects of aging.

Demonstration for the purposes of this license renewal technical evaluation is accomplished by establishing a clear relationship among

- 1) the components under review,
- 2) the aging effects on these items caused by the material-environment-stress combinations which, if undetected, could result in loss of the intended function such that the system could not perform its function(s) within the scope of license renewal in the period of extended operation, and
- 3) the credited aging management programs whose actions serve to preserve the system intended function(s) for the period of extended operation.

Attachment 2 lists component types and identifies the aging effects requiring management for each material and environment combination. The Bolting Integrity Program, External Surfaces Monitoring Program, Heat Exchanger Monitoring Program, Oil Analysis Program, Periodic Surveillance and Preventive Maintenance Program, Selective Leaching Program, and Water Chemistry Control – Closed Cooling Water Program in combination will manage the effects of aging, thereby precluding loss of the intended functions of the system. Sections 4.1 through 4.7 provide the clear relationship between the component, the aging effect, and the aging management program actions that preserve the intended functions for the period of extended operation. Section 4.8 identifies applicable time-limited aging analyses. For a comprehensive review of programs credited for license renewal of IPEC and a demonstration of how these programs will manage aging effects, see IPEC Report IP-RPT-06-LRD07, Aging Management Program Evaluation Results – Non-Class 1 Mechanical. (**Ref. 10**)

4.1 Bolting Integrity Program

Activities under the Bolting Integrity Program include periodic inspection, material selection, thread lubricant control, assembly and torque requirements, and repair and replacement requirements. For the IP2 SBO and Appendix R diesel generator system, the Bolting Integrity Program manages loss of material for carbon steel and stainless steel bolted connections exposed to indoor and outdoor air through inspections for leakage and loss of material.

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 24 of 41

This program applies to component types indicated on Attachment 2. For additional information on this program, see IP-RPT-06-LRD07, Aging Management Program Evaluation Results – Non-Class 1 Mechanical. (**Ref. 10**)

4.2 External Surfaces Monitoring Program

Under the External Surfaces Monitoring Program, visual inspections manage aging effects on components. For the ARDG system, the External Surfaces Monitoring Program manages loss of material for external carbon steel components by visual inspection of external surfaces. Since some internal carbon steel surfaces in this system are exposed to the same environment as the external surfaces, external surfaces will be representative of internal surfaces. Thus, the External Surfaces Monitoring Program will also manage loss of material on internal carbon steel surfaces.

This program applies to component types indicated on Attachment 2. For additional information on this program, see IP-RPT-06-LRD07, Aging Management Program Evaluation Results – Non-Class 1 Mechanical. (**Ref. 10**)

4.3 Heat Exchanger Monitoring Program

The Heat Exchanger Monitoring Program manages loss of material for the jacket water and aftercooler heat exchangers tubes [(2)ARDG-JWHX, (2)ARDG-ACHX] by non-destructive examinations, such as eddy-current and visual inspections performed to identify degradation prior to loss of intended function.

This program applies to component types indicated on Attachment 2. For additional information on this program, see IPEC Report IP-RPT-06-LRD07, Aging Management Program Evaluation Results – Non-Class 1 Mechanical. (**Ref. 10**)

4.4 Oil Analysis Program

The Oil Analysis Program maintains oil systems free of contaminants (primarily water and particulates) thereby preserving an environment that is not conducive to cracking, loss of material, or fouling. This program manages loss of material for carbon steel and copper alloy components wetted by oil.

This program applies to component types indicated on Attachment 2. For additional information on this program, see IPEC Report IP-RPT-06-LRD07, Aging Management Program Evaluation Results – Non-Class 1 Mechanical. (**Ref. 10**)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 25 of 41

4.5 Periodic Surveillance and Preventive Maintenance Program

The following activities, under the Periodic Surveillance and Preventive Maintenance Program, manage aging effects for ARDG system components.

Scope	Parameters Monitored	Detection of Aging	Acceptance Criteria
Internal surfaces of diesel exhaust gas components: • Flexible connectors • Piping • Silencer • Exhaust drain piping and valve bodies • turbocharger housing	Cracking and surface condition for crevice or pitting corrosion; also general corrosion for carbon steel components	Every 5 years, visually inspect a sample of the internal surfaces of diesel exhaust gas components to manage cracking and loss of material.	No detectable cracking or significant corrosion
Periodically inspect: Internal surfaces of ARDG turbocharger housing and aftercooler housing and the external of the tubes and fins within the aftercooler housing	fouling and loss of material	Visually inspect every 5 years for fouling and loss of material, as applicable.	No detectable fouling deposits or loss of material
 Periodically inspect: Internal surfaces of the jacket water heat exchanger carbon steel bonnet Internal inspection of the jacket water heat exchanger stainless steel tubes 	Loss of material Loss of material and fouling	Visually inspect every 5 years for fouling and loss of material, as applicable	No detectable fouling deposits or loss of material

This program applies to component types indicated on Attachment 2. For additional information on this program, see IP-RPT-06-LRD07, Aging Management Program Evaluation Results – Non-Class 1 Mechanical. (**Ref. 10**)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel Generator System	Revision 0
	Fage 20 01 41

4.6 Selective Leaching Program

The Selective Leaching Program ensures the integrity of components made from gray cast iron or copper alloy susceptible to selective leaching that are exposed to raw water, treated water, steam, or soil (groundwater). By one-time visual inspection and testing of a representative sample of the component population, the Selective Leaching Program will verify the absence of significant loss of material due to selective leaching for IPEC Unit 2 ARDG system uninhibited copper alloy >15% zinc surfaces exposed to treated water.

This program applies to component types indicated on Attachment 2. For additional information on this program, see IPEC Report IP-RPT-06-LRD07, Aging Management Program Evaluation Results – Non-Class 1 Mechanical. (**Ref. 10**)

4.7 Water Chemistry Control - Closed Cooling Water Program

The Water Chemistry Control – Closed Cooling Water Program manages loss of material, cracking and fouling of ARDG system carbon steel, copper alloy, and stainless steel components by minimizing levels of contaminants in the water. This program also minimizes fouling on heat transfer surfaces of the jacket cooling water, aftercooler, intercooler and lube oil heat exchangers and the turbocharger housing. The One-Time Inspection Program for Water Chemistry utilizes inspections or non-destructive examinations of representative samples to verify that the Water Chemistry Control – Closed Cooling Water Program has been effective at managing aging effects for carbon steel piping, valve bodies, pump casings, heater housings, sight glasses, tanks, turbocharger housings, and heat exchangers in the ARDG system.

This program applies to component types indicated on Attachment 2. For additional information on this program and the One-Time Inspection Program for Water Chemistry, see IPEC Report IP-RPT-06-LRD07, Aging Management Program Evaluation Results – Non-Class 1 Mechanical. (Ref. 10)

4.8 <u>Time-Limited Aging Analyses</u>

The analysis of metal fatigue is a TLAA applicable to portions of this system subjected to elevated temperatures.

See IPEC Reports IP-RPT-06-LRD03, TLAA and Exemption Evaluation Results, and IP-RPT-06-LRD04, TLAA – Mechanical Fatigue, for further review of time-limited aging analyses. (Ref. 15, 16)

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 27 of 41

5.0 Summary and Conclusions

The following aging management programs address the aging effects requiring management for the ARDG system.

- Bolting Integrity Program
- External Surfaces Monitoring Program
- Heat Exchanger Monitoring Program
- Oil Analysis Program
- Periodic Surveillance and Preventive Maintenance Program
- Selective Leaching Program
- Water Chemistry Control Closed Cooling Water Program

For additional review of programs credited for license renewal of IP-RPT-06-LRD07, Aging Management Program Evaluation Results – Non-Class 1 Mechanical. (Ref. 10)

Attachment 2 contains the aging management review results for the ARDG System.

In conclusion, programs described in Section 4.0 will provide reasonable assurance that the effects of aging on the ARDG system will be managed such that the intended functions will be maintained consistent with the current licensing basis throughout the period of extended operation.

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
	Page 28 of 41

6.0 References

- 1. Non-Class 1 Mechanical Implementation Guideline and Mechanical Tools, Revision 4, EPRI, Palo Alto, CA: 2001. 1010639 (Mechanical Tools)
- 2. Aging Effects for Structures and Structural Components, Revision 1, EPRI, Palo Alto, CA: 2003. 1002950 (Structural Tools)
- 3. IPEC-LRPG-04, Mechanical System Screening and Aging Management Reviews
- 4. IP2 Updated Final Safety Analysis Report (UFSAR) Section N.N
- 5. IP2 DBD-Later, Design Basis Document for the IP2 SBO and Appendix R Diesel Generator Set System, Rev. Later, [date Later]
- 6. IP-RPT-06-LRD01, System and Structure Scoping Results
- 7. IP-RPT-06-AMM30, Aging Management Review of Nonsafety-Related Systems and Components Affecting Safety-Related Systems
- 8. IP-RPT-06-AMC04, Aging Management Review of Bulk Commodities
- 9. Industry Guideline for Implementing the Requirements of 10 CFR Part 54 The License Renewal Rule, NEI 95-10, Revision 6, June 2005
- 10. IP-RPT-06-LRD07, Aging Management Program Evaluation Results Non-Class 1 Mechanical
- 11. IP-RPT-06-LRD05, Operating Experience Review Results
- 12. Flow Diagrams Later
- 13. Specification No. 9321-01-248-18, IP2 Specification for Fabrication of Piping Systems Turbine Generating Plant
- 14. IP2 MM92-250, Spec for Insulations (Thermal/Acoustics (Con Ed Class A and Non-Class), Rev. 2
- 15. IP-RPT-06-LRD03, TLAA and Exemption Evaluation Results
- 16. IP-RPT-06-LRD04, TLAA Mechanical Fatigue
- 17. IP2 RPT-196-1, Rev. 1, EQ Program Environmental Parameters Report [1/8/04]
- 18. ER Response No. 04-2-095, Rev. 1, Station Blackout and Appendix R Diesel Generator Set
- 19. Operator's Manual, GenSet Model DQLA, DQLB, Cummins Power Generation
- 20. IP-RPT-06-AMM17, Emergency Diesel Generator Systems AMRR

IPEC License Renewal Project	IP-RPT-06-
Aging Management Review of the IP2 SBO and Appendix R Diesel	Revision 0
Generator System	Page 29 of 41

- 21. Not Used
- 22. IP-RPT-06-AMM18, Security Generators AMRR
- 23. Heat Exchanger Specification Sheet, Atlas Industrial Manufacturing Co., Proposal No. A-333-06

IP-RPT-06-AMM20	Page 30 of 41		
IPEC License Renewal Project	Aging Management Review of the IP2 SBO and Appendix R Diesel Generator Systems	Attachment 1 - Components Subject to AMR	

See License Renewal Information System (LRIS) report, "Attachment 1 Passive Components by AMRR," for IP-RPT-06-AMM20(2).

		E	C License Renewal Project	IP-RPT-06-AMM20
Aging Man	agement R	eview of t	he IP2 SBO and Appendix R Diesel Generator Systems	Page 31 of 41
			Attachment 1 - Components Subject to AMR	
IP2				
ENVIRONMENT: A	JR - INDOO	R (EXTER	(NAL)	
Comp ID	Comp Ty	De la	Comp Name	Material
(2)ARDG BOLTING-CS	bolting	ARDO	S CARBON STEEL BOLTING	carbon steel
(2)ARDG BOLTING-SS	bolting	ARDO	STAINLESS STEEL BOLTING	stainless stee
(2)ARDG-AC	reat exchange	r (fins)ARD(3 TURBOCHARGER AFTERCOOOLER	aluminum
ENVIRONMENT: A	JR - INDOO	R (INTER	VAL)	
Comp ID		Comp Typ	e Comp Name	Material
(2)ARDG-AC	turt	ocharger ho	using ARDG TURBOCHARGER AFTERCOOOLER	carbon ste
(2)ARDG-AIR-FILTER-H	OUSINGS	filter housin	g ARDG CARBON STEEL AIR FILTER HOUSINGS	carbon ste
ENVIRONMENT: C	ONDENSA	TION (INT	ERNAL)	
Comp ID	Com	p Type	Comp Name	Material
(2)ARDG-PIPING-EXH-E	DRAIN pi	ping C	ARBON STEEL EXHAUST DRAIN PIPING	carbon stee
(2)ARDG-VALVE-EXH-E	RAIN valv	e body C	ARBON STEEL EXHAUST DRAIN VALVE	carbon stee

carbon steel carbon steel

	IPEC License Renewal Project	IP-RPT-06-AMI	M20
Aging Managem	nent Review of the IP2 SBO and Appendix R Diesel Generator Systems Attachment 1 - Components Subject to AMR	Revision 0 Page 32 of 4	
ENVIRONMENT: EXHAU	JST GAS (INTERNAL)		
Comp ID (2)ARDG EXH-FLEX CONN	Comp Type Comp Name Comp Name	Materi	
(2)ARDG-PIPING-EXH (2)ARDG-SILENCER	piping ARDG CARBON STEEL EXHAUST PIPING silencer ARDG EXHAUST SILENCER	stainless carbon s	steel
(Z)ARDG-TURBOCHARGER 1	turbocharger ARDG TURBOCHARGER	carbon s	teel
Environment: Lube o	DIL (EXTERNAL)	carbon s	teel
Comp ID Comp T (2)ARDG-LOC heat exchange	Type Comp Name Comp Name	Material	
ENVIRONMENT: LUBE OI	01L (INTERNAL)	copper alt	
Comp ID	Comp Tvne		
(2)ARDG-LOC	heat exchanger (shell)]ARDG LUBE OIL COOLER	Mater	ial
(2)ARDG-LO-FILTER-HOUSING	filter housing ARDG CARBON STFEI 11 IRE OIL EIL TER LIGUELT	carbon ;	steel
(z)ARDG-LO-PUMP CASING	pump casing ARDG CARBON STEEL LUBE OIL PLIMP CASING	carbon	steel
(2)/ARUG-PIPING-LO	piping ARDG CARBON STEEL LUBE OIL PIPING	carbon	steel
(z) v v L V E-US	valve body CARBON STEEL VALVE	carbon	steel
		carbon s	steel

	IPEC License Rer	newal Project	IP-RPT-06-AMM20
Aging Management Revie	w of the IP2 SBO an	d Appendix R Diesel Generator Systems	Revision 0
	Attachment 1	- Components Subject to AMR	
ENVIRONMENT: TREATED WATE	R (INTERNAL)		
Comp ID	Comp Type	Como Namo	
(2)ARDG COOLING WATER PUMP CASING	pump casing	ARDG DIESEL DRIVEN COOLING WATER PUMP CASING	
(2)ARDG-AC	turbocharger housing	ARDG TURBOCHARGER AETEDCOOCHER	calbul steel
(2)ARDG-AC	heat exchanger (tubes)	ARDG TURBOCHARGER AFTERCOOLER	carbon steel
(2)ARDG-ACHX	heat exchanger (bonnet)		copper alloy
(2)ARDG-ACHX	heaf exchanger (shell)		carbon steel
(2)ARDG-ACHX	heat exchanger (tribec)	ADDO AFTEROOD: TO UT	carbon steel
(2)ARDG-HEATER-HOLISING	hodor hours	ANDG AFTERCUOLER HEAT EXCHANGER	stainless steel
(2)ARDG_IMHY		ARDG COOLANT HEATER HOUSING	carbon steel
	neat exchanger (shell)	ARDG JACKET WATER HEAT EXCHANGER	carbon steel
	heat exchanger (bonnet)	ARDG JACKET WATER HEAT EXCHANGER	Carhon steel
(Z)AKDG-JWHX	heat exchanger (tubes)	ARDG JACKET WATER HEAT EXCHANGER	
(2)ARDG-LOC	heat exchanger (bonnet)	ARDG LUBE OIL COOLER	staintess steel
(2)ARDG-LOC	heat exchanger (tubes)		carbon steel
(2)ARDG-PIPING	Dipina		copper alloy
(2)ARDG-SURGE TANK SIGHT GLASS	sinht nace		carbon steel
(2)ARDG-SURGE TANK SIGHT GI ASS	cicht alaco		copper alloy >15% zn
(2)ARDG-SURGF-TANK	anylit grass	ARUG SURGE LANK SIGHT GLASS	glass
(2)ARDG-VALVES		ARUG CARBON STEEL SURGE TANK	carbon steel
	valve body	AKDG CARBON STEEL VALVES	carbon steel
ENVIRONMENT - TREATED WATER			
	V 140 F (EATEKNA	L)	

	Material	stainless steel
Comp Type	heat exchanger (tubes	
Comp ID	(2)ARDG-ACHX	

IP-RPT-06-AMM20	Revision 0 Page 34 of 41	
IPEC License Renewal Project	Aging Management Review of the IP2 SBO and Appendix R Diesel Generator Systems	Attachment 1 - Components Subject to AMR

ENVIRONMENT: TREATED WATER >140°F (EXTERNAL)

L

	Material	stainless steel
	АВЛС ТАСКЕТ МАТЕР ПРАТ БООТО NAME	
Comp Type	heat exchanger (hubes)	
Comp ID	(2)ARDG-JWHX	

			se kenewal Project		IP-RPT-06-AMM20
Aging	Management R	eview of the IP2 S	BO and Appendix R Diesel	Generator Systems	Revision 0
IP2		Attachment	: 2 – Aging Management Rev	riew Results	Fage 35 of 41
Component	Intended				
Type	Function	Material	Environment	Aging Effect Requiring	Aging Management
Bolting	Pressure			Management	Programs
	boundary	Carbon steel	Air - indoor (ext)	Loss of material	Bolting integrity
Bolting	Pressure	d			
)	boundary	otainless steel	Air - indoor (ext)	None	None
Filter housing	Pressure				
	boundary	Carbon steel	Air - indoor (ext)	Loss of material	External surfaces
Filter housing	Pressure				monitoring
	boundary	Carbon steel	Air - indoor (int)	Loss of material	External surfaces
Filter housing	Pressure				monitoring
Buisnoli isili i	boundary	Carbon steel	The oil limit		

IPEC License Renewal Project

0e	Function	Material	Environment	Aging Effect Requiring	Acina Man
	Pressure	-		Management	Programs
	boundary	Carbon steel	Air - indoor (ext)	Loss of material	Bolting integrity
	Pressure boundary	Stainless steel	Air - indoor (ext)	None	
0	Pressure boundary	Carbon steel	Air - indoor (ext)	Die of motorial	External curfaces
	Pressure	Carhon etool			monitoring
	Pressure		Air - indoor (int)	Loss of material	External surfaces monitoring
	boundary	Carbon steel	Lube oil (int)	Loss of material	Oil analysis
	Pressure	Stainless steel			
	Decomain		- Indoor (ext)	None	None
	boundary	Stainless steel	Exhaust gas (int)	Cracking-fatigue	Metal fatione TI AA
	Pressure				
	boundary	Stainless stee	Exhaust gas (int)	Loss of material	Periodic surveillance and
	and a second sec				

		IPEC Licens	e Renewal Project		IP-RPT-06-AMM20
lan	lagement Re	view of the IP2 SE	30 and Appendix R Diesel (Senerator Systems	Page 36 of 41
		Attachment	<u>2 – Aging Management Rev</u>	iew Results	
	Intended Function	Material	Environment	Aging Effect Requiring Management	Aging Management
	Pressure boundary	Carbon steel	Air - indoor (ext)	Loss of material	External surfaces monitoring
	Pressure boundary	Carbon steel	Treated water (int)	Loss of material	Periodic surveillance and preventive maintenance
	Pressure boundary	Carbon steel	Treated water (int)	Loss of material	Water chemistry control - closed cooling water
	Heat transfer	Aluminum	Air - indoor (ext)	Fouling	Periodic surveillance and preventive maintenance
	Pressure boundary	Carbon steel	Air - indoor (ext)	Loss of material	External surfaces monitoring
1	Pressure boundary	Carbon steel	Lube oil (int)	Loss of material	Oil analysis
	Pressure boundary	Carbon steel	Treated water (int)	Loss of material	Water chemistry control - closed cooling water
1	Heat transfer	Copper alloy	Air - Indoor (ext)	Fouling	Periodic surveillance and preventive maintenance
	Heat transfer	Copper alloy	Lube oil (ext)	Fouling	Oil analysis
1					

		IPEC Licens	se Renewal Project		IP-RPT-06-AMM20
Aging	Management Re	eview of the IP2 S	BO and Appendix R Diesel	Generator Systems	Revision 0
		Attachment	2 - Aging Management Rev	iew Results	Page 3/ of 41
Component	Intended	Material		Ading Effort Barnin	
Heat exchanger	Heat transfer	3	Environment	Management	Aging Management Programs
(tubes)	reat nallsler	Copper alloy	Treated water (int)	Fouling	Water chemistry control - closed cooling water
Heat exchanger (tubes)	Heat transfer	Stainless steel	Treated water (int)	Fouling	Periodic surveillance and
Heat exchanger (tubes)	Heat transfer	Stainless steel	Treated water >140°f (ovt)	Ľ	Water chomister .
Heat exchanger (tubes)	Pressure boundary	Copper alloy	Air - indoor (ext)	rouiing None	closed cooling water
Heat exchanger	Presento				NONE
(tubes)	boundary	Copper alloy	Lube oil (ext)	Loss of material	Oil analysis
Heat exchanger (tubes)	Pressure boundary	Copper alloy	Treated water (int)	Loss of material	Water chemistry control -
Heat exchanger (tubes)	Pressure boundary	Stainless steel	Treated water (int)	Loss of material	Periodic surveillance and
Heat exchanger (tubes)	Pressure boundary	Stainless steel	Treated water >140°f (ext)	Cracking	preventive maintenance Water chemistry control -
Heat exchanger (tubes)	Pressure boundary	Stainless steel	Treated water >140°f (ext)		Closed cooling water Water chemistry control
					closed cooling water

		IPEC Licens	ie Renewal Project		IP-RPT-06-AMM20
Aging	Management Re	view of the IP2 SI	BO and Appendix R Diesel (Generator Svstems	Revision 0
		Attachment	2 – Aging Management Rev	iew Results	Page 38 of 41
Component	Intended				
Type Heat exchanger	Function	Material	Environment	Aging Effect Requiring Management	Aging Management
(tubes)	boundary	Stainless steel	Treated water >140°f (ext)	Loss of material-wear	Heat exchanger monitoring
Heater housing	Pressure boundary	Carbon steel	Air - indoor (ext)	Loss of material	External surfaces monitoring
Heater housing	Pressure boundary	Carbon steel	Treated water (int)	Loss of material	Water chemistry control - closed cooling water
Piping	Pressure boundary	Carbon steel	Air - indoor (ext)	Loss of material	External surfaces monitoring
Piping	Pressure boundary	Carbon steel	Air - autdoor (ext)	Loss of material	External surfaces
Piping	Pressure boundary	Carbon steel	Condensation (int)	Loss of material	Periodic surveillance and
Piping	Pressure boundary	Carbon steel	Exhaust gas (int)	Cracking-fatigue	Metal fatigue TLAA
Piping	Pressure boundary	Carbon steel	Exhaust gas (int)	Loss of material	Periodic surveillance and Dreventive maintenance
Piping	Pressure boundary	Carbon steel	Lube oil (int)	Loss of material	Oil analysis
		a de la companya de l			

		IPEC Licens	e Renewal Project		IP-RPT-06-AMM20
Aging	Management R	eview of the IP2 SI	30 and Appendix R Diesel	Generator Svstems	Revision 0
		Attachment	2 – Aging Management Rev	riew Results	rage 39 01 41
Component	Intended				
Type	Function	Material	Environment	Aging Effect Requiring	Aging Management
Piping	Pressure boundary	Carbon steel	Treated water (int)	Loss of material	Programs Water chemistry control - closed cooling water
Pump casing	Pressure boundary	Carbon steel	Air - indoor (ext)	Loss of material	External surfaces monitoring
Pump casing	Pressure boundary	Carbon steel	Lube oil (int)	Loss of material	Oil analysis
Pump casing	Pressure boundary	Carbon steel	Treated water (int)	Loss of material	Water chemistry control - closed cooling water
Sight glass	Pressure boundary	Copper alloy >15% zn	Air - indoor (ext)	None	None
Sight glass	Pressure boundary	Copper alloy >15% zn	Treated water (int)	Loss of material	Selective leaching
Sight glass	Pressure boundary	Copper alloy >15% zn	Treated water (int)	Loss of material	Water chemistry control - closed cooling water
Sight glass	Pressure boundary	Glass	Air - indoor (ext)	None	None
Sight glass	Pressure boundary	Glass	Treated water (int)	None	None

		IPEC Licens	se Renewal Project		IP-RPT-06-AMM20
Aging	Management Re	eview of the IP2 S	BO and Appendix R Diesel	Generator Sveteme	Revision 0
		Attachment	2 Aging Management Rev	iew Results	Page 40 of 41
Component	Intended				
Type	Function	Material	Environment	Aging Effect Requiring Management	Aging Management
Silencer	boundary	Carbon steel	Air - indoor (ext)	Loss of material	External surfaces monitoring
Silencer	boundary	Carbon steel	Exhaust gas (int)	Cracking-fatigue	Metal fatigue TLAA
Silencer	Pressure boundary	Carbon steel	Exhaust gas (int)	Loss of material	Periodic surveillance and preventive maintenance
Tank	Pressure boundary	Carbon steel	Air - indoor (ext)	Loss of material	External surfaces monitoring
Tank	Pressure boundary	Carbon steel	Treated water (int)	Loss of material	Water chemistry control - closed cooling water
Turbocharger	Pressure boundary	Carbon steel	Air - indoor (ext)	Loss of material	External surfaces monitoring
Turbocharger	Pressure boundary	Carbon steel	Exhaust gas (int)	Cracking-fatigue	Metal fatigue TLAA
Turbocharger	Pressure boundary	Carbon steel	Exhaust gas (int)	Loss of material	Periodic surveillance and Dreventive maintenance
Turbocharger housing	Heat transfer	Carbon steel	Aír - indoor (int)	Fouling	Periodic surveillance and preventive maintenance

IP-RPT-06-AMM20	Page 41 of 41		Aging Management	Water chemistry control - closed cooling water	External surfaces monitoring	External surfaces monitoring	Water chemistry control - closed cooling water	External surfaces monitoring	Periodic surveillance and preventive maintenance	Oil analysis	Water chemistry control - closed cooling water
	Senerator Systems	iew Results	Aging Effect Requiring	Fouling	Loss of material	Loss of material	Loss of material	Loss of material	Loss of material	Loss of material	Loss of material
Renewal Project	O and Appendix R Diesel (- Aging Management Rev	Environment	Treated water (int)	Air - indoor (ext)	Air - indoor (int)	Treated water (int)	Air - indoor (ext)	Condensation (int)	Lube oil (int)	Treated water (int)
IPEC License	view of the IP2 SB	Attachment 2	Material	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel	Carbon steel
	Management Revi		Intended Function	Heat transfer	Pressure boundary	Pressure boundary	Pressure boundary	Pressure boundary	Pressure boundary	Pressure boundary	Pressure boundary
	Aging I		Component Type	Turbocharger housing	Turbocharger housing	Turbocharger housing	Turbocharger housing	Valve body	Valve body	Valve body	Valve body