Reactor Building Holdup

Bill Berg April 10, 2008

GE Hitachi Nuclear Energy

ESBWR design meets 10CFR52.47(a)(2)(iv) fission product release limits without a secondary containment

The ESBWR Reactor Building is designed as a passive fission product holdup volume and credited in the LOCA dose analysis

- Robust Seismic Category 1 concrete structure
- Encloses Primary Containment
- Compartmentalized
- Door designed to limit leakage
- Doors & hatches have monitoring and alarms
- Operability and Testing are prescribed in Technical Specifications

	X/Q Review		ESBWR	
	Regulatory Limit 10CFR50.47(a)(2)(iv)	ESBWR as designed	Cano Site 1 estimated	lidate Site 2 estimated
LPZ (30 days)	<u><</u> 25 Rem	20.37 Rem	1.54 Rem	7.7 Rem
EAB (2 hrs)	<u><</u> 25 Rem	15.59 Rem	1.76 Rem	4.63 Rem
Control Room (30 days)	<u><</u> 5 Rem	4.97 Rem	3.21 Rem	2.37 Rem

Monitoring Radioactivity Releases

- Stack radiation monitors are safety-related
- Primary function is isolation of CONAVS and REPAVS on detection of high radiation
- RB also isolates on loss of power
- Consistent with assumptions in dose calculations
- With power available, RB HVAC [CONAVS/REPAVS] can establish flow through a purge exhaust filter which is monitored and can maintain a negative building pressure
- Monitoring RB releases after isolation performed by field monitoring teams – NEI 99-01, Methodology for Development of Emergency Action Levels, provides guidance for EPlan implementation same as existing plants
- ESBWR conforms with GDC 64

ESBWR design meets 10CFR52.47(a)(2)(iv) fission product release limits without a secondary containment

Analytical conservatisms:

- Accident source term
- Containment Leak Rate
- Impossible worst case combination of RB leakage and X/Q value
- (High Wind RB leakage/Low Wind X/Q)

Support for analytical margin

- No LOCA-induced fuel failures
- Containment Leak Rate
 - Supported by Containment Leak Rate testing
- Reactor Building leakage
 - Supported by analysis to confirm design margin assumptions
 - Supported by SR 3.6.3.1.1 & 2 (doors & hatches)
 - Supported by SR 3.6.3.1.4 exfiltration testing
- Reactor Building mixing
 - Gothic Reactor Building analysis to confirm analysis value
- X/Q default values used for DCD

ESBWR Dose limits are met without a secondary containment Secondary containment is not required by regulations