GOTHIC Reactor Building Mixing Analysis

Performed by Empresarios Agrupados, Madrid Spain

Presented by Antonio Barrett April 10, 2008

GE Hitachi Nuclear Energy

Computer Code

- Calculation performed with GOTHIC 7.2a
- GOTHIC (Generation of Thermal Hydraulic Information for Containment)
- GOTHIC is developed and maintained under the Numerical Application Inc. QA program in compliance with 10CFR50 Appendix B

ESBWR Application

Evaluation of Reactor Building response to design basis accidents with respect to

- Mixing of fission products released from containment
- Pressure and temperature determination

Application Validation by Empirical Testing From Qualification Report

Hanford Containment Mixing Test

- Experimental program to study mixing of hydrogen and helium in a nitrogen atmosphere by natural and forced convection
- Good test fidelity to ESBWR's nitrogen inerted containment considering hydrogen generation by radiolysis
 - Other applicable tests can be found in sections 14 through 22 of the GOTHIC qualification report

Mixing Model

Volumes

- The principal element of a model is a control volume, which is used to model the space within a building or subsystem that is occupied by fluid. The fluid may include noncondensing gases, steam, drops or liquid water. As a minimum, a GOTHIC model consists of at least one lumped parameter volume. Typically, a control volume represents a room or group of rooms within a building, or the fluid region of a subsystem.
- Nodalization of those compartments of the reactor building that participate in the process of dilution and mixing of fission products and gases released from the primary containment in case of LOCA and/or SBO is considered.

Input data

- ESBWR nuclear island general arrangement: 105E3908 issue 3
- RB rooms free volume = 90%

{{{Security-Related Information - Withhold Under 10 CFR 2.390.}}}

GOTHIC Nodalization

Reactor Building

7

ROOM

GOTHIC Volume Nodalization

Flow Paths Considered

FLOW PATHS

Flow paths model hydraulic connections between any two computational cells, which includes lumped parameter volumes and cells in subdivided volumes. Flow paths are used to model flow through doorways, pipe penetrations, pipes, vents and so forth. A flow path can also model a hydraulic connection in which both connections are in the same volume or cell.

- Doorways. Door clearances
- HVAC ducts

GOTHIC Door Room to Room Flow Paths

Description	Door type	Vol A	Vol B	Elevation	Description	Door type	Vol A	Vol B	Elevation	Description	Door type	Vol A	Vol B	Elevation
1110 1120	16	25	20	(m) 10.45	1201 1222	16	0	0	(m) 1	1402 OUT	Ofex	62	00	(m)
1110-1140	11 1f	25	29	-10.45	1307-1332	11 1f	0	9	-1	1403-001 1400-011T	2lex 2fox	50	80	4.05
1120-1130	11 1f	20	20	-10.45	1302-1322	11 1f	20	21	-1	1400-00T	216X 2fox 2fox	01	09	4.05
1120-1140	11 1f	30	29	-10.45	1300-1303	11 1f	20	21	-1	1490-001 1102-011T	1fomov	10	90	4.05
1120-1140	11 1f	20	42	-10.45	1301-1303	11 1f	l Q	13	-1	1192-00T	1fomox	24	90	4.05
1120 1107	1	29	4Z 50	-10.45	1212 1204	11 1fr	2	6	-1	1193-001 1101 OUT	1fox octopoo	12	30	4.05
1120-1107	1	20	32	-10.45	1312-1304	111 1fr	2	11	-1	1191-001	1fomov	7	90	4.05
1140-1196	11W	39	44	-10.45	1332-1306	111	9	11	-1	1500 1501	Tiemex	1	90	4.05
1151-1150	II(esp)	40	40	-10.45	1322-1307	111	14	17	-1	1500-1501	2l 1f	03	04	9.06
1100-1100	11(esp), 11(esp)	40	47	-10.45	1342-1305	111	21	23	-1	1501-1502	11	04	60	9.06
1100-1190	11110111	47	1	-10.45	1304-1306	11,01	0	11	-1	1502-1503	2l 1f	60	60	9.06
1196-1100	1111	42	47	-10.45	1306-1307	11,31	11	17	-1	1503-1500		00	03	9.06
1100-1101	11	47	51	-10.45	1307-1305	11,31	17	23	-1	1500-1190	11	63	/	9.06
1101-1191	110	51	12	-10.45	1305-1195	11	23	5	-1	1501-1191	Trem	64	12	9.06
1101-1152	1r(esp)	51	48	-10.45	1304-1195	1f	6	5	-1	1502-1192	11	65	19	9.06
1101-1153	2r(esp)	51	50	-10.45	1307-1308	1(ab),3(ab)	17	18	-1	1503-1193	1fem	66	24	9.06
1101-1102	1tw	51	55	-10.45	1308-1331	1them	18	10	-1	1610-1600	11	68	67	13.57
1102-1197	1f	55	43	-10.45	1331-1311	2f	10	3	-1	1630-1600	1f	69	67	13.57
1102-1163	2r(esp)	55	54	-10.45	1311-1341	1f	3	22	-1	1620-1600	11	70	67	13.57
1102-1162	1r(esp)	55	53	-10.45	1341-1321	2f	22	15	-1	1640-1600	11	/1	67	13.57
1102-1198	11	55	44	-10.45	1321-1308	1them	15	18	-1	1600-1190	11	67	12	13.57
1102-1103	1tw	55	58	-10.45	1321-1323	1	15	16	-1	1600-1191	11	67	12	13.57
1103-1160	1r(esp)	58	57	-10.45	1311-1313	1	3	4	-1	1600-1691	<u>1f</u>	67	73	13.57
1160-1161	1r(esp)	57	56	-10.45	1311-1190	<u>1t</u>	3	7	-1	1600-1193	11	67	24	13.57
1103-1193	1f	58	24	-10.45	1331-1191	<u>1f</u>	10	12	-1	1600-1490	3tex	67	91	13.57
1103-1195	11	58	5	-10.45	1321-1192	<u>1†</u>	15	19	-1	1710-1711	1r	74	75	17.5
1103-1100	1fw	58	47	-10.45	1341-1193	11	22	24	-1	1710-1712	1r	74	76	17.5
1102-1192	1fem	55	19	-10.45	1300-rbc	no door	1	1F	-1	1710-1713	1r	74	77	17.5
1106-1101	1r(esp)	49	51	-10.45	1312-rbc	no door	2	2F	-1	1710-1730	1f	74	78	17.5
1110-1205	1fem	25	28	-6.4	1301-rbc	no door	8	3F	-1	1730-1731	1r	78	79	17.5
1205-1140	1fem	28	39	-6.4	1332-rbc	no door	9	4F	-1	1730-1732	1r	78	80	17.5
1205-1195	1f	28	5	-6.4	1302-rbc	no door	13	5F	-1	1730-1703	1r	78	81	17.5
1203-1197	1f	37	43	-6.4	1322-rbc	no door	14	6F	-1	1720-1721	1r	82	83	17.5
1203-1198	1f	37	44	-6.4	1303-rbc	no door	20	7F	-1	1720-1722	1r	82	84	17.5
1210-1230	1f	27	34	-6.4	1342-rbc	no door	21	8F	-1	1720-1723	1r	82	85	17.5
1210-1240	1f	27	41	-6.4	1400-1401	2f	59	60	4.65	1720-1740	1f	82	86	17.5
1240-1220	1f	41	38	-6.4	1401-1402	1f	60	61	4.65	1740-1741	1r	86	87	17.5
1204-1230	1f	35	34	-6.4	1402-1403	2f	61	62	4.65	1740-1742	1r	86	88	17.5
1210-1190	1f	27	7	-6.4	1403-1400	1f	62	59	4.65	1710-1690	1f	74	72	17.5
1230-1191	1fem	34	12	-6.4	1400-1190	1f	59	7	4.65	1730-1191	1f	78	12	17.5
1220-1192	1f	38	19	-6.4	1401-1191	1f	60	12	4.65	1720-1691	1f	82	73	17.5
1240-1193	1fem	41	24	-6.4	1402-1192	1f	61	19	4.65	1740-1193	1f	86	24	17.5
1300-1312	1f	1	2	-1	1403-1193	1f	62	24	4.65	1740-1490	3fex	86	91	17.5

GOTHIC Flow Path Nodalization

GOTHIC 7.2a(QA) C:\GOTHIC\Sample\ono_mcy\GOTHIC_MODEL\GOTHIC_MODEL20

Remove Flow Path

Display Volumes Edit Table 1... Edit Table 2... Edit Table 3... Edit Table 4...

Done

File Build Resources Results Options Tools Help

		Flow Pa	aths - 1	able 1				
F.P. #	Description	Vol A	Elev (m)	Ht (m)	Vol B	Elev (m)	Ht (m)	
1	1300-1312	1	-1.	1.05	2	-1.	1.05	
2	1301-1332	8	-1.	1.05		-1.	1.05	
3	1302-1322	13	-1.	1.05	14	-1.	1.05	
4	1303-1342	20	-1.	1.05	21	-1.	1.05	
5	1300-1303	1	-1.	1.05	20	-1.	1.05	
6	1301-1302	8	-1.	1.05	13	-1.	1.05	
7	1312-1304	2	-1.	1.05		-1.	1.05	
8	1332-1306	9	-1.	1.05	11	-1.	1.05	
9	1322-1307	14	-1.	1.05	17	-1.	1.05	
10	1342-1305	21	-1.	1.05	23	-1.	1.05	
11	1304-1306	6	-1.	1.05	11	-1.	1.05	
12	1306-1307	11	-1.	1.05	17	-1.	1.05	
13	1307-1305	17	-1.	1.05	23	-1.	1.05	
14	1305-1195	23	-1.	1.05		-1.	1.05	
15	1304-1195	6	-1.	1.05		-1.	1.05	
16	1307-1308	17	-1.	1.05	18	-1.	1.05	
17	1308-1331	18	-1.	1.05	10	-1.	1.05	
18	1331-1311	10	-1.	1.05		-1.	1.05	
19	1311-1341	3	-1.	1.05	22	-1.	1.05	
20	1341-1321	22	-1.	1.05	15	-1.	1.05	
21	1321-1308	15	-1.	1.05	18	-1.	1.05	
22	1321-1323	15	-1.	1.05	16	-1.	1.05	
23	1311-1313	3	-1.	1.05	4	-1.	1.05	
24	1311-1190	3	-1.	1.05		-1.	1.05	
25	1331-1191	10	-1.	1.05	12	-1.	1.05	
26	1321-1192	15	-1.	1.05	19	-1.	1.05	
27	1341-1193	22	-1.	1.05	24	-1.	1.05	
28	1300-rbc	1	-1.	1.05	1F	-1.	1.05	
29	1312-rbc	2	-1.	1.05	2 F	-1.	1.05	
30	1301-rbc	8	-1.	1.05	3F	-1.	1.05	
31	1332-rbc	9	-1.	1.05	4F	-1.	1.05	
32	1302-rbc	13	-1.	1.05	5F	-1.	1.05	
33	1322-rbc	14	-1.	1.05	6F	-1.	1.05 Flow	Paths
34	1303-rbc	20	-1.	1.05	75	-1.	1.05 cm pm	
35	1342-rbc	21	-1.	1.05	8F	-1.	1.05 SF PT	LEL E.I
							Draw 1	Flow P

Boundary Conditions

Fluid boundary conditions allow the user to specify mass sources and sinks and energy sources and sinks for control volumes

- Containment leakage
- Wind velocity and direction

BOUNDARY CONDITIONS WIND PRESSURE IN REACTOR BUILDING

Tracer Gas

- A tracer gas is applied in GOTHIC for a comparison to the 40% mixing assumption in the ESBWR dose calculation
- The release simulated in GOTHC is compared to the release in the dose calculation
- The leakage from containment is mainly from steam and nitrogen
- Radioisotopes can move through the Reactor Building toward outdoors suspended on nitrogen and/or steam
- Taking into account that steam will condense across the Reactor Building, it is fully conservative to consider that all radioisotopes are suspended on nitrogen, so a maximum dose will be obtained outside the reactor building

Internal Room Temperatures

- The internal room temperatures in the Reactor Building can affect the mixing behavior
- The internal room temperatures are taken from the heat up calculation, normal operating temperatures are also considered

Multidimensional vs. lumped modeling

- A control volume represents a room within a building or a fluid region.
 - GOTHIC allows computational volumes to be treated as:
 - Lumped parameter (single node)
 - Multidimensional nodalization
- Selection criteria for subdivided volumes
 - Volume size
 - Inlet and outlet location
 - Location of heat sources

Multidimensional vs. lumped nodalization

Penetrations and Leakage

- The total leakage is equal to 0.4 % wt of Containment volume at 310 kPa (g) (45 psig) and Standard Temperature 20°C (68°F)
- Total Leakage has been distributed proportional to the penetration areas
- Similar to methodology used to develop the volume credited for mixing in the dose analyses

Results

Results from this analysis are compared to the dose calculation assumptions to confirm that it uses a bounding value