Westinghouse Non-Proprietary Class 3

LTR-NRC-08-18 NP-Enclosure

Final Presentation Slides for the Gray Rod Topical Report Pre-Submittal Meeting (Non-Proprietary)

Westinghouse Electric Company P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355

© 2008 Westinghouse Electric Company LLC All Rights Reserved Westinghouse Non-Proprietary Class 3

Enhanced Rodlet Design for the Gray Rod Cluster Assembly (GRCA)

Westinghouse/NRC Pre-Submittal Meeting White Flint, Md. March 27, 2008

© 2008 Westinghouse Electric Company LLC All Rights Reserved

Slide 1

Agenda

- Purpose
- Background
- GRCA Design Overview
- Nuclear Physics Considerations
- Materials and Irradiation Considerations
- Mechanical and Thermal Requirements
- Summary
- Next Steps

Purpose and Scope

a, c

Background

AP1000 Control And Shutdown Bank Locations

Controls Rods (RCCAs) are different from Gray Rods (GRCA)

	a, c
·	

GRCA Design Evolution

Advanced GRCA Design

Gray Rod Cluster Assembly (GRCA) Design

GRCA rodlet assembly features

Nuclear Evaluations

Slide 11

.

Nuclear Evaluations of [

]^{a,c} Rodlet

Nuclear Methods

.

Slide 14

Slide 16

GRCA Rod Worth (Unit Assembly) vs Time

Conclusion

Material Properties and Radiation Effects

5

Material Properties and Radiation Effects

a, c

Slide 22

]a,c	
ни и на при при при при со со от роко со		a, c
	Slide 22	Wactinghouse

.

westinghouse

Material Interaction

Corrosion

Irradiation Effects

Westinghouse

Nuclear Applications

]a,c						
				-	a, c		
Studies							
WAPAH							
WAPBI							
WAPBC							
WAPBE							
WAPBE							
WAPBD							
WAPBA							
WAPCJ							
WAPCG							
WAPBJ							
WAPAJ							
WAPCH							
WAPAF		~					
WAPBH							
WAPAL							

.

Impact of neutron spectrum on irradiation effects

- All high fluence studies made in fast reactors with harder spectrum than a PWR
- The studies bound the possible Re range from transmutation by thermal and epithermal neutrons
 - -Many of the studies included W-Re alloys
 - -Transmutation production of Os is inherent in the high fluence studies
- Re and Os produced at GRCA design fluences remain within solubility limits in W
- Experience with W-Re alloys indicates a benefit (swelling) due to transmutation effects

]a,c

Westinghouse

a, c

Summary of Materials and Irradiation Effects

Mechanical and Thermal Evaluations

Westinghouse

Rodlet mechanical requirements

- Rodlet structural integrity requirements are unchanged from the approved design and continue to be met.
- The absorber shall maintain suitable geometry for reactivity control.
- Rodlet envelope dimensions and weight are appropriate for interfacing with mating components.

Mechanical evaluation

Mechanical evaluation, cont'd

Thermal-Hydraulic Design Criteria

Summary

- Topical Report Being Submitted for an Enhanced Rodlet Design for the GRCA using
]^{a,c} as the absorber material
- NRC's timely review and approval of the Enhanced GRCA Rodlet Design Topical allow for introduction of this enhanced rodlet design in the initial core for AP1000
- Once approved will be incorporated in the AP-1000 Core Reference Report

Next Steps

- Schedule:
 - Topical Pre-meeting
 - Submit Topical to NRC
 - Requested Approval

March 27, 2008 May-June 2008 May-June 2009

